WO2018164147A1 - ポリマーの製造方法 - Google Patents

ポリマーの製造方法 Download PDF

Info

Publication number
WO2018164147A1
WO2018164147A1 PCT/JP2018/008642 JP2018008642W WO2018164147A1 WO 2018164147 A1 WO2018164147 A1 WO 2018164147A1 JP 2018008642 W JP2018008642 W JP 2018008642W WO 2018164147 A1 WO2018164147 A1 WO 2018164147A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
compound
compound represented
formula
Prior art date
Application number
PCT/JP2018/008642
Other languages
English (en)
French (fr)
Inventor
雅博 大倉
健太 夏川
Original Assignee
Agc株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社 filed Critical Agc株式会社
Priority to EP18763720.2A priority Critical patent/EP3594250A4/en
Priority to CN201880016381.9A priority patent/CN110418806B/zh
Priority to JP2019504617A priority patent/JP6733807B2/ja
Publication of WO2018164147A1 publication Critical patent/WO2018164147A1/ja
Priority to US16/564,610 priority patent/US10961332B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F14/18Monomers containing fluorine
    • C08F14/185Monomers containing fluorine not covered by the groups C08F14/20 - C08F14/28
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F114/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F114/18Monomers containing fluorine
    • C08F114/185Monomers containing fluorine not covered by the groups C08F114/20 - C08F114/28
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F14/00Homopolymers and copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/02Monomers containing chlorine
    • C08F214/04Monomers containing two carbon atoms
    • C08F214/06Vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F214/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen
    • C08F214/18Monomers containing fluorine
    • C08F214/26Tetrafluoroethene
    • C08F214/265Tetrafluoroethene with non-fluorinated comonomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F259/00Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00
    • C08F259/08Macromolecular compounds obtained by polymerising monomers on to polymers of halogen containing monomers as defined in group C08F14/00 on to polymers containing fluorine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/04Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2410/00Features related to the catalyst preparation, the catalyst use or to the deactivation of the catalyst
    • C08F2410/01Additive used together with the catalyst, excluding compounds containing Al or B
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation

Definitions

  • the present invention relates to a method for producing a polymer, in which a haloolefin is radically polymerized in the presence of an organic tellurium compound.
  • the radical polymerization reaction is widely used industrially because it has excellent versatility in monomers and can be easily carried out in polar media such as water.
  • control of the molecular weight by a general radical polymerization method is limited, and the molecular weight distribution of the resulting polymer tends to be wide.
  • the living radical polymerization method has attracted attention as a polymerization method for obtaining a polymer having a controlled molecular weight and a narrow molecular weight distribution, and various polymerization control agents have been developed.
  • different monomers can be copolymerized using the obtained polymer as a macropolymerization initiator or a macrochain transfer agent.
  • Patent Documents 1 and 2 describe a method of living radical polymerization of a vinyl monomer using an organic tellurium compound.
  • Patent Document 3 describes a method of living radical copolymerization of trifluoroethylene and another monomer using a xanthate compound, a trithiocarbonate compound or a monoiodide compound.
  • a haloolefin polymer useful for polymer design and the like can be produced by radical polymerization of a haloolefin in the presence of an organic tellurium compound.
  • the present invention has been made in view of the above-described conventional situation, and an object thereof is to radically polymerize a haloolefin to produce a useful haloolefin polymer or copolymer.
  • the present invention relates to the following ⁇ 1> to ⁇ 11>.
  • ⁇ 1> A compound represented by the following formula (3) in the presence of at least one compound selected from the group consisting of a compound represented by the following formula (1) and a compound represented by the following formula (2).
  • R 1, .R 2 represents an alkyl group, a substituted alkyl group, an aryl group or a substituted aryl group having a carbon number of 3 to 16 3 to 12 carbon atoms having 1 to 8 carbon atoms having 1 to 8 carbon atoms
  • R 3 each independently represents a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 4 represents a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, a substituted alkyl group having 1 to 8 carbon atoms, a carbon atom
  • R 5 represents an alkyl group having 1 to 8 carbon atoms, a substituted alkyl group having 1 to 8 carbon atoms, an aryl group having 3 to 12 carbon atoms, or a substituted aryl group having 3 to 16 carbon atoms.
  • X 1 represents a fluorine atom or a chlorine atom.
  • X 2 , X 3 and X 4 each independently represent a hydrogen atom, a fluorine atom, a chlorine atom or —CX 5 X 6 X 7 .
  • X 5 , X 6 and X 7 each independently represents a hydrogen atom, a fluorine atom or a chlorine atom.
  • the compound represented by the formula (3) is vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, tetrafluoropropylene, vinylidene chloride, vinyl chloride,
  • R 1 is an alkyl group having 1 to 4 carbon atoms or a phenyl group
  • R 2 and R 3 are each independently a hydrogen atom or having 1 to 4 carbon atoms.
  • R 4 is a compound represented by an aryl group having 5 to 12 carbon atoms or an oxycarbonyl group.
  • the compound represented by the formula (2) is a compound in which R 5 is an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • ⁇ 5> The method for producing a polymer according to any one of ⁇ 1> to ⁇ 4>, wherein the obtained polymer has a molecular weight distribution of 2.0 or less.
  • ⁇ 6> The method for producing a polymer according to any one of ⁇ 1> to ⁇ 5>, wherein an azo polymerization initiator is used in combination.
  • ⁇ 8> The method for producing a polymer according to any one of ⁇ 1> to ⁇ 7>, wherein the compound represented by the formula (3) and the compound (6) are block copolymerized.
  • ⁇ 9> The method for producing a polymer according to ⁇ 8>, wherein the compound (6) is styrene.
  • ⁇ 10> The method for producing a polymer according to any one of ⁇ 1> to ⁇ 7>, wherein the compound represented by the formula (3) and the compound (6) are randomly copolymerized.
  • ⁇ 11> The method for producing a polymer according to ⁇ 10>, wherein the compound (6) is styrene or vinyl acetate.
  • a method for radical polymerization of a specific haloolefin in the presence of a specific tellurium compound can be provided.
  • haloolefin By using haloolefin as a raw material, flame retardancy and chemical resistance can be imparted to the resulting polymer.
  • a haloolefin when used as a raw material, the molecular weight distribution is unlikely to be narrow, but according to the present invention, a polymer having a narrow molecular weight distribution is easily obtained.
  • the number of carbons means the total number of carbon atoms contained in an entire group. When the group does not have a substituent, it represents the number of carbon atoms forming the skeleton of the group, and the group has a substituent. When it has, it represents the total number which added the number of the carbon atoms in a substituent to the number of the carbon atoms which form the frame
  • An aryl group means a monovalent group corresponding to a residue obtained by removing one hydrogen atom bonded to any one of carbon atoms forming an aromatic ring in an aromatic compound, and a carbocyclic compound And a heteroaryl group derived from a heterocyclic compound.
  • the reactive carbon-carbon double bond means a carbon-carbon double bond that can react variously as an olefin, and does not include an aromatic double bond.
  • the first embodiment of the present invention relates to a method for producing a polymer by radical polymerization of a compound represented by the above formula (3) in the presence of a specific organic tellurium compound.
  • the compound represented by the above formula (3) and a reactive carbon-carbon double bond are represented by the above formula (3).
  • the present invention relates to a method for producing a polymer by radical polymerization of a compound different from the compound to be produced (hereinafter sometimes referred to as compound (6)).
  • organic tellurium compound In the present invention, as the specific organic tellurium compound, an organic tellurium compound represented by the above formula (1), an organic ditellurium compound represented by the above formula (2), or both of them can be used. In the present specification, the organic tellurium compound represented by the above formula (1), the organic ditellurium compound represented by the above formula (2), or both of them may be simply referred to as an organic tellurium compound.
  • R 1 to R 4 are as defined above.
  • Specific examples of the group represented by R 1 are as follows.
  • Examples of the alkyl group having 1 to 8 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, cyclopropyl group, n-butyl group, sec-butyl group, tert-butyl group, cyclobutyl group, and n-pentyl.
  • a linear or branched alkyl group having 1 to 4 carbon atoms is preferable, and a methyl group, an ethyl group, or an n-butyl group is more preferable.
  • Examples of the substituted alkyl group having 1 to 8 carbon atoms include an alkyl group having a substituent such as a fluorine atom, a chlorine atom, an alkoxy group or a fluoroalkoxy group at an arbitrary position.
  • an alkyl group having 2 to 13 fluorine atoms is preferable, and a (perfluoroalkyl) ethyl group (having 3 to 8 carbon atoms) is more preferable from the viewpoint of suppressing a hydrogen atom abstraction reaction by a radical.
  • aryl group having 3 to 12 carbon atoms examples include a homoaryl group such as a phenyl group and a naphthyl group, and a heteroaryl group such as a pyridyl group, a pyrrole group, a furyl group and a thienyl group, preferably a homoaryl group, More preferably, it is a phenyl group.
  • Examples of the substituted aryl group having 3 to 16 carbon atoms include a halogen atom, a hydroxyl group, an alkoxy group, an amino group, a nitro group, a cyano group, and a carbonyl-containing group represented by —COR a
  • R a carbon number 1 to 8 alkyl groups (preferably linear or branched alkyl groups having 1 to 4 carbon atoms), alkoxy groups having 1 to 8 carbon atoms (preferably linear or branched chains having 1 to 4 carbon atoms) 1 to 4 (preferably 1 to 3, more preferably 1, more preferably para or ortho) substituents such as an alkoxy group), aryl group, or aryloxy group], sulfonyl group, trifluoromethyl group, etc.
  • R a carbon number 1 to 8 alkyl groups (preferably linear or branched alkyl groups having 1 to 4 carbon atoms), alkoxy groups having 1 to 8 carbon atoms (preferably linear or branched chains having 1 to 4
  • R 2 and R 3 are specifically as follows.
  • Examples of the alkyl group having 1 to 8 carbon atoms include those similar to the alkyl group having 1 to 8 carbon atoms represented by R 1 above.
  • R 2 and R 3 are preferably a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • each group represented by R 4 is as follows.
  • the alkyl group having 1 to 8 carbon atoms, the substituted alkyl group having 1 to 8 carbon atoms, the aryl group having 3 to 12 carbon atoms, and the substituted aryl group having 3 to 16 carbon atoms are the same as the groups represented by R 1 above. Can be mentioned.
  • acyl group having 2 to 8 carbon atoms examples include acetyl group and benzoyl group.
  • Examples of the amide group having 2 to 8 carbon atoms include carbamoyl group, dicarbamoylmethyl group, carbamoyl group-containing group such as 4-carbamoylphenyl group, thiocarbamoyl group-containing group such as thiocarbamoylmethyl group, 4-thiocarbamoylphenyl group, etc. And N-substituted carbamoyl group-containing groups such as a dimethylcarbamoylmethyl group.
  • Alkenyl groups preferably linear or branched alkenyl groups having 2 to 4 carbon atoms
  • alkynyl groups having 2 to 8 carbon atoms preferably linear or branched chains having 2 to 4 carbon atoms
  • Alkynyl group or an aryl group having 3 to 12 carbon atoms.
  • An alkyl group having 1 to 8 carbon atoms, an alkenyl group having 2 to 8 carbon atoms, an alkynyl group having 2 to 8 carbon atoms, or an aryl group having 3 to 12 carbon atoms represented by R b is a halogen atom or a hydroxyl group at an arbitrary position; , Alkoxy groups, trialkylsilyl ether groups, trialkylsilyl groups, amino groups, nitro groups, cyano groups, sulfonyl groups, trifluoromethyl groups, and the like having 1 to 4 substituents (preferably 1 to 3, more preferably May be one).
  • Examples of the oxycarbonyl group include a carboxy group, a methoxycarbonyl group, an ethoxycarbonyl group, a propoxycarbonyl group, an n-butoxycarbonyl group, a sec-butoxycarbonyl group, a tert-butoxycarbonyl group, an n-pentoxycarbonyl group, and a phenoxycarbonyl group.
  • it is a methoxycarbonyl group or an ethoxycarbonyl group.
  • R 4 is preferably an aryl group having 5 to 12 carbon atoms, an oxycarbonyl group, or a cyano group.
  • Preferred compound (1) is as follows: R 1 is an alkyl group or phenyl group having 1 to 4 carbon atoms, R 2 and R 3 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, and R 4 is a carbon number. A compound represented by 5 to 12 aryl groups or oxycarbonyl groups.
  • R 1 is an alkyl group or phenyl group having 1 to 4 carbon atoms
  • R 2 and R 3 are each independently a hydrogen atom or an alkyl group having 1 to 4 carbon atoms
  • R 4 is a phenyl group, a methoxycarbonyl group or It is a compound represented by an ethoxycarbonyl group.
  • the compound (1) include (methylterranylmethyl) benzene, (methylterranylmethyl) naphthalene, ethyl-2-methyl-2-methylterranyl-propionate, ethyl-2-methyl-2-n- Butylterranyl-propionate, (2-trimethylsiloxyethyl) -2-methyl-2-methylterranyl-propionate, (2-hydroxyethyl) -2-methyl-2-methylterranyl-propionate, (3-trimethylsilylpropargyl) -2-methyl- Mention may be made, for example, of the compounds described in WO 2004/014848 and WO 2004/014962, such as 2-methylterranyl-propinate.
  • the method for producing the compound (1) is not particularly limited, and can be produced by a known method described in International Publication No. 2004/014848 and International Publication No. 2004/014962.
  • the compound (1) can be produced by reacting a compound represented by the following general formula (4), a compound represented by the following general formula (5) and metal tellurium.
  • R 2 , R 3 and R 4 are as shown in the above formula (1).
  • X is a halogen atom, preferably a chlorine atom, a bromine atom or an iodine atom.
  • R 1 is as shown in the above formula (1).
  • M represents an alkali metal, alkaline earth metal or copper atom.
  • m is 1, when M is an alkaline earth metal, m is 2, and when M is a copper atom, m is 1 or 2.
  • m is 2, a plurality of R 1 may be the same or different.
  • Examples of those represented by M include alkali metals such as lithium, sodium and potassium, alkaline earth metals such as magnesium and calcium, and copper. Among these, lithium is preferable.
  • M is magnesium
  • the formula for example, as a compound of (5) Mg (R 1) a compound represented by 2 and the like, simultaneously with Mg (R 1) 2, or Mg (R 1) 2
  • a compound (Grignard reagent) represented by R 1 MgX (X is a halogen atom) can also be used.
  • X is preferably a chlorine atom or a bromine atom.
  • R 5 is the same as R 1 shown in the above formula (1).
  • Preferable compound (2) is a compound in which R 5 is an alkyl group having 1 to 4 carbon atoms or a phenyl group.
  • the compound (2) include dimethylditelluride, diethylditelluride, di-n-propylditelluride, diisopropylditelluride, dicyclopropylditelluride, di-n-butylditelluride, di- -Sec-butylditelluride, di-tert-butylditelluride, dicyclobutylditelluride, diphenylditelluride, bis- (p-methoxyphenyl) ditelluride, bis- (p-aminophenyl) ditelluride, bis- (p-nitrophenyl) ) Ditelluride, bis- (p-cyanophenyl) ditelluride, bis- (p-sulfonylphenyl) ditelluride, dinaphthyl ditelluride, dipyridyl ditelluride and the like.
  • dimethyl ditelluride diethyl ditelluride, di-n-propyl ditelluride, di-n-butyl ditelluride or diphenyl ditelluride is preferable.
  • the compound (1) can also be produced by a reaction of the compound (2) and an azo polymerization initiator, which is a known method described in Japanese Patent Application Laid-Open No. 2004-323437. This reaction may be performed in advance before radical polymerization, or may be performed simultaneously with radical polymerization in the presence of a monomer.
  • a compound (3) is used as a monomer with which it uses for radical polymerization.
  • X 1 to X 4 are as defined above.
  • X 1 is preferably a fluorine atom.
  • X 2 , X 3 and X 4 are preferably a hydrogen atom or a fluorine atom.
  • the compound (3) has a propylene structure.
  • X 3 or X 4 is -CX 5 X 6 X 7, and more preferable from the viewpoint of polymerization reactivity
  • X 3 is -CX 5 X 6 X 7.
  • Preferred compounds (3) include vinyl fluoride, vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, tetrafluoropropylene, vinylidene chloride, vinyl chloride, 1-chloro-1-fluoro Examples include ethylene and 1,2-dichloro-1,2-difluoroethylene. Of these, the compound (3) is more preferably vinylidene fluoride, trifluoroethylene, chlorotrifluoroethylene, tetrafluoroethylene, hexafluoropropylene, tetrafluoropropylene, 1,2-dichloro-1,2-difluoroethylene. .
  • Compound (3) may be used alone or in combination of two or more. When two or more kinds of compounds (3) are used, they may be used in combination (in the case of random copolymerization) or sequentially (in the case of block copolymerization).
  • Compound (6) In the second embodiment of the present invention, the compound (6) having a reactive carbon-carbon double bond is used together with the compound (3) as a monomer for radical polymerization.
  • Compound (6) is a compound different from compound (3).
  • the compound (6) is not particularly limited as long as it can be radically polymerized.
  • ethylene isobutylene, butadiene, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (Meth) acrylic acid ester monomers such as butyl (meth) acrylate, octyl (meth) acrylate, lauryl (meth) acrylate, cyclohexyl (meth) acrylate, methyl cyclohexyl (meth) acrylate, (meth) acrylic acid Isobornyl, cycloalkyl group-containing unsaturated monomers such as (meth) acrylic acid cyclododecyl, (meth) acrylic acid, maleic acid, fumaric acid, itaconic acid, citraconic acid, crotonic acid, maleic anhydride, itaconic anhydride and other carboxyls Group-containing unsaturated mono
  • (meth) acrylic acid is a general term for “acrylic acid” and “methacrylic acid”.
  • (Meth) acrylamide is a general term for “acrylamide” and “methacrylamide”.
  • (Meth) acrylate” is a general term for “acrylate” and “methacrylate”.
  • (meth) acrylic acid ester monomers, tertiary amine-containing unsaturated monomers, styrenic monomers, vinyl acetate, acrylamide or N, N-dimethylacrylamide are preferable.
  • Preferred (meth) acrylic acid ester monomers include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate or butyl (meth) acrylate. Particularly preferred is methyl (meth) acrylate or butyl (meth) acrylate.
  • Preferred tertiary amine-containing unsaturated monomers are N, N-dimethylaminoethyl (meth) acrylamide or 2- (dimethylamino) ethyl (meth) acrylate.
  • Preferred styrenic monomers include styrene, ⁇ -methylstyrene, 2-methylstyrene, 4-methylstyrene, 4-methoxystyrene, 4-chlorostyrene, 4- (chloromethyl) styrene, divinylbenzene, and 4-styrenesulfonic acid. Or the alkali metal salt (sodium salt, potassium salt). Among these, styrene, 4-methoxystyrene, 4-chlorostyrene or 4- (chloromethyl) styrene is particularly preferable.
  • radical polymerization method is as follows. At least one compound selected from the group consisting of the compound (3), and the compound (1) and the compound (2) is mixed in a container replaced with an inert gas or a vacuum-depressurized container.
  • the inert gas include nitrogen, argon, and helium. Among these, nitrogen or argon is preferable, and nitrogen is more preferable.
  • an azo polymerization initiator may be used in combination for the purpose of accelerating the polymerization rate.
  • the azo polymerization initiator can be used without particular limitation as long as it is an azo polymerization initiator used in normal radical polymerization.
  • azo polymerization initiator examples include 2,2′-azobis (isobutyronitrile) (AIBN), 2,2′-azobis (2-methylbutyronitrile) (AMBN), and 2,2′-azobis.
  • AIBN isobutyronitrile
  • AMBN 2,2′-azobis (2-methylbutyronitrile)
  • BBN 1,1′-azobis (1-cyclohexanecarbonitrile
  • MAIB dimethyl-2,2′-azobisisobutyrate
  • ACVA 4,4 ′ -Azobis (4-cyanovaleric acid)
  • ACVA 1,1'-azobis (1-acetoxy-1-phenylethane
  • 2,2'-azobis (2-methylbutyramide 2,2'-azobis (4-methoxy-2,4-dimethylvaleronitrile
  • 2,2′-azobis (2-methylamidinopropane) dihydrochloride 2,2′-azobis [2- (2-imidazo N-2-yl) propane], 2,2′
  • azo initiators are preferably selected as appropriate according to the reaction conditions.
  • ADVN 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile) for low temperature polymerization (40 ° C. or lower), AIBN, AMBN for medium temperature polymerization (40-80 ° C.) MAIB, 1,1′-azobis (1-acetoxy-1-phenylethane), ACVA, 2,2′-azobis (2-methylbutyramide), 2,2′-azobis (2-methylamidinopropane)
  • hydrochloride 2,2′-azobis [2- (2-imidazolin-2-yl) propane]
  • high temperature polymerization 80 ° C.
  • ACHN 2-cyano-2-propylazoformamide
  • 2,2 '-Azobis N-butyl-2-methylpropionamide
  • 2,2'-azobis N-cyclohexyl-2-methylpropionamide
  • 2,2'-azobis 2,4,4 Trimethylpentane
  • the amount of compound (1) or compound (2) to be used is usually when compound (1) or compound (2) (compound (1) and compound (2) are used in combination with respect to 1 mol of compound (3).
  • the total amount is 0.0001 to 0.01 mol, preferably 0.001 to 0.01 mol.
  • the compound (1) or the compound (2) and the azo polymerization initiator As a use ratio of the compound (1) or the compound (2) and the azo polymerization initiator, usually, when the compound (1) or the compound (2) (the compound (1) and the compound (2) are used in combination, these are used.
  • the total amount of azo polymerization initiator is 0.01 to 100 mol, preferably 0.1 to 10 mol, and particularly preferably 0.1 to 5 mol with respect to 1 mol.
  • the use amount thereof is usually 0.01 to 100 mol, preferably 0.05 to 10 mol, relative to 1 mol of the compound (1). Particularly preferably, 0.1 to 5 mol is used.
  • radical polymerization can be carried out without a solvent, but can be carried out using an organic solvent or an aqueous solvent generally used in radical polymerization.
  • organic solvent examples include benzene, toluene, pyridine, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), acetone, acetonitrile, 2-butanone (methyl ethyl ketone), dioxane, hexafluoroisopropol, chloroform, Carbon tetrachloride, tetrahydrofuran (THF), methyl acetate, ethyl acetate, dimethyl carbonate, ethylene carbonate, propylene carbonate, trifluoromethylbenzene, 1H-tridecafluorohexane, 1H, 1H, 1H, 2H, 2H-tridecafluorooctane 1,1,2,2-tetrafluoroethyl-2,2,2-trifluoroethyl ether, N-methyl-N-methoxymethylpyrrolidinium tetrafluoroborate, N-methyl-N-ethoxy
  • aqueous solvent examples include water, methanol, ethanol, isopropanol, n-butanol, ethyl cellosolve, butyl cellosolve, 1-methoxy-2-propanol, and diacetone alcohol.
  • the amount of the solvent used may be appropriately adjusted.
  • the solvent is 0.01 to 50 L, preferably 0.05 to 10 L, particularly preferably 0.1 to 5 L with respect to 1000 g of the obtained polymer. Can be used.
  • the reaction temperature and reaction time may be appropriately adjusted depending on the molecular weight or molecular weight distribution of the polymer to be obtained, but are usually stirred at 60 to 150 ° C. for 5 to 100 hours.
  • stirring is performed at 80 to 120 ° C. for 10 to 30 hours. At this time, it is normally performed at normal pressure, but may be pressurized or reduced in pressure.
  • the target product is isolated by removing the target polymer and residual monomer under reduced pressure by taking out the target polymer by a conventional method, or by reprecipitation using a target polymer insoluble solvent.
  • any treatment method can be used as long as there is no problem with the object.
  • the production method of the present invention can perform excellent molecular weight control and molecular weight distribution control under very mild conditions.
  • the molecular weight of the polymer obtained in the first embodiment of the present invention can be adjusted by the reaction time and the amount of the organic tellurium compound.
  • a polymer having a number average molecular weight of 500 to 1,000,000 can be obtained.
  • it is suitable for obtaining a polymer having a number average molecular weight of 1,000 to 50,000.
  • the molecular weight distribution ⁇ PD Mw (weight average molecular weight) / Mn (number average molecular weight) ⁇ of the polymer obtained in the first embodiment of the present invention is controlled to 2.0 or less, for example. Furthermore, a polymer having a narrower molecular weight distribution such as a molecular weight distribution of 1.5 or less, and further 1.4 or less can be obtained.
  • the lower limit of the molecular weight distribution is 1.0 from the definition.
  • the number average molecular weight and the weight average molecular weight of the polymer in the present specification were determined by SEC (Size Exclusion Chromatography) measurement, and polystyrene was used as a standard substance for molecular weight conversion.
  • the terminal group of the polymer obtained in the first embodiment of the present invention has been confirmed to be a functional group containing highly reactive tellurium derived from an organic tellurium compound.
  • the polymer obtained by this invention can be used as a macro radical polymerization initiator (macro initiator) or a macro radical chain transfer agent.
  • an organic tellurium compound is used, for example, an AB diblock copolymer such as trifluoroethylene-butyl acrylate, or trifluoroethylene-butyl acrylate-trifluoro
  • An ABA triblock copolymer such as ethylene can be obtained.
  • styrene is preferred as the compound (6).
  • the method for producing the block copolymer is specifically as follows.
  • an AB diblock copolymer for example, in the case of a trifluoroethylene-styrene copolymer, first, trifluoroethylene, a compound (1) and a compound (2 And a method in which at least one compound selected from the group consisting of) is mixed to produce polytrifluoroethylene and then styrene is mixed to obtain a trifluoroethylene-styrene copolymer.
  • the monomer (A) is mixed, and the ABA triblock copolymer is prepared.
  • the method of obtaining is mentioned.
  • Other conditions relating to the polymerization are the same as those in the first embodiment described above.
  • the reaction of the next block may be started as it is, or after the reaction is completed once, the reaction of the next block may be started after purification.
  • Isolation of the block copolymer can be performed by a usual method.
  • the molecular weight of the polymer obtained in the second embodiment (block copolymerization) of the present invention can be adjusted by the reaction time and the amount of the organic tellurium compound.
  • the number average molecular weight is 1,000 to 2,000,000.
  • a polymer can be obtained.
  • it is suitable for obtaining a polymer having a number average molecular weight of 2,000 to 100,000.
  • the molecular weight distribution ⁇ PD Mw (weight average molecular weight) / Mn (number average molecular weight) ⁇ of the polymer obtained in the second embodiment (block copolymerization) of the present invention is controlled to 2.0 or less, for example. Furthermore, a polymer having a narrower molecular weight distribution such as a molecular weight distribution of 1.5 or less, and further 1.4 or less can be obtained. The lower limit of the molecular weight distribution is 1.0 from the definition.
  • a random copolymer or an alternating copolymer can be obtained by reacting compound (3) and compound (6) simultaneously using an organic tellurium compound. It is known that an alternating copolymer is produced when the difference in electron density at the double bond site between copolymer monomers is large.
  • the compound (6) is preferably styrene or vinyl acetate.
  • the molecular weight of the polymer obtained in the second embodiment (random copolymerization) of the present invention can be adjusted by the reaction time and the amount of the organic tellurium compound.
  • a polymer having a number average molecular weight of 500 to 1,000,000 is used.
  • the molecular weight distribution ⁇ PD Mw (weight average molecular weight) / Mn (number average molecular weight) ⁇ of the polymer obtained in the second embodiment (random copolymerization) of the present invention is controlled to 2.0 or less, for example. Furthermore, a polymer having a narrower molecular weight distribution such as a molecular weight distribution of 1.5 or less, and further 1.4 or less can be obtained.
  • the lower limit of the molecular weight distribution is 1.0 from the definition.
  • Example 1 In a stainless steel autoclave with a stirrer having an internal volume of 30 mL, 0.423 g (1.84 mmol) of azo polymerization initiator “V-601” (manufactured by Wako Pure Chemical Industries, Ltd.), 0.221 g (0.540 mmol) of diphenyl Ditelluride and 14.3 g of acetonitrile were charged and freeze degassed. After 15.0 g of trifluoroethylene was injected, stirring was started while the internal temperature was raised to 80 ° C. When stirring was performed for 4 hours at 400 rpm while maintaining the internal temperature, the internal pressure decreased from 2.38 MPaG to 2.31 MPaG. After the autoclave was cooled in an ice water bath, unreacted trifluoroethylene was purged.
  • V-601 azo polymerization initiator
  • the obtained polymer solution was put into a fluorinated solvent “Asahi Klin AC-2000” (manufactured by Asahi Glass Co., Ltd.), and the precipitated polymer was precipitated with a centrifuge and separated from the supernatant. It was dried in a vacuum oven for 12 hours to obtain 1.84 g of a fluoropolymer.
  • the number average molecular weight Mn of the fluoropolymer was 3,350, and Mw / Mn was 1.33.
  • the molecular weight distribution (Mw / Mn) is 1.5 or less, and this radical polymerization shows the characteristics of living radical polymerization.
  • 81.5% of the phenyl tellurium group used was contained in the fluoropolymer.
  • Example 2 Aside from using 0.154 g (0.669 mmol) of azo polymerization initiator “V-601” (manufactured by Wako Pure Chemical Industries, Ltd.), 0.0818 g (0.200 mmol) of diphenyl ditelluride, and 14.76 g of acetonitrile, When performed in the same manner as in Example 1, the internal pressure decreased from 2.25 MPaG to 1.91 MPaG.
  • the obtained polymer solution was vacuum-dried to obtain 4.06 g of a solid.
  • the solid was dissolved in acetonitrile and charged into a fluorine-based solvent “Asahiclin AC-2000” (manufactured by Asahi Glass Co., Ltd.) to precipitate a polymer.
  • the polymer was separated by filtration with a polytetrafluoroethylene filter (0.5 ⁇ m pore) and dried in a vacuum oven at 40 ° C. for 12 hours.
  • the number average molecular weight Mn of the fluoropolymer was 11,400, and Mw / Mn was 1.40.
  • Mn number average molecular weight of the fluoropolymer was 11,400, and Mw / Mn was 1.40.
  • 72.8% of the phenyl tellurium group used was contained in the fluoropolymer.
  • Example 3 In a glass reactor having a volume of 30 mL with a deaeration tube and a valve, 1.72 g of the fluoropolymer obtained in Example 2, 0.0168 g (0.0730 mmol) of an azo polymerization initiator “ V-601 "(manufactured by Wako Pure Chemical Industries, Ltd.), 5.23 g of pyridine, 2.73 g of styrene and a stirrer were charged, and freeze deaeration was repeated twice. Stirring was started while the temperature of the water bath was raised to 70 ° C. While maintaining the temperature, stirring was performed at 400 rpm for 4 hours. After cooling the reactor, the contents were dried in a vacuum oven at 40 ° C. for 12 hours to obtain 2.32 g of solid. The number average molecular weight Mn of the obtained solid was 38,300, and Mw / Mn was 1.24.
  • Example 4 In a stainless steel autoclave with a stirrer having an internal volume of 30 mL, 0.532 g (2.31 mmol) of azo polymerization initiator “V-601” (manufactured by Wako Pure Chemical Industries, Ltd.), 0.208 g (0.508 mmol) of diphenyl Ditelluride and 14.3 g of acetonitrile were charged and freeze degassed.
  • the autoclave was heated in a hot water bath at 80 ° C. for 2 hours and then allowed to stand overnight in a ⁇ 60 ° C. freezer. Subsequently, after 15.0 g of trifluoroethylene was injected, stirring was started while the internal temperature was raised to 80 ° C. When stirring was performed at 400 rpm for 4 hours while maintaining the internal temperature, the internal pressure increased to 2.4 MPaG.
  • the obtained polymer solution was dried in a vacuum oven at 40 ° C. for 12 hours to obtain 0.68 g of a solid.
  • the obtained solid had a number average molecular weight Mn of 32,700 and Mw / Mn of 1.82.
  • Example 5 Into a stainless steel autoclave with a stirrer having an internal volume of 30 mL, 0.5 g of 2,2-azobis (isobutyronitrile), 0.2 g of ethyl-2-methyl-2-n-butylteranyl-propionate (International Publication No. Synthesizing according to Synthesis Example 10 described in 2004/014848), 7 g of vinyl acetate and 14 g of acetonitrile were charged and freeze degassed. After injecting 8 g of tetrafluoroethylene, stirring was started while the internal temperature was raised to 60 ° C. While maintaining the internal temperature, stirring was performed at 400 rpm for 4 hours. After the autoclave was cooled in an ice water bath, unreacted tetrafluoroethylene was purged. The obtained polymer solution was dried in a vacuum oven at 40 ° C. for 12 hours to obtain a solid.
  • Example 6 A stainless steel autoclave with an internal volume of 1 L was vacuum-depressurized, and 420 g of deionized water, 0.13 g of a polyvinyl alcohol partially saponified product (saponification degree of 80 mol%, average polymerization degree of 2600), 0.05 g of hydroxypropylmethylcellulose were added. Preparation and nitrogen substitution were performed 3 times. Next, 0.5 g of 2,2-azobis (isobutyronitrile) and 0.2 g of diphenylditelluride 0.2 g were dissolved and dispersed in 40 mL of ethanol, and 130 g of vinyl chloride monomer was injected. After that, stirring was started while the internal temperature was raised to 60 ° C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Graft Or Block Polymers (AREA)
  • Polymerization Catalysts (AREA)

Abstract

本発明は、ハロオレフィンをラジカル重合し、有用なハロオレフィン重合体又は共重合体を製造することを目的とする。本発明は、特定のテルル化合物の存在下、ハロオレフィンを重合するポリマーの製造方法に関する。

Description

ポリマーの製造方法
 本発明は、有機テルル化合物の存在下、ハロオレフィンをラジカル重合する、ポリマーの製造方法に関する。
 ラジカル重合反応は、モノマー汎用性に優れ、水など極性媒体中でも簡便に行うことができるため、工業的に広く用いられている。しかしながら、一般的なラジカル重合法による分子量の制御は限定的で、得られるポリマーの分子量分布は広くなりやすい。
 一方、リビングラジカル重合法は、分子量が制御された、分子量分布の狭いポリマーが得られる重合法として注目され、種々の重合制御剤が開発されている。
 また、リビングラジカル重合法では、得られたポリマーをマクロ重合開始剤又はマクロ連鎖移動剤として利用して異なるモノマーを共重合させることも可能となる。
 例えば、特許文献1及び2には、有機テルル系化合物を用いてビニルモノマーをリビングラジカル重合する方法が記載されている。
 また、特許文献3には、キサンテート化合物、トリチオカーボネート化合物又は一ヨウ化物化合物を用い、トリフルオロエチレンと他のモノマーとをリビングラジカル共重合する方法が記載されている。
国際公開第2004/014848号 日本国特開2012-236984号公報 日本国特表2015-514854号公報
 しかしながら、有機テルル化合物の存在下、ハロオレフィンをラジカル重合することで、高分子設計等に有用なハロオレフィン重合体が製造できることはこれまで知られていなかった。
 本発明は、上記従来の実情に鑑みてなされたものであって、ハロオレフィンをラジカル重合し、有用なハロオレフィン重合体又は共重合体を製造することを目的とする。
 本発明者らは、鋭意検討を重ねた結果、特定のテルル化合物の存在下で特定のハロオレフィンを重合することで上記課題を解決できることを見出し、本発明を完成するに至った。
 すなわち、本発明は下記<1>~<11>に関するものである。
<1>下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群から選ばれる少なくとも1種の化合物の存在下、下記式(3)で表される化合物を重合するか、下記式(3)で表される化合物と、反応性炭素-炭素二重結合を有し下記式(3)で表される化合物とは異なる化合物(6)とを共重合する、ポリマーの製造方法。
Figure JPOXMLDOC01-appb-C000004
(式中、Rは、炭素数1~8のアルキル基、炭素数1~8の置換アルキル基、炭素数3~12のアリール基又は炭素数3~16の置換アリール基を表す。R及びRは、それぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。Rは、水素原子、炭素数1~8のアルキル基、炭素数1~8の置換アルキル基、炭素数3~12のアリール基、炭素数3~16の置換アリール基、炭素数2~8のアシル基、炭素数2~8のアミド基、オキシカルボニル基又はシアノ基を表す。)
Figure JPOXMLDOC01-appb-C000005
(式中、Rは、炭素数1~8のアルキル基、炭素数1~8の置換アルキル基、炭素数3~12のアリール基又は炭素数3~16の置換アリール基を表す。)
Figure JPOXMLDOC01-appb-C000006
(式中、Xは、フッ素原子又は塩素原子を表す。X、X及びXは、それぞれ独立に、水素原子、フッ素原子、塩素原子又は-CXを表す。X、X及びXは、それぞれ独立に、水素原子、フッ素原子又は塩素原子を表す。)
<2>前記式(3)で表される化合物が、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、テトラフルオロプロピレン、塩化ビニリデン、塩化ビニル、1-クロロ-1-フルオロエチレン及び1,2-ジクロロ-1,2-ジフルオロエチレンからなる群から選ばれる1種以上である、前記<1>に記載のポリマーの製造方法。
<3>前記式(1)で表される化合物が、Rが炭素数1~4のアルキル基又はフェニル基、R及びRが、それぞれ独立に、水素原子又は炭素数1~4のアルキル基、Rが炭素数5~12のアリール基又はオキシカルボニル基で示される化合物である、前記<1>又は<2>に記載のポリマーの製造方法。
<4>前記式(2)で表される化合物が、Rが炭素数1~4のアルキル基又はフェニル基で示される化合物である、前記<1>~<3>のいずれか1つに記載のポリマーの製造方法。
<5>得られるポリマーの分子量分布が2.0以下である、前記<1>~<4>のいずれか1つに記載のポリマーの製造方法。
<6>アゾ系重合開始剤を併用する、前記<1>~<5>のいずれか1つに記載のポリマーの製造方法。
<7>前記式(1)で表される化合物と前記式(2)で表される化合物の合計1molに対して、前記アゾ系重合開始剤を0.01~100mol使用する、前記<6>に記載のポリマーの製造方法。
<8>前記式(3)で表される化合物と、前記化合物(6)とをブロック共重合する、前記<1>~<7>のいずれか1つに記載のポリマーの製造方法。
<9>前記化合物(6)がスチレンである、前記<8>に記載のポリマーの製造方法。
<10>前記式(3)で表される化合物と、前記化合物(6)とをランダム共重合する、前記<1>~<7>のいずれか1つに記載のポリマーの製造方法。
<11>前記化合物(6)がスチレン又は酢酸ビニルである、前記<10>に記載のポリマーの製造方法。
 本発明によれば、特定のテルル化合物の存在下で特定のハロオレフィンをラジカル重合する方法を提供することができる。
 ハロオレフィンを原料として用いることにより、得られるポリマーに難燃性、耐薬品性を付与することができる。また、一般にはハロオレフィンを原料として用いる場合は、分子量分布が狭くなりにくいとされているが、本発明によれば分子量分布の狭いポリマーが得やすい。
 以下、本発明を詳細に説明するが、本発明は以下の実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、任意に変形して実施することができる。
 なお、本明細書において、「式(n)で表される化合物」のことを、単に「化合物(n)」と称する場合がある。
 炭素数とは、ある基全体に含まれる炭素原子の総数を意味し、該基が置換基を有さない場合は当該基の骨格を形成する炭素原子の数を表し、該基が置換基を有する場合は当該基の骨格を形成する炭素原子の数に置換基中の炭素原子の数を加えた総数を表す。
 アリール基とは、芳香族化合物において芳香環を形成する炭素原子の内いずれか1つの炭素原子に結合した1つの水素原子を取り去った残基に相当する一価の基を意味し、炭素環化合物から誘導されるホモアリール基と、ヘテロ環化合物から誘導されるヘテロアリール基とを合わせた総称で用いる。
 反応性炭素-炭素二重結合とは、オレフィンとして各種反応しうる炭素-炭素二重結合を意味し、芳香族性の二重結合は含まない。
 本発明の第一実施形態は、特定の有機テルル化合物の存在下、上記式(3)で表される化合物をラジカル重合することにより、ポリマーを製造する方法に関する。
 また、本発明の第二実施形態は、特定の有機テルル化合物の存在下、上記式(3)で表される化合物と、反応性炭素-炭素二重結合を有し上記式(3)で表される化合物とは異なる化合物(以下、化合物(6)と称することがある。)とをラジカル重合することにより、ポリマーを製造する方法に関する。
[有機テルル化合物]
 本発明において、特定の有機テルル化合物としては、上記式(1)で表される有機テルル化合物、上記式(2)で表される有機ジテルル化合物、又はこれらの両方を用いることができる。
 なお、本明細書では、上記式(1)で表される有機テルル化合物、上記式(2)で表される有機ジテルル化合物、又はこれらの両方を、まとめて単に有機テルル化合物ということがある。
(化合物(1))
 化合物(1)において、R~Rは前記定義の通りである。
 Rで示される基は、具体的には次の通りである。
 炭素数1~8のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、シクロプロピル基、n-ブチル基、sec-ブチル基、tert-ブチル基、シクロブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基等の炭素数1~8の直鎖状、分岐鎖状又は環状のアルキル基を挙げることができる。
 これらの中でも、炭素数1~4の直鎖状又は分岐鎖状のアルキル基が好ましく、メチル基、エチル基又はn-ブチル基がより好ましい。
 炭素数1~8の置換アルキル基としては、任意の位置にフッ素原子、塩素原子、アルコキシ基、フルオロアルコキシ基等の置換基を有するアルキル基を挙げることができる。
 これらの中でも、フッ素原子を2~13個有するアルキル基が好ましく、(ペルフルオロアルキル)エチル基(炭素数3~8)が、ラジカルによる水素原子引き抜き反応の抑制の観点からより好ましい。
 炭素数3~12のアリール基としては、フェニル基、ナフチル基等のホモアリール基、ピリジル基、ピロール基、フリル基、チエニル基等のヘテロアリール基を挙げることができ、好ましくはホモアリール基であり、より好ましくはフェニル基である。
 炭素数3~16の置換アリール基としては、任意の位置にハロゲン原子、水酸基、アルコキシ基、アミノ基、ニトロ基、シアノ基、-CORで示されるカルボニル含有基[R=炭素数1~8のアルキル基(好ましくは、炭素数1~4の直鎖状又は分岐鎖状のアルキル基)、炭素数1~8のアルコキシ基(好ましくは、炭素数1~4の直鎖状又は分岐鎖状のアルコキシ基)、アリール基、又はアリーロキシ基]、スルホニル基、トリフルオロメチル基等の置換基を1~4個(好ましくは1~3個、より好ましくは1個、好ましくはパラ位又はオルト位)有するアリール基を挙げることができる。
 R及びRで示される各基は、具体的には次の通りである。
 炭素数1~8のアルキル基としては、上記Rで示した炭素数1~8のアルキル基と同様のものを挙げることができる。
 R及びRとしては、水素原子又は炭素数1~4のアルキル基が好ましい。
 Rで示される各基は、具体的には次の通りである。
 炭素数1~8のアルキル基、炭素数1~8の置換アルキル基、炭素数3~12のアリール基、炭素数3~16の置換アリール基としては、上記Rで示した基とそれぞれ同様のものを挙げることができる。
 炭素数2~8のアシル基としては、アセチル基、ベンゾイル基を挙げることができる。
 炭素数2~8のアミド基としては、カルバモイルメチル基、ジカルバモイルメチル基、4-カルバモイルフェニル基等のカルバモイル基含有基、チオカルバモイルメチル基、4-チオカルバモイルフェニル基等のチオカルバモイル基含有基、ジメチルカルバモイルメチル基等のN-置換カルバモイル基含有基を挙げることができる。
 オキシカルボニル基としては、-COOR[R=H、炭素数1~8のアルキル基(好ましくは、炭素数1~4の直鎖状又は分岐鎖状のアルキル基)、炭素数2~8のアルケニル基(好ましくは、炭素数2~4の直鎖状又は分岐鎖状のアルケニル基)、炭素数2~8のアルキニル基(好ましくは、炭素数2~4の直鎖状又は分岐鎖状のアルキニル基)又は炭素数3~12のアリール基]で示される基を挙げることができる。
 Rで示される炭素数1~8のアルキル基、炭素数2~8のアルケニル基、炭素数2~8のアルキニル基、炭素数3~12のアリール基は、任意の位置にハロゲン原子、水酸基、アルコキシ基、トリアルキルシリルエーテル基、トリアルキルシリル基、アミノ基、ニトロ基、シアノ基、スルホニル基、トリフルオロメチル基等の置換基を1~4個(好ましくは1~3個、より好ましくは1個)有していてもよい。
 オキシカルボニル基としては、カルボキシ基、メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、n-ブトキシカルボニル基、sec-ブトキシカルボニル基、tert-ブトキシカルボニル基、n-ペントキシカルボニル基、フェノキシカルボニル基を挙げることができ、好ましくは、メトキシカルボニル基又はエトキシカルボニル基である。
 これらの中でも、Rは、炭素数5~12のアリール基、オキシカルボニル基又はシアノ基が好ましい。
 好ましい化合物(1)としては、Rが炭素数1~4のアルキル基又はフェニル基、R及びRがそれぞれ独立に、水素原子又は炭素数1~4のアルキル基、Rが炭素数5~12のアリール基又はオキシカルボニル基で示される化合物である。
 特に好ましくは、Rが炭素数1~4のアルキル基又はフェニル基、R及びRがそれぞれ独立に水素原子又は炭素数1~4のアルキル基、Rがフェニル基、メトキシカルボニル基又はエトキシカルボニル基で示される化合物である。
 化合物(1)としては、具体的には、(メチルテラニルメチル)ベンゼン、(メチルテラニルメチル)ナフタレン、エチル-2-メチル-2-メチルテラニル-プロピオネート、エチル-2-メチル-2-n-ブチルテラニル-プロピオネート、(2-トリメチルシロキシエチル)-2-メチル-2-メチルテラニル-プロピネート、(2-ヒドロキシエチル)-2-メチル-2-メチルテラニル-プロピネート、(3-トリメチルシリルプロパルギル)-2-メチル-2-メチルテラニル-プロピネート等、国際公開第2004/014848号及び国際公開第2004/014962号に記載された化合物を挙げることができる。さらに、Polymer Preprints,Japan Vol.65,No.1(2016)の発表番号2D03に記載された、エチル-2-メチル-2-1H,1H,2H,2H-ヘプタデカフルオロデシルテラニル-プロピオネート、メチル-2-メチル-2-1H,1H,2H,2H-ヘプタデカフルオロデシルテラニル-プロピオネート、N,N-ジエチル-2-メチル-2-1H,1H,2H,2H-ヘプタデカフルオロデシルテラニル-プロピオンアミド等の化合物を挙げることができる。
 化合物(1)の製造方法は、特に限定されず、上記した国際公開第2004/014848号及び国際公開第2004/014962号に記載された公知の方法により製造することができる。
 例えば、化合物(1)は、下記一般式(4)で表される化合物、下記一般式(5)で表される化合物及び金属テルルを反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000007
 式中、R、R及びRは、上記式(1)に示した通りである。
 Xはハロゲン原子であり、好ましくは、塩素原子、臭素原子又はヨウ素原子である。
Figure JPOXMLDOC01-appb-C000008
 式中、Rは、上記式(1)に示した通りである。Mは、アルカリ金属、アルカリ土類金属又は銅原子を示す。Mがアルカリ金属のとき、mは1、Mがアルカリ土類金属のとき、mは2、Mが銅原子のとき、mは1又は2を示す。mが2の場合、複数存在するRは同一でも異なっていてもよい。
 Mで示されるものとしては、リチウム、ナトリウム、カリウム等のアルカリ金属、マグネシウム、カルシウム等のアルカリ土類金属、銅を挙げることができる。これらの中でも、好ましくは、リチウムである。
 なお、Mがマグネシウムのとき、一般式(5)の化合物として例えばMg(Rで表される化合物が挙げられるが、Mg(Rと同時に、又はMg(Rに代えてRMgX(Xは、ハロゲン原子)で表される化合物(グリニャール試薬)を用いることも可能である。Xは、好ましくは、塩素原子又は臭素原子である。
(化合物(2))
 化合物(2)においてRは、上記式(1)に示したRと同じである。
 好ましい化合物(2)としては、Rが炭素数1~4のアルキル基又はフェニル基で示される化合物である。
 化合物(2)としては、具体的には、ジメチルジテルリド、ジエチルジテルリド、ジ-n-プロピルジテルリド、ジイソプロピルジテルリド、ジシクロプロピルジテルリド、ジ-n-ブチルジテルリド、ジ-sec-ブチルジテルリド、ジ-tert-ブチルジテルリド、ジシクロブチルジテルリド、ジフェニルジテルリド、ビス-(p-メトキシフェニル)ジテルリド、ビス-(p-アミノフェニル)ジテルリド、ビス-(p-ニトロフェニル)ジテルリド、ビス-(p-シアノフェニル)ジテルリド、ビス-(p-スルホニルフェニル)ジテルリド、ジナフチルジテルリド、ジピリジルジテルリド等を挙げることができる。
 これらの中でも、好ましくは、ジメチルジテルリド、ジエチルジテルリド、ジ-n-プロピルジテルリド、ジ-n-ブチルジテルリド又はジフェニルジテルリドである。
 なお、化合物(1)は、日本国特開2004-323437号公報等に記載された公知の方法である、化合物(2)とアゾ系重合開始剤との反応により、製造することもできる。この反応はラジカル重合する前に予め行ってもよいし、モノマー存在下にラジカル重合と同時に行ってもよい。
[モノマー]
(化合物(3))
 本発明の第一実施形態及び第二実施形態では、ラジカル重合に供するモノマーとして、化合物(3)を使用する。化合物(3)においてX~Xは前記定義の通りである。
 Xとしては、フッ素原子が好ましい。
 X、X及びXとしては、水素原子又はフッ素原子が好ましい。
 また、X、X及びXのうち1つのみが-CXである場合、化合物(3)はプロピレン構造となる。X又はXが-CXであることが好ましく、Xが-CXであることが重合反応性の観点からより好ましい。
 好ましい化合物(3)としては、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、テトラフルオロプロピレン、塩化ビニリデン、塩化ビニル、1-クロロ-1-フルオロエチレン、1,2-ジクロロ-1,2-ジフルオロエチレン等が挙げられる。
 これらのうち化合物(3)としては、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、テトラフルオロプロピレン、1,2-ジクロロ-1,2-ジフルオロエチレンがより好ましい。
 化合物(3)は1種のみを用いても、2種以上を併用してもよい。化合物(3)を2種以上用いる場合には、混合して用いても(ランダム共重合等の場合)、順次用いても(ブロック共重合等の場合)よい。
(化合物(6))
 また、本発明の第二実施形態では、ラジカル重合に供するモノマーとして、化合物(3)とともに、反応性炭素-炭素二重結合を有する化合物(6)も使用する。なお化合物(6)とは、化合物(3)とは異なる化合物である。
 化合物(6)としては、ラジカル重合可能なものであれば特に制限はないが、例えば、エチレン、イソブチレン、ブタジエン、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル、(メタ)アクリル酸ブチル、(メタ)アクリル酸オクチル、(メタ)アクリル酸ラウリル等の(メタ)アクリル酸エステルモノマー、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸メチルシクロヘキシル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸シクロドデシル等のシクロアルキル基含有不飽和モノマー、(メタ)アクリル酸、マレイン酸、フマル酸、イタコン酸、シトラコン酸、クロトン酸、無水マレイン酸、無水イタコン酸等のカルボキシル基含有不飽和モノマー、N,N-ジメチルアミノプロピル(メタ)アクリルアミド、N,N-ジメチルアミノエチル(メタ)アクリルアミド、2-(ジメチルアミノ)エチル(メタ)アクリレート、N,N-ジメチルアミノプロピル(メタ)アクリレート等の3級アミン含有不飽和モノマー、N-2-ヒドロキシ-3-アクリロイルオキシプロピル-N,N,N-トリメチルアンモニウムクロライド、N-メタクリロイルアミノエチル-N,N,N-ジメチルベンジルアンモニウムクロライド等の4級アンモニウム塩基含有不飽和モノマー、(メタ)アクリル酸グリシジル等のエポキシ基含有不飽和モノマー、スチレン、α-メチルスチレン、4-メチルスチレン、2-メチルスチレン、3-メチルスチレン、4-メトキシスチレン、2-ヒドロキシメチルスチレン、2-クロロスチレン、4-クロロスチレン、2,4-ジクロロスチレン、1-ビニルナフタレン、ジビニルベンゼン、4-(クロロメチル)スチレン、2-(クロロメチル)スチレン、3-(クロロメチル)スチレン、4-スチレンスルホン酸又はそのアルカリ金属塩(ナトリウム塩、カリウム塩等)等のスチレン系モノマー、2-ビニルチオフェン、N-メチル-2-ビニルピロール等のヘテロ環含有不飽和モノマー、N-ビニルホルムアミド、N-ビニルアセトアミド等のビニルアミド、プロピレン、4-メチル-1-ペンテン、1-ヘキセン、1-オクテン、1-デセン等のα-オレフィン、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、シクロヘキシルビニルエーテル、2-ヒドロキシエチルビニルエーテル、4-ヒドロキシブチルビニルエーテル等のビニルエーテル、メチルイソプロペニルエーテル、酢酸ビニル、酢酸イソプロペニル、メタクリル酸ヒドロキシエチル、アクリロニトリル、アクリルアミド、N,N-ジメチルアクリルアミドを挙げることができる。
 なお、本明細書において、「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の総称である。「(メタ)アクリルアミド」とは、「アクリルアミド」及び「メタクリルアミド」の総称である。「(メタ)アクリレート」とは、「アクリレート」及び「メタクリレート」の総称である。
 これらの中でも、好ましくは、(メタ)アクリル酸エステルモノマー、3級アミン含有不飽和モノマー、スチレン系モノマー、酢酸ビニル、アクリルアミド又はN,N-ジメチルアクリルアミドである。
 好ましい(メタ)アクリル酸エステルモノマーとしては、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸プロピル又は(メタ)アクリル酸ブチルが挙げられる。特に好ましくは、(メタ)アクリル酸メチル又は(メタ)アクリル酸ブチルである。
 好ましい3級アミン含有不飽和モノマーとしては、N,N-ジメチルアミノエチル(メタ)アクリルアミド又は2-(ジメチルアミノ)エチル(メタ)アクリレートである。
 好ましいスチレン系モノマーとしては、スチレン、α-メチルスチレン、2-メチルスチレン、4-メチルスチレン、4-メトキシスチレン、4-クロロスチレン、4-(クロロメチル)スチレン、ジビニルベンゼン、4-スチレンスルホン酸又はそのアルカリ金属塩(ナトリウム塩、カリウム塩)である。
 これらの中でも、特に好ましくは、スチレン、4-メトキシスチレン、4-クロロスチレン又は4-(クロロメチル)スチレンである。
[ラジカル重合]
(化合物(3)のラジカル重合)
 本発明の第一実施形態では、有機テルル化合物の存在下、化合物(3)をラジカル重合する。
 上記ラジカル重合方法としては、具体的には次の通りである。
 不活性ガスで置換した容器又は真空減圧した容器で、化合物(3)、並びに化合物(1)及び化合物(2)からなる群から選ばれる少なくとも1種の化合物を混合する。
 不活性ガスとしては、窒素、アルゴン、ヘリウムを挙げることができる。これらの中でも、窒素又はアルゴンが好ましく、窒素がより好ましい。
 また、本発明では、重合速度の促進を目的にアゾ系重合開始剤を併用してもよい。アゾ系重合開始剤は、通常のラジカル重合で使用するアゾ系重合開始剤であれば特に制限なく使用することができる。
 アゾ系重合開始剤としては、例えば、2,2’-アゾビス(イソブチロニトリル)(AIBN)、2,2’-アゾビス(2-メチルブチロニトリル)(AMBN)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(ADVN)、1,1’-アゾビス(1-シクロヘキサンカルボニトリル)(ACHN)、ジメチル-2,2’-アゾビスイソブチレート(MAIB)、4,4’-アゾビス(4-シアノバレリアン酸)(ACVA)、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、2,2’-アゾビス(2-メチルブチルアミド)、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルアミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2-シアノ-2-プロピルアゾホルムアミド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)が挙げられる。
 これらのアゾ系開始剤は、反応条件に応じて適宜選択するのが好ましい。例えば、低温重合(40℃以下)の場合は、ADVN、2,2’-アゾビス(4-メトキシ-2,4-ジメチルバレロニトリル)、中温重合(40~80℃)の場合は、AIBN、AMBN、MAIB、1,1’-アゾビス(1-アセトキシ-1-フェニルエタン)、ACVA、2,2’-アゾビス(2-メチルブチルアミド)、2,2’-アゾビス(2-メチルアミジノプロパン)二塩酸塩、2,2’-アゾビス[2-(2-イミダゾリン-2-イル)プロパン]、高温重合(80℃以上)の場合は、ACHN、2-シアノ-2-プロピルアゾホルムアミド、2,2’-アゾビス(N-ブチル-2-メチルプロピオンアミド)、2,2’-アゾビス(N-シクロヘキシル-2-メチルプロピオンアミド)、2,2’-アゾビス(2,4,4-トリメチルペンタン)、2,2’-アゾビス[2-メチル-N-(2-ヒドロキシエチル)プロピオンアミド]を用いるのが好ましい。
 化合物(1)又は化合物(2)の使用量としては、通常、化合物(3)1molに対し化合物(1)又は化合物(2)(化合物(1)と化合物(2)とを併用するときはこれらの合計量)を0.0001~0.01mol、好ましくは、0.001~0.01mol使用する。
 化合物(1)又は化合物(2)とアゾ系重合開始剤の使用割合としては、通常、化合物(1)又は化合物(2)(化合物(1)と化合物(2)とを併用するときはこれらの合計量)1molに対して、アゾ系重合開始剤を0.01~100mol、好ましくは、0.1~10mol、特に好ましくは、0.1~5molである。
 化合物(1)と化合物(2)を併用する場合、その使用量としては、通常、化合物(1)1molに対して、化合物(2)を0.01~100mol、好ましくは、0.05~10mol、特に好ましくは、0.1~5mol使用する。
 上記ラジカル重合は、無溶媒でも行うことができるが、ラジカル重合で一般に使用される有機溶媒又は水性溶媒を使用して行うことができる。
 有機溶媒としては、例えば、ベンゼン、トルエン、ピリジン、N,N-ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、アセトン、アセトニトリル、2-ブタノン(メチルエチルケトン)、ジオキサン、ヘキサフルオロイソプロパオール、クロロホルム、四塩化炭素、テトラヒドロフラン(THF)、酢酸メチル、酢酸エチル、炭酸ジメチル、炭酸エチレン、炭酸プロピレン、トリフルオロメチルベンゼン、1H-トリデカフルオロヘキサン、1H,1H,1H,2H,2H-トリデカフルオロオクタン、1,1,2,2-テトラフルオロエチル-2,2,2-トリフルオロエチルエーテルや、N-メチル-N-メトキシメチルピロリジウムテトラフルオロボレート、N-メチル-N-エトキシメチルテトラフルオロボレート1-メチル3-メチルイミダゾリウムテトラフルオロボレート、1-メチル3-メチルイミダゾリウムヘキサフルオロフォスフェート、1-メチル3-メチルイミダゾリウムクロライド等のイオン液体が挙げられる。
 また、水性溶媒としては、例えば、水、メタノール、エタノール、イソプロパノール、n-ブタノール、エチルセロソルブ、ブチルセロソルブ、1-メトキシ-2-プロパノール、ジアセトンアルコールが挙げられる。
 溶媒の使用量としては、適宜調節すればよいが、例えば、得られるポリマー1000gに対して、溶媒を0.01~50L、好ましくは、0.05~10L、特に好ましくは、0.1~5L使用することができる。
 次に、上記得られた混合物を撹拌する。反応温度、反応時間は、得られるポリマーの分子量又は分子量分布により適宜調節すればよいが、通常、60~150℃で、5~100時間撹拌する。好ましくは、80~120℃で、10~30時間撹拌する。このとき、通常は常圧で行われるが、加圧又は減圧してもよい。
 反応終了後、常法により使用溶媒や残存モノマーを減圧下除去して目的ポリマーを取り出したり、目的ポリマー不溶溶媒を使用して再沈澱処理したりすることにより目的物を単離する。反応処理については、目的物に支障がなければどのような処理方法でも行うことができる。
 本発明の製造方法は、優れた分子量制御及び分子量分布制御を非常に温和な条件下で行うことができる。
 本発明の第一実施形態で得られるポリマーの分子量は、反応時間及び有機テルル化合物の量により調整可能であるが、例えば、数平均分子量500~1,000,000のポリマーを得ることができる。特に、数平均分子量1,000~50,000のポリマーを得るのに好適である。
 本発明の第一実施形態で得られるポリマーの分子量分布{PD=Mw(重量平均分子量)/Mn(数平均分子量)}は、例えば、2.0以下で制御される。さらには、分子量分布1.5以下、さらには1.4以下といったより狭い分子量分布を有するポリマーを得ることができる。分子量分布の下限値は、その定義から1.0である。
 なお、本明細書におけるポリマーの数平均分子量及び重量平均分子量は、SEC(Size Exclusion Chromatography;サイズ排除クロマトグラフィー)測定により求めたものであり、分子量換算用の標準物質としてポリスチレンを用いた。
 本発明の第一実施形態で得られるポリマーの末端基は、有機テルル化合物由来の、反応性の高いテルルを含む官能基であることが確認されている。
 従って、有機テルル化合物をラジカル重合に用いることにより従来のラジカル重合で得られるポリマーよりも末端基を他の官能基へ変換することが容易である。これらにより、本発明で得られるポリマーは、マクロラジカル重合開始剤(マクロイニシエーター)又はマクロラジカル連鎖移動剤として用いることができる。
(化合物(3)と化合物(6)のラジカル共重合)
 本発明の第二実施形態では、有機テルル化合物の存在下、化合物(3)と化合物(6)をラジカル共重合する。
a.ブロック共重合
 本発明の第二実施形態では、有機テルル化合物を用いて、例えば、トリフルオロエチレン-アクリル酸ブチル等のA-Bジブロック共重合体や、トリフルオロエチレン-アクリル酸ブチル-トリフルオロエチレン等のA-B-Aトリブロック共重合体を得ることができる。
 これは、有機テルル化合物で、種々の異なったタイプのモノマーをコントロールできること、また、化合物(1)、化合物(2)、又はこれらの混合物により得られるポリマーの末端に反応性の高いテルルを含む官能基が存在していることによるものである。
 ブロック共重合体を得るには、化合物(6)としては、スチレンが好ましい。
 ブロック共重合体の製造方法としては、具体的には次の通りである。
 A-Bジブロック共重合体の場合、例えば、トリフルオロエチレン-スチレン共重合体の場合は、上記のラジカルポリマーの製造方法と同様に、まず、トリフルオロエチレンと化合物(1)及び化合物(2)からなる群から選ばれる少なくとも1種の化合物を混合し、ポリトリフルオロエチレンを製造後、続いてスチレンを混合して、トリフルオロエチレン-スチレン共重合体を得る方法が挙げられる。
 A-B-Aトリブロック共重合体の場合も、上記の方法でA-Bジブロック共重合体を製造した後、モノマー(A)を混合し、A-B-Aトリブロック共重合体を得る方法が挙げられる。
 その他の重合に係る条件としては、上記した第一実施形態と同様である。
 上記で、各ブロックを製造後、そのまま次のブロックの反応を開始してもよいし、一度反応を終了後、精製してから次のブロックの反応を開始してもよい。ブロック共重合体の単離は通常の方法により行うことができる。
 本発明の第二実施形態(ブロック共重合)で得られるポリマーの分子量は、反応時間及び有機テルル化合物の量により調整可能であるが、例えば、数平均分子量1,000~2,000,000のポリマーを得ることができる。特に、数平均分子量2,000~100,000のポリマーを得るのに好適である。
 本発明の第二実施形態(ブロック共重合)で得られるポリマーの分子量分布{PD=Mw(重量平均分子量)/Mn(数平均分子量)}は、例えば、2.0以下で制御される。さらには、分子量分布1.5以下、さらには1.4以下といったより狭い分子量分布を有するポリマーを得ることができる。分子量分布の下限値は、その定義から1.0である。
b.ランダム共重合
 また、本発明の第二実施形態では、有機テルル化合物を用いて、化合物(3)と化合物(6)を同時に反応させるとランダム共重合体又は交互共重合体を得ることができる。交互共重合体は、共重合モノマー同士の二重結合部位の電子密度の差が大きい場合に生じることが知られている。
 ランダム共重合体を得るには、化合物(6)としては、スチレン又は酢酸ビニルが好ましい。
 ランダム共重合体の場合も、その他の重合に係る条件としては、上記した第一実施形態と同様である。
 本発明の第二実施形態(ランダム共重合)で得られるポリマーの分子量は、反応時間及び有機テルル化合物の量により調整可能であるが、例えば、数平均分子量500~1,000,000のポリマーを得ることができる。特に、数平均分子量1,000~50,000のポリマーを得るのに好適である。
 本発明の第二実施形態(ランダム共重合)で得られるポリマーの分子量分布{PD=Mw(重量平均分子量)/Mn(数平均分子量)}は、例えば、2.0以下で制御される。さらには、分子量分布1.5以下、さらには1.4以下といったより狭い分子量分布を有するポリマーを得ることができる。分子量分布の下限値は、その定義から1.0である。
 以下に実施例を挙げ、本発明を具体的に説明するが、本発明は何らこれらに限定されるものではない。
(実施例1)
 内容積が30mLの撹拌機付きステンレス製オートクレーブに、0.423g(1.84mmol)のアゾ重合開始剤「V-601」(和光純薬工業社製)、0.221g(0.540mmol)のジフェニルジテルリド、及び14.3gのアセトニトリルを仕込み、凍結脱気した。
 15.0gのトリフルオロエチレンを圧入したのち、内温を80℃まで昇温させながら撹拌を開始した。内温を保持したまま400rpmで撹拌を4時間行ったところ、内圧は2.38MPaGから2.31MPaGまで減少した。
 オートクレーブを氷水浴で冷却した後、未反応のトリフルオロエチレンをパージした。
 得られた重合体溶液をフッ素系溶剤「アサヒクリン AC-2000」(旭硝子社製)に投入し、析出した重合体を遠心分離器により沈殿させて上澄み液と分離し、重合体を40℃の真空オーブンで12時間乾燥させ、1.84gの含フッ素重合体を得た。
 含フッ素重合体の数平均分子量Mnは3,350であり、Mw/Mnは1.33であった。分子量分布(Mw/Mn)が1.5以下であり、このラジカル重合はリビングラジカル重合の特徴を示す。
 また、H-NMR測定の結果、用いたフェニルテルル基の81.5%が含フッ素重合体中に含まれていた。
(実施例2)
 アゾ重合開始剤「V-601」(和光純薬工業社製)を0.154g(0.669mmol)、ジフェニルジテルリドを0.0818g(0.200mmol)、アセトニトリルを14.76g用いた以外、実施例1と同様に行ったところ、内圧は2.25MPaGから1.91MPaGまで減少した。
 得られた重合体溶液を真空乾燥させたところ、4.06gの固体を得た。固体をアセトニトリルへ溶解させ、フッ素系溶剤「アサヒクリン AC-2000」(旭硝子社製)に投入し、重合体を析出させた。ポリテトラフルオロエチレンフィルター(0.5μm孔)で重合体を濾別し、40℃の真空オーブンで12時間乾燥させた。
 含フッ素重合体の数平均分子量Mnは11,400であり、Mw/Mnは1.40であった。
 また、H-NMR測定の結果、用いたフェニルテルル基の72.8%が含フッ素重合体中に含まれていた。
(実施例3)
 脱気用管とバルブが付いた内容積が30mLのガラス製反応器に、1.72gの実施例2で得られた含フッ素重合体、0.0168g(0.0730mmol)のアゾ重合開始剤「V-601」(和光純薬工業社製)、5.23gのピリジン、2.73gのスチレン及び撹拌子を仕込み、凍結脱気を2回繰り返した。
 水浴の温度を70℃まで昇温させながら撹拌を開始した。温度を保持したまま400rpmで撹拌を4時間行った。反応器を冷却した後、内容物を40℃の真空オーブンで12時間乾燥させ、2.32gの固体を得た。
 得られた固体の数平均分子量Mnは38,300であり、Mw/Mnは1.24であった。
(実施例4)
 内容積が30mLの撹拌機付きステンレス製オートクレーブに、0.532g(2.31mmol)のアゾ重合開始剤「V-601」(和光純薬工業社製)、0.208g(0.508mmol)のジフェニルジテルリド、及び14.3gのアセトニトリルを仕込み、凍結脱気した。オートクレーブを80℃の湯浴で2時間加熱した後、-60℃の冷凍庫で一晩静置した。
 つづいて、15.0gのトリフルオロエチレンを圧入したのち、内温を80℃まで昇温させながら撹拌を開始した。内温を保持したまま400rpmで撹拌を4時間行ったところ、内圧は2.4MPaGまで上昇した。
 オートクレーブを氷水浴で冷却した後、未反応のトリフルオロエチレンをパージした。得られた重合体溶液を40℃の真空オーブンで12時間乾燥させ、0.68gの固体を得た。
 得られた固体の数平均分子量Mnは32,700であり、Mw/Mnは1.82であった。
(実施例5)
 内容積が30mLの撹拌機付きステンレス製オートクレーブに、0.5gの2,2-アゾビス(イソブチロニトリル)、0.2gのエチル-2-メチル-2-n-ブチルテラニル-プロピオネート(国際公開第2004/014848号に記載の合成例10に従い合成)、7gの酢酸ビニル、14gのアセトニトリルを仕込み、凍結脱気した。8gのテトラフルオロエチレンを圧入したのち、内温を60℃まで昇温させながら攪拌を開始した。内温を保持したまま400rpmで攪拌を4時間行った。
 オートクレーブを氷水浴で冷却した後、未反応のテトラフルオロエチレンをパージした。得られた重合体溶液を40℃の真空オーブンで12時間乾燥させ、固体を得た。
(実施例6)
 内容積が1Lのステンレス製オートクレーブを真空減圧し、420gの脱イオン水、0.13gのポリビニルアルコール部分ケン化物(ケン化度80モル%で平均重合度2600)、0.05gのヒドロキシプロピルメチルセルロースを仕込み、窒素置換を3回行った。つづいて、0.5gの2,2-アゾビス(イソブチロニトリル)、0.2gのジフェニルジテルリド0.2gをエタノール40mLに溶解・分散させて仕込み、さらに、130gの塩化ビニルモノマーを圧入したのち、内温を60℃まで昇温させながら攪拌を開始した。内温を保持したまま攪拌を5時間行った。
 オートクレーブを氷水浴で冷却した後、未反応の塩化ビニルをパージし、懸濁重合スラリーのろ過を行った後、2Lの脱イオン水で洗浄した。その後、35℃で3時間減圧乾燥を行い、さらに65℃で3時間減圧乾燥することにより塩化ビニル重合体を得た。
 本発明を詳細に、また特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。本出願は2017年3月9日出願の日本特許出願(特願2017-045408)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (11)

  1.  下記式(1)で表される化合物及び下記式(2)で表される化合物からなる群から選ばれる少なくとも1種の化合物の存在下、
     下記式(3)で表される化合物を重合するか、
     下記式(3)で表される化合物と、反応性炭素-炭素二重結合を有し下記式(3)で表される化合物とは異なる化合物(6)とを共重合する、ポリマーの製造方法。
    Figure JPOXMLDOC01-appb-C000001

    (式中、Rは、炭素数1~8のアルキル基、炭素数1~8の置換アルキル基、炭素数3~12のアリール基又は炭素数3~16の置換アリール基を表す。R及びRは、それぞれ独立に、水素原子又は炭素数1~8のアルキル基を表す。Rは、水素原子、炭素数1~8のアルキル基、炭素数1~8の置換アルキル基、炭素数3~12のアリール基、炭素数3~16の置換アリール基、炭素数2~8のアシル基、炭素数2~8のアミド基、オキシカルボニル基又はシアノ基を表す。)
    Figure JPOXMLDOC01-appb-C000002

    (式中、Rは、炭素数1~8のアルキル基、炭素数1~8の置換アルキル基、炭素数3~12のアリール基又は炭素数3~16の置換アリール基を表す。)
    Figure JPOXMLDOC01-appb-C000003

    (式中、Xは、フッ素原子又は塩素原子を表す。X、X及びXは、それぞれ独立に、水素原子、フッ素原子、塩素原子又は-CXを表す。X、X及びXは、それぞれ独立に、水素原子、フッ素原子又は塩素原子を表す。)
  2.  前記式(3)で表される化合物が、フッ化ビニル、フッ化ビニリデン、トリフルオロエチレン、クロロトリフルオロエチレン、テトラフルオロエチレン、ヘキサフルオロプロピレン、テトラフルオロプロピレン、塩化ビニリデン、塩化ビニル、1-クロロ-1-フルオロエチレン及び1,2-ジクロロ-1,2-ジフルオロエチレンからなる群から選ばれる1種以上である、請求項1に記載のポリマーの製造方法。
  3.  前記式(1)で表される化合物が、Rが炭素数1~4のアルキル基又はフェニル基、R及びRが、それぞれ独立に、水素原子又は炭素数1~4のアルキル基、Rが炭素数5~12のアリール基又はオキシカルボニル基で示される化合物である、請求項1又は2に記載のポリマーの製造方法。
  4.  前記式(2)で表される化合物が、Rが炭素数1~4のアルキル基又はフェニル基で示される化合物である、請求項1~3のいずれか1項に記載のポリマーの製造方法。
  5.  得られるポリマーの分子量分布が2.0以下である、請求項1~4のいずれか1項に記載のポリマーの製造方法。
  6.  アゾ系重合開始剤を併用する、請求項1~5のいずれか1項に記載のポリマーの製造方法。
  7.  前記式(1)で表される化合物と前記式(2)で表される化合物の合計1molに対して、前記アゾ系重合開始剤を0.01~100mol使用する、請求項6に記載のポリマーの製造方法。
  8.  前記式(3)で表される化合物と、前記化合物(6)とをブロック共重合する、請求項1~7のいずれか1項に記載のポリマーの製造方法。
  9.  前記化合物(6)がスチレンである、請求項8に記載のポリマーの製造方法。
  10.  前記式(3)で表される化合物と、前記化合物(6)とをランダム共重合する、請求項1~7のいずれか1項に記載のポリマーの製造方法。
  11.  前記化合物(6)がスチレン又は酢酸ビニルである、請求項10に記載のポリマーの製造方法。
PCT/JP2018/008642 2017-03-09 2018-03-06 ポリマーの製造方法 WO2018164147A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18763720.2A EP3594250A4 (en) 2017-03-09 2018-03-06 POLYMER PRODUCTION PROCESS
CN201880016381.9A CN110418806B (zh) 2017-03-09 2018-03-06 聚合物的制造方法
JP2019504617A JP6733807B2 (ja) 2017-03-09 2018-03-06 ポリマーの製造方法
US16/564,610 US10961332B2 (en) 2017-03-09 2019-09-09 Method for producing polymer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017045408 2017-03-09
JP2017-045408 2017-03-09

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/564,610 Continuation US10961332B2 (en) 2017-03-09 2019-09-09 Method for producing polymer

Publications (1)

Publication Number Publication Date
WO2018164147A1 true WO2018164147A1 (ja) 2018-09-13

Family

ID=63448806

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/008642 WO2018164147A1 (ja) 2017-03-09 2018-03-06 ポリマーの製造方法

Country Status (5)

Country Link
US (1) US10961332B2 (ja)
EP (1) EP3594250A4 (ja)
JP (1) JP6733807B2 (ja)
CN (1) CN110418806B (ja)
WO (1) WO2018164147A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226178A1 (ja) 2019-05-08 2020-11-12 ダイキン工業株式会社 フルオロポリマーの製造方法及びフルオロポリマー
WO2021161852A1 (ja) 2020-02-14 2021-08-19 Agc株式会社 フッ素含有重合体及びその製造方法
WO2022054547A1 (ja) 2020-09-09 2022-03-17 Agc株式会社 ヨウ素含有化合物の製造方法及びヨウ素含有化合物
WO2022130919A1 (ja) 2020-12-14 2022-06-23 Agc株式会社 テルル含有化合物、重合体、及び重合体の製造方法
WO2022149531A1 (ja) * 2021-01-08 2022-07-14 Agc株式会社 含フッ素共重合体の製造方法及び含フッ素共重合体

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014962A1 (ja) 2002-08-08 2004-02-19 Otsuka Chemical Co., Ltd. リビングラジカルポリマーの製造方法及びポリマー
WO2004014848A1 (ja) 2002-08-06 2004-02-19 Otsuka Chemical Co., Ltd. 有機テルル化合物、その製造方法、リビングラジカル重合開始剤、それを用いるポリマーの製造方法及びポリマー
WO2004072126A1 (ja) * 2003-02-17 2004-08-26 Otsuka Chemical Co., Ltd. リビングラジカルポリマーの製造方法及びポリマー
WO2004096870A1 (ja) * 2003-04-25 2004-11-11 Otsuka Chemical Co., Ltd. リビングラジカルポリマーの製造方法及びポリマー
JP2004323693A (ja) * 2003-04-25 2004-11-18 Otsuka Chemical Co Ltd リビングラジカルポリマーの製造方法及びポリマー
JP2004323437A (ja) 2003-04-25 2004-11-18 Otsuka Chemical Co Ltd 有機テルル化合物の製造方法
JP2006225524A (ja) * 2005-02-17 2006-08-31 Kobe Univ 有機テルル化合物を用いた水性液の製造方法
JP2007277533A (ja) * 2006-03-11 2007-10-25 Otsuka Chemical Co Ltd リビングラジカルポリマーの製造方法およびポリマー
JP2007302737A (ja) * 2006-05-09 2007-11-22 Otsuka Chemical Co Ltd リビングラジカルポリマーの製造方法
JP2010209283A (ja) * 2009-03-12 2010-09-24 Otsuka Chem Co Ltd リビングラジカル重合開始剤及びそれを用いるポリマーの製造方法
JP2012236984A (ja) 2011-04-28 2012-12-06 Kyoto Univ ポリマーの製造方法及び該方法により製造されたポリマー
JP2015514854A (ja) 2012-04-26 2015-05-21 アルケマ フランス トリフルオロエチレンの制御フリーラジカル共重合
JP2017045408A (ja) 2015-08-28 2017-03-02 一般社団法人国際総合ビューティスト協会 専門技能職向け復職支援システム

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9879153B2 (en) * 2013-03-04 2018-01-30 Liang Wang Anti-icing composite
CN105745230B (zh) * 2013-11-27 2019-08-13 日本瑞翁株式会社 自由基聚合引发剂及聚合物的制造方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004014848A1 (ja) 2002-08-06 2004-02-19 Otsuka Chemical Co., Ltd. 有機テルル化合物、その製造方法、リビングラジカル重合開始剤、それを用いるポリマーの製造方法及びポリマー
WO2004014962A1 (ja) 2002-08-08 2004-02-19 Otsuka Chemical Co., Ltd. リビングラジカルポリマーの製造方法及びポリマー
WO2004072126A1 (ja) * 2003-02-17 2004-08-26 Otsuka Chemical Co., Ltd. リビングラジカルポリマーの製造方法及びポリマー
WO2004096870A1 (ja) * 2003-04-25 2004-11-11 Otsuka Chemical Co., Ltd. リビングラジカルポリマーの製造方法及びポリマー
JP2004323693A (ja) * 2003-04-25 2004-11-18 Otsuka Chemical Co Ltd リビングラジカルポリマーの製造方法及びポリマー
JP2004323437A (ja) 2003-04-25 2004-11-18 Otsuka Chemical Co Ltd 有機テルル化合物の製造方法
JP2006225524A (ja) * 2005-02-17 2006-08-31 Kobe Univ 有機テルル化合物を用いた水性液の製造方法
JP2007277533A (ja) * 2006-03-11 2007-10-25 Otsuka Chemical Co Ltd リビングラジカルポリマーの製造方法およびポリマー
JP2007302737A (ja) * 2006-05-09 2007-11-22 Otsuka Chemical Co Ltd リビングラジカルポリマーの製造方法
JP2010209283A (ja) * 2009-03-12 2010-09-24 Otsuka Chem Co Ltd リビングラジカル重合開始剤及びそれを用いるポリマーの製造方法
JP2012236984A (ja) 2011-04-28 2012-12-06 Kyoto Univ ポリマーの製造方法及び該方法により製造されたポリマー
JP2015514854A (ja) 2012-04-26 2015-05-21 アルケマ フランス トリフルオロエチレンの制御フリーラジカル共重合
JP2017045408A (ja) 2015-08-28 2017-03-02 一般社団法人国際総合ビューティスト協会 専門技能職向け復職支援システム

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
POLYMER PREPRINTS, vol. 65, no. 1, 2016
See also references of EP3594250A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020226178A1 (ja) 2019-05-08 2020-11-12 ダイキン工業株式会社 フルオロポリマーの製造方法及びフルオロポリマー
WO2021161852A1 (ja) 2020-02-14 2021-08-19 Agc株式会社 フッ素含有重合体及びその製造方法
WO2022054547A1 (ja) 2020-09-09 2022-03-17 Agc株式会社 ヨウ素含有化合物の製造方法及びヨウ素含有化合物
WO2022130919A1 (ja) 2020-12-14 2022-06-23 Agc株式会社 テルル含有化合物、重合体、及び重合体の製造方法
KR20230118574A (ko) 2020-12-14 2023-08-11 에이지씨 가부시키가이샤 텔루르 함유 화합물, 중합체, 및 중합체의 제조 방법
WO2022149531A1 (ja) * 2021-01-08 2022-07-14 Agc株式会社 含フッ素共重合体の製造方法及び含フッ素共重合体

Also Published As

Publication number Publication date
JPWO2018164147A1 (ja) 2019-11-07
CN110418806B (zh) 2022-02-22
US20190389983A1 (en) 2019-12-26
JP6733807B2 (ja) 2020-08-05
EP3594250A4 (en) 2021-01-13
EP3594250A1 (en) 2020-01-15
CN110418806A (zh) 2019-11-05
US10961332B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP6733807B2 (ja) ポリマーの製造方法
JP4539843B2 (ja) 有機テルル化合物を用いた水性液の製造方法
JP5193480B2 (ja) リビングラジカルポリマーの製造方法およびポリマー
JP3845109B2 (ja) リビングラジカルポリマーの製造方法及びポリマー
JP4107996B2 (ja) リビングラジカルポリマーの製造方法及びポリマー
JP3845108B2 (ja) リビングラジカルポリマーの製造方法及びポリマー
JP6754124B2 (ja) 多分岐ポリマーの製造方法及び多分岐ポリマー
JP5380709B2 (ja) リビングラジカル重合反応助触媒
TWI733668B (zh) 烯基醚-乙烯酯共聚物
JP5176120B2 (ja) リビングラジカル重合開始剤及びそれを用いるポリマーの製造方法
JP5083556B2 (ja) リビングラジカル重合開始剤及び重合体の製造方法
JP2007302737A (ja) リビングラジカルポリマーの製造方法
JP5261717B2 (ja) ブロック共重合体およびその製造方法
JP5963516B2 (ja) ポリマーの製造方法及び該方法により製造されたポリマー
JP5734726B2 (ja) (メタ)アクリル系樹脂組成物及び光学部品
CA2320990A1 (en) Method for the production of polymers from n-vinyl compounds
TW201708186A (zh) 烯基醚系聚合物之製造方法
WO2022130919A1 (ja) テルル含有化合物、重合体、及び重合体の製造方法
US20190092890A1 (en) Method for producing copolymer, and method for producing latex
US11713294B2 (en) Method for producing organic tellurium compound and method for producing vinyl polymer
WO2021049455A1 (ja) 含フッ素化合物の製造方法及び共重合体の製造方法
Lu Synthesis and Properties Study of a Doubly-Crosslinked Material Based on a Hyperbranched Polyacrylate with Hydrocarbon-Fluorocarbon Ester Substituents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18763720

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019504617

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018763720

Country of ref document: EP

Effective date: 20191009