WO2018168315A1 - 難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物 - Google Patents

難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物 Download PDF

Info

Publication number
WO2018168315A1
WO2018168315A1 PCT/JP2018/005389 JP2018005389W WO2018168315A1 WO 2018168315 A1 WO2018168315 A1 WO 2018168315A1 JP 2018005389 W JP2018005389 W JP 2018005389W WO 2018168315 A1 WO2018168315 A1 WO 2018168315A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
parts
carbon atoms
unit
mass
Prior art date
Application number
PCT/JP2018/005389
Other languages
English (en)
French (fr)
Inventor
諒 芦田
英典 水嶋
生方 茂
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=63522104&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018168315(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to US16/494,139 priority Critical patent/US11639149B2/en
Priority to KR1020197029931A priority patent/KR102457711B1/ko
Priority to JP2019505792A priority patent/JP6737394B2/ja
Priority to CN201880017864.0A priority patent/CN110402309A/zh
Priority to EP18766765.4A priority patent/EP3597817A4/en
Publication of WO2018168315A1 publication Critical patent/WO2018168315A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/12Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/18Fireproof paints including high temperature resistant paints
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/12Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins
    • D06N3/128Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof with macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. gelatine proteins with silicon polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23504Inflatable members characterised by their material characterised by material
    • B60R2021/23509Fabric
    • B60R2021/23514Fabric coated fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/235Inflatable members characterised by their material
    • B60R2021/23533Inflatable members characterised by their material characterised by the manufacturing process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/12Polysiloxanes containing silicon bound to hydrogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/20Polysiloxanes containing silicon bound to unsaturated aliphatic groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/02Flame or fire retardant/resistant
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/30Flame or heat resistance, fire retardancy properties
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • D10B2505/12Vehicles
    • D10B2505/124Air bags
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2631Coating or impregnation provides heat or fire protection

Definitions

  • the present invention is based on FMVSS NO.
  • the present invention relates to a flame retardant air bag excellent in low burning rate property and excellent in mechanical strength as defined in 302, a method for producing a flame retardant air bag, and an addition curable liquid silicone rubber composition for a flame retardant air bag. .
  • silicone rubber compositions for air bags have been proposed for the purpose of forming a rubber coating on the fiber surface.
  • An air bag having a silicone rubber coating is suitably used as an air bag for automobiles and the like because of its excellent flame retardancy.
  • an air bag for example, an organohydrogenpolysiloxane having a SiH group having a specific structure is used as a crosslinking agent, and an organosilicon having an epoxy group and a silicon atom-bonded alkoxy group in one molecule as an adhesion-imparting component.
  • An air bag Japanese Patent Laid-Open No. 2011-080037: Patent Document 1 in which a fiber surface is coated with a liquid silicone rubber composition containing one or both of a compound, a titanium compound and a zirconium compound, or a resinous polysiloxane
  • Patent Document 2 containing a liquid silicone composition containing a siloxane component and premixed together with silica, a surface treatment agent, and water is disclosed. ing. Further, by coating the fiber surface with a liquid silicone rubber composition obtained by adding reinforcing silica fine powder and aluminum hydroxide to an addition-curable composition, FMVSS NO.
  • An air bag Japanese Patent Laid-Open No. 2010-053493: Patent Document 3 that has an excellent combustion rate as defined in 302 and has low surface tackiness is disclosed.
  • the present invention has been made in view of the above circumstances, and FMVSS NO.
  • a flame retardant airbag excellent in low burning rate property and excellent in mechanical strength as defined in 302 a method for producing a flame retardant airbag, and an addition-curable liquid silicone rubber composition for a flame retardant airbag It is intended to provide.
  • the present inventors have found that the liquid silicone rubber composition containing components (A) to (F) described below as essential components, particularly 0.05 (B) component. 0.15 mol / 100 g of alkenyl group is bonded only to D unit, and the ratio of M unit to T and / or Q unit (M unit / T and / or Q unit) is 0.65 to 1.40,
  • a predetermined amount of a three-dimensional network organopolysiloxane resin having an amount of 0.040 mol / 100 g or less
  • the airbag obtained by curing is FMVSS NO.
  • the present inventors have found that the low burning rate property defined in 302 is excellent and the mechanical strength is excellent, and the present invention has been made.
  • the present invention provides the following flame retardant airbag, a method for producing the flame retardant airbag, and an addition-curable liquid silicone rubber composition for the flame retardant airbag.
  • [1] (A) Organopolysiloxane liquid at 25 ° C.
  • Trifunctional R 3 SiO 3/2 unit (T unit, wherein R 3 is independently a group selected from an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms. ) And / or monofunctional R 3 3 SiO 1/2 units (M units, where R 3 is the same as above) with respect to the branched siloxane unit of the tetrafunctional SiO 4/2 unit (Q unit)
  • the ratio (M units / T and / or Q units) is 0.65 to 1.40, Three-dimensional network organopolysiloxane resin having a hydroxyl group content of 0.040 mol / 100 g or less: 5 to 100 parts by mass,
  • C Silica fine powder having a specific surface area of 50 m 2 / g or more in the BET method: 0.1 to 50 parts by mass,
  • D Organohydrogenpolysiloxane containing hydrogen atoms bonded to at least two silicon atoms in one molecule: (D) The number of
  • the addition curable liquid silicone rubber composition further comprises, as component (G), at least one condensation promoter selected from organic titanium compounds and organic zirconium compounds in an amount of 0.1 to 100 parts by weight per 100 parts by weight of component (A).
  • component (G) at least one condensation promoter selected from organic titanium compounds and organic zirconium compounds in an amount of 0.1 to 100 parts by weight per 100 parts by weight of component (A).
  • the component (F) is an organosilicon compound having an epoxy group and a silicon-bonded alkoxy group in one molecule as an adhesion-imparting functional group, according to any one of [1] to [3] Flame retardant airbag.
  • Combustion rate in the combustion test is 40 mm / min.
  • the flame-retardant airbag according to any one of [1] to [4], characterized in that: [6] (A) Organopolysiloxane liquid at 25 ° C.
  • Trifunctional R 3 SiO 3/2 unit (T unit, wherein R 3 is independently a group selected from an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms. ) And / or monofunctional R 3 3 SiO 1/2 units (M units, where R 3 is the same as above) with respect to the branched siloxane unit of the tetrafunctional SiO 4/2 unit (Q unit)
  • the ratio (M units / T and / or Q units) is 0.65 to 1.40, Three-dimensional network organopolysiloxane resin having a hydroxyl group content of 0.040 mol / 100 g or less: 5 to 100 parts by mass,
  • C Silica fine powder having a specific surface area of 50 m 2 / g or more in the BET method: 0.1 to 50 parts by mass,
  • D Organohydrogenpolysiloxane containing hydrogen atoms bonded to at least two silicon atoms in one molecule: (D) The number of
  • the addition curable liquid silicone rubber composition further comprises, as component (G), at least one condensation promoter selected from organic titanium compounds and organic zirconium compounds in an amount of 0.1 to 100 parts by weight per 100 parts by weight of component (A). It contains 5 mass parts, The manufacturing method of the flame-retardant airbag of [6] description characterized by the above-mentioned.
  • the surface-hydrophobized silica fine powder obtained by using a surface-hydrophobized silica fine powder that has been surface-treated in advance in the component (C) or surface-treated in the above-described preparation step.
  • the addition-curable liquid silicone rubber composition has a viscosity at 25 ° C. measured by the method described in JIS K 7117-1: 1999 of 1,000 to 1,000,000 mPa ⁇ s [6] to [8] The method for producing a flame-retardant airbag according to any one of [8].
  • (A) Organopolysiloxane liquid at 25 ° C.
  • Trifunctional R 3 SiO 3/2 unit (T unit, wherein R 3 is independently a group selected from an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms. ) And / or monofunctional R 3 3 SiO 1/2 units (M units, where R 3 is the same as above) with respect to the branched siloxane unit of the tetrafunctional SiO 4/2 unit (Q unit)
  • the ratio (M units / T and / or Q units) is 0.65 to 1.40, Three-dimensional network organopolysiloxane resin having a hydroxyl group amount of 0.040 mol / 100 g or less: 5 to 100 parts by mass,
  • C Silica fine powder having a specific surface area of 50 m 2 / g or more in the BET method: 0.1 to 50 parts by mass,
  • D Organohydrogenpolysiloxane containing hydrogen atoms bonded to at least two silicon atoms in one molecule: (D) The number of
  • the addition curable liquid silicone rubber composition further comprises, as component (G), at least one condensation promoter selected from organic titanium compounds and organic zirconium compounds in an amount of 0.1 to 100 parts by weight per 100 parts by weight of component (A).
  • component (G) at least one condensation promoter selected from organic titanium compounds and organic zirconium compounds in an amount of 0.1 to 100 parts by weight per 100 parts by weight of component (A).
  • the viscosity at 25 ° C. measured by the method described in JIS K 7117-1: 1999 of the addition-curable liquid silicone rubber composition is 1,000 to 1,000,000 mPa ⁇ s [10] or [11]
  • the coating fabric is FMVSS NO.
  • a flame-retardant air bag excellent in low burning rate property as defined in 302 and excellent in mechanical strength is obtained.
  • the viscosity is a value measured with a rotational viscometer at 25 ° C. according to the method described in JIS K 71117-1: 1999.
  • the addition-curable liquid silicone rubber composition for a flame-retardant air bag of the present invention contains the following components (A) to (F) and is liquid at room temperature (25 ° C.). .
  • each component will be described in detail.
  • Component (A) is an organopolysiloxane that is liquid at 25 ° C. containing two or more alkenyl groups bonded to silicon atoms in one molecule, and is the base polymer (main agent) of the composition according to the present invention.
  • Examples of the molecular structure of the component (A) include linear, cyclic, and branched chains.
  • the main chain basically consists of repeating diorganosiloxane units, and both ends of the molecular chain are triorganosiloxy. Linear diorganopolysiloxanes blocked with groups are preferred. Note that a three-dimensional network (resin-like) structure is not included.
  • the position of the silicon atom to which the alkenyl group is bonded in the organopolysiloxane molecule is at the end of the molecular chain (ie, Either a triorganosiloxy group) and a molecular chain (that is, a difunctional diorganosiloxane unit or a trifunctional monoorganosilsesquioxane unit located at the non-terminal end of the molecular chain) may be used.
  • the component (A) is particularly preferably a linear diorganopolysiloxane containing alkenyl groups bonded to silicon atoms at both ends of the molecular chain.
  • Examples of the alkenyl group bonded to the silicon atom in the component (A) usually include those having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms. Specific examples thereof include a vinyl group, an allyl group, a propenyl group, a butenyl group, a pentenyl group, a hexenyl group, a cyclohexenyl group, a heptenyl group, and the like, and a vinyl group is particularly preferable.
  • the content of the alkenyl group bonded to the silicon atom in the component (A) is 0.001 to the total amount of the monovalent organic group bonded to the silicon atom (that is, the unsubstituted or substituted monovalent hydrocarbon group).
  • the amount is preferably 10 mol%, particularly preferably about 0.01 to 5 mol%.
  • Examples of the monovalent organic group bonded to the silicon atom other than the alkenyl group as component (A) include monovalent hydrocarbon groups having 1 to 12 carbon atoms, preferably 1 to 10 carbon atoms, which are the same or different from each other. It is done. Specific examples of monovalent organic groups include methyl groups, ethyl groups, propyl groups, butyl groups, pentyl groups, hexyl groups, cyclohexyl groups, heptyl groups and other alkyl groups; phenyl groups, tolyl groups, xylyl groups, naphthyl groups.
  • Aryl groups such as benzyl groups, aralkyl groups such as phenethyl groups, etc., in which some or all of the hydrogen atoms of these groups are substituted with halogen atoms such as fluorine, bromine, chlorine, etc., for example, chloromethyl groups
  • halogen-substituted alkyl groups such as 3-chloropropyl group and 3,3,3-trifluoropropyl group may be used.
  • a methyl group is particularly preferable.
  • (A) component does not contain an epoxy group.
  • the viscosity of component (A) at 25 ° C. is preferably in the range of 100 to 500,000 mPa ⁇ s, particularly preferably in the range of 600 to 200,000 mPa ⁇ s. When the viscosity is within this range, the workability of the resulting composition is good, and the mechanical properties of the resulting cured silicone rubber are good.
  • organopolysiloxane of component (A) include: a trimethylsiloxy group-capped dimethylsiloxane / methylvinylsiloxane copolymer with both ends of a molecular chain, a trimethylsiloxy group-capped methylvinylpolysiloxane with a molecular chain at both ends, and a trimethylsiloxy group with both ends of a molecular chain.
  • silane-blocked dimethylsiloxane / methylvinylsiloxane / methylphenylsiloxane copolymer dimethylvinylsiloxy group-blocked dimethylpolysiloxane at both ends of the molecular chain, dimethylvinylsiloxy group-blocked methylvinylpolysiloxane at both ends of the molecular chain, dimethylvinyl at both ends of the molecular chain
  • the (A) component organopolysiloxane may be used alone or in combination of two or more.
  • the organosilicon compound [(F) component] which has the epoxy group mentioned later as organopolysiloxane of (A) component is remove
  • Component (B) is a bifunctional R 1 R 2 SiO 2/2 unit having an alkenyl group of 0.05 to 0.15 mol / 100 g (D unit, wherein R 1 is an alkenyl group having 2 to 8 carbon atoms) R 2 is a group selected from an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, and an aryl group having 6 to 12 carbon atoms, and is bonded to a trifunctional R 3 SiO.
  • T unit wherein R 3 is independently a group selected from an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms
  • M units wherein R 3 is the same as above
  • Q units branched siloxane units of SiO 4/2 units
  • a hydroxyl group content 0.65 to 1.40 and a hydroxyl group content of 0.040 mol / 100 g or less.
  • Ganoderma is a polysiloxane resin.
  • R 1 is an alkenyl group having 2 to 8 carbon atoms, and specific examples include vinyl, allyl, propenyl, butenyl, pentenyl, hexenyl, cyclohexenyl, heptenyl, etc.
  • a vinyl group is preferred.
  • R 2 is a group selected from an alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, and an aryl group having 6 to 12 carbon atoms.
  • R 3 is independently a group selected from an alkyl group having 1 to 8 carbon atoms or an aryl group having 6 to 12 carbon atoms, and specifically includes a methyl group, an ethyl group, a propyl group, a butyl group, pentyl Group, hexyl group, cyclohexyl group, heptyl group and other alkyl groups; phenyl group, tolyl group, xylyl group, naphthyl group and other aryl groups; benzyl group, phenethyl group and other aralkyl groups; chloromethyl group, 3-chloropropyl group And halogen-substituted alkyl groups such as 3,3,3-trifluoropropyl group, and the like, with a methyl group being particularly preferred.
  • (M unit / T and / or Q unit) ratio measuring method Trifunctional R 3 SiO 3/2 unit (T unit) and tetrafunctional of organopolysiloxane resin having a three-dimensional network (resinous) structure Ratio of at least one branched siloxane unit selected from SiO 4/2 units (Q units) to monofunctional R 3 3 SiO 1/2 units (M units) (M units / T and / or Q
  • the unit can be determined from 29 Si-NMR, for example.
  • the method for preparing the 29 Si-NMR sample is not particularly limited. For example, it can be measured by dissolving 1 part by mass of an organopolysiloxane resin in 3 parts by mass of deuterated chloroform.
  • the ratio of (M unit / T and / or Q unit) is 0.65 to 1.40, more preferably 0.7 to 1.0. If the ratio of (M units / T and / or Q units) is smaller than 0.65, the viscosity of the liquid silicone rubber composition may be increased, and the coating operation may be difficult. The effect of improving flame retardancy may not be obtained.
  • the amount of alkenyl group bonded to a silicon atom in an organopolysiloxane resin having a three-dimensional network (resin-like) structure can be determined, for example, as follows. That is, a solution in which 50 parts by mass of an organopolysiloxane resin having a three-dimensional network (resinous) structure is dissolved in 50 parts by mass of xylene is weighed into a container such as an Erlenmeyer flask, and 30 mL of carbon tetrachloride is added.
  • the alkenyl group bonded to the silicon atom in the component (B) is contained only in the D unit, and the amount of the alkenyl group is 0.05 to 0.15 mol / 100 g, more preferably 0.08 to 0.00. 12 mol / 100 g. If the amount of alkenyl group is out of this range, the mechanical properties of the cured product of the liquid silicone rubber composition may be deteriorated.
  • the amount of hydroxyl in the organopolysiloxane resin having a three-dimensional network (resinous) structure can be determined, for example, as follows. That is, a solution in which 50 parts by mass of an organopolysiloxane resin having a three-dimensional network (resinous) structure is dissolved in 50 parts by mass of xylene is prepared, and about 4.0 g is weighed and placed in a test tube on one side of a forked test tube. About 8 mL of about 0.5 M methylmagnesium iodide (di-n-butyl ether solution) is weighed into the other test tube.
  • the sample and the methylmagnesium iodide solution are mixed, the amount of generated methane gas [mL] is measured, and the amount of hydroxyl group is measured from the following formula. be able to.
  • the method for measuring the amount of methane gas generated is not particularly limited, but for example, it can be measured by a water replacement method using a burette or the like. In the present invention, the above water replacement method is adopted.
  • the amount of hydroxyl groups bonded to silicon atoms in the component (B) is 0.040 mol / 100 g or less, more preferably 0.030 mol / 100 g or less.
  • the content of the hydroxyl group bonded to the silicon atom in the component (B) is larger than 0.040 mol / 100 g, the amount of low-molecular siloxane generated during combustion of the coating cloth increases, and the flame retardancy may deteriorate. .
  • the weight average molecular weight of the (B) component three-dimensional network (resin-like) structure organopolysiloxane resin is preferably 2,000 to 12,000, more preferably 4,000 to 8,000.
  • a measuring method of a weight average molecular weight it can obtain
  • the blending amount of the component (B) is 5 to 100 parts by mass, more preferably 10 to 50 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount is too small, a sufficient effect of improving flame retardancy may not be obtained. If the blending amount is too large, the viscosity of the composition may be increased and the coating workability may be deteriorated.
  • the (B) component three-dimensional network organopolysiloxane resin can be used singly or in combination of two or more as long as the above conditions are satisfied.
  • the silica fine powder of component (C) acts as a reinforcing filler. In other words, it gives strength to the cured silicone rubber obtained from the composition according to the present invention.
  • silica fine powder as a reinforcing filler, a coating film satisfying the strength required for the present invention is formed. It becomes possible to do.
  • Such fine silica powder has a specific surface area (BET method) of 50 m 2 / g or more, preferably 50 to 400 m 2 / g, more preferably 100 to 300 m 2 / g, and a specific surface area of less than 50 m 2 / g. Thus, satisfactory strength characteristics cannot be imparted.
  • Such a silica fine powder may be a known silica powder conventionally used as a reinforcing filler for silicone rubber, provided that the specific surface area is within the above range.
  • silica fine powder conventionally used as a reinforcing filler for silicone rubber, provided that the specific surface area is within the above range.
  • fumed silica (fumed silica) Silica), precipitated silica (wet silica), and the like can be used alone or in combination of two or more.
  • silica fine powder for example, a silica fine powder whose surface is hydrophobized with a surface treatment agent (usually hydrolyzable) such as chlorosilane, alkoxysilane, or organosilazane can be used.
  • these silica fine powders may be used in the form of a powder that has been subjected to surface hydrophobization treatment directly with a surface treatment agent, or silicone oil (for example, the alkenyl group of component (A) above).
  • a surface treatment agent may be added at the time of kneading with (containing organopolysiloxane), and the surface may be hydrophobized.
  • the component (C) As a normal processing method for the component (C), it can be surface-treated by a known technique.
  • the untreated silica fine powder and the processing agent are put in a mechanical kneading apparatus or a fluidized bed sealed at normal pressure, If necessary, mixing can be performed at room temperature (25 ° C.) or heat treatment (under heating) in the presence of an inert gas. In some cases, the treatment may be accelerated using water or a catalyst (such as a hydrolysis accelerator). After kneading, the treated silica fine powder can be produced by drying.
  • the blending amount of the treatment agent may be equal to or more than the amount calculated from the coating area of the treatment agent.
  • the surface treatment agent examples include silazanes such as hexamethyldisilazane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, vinyltrimethoxysilane.
  • silazanes such as hexamethyldisilazane, methyltrimethoxysilane, ethyltrimethoxysilane, propyltrimethoxysilane, butyltrimethoxysilane, dimethyldimethoxysilane, diethyldimethoxysilane, vinyltrimethoxysilane.
  • Silane coupling agents such as ethoxysilane, vinyltrimethoxysilane, trimethylmethoxysilane, triethylmethoxysilane, vinyltris (methoxyethoxy) silane, trimethylchlorosilane, dimethyldichlorosilane, divinyldimethoxysilane and chloropropyltrimethoxysilane, polymethylsiloxane, Examples thereof include organohydrogenpolysiloxane, which can be surface-treated with these to be used as hydrophobic silica fine powder.
  • silane coupling agents or silazanes are particularly preferable.
  • the blending amount of the component (C) is 0.1 to 50 parts by mass, preferably 10 to 30 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount is too small, the required strength cannot be obtained. If the blending amount is too large, the thixotropy of the composition increases, the fluidity decreases, and the coating operation becomes worse.
  • the organohydrogenpolysiloxane of component (D) acts as a crosslinking agent (curing agent) by hydrosilylation addition reaction with the alkenyl group in components (A) and (B), and is particularly limited in its molecular structure. It is possible to use various types such as linear, cyclic, branched, and three-dimensional network (resin-like) structures that have been conventionally produced, but at least two silicon atoms in one molecule. It is necessary to have a bonded hydrogen atom (a hydrosilyl group represented by SiH), and substantially not contain a hydroxyl group bonded to a silicon atom (that is, a silanol group) in the molecule.
  • a bonded hydrogen atom a hydrosilyl group represented by SiH
  • the (D) component organohydrogenpolysiloxane may be used alone or in combination of two or more.
  • organohydrogenpolysiloxane of (D) component the organosilicon compound [(F) component] which has the epoxy group mentioned later is remove
  • organohydrogenpolysiloxane those represented by the following average composition formula (1) can be used.
  • R 4 is the same or different from each other and is a monovalent hydrocarbon group bonded to a silicon atom, preferably having 1 to 10 carbon atoms, excluding an aliphatic unsaturated bond such as an alkenyl group
  • Examples of the monovalent hydrocarbon group in R 4 include, for example, methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, tert-butyl group, pentyl group, neopentyl group, hexyl group, cyclohexyl group, octyl group.
  • Alkyl groups such as a group, nonyl group and decyl group; aryl groups such as phenyl group, tolyl group, xylyl group and naphthyl group; and aralkyl groups such as benzyl group, phenylethyl group and phenylpropyl group.
  • halogen atoms such as fluorine, bromine and chlorine, such as chloromethyl, chloropropyl, A moethyl group, a trifluoropropyl group, or the like may be used.
  • the monovalent hydrocarbon group for R 4 is preferably an alkyl group or an aryl group, and more preferably a methyl group.
  • A is 0.7 to 2.1, b is 0.001 to 1.0, and a + b is a positive number satisfying 0.8 to 3.0, preferably a is 1.0 to 2 0.0 and b are positive numbers satisfying 0.01 to 1.0 and a + b satisfying 1.5 to 2.5.
  • the at least two SiH groups contained in one molecule may be located at either the molecular chain end or in the middle of the molecular chain, or may be located at both of them.
  • the molecular structure of the organohydrogenpolysiloxane may be any of linear, cyclic, branched, and three-dimensional network structures, but the number of silicon atoms in one molecule (or the degree of polymerization) is
  • the viscosity is usually 2 to 300, preferably 3 to 150, more preferably about 4 to 100, and the viscosity at 25 ° C. is usually 0.1 to 1,000 mPa ⁇ s, preferably 0.5 to A liquid of about 500 mPa ⁇ s at 25 ° C. is used.
  • the degree of polymerization can be determined, for example, as number average degree of polymerization (number average molecular weight) or weight average degree of polymerization (weight average molecular weight) in terms of polystyrene in GPC (gel permeation chromatography) analysis using toluene as a developing solvent. .
  • component (D) organohydrogenpolysiloxane examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris (hydrogendimethylsiloxy).
  • the blending amount of component (D) is 1 to 10 silicon-bonded hydrogen atoms in component (D) with respect to one (or mole) of silicon-bonded alkenyl groups in components (A) and (B) ( Or mole), preferably in an amount in the range of 1 to 5 (or mole).
  • the number of silicon-bonded hydrogen atoms in component (D) is less than 1 for one silicon-bonded alkenyl group in components (A) and (B)
  • the composition does not cure sufficiently, When it exceeds 10, the heat resistance of the resulting cured silicone rubber may be extremely deteriorated.
  • Component (E) includes platinum black, secondary platinum chloride, chloroplatinic acid, a reaction product of chloroplatinic acid and a monohydric alcohol, a complex of chloroplatinic acid and olefins, chloroplatinic acid and vinyl group-containing (poly ) Platinum group metal catalysts such as complexes with siloxane.
  • the amount of component (E) can be a catalytic amount, and is generally about 0.5 to 1,000 ppm, particularly about 1 to 500 ppm, based on the total mass of the silicone rubber composition, as a platinum group metal (in terms of mass). It is. If the addition amount is too small, the curability is lowered, and if the addition amount is too large, the cost becomes high and uneconomical.
  • the component (F) is an organosilicon compound containing an adhesion-imparting functional group, and preferably an organosilicon compound having an epoxy group and a silicon atom-bonded alkoxy group in one molecule as the adhesion-giving functional group. It is added in order to develop and improve the adhesion of the silicone rubber composition to the air bag base fabric.
  • organosilicon compound any organosilicon compound can be used as long as it has such an adhesion-imparting functional group, but an organic compound having at least one epoxy group and one silicon-bonded alkoxy group in each molecule.
  • It is preferably a silicon compound, and has at least one epoxy group and at least two silicon atom-bonded alkoxy groups (for example, trialkoxysilyl group, organodialkoxysilyl group, etc.) from the viewpoint of adhesion development.
  • An organosilicon compound for example, an organosilane, or a cyclic or linear organosiloxane having 2 to 100, preferably about 4 to 50 silicon atoms, comprising at least one epoxy group and at least two epoxy groups More preferably, it has a silicon atom-bonded alkoxy group.
  • a component may be used individually by 1 type, or may use 2 or more types together.
  • the epoxy group is, for example, a silicon atom in the form of a glycidoxyalkyl group such as a glycidoxypropyl group; an epoxy-containing cyclohexylalkyl group such as a 2,3-epoxycyclohexylethyl group or a 3,4-epoxycyclohexylethyl group. It is preferable that it is couple
  • a silicon atom-bonded alkoxy group is bonded to a silicon atom, for example, a trialkoxysilyl group such as a trimethoxysilyl group or a triethoxysilyl group; a methyldimethoxysilyl group, an ethyldimethoxysilyl group, a methyldiethoxysilyl group, an ethyldi It is preferable to form an alkyl dialkoxysilyl group such as an ethoxysilyl group.
  • component (F) includes, for example, alkenyl groups such as vinyl groups, acrylic groups, (meth) acryloxy groups, and hydrosilyl groups (SiH) as functional groups other than epoxy groups and silicon-bonded alkoxy groups in one molecule. It may have at least one functional group selected from the group consisting of groups).
  • organosilicon compound of component (F) examples include ⁇ -glycidoxypropyltriethoxysilane, ⁇ -glycidoxypropylmethyldiethoxysilane, (3,4-epoxycyclohexylethyl) trimethoxysilane, (3, 4-epoxycyclohexylethyl) triethoxysilane, (3,4-epoxycyclohexylethyl) methyldimethoxysilane, (3,4-epoxycyclohexylethyl) methyldiethoxysilane, (2,3-epoxycyclohexylethyl) triethoxysilane, Epoxy functional group-containing silane coupling agents such as (2,3-epoxycyclohexylethyl) methyldimethoxysilane, (2,3-epoxycyclohexylethyl) methyldiethoxysilane (ie, epoxy functional group-containing organoalk
  • h is an integer of 1 to 10
  • k is an integer of 0 to 40, preferably 0 to 20
  • p is an integer of 1 to 40, preferably 1 to 20
  • q is 1 to 10.
  • the blending amount of the component (F) is 0.1 to 10 parts by mass, preferably 0.25 to 5 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A).
  • the blending amount is less than 0.1 parts by mass, the resulting composition does not have sufficient adhesive strength. If the blending amount exceeds 10 parts by mass, even if the blending amount is increased, the resulting composition is difficult to improve the adhesive force, and the cost becomes high, which is uneconomical.
  • the silicon-bonded hydrogen atom in component is in the range of 1 to 10 (or mole), preferably 1 to 8 (or mole), more preferably 1 to 6 (or mole) The amount is blended.
  • the number of silicon-bonded hydrogen atoms in the composition is less than one for one silicon-bonded alkenyl group in the composition, the composition may not be cured sufficiently and may not have sufficient adhesion. is there. On the other hand, when this number exceeds 10, the heat resistance of the obtained silicone rubber cured product is extremely inferior, it is difficult to improve the adhesive force, the cost is high, and it tends to be uneconomical.
  • Component (G) is at least one selected from an organic titanium compound and an organic zirconium compound, and acts as a condensation promoter for promoting adhesion.
  • a component may be used individually by 1 type, or may use 2 or more types together.
  • component (G) examples include, for example, organic titanates such as titanium tetraisopropoxide, titanium tetranormal butoxide, titanium tetra-2-ethylhexoxide, titanium diisopropoxybis (acetylacetonate), Titanium-condensation promoters (titanium compounds) such as titanium diisopropoxybis (ethyl acetoacetate), titanium tetraacetylacetonate, etc., organic zirconium esters such as zirconium tetranormal propoxide, zirconium tetranormal butoxide, Organic zirconium clay such as zirconium tributoxy monoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetoacetate), zirconium tetraacetylacetonate Zirconium condensation promoter such as compound (zirconium compounds).
  • organic titanates such as titanium tetraisopropoxide
  • the organic titanium compound and organozirconium compound of component (G) are optional components that are blended as necessary, and the blending amount is usually 5 parts by weight or less (0) with respect to 100 parts by weight of component (A). However, when the component (G) is blended, it is preferably in the range of 0.1 to 5 parts by mass, more preferably 0.2 to 2 parts by mass. When the blending amount is less than 0.1 parts by mass, the resulting cured product may be liable to deteriorate the adhesion durability under high temperature and high humidity. When the blending amount exceeds 5 parts by mass, the resulting cured product May tend to lower the heat resistance.
  • a filler other than the silica fine powder of component for example, crystalline silica (for example, quartz powder having a BET method specific surface area of less than 50 m 2 / g), silicate mineral fine powder, organic resin Hollow filler, polymethylsilsesquioxane fine particles (so-called silicone resin powder), fumed titanium dioxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, magnesium carbonate, calcium carbonate, zinc carbonate, layered mica, carbon black, silica Fillers such as algae and glass fibers; fillers obtained by subjecting these fillers to surface hydrophobic treatment with organosilicon compounds such as organoalkoxysilane compounds, organochlorosilane compounds, organosilazane compounds, and low molecular weight siloxane compounds; silicone rubber powders, etc. Is mentioned.
  • organosilicon compounds such as organoalkoxysilane compounds, organochlorosilane compounds, organosilazane compounds, and low molecular weight siloxane
  • an organopolysiloxane containing one silicon-bonded hydrogen atom in one molecule and no other functional group, one silicon-bonded alkenyl group in one molecule An organopolysiloxane containing no other functional groups, a non-functional organopolysiloxane containing no silicon-bonded hydrogen atoms, silicon-bonded alkenyl groups, or other functional groups (so-called dimethyl silicone oil), An organic solvent, an anti-creep hardening agent, a plasticizer, a thixotropic agent, a pigment, a dye, an antifungal agent and the like can be blended. Each of these other components may be used alone or in combination of two or more.
  • Addition-curable liquid silicone rubber composition is obtained by adding the components (A) to (F), preferably components (A) to (G), and other optional components, if necessary, and mixing uniformly. Things can be adjusted.
  • Such an addition-curable liquid silicone rubber composition is a liquid composition at 25 ° C., and has a viscosity at 25 ° C. of 1,000 to 1,000,000 measured by the method described in JIS K 7117-1: 1999. 000 mPa ⁇ s is preferable, and 10,000 to 300,000 mPa ⁇ s is more preferable. If it is in this viscosity range, when coating on the airbag fabric, uneven coating and insufficient adhesion after curing are unlikely to occur, so that it can be suitably used.
  • the manufacturing method of the airbag includes the step of preparing the above addition-curable liquid silicone rubber composition, the step of applying the composition to at least one side of the airbag base fabric in a coating amount of 5 to 150 g / m 2 , and It has the process of heat-hardening the base fabric in which the said composition was apply
  • the step of preparing the addition curable liquid silicone rubber composition the surface hydrophobized silica obtained by using a surface hydrophobized silica fine powder surface-treated in advance in the component (C) or surface-treated in the above preparatory step. Either step of using fine powder is included.
  • the surface hydrophobizing treatment can be performed by adding the above-mentioned surface treatment agent at the time of kneading with silicone oil (for example, the alkenyl group-containing organopolysiloxane of the component (A)).
  • silicone oil for example, the alkenyl group-containing organopolysiloxane of the component (A)
  • the surface treatment method and the surface treatment agent are as described above.
  • a base fabric for an air bag (a base material made of a fiber cloth) on which a silicone rubber layer is formed
  • a known one is used, and specific examples thereof include 66-nylon, 6-nylon, aramid fiber, etc.
  • examples thereof include woven fabrics of various synthetic fibers such as various polyamide fibers, various polyester fibers such as polyethylene terephthalate (PET) and polybutylene terephthalate (PBT).
  • PET polyethylene terephthalate
  • PBT polybutylene terephthalate
  • a silicone rubber layer (cured material layer) can be formed on the base fabric.
  • an airbag can be manufactured using the silicone rubber coating base fabric for airbags obtained in this way.
  • the coating amount (or surface coating amount) is preferably 5 to 150 g / m 2 , more preferably 10 to 80 g / m 2 , and still more preferably 15 to 60 g / m 2 . If the coating amount is less than 5 g / m 2 , sufficient airtightness and flame retardancy cannot be imparted to the airbag, and if it exceeds 150 g / m 2 , the volume when the airbag is folded increases and is stored in the vehicle. May be disadvantageous.
  • the liquid silicone rubber composition can be cured by a known curing method under known curing conditions. Specifically, for example, the composition can be cured by drying at normal pressure in a drying furnace at 100 to 200 ° C. for 0.5 to 60 minutes.
  • a silicone rubber coated base fabric for an airbag into an airbag
  • at least the inner surface of two plain woven fabrics coated with silicone rubber are bonded together with an adhesive. And a method of sewing the adhesive layers together.
  • a liquid silicone rubber composition is coated with a predetermined coating amount on at least the inner surface side of an air bag base fabric produced by bag weaving in advance, and is cured under predetermined curing conditions. May be taken.
  • the adhesive agent used here it is preferable from surfaces, such as adhesive force and adhesion durability, to use the silicone type adhesive called a seam sealant.
  • the viscosity is a value at 25 ° C. measured by a rotational viscometer described in JIS K 7117-1: 1999.
  • the ratio of monofunctional R 3 3 SiO 1/2 units (M units) was prepared by dissolving 1 part by weight of organopolysiloxane resin in 3 parts by weight of deuterated chloroform.
  • the sample was put in a Teflon (registered trademark) NMR sample tube and integrated with ECX-500 II (manufactured by JEOL Ltd.) for 3,000 times to measure and calculate a 29 Si-NMR spectrum.
  • the amount of alkenyl groups and the amount of hydroxyl groups of the component (B) were measured by the methods described above.
  • dimethylpolysiloxane (A1) having a viscosity at 25 ° C. of 30,000 mPa ⁇ s, the bifunctional constituting the main chain.
  • 5 parts by weight of vinylmethylpolysiloxane (A2) was added and mixed until uniform to obtain a base compound (1).
  • Example 1 32.5 mass parts of dimethylpolysiloxane (A3) whose molecular chain both ends are blocked with vinyldimethylsiloxy groups and having a viscosity at 25 ° C. of 5,000 mPa ⁇ s in 105 parts by mass of the base compound (1) obtained above. Part, both ends of the molecular chain are blocked with vinyldimethylsiloxy groups, and 56 parts by mass of dimethylpolysiloxane (A4) having a viscosity at 25 ° C.
  • the prepared composition A was press-cured at 150 ° C. for 5 minutes to prepare a sheet in accordance with JIS K 6249: 2003.
  • the sheet was subjected to hardness, elongation at break, and tension according to JIS K 6249: 2003.
  • Table 1 shows the results of measurement of strength and tear strength (crescent type).
  • coated base fabric was cured at 200 ° C. / 1 min in a drier FMVSS NO.
  • the burning rate was measured by the method defined in 302. Table 1 shows the average burning rate as a result of 10 burning tests.
  • Preparation Example 2 Silica fine powder having both molecular chain ends blocked with vinyldimethylsiloxy groups, 65 parts by mass of dimethylpolysiloxane (A1) having a viscosity at 25 ° C. of 30,000 mPa ⁇ s, and a specific surface area of 300 m 2 / g by BET method 40 parts by mass of silica fine powder (C2) treated with trimethylsilazane (Musil-130A, manufactured by Shin-Etsu Chemical Co., Ltd.) was put into a kneader and mixed at room temperature for 1 hour. Thereafter, the temperature was raised to 150 ° C., followed by mixing for 2 hours.
  • A1 dimethylpolysiloxane
  • C2 silica fine powder treated with trimethylsilazane
  • dimethylpolysiloxane (A1) having a viscosity at 25 ° C. of 30,000 mPa ⁇ s, the bifunctional constituting the main chain.
  • 5 parts by weight of vinylmethylpolysiloxane (A2) was added and mixed until uniform to obtain a base compound (2).
  • Example 2 Table 1 shows the results of preparing composition B with the same formulation except that base compound (1) was replaced with base compound (2) in Example 1 with the same parts by mass and evaluated in the same manner as in Example 1. It is shown in 1.
  • the organopolysiloxane resin (B1) having a three-dimensional network structure is composed of (CH 3 ) 3 SiO 1/2 units, (CH 3 ) (CH 2 ⁇ CH) SiO 2/2 units and SiO 3/2 units.
  • Table 1 shows the results of preparing the composition C with the same formulation except that the same mass part was replaced with the same, and performing the same evaluation as in Example 1.
  • Example 1 the organopolysiloxane resin (B1) having a three-dimensional network structure is converted into (CH 3 ) 3 SiO 1/2 units, (CH 3 ) 2 (CH 2 ⁇ CH) SiO 1/2 units and SiO 4/2 units.
  • Table 1 shows the results of preparing the composition D with the same formulation except that the same mass parts were replaced with the same mass parts, and carrying out the same evaluation as in Example 1.
  • the organopolysiloxane resin (B1) having a three-dimensional network structure is composed of (CH 3 ) 3 SiO 1/2 units, (CH 3 ) (CH 2 ⁇ CH) SiO 2/2 units and SiO 4/2 units.
  • Table 1 shows the results of preparing the composition E with the same formulation except that the same mass parts were replaced with the same parts and evaluating the same as in Example 1.
  • the organopolysiloxane resin (B1) having a three-dimensional network structure is composed of (CH 3 ) 3 SiO 1/2 units, (CH 3 ) (CH 2 ⁇ CH) SiO 2/2 units and SiO 4/2 units.
  • Table 1 shows the results of preparing the composition F with the same formulation except that the same mass part was replaced with the same mass parts, and performing the same evaluation as in Example 1.
  • the organopolysiloxane resin (B1) having a three-dimensional network structure is composed of (CH 3 ) 3 SiO 1/2 units, (CH 3 ) (CH 2 ⁇ CH) SiO 2/2 units and SiO 4/2 units.
  • the ratio of M units / Q units is 0.40, the amount of alkenyl groups is 0.10 mol / 100 g, and the amount of hydroxyl groups is 0.010 mol / 100 g.
  • Table 1 shows the results of preparing the composition G with the same formulation except that the same mass parts were replaced with the same parts, and performing the same evaluation as in Example 1.
  • the organopolysiloxane resin (B1) having a three-dimensional network structure is composed of (CH 3 ) 3 SiO 1/2 units, (CH 3 ) (CH 2 ⁇ CH) SiO 2/2 units and SiO 4/2 units.
  • Table 1 shows the results obtained by preparing the composition H with the same formulation except that the same mass part was replaced with the same mass parts, and performing the same evaluation as in Example 1.
  • Example 6 the organopolysiloxane resin (B1) having a three-dimensional network structure is composed of (CH 3 ) 3 SiO 1/2 units and SiO 4/2 units, and the ratio of M units / Q units is 0.85.
  • Composition I was prepared with the same formulation except that it was replaced with an organopolysiloxane resin (B8) having a three-dimensional network structure containing no alkenyl group and having a hydroxyl group amount of 0.10 mol / 100 g. The results of the preparation and the same evaluation as in Example 1 are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Air Bags (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Paints Or Removers (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

低燃焼速度の難燃性エアーバッグを提供する。 (A)ケイ素原子結合アルケニル基含有液状オルガノポリシロキサン:100質量部、 (B)0.05~0.15mol/100gのアルケニル基がD単位のみに結合し、T及び/又はQ単位に対するM単位の比が0.65~1.40で水酸基量が0.040mol/100g以下の三次元網状オルガノポリシロキサンレジン:5~100質量部、 (C)比表面積が50m2/g以上のシリカ微粉末:0.1~50質量部、 (D)ケイ素原子結合水素原子含有オルガノハイドロジェンポリシロキサン:(D)成分中のケイ素原子結合水素原子数が(A)及び(B)成分中のケイ素原子結合アルケニル基の合計1個当り1~10個となる量、 (E)白金族金属系触媒:有効量、 (F)有機ケイ素化合物:0.1~10質量部 を含む塗布量5~150g/m2の組成物の硬化被膜が基布に形成されてなる難燃性エアーバッグ。

Description

難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物
 本発明は、FMVSS NO.302に規定される低燃焼速度性に優れ、且つ機械的強度にも優れる難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物に関する。
 従来、繊維表面にゴム被膜を形成させることを目的としたエアーバッグ用シリコーンゴム組成物が提案されている。シリコーンゴム被膜を有するエアーバッグは、難燃性に優れるため、自動車等のエアーバッグとして好適に用いられている。
 このようなエアーバッグとしては、例えば、特定構造のSiH基を有するオルガノハイドロジェンポリシロキサンを架橋剤とし、接着性付与成分として、1分子中にエポキシ基とケイ素原子結合アルコキシ基とを有する有機ケイ素化合物、並びにチタニウム化合物及びジルコニウム化合物のいずれか一方又は両方を含有する液状シリコーンゴム組成物を繊維表面に被覆したエアーバッグ(特開2011-080037号公報:特許文献1)や、レジン状ポリシロキサンを含有し、シロキサン成分をシリカ、表面処理剤、水とともに事前混合することで製造した液状シリコーン組成物を繊維表面に被覆したエアーバッグ(特開2013-209517号公報:特許文献2)などが開示されている。また、付加硬化型組成物に補強性シリカ微粉末と水酸化アルミニウムを添加してなる液状シリコーンゴム組成物を繊維表面に被覆することで、FMVSS NO.302に規定される燃焼速度に優れ、また表面粘着性の少ないエアーバッグ(特開2010-053493号公報:特許文献3)などが開示されている。
 しかし、これらのエアーバッグは、いずれも近年の低燃焼速度性に対する高い要求に応えることが難しいという問題があり、特に、近年の基布に対する液状シリコーンゴム組成物の低塗工量の市場要求に対して上記低燃焼速度性の要求特性を満足させ得るものではなく、またこれらの液状シリコーンゴム組成物の硬化物は、機械的特性が低いため、これらを繊維表面に被覆して得られるエアーバッグも機械的強度が低いという問題があった。
特開2011-080037号公報 特開2013-209517号公報 特開2010-053493号公報
 本発明は、上記事情に鑑みてなされたものであって、FMVSS NO.302に規定される低燃焼速度性に優れ、且つ機械的強度にも優れる難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物を提供することを目的とするものである。
 本発明者らは、上記目的を達成するべく鋭意検討を行った結果、後述する(A)~(F)成分を必須成分とした液状シリコーンゴム組成物において、特に(B)成分の0.05~0.15mol/100gのアルケニル基がD単位のみに結合し、T及び/又はQ単位に対するM単位の比(M単位/T及び/又はQ単位)が0.65~1.40で、水酸基量が0.040mol/100g以下である三次元網状オルガノポリシロキサンレジンを所定量配合したものを用いることにより、この液状シリコーンゴム組成物をエアーバッグ用基布表面に所定量塗布し、これを加熱硬化させて得られるエアーバッグが、FMVSS NO.302に規定される低燃焼速度性に優れ、且つ機械的強度にも優れることを見出し、本発明をなすに至った。
 従って、本発明は、下記難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物を提供するものである。
〔1〕
 (A)ケイ素原子に結合した炭素数2~8のアルケニル基を1分子中に2個以上含有する25℃で液状のオルガノポリシロキサン:100質量部、
(B)0.05~0.15mol/100gのアルケニル基が2官能性のR12SiO2/2単位(D単位、式中、R1は炭素数2~8のアルケニル基、R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基である。)のみに結合し、
 3官能性のR3SiO3/2単位(T単位、式中、R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基である。)及び/又は4官能性のSiO4/2単位(Q単位)の分岐鎖状シロキサン単位に対する単官能性のR3 3SiO1/2単位(M単位、式中、R3は上記と同じである。)の比(M単位/T及び/又はQ単位)が0.65~1.40で、
 水酸基量が0.040mol/100g以下
である三次元網状オルガノポリシロキサンレジン:5~100質量部、
(C)BET法における比表面積が50m2/g以上のシリカ微粉末:0.1~50質量部、
(D)1分子中に少なくとも2個のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(D)成分の1分子中に含まれるケイ素原子に結合した水素原子の数が、(A)及び(B)成分中のケイ素原子結合アルケニル基の合計1個当たり、1~10個となる量、
(E)ヒドロシリル化反応用触媒としての白金族金属系触媒:有効量、
(F)接着性付与官能基を含有する有機ケイ素化合物:0.1~10質量部
を含む、コーティング量5~150g/m2の付加硬化型液状シリコーンゴム組成物の硬化被膜がエアーバッグ用基布の少なくとも片面に形成されてなることを特徴とする難燃性エアーバッグ。
〔2〕
 付加硬化型液状シリコーンゴム組成物が、更に、(G)成分として、有機チタニウム化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の縮合助触媒を(A)成分100質量部に対して0.1~5質量部含有することを特徴とする〔1〕記載の難燃性エアーバッグ。
〔3〕
 (C)成分が、表面疎水化シリカ微粉末であることを特徴とする〔1〕又は〔2〕記載の難燃性エアーバッグ。
〔4〕
 (F)成分が、接着性付与官能基として1分子中にエポキシ基とケイ素原子結合アルコキシ基とを有する有機ケイ素化合物であることを特徴とする〔1〕~〔3〕のいずれかに記載の難燃性エアーバッグ。
〔5〕
 エアーバッグのFMVSS No.302燃焼試験における燃焼速度が40mm/min.以下であることを特徴とする〔1〕~〔4〕のいずれかに記載の難燃性エアーバッグ。
〔6〕
 (A)ケイ素原子に結合した炭素数2~8のアルケニル基を1分子中に2個以上含有する25℃で液状のオルガノポリシロキサン:100質量部、
(B)0.05~0.15mol/100gのアルケニル基が2官能性のR12SiO2/2単位(D単位、式中、R1は炭素数2~8のアルケニル基、R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基である。)のみに結合し、
 3官能性のR3SiO3/2単位(T単位、式中、R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基である。)及び/又は4官能性のSiO4/2単位(Q単位)の分岐鎖状シロキサン単位に対する単官能性のR3 3SiO1/2単位(M単位、式中、R3は上記と同じである。)の比(M単位/T及び/又はQ単位)が0.65~1.40で、
 水酸基量が0.040mol/100g以下
である三次元網状オルガノポリシロキサンレジン:5~100質量部、
(C)BET法における比表面積が50m2/g以上のシリカ微粉末:0.1~50質量部、
(D)1分子中に少なくとも2個のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(D)成分の1分子中に含まれるケイ素原子に結合した水素原子の数が、(A)及び(B)成分中のケイ素原子結合アルケニル基の合計1個当たり、1~10個となる量、
(E)ヒドロシリル化反応用触媒としての白金族金属系触媒:有効量、
(F)接着性付与官能基を含有する有機ケイ素化合物:0.1~10質量部
を含む付加硬化型液状シリコーンゴム組成物を調製する工程、前記組成物をエアーバッグ用基布の少なくとも片面に5~150g/m2のコーティング量で塗布する工程、及び前記組成物が塗布された基布を加熱硬化する工程を有することを特徴とする難燃性エアーバッグの製造方法。
〔7〕
 付加硬化型液状シリコーンゴム組成物が、更に、(G)成分として、有機チタニウム化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の縮合助触媒を(A)成分100質量部に対して0.1~5質量部含有することを特徴とする〔6〕記載の難燃性エアーバッグの製造方法。
〔8〕
 付加硬化型液状シリコーンゴム組成物を調製する工程において、(C)成分に、予め表面処理された表面疎水化シリカ微粉末を用いるか、又は上記調製工程において表面処理されてなる表面疎水化シリカ微粉末を用いるかの、いずれかの工程を含むことを特徴とする〔6〕又は〔7〕記載の難燃性エアーバッグの製造方法。
〔9〕
 付加硬化型液状シリコーンゴム組成物のJIS K 7117-1:1999に記載の方法で測定した25℃における粘度が1,000~1,000,000mPa・sであることを特徴とする〔6〕~〔8〕のいずれかに記載の難燃性エアーバッグの製造方法。
〔10〕
 (A)ケイ素原子に結合した炭素数2~8のアルケニル基を1分子中に2個以上含有する25℃で液状のオルガノポリシロキサン:100質量部、
(B)0.05~0.15mol/100gのアルケニル基が2官能性のR12SiO2/2単位(D単位、式中、R1は炭素数2~8のアルケニル基、R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基である。)のみに結合し、
 3官能性のR3SiO3/2単位(T単位、式中、R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基である。)及び/又は4官能性のSiO4/2単位(Q単位)の分岐鎖状シロキサン単位に対する単官能性のR3 3SiO1/2単位(M単位、式中、R3は上記と同じである。)の比(M単位/T及び/又はQ単位)が0.65~1.40で、
 水酸基の量が0.040mol/100g以下
である三次元網状オルガノポリシロキサンレジン:5~100質量部、
(C)BET法における比表面積が50m2/g以上のシリカ微粉末:0.1~50質量部、
(D)1分子中に少なくとも2個のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(D)成分の1分子中に含まれるケイ素原子に結合した水素原子の数が、(A)及び(B)成分中のケイ素原子結合アルケニル基の合計1個当たり、1~10個となる量、
(E)ヒドロシリル化反応用触媒としての白金族金属系触媒:有効量、
(F)接着性付与官能基を含有する有機ケイ素化合物:0.1~10質量部
を含むことを特徴とする難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物。
〔11〕
 付加硬化型液状シリコーンゴム組成物が、更に、(G)成分として、有機チタニウム化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の縮合助触媒を(A)成分100質量部に対して0.1~5質量部含有することを特徴とする〔10〕記載の難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物。
〔12〕
 付加硬化型液状シリコーンゴム組成物のJIS K 7117-1:1999に記載の方法で測定した25℃における粘度が1,000~1,000,000mPa・sであることを特徴とする〔10〕又は〔11〕記載の難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物。
 本発明によれば、コーティング布が、FMVSS NO.302に規定される低燃焼速度性に優れ、且つ機械的強度にも優れる難燃性エアーバッグが得られる。
 以下、本発明につき更に詳しく説明する。なお、粘度は、25℃においてJIS K 7117-1:1999に記載の方法で回転粘度計により測定した値である。
<付加硬化型液状シリコーンゴム組成物>
 本発明の難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物は、以下の(A)~(F)成分を含有してなるものであって、室温(25℃)で液状のものである。以下、各成分について詳細に説明する。
[(A)成分]
(A)成分は、1分子中にケイ素原子に結合したアルケニル基を2個以上含有する25℃で液状のオルガノポリシロキサンであり、本発明にかかる組成物のベースポリマー(主剤)である。
 (A)成分の分子構造としては、例えば、直鎖状、環状、分岐鎖状等が挙げられるが、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンが好ましい。なお、三次元網状(樹脂状)構造は含まない。また、(A)成分のオルガノポリシロキサンの分子構造が直鎖状又は分岐鎖状である場合、該オルガノポリシロキサンの分子中においてアルケニル基が結合するケイ素原子の位置は、分子鎖末端(即ち、トリオルガノシロキシ基)及び分子鎖途中(即ち、分子鎖非末端に位置する2官能性のジオルガノシロキサン単位又は3官能性のモノオルガノシルセスキオキサン単位)のどちらか一方でも両方でもよい。(A)成分として、特に好ましくは、少なくとも分子鎖両末端のケイ素原子に結合したアルケニル基を含有する直鎖状のジオルガノポリシロキサンである。
 (A)成分中のケイ素原子に結合したアルケニル基としては、例えば、通常、炭素数2~8、好ましくは炭素数2~4のものが挙げられる。その具体例としては、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基等が挙げられ、特にビニル基であることが好ましい。
 (A)成分中のケイ素原子に結合したアルケニル基の含有量は、ケイ素原子に結合した1価の有機基(即ち、非置換もしくは置換の1価炭化水素基)全体に対して0.001~10モル%であることが好ましく、特に0.01~5モル%程度であることが好ましい。
 (A)成分のアルケニル基以外のケイ素原子に結合する1価の有機基としては、例えば、互いに同一又は異種の炭素数1~12、好ましくは炭素数1~10の1価炭化水素基が挙げられる。1価の有機基の具体例としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基などが挙げられ、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子で置換したもの、例えば、クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン置換アルキル基などを用いてもよい。これらの中でも、特に、メチル基であることが好ましい。なお、(A)成分はエポキシ基を含有しない。
 (A)成分の25℃における粘度は、100~500,000mPa・sの範囲内であることが好ましく、特に600~200,000mPa・sの範囲内であることが好ましい。粘度がこの範囲内にあると、得られる組成物の取り扱い作業性が良好であり、また、得られるシリコーンゴム硬化物の機械的特性が良好である。
 (A)成分のオルガノポリシロキサンの具体例としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、及びこれらのオルガノポリシロキサンの2種以上からなる混合物が挙げられる。
 (A)成分のオルガノポリシロキサンは、1種単独で用いても2種以上を併用してもよい。なお、(A)成分のオルガノポリシロキサンとして、後述するエポキシ基を有する有機ケイ素化合物[(F)成分]を除く。
[(B)成分]
 (B)成分は、0.05~0.15mol/100gのアルケニル基が2官能性のR12SiO2/2単位(D単位、式中、R1は炭素数2~8のアルケニル基、R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基である。)のみに結合し、3官能性のR3SiO3/2単位(T単位、式中、R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基である。)及び/又は4官能性のSiO4/2単位(Q単位)の分岐鎖状シロキサン単位に対する単官能性のR3 3SiO1/2単位(M単位、式中、R3は上記と同じである。)の比(M単位/T及び/又はQ単位)が0.65~1.40で、水酸基量が0.040mol/100g以下である三次元網状オルガノポリシロキサンレジンである。
 R1は炭素数2~8のアルケニル基であり、具体的には、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基等などが挙げられ、特に、ビニル基であることが好ましい。
 R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基であり、具体的には、ビニル基、アリル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基、シクロヘキセニル基、ヘプテニル基等のアルケニル基;メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン置換アルキル基などが挙げられ、特に、メチル基、ビニル基であることが好ましい。
 R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基であり、具体的には、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、シクロヘキシル基、ヘプチル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェネチル基等のアラルキル基;クロロメチル基、3-クロロプロピル基、3,3,3-トリフルオロプロピル基等のハロゲン置換アルキル基などが挙げられ、特に、メチル基であることが好ましい。
(M単位/T及び/又はQ単位)の比の測定方法
 三次元網状(樹脂状)構造のオルガノポリシロキサンレジンの3官能性のR3SiO3/2単位(T単位)と4官能性のSiO4/2単位(Q単位)から選ばれる少なくとも1種の分岐鎖状シロキサン単位と単官能性のR3 3SiO1/2単位(M単位)との比(M単位/T及び/又はQ単位)は、例えば、29Si-NMRから求めることができる。
 29Si-NMRのサンプルの調製方法は特に制限されないが、例えば、オルガノポリシロキサンレジン1質量部を重クロロホルム3質量部に溶解させることで測定することができる。
 ここで、(M単位/T及び/又はQ単位)の比は、0.65~1.40であり、より好ましくは0.7~1.0である。(M単位/T及び/又はQ単位)の比が0.65よりも小さいと液状シリコーンゴム組成物の粘度が高くなり、コーティング作業が困難になることがあり、1.40よりも大きいと十分な難燃性向上の効果が得られないことがある。
アルケニル基量の測定方法
 三次元網状(樹脂状)構造のオルガノポリシロキサンレジン中のケイ素原子に結合したアルケニル基量は、例えば、以下のように求めることができる。
 即ち、三次元網状(樹脂状)構造のオルガノポリシロキサンレジン50質量部をキシレン50質量部に溶解させた溶液を三角フラスコなどの容器に量り取り、四塩化炭素を30mL加える。その後、25mLのハヌス液(臭化ヨウ素1質量部と酢酸60質量部の混合液)を加え、60分間攪拌する。その後、10%のヨウ化カリウム水溶液を20mL加え、5分間以上攪拌する。その後、0.1mol/Lのチオ硫酸ナトリウム水溶液で、褐色が無色になるまで滴定を行う。また、オルガノポリシロキサンレジンを加えないこと以外は同一の工程でブランクの滴定を行い、下記の式よりアルケニル基量を測定することができる。
Figure JPOXMLDOC01-appb-M000001
 (B)成分中のケイ素原子に結合したアルケニル基は、上記D単位のみに含有され、そのアルケニル基量は、0.05~0.15mol/100gであり、より好ましくは0.08~0.12mol/100gである。アルケニル基量がこの範囲から外れると液状シリコーンゴム組成物の硬化物の機械的特性が悪化することがある。
水酸基量の測定方法
 三次元網状(樹脂状)構造のオルガノポリシロキサンレジン中の水酸基量は、例えば、以下のように求めることができる。
 即ち、三次元網状(樹脂状)構造のオルガノポリシロキサンレジン50質量部をキシレン50質量部に溶解させた溶液を調製し、それを約4.0g量り取り二股試験管の片側の試験管に入れ、もう一方の試験管に約0.5Mのメチルマグネシウムヨージド(ジ-nブチルエーテル溶液)を約8mL量り入れる。その後、二股試験管の口をチューブ付のゴム栓で密閉した後に、サンプルとメチルマグネシウムヨージド溶液を混ぜ合わせ、発生するメタンガスの量[mL]を測定し、下記の式より水酸基量を測定することができる。
Figure JPOXMLDOC01-appb-M000002

 メタンガスの発生量の測定方法は特に制限されないが、例えばビュレット等を用いた水上置換法などで測定することができる。なお、本発明においては、前記水上置換法を採用した。
 (B)成分中のケイ素原子に結合した水酸基量は、0.040mol/100g以下であり、より好ましくは0.030mol/100g以下である。(B)成分中のケイ素原子に結合した水酸基の含有量が0.040mol/100gよりも大きいとコーティング布の燃焼中に低分子シロキサンの発生量が多くなり、難燃性が悪化することがある。
 (B)成分の三次元網状(樹脂状)構造のオルガノポリシロキサンレジンの重量平均分子量としては、2,000~12,000が好ましく、4,000~8,000がより好ましい。重量平均分子量の測定方法としては、例えば、下記に示すような条件で測定したTHFを展開溶媒としてGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の重量平均分子量として求めることができる。
[測定条件]
展開溶媒:テトラヒドロフラン(THF)
流量:0.6mL/min
検出器:示差屈折率検出器(RI)
カラム:TSK Guardcolumn SuperH-L
TSKgel SuperH4000(6.0mmI.D.×15cm×1)
TSKgel SuperH3000(6.0mmI.D.×15cm×1)
TSKgel SuperH2000(6.0mmI.D.×15cm×2)
(いずれも東ソー社製)
カラム温度:40℃
試料作製条件:オルガノポリシロキサンレジンの50%キシレン溶液1質量部をTHF1,000質量部に溶解し、メンブレンフィルターでろ過
試料注入量:10μL
 (B)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して5~100質量部であり、より好ましくは10~50質量部である。配合量が少なすぎると十分な難燃性向上効果が得られないことがあり、配合量が多すぎると、組成物の粘度が高くなり、コーティング作業性が悪化することがある。
 (B)成分の三次元網状オルガノポリシロキサンレジンは、上記の条件を満たしたものであれば、1種単独で又は2種以上を併用して用いることができる。
[(C)成分]
 (C)成分のシリカ微粉末は、補強性充填剤として作用する。即ち、本発明にかかる組成物から得られるシリコーンゴム硬化物に強度を付与するもので、シリカ微粉末を補強性充填剤として使用することにより、本発明に必要な強度を満足するコーティング膜を形成することが可能となる。かかるシリカ微粉末は、比表面積(BET法)が50m2/g以上であり、好ましくは50~400m2/g、より好ましくは100~300m2/gであり、比表面積が50m2/g未満では、満足するような強度特性を付与することができない。
 このようなシリカ微粉末としては、比表面積が上記範囲内であることを条件として、従来からシリコーンゴムの補強性充填剤として使用されている公知のものでよく、例えば、煙霧質シリカ(ヒュームドシリカ)、沈降シリカ(湿式シリカ)などが挙げられる。これらは1種又は2種以上を併用して用いることができる。
 上記補強性シリカ微粉末は、例えば、クロロシラン、アルコキシシラン、オルガノシラザン等の(通常、加水分解性の)表面処理剤で、表面が疎水化処理されたシリカ微粉末を用いることができる。その場合、これらのシリカ微粉末は、予め粉体の状態で、表面処理剤により、直接表面疎水化処理されたものを用いてもよいし、シリコーンオイル(例えば、上記(A)成分のアルケニル基含有オルガノポリシロキサン)との混練時に表面処理剤を添加して、表面疎水化処理したものを用いてもよい。
 (C)成分の通常の処理法として、公知の技術により表面処理することができ、例えば、常圧で密閉された機械混練装置又は流動層に上記未処理のシリカ微粉末と処理剤を入れ、必要に応じて不活性ガス存在下において、室温(25℃)あるいは熱処理(加熱下)にて混合処理することができる。場合により、水又は触媒(加水分解促進剤等)を使用して処理を促進してもよい。混練後、乾燥することにより処理シリカ微粉末を製造することができる。処理剤の配合量は、その処理剤の被覆面積から計算される量以上であればよい。
 表面処理剤として、具体的には、へキサメチルジシラザン等のシラザン類、メチルトリメトキシシラン、エチルトリメトキシシラン、プロピルトリメトキシシラン、ブチルトリメトキシシラン、ジメチルジメトキシシラン、ジエチルジメトキシシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、トリメチルメトキシシラン、トリエチルメトキシシラン、ビニルトリス(メトキシエトキシ)シラン、トリメチルクロロシラン、ジメチルジクロロシラン、ジビニルジメトキシシラン及びクロロプロピルトリメトキシシラン等のシランカップリング剤、ポリメチルシロキサン、オルガノハイドロジェンポリシロキサン等が挙げられ、これらで表面処理し、疎水性シリカ微粉末として用いることができる。表面処理剤としては、特にシランカップリング剤又はシラザン類が好ましい。
 (C)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して、0.1~50質量部であり、好ましくは10~30質量部である。配合量が少なすぎると、必要な強度が得られず、配合量が多すぎると、組成物のチキソ性が大きくなり、流動性が低下してコーティング作業が悪くなる。
[(D)成分]
 (D)成分のオルガノハイドロジェンポリシロキサンは、(A)及び(B)成分中のアルケニル基とヒドロシリル化付加反応し、架橋剤(硬化剤)として作用するものであり、その分子構造に特に制限はなく、従来製造されている、例えば直鎖状、環状、分岐鎖状、三次元網状(樹脂状)構造等各種のものが使用可能であるが、1分子中に少なくとも2個のケイ素原子に結合した水素原子(SiHで表されるヒドロシリル基)を有する必要があり、また実質的に分子中にケイ素原子に結合した水酸基(即ち、シラノール基)を含有しないものである。
 (D)成分のオルガノハイドロジェンポリシロキサンは、1種単独で用いても2種以上を併用してもよい。なお、(D)成分のオルガノハイドロジェンポリシロキサンとして、後述するエポキシ基を有する有機ケイ素化合物[(F)成分]を除く。
 このオルガノハイドロジェンポリシロキサンとしては、下記平均組成式(1)で示されるものを用いることができる。
  R4 abSiO(4-a-b)/2     (1)
 上記式(1)中、R4は互いに同一又は異種の、アルケニル基等の脂肪族不飽和結合を除く、好ましくは炭素数1~10の、ケイ素原子に結合した1価炭化水素基であり、このR4における1価炭化水素基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、tert-ブチル基、ペンチル基、ネオペンチル基、ヘキシル基、シクロヘキシル基、オクチル基、ノニル基、デシル基等のアルキル基;フェニル基、トリル基、キシリル基、ナフチル基等のアリール基;ベンジル基、フェニルエチル基、フェニルプロピル基等のアラルキル基などが挙げられ、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子で置換したもの、例えばクロロメチル基、クロロプロピル基、ブロモエチル基、トリフルオロプロピル基等を用いてもよい。R4の1価炭化水素基として、好ましくはアルキル基、アリール基であり、より好ましくはメチル基である。また、aは0.7~2.1、bは0.001~1.0で、かつa+bが0.8~3.0を満足する正数であり、好ましくはaは1.0~2.0、bは0.01~1.0、a+bが1.5~2.5を満足する正数である。
 1分子中に少なくとも2個含有するSiH基は、分子鎖末端、分子鎖途中のいずれに位置していてもよく、またこの両方に位置するものであってもよい。また、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、環状、分岐鎖状、三次元網状構造のいずれであってもよいが、1分子中のケイ素原子の数(又は重合度)は、通常2~300個、好ましくは3~150個、より好ましくは4~100個程度のものが望ましく、25℃における粘度が、通常0.1~1,000mPa・s、好ましくは0.5~500mPa・s程度の、25℃で液状のものが使用される。なお、重合度は、例えば、トルエンを展開溶媒としてGPC(ゲルパーミエーションクロマトグラフィ)分析におけるポリスチレン換算の数平均重合度(数平均分子量)又は重量平均重合度(重量平均分子量)等として求めることができる。
 このような(D)成分のオルガノハイドロジェンポリシロキサンとしては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサンや、これらの各例示化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基で置換されたもの、式:R5 3SiO1/2で示されるシロキサン単位と式:R5 2HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:R5 2HSiO1/2で示されるシロキサン単位と式:SiO4/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、式:R5HSiO2/2で示されるシロキサン単位と式:R5SiO3/2で示されるシロキサン単位もしくは式:HSiO3/2で示されるシロキサン単位からなるオルガノシロキサン共重合体、及びこれらのオルガノポリシロキサンの2種以上からなる混合物が挙げられる。なお、前記R5は炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基であり、特にメチル基であることが好ましい。
 (D)成分の配合量は、(A)及び(B)成分中のケイ素原子結合アルケニル基1個(又はモル)に対して(D)成分中のケイ素原子結合水素原子が1~10個(又はモル)、好ましくは1~5個(又はモル)の範囲内となる量である。(A)及び(B)成分中のケイ素原子結合アルケニル基1個に対して(D)成分中のケイ素原子結合水素原子が1個未満であると、組成物は十分に硬化せず、またこれが10個を超えると、得られるシリコーンゴム硬化物の耐熱性が極端に悪化することがある。
[(E)成分]
 (E)成分としては、白金黒、塩化第2白金、塩化白金酸、塩化白金酸と一価アルコールとの反応物、塩化白金酸とオレフィン類との錯体、塩化白金酸とビニル基含有(ポリ)シロキサンとの錯体等の白金族金属系触媒が挙げられる。
 (E)成分の配合量は触媒量とすることができ、通常、白金族金属(質量換算)として、シリコーンゴム組成物の合計質量に対し、0.5~1,000ppm、特に1~500ppm程度である。添加量が少なすぎると硬化性の低下を起こし、添加量が多すぎるとコストが高くなり、不経済となる。
[(F)成分]
 (F)成分は、接着性付与官能基を含有する有機ケイ素化合物であり、接着性付与官能基として1分子中にエポキシ基とケイ素原子結合アルコキシ基とを有する有機ケイ素化合物であることが好ましく、シリコーンゴム組成物のエアーバッグ用基布に対する接着性を発現・向上させるために添加するものである。
 有機ケイ素化合物としては、このような接着性付与官能基を有するものであれば、いかなる有機ケイ素化合物でも使用できるが、1分子中にエポキシ基とケイ素原子結合アルコキシ基とをそれぞれ1個以上有する有機ケイ素化合物であることが好ましく、接着発現性の観点からは、少なくとも1個のエポキシ基と少なくとも2個のケイ素原子結合アルコキシ基(例えば、トリアルコキシシリル基、オルガノジアルコキシシリル基等)とを有する有機ケイ素化合物、例えば、オルガノシラン、又はケイ素原子数が2~100個、好ましくは4~50個程度の環状もしくは直鎖状のオルガノシロキサンであって、少なくとも1個のエポキシ基と少なくとも2個のケイ素原子結合アルコキシ基とを有するものであることがより好ましい。(F)成分は、1種単独で用いても2種以上を併用してもよい。
 エポキシ基は、例えば、グリシドキシプロピル基等のグリシドキシアルキル基;2,3-エポキシシクロヘキシルエチル基、3,4-エポキシシクロヘキシルエチル基等のエポキシ含有シクロヘキシルアルキル基等の形で、ケイ素原子に結合していることが好ましい。ケイ素原子結合アルコキシ基は、ケイ素原子と結合して、例えば、トリメトキシシリル基、トリエトキシシリル基等のトリアルコキシシリル基;メチルジメトキシシリル基、エチルジメトキシシリル基、メチルジエトキシシリル基、エチルジエトキシシリル基等のアルキルジアルコキシシリル基等を形成していることが好ましい。
 また、(F)成分は、1分子中にエポキシ基及びケイ素原子結合アルコキシ基以外の官能性基として、例えば、ビニル基等のアルケニル基、アクリル基、(メタ)アクリロキシ基、及びヒドロシリル基(SiH基)からなる群より選択される少なくとも1種の官能性基を有してもよい。
 (F)成分の有機ケイ素化合物としては、例えば、γ-グリシドキシプロピルトリエトキシシラン、γ-グリシドキシプロピルメチルジエトキシシラン、(3,4-エポキシシクロヘキシルエチル)トリメトキシシラン、(3,4-エポキシシクロヘキシルエチル)トリエトキシシラン、(3,4-エポキシシクロヘキシルエチル)メチルジメトキシシラン、(3,4-エポキシシクロヘキシルエチル)メチルジエトキシシラン、(2,3-エポキシシクロヘキシルエチル)トリエトキシシラン、(2,3-エポキシシクロヘキシルエチル)メチルジメトキシシラン、(2,3-エポキシシクロヘキシルエチル)メチルジエトキシシラン等のエポキシ官能性基含有シランカップリング剤(即ち、エポキシ官能性基含有オルガノアルコキシシラン)の他、下記の化学式で示されるオルガノシラン、オルガノポリシロキサン等の有機ケイ素化合物、これらの2種以上の混合物、あるいはこれらの1種もしくは2種以上の部分加水分解縮合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000003
(式中、hは1~10の整数、kは0~40の整数、好ましくは0~20の整数、pは1~40の整数、好ましくは1~20の整数、qは1~10の整数である。)
 (F)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~10質量部であり、好ましくは0.25~5質量部である。配合量が0.1質量部未満であると、得られる組成物が十分な接着力を有しない。配合量が10質量部を超えると、配合量を増加させても、得られる組成物は接着力が向上しにくくなり、コスト的に高いものとなり、不経済となる。
 また、(F)成分がアルケニル基及び/又はSiH基を含む場合、(A)、(B)及び(F)成分中のケイ素原子結合アルケニル基1個(又はモル)に対して、(D)及び(F)成分中のケイ素原子結合水素原子が、1~10個(又はモル)、好ましくは1~8個(又はモル)、より好ましくは1~6個(又はモル)の範囲内となる量が配合される。組成物中のケイ素原子結合アルケニル基1個に対して、組成物中のケイ素原子結合水素原子が1個未満であると、組成物は十分に硬化せず、十分な接着力を有しないことがある。一方、これが10個を超えると、得られるシリコーンゴム硬化物の耐熱性が極端に劣り、接着力が向上しにくくなり、コスト的にも高いものとなり、不経済となりやすい。
[(G)成分]
 (G)成分は、有機チタニウム化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種であり、接着促進のための縮合助触媒として作用するものである。
 (G)成分は1種単独で用いても2種以上を併用してもよい。
 (G)成分の具体例としては、例えば、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトラ-2-エチルヘキソキシド等の有機チタン酸エステル、チタンジイソプロポキシビス(アセチルアセトネート)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンテトラアセチルアセトネート等の有機チタンキレート化合物等のチタン系縮合助触媒(チタニウム化合物)、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド等の有機ジルコニウムエステル、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート等の有機ジルコニウムキレート化合物等のジルコニウム系縮合助触媒(ジルコニウム化合物)が挙げられる。
 (G)成分の有機チタニウム化合物及び有機ジルコニウム化合物は、必要に応じて配合される任意成分であり、その配合量は、(A)成分100質量部に対して、通常、5質量部以下(0~5質量部)程度でよいが、(G)成分を配合する場合には、好ましくは0.1~5質量部、より好ましくは0.2~2質量部の範囲である。
 配合量が0.1質量部未満であると、得られる硬化物は高温高湿下での接着耐久性が低下しやすくなることがあり、配合量が5質量部を超えると、得られる硬化物は耐熱性が低下しやすくなることがある。
・充填剤
 (C)成分のシリカ微粉末以外の充填剤として、例えば、結晶性シリカ(例えば、BET法比表面積が50m2/g未満の石英粉)、ケイ酸塩鉱物微粉末、有機樹脂製中空フィラー、ポリメチルシルセスキオキサン微粒子(いわゆるシリコーンレジンパウダー)、ヒュームド二酸化チタン、酸化マグネシウム、酸化亜鉛、酸化鉄、水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、層状マイカ、カーボンブラック、ケイ藻土、ガラス繊維等の充填剤;これらの充填剤をオルガノアルコキシシラン化合物、オルガノクロロシラン化合物、オルガノシラザン化合物、低分子量シロキサン化合物等の有機ケイ素化合物により表面疎水化処理した充填剤;シリコーンゴムパウダーなどが挙げられる。
・その他の成分
 その他にも、例えば、1分子中に1個のケイ素原子結合水素原子を含有し、他の官能性基を含有しないオルガノポリシロキサン、1分子中に1個のケイ素原子結合アルケニル基を含有し、他の官能性基を含有しないオルガノポリシロキサン、ケイ素原子結合水素原子もケイ素原子結合アルケニル基も他の官能性基も含有しない無官能性のオルガノポリシロキサン(いわゆるジメチルシリコーンオイル)、有機溶剤、クリープハードニング防止剤、可塑剤、チキソ性付与剤、顔料、染料、防かび剤などを配合することができる。これらのその他の成分は、各々、1種単独で用いても2種以上を併用してもよい。
<付加硬化型液状シリコーンゴム組成物の調製>
 こうして得られる(A)~(F)成分、好ましくは(A)~(G)成分、更に必要に応じてその他の任意成分を添加して均一に混合することにより、付加硬化型液状シリコーンゴム組成物を調整することができる。
 このような付加硬化型液状シリコーンゴム組成物は、25℃で液状の組成物であり、JIS K 7117-1:1999に記載の方法で測定した25℃における粘度が1,000~1,000,000mPa・sであることが好ましく、10,000~300,000mPa・sであることがより好ましい。この粘度範囲内であれば、エアーバッグ用基布に塗工する際に、塗工むらや硬化後の密着不足などが生じにくいため、好適に用いることができる。
<エアーバッグの製造方法>
 エアーバックの製造方法は、前述の付加硬化型液状シリコーンゴム組成物を調製する工程、前記組成物をエアーバッグ用基布の少なくとも片面に5~150g/m2のコーティング量で塗布する工程、及び前記組成物が塗布された基布を加熱硬化する工程を有する。
 付加硬化型液状シリコーンゴム組成物を調製する工程においては、(C)成分に、予め表面処理された表面疎水化シリカ微粉末を用いるか、又は上記調製工程において表面処理されてなる表面疎水化シリカ微粉末を用いるかの、いずれかの工程を含む。特に後者の場合、シリコーンオイル(例えば、上記(A)成分のアルケニル基含有オルガノポリシロキサン)との混練時に前述の表面処理剤を添加して、表面疎水化処理することができる。なお、表面処理方法や表面処理剤は、前述の通りである。
 一般に、シリコーンゴム層が形成されるエアーバッグ用基布(繊維布からなる基材)としては、公知のものが用いられ、その具体例としては、66-ナイロン、6-ナイロン、アラミド繊維などの各種ポリアミド繊維、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)などの各種ポリエステル繊維などの各種合成繊維の織生地が挙げられる。
 そして、このようなエアーバッグ用基布(繊維布からなる基材)の少なくとも一方の表面に、上記付加硬化型液状シリコーンゴム組成物を塗布した後、乾燥炉などで加熱硬化することにより、その基布上にシリコーンゴム層(硬化物層)を形成させることができる。更に、このようにして得られたエアーバッグ用シリコーンゴムコーティング基布を用いて、エアーバッグを製造することができる。
 ここで、液状シリコーンゴム組成物をエアーバッグ用基布にコーティングする方法としては、常法を採用することができるが、ナイフコーターによるコーティングが好ましい。
 コーティング量(又は表面塗布量)は、好ましくは5~150g/m2、より好ましくは10~80g/m2、更に好ましくは15~60g/m2である。コーティング量が、5g/m2未満であるとエアーバッグに十分な気密性・難燃性を付与できず、150g/m2を超えるとエアーバッグを折り畳んだ際の体積が大きくなり、車内に収納する際に不利になることがある。
 液状シリコーンゴム組成物は、公知の硬化条件下で公知の硬化方法により硬化させることができる。具体的には、例えば、100~200℃の乾燥炉で0.5~60分間、常圧加熱乾燥することにより、組成物を硬化させることができる。
 エアーバッグ用シリコーンゴムコーティング基布(エアーバッグ布)をエアーバッグに加工する際は、例えば、少なくとも内面側がシリコーンゴムでコーティングされている2枚の平織布の外周部同士を接着剤で貼り合わせ、かつその接着剤層を縫い合わせて作製する方法が挙げられる。また、予め袋織りして作製されたエアーバッグ用基布の少なくとも内面側に、上記のように、液状シリコーンゴム組成物を、所定のコーティング量でコーティングし、所定の硬化条件下で硬化させる方法を採ってもよい。なお、ここで用いる接着剤は公知のものを用いることができるが、シームシーラントと呼ばれるシリコーン系接着剤を用いることが接着力、接着耐久性などの面から好ましい。
 以下、調製例及び実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、以下の実施例において、粘度はJIS K 7117-1:1999に記載の回転粘度計により測定した25℃における値である。また、(B)成分の3官能性のR3SiO3/2単位(T単位)及び4官能性のSiO4/2単位(Q単位)から選ばれる少なくとも1種の分岐鎖状シロキサン単位と、単官能性のR3 3SiO1/2単位(M単位)との比(M単位/T及び/又はQ単位)はオルガノポリシロキサンレジン1質量部を重クロロホルム3質量部に溶かすことで調製したサンプルをテフロン(登録商標)製のNMR用サンプル管に入れ、ECX-500 II(日本電子株式会社製)で3,000回積算することで29Si-NMRスペクトルを測定し、算出した。また、(B)成分のアルケニル基量及び水酸基量は前記の方法でそれぞれ測定した。
[調製例1]
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が30,000mPa・sのジメチルポリシロキサン(A1)65質量部、ヘキサメチルジシラザン8質量部、水2質量部、比表面積がBET法で300m2/gであるシリカ微粉末(C1)(Aerosil 300、日本アエロジル社製)40質量部をニーダー中に投入し、室温にて1時間混合した。その後温度を150℃に昇温し、引き続き2時間混合した。この後、室温まで降温して分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が30,000mPa・sのジメチルポリシロキサン(A1)19質量部、主鎖を構成する2官能性ジオルガノシロキサン単位のうちビニルメチルシロキサン単位を5モル%、ジメチルシロキサン単位を95モル%含有し、分子鎖両末端がトリメチルシロキシ基で封鎖された25℃での粘度が700mPa・sのジメチル-ビニルメチルポリシロキサン(A2)5質量部を添加して均一になるまで混合し、ベースコンパウンド(1)を得た。
[実施例1]
 上記で得られたベースコンパウンド(1)105質量部に、分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が5,000mPa・sのジメチルポリシロキサン(A3)32.5質量部、分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が1,000mPa・sのジメチルポリシロキサン(A4)56質量部、(CH33SiO1/2単位と(CH3)(CH2=CH)SiO2/2単位とSiO4/2単位からなり、M単位/Q単位の比が0.80であり、アルケニル基量が0.10mol/100gであり、水酸基量が0.010mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B1)32.5質量部、25℃における粘度が45mPa・sであり、分子鎖側鎖にケイ素原子結合水素原子を有する分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(D)(ケイ素原子結合水素原子含有量=0.0108mol/g)17質量部、1-エチニルシクロヘキサノール0.09質量部、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体を白金原子含有量として1質量%含有するジメチルポリシロキサン溶液(E)0.45質量部、γ-グリシドキシプロピルトリメトキシシラン(F)0.56質量部、ジルコニウムテトラアセチルアセトネート(G)0.3質量部を室温にて1時間混合して、組成物A((A)成分及び(B)成分中のケイ素原子結合ビニル基に対する(C)成分中のSiH基のモル比:SiH/SiVi=4.5)を調製した。
 次に、調製した組成物Aを150℃で5分プレスキュアーすることで、JIS K 6249:2003に準拠したシートを作製し、このシートについてJIS K 6249:2003に従って硬さ、切断時伸び、引張強さ、引裂強さ(クレセント型)を測定した結果を表1に示す。また、組成物Aをエアーバッグ用66ナイロン基布(210デニール)にコーティング量が25~30g/m2になるようにコーティングした後に、乾燥機で200℃/1分間で硬化させたコーティング基布を用いてFMVSS NO.302に規定の方法で燃焼速度を測定した。10回の燃焼試験を行った結果の平均燃焼速度を表1に示す。
[調製例2]
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が30,000mPa・sのジメチルポリシロキサン(A1)65質量部、比表面積がBET法で300m2/gであるシリカ微粉末をトリメチルシラザンで処理したシリカ微粉末(C2)(Musil-130A、信越化学工業製)40質量部をニーダー中に投入し、室温にて1時間混合した。その後温度を150℃に昇温し、引き続き2時間混合した。この後、室温まで降温して分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が30,000mPa・sのジメチルポリシロキサン(A1)19質量部、主鎖を構成する2官能性ジオルガノシロキサン単位のうちビニルメチルシロキサン単位を5モル%、ジメチルシロキサン単位を95モル%含有し、分子鎖両末端がトリメチルシロキシ基で封鎖された25℃での粘度が700mPa・sのジメチル-ビニルメチルポリシロキサン(A2)5質量部を添加して均一になるまで混合し、ベースコンパウンド(2)を得た。
[実施例2]
 実施例1においてベースコンパウンド(1)をベースコンパウンド(2)に同質量部で置き換えたこと以外は全て同一の処方で組成物Bを調製し、実施例1と同様の評価を行った結果を表1に示す。
[実施例3]
 実施例1において三次元網状構造のオルガノポリシロキサンレジン(B1)を(CH33SiO1/2単位と(CH3)(CH2=CH)SiO2/2単位とSiO3/2単位からなり、M単位/T単位の比が0.80であり、アルケニル基量が0.10mol/100gであり、水酸基量が0.010mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B2)に同質量部で置き換えたこと以外は全て同一の処方で組成物Cを調製し、実施例1と同様の評価を行った結果を表1に示す。
[比較例1]
 実施例1において三次元網状構造のオルガノポリシロキサンレジン(B1)を(CH33SiO1/2単位と(CH32(CH2=CH)SiO1/2単位とSiO4/2単位からなり、M単位/Q単位の比が0.80であり、アルケニル基量が0.10mol/100gであり、水酸基量が0.010mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B3)に同質量部で置き換えたこと以外は全て同一の処方で組成物Dを調製し、実施例1と同様の評価を行った結果を表1に示す。
[比較例2]
 実施例1において三次元網状構造のオルガノポリシロキサンレジン(B1)を(CH33SiO1/2単位と(CH3)(CH2=CH)SiO2/2単位とSiO4/2単位からなり、M単位/Q単位の比が0.80であり、アルケニル基量が0.10mol/100gであり、水酸基量が0.045mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B4)に同質量部で置き換えたこと以外は全て同一の処方で組成物Eを調製し、実施例1と同様の評価を行った結果を表1に示す。
[比較例3]
 実施例1において三次元網状構造のオルガノポリシロキサンレジン(B1)を(CH33SiO1/2単位と(CH3)(CH2=CH)SiO2/2単位とSiO4/2単位からなり、M単位/Q単位の比が1.80であり、アルケニル基量が0.10mol/100gであり、水酸基量が0.010mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B5)に同質量部で置き換えたこと以外は全て同一の処方で組成物Fを調製し、実施例1と同様の評価を行った結果を表1に示す。
[比較例4]
 実施例1において三次元網状構造のオルガノポリシロキサンレジン(B1)を(CH33SiO1/2単位と(CH3)(CH2=CH)SiO2/2単位とSiO4/2単位からなり、M単位/Q単位の比が0.40であり、アルケニル基量が0.10mol/100gであり、水酸基量が0.010mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B6)に同質量部で置き換えたこと以外は全て同一の処方で組成物Gを調製し、実施例1と同様の評価を行った結果を表1に示す。
[比較例5]
 実施例1において三次元網状構造のオルガノポリシロキサンレジン(B1)を(CH33SiO1/2単位と(CH3)(CH2=CH)SiO2/2単位とSiO4/2単位からなり、M単位/Q単位の比が0.85であり、アルケニル基量が0.20mol/100gであり、水酸基量が0.010mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B7)に同質量部で置き換えたこと以外は全て同一の処方で組成物Hを調製し、実施例1と同様の評価を行った結果を表1に示す。
[比較例6]
 実施例1において三次元網状構造のオルガノポリシロキサンレジン(B1)を(CH33SiO1/2単位とSiO4/2単位からなり、M単位/Q単位の比が0.85であり、アルケニル基を含有しておらず、水酸基量が0.10mol/100gである三次元網状構造のオルガノポリシロキサンレジン(B8)に同質量部で置き換えたこと以外は全て同一の処方で組成物Iを調製し、実施例1と同様の評価を行った結果を表1に示す。
Figure JPOXMLDOC01-appb-T000004

Claims (12)

  1.  (A)ケイ素原子に結合した炭素数2~8のアルケニル基を1分子中に2個以上含有する25℃で液状のオルガノポリシロキサン:100質量部、
    (B)0.05~0.15mol/100gのアルケニル基が2官能性のR12SiO2/2単位(D単位、式中、R1は炭素数2~8のアルケニル基、R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基である。)のみに結合し、
     3官能性のR3SiO3/2単位(T単位、式中、R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基である。)及び/又は4官能性のSiO4/2単位(Q単位)の分岐鎖状シロキサン単位に対する単官能性のR3 3SiO1/2単位(M単位、式中、R3は上記と同じである。)の比(M単位/T及び/又はQ単位)が0.65~1.40で、
     水酸基量が0.040mol/100g以下
    である三次元網状オルガノポリシロキサンレジン:5~100質量部、
    (C)BET法における比表面積が50m2/g以上のシリカ微粉末:0.1~50質量部、
    (D)1分子中に少なくとも2個のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(D)成分の1分子中に含まれるケイ素原子に結合した水素原子の数が、(A)及び(B)成分中のケイ素原子結合アルケニル基の合計1個当たり、1~10個となる量、
    (E)ヒドロシリル化反応用触媒としての白金族金属系触媒:有効量、
    (F)接着性付与官能基を含有する有機ケイ素化合物:0.1~10質量部
    を含む、コーティング量5~150g/m2の付加硬化型液状シリコーンゴム組成物の硬化被膜がエアーバッグ用基布の少なくとも片面に形成されてなることを特徴とする難燃性エアーバッグ。
  2.  付加硬化型液状シリコーンゴム組成物が、更に、(G)成分として、有機チタニウム化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の縮合助触媒を(A)成分100質量部に対して0.1~5質量部含有することを特徴とする請求項1記載の難燃性エアーバッグ。
  3.  (C)成分が、表面疎水化シリカ微粉末であることを特徴とする請求項1又は2記載の難燃性エアーバッグ。
  4.  (F)成分が、接着性付与官能基として1分子中にエポキシ基とケイ素原子結合アルコキシ基とを有する有機ケイ素化合物であることを特徴とする請求項1~3のいずれか1項記載の難燃性エアーバッグ。
  5.  エアーバッグのFMVSS No.302燃焼試験における燃焼速度が40mm/min.以下であることを特徴とする請求項1~4のいずれか1項記載の難燃性エアーバッグ。
  6.  (A)ケイ素原子に結合した炭素数2~8のアルケニル基を1分子中に2個以上含有する25℃で液状のオルガノポリシロキサン:100質量部、
    (B)0.05~0.15mol/100gのアルケニル基が2官能性のR12SiO2/2単位(D単位、式中、R1は炭素数2~8のアルケニル基、R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基である。)のみに結合し、
     3官能性のR3SiO3/2単位(T単位、式中、R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基である。)及び/又は4官能性のSiO4/2単位(Q単位)の分岐鎖状シロキサン単位に対する単官能性のR3 3SiO1/2単位(M単位、式中、R3は上記と同じである。)の比(M単位/T及び/又はQ単位)が0.65~1.40で、
     水酸基量が0.040mol/100g以下
    である三次元網状オルガノポリシロキサンレジン:5~100質量部、
    (C)BET法における比表面積が50m2/g以上のシリカ微粉末:0.1~50質量部、
    (D)1分子中に少なくとも2個のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(D)成分の1分子中に含まれるケイ素原子に結合した水素原子の数が、(A)及び(B)成分中のケイ素原子結合アルケニル基の合計1個当たり、1~10個となる量、
    (E)ヒドロシリル化反応用触媒としての白金族金属系触媒:有効量、
    (F)接着性付与官能基を含有する有機ケイ素化合物:0.1~10質量部
    を含む付加硬化型液状シリコーンゴム組成物を調製する工程、前記組成物をエアーバッグ用基布の少なくとも片面に5~150g/m2のコーティング量で塗布する工程、及び前記組成物が塗布された基布を加熱硬化する工程を有することを特徴とする難燃性エアーバッグの製造方法。
  7.  付加硬化型液状シリコーンゴム組成物が、更に、(G)成分として、有機チタニウム化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の縮合助触媒を(A)成分100質量部に対して0.1~5質量部含有することを特徴とする請求項6記載の難燃性エアーバッグの製造方法。
  8.  付加硬化型液状シリコーンゴム組成物を調製する工程において、(C)成分に、予め表面処理された表面疎水化シリカ微粉末を用いるか、又は上記調製工程において表面処理されてなる表面疎水化シリカ微粉末を用いるかの、いずれかの工程を含むことを特徴とする請求項6又は7記載の難燃性エアーバッグの製造方法。
  9.  付加硬化型液状シリコーンゴム組成物のJIS K 7117-1:1999に記載の方法で測定した25℃における粘度が1,000~1,000,000mPa・sであることを特徴とする請求項6~8のいずれか1項記載の難燃性エアーバッグの製造方法。
  10.  (A)ケイ素原子に結合した炭素数2~8のアルケニル基を1分子中に2個以上含有する25℃で液状のオルガノポリシロキサン:100質量部、
    (B)0.05~0.15mol/100gのアルケニル基が2官能性のR12SiO2/2単位(D単位、式中、R1は炭素数2~8のアルケニル基、R2は炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数6~12のアリール基から選ばれる基である。)のみに結合し、
     3官能性のR3SiO3/2単位(T単位、式中、R3は独立して、炭素数1~8のアルキル基、又は炭素数6~12のアリール基から選ばれる基である。)及び/又は4官能性のSiO4/2単位(Q単位)の分岐鎖状シロキサン単位に対する単官能性のR3 3SiO1/2単位(M単位、式中、R3は上記と同じである。)の比(M単位/T及び/又はQ単位)が0.65~1.40で、
     水酸基の量が0.040mol/100g以下
    である三次元網状オルガノポリシロキサンレジン:5~100質量部、
    (C)BET法における比表面積が50m2/g以上のシリカ微粉末:0.1~50質量部、
    (D)1分子中に少なくとも2個のケイ素原子に結合した水素原子を含有するオルガノハイドロジェンポリシロキサン:(D)成分の1分子中に含まれるケイ素原子に結合した水素原子の数が、(A)及び(B)成分中のケイ素原子結合アルケニル基の合計1個当たり、1~10個となる量、
    (E)ヒドロシリル化反応用触媒としての白金族金属系触媒:有効量、
    (F)接着性付与官能基を含有する有機ケイ素化合物:0.1~10質量部
    を含むことを特徴とする難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物。
  11.  付加硬化型液状シリコーンゴム組成物が、更に、(G)成分として、有機チタニウム化合物及び有機ジルコニウム化合物から選ばれる少なくとも1種の縮合助触媒を(A)成分100質量部に対して0.1~5質量部含有することを特徴とする請求項10記載の難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物。
  12.  付加硬化型液状シリコーンゴム組成物のJIS K 7117-1:1999に記載の方法で測定した25℃における粘度が1,000~1,000,000mPa・sであることを特徴とする請求項10又は11記載の難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物。
PCT/JP2018/005389 2017-03-15 2018-02-16 難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物 WO2018168315A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/494,139 US11639149B2 (en) 2017-03-15 2018-02-16 Flame-resistant airbag, method of manufacturing flame-resistant airbag, and addition-curable liquid silicone rubber composition for flame-resistant airbags
KR1020197029931A KR102457711B1 (ko) 2017-03-15 2018-02-16 난연성 에어백, 난연성 에어백의 제조 방법, 및 난연성 에어백용 부가 경화형 액상 실리콘 고무 조성물
JP2019505792A JP6737394B2 (ja) 2017-03-15 2018-02-16 難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物
CN201880017864.0A CN110402309A (zh) 2017-03-15 2018-02-16 阻燃性安全气囊、阻燃性安全气囊的制造方法和阻燃性安全气囊用加成固化型液体硅橡胶组合物
EP18766765.4A EP3597817A4 (en) 2017-03-15 2018-02-16 FLAME RESISTANT AIRBAG, METHOD FOR MANUFACTURING A FLAME RESISTANT AIRBAG AND ADDITION HARDENABLE LIQUID SILICONE RUBBER COMPOSITION FOR FLAME RESISTANT AIRBAGS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-050107 2017-03-15
JP2017050107 2017-03-15

Publications (1)

Publication Number Publication Date
WO2018168315A1 true WO2018168315A1 (ja) 2018-09-20

Family

ID=63522104

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/005389 WO2018168315A1 (ja) 2017-03-15 2018-02-16 難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物

Country Status (6)

Country Link
US (1) US11639149B2 (ja)
EP (1) EP3597817A4 (ja)
JP (1) JP6737394B2 (ja)
KR (1) KR102457711B1 (ja)
CN (1) CN110402309A (ja)
WO (1) WO2018168315A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021042283A (ja) * 2019-09-09 2021-03-18 信越化学工業株式会社 エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP2022548467A (ja) * 2019-07-30 2022-11-21 ダウ シリコーンズ コーポレーション エアバッグ用のシリコーンコーティング

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6809444B2 (ja) * 2017-12-12 2021-01-06 信越化学工業株式会社 液状シリコーンゴムスポンジ組成物及び電子写真式画像形成部材
JP7092196B2 (ja) * 2018-08-01 2022-06-28 信越化学工業株式会社 シリコーン粘着剤組成物及びこれを用いた粘着テープ又は粘着フィルム
JP7357510B2 (ja) * 2019-10-30 2023-10-06 ダウ・東レ株式会社 エアバッグ用耐熱補強布
CN111926585A (zh) * 2020-08-13 2020-11-13 福建思嘉环保材料科技有限公司 一种阻燃气密帐篷材料及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195990A (ja) * 1993-12-28 1995-08-01 Toray Dow Corning Silicone Co Ltd エアーバッグ用シリコーンゴムコーティング布
JP2001164187A (ja) * 1999-12-13 2001-06-19 Shin Etsu Chem Co Ltd エアーバッグコーティング用シリコーンゴム組成物
JP2006348410A (ja) * 2005-06-15 2006-12-28 Shin Etsu Chem Co Ltd エアーバッグ用シリコーンゴムコーティング組成物及びエアーバッグ
JP2010053493A (ja) 2008-08-29 2010-03-11 Dow Corning Toray Co Ltd 織物被覆用液状シリコーンゴム組成物及び被覆織物
JP2011080037A (ja) 2009-09-11 2011-04-21 Shin-Etsu Chemical Co Ltd 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP2013209517A (ja) 2012-03-30 2013-10-10 Shin-Etsu Chemical Co Ltd カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2719598B1 (fr) 1994-05-03 1996-07-26 Rhone Poulenc Chimie Composition élastomère silicone et ses applications, notamment pour l'enduction de sac gonflable, destiné à la protection d'un occupant de véhicule.
FR2843134B1 (fr) * 2002-07-30 2006-09-22 Ferrari S Tissage & Enduct Sa Procede de traitement par impregnation de textiles architecturaux par une composition silicone reticulable en elastomere et textile architectural ainsi revetu
CN100515757C (zh) * 2004-06-16 2009-07-22 罗迪亚公司 改善的经弹性体涂敷的保护性阻隔织物及其制造方法
US9062411B2 (en) * 2006-08-14 2015-06-23 Dow Corning Toray Company, Ltd. Silicone rubber composition for coating for woven fabric, and coated woven fabric
JP5895857B2 (ja) 2013-01-16 2016-03-30 信越化学工業株式会社 カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07195990A (ja) * 1993-12-28 1995-08-01 Toray Dow Corning Silicone Co Ltd エアーバッグ用シリコーンゴムコーティング布
JP2001164187A (ja) * 1999-12-13 2001-06-19 Shin Etsu Chem Co Ltd エアーバッグコーティング用シリコーンゴム組成物
JP2006348410A (ja) * 2005-06-15 2006-12-28 Shin Etsu Chem Co Ltd エアーバッグ用シリコーンゴムコーティング組成物及びエアーバッグ
JP2010053493A (ja) 2008-08-29 2010-03-11 Dow Corning Toray Co Ltd 織物被覆用液状シリコーンゴム組成物及び被覆織物
JP2011080037A (ja) 2009-09-11 2011-04-21 Shin-Etsu Chemical Co Ltd 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP2013209517A (ja) 2012-03-30 2013-10-10 Shin-Etsu Chemical Co Ltd カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3597817A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022548467A (ja) * 2019-07-30 2022-11-21 ダウ シリコーンズ コーポレーション エアバッグ用のシリコーンコーティング
JP7434522B2 (ja) 2019-07-30 2024-02-20 ダウ シリコーンズ コーポレーション エアバッグ用のシリコーンコーティング
JP2021042283A (ja) * 2019-09-09 2021-03-18 信越化学工業株式会社 エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
WO2021049278A1 (ja) * 2019-09-09 2021-03-18 信越化学工業株式会社 エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
CN114341272A (zh) * 2019-09-09 2022-04-12 信越化学工业株式会社 气囊用加成固化型液体硅橡胶组合物及气囊
JP7143827B2 (ja) 2019-09-09 2022-09-29 信越化学工業株式会社 エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
CN114341272B (zh) * 2019-09-09 2023-10-20 信越化学工业株式会社 气囊用加成固化型液体硅橡胶组合物及气囊

Also Published As

Publication number Publication date
US11639149B2 (en) 2023-05-02
EP3597817A4 (en) 2021-01-13
JP6737394B2 (ja) 2020-08-05
US20200070764A1 (en) 2020-03-05
EP3597817A1 (en) 2020-01-22
KR102457711B1 (ko) 2022-10-24
KR20190124783A (ko) 2019-11-05
CN110402309A (zh) 2019-11-01
JPWO2018168315A1 (ja) 2020-02-06

Similar Documents

Publication Publication Date Title
JP6737394B2 (ja) 難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物
JP5605345B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP7226529B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP4460591B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP5115906B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP5761103B2 (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法
WO2019012863A1 (ja) 付加硬化型シリコーンゴム組成物及びエアーバッグ
JP2018080421A (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ布
JP2012007058A (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP5895857B2 (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物の製造方法
JP7047901B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP7401413B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP7143827B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP2016199680A (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法
JP7478645B2 (ja) 難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物
JP7506641B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
WO2023195294A1 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP2023012662A (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP2020032740A (ja) エアーバッグ用シリコーンコーティング基布の製造方法
WO2020184193A1 (ja) エアーバッグコーティング用シリコーンゴム組成物
JP2022164388A (ja) 樹脂コーティングエアーバッグ用基布の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18766765

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019505792

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197029931

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018766765

Country of ref document: EP

Effective date: 20191015