WO2020184193A1 - エアーバッグコーティング用シリコーンゴム組成物 - Google Patents

エアーバッグコーティング用シリコーンゴム組成物 Download PDF

Info

Publication number
WO2020184193A1
WO2020184193A1 PCT/JP2020/007903 JP2020007903W WO2020184193A1 WO 2020184193 A1 WO2020184193 A1 WO 2020184193A1 JP 2020007903 W JP2020007903 W JP 2020007903W WO 2020184193 A1 WO2020184193 A1 WO 2020184193A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
group
mass
silicone rubber
parts
Prior art date
Application number
PCT/JP2020/007903
Other languages
English (en)
French (fr)
Inventor
鈴木 大介
武史 宮尾
内田 修
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Publication of WO2020184193A1 publication Critical patent/WO2020184193A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60RVEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
    • B60R21/00Arrangements or fittings on vehicles for protecting or preventing injuries to occupants or pedestrians in case of accidents or other traffic risks
    • B60R21/02Occupant safety arrangements or fittings, e.g. crash pads
    • B60R21/16Inflatable occupant restraints or confinements designed to inflate upon impact or impending impact, e.g. air bags
    • B60R21/23Inflatable members
    • B60R21/231Inflatable members characterised by their shape, construction or spatial configuration
    • B60R21/232Curtain-type airbags deploying mainly in a vertical direction from their top edge
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/14Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/04Polysiloxanes
    • C08G77/38Polysiloxanes modified by chemical after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D183/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
    • C09D183/04Polysiloxanes
    • C09D183/06Polysiloxanes containing silicon bound to oxygen-containing groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/63Additives non-macromolecular organic
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain

Definitions

  • the present invention relates to a silicone rubber composition for airbag coating.
  • Patent Document 1 proposes an epoxy group-containing organosilicon compound
  • Patent Document 2 proposes a coating composition containing an isocyanate group-containing organosilicon compound as an adhesive component
  • Patent Document 3 proposes a silicone rubber composition for an air bag, which is formed by adding an inorganic filler, a siloxane resin, and an epoxy group-containing silicon compound to an addition-curable composition and has excellent adhesiveness to a base fabric. ..
  • Patent Document 4 air is obtained by adding an inorganic filler, a siloxane resin, an organic titanium compound and an alkyl silicate to an addition-curing composition, and a cured product having excellent adhesiveness to a base cloth can be obtained by heat curing for a short time.
  • Silicone rubber compositions for bags have been proposed.
  • curtain airbags that are stored along the roof side from the front pillars are used to protect the head and prevent the vehicle from popping out in the event of a collision or a vehicle tipping over. , It is required to maintain expansion for a certain period of time.
  • a curtain air bag is manufactured by coating a base cloth with a curable silicone rubber composition to which a conventional adhesive component is added, the durability and adhesiveness of the silicone rubber coating are not sufficient, and the adhesiveness in a moist heat environment is not sufficient. The decrease was remarkable, and the adhesiveness required for the base cloth for the curtain air bag was not satisfied.
  • Japanese Unexamined Patent Publication No. 5-25435 Japanese Unexamined Patent Publication No. 5-98579 Japanese Unexamined Patent Publication No. 5-214295 JP-A-2002-138249
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide a silicone rubber composition that gives a cured film having excellent adhesion to a base cloth of an air bag, particularly a curtain air bag.
  • the present invention provides the following silicone rubber composition for airbag coating.
  • 1. (A) Organopolysiloxane containing two or more alkenyl groups bonded to silicon atoms in one molecule: 100 parts by mass, (B) Organohydrogenpolysiloxane containing two or more silicon atom-bonded hydrogen atoms in one molecule and having no epoxy group: The number of hydrogen atoms bonded to silicon atoms in the component (B) is (B).
  • A) Amount of 0.8 to 10 silicon atom-bonded alkenyl groups in the component, (C) Addition reaction catalyst, (D) Silica with a specific surface area of 50 m 2 / g or more: 50 parts by mass or less, and (E) Epoxy group-containing organohydrogenpolysiloxane represented by the following formula (2): 0.1 to 10 parts by mass (In the formula, p is a number from 0 to 10, q is a number from 1 to 10, r is a number from 1 to 10, and p + q + r is a number of 3 or more. The siloxane unit in parentheses. The order of arrangement of is arbitrary.) A silicone rubber composition for airbag coating containing. 2. 2. The silicone rubber composition for airbag coating according to 1 in the formula (2), wherein p 0 and q / (q + r) ⁇ 0.2.
  • the silicone rubber composition for airbag coating of the present invention is useful for airbag coating, especially for curtain airbag coating, because it can form a cured film having high adhesiveness to the surface of the fiber base fabric.
  • the component (A) of the present invention is an organopolysiloxane containing two or more alkenyl groups bonded to a silicon atom in one molecule.
  • Examples of the molecular structure of the component (A) include linear, branched, cyclic, and three-dimensional network (resin-like) structures, but the main chain basically consists of repeating diorganosiloxane units.
  • a linear diorganopolysiloxane having both ends of the molecular chain sealed with a triorganosyloxy group is preferable.
  • the molecular structure of the organopolysiloxane of the component (A) is linear or branched, the position of the silicon atom to which the alkenyl group is bonded in the molecule of the organopolysiloxane is at the end of the molecular chain and in the middle of the molecular chain.
  • Either one or both (bifunctional diorganosiloxane unit located at the non-terminal of the molecular chain or trifunctional monoorganosylsesquioxane unit) may be used.
  • a linear diorganopolysiloxane containing at least an alkenyl group bonded to silicon atoms at both ends of the molecular chain is particularly preferred.
  • alkenyl group bonded to the silicon atom in the component (A) examples include those having the same or different substituents, usually 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms. Specific examples thereof include vinyl, allyl, 1-propenyl, butenyl, pentenyl, hexenyl, cyclohexenyl, heptenyl group and the like, and a vinyl group is particularly preferable.
  • the same or different substituents or substitutions with each other usually having 1 to 12 carbon atoms, preferably carbon.
  • Examples thereof include monovalent hydrocarbon groups having a number of 1 to 10.
  • a part or all of the hydrogen atom of the monovalent hydrocarbon group may be substituted, and when it is substituted, an example thereof is a halogen-substituted one.
  • organic group examples include alkyl groups such as methyl, ethyl, propyl, butyl, pentyl, hexyl, cyclohexyl and heptyl groups; aryl groups such as phenyl, trill, xylyl and naphthyl groups; aralkyl groups such as benzyl and phenethyl groups.
  • alkyl halide groups such as chloromethyl, 3-chloropropyl, 3,3,3-trifluoropropyl group, and methyl group and phenyl group are particularly preferable.
  • the content of the alkenyl group bonded to the silicon atom in the component (A) is 0.001 to the total amount of the monovalent organic group bonded to the silicon atom (that is, the unsubstituted or substituted monovalent hydrocarbon group). 10 mol% is preferable, and about 0.01 to 5 mol% is particularly preferable.
  • the viscosity of the component (A) at 25 ° C. is preferably 100 to 500,000 mPa ⁇ s, particularly preferably 300 to 100,000 mPa ⁇ s. When the viscosity is within this range, the handling and workability of the composition are good, and the physical properties of the obtained cured film are good. In the present invention, the viscosity can be measured by, for example, a rotational viscometer (BL type, BH type, BS type, etc.).
  • organopolysiloxane of the component (A) include a trimethylsiloxy group-blocked dimethylsiloxane / methylvinylsiloxane copolymer at both ends of the molecular chain, a trimethylsiloxy group-blocked methylvinylpolysiloxane at both ends of the molecular chain, and trimethyl at both ends of the molecular chain.
  • the component (B) of the present invention is an organohydrogenpolysiloxane containing two or more silicon atom-bonded hydrogen atoms in one molecule and having no epoxy group.
  • the component (B) reacts with the component (A) and acts as a cross-linking agent, and its molecular structure is not particularly limited. For example, linear, branched, cyclic, three-dimensional network (resin-like), etc.
  • Various types can be used, but one molecule must have a hydrogen atom (hydrosilyl group represented by SiH) bonded to two or more, preferably three or more silicon atoms, and usually 2 to 2 to It is desirable to have about 300, preferably 3 to 200, more preferably about 4 to 100 SiH groups.
  • the component (B) does not substantially contain a hydroxyl group (that is, a silanol group) bonded to a silicon atom in the molecule (preferably having a content of 1 mol% or less) and does not have an epoxy group. In that respect, it is distinguished from the component (E) described later.
  • component (B) a component represented by the following average composition formula (1) can be used.
  • R is an unsubstituted or substituted monovalent hydrocarbon group bonded to a silicon atom, preferably having 1 to 10 carbon atoms, excluding the same or different aliphatic unsaturated bonds, for example.
  • a is a positive number of 0.7 to 2.1
  • b is a positive number of 0.001 to 1.0
  • a + b is a positive number satisfying 0.8 to 3.0, preferably a is 1. .0 to 2.0, b is 0.01 to 1.0, and a + b is a positive number of 1.5 to 2.5.
  • the number of SiH groups in the component (B) is 2 or more (usually 2 to 300), preferably 3 or more (for example, 3 to 200), and more preferably 4 to 100 in one molecule. is there.
  • the SiH group may be located at the end of the molecular chain or in the middle of the molecular chain, or may be located at both of these.
  • the molecular structure of this organohydrogenpolysiloxane may be linear, branched, cyclic, or three-dimensional network structure, but the number of silicon atoms (or degree of polymerization) in one molecule is determined. Usually 2 to 300 pieces, preferably 3 to 150 pieces, more preferably about 4 to 100 pieces, and the viscosity at 25 ° C.
  • the degree of polymerization can be determined, for example, as a polystyrene-equivalent number average degree of polymerization (number average molecular weight) or weight average degree of polymerization (weight average molecular weight) in gel permeation chromatography (GPC) analysis using toluene as a developing solvent. ..
  • organohydrogenpolysiloxane of the component (B) examples include 1,1,3,3-tetramethyldisiloxane, 1,3,5,7-tetramethylcyclotetrasiloxane, and tris (hydrogendimethylsiloxy).
  • the blending amount of the component (B) is such that the number of silicon atom-bonded hydrogen atoms in the component (B) is 0.8 to 10, preferably 1 to 8 with respect to one silicon atom-bonded alkenyl group in the component (A). , More preferably, the amount is 1 to 5. If the number of silicon atom-bonded hydrogen atoms in the component (B) is less than 0.8 with respect to one silicon atom-bonded alkenyl group in the component (A), the composition is not sufficiently cured, and 10 of these are not sufficiently cured. If it exceeds, the heat resistance of the obtained silicone rubber is extremely inferior.
  • Component (C) As the addition reaction catalyst of the component (C), a catalyst that promotes the hydrosilylation addition reaction of the silicon atom-bonded alkenyl group in the component (A) and the SiH group in the component (B) can be used.
  • the component (C) include platinum group metals such as platinum, palladium and rhodium, platinum chloride acid, alcohol-modified platinum chloride acid, a coordination compound between platinum chloride acid and olefins, vinylsiloxane or an acetylene compound, and tetrakis.
  • platinum group metal compounds such as (triphenylphosphine) palladium and chlorotris (triphenylphosphine) rhodium, and particularly preferably, it is a coordination compound of platinum chloride acid and a vinyl group-containing siloxane compound.
  • the component (C) may be used alone or in combination of two or more.
  • the blending amount of the component (C) may be an effective amount as an addition reaction catalyst, and is preferably 1 to 500 ppm in terms of mass of the catalyst metal element with respect to the total mass of the components (A) and (B), more preferably. Is 10 to 100 ppm. When the blending amount is within this range, the addition reaction is sufficiently promoted and the curing becomes sufficient.
  • the component (D) of the present invention is fine powder silica having a specific surface area of 50 m 2 / g or more.
  • the component (D) acts as a reinforcing agent in the silicone rubber composition for airbag coating of the present invention.
  • a coating film having excellent tear strength characteristics can be obtained.
  • the silica component (D) has a specific surface area of 50 m 2 / g or more, preferably 50 to 400 m 2 / g, and particularly preferably 100 to 300 m 2 / g. When the specific surface area is within this range, it is easy to impart excellent tear strength characteristics to the obtained cured product.
  • the specific surface area of component (D) is measured by the BET method.
  • the fine powder silica of the component (D) conventionally known reinforcing filler for silicone rubber can be used, and examples thereof include fumigant silica (fumed silica) and precipitated silica.
  • silicas may be used as they are, but in order to impart better fluidity to the composition of the present invention, for example, methylchlorosilanes such as trimethylchlorosilane, dimethyldichlorosilane, and methyltrichlorosilane; dimethylpolysiloxane.
  • a surface treatment agent such as an organosilicon compound such as hexaorganodisilazane such as hexamethyldisilazane, divinyltetramethyldisilazane, and dimethyltetravinyldisilazane. Is preferable.
  • the surface hydrophobization treatment may be performed by previously mixing one or more kinds of fine powdered silica and one or more kinds of surface treatment agents under heating or non-heating. It is preferable, when the constituent component of the composition containing the alkenyl group-containing organopolysiloxane of the component (A) and the fine powder silica are mixed, a small amount (for example, 0.5 with respect to 100 parts by mass of the component (A)) is preferable. By mixing treatment under heating in the presence of water (up to 5 parts by mass), the surface hydrophobizing treatment of fine powder silica may be performed at the same time as the preparation of the composition.
  • the component (D) may be used alone or in combination of two or more.
  • the blending amount of the component (D) is 50 parts by mass or less (that is, 0 to 50 parts by mass) with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount exceeds 50 parts by mass, the fluidity of the composition tends to decrease, and the coating workability tends to deteriorate.
  • the blending amount is preferably 0.1 to 50 parts by mass, more preferably 1 to 50 parts by mass, and particularly preferably 5 to 40 parts by mass. When the blending amount is within this range, particularly good strength can be imparted to the cured product of the composition of the present invention.
  • the component (E) is an epoxy group-containing organohydrogenpolysiloxane represented by the following formula (2). By blending this component in a silicone rubber composition for airbag coating, a cured film having high adhesiveness to the airbag base fabric can be provided.
  • p is a number from 0 to 10, preferably 0.
  • q is a number from 1 to 10, preferably a number from 2 to 9, and more preferably a number from 2.5 to 8.
  • r is a number from 1 to 10, preferably a number from 1.5 to 7.
  • p + q + r is a number of 3 or more, preferably a number of 4 to 20.
  • the arrangement order of the siloxane units in parentheses may be arbitrary.
  • q and r are preferably numbers satisfying q / (q + r) ⁇ 0.2, more preferably numbers satisfying q / (q + r) ⁇ 0.25, and q / (q + r) ⁇ 0. A number satisfying .8 is more preferable. Within such a range, the obtained cured film has further excellent adhesiveness in a moist heat environment.
  • component (E) Specific examples include those shown below.
  • the component (E) may be used alone or in combination of two or more.
  • the blending amount of the component (E) is 0.1 to 10 parts by mass, preferably 0.3 to 3 parts by mass with respect to 100 parts by mass of the organopolysiloxane of the component (A). If the blending amount is less than 0.1 parts by mass, sufficient adhesiveness is not exhibited in the cured film of the obtained composition. If the amount is too large, the physical properties of the cured film will deteriorate.
  • any other component may be added to the silicone rubber composition for airbag coating of the present invention as long as the object of the present invention is not impaired. Specific examples thereof include the following. Each of these other components may be used alone or in combination of two or more.
  • An adhesiveness improver other than the component (E) is added in order to enhance the adhesive force between the cured product obtained from the silicone rubber composition for air bag coating of the present invention and the woven fabric of the base material. be able to.
  • the adhesiveness improver examples include alkoxysilanes such as epoxy group-containing organoalkoxysilane, acryloxy group-containing organoalkoxysilane, and metharoxy group-containing organoalkoxysilane; epoxy group-containing organopolysiloxane, epoxy group in one molecule. , Organopolysiloxane containing an alkenyl group and an alkoxy group (both excluding the components (A) and (E)) and the like.
  • the epoxy group, acryloxy group, methacryloxy group and the like may be bonded to the silicon atom via another group such as an alkylene group. Further, compounds represented by the following formulas and the like can also be mentioned.
  • the amount used is preferably 0.1 to 5 parts by mass, more preferably 0.1 to 2 parts by mass with respect to 100 parts by mass of the component (A).
  • Titanium compound (particularly, organic titanium compound) and zirconium compound (particularly, organic zirconium compound) act as a condensation cocatalyst for promoting adhesion.
  • titanium compound examples include organic titanium acid esters such as titanium tetraisopropoxide, titanium tetranormal butoxide, and titanium tetra-2-ethylhexoxide, titanium diisopropoxybis (acetylacetonate), and titanium diisopropoxybis. (Ethylacetacetate), titanium-based condensation assist catalysts (titanium compounds) such as organic titanium chelate compounds such as titanium tetraacetylacetonate can be mentioned.
  • zirconium compound examples include organic zirconium esters such as zirconium tetranormal propoxide and zirconium tetranormal butoxide, organic zirconium tributoxymonoacetylacetonate, zirconium monobutoxyacetylacetonate bis (ethylacetacetate), and organic zirconium tetraacetylacetonate.
  • examples thereof include a zirconium-based condensation aid catalyst (zirconium compound) such as a zirconium chelate compound.
  • alkoxysilanes which are adhesive improvers, in order to improve the adhesive force between the cured silicone rubber composition and the fiber cloth.
  • the blending amount thereof is preferably 0.1 to 5 parts by mass, more preferably 0.15 to 4 parts by mass with respect to 100 parts by mass of the component (A). More preferably, it is 0.2 to 2 parts by mass.
  • the reaction control agent is not particularly limited as long as it is a compound having a curing inhibitory effect on the addition reaction catalyst of the component (C), and known ones can be used. Specific examples thereof include phosphorus-containing compounds such as triphenylphosphine; nitrogen-containing compounds such as tributylamine, tetramethylethylenediamine and benzotriazole; sulfur-containing compounds; acetylene compounds such as acetylene alcohols; and two or more alkenyl groups. Compounds; hydroperoxy compounds; maleic acid derivatives and the like can be mentioned.
  • the amount added should be adjusted to the optimum amount for each of the reaction control agents used. Is preferable. By adding the optimum amount of the reaction control agent, the composition becomes excellent in long-term storage stability and curability at room temperature.
  • inorganic filler examples include crystalline silica other than the component (D), hollow filler, silsesquioxane, fumed titanium dioxide, magnesium oxide, zinc oxide, iron oxide, aluminum hydroxide, and magnesium carbonate.
  • Inorganic fillers such as calcium carbonate, zinc carbonate, layered mica, carbon black, diatomaceous earth, glass fiber; these inorganic fillers are organic such as organoalkoxysilane compounds, organochlorosilane compounds, organosilazane compounds, and low molecular weight siloxane compounds. Examples thereof include fillers whose surface is hydrophobized with a silicon compound; silicone rubber powder; silicone resin powder and the like.
  • Organopolysiloxane containing no other functional groups; non-functional organopolysiloxane containing no silicon atom-bonded hydrogen atom, silicon atom-bonded alkenyl group, or other functional group; organic solvent; creep hardening Inhibitors; plasticizers; thioxane imparting agents; pigments; dyes; antifungal agents and the like can be blended.
  • the silicone rubber composition for airbag coating of the present invention is prepared by mixing the components (A) to (E) and, if necessary, other arbitrary components using various devices such as a kneader and three rolls. However, when the component (D) is blended, it is preferable to mix the component (A) and the component (D) in advance to form a base compound, and then mix the other components.
  • the silicone rubber composition for airbag coating of the present invention is liquid or paste-like at 25 ° C., and has a viscosity of preferably 10 to 500 Pa ⁇ s, more preferably 20 to 200 Pa ⁇ s at 25 ° C.
  • the silicone rubber composition of the present invention thus obtained is suitable for airbag coating because it has excellent adhesiveness to the airbag base fabric, and is particularly stored from the front pillar along the roof side and collides. It is suitable for producing a curtain airbag that is required to maintain a constant expansion time in order to protect the head and prevent the vehicle from popping out when the vehicle falls.
  • the air bag base fabric on which the silicone rubber coating layer made of the cured product of the above composition is formed includes various synthetic fibers such as 6,6-nylon, 6-nylon, polyester fiber, aramid fiber, and polyamide fiber. Examples thereof include woven fabrics made of nylon and rubber-coated one side of these woven fabrics.
  • a bag-woven type air bag base fabric in which the above-mentioned various synthetic fibers are woven to form a bag portion, or one surface of a woven fabric in which the above-mentioned fibers are woven into a plain weave or the like is rubber-coated and this rubber is used.
  • a plain weave type air bag base fabric made by laminating two coated woven fabrics with the rubber-coated side inside and then laminating the outer peripheral parts with an adhesive and sewing the pasted parts together. Be done.
  • the silicone rubber composition for air bag coating of the present invention is applied to at least one surface of these air bag base fabrics, and is heated and cured in, for example, a hot air drying furnace to form a silicone rubber coating layer.
  • An airbag can be manufactured by using the silicone rubber-coated base material for an airbag thus obtained.
  • the coating method for example, various coating methods such as flow coating, spin coating, bar coater, wire bar, brush coating, spraying, dipping, roll coating, curtain coating, knife coating and the like can be used, but the thickness of the coating layer
  • the amount (or surface coating amount) is preferably about 5 to 150 g / m 2 , more preferably about 10 to 80 g / m 2 , and even more preferably about 15 to 60 g / m 2 .
  • the silicone rubber coating composition of the present invention can be cured by a known curing method under known curing conditions. Specifically, for example, the composition of the present invention can be cured by heating at 120 to 180 ° C. for 1 to 10 minutes.
  • the viscosity is a value at 25 ° C. measured by a BH type rotational viscometer.
  • Epoxy group-containing organohydrogenpolysiloxane 133.2 g (yield 84.0), which is a colorless and transparent liquid at 25 ° C. represented by the following formula (E-1) after distilling off volatile components at 80 ° C. and 0.8 kPa %) was obtained.
  • Epoxy group-containing organohydrogenpolysiloxane 64.8 g (yield 80.0), which is a colorless and transparent liquid at 25 ° C. represented by the following formula (E-2) after distilling off volatile components at 70 ° C. and 0.8 kPa. %) was obtained.
  • Example 1 106 parts by mass of the base compound (I) obtained in Preparation Example 1, 10 parts by mass of the base compound (II) obtained in Preparation Example 2, both ends of the molecular chain were sealed with vinyldimethylsiloxy groups, and the viscosity at 25 ° C. was increased. 67 parts by mass of dimethylpolysiloxane of about 100,000 mPa ⁇ s, viscosity at 25 ° C. of 90 mPa ⁇ s, and trimethylsiloxy group-blocked dimethylsiloxane / methylhydro at both ends of the molecular chain having silicon atom-bonded hydrogen atoms in the side chain of the molecular chain.
  • Example 2 Except that 0.7 parts by mass of the organohydrogenpolysiloxane (E-2) obtained in Synthesis Example 2 was used instead of 0.7 parts by mass of the organohydrogenpolysiloxane (E-1) obtained in Synthesis Example 1.
  • Example 3 Instead of 0.3 parts by mass of titanium tetra-2-ethylhexoxide, zirconium tetraacetylacetonate / both ends of the molecular chain are sealed with vinyldimethylsiloxy groups, and the viscosity at 25 ° C. is about 100,000 mPa ⁇ s.
  • the silicon atom-bonded vinyl group in the silicone rubber composition ((A) component) the same formulation as in Example 1 was used except that 0.3 parts by mass of the mixture containing dimethylpolysiloxane at a mass ratio of 50/50 was used.
  • Example 4 Except that 0.7 parts by mass of the organohydrogenpolysiloxane (E-2) obtained in Synthesis Example 2 was used instead of 0.7 parts by mass of the organohydrogenpolysiloxane (E-1) obtained in Synthesis Example 1.
  • Example 2 Same as in Example 1 except that 0.7 parts by mass of 3-glycidyloxypropyltrimethoxysilane was used instead of 0.7 parts by mass of the organohydrogenpolysiloxane (E-1) obtained in Synthesis Example 1.
  • ⁇ Hardness> A durometer type A hardness was measured for a 6 mm thick cured product obtained by heating the composition at 150 ° C. for 5 minutes and curing the cured product in accordance with JIS K 6249: 2003.
  • ⁇ Abrasion resistance test> The silicone rubber compositions of Examples 1 and 2 and Comparative Example 1 were uniformly coated on a cloth woven from 6-nylon (420 denier) fibers so that the coating amount was about 40 g / m 2, and the temperature was 180 ° C. It was heated for 1 minute and cured to prepare a silicone rubber-coated nylon base cloth. Further, the silicone rubber compositions of Examples 3 and 4 and Comparative Example 2 were uniformly coated on a cloth woven with polyethylene retephthalate (PET, 420 denier) fibers so that the coating amount was about 40 g / m 2 . A silicone rubber-coated PET base cloth was prepared by heating at a temperature of 180 ° C. for 1 minute to cure.
  • PET polyethylene retephthalate
  • the base fabric coated with the silicone rubber for airbag coating of the present invention had high durability in the abrasion resistance test. Further, when the component (E) having a high epoxy group content was used (Examples 1 and 3), the wear resistance after the moist heat durability test was improved. On the other hand, in Comparative Examples 1 and 2 in which the component (E) of the present invention was not used, the durability was inferior in the abrasion resistance test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Paints Or Removers (AREA)
  • Air Bags (AREA)
  • Silicon Polymers (AREA)

Abstract

(A)1分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサン、 (B)1分子中に2個以上のケイ素原子結合水素原子を含有し、かつ、エポキシ基を有しないオルガノハイドロジェンポリシロキサン、 (C)付加反応触媒、 (D)比表面積が50m2/g以上のシリカ、及び、 (E)下記式(2)で表されるエポキシ基含有オルガノハイドロジェンポリシロキサン (式中、pは0~10の数であり、qは1~10の数であり、rは1~10の数であり、かつ、p+q+rは3以上の数である。) を含有するエアーバッグコーティング用シリコーンゴム組成物。

Description

エアーバッグコーティング用シリコーンゴム組成物
 本発明は、エアーバッグコーティング用シリコーンゴム組成物に関する。
 従来、繊維基布表面にゴム被膜を形成することを目的としたエアーバッグ製造用シリコーンゴム組成物としては、以下のものが報告されている。
 特許文献1では、エポキシ基含有有機ケイ素化合物を、特許文献2では、イソシアネート基含有有機ケイ素化合物をそれぞれ接着性成分としたコーティング組成物が提案されている。
 特許文献3では、付加硬化型組成物に無機質充填剤、シロキサンレジン及びエポキシ基含有ケイ素化合物を添加してなる、基布に対する接着性に優れたエアーバッグ用のシリコーンゴム組成物が提案されている。
 特許文献4では、付加硬化型組成物に無機質充填剤、シロキサンレジン、有機チタン化合物及びアルキルシリケートを添加してなる、短時間の加熱硬化で基布に対する接着性に優れた硬化物が得られるエアーバッグ用のシリコーンゴム組成物が提案されている。
 ところで、運転席や助手席に装着されるエアーバッグとは異なり、フロントピラーからルーフサイドに沿って収納されるカーテンエアーバッグには、衝突時や車両の転倒時に頭部の保護や飛び出しを防ぐために、一定時間膨張を維持することが要求される。従来の接着性成分を添加した硬化性シリコーンゴム組成物を基布にコーティングし、カーテンエアーバッグを製造した場合、シリコーンゴム被膜の耐久性及び接着性が十分ではない上に、湿熱環境における接着性の低下が著しく、カーテンエアーバッグ用基布に対して必要とされる接着性を満足するものではなかった。
特開平5-25435号公報 特開平5-98579号公報 特開平5-214295号公報 特開2002-138249号公報
 本発明は、上記事情に鑑みてなされたものであって、エアーバッグ、特にカーテンエアーバッグの基布に対する接着性に優れた硬化被膜を与えるシリコーンゴム組成物を提供することを目的とする。
 本発明者らは、上記課題を解決すべく鋭意検討を重ねた結果、下記成分を含有するエアーバッグコーティング用シリコーンゴム組成物とすることで、上記課題を解決できることを見出し、本発明を完成させた。
 即ち、本発明は、下記エアーバッグコーティング用シリコーンゴム組成物を提供する。
1. (A)1分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサン:100質量部、
(B)1分子中に2個以上のケイ素原子結合水素原子を含有し、かつ、エポキシ基を有しないオルガノハイドロジェンポリシロキサン:(B)成分中のケイ素原子に結合した水素原子の数が(A)成分中のケイ素原子結合アルケニル基1個当たり0.8~10個となる量、
(C)付加反応触媒、
(D)比表面積が50m2/g以上のシリカ:50質量部以下、及び、
(E)下記式(2)で表されるエポキシ基含有オルガノハイドロジェンポリシロキサン:0.1~10質量部
Figure JPOXMLDOC01-appb-C000002
(式中、pは0~10の数であり、qは1~10の数であり、rは1~10の数であり、かつ、p+q+rは3以上の数である。括弧内のシロキサン単位の配列順は任意である。)
を含有するエアーバッグコーティング用シリコーンゴム組成物。
2. 前記式(2)において、p=0、かつ、q/(q+r)≧0.2である1記載のエアーバッグコーティング用シリコーンゴム組成物。
 本発明のエアーバッグコーティング用シリコーンゴム組成物は、繊維基布表面に対して高い接着性を有する硬化被膜を形成できるため、エアーバッグコーティング用、特にカーテンエアーバッグコーティング用として有用である。
 以下、本発明について具体的に説明する。
[(A)成分]
 本発明の(A)成分は、1分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサンである。
 (A)成分の分子構造としては、例えば、直鎖状、分岐状、環状、三次元網状(樹脂状)構造等が挙げられるが、主鎖が基本的にジオルガノシロキサン単位の繰り返しからなり、分子鎖両末端がトリオルガノシロキシ基で封鎖された直鎖状のジオルガノポリシロキサンが好ましい。また、(A)成分のオルガノポリシロキサンの分子構造が直鎖状又は分岐状である場合、このオルガノポリシロキサンの分子中においてアルケニル基が結合するケイ素原子の位置は、分子鎖末端及び分子鎖途中(分子鎖非末端に位置する2官能性のジオルガノシロキサン単位又は3官能性のモノオルガノシルセスキオキサン単位)のどちらか一方でも両方でもよい。特に好ましくは、少なくとも分子鎖両末端のケイ素原子に結合したアルケニル基を含有する直鎖状のジオルガノポリシロキサンである。
 (A)成分中のケイ素原子に結合したアルケニル基としては、例えば、互いに同一又は異種の非置換もしくは置換の、通常、炭素数2~8、好ましくは炭素数2~4のものが挙げられる。その具体例としては、ビニル、アリル、1-プロペニル、ブテニル、ペンテニル、ヘキセニル、シクロヘキセニル、ヘプテニル基等が挙げられ、特にビニル基が好ましい。
 (A)成分のアルケニル基以外のケイ素原子に結合する1価の有機基(オルガノ基)としては、例えば、互いに同一又は異種の非置換もしくは置換の、通常、炭素数1~12、好ましくは炭素数1~10程度の1価炭化水素基が挙げられる。また、1価炭化水素基の水素原子の一部又は全部が置換されていてもよく、置換されている場合、その例としては、ハロゲン置換のものが挙げられる。有機基の具体例としては、メチル、エチル、プロピル、ブチル、ペンチル、ヘキシル、シクロヘキシル、ヘプチル基等のアルキル基;フェニル、トリル、キシリル、ナフチル基等のアリール基;ベンジル、フェネチル基等のアラルキル基;クロロメチル、3-クロロプロピル、3,3,3-トリフルオロプロピル基等のハロゲン化アルキル基などが挙げられ、特に、メチル基、フェニル基が好ましい。
 (A)成分中のケイ素原子に結合したアルケニル基の含有量は、ケイ素原子に結合した1価の有機基(即ち、非置換又は置換の1価炭化水素基)全体に対して0.001~10モル%が好ましく、特に0.01~5モル%程度が好ましい。
 (A)成分の25℃における粘度は、100~500,000mPa・sが好ましく、特に300~100,000mPa・sが好ましい。粘度がこの範囲内にあると、組成物の取り扱い及び作業性が良好であり、また、得られる硬化被膜の物理的特性が良好である。なお、本発明において、粘度は、例えば回転粘度計(BL型、BH型、BS型等)などにより測定することができる。
 (A)成分のオルガノポリシロキサンの具体例としては、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖メチルビニルポリシロキサン、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端ジメチルビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジビニルメチルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、分子鎖両末端トリビニルシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端トリビニルシロキシ基封鎖ジメチルシロキサン・メチルビニルシロキサン共重合体、式:R’3SiO0.5で示されるシロキサン単位と式:R’2R”SiO0.5で示されるシロキサン単位と式:R’2SiOで示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノシロキサン共重合体、式:R’3SiO0.5で示されるシロキサン単位と式:R’2R”SiO0.5で示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノシロキサン共重合体、式:R’2R”SiO0.5で示されるシロキサン単位と式:R’2SiOで示されるシロキサン単位と式:SiO2で示されるシロキサン単位とからなるオルガノシロキサン共重合体、式:R’R”SiOで示されるシロキサン単位と式:R’SiO1.5で示されるシロキサン単位もしくは式:R”SiO1.5で示されるシロキサン単位とからなるオルガノシロキサン共重合体、及びこれらのオルガノポリシロキサンの2種以上からなる混合物が挙げられる。なお、上記式中のR’はアルケニル基以外の同一又は異種の非置換もしくは置換の1価炭化水素基であり、R”はアルケニル基であり、これらの具体例は上述したものと同じである。
 (A)成分は、1種単独で用いても2種以上を併用してもよい。
[(B)成分]
 本発明の(B)成分は、1分子中に2個以上のケイ素原子結合水素原子を含有し、かつ、エポキシ基を有しないオルガノハイドロジェンポリシロキサンである。
 (B)成分は、(A)成分と反応し、架橋剤として作用するものであり、その分子構造に特に制限はなく、例えば直鎖状、分岐状、環状、三次元網状(樹脂状)等各種のものが使用可能であるが、1分子中に2個以上、好ましくは3個以上のケイ素原子に結合した水素原子(SiHで表されるヒドロシリル基)を有する必要があり、通常、2~300個、好ましくは3~200個、より好ましくは4~100個程度のSiH基を有することが望ましい。
 また、(B)成分は実質的に分子中にケイ素原子に結合した水酸基(即ち、シラノール基)を含有しないものであり(含有率1モル%以下が好ましい。)、更に、エポキシ基を有しない点で後述の(E)成分とは区別される。
 (B)成分としては、下記平均組成式(1)で示されるものを用いることができる。
   RabSiO(4-a-b)/2     (1)
 上記式(1)中、Rは互いに同一又は異種の脂肪族不飽和結合を除く、好ましくは炭素数1~10の、ケイ素原子に結合した非置換又は置換の1価炭化水素基であり、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、tert-ブチル、ペンチル、ネオペンチル、ヘキシル、シクロヘキシル、オクチル、ノニル、デシル基等のアルキル基;フェニル、トリル、キシリル、ナフチル基等のアリール基;ベンジル、フェニルエチル、フェニルプロピル基等のアラルキル基や、これらの基の水素原子の一部又は全部をフッ素、臭素、塩素等のハロゲン原子で置換したもの、例えばクロロメチル、クロロプロピル、ブロモエチル、トリフルオロプロピル基等が挙げられる。Rとしては、好ましくはアルキル基、アリール基であり、より好ましくはメチル基、フェニル基である。
 また、aは0.7~2.1、bは0.001~1.0の正数であり、かつa+bが0.8~3.0を満足する正数であり、好ましくはaは1.0~2.0、bは0.01~1.0、かつa+bが1.5~2.5の正数である。
 (B)成分中のSiH基の数は、1分子中に2個以上(通常、2~300個)、好ましくは3個以上(例えば、3~200個)、より好ましくは4~100個である。このSiH基は、分子鎖末端、分子鎖途中のいずれに位置していてもよく、またこれらの両方に位置するものであってもよい。また、このオルガノハイドロジェンポリシロキサンの分子構造は、直鎖状、分岐状、環状、三次元網状構造のいずれであってもよいが、1分子中のケイ素原子の数(又は重合度)は、通常2~300個、好ましくは3~150個、より好ましくは4~100個程度のものが望ましく、25℃における粘度が、通常0.1~1,000mPa・s、好ましくは0.5~500mPa・s程度の、25℃で液状のものが使用される。なお、重合度は、例えば、トルエンを展開溶媒としてゲルパーミエーションクロマトグラフィ(GPC)分析におけるポリスチレン換算の数平均重合度(数平均分子量)又は重量平均重合度(重量平均分子量)等として求めることができる。
 このような(B)成分のオルガノハイドロジェンポリシロキサンとしては、1,1,3,3-テトラメチルジシロキサン、1,3,5,7-テトラメチルシクロテトラシロキサン、トリス(ハイドロジェンジメチルシロキシ)メチルシラン、トリス(ハイドロジェンジメチルシロキシ)フェニルシラン、メチルハイドロジェンシクロポリシロキサン、メチルハイドロジェンシロキサン・ジメチルシロキサン環状共重合体、分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルハイドロジェンポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・メチルフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジメチルシロキサン・ジフェニルシロキサン共重合体、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖メチルフェニルポリシロキサン、分子鎖両末端ジメチルハイドロジェンシロキシ基封鎖ジフェニルポリシロキサンや、これらの各例示化合物において、メチル基の一部又は全部がエチル基、プロピル基等の他のアルキル基で置換されたもの、及びこれらのオルガノポリシロキサンの2種以上からなる混合物が挙げられる。
 (B)成分は、1種単独で用いても2種以上を併用してもよい。
 (B)成分の配合量は、(A)成分中のケイ素原子結合アルケニル基1個に対して(B)成分中のケイ素原子結合水素原子が0.8~10個、好ましくは1~8個、より好ましくは1~5個となる量である。(A)成分中のケイ素原子結合アルケニル基1個に対して(B)成分中のケイ素原子結合水素原子が0.8個未満であると、組成物は十分に硬化せず、またこれが10個を超えると、得られるシリコーンゴムの耐熱性が極端に劣る。
[(C)成分]
 (C)成分の付加反応触媒としては、(A)成分中のケイ素原子結合アルケニル基と(B)成分中のSiH基とのヒドロシリル化付加反応を促進するものが使用できる。
 (C)成分としては、例えば、白金、パラジウム、ロジウム等の白金族金属や、塩化白金酸、アルコール変性塩化白金酸、塩化白金酸とオレフィン類、ビニルシロキサン又はアセチレン化合物との配位化合物、テトラキス(トリフェニルホスフィン)パラジウム、クロロトリス(トリフェニルホスフィン)ロジウム等の白金族金属化合物が挙げられるが、特に好ましくは塩化白金酸とビニル基含有シロキサン化合物との配位化合物である。
 (C)成分は、1種単独で用いても2種以上を併用してもよい。
 (C)成分の配合量は、付加反応触媒としての有効量でよく、好ましくは(A)及び(B)成分の合計質量に対して触媒金属元素の質量換算で1~500ppmであり、より好ましくは10~100ppmである。配合量がこの範囲内にあると、付加反応が十分に促進され、硬化が十分なものとなる。
[(D)成分]
 本発明の(D)成分は、比表面積が50m2/g以上の微粉末シリカである。(D)成分は、本発明のエアーバッグコーティング用シリコーンゴム組成物において補強剤として作用する。(D)成分の微粉末シリカを補強剤として使用することにより、優れた引裂き強度特性を有するコーティング膜を得ることができる。
 (D)成分のシリカは、比表面積が50m2/g以上であり、好ましくは50~400m2/gであり、特に好ましくは100~300m2/gである。比表面積がこの範囲内にあると、得られる硬化物に優れた引裂き強度特性を付与しやすい。なお、(D)成分の比表面積はBET法により測定される。
 (D)成分の微粉末シリカとしては、従来からシリコーンゴムの補強性充填剤として公知のものを用いることができ、例えば、煙霧質シリカ(ヒュームドシリカ)、沈降シリカなどが挙げられる。
 これらのシリカはそのまま使用してもよいが、本発明組成物に対してより良好な流動性を付与するため、例えば、トリメチルクロロシラン、ジメチルジクロロシラン、メチルトリクロロシラン等のメチルクロロシラン類;ジメチルポリシロキサン;ヘキサメチルジシラザン、ジビニルテトラメチルジシラザン、ジメチルテトラビニルジシラザン等のヘキサオルガノジシラザン等の有機ケイ素化合物などの表面処理剤で表面疎水化処理することにより、疎水性微粉末シリカとして使用することが好ましい。
 表面の疎水化処理は、予め微粉末シリカの1種又は2種以上と表面処理剤の1種又は2種以上とを加熱下又は非加熱下に混合することにより表面疎水化処理を行ってもよいし、(A)成分のアルケニル基含有オルガノポリシロキサンを含む組成物の構成成分と微粉末シリカとを混合する際に、好ましくは少量(例えば(A)成分100質量部に対して0.5~5質量部)の水の存在下に加熱下に混合処理することによって、組成物の調製と同時に微粉末シリカの表面疎水化処理を行ってもよい。
 (D)成分は、1種単独で用いても2種以上を併用してもよい。
 (D)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して50質量部以下(即ち、0~50質量部)である。配合量が50質量部を超えると、組成物の流動性が低下しやすく、コーティング作業性が悪くなりやすい。配合量は、好ましくは0.1~50質量部であり、より好ましくは1~50質量部であり、特に好ましくは5~40質量部である。配合量がこの範囲内にあると、本発明組成物の硬化物に対して特に良好な強度を付与することができる。
[(E)成分]
 (E)成分は、下記式(2)で表されるエポキシ基含有オルガノハイドロジェンポリシロキサンである。本成分をエアーバッグコーティング用シリコーンゴム組成物に配合することにより、エアーバッグ基布に対して高い接着性を有する硬化被膜を与えることができる。
Figure JPOXMLDOC01-appb-C000003
 式中、pは0~10の数であり、好ましくは0である。qは1~10の数であり、好ましくは2~9の数であり、より好ましくは2.5~8の数である。rは1~10の数であり、好ましくは1.5~7の数である。また、p+q+rは3以上の数であり、好ましくは4~20の数である。なお、括弧内のシロキサン単位の配列順は任意であってよい。
 pが0のとき、q、rは好ましくはq/(q+r)≧0.2を満たす数であり、q/(q+r)≧0.25を満たす数がより好ましく、q/(q+r)≧0.8を満たす数が更に好ましい。このような範囲であれば、得られる硬化被膜が、更に湿熱環境における接着性に優れたものとなる。
 このような(E)成分して、具体的には、下記に示すものが挙げられる。(E)成分は、1種単独で用いても2種以上を併用してもよい。
Figure JPOXMLDOC01-appb-C000004
 (E)成分の配合量は、(A)成分のオルガノポリシロキサン100質量部に対して0.1~10質量部であり、好ましくは0.3~3質量部である。配合量が0.1質量部未満であると、得られる組成物の硬化被膜に十分な接着性が発現しない。配合量が多すぎると硬化被膜の物理的特性が低下する。
[その他の成分]
 本発明のエアーバッグコーティング用シリコーンゴム組成物には、(A)~(E)成分以外にも、本発明の目的を損なわない範囲で、その他の任意の成分を配合することができる。その具体例としては、以下のものが挙げられる。これらのその他の成分は、各々、1種単独で用いても2種以上を併用してもよい。
・接着性向上剤
 本発明のエアーバッグコーティング用シリコーンゴム組成物から得られる硬化物と基材の織物との間の接着力を高めるために、(E)成分以外の接着性向上剤を添加することができる。
 接着性向上剤の例としては、例えば、エポキシ基含有オルガノアルコキシシラン、アクリロキシ基含有オルガノアルコキシシラン、メタクリロキシ基含有オルガノアルコキシシラン等のアルコキシシラン類;エポキシ基含有オルガノポリシロキサン、一分子中にエポキシ基、アルケニル基及びアルコキシ基を含有するオルガノポリシロキサン(いずれも(A)及び(E)成分を除いたもの)などが挙げられる。なお、エポキシ基、アクリロキシ基、メタクリロキシ基等はアルキレン基等の他の基を介してケイ素原子に結合してもよい。更に、下記式で示される化合物等も挙げられる。
Figure JPOXMLDOC01-appb-C000005
 接着性向上剤を配合する場合、その使用量は、(A)成分100質量部に対して0.1~5質量部が好ましく、0.1~2質量部が更に好ましい。
・チタニウム化合物及びジルコニウム化合物
 チタニウム化合物(特に、有機チタニウム化合物)及びジルコニウム化合物(特に、有機ジルコニウム化合物)は、接着促進のための縮合助触媒として作用するものである。
 チタニウム化合物としては、例えば、チタンテトライソプロポキシド、チタンテトラノルマルブトキシド、チタンテトラ-2-エチルヘキソキシド等の有機チタン酸エステル、チタンジイソプロポキシビス(アセチルアセトネート)、チタンジイソプロポキシビス(エチルアセトアセテート)、チタンテトラアセチルアセトネート等の有機チタンキレート化合物等のチタン系縮合助触媒(チタニウム化合物)が挙げられる。
 ジルコニウム化合物としては、ジルコニウムテトラノルマルプロポキシド、ジルコニウムテトラノルマルブトキシド等の有機ジルコニウムエステル、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムテトラアセチルアセトネート等の有機ジルコニウムキレート化合物等のジルコニウム系縮合助触媒(ジルコニウム化合物)が挙げられる。
 特に、接着性向上剤のアルコキシシラン類と併用することが、硬化したシリコーンゴム組成物と繊維布との接着力を向上させるために好ましい。
 チタニウム化合物及び/又はジルコニウム化合物を配合する場合、その配合量は、(A)成分100質量部に対して0.1~5質量部が好ましく、より好ましくは0.15~4質量部であり、更に好ましくは0.2~2質量部である。配合量を上記範囲とすることで、得られる硬化物の高温高湿下での接着耐久性及び耐熱性をより良好にすることができる。これらの化合物は、予め(A)成分に混合して溶解させたものを用いることが好ましい。
・反応制御剤
 反応制御剤は、(C)成分の付加反応触媒に対して硬化抑制効果を有する化合物であれば特に限定されず、公知のものを用いることができる。その具体例としては、トリフェニルホスフィン等のリン含有化合物;トリブチルアミン、テトラメチルエチレンジアミン、ベンゾトリアゾール等の窒素含有化合物;硫黄含有化合物;アセチレンアルコール類等のアセチレン系化合物;アルケニル基を2個以上含む化合物;ハイドロパーオキシ化合物;マレイン酸誘導体などが挙げられる。
 反応制御剤による硬化抑制効果の度合は、その反応制御剤の化学構造によって異なるため、反応制御剤を配合する場合、その添加量は、使用する反応制御剤の各々について最適な量に調整することが好ましい。最適な量の反応制御剤を添加することにより、組成物は室温での長期貯蔵安定性及び硬化性に優れたものとなる。
・無機充填剤
 無機充填剤としては、例えば、(D)成分以外の結晶性シリカ、中空フィラー、シルセスキオキサン、ヒュームド二酸化チタン、酸化マグネシウム、酸化亜鉛、酸化鉄、水酸化アルミニウム、炭酸マグネシウム、炭酸カルシウム、炭酸亜鉛、層状マイカ、カーボンブラック、ケイ藻土、ガラス繊維等の無機充填剤;これらの無機充填剤をオルガノアルコキシシラン化合物、オルガノクロロシラン化合物、オルガノシラザン化合物、低分子量シロキサン化合物等の有機ケイ素化合物により表面疎水化処理した充填剤;シリコーンゴムパウダー;シリコーンレジンパウダーなどが挙げられる。
・その他の成分
 その他にも、例えば、1分子中に1個のケイ素原子結合水素原子を含有し、他の官能性基を含有しないオルガノポリシロキサン;1分子中に1個のケイ素原子結合アルケニル基を含有し、他の官能性基を含有しないオルガノポリシロキサン;ケイ素原子結合水素原子もケイ素原子結合アルケニル基も他の官能性基も含有しない無官能性のオルガノポリシロキサン;有機溶剤;クリープハードニング防止剤;可塑剤;チクソ性付与剤;顔料;染料;防かび剤などを配合することができる。
[組成物の製造方法]
 本発明のエアーバッグコーティング用シリコーンゴム組成物は、(A)~(E)成分及び必要に応じてその他の任意の成分を、ニーダー、3本ロール等の各種装置を用いて混合することにより調製することができるが、(D)成分を配合する場合は、予め(A)成分と(D)成分とを混合してベースコンパウンドとした後に他の成分を混合することが好ましい。
 本発明のエアーバッグコーティング用シリコーンゴム組成物は、25℃で液状又はペースト状であり、粘度は、25℃において、好ましくは10~500Pa・s、より好ましくは20~200Pa・sである。
 このようにして得られる本発明のシリコーンゴム組成物は、エアーバッグ用基布に対する接着性に優れるため、エアーバッグコーティング用として好適であり、特に、フロントピラーからルーフサイドに沿って収納され、衝突時や車両の転倒時に頭部の保護や飛び出しを防ぐために一定膨脹時間を維持することが要求されるカーテンエアーバッグを作製するのに好適である。
 本発明において、上記組成物の硬化物からなるシリコーンゴムコーティング層が形成されるエアーバッグ基布としては、6,6-ナイロン、6-ナイロン、ポリエステル繊維、アラミド繊維、ポリアミド繊維等の各種合成繊維からなる織生地や、これらの織生地の一方の面にゴムコーティングしたもの等が挙げられる。具体的には、上述した各種合成繊維を製織して袋部を形成した袋織りタイプのエアーバッグ基布や、上記繊維を平織等に製織した織生地の一方の面にゴムコーティングし、このゴムコーティング織生地の2枚をゴムコーティングした面を内側にして重ね合わせた後、外周部同士を接着剤で貼り合わせ、この貼り合わせた部分を縫い合わせて作製した平織りタイプのエアーバッグ基布等が挙げられる。
 本発明のエアーバッグコーティング用シリコーンゴム組成物を、これらのエアーバッグ基布の少なくとも一方の表面に塗布し、例えば、熱風乾燥炉に入れて加熱して硬化させることにより、シリコーンゴムコーティング層を形成させることができる。このようにして得たエアーバッグ用シリコーンゴムコーティング基材を用いて、エアーバッグを製造することができる。
 コーティング方法としては、例えば、フローコート、スピンコート、バーコーター、ワイヤーバー、刷毛塗り、スプレー、浸漬、ロールコート、カーテンコート、ナイフコート等の各種塗布方法を用いることができるが、コーティング層の厚さ(又は表面塗布量)は、好ましくは5~150g/m2程度であり、より好ましくは10~80g/m2程度であり、更に好ましくは15~60g/m2程度である。
 本発明のシリコーンゴムコーティング組成物は、公知の硬化条件下で公知の硬化方法により硬化させることができる。具体的には、例えば、120~180℃において1~10分加熱することにより、本発明の組成物を硬化させることができる。
 以下、合成例、調製例、実施例及び比較例を示し、本発明をより具体的に説明するが、本発明は下記の実施例に制限されるものではない。なお、下記例において、粘度は、BH型回転粘度計で測定した25℃における値である。
[合成例1]
 温度計、滴下ロート、窒素導入管を装着したフラスコに、窒素雰囲気下にて、下記式(3)で表されるオルガノハイドロジェンポリシロキサン58.4g、アセトニトリル0.14g、トルエン50g、塩化白金酸0.5質量%トルエン溶液0.20gを加え、加熱後、75~90℃で攪拌しながらアリルグリシジルエーテル(エピオールA、日油(株)製)100.0gを滴下した。滴下終了後、内温85℃で2時間攪拌した。25℃に冷却し、トリフェニルホスフィン1.4mgを添加して30分攪拌した後、濾過した。80℃、0.8kPaにて揮発成分を留去し、下記式(E-1)で表される25℃で無色透明液状のエポキシ基含有オルガノハイドロジェンポリシロキサン133.2g(収率84.0%)を得た。
Figure JPOXMLDOC01-appb-C000006
[合成例2]
 温度計、滴下ロート、窒素導入管を装着したフラスコに、窒素雰囲気下にて、上記式(3)で表されるオルガノハイドロジェンポリシロキサン65.0g、n-ヘプタン42.0g、塩化白金酸0.5質量%トルエン溶液0.12gを加え、加熱後、60~80℃で攪拌しながらアリルグリシジルエーテル(エピオールA、日油(株)製)25.2gを滴下した。滴下終了後、内温85℃で2時間攪拌した。25℃に冷却し、トリフェニルホスフィン1.1mgを添加して30分攪拌した後、濾過を行った。70℃、0.8kPaにて揮発成分を留去し、下記式(E-2)で表される25℃で無色透明液状のエポキシ基含有オルガノハイドロジェンポリシロキサン64.8g(収率80.0%)を得た。
Figure JPOXMLDOC01-appb-C000007
[調製例1]
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が約10,000mPa・sのジメチルポリシロキサン60質量部、ヘキサメチルジシラザン6質量部、水2.5質量部、比表面積がBET法で約300m2/gであるシリカ微粉末(Aerosil300、日本アエロジル社製)30質量部をニーダーを用いて25℃にて1時間混合した。その後、温度を160℃に昇温し、引き続き6時間混合した。この後、25℃まで降温して、分子鎖両末端がビニルジメチルシロキシ基で封鎖されたジメチルポリシロキサン(25℃での粘度が約10,000mPa・s)24質量部を添加して均一になるまで混合した後、三本ロールを用いて混練し、ベースコンパウンド(I)を得た。
[調製例2]
 分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が約100,000mPa・sのジメチルポリシロキサン60質量部、ヘキサメチルジシラザン6質量部、水2.5質量部、比表面積がBET法で約300m2/gであるシリカ微粉末(Aerosil300、日本アエロジル社製)30質量部をニーダーを用いて25℃にて1時間混合した。その後、温度を160℃に昇温し、引き続き4時間混合した。この後、25℃まで降温して、分子鎖両末端がビニルジメチルシロキシ基で封鎖されたジメチルポリシロキサン(25℃での粘度が約100,000mPa・s)24質量部を添加して均一になるまで混合した後、三本ロールを用いて混練し、ベースコンパウンド(II)を得た。
[実施例1]
 調製例1で得たベースコンパウンド(I)106質量部に、調製例2で得たベースコンパウンド(II)10質量部、分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が約100,000mPa・sのジメチルポリシロキサン67質量部、25℃における粘度が90mPa・sであり、分子鎖側鎖にケイ素原子結合水素原子を有する分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子含有量=3.88質量%)14.5質量部、25℃における粘度が45mPa・sであり、分子鎖側鎖にケイ素原子結合水素原子を有する分子鎖両末端トリメチルシロキシ基封鎖ジメチルシロキサン・メチルハイドロジェンシロキサン共重合体(ケイ素原子結合水素原子含有量=65.33質量%)0.1質量部、3,5-ジメチル-1-ヘキシン-3-オール0.15質量部、塩化白金酸/1,3-ジビニルテトラメチルジシロキサン錯体のジメチルポリシロキサン溶液(白金含有量:1質量%)0.2質量部、チタンテトラ-2-エチルヘキソキシド0.3質量部、下記式(F-1)で表される接着向上剤0.3質量部、下記式(F-2)で表される接着向上剤3質量部、合成例1で得たエポキシ基含有オルガノハイドロジェンポリシロキサン(E-1)0.7質量部を25℃にて混合して、シリコーンゴム組成物((A)成分中のケイ素原子結合ビニル基に対する(B)成分中のSiH基のモル比;SiH/SiVi=1.6)を調製した。
Figure JPOXMLDOC01-appb-C000008
[実施例2]
 合成例1で得たオルガノハイドロジェンポリシロキサン(E-1)0.7質量部の代わりに、合成例2で得たオルガノハイドロジェンポリシロキサン(E-2)0.7質量部を使用した以外は、実施例1と同様の処方にてシリコーンゴム組成物((A)成分中のケイ素原子結合ビニル基に対する(B)成分中のSiH基のモル比:SiH/SiVi=1.9)を調製した。
[実施例3]
 チタンテトラ-2-エチルヘキソキシド0.3質量部の代わりに、ジルコニウムテトラアセチルアセトネート/分子鎖両末端がビニルジメチルシロキシ基で封鎖され、25℃での粘度が約100,000mPa・sのジメチルポリシロキサンを質量比50/50で含有する混合物0.3質量部を使用した以外は、実施例1と同様の処方にてシリコーンゴム組成物((A)成分中のケイ素原子結合ビニル基に対する(B)成分中のSiH基のモル比;SiH/SiVi=1.6)を調製した。
[実施例4]
 合成例1で得たオルガノハイドロジェンポリシロキサン(E-1)0.7質量部の代わりに、合成例2で得たオルガノハイドロジェンポリシロキサン(E-2)0.7質量部を使用した以外は、実施例3と同様の処方にてシリコーンゴム組成物((A)成分中のケイ素原子結合ビニル基に対する(B)成分中のSiH基のモル比;SiH/SiVi=1.6)を調製した。
[比較例1]
 合成例1で得たオルガノハイドロジェンポリシロキサン(E-1)を使用しない以外は、実施例1と同様の処方にてシリコーンゴム組成物((A)成分中のケイ素原子結合ビニル基に対する(B)成分中のSiH基のモル比:SiH/SiVi=1.6)を調製した。
[比較例2]
 合成例1で得たオルガノハイドロジェンポリシロキサン(E-1)0.7質量部の代わりに、3-グリシジルオキシプロピルトリメトキシシラン0.7質量部を使用した以外は、実施例1と同様の処方にてシリコーンゴム組成物((A)成分中のケイ素原子結合ビニル基に対する(B)成分中のSiH基のモル比:SiH/SiVi=1.6)を調製した。
 得られた各組成物を用いて、下記に示す各種試験(硬さ、切断時伸び、引張り強さ及びスコット揉み試験)を行った。結果を表1に示す。
<硬さ>
 組成物を150℃で5分加熱して硬化させた6mm厚の硬化物について、JIS K 6249:2003に準拠し、デュロメータタイプA硬度を測定した。
<切断時伸び、引張り強さ>
 組成物を150℃で5分プレスキュアーした2mm厚シートについて、JIS K 6249:2003に準拠し、切断時伸び、引張り強さを測定した。
<耐磨耗試験>
 実施例1、2及び比較例1のシリコーンゴム組成物を6-ナイロン(420デニール)繊維により紡織した布上に塗布量が約40g/m2になるように均一にコーティングし、180℃の温度で1分間加熱して硬化させ、シリコーンゴム被覆ナイロン基布を作製した。
 また、実施例3、4及び比較例2のシリコーンゴム組成物をポリエチレンレテフタレート(PET、420デニール)繊維により紡織した布上に塗布量が約40g/m2になるように均一にコーティングし、180℃の温度で1分間加熱して硬化させ、シリコーンゴム被覆PET基布を作製した。
 上記のシリコーンゴム被覆ナイロン基布及びPET基布について、JIS K 6404-6:1999に準じ、スコット形耐揉み磨耗試験機を用いて押し圧力5kgfで揉み試験を50回行う毎にコーティング部分の破壊状況を目視で確認し、シリコーンゴムコーティング層がコーティング面から剥離しない最大回数を評価した。
 また、湿熱耐久試験として温度85℃、湿度85%の恒温恒湿機内に7日間曝露した後のシリコーンゴム被覆ナイロン基布及びPET基布についても同様の試験を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000009
 表1に示されるように、本発明のエアーバッグコーティング用シリコーンゴムによって被覆された基布は、耐摩耗性試験において高い耐久性を有していた。更に、エポキシ基の含有率が高い(E)成分を用いた場合(実施例1,3)は、湿熱耐久試験後の耐摩耗性に向上が見られた。
 一方、本発明の(E)成分を使用していない比較例1、2では、耐摩耗性試験において耐久性に劣る結果となった。

Claims (2)

  1.  (A)1分子中にケイ素原子に結合したアルケニル基を2個以上含有するオルガノポリシロキサン:100質量部、
    (B)1分子中に2個以上のケイ素原子結合水素原子を含有し、かつ、エポキシ基を有しないオルガノハイドロジェンポリシロキサン:(B)成分中のケイ素原子に結合した水素原子の数が(A)成分中のケイ素原子結合アルケニル基1個当たり0.8~10個となる量、
    (C)付加反応触媒、
    (D)比表面積が50m2/g以上のシリカ:50質量部以下、及び、
    (E)下記式(2)で表されるエポキシ基含有オルガノハイドロジェンポリシロキサン:0.1~10質量部
    Figure JPOXMLDOC01-appb-C000001
    (式中、pは0~10の数であり、qは1~10の数であり、rは1~10の数であり、かつ、p+q+rは3以上の数である。括弧内のシロキサン単位の配列順は任意である。)
    を含有するエアーバッグコーティング用シリコーンゴム組成物。
  2.  前記式(2)において、p=0、かつ、q/(q+r)≧0.2である請求項1記載のエアーバッグコーティング用シリコーンゴム組成物。
PCT/JP2020/007903 2019-03-14 2020-02-27 エアーバッグコーティング用シリコーンゴム組成物 WO2020184193A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-047011 2019-03-14
JP2019047011A JP2020147686A (ja) 2019-03-14 2019-03-14 エアーバッグコーティング用シリコーンゴム組成物

Publications (1)

Publication Number Publication Date
WO2020184193A1 true WO2020184193A1 (ja) 2020-09-17

Family

ID=72427881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/007903 WO2020184193A1 (ja) 2019-03-14 2020-02-27 エアーバッグコーティング用シリコーンゴム組成物

Country Status (3)

Country Link
JP (1) JP2020147686A (ja)
TW (1) TW202045645A (ja)
WO (1) WO2020184193A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223327A (ja) * 1989-11-30 1991-10-02 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物
JPH10152560A (ja) * 1997-11-10 1998-06-09 Shin Etsu Chem Co Ltd オルガノポリシロキサンの製造方法
JP2011184586A (ja) * 2010-03-09 2011-09-22 Shin-Etsu Chemical Co Ltd カーテンエアバッグのシリコーンゴムコーティング層の透明性を向上する方法
JP2012514143A (ja) * 2008-12-30 2012-06-21 ブルースター・シリコーンズ・ユーエスエイ・コーポレーション コーティング組成物及びそれにより被覆された編織布
JP2012184350A (ja) * 2011-03-07 2012-09-27 Shin-Etsu Chemical Co Ltd 付加硬化型自己接着性シリコーンゴム組成物
CN103589387A (zh) * 2013-11-20 2014-02-19 广州集泰化工有限公司 Led用高强度粘接性室温固化有机硅灌封胶及其制备方法
JP2016056226A (ja) * 2014-09-05 2016-04-21 信越化学工業株式会社 シリコーンゴム組成物及びシリコーンゴム硬化物の引裂き強度を向上させる方法
JP2018076394A (ja) * 2016-11-07 2018-05-17 旭化成ワッカーシリコーン株式会社 エアバッグコーティング用シリコーンゴム組成物
JP2018531303A (ja) * 2015-09-25 2018-10-25 エルケム・シリコーンズ・フランス・エスアエスELKEM SILICONES France SAS 車両の乗員を保護するためのエアバッグの防しわ性及び耐摩耗性を向上させるのに有用なシリコーン組成物及び方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03223327A (ja) * 1989-11-30 1991-10-02 Sumitomo Bakelite Co Ltd エポキシ樹脂組成物
JPH10152560A (ja) * 1997-11-10 1998-06-09 Shin Etsu Chem Co Ltd オルガノポリシロキサンの製造方法
JP2012514143A (ja) * 2008-12-30 2012-06-21 ブルースター・シリコーンズ・ユーエスエイ・コーポレーション コーティング組成物及びそれにより被覆された編織布
JP2011184586A (ja) * 2010-03-09 2011-09-22 Shin-Etsu Chemical Co Ltd カーテンエアバッグのシリコーンゴムコーティング層の透明性を向上する方法
JP2012184350A (ja) * 2011-03-07 2012-09-27 Shin-Etsu Chemical Co Ltd 付加硬化型自己接着性シリコーンゴム組成物
CN103589387A (zh) * 2013-11-20 2014-02-19 广州集泰化工有限公司 Led用高强度粘接性室温固化有机硅灌封胶及其制备方法
JP2016056226A (ja) * 2014-09-05 2016-04-21 信越化学工業株式会社 シリコーンゴム組成物及びシリコーンゴム硬化物の引裂き強度を向上させる方法
JP2018531303A (ja) * 2015-09-25 2018-10-25 エルケム・シリコーンズ・フランス・エスアエスELKEM SILICONES France SAS 車両の乗員を保護するためのエアバッグの防しわ性及び耐摩耗性を向上させるのに有用なシリコーン組成物及び方法
JP2018076394A (ja) * 2016-11-07 2018-05-17 旭化成ワッカーシリコーン株式会社 エアバッグコーティング用シリコーンゴム組成物

Also Published As

Publication number Publication date
JP2020147686A (ja) 2020-09-17
TW202045645A (zh) 2020-12-16

Similar Documents

Publication Publication Date Title
JP4952882B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP5605345B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP5660920B2 (ja) エアーバッグ用基布の製造方法及びエアーバッグ用基布
JP2009007468A (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
WO2018168315A1 (ja) 難燃性エアーバッグ、難燃性エアーバッグの製造方法、及び難燃性エアーバッグ用付加硬化型液状シリコーンゴム組成物
KR101414895B1 (ko) 액상 실리콘 고무 코팅제 조성물, 커튼 에어백 및 그의제조 방법
JP5761103B2 (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法
JP5115906B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP6753371B2 (ja) 付加硬化型シリコーンゴム組成物及びエアーバッグ
JP5397326B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP5142071B2 (ja) 液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
JP2018080421A (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ布
JP5206999B2 (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
TWI829907B (zh) 安全氣囊用加成硬化型液狀聚矽氧橡膠組成物及安全氣囊
JP5895857B2 (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物の製造方法
JP5506464B2 (ja) カーテンエアバッグのシリコーンゴムコーティング層の透明性を向上する方法
JP7047901B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP5177414B2 (ja) エアーバッグの製造方法
WO2020184193A1 (ja) エアーバッグコーティング用シリコーンゴム組成物
JP7401413B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP7143827B2 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP2016199680A (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物及びその製造方法
JP2009221633A (ja) カーテンエアーバッグ用液状シリコーンゴムコーティング剤組成物、カーテンエアーバッグ及びその製造方法
WO2023195294A1 (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ
JP2023012662A (ja) エアーバッグ用付加硬化型液状シリコーンゴム組成物及びエアーバッグ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20770008

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20770008

Country of ref document: EP

Kind code of ref document: A1