WO2018146774A1 - モータ制御装置およびフィーダ - Google Patents

モータ制御装置およびフィーダ Download PDF

Info

Publication number
WO2018146774A1
WO2018146774A1 PCT/JP2017/004753 JP2017004753W WO2018146774A1 WO 2018146774 A1 WO2018146774 A1 WO 2018146774A1 JP 2017004753 W JP2017004753 W JP 2017004753W WO 2018146774 A1 WO2018146774 A1 WO 2018146774A1
Authority
WO
WIPO (PCT)
Prior art keywords
excitation
time
post
stepping motor
feeder
Prior art date
Application number
PCT/JP2017/004753
Other languages
English (en)
French (fr)
Inventor
みきね 伊藤
勉 国広
Original Assignee
株式会社Fuji
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Fuji filed Critical 株式会社Fuji
Priority to EP17895988.8A priority Critical patent/EP3582390A4/en
Priority to PCT/JP2017/004753 priority patent/WO2018146774A1/ja
Priority to US16/479,268 priority patent/US11258385B2/en
Priority to JP2018566709A priority patent/JP6946357B2/ja
Priority to CN201780084927.XA priority patent/CN110313124B/zh
Publication of WO2018146774A1 publication Critical patent/WO2018146774A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P8/00Arrangements for controlling dynamo-electric motors of the kind having motors rotating step by step
    • H02P8/12Control or stabilisation of current
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K13/00Apparatus or processes specially adapted for manufacturing or adjusting assemblages of electric components
    • H05K13/02Feeding of components

Definitions

  • This specification discloses a motor control device and a feeder.
  • a feeder that supplies components to a component mounting machine while feeding a tape containing the components by a predetermined amount by driving a stepping motor (pulse motor) (see, for example, Patent Document 1).
  • the stepping motor is driven so as to send the component to the supply position.
  • the component mounting machine determines that the component supply operation by the feeder is completed when a predetermined supply time has elapsed from the transmission timing of the component request signal, and sucks and mounts the component with a suction nozzle or the like.
  • the tact time can be shortened by eliminating the influence of communication delay as compared with the case where the feeder transmits a component supply completion signal to the component mounter.
  • the main purpose of the motor control device and feeder of the present disclosure is to improve the throughput while driving the stepping motor appropriately.
  • the motor control device and feeder of the present disclosure have taken the following measures in order to achieve the above-described main purpose.
  • the motor control device includes pre-excitation for exciting for a first time with a lower current than when the stepping motor is started or at the start of driving, and driving or stopping the stepping motor. After the stop, the post-excitation that is excited for a second time with a current lower than that during driving is possible, and the drive control of the stepping motor is possible, the post-excitation in the previous drive stop of the stepping motor, When the pre-excitation at the start of the next drive of the stepping motor is performed without going through a non-excitation state, the post-excitation and the above-described steps are performed over a time shorter than the sum of the first time and the second time. The gist is to make the pre-excitation continuous.
  • the first time and the second time Post-excitation and pre-excitation are continued for a time shorter than the sum.
  • the time from the rotation stop in the previous drive to the start of rotation in the next drive can be shortened while performing post-excitation and pre-excitation to suppress the stepping motor step-out. For this reason, it is possible to improve throughput while appropriately operating the stepping motor.
  • the gist of the feeder of the present disclosure includes the above-described motor control device and a feeder mechanism that includes a stepping motor that is driven and controlled by the motor control device, and that feeds components by driving the stepping motor.
  • the feeder of the present disclosure includes the motor control device described above, the time from the rotation stop in the previous drive to the start of rotation in the next drive is performed while performing post-excitation and pre-excitation to suppress the stepping motor step-out. It can be shortened. For this reason, it is possible to improve the throughput by shortening the tact time when continuously feeding and supplying a plurality of parts.
  • FIG. 1 is a configuration diagram of a component mounter 10.
  • FIG. An explanatory view showing an electrical connection relation of component mounting machine.
  • the flowchart which shows an example of a feeder drive process.
  • Explanatory drawing which shows the excitation time of the comparative example when feeding operation continues.
  • Explanatory drawing which shows the excitation time of embodiment in case a feed operation continues.
  • FIG. 1 is a configuration diagram of the component mounter 10.
  • FIG. 2 is a configuration diagram of the feeder 20.
  • FIG. 3 is an explanatory diagram showing an electrical connection relationship of the component mounter 10. 1 is the X-axis direction, the front-rear direction is the Y-axis direction, and the vertical direction is the Z-axis direction.
  • the component mounting machine 10 includes a base 11, a main body frame 12 supported on the base 11, and a support base 14 provided on the main body frame 12.
  • the component mounting machine 10 includes a board transfer device 16, a feeder 20, a head 50, an XY robot 40, and a mounting machine controller 70 (see FIG. 3).
  • the component mounter 10 also images a mark camera 60 for imaging a reference mark provided on the substrate S provided on the head 50 and an adsorption posture of the component adsorbed by the adsorption nozzle 51.
  • the part camera 62 is also provided.
  • the substrate transfer device 16 is a dual lane transfer device provided with two substrate transfer paths as shown in FIG.
  • the substrate transport device 16 includes a belt conveyor device, and transports the substrate S from left to right (substrate transport direction) in FIG. 1 by driving the belt conveyor device.
  • the substrate transfer device 16 may be a single lane transfer device.
  • the head 50 sucks components with each of the plurality of suction nozzles 51 and mounts them on the substrate S transported by the substrate transport device 16.
  • the head 50 includes an R-axis actuator that rotates and moves a plurality of suction nozzles 51, a ⁇ -axis actuator that rotates (spins) each suction nozzle 51, and a Z-axis actuator that raises and lowers the suction nozzle 51 at a predetermined position. And an electromagnetic valve for switching the suction / non-adsorption of each suction nozzle 51.
  • the XY robot 40 moves the head 50 in the XY direction.
  • the XY robot 40 includes a Y-axis slider 44 and an X-axis slider 42.
  • the Y-axis slider 44 is movable along a pair of left and right Y-axis guide rails 43 provided in the upper stage portion of the main body frame 12 along the Y-axis direction.
  • the X-axis slider 42 is movable along an X-axis guide rail 41 provided on the lower surface of the Y-axis slider 44 along the X-axis direction.
  • a head 50 is attached to the X-axis slider 42.
  • the mounting machine controller 70 can move the head 50 to an arbitrary position on the XY plane by driving and controlling the XY robot 40.
  • the feeder 20 is detachable from the support base 14, and a plurality of feeders 20 are arranged on the support base 14 so as to be aligned in the left-right direction (X axis direction).
  • the feeder 20 is a tape feeder including a case 21 and a reel 22 around which a carrier tape is wound.
  • the case 21 has a tape feed mechanism 24 that pulls out the carrier tape from the reel 22 and feeds the components accommodated in the carrier tape to a supply position where the suction nozzle 51 of the head 50 can suck, and a feeder controller 30 that controls the operation of the feeder 20. And house.
  • the carrier tape includes a bottom tape in which cavities (recesses) are formed at a predetermined pitch in the longitudinal direction, and a top film attached to the upper surface of the bottom tape in a state where components are accommodated in the cavities.
  • the top film is peeled off from the bottom tape before the supply position by a peeling portion (not shown) to expose the component, and the suction nozzle 51 can suck the component.
  • sprocket holes In the vicinity of the side edge of the bottom tape, sprocket holes (not shown) that engage with sprocket teeth of a sprocket 27 described later are formed at predetermined intervals.
  • the tape feeding mechanism 24 includes a stepping motor 25, a transmission gear 26 that meshes with a gear 25 a provided on the rotation shaft of the stepping motor 25, and a sprocket 27 that has sprocket teeth that mesh with the transmission gear 26.
  • the tape feed mechanism 24 engages the sprocket teeth of the sprocket 27 with the sprocket holes formed in the carrier tape, and intermittently rotates the sprocket 27 via the transmission gear 26 by driving the stepping motor 25. Thereby, the tape feeding mechanism 24 pulls out the carrier tape from the reel 22 and feeds the pitch.
  • the tape feeding mechanism 24 includes an optical sensor 28 having a light emitting element and a light receiving element facing each other with the transmission gear 26 interposed therebetween. This optical sensor 28 detects the presence or absence of a slit in the transmission gear 26.
  • the feeder controller 30 includes a microcomputer (hereinafter referred to as a microcomputer) 32 having a CPU, ROM, RAM, and the like (not shown) and a motor driver 34 as a drive circuit for the stepping motor 25.
  • a microcomputer hereinafter referred to as a microcomputer
  • the microcomputer 32 can detect the rotational position and rotational amount of the transmission gear 26, that is, the rotational position and rotational amount of the sprocket 27 that meshes with the transmission gear 26.
  • the feeder controller 30 is communicably connected to the mounter controller 70 via the connector 29, and exchanges control signals and data with each other.
  • the microcomputer 32 outputs a pulse signal to the motor driver 34.
  • the motor driver 34 generates a drive current based on the input pulse signal and outputs it to the stepping motor 25.
  • the feeder controller 30 of the present embodiment drives and controls the stepping motor 25 with pre-excitation and post-excitation in order to prevent the stepping motor 25 from stepping out.
  • the pre-excitation is based on a current (for example, 1.5 A) during rotation driving before the stepping motor 25 starts driving when the stepping motor 25 starts driving in a non-excited state where the stepping motor 25 (coil) is not excited. Is excited by energizing in advance with a low current (for example, 0.5 A).
  • the feeder controller 30 can correct the displacement of the rotor of the stepping motor 25 and start driving the stepping motor 25. Further, in the case of stopping the stepping motor 25, the post-excitation is performed by supplying a current (for example, 0.5A) lower than the current during rotation driving (for example, 1.5A) after the driving of the stepping motor 25 is stopped. Excited. Thereby, the feeder controller 30 can suppress the vibration of the rotor of the stepping motor 25 and stop the rotor of the stepping motor 25 as an appropriate stop position.
  • a current for example, 0.5A
  • pre-excitation and post-excitation are included in the processing during driving of the stepping motor 25, and that pre-excitation is performed when driving of the stepping motor 25 is started, and post-excitation is performed when driving of the stepping motor 25 is stopped. It is good also as what is performed.
  • the mounter controller 70 includes a CPU 71, a ROM 72, an HDD 73, a RAM 74, and an input / output interface 75 as shown in FIG. These are electrically connected via a bus 76.
  • An image signal from the mark camera 60, an image signal from the part camera 62, a control signal from the feeder controller 30 of the feeder 20, and the like are input to the mounting machine controller 70 via the input / output interface 75.
  • a control signal to the substrate transfer device 16 a control signal to the feeder controller 30, a drive signal to the XY robot 40, a control signal to the mark camera 60 and the parts camera 62,
  • a drive signal or the like is output via the input / output interface 75.
  • the drive signal to the head 50 includes a drive signal to the R-axis actuator, a drive signal to the ⁇ -axis actuator, a drive signal to the Z-axis actuator, and a drive signal to the electromagnetic valve.
  • the mounter controller 70 of the component mounter 10 transmits a feed operation instruction as a drive signal to the feeder 20 so as to supply the component to the supply position, and controls the drive of the XY robot 40 and the head 50 to supply position.
  • the suction nozzle 51 is moved until the suction operation for sucking the component is performed.
  • the mounting machine controller 70 repeatedly performs the component feeding operation by the feeder 20 and the adsorption operation by the adsorption nozzle 51 so that the plurality of adsorption nozzles 51 of the head 50 respectively adsorb the components.
  • the mounting machine controller 70 drives and controls the XY robot 40 to move the component sucked by the suction nozzle 51 to above the parts camera 62, and images the suction posture of the component by the parts camera 62. The image is processed to correct the mounting position. Then, the mounting machine controller 70 controls the XY robot 40 and the head 50 to perform a mounting operation for mounting the adsorbed component at the mounting position on the board. Among these operations, in particular, in order to shorten the tact time of the suction operation, the mounting machine controller 70 lowers the suction nozzle 51 toward the supply position while the feeder 20 is supplying components. In addition, the mounting machine controller 70 transmits a next component feeding operation instruction to the feeder 20 at the timing when the suction nozzle 51 that sucks the component at the supply position moves up and the component is taken out from the cavity of the bottom tape.
  • FIG. 4 is a flowchart illustrating an example of a feeder driving process executed by the feeder controller 30. This process is executed when the feeder 20 is connected to the mounter controller 70 via the connector 29 and is ready for driving.
  • the feeder controller 30 When the feeder driving process is executed, the feeder controller 30 first waits to receive a feed operation instruction from the mounting machine controller 70 (S100). Upon receiving the feed operation instruction, the feeder controller 30 performs pre-excitation before starting the rotation driving of the stepping motor 25 (S110), and waits for a predetermined pre-excitation time t1 to elapse (S120).
  • the pre-excitation time t1 is a time from several milliseconds to several tens of milliseconds.
  • the feeder controller 30 determines that the pre-excitation time t1 has elapsed in S120, the feeder controller 30 starts to rotate the stepping motor 25 (S130), and waits for completion of a predetermined amount of feeding operation of the carrier tape (S140).
  • the feeder controller 30 determines that the feeding operation is completed in S140, the feeder controller 30 performs post-excitation when stopping the rotational driving of the stepping motor 25 (S150). Then, the feeder controller 30 waits to determine whether the predetermined post-excitation time t2 has elapsed (S160) or whether the next feeding operation instruction has been received from the mounting machine controller 70 (S170).
  • the post-excitation time t2 is a time from several milliseconds to several tens of milliseconds.
  • the feeder controller 30 determines that the post-excitation time t2 has elapsed in S160 before determining that the next feed operation instruction has been received in S170, the post-excitation is terminated and the stepping motor 25 is brought into a non-excitation state. Is stopped (S180), and the process returns to S100 to repeat the process.
  • the feeder controller 30 determines that the next feeding operation instruction has been received from the mounting machine controller 70 in S170 before determining that the post-excitation time t2 has elapsed in S160, the feeder controller 30 performs the following processing. That is, the feeder controller 30 waits for the post-excitation time t2 to elapse as in S160 (S190), and if it is determined in S190 that the post-excitation time t2 has elapsed, continues the pre-excitation for the next feed operation. Perform (S200). Then, the feeder controller 30 waits for the pre-shortening excitation time t1s to elapse (S210).
  • the pre-shortening excitation time t1s is a time (about several milliseconds) shorter than the predetermined pre-excitation time t1. If the feeder controller 30 determines that the pre-shortening excitation time t1s has elapsed, it starts the rotational driving of the stepping motor 25 in S130 and performs the subsequent processing. That is, in this embodiment, when an instruction for the next feed operation is received from the mounter controller 70 during execution of post-excitation of the previous feed operation, the post-excitation being executed and the pre-excitation of the next feed operation are continuously performed. The pre-excitation time for the next feed operation is executed while shortening the pre-excitation time.
  • FIG. 5 is an explanatory diagram showing the excitation time of the comparative example when the feeding operation is continuous.
  • FIG. 6 is explanatory drawing which shows the excitation time of embodiment when a feed operation continues.
  • the feeder controller 30 starts pre-excitation when receiving a feed operation instruction from the mounting machine controller 70 at time T11 in a non-excited state where the stepping motor 25 is not excited. Then, the feeder controller 30 rotationally drives the stepping motor 25 at time T12 when a predetermined pre-excitation time t1 has elapsed, and starts post-excitation at time T13 when a predetermined amount of feeding operation has been completed.
  • the feeder controller 30 executes post-excitation for a predetermined post-excitation time t2 from time T13 to time T15.
  • the feeder controller 30 receives an operation instruction for the next feeding operation from the mounting machine controller 70 at time T14 during execution of post-excitation.
  • the feeder controller 30 executes pre-excitation for a predetermined pre-excitation time t1 from time T15 when post-excitation ends, and rotationally drives the stepping motor 25 at time T16.
  • the feeder controller 30 then performs post-excitation for a predetermined post-excitation time t2 from time T17 to time T18 when the predetermined amount of feeding operation is completed.
  • the feeder controller 30 executes pre-excitation for the pre-reduction excitation time t1s from time T15 when post-excitation is completed, and rotationally drives the stepping motor 25 at time T26. Then, the feeder controller 30 performs post-excitation for a predetermined post-excitation time t2 from time T27 to time T28 when the predetermined amount of feeding operation is completed.
  • the pre-excitation time is shortened, so the total excitation time of post-excitation and pre-excitation is a comparative example. Shorter time.
  • the feeder controller 30 performs a plurality of feeding operations continuously, the time required for the second and subsequent feeding operations can be shortened, and the requirements for sucking components to each suction nozzle 51 of the head 50 are required. Time can be shortened. Such a time shortening effect is particularly remarkable when the component mounter 10 mounts a large number of components. Further, when the pre-excitation is executed after the post-excitation, the stepping motor 25 starts to rotate while holding the rotor in the proper position by the pre-excitation as it is, so even if the pre-excitation time is shortened It is possible to prevent problems such as step-out of the stepping motor 25 from occurring.
  • the stepping motor 25 of the present embodiment corresponds to the stepping motor of the present disclosure
  • the feeder controller 30 corresponds to the motor control device.
  • the mounter controller 70 corresponds to a drive instruction device.
  • the tape feeding mechanism 24 corresponds to a feeder mechanism
  • the feeder 20 corresponds to a feeder.
  • the feeder controller 30 performs predetermined post-excitation when the post-excitation in the previous drive stop of the stepping motor 25 and the pre-excitation in the next drive start are performed without going through the non-excitation state. Post-excitation and pre-excitation are continued for a time shorter than the sum of time t2 (second time) and a predetermined pre-excitation time t1 (first time). Thereby, the feeder controller 30 can reduce the time from the previous drive stop to the next drive start while suppressing the step-out of the stepping motor 25, so that the throughput is improved while operating the stepping motor 25 appropriately. Can be made.
  • the feeder controller 30 continues the post-excitation and the pre-excitation when an instruction for the next feed operation is received during the post-excitation in the drive stop of the previous feed operation of the stepping motor 25. For this reason, it is easy to provide an opportunity to continue post-excitation and pre-excitation in a short excitation time.
  • the feeder controller 30 When the post-excitation and the pre-excitation are continuously performed, the feeder controller 30 performs the post-excitation for a predetermined post-excitation time t2, and performs the pre-excitation at a shortened pre-excitation time t1s shorter than the predetermined pre-excitation time t1. Over. For this reason, the feeder controller 30 can smoothly shift to the next rotational driving of the stepping motor 25 after securing the post-excitation time and appropriately stopping the stepping motor 25.
  • the feeder controller 30 when the post-excitation and the pre-excitation are continued, the feeder controller 30 performs the post-excitation for a predetermined post-excitation time t2 and performs the pre-excitation for the shortened pre-excitation time t1s. It was supposed to be, but it is not limited to this.
  • the feeder controller 30 may perform post-excitation for a time shorter than a predetermined post-excitation time t2 and perform pre-excitation for a predetermined pre-excitation time t1.
  • the feeder controller 30 may perform post-excitation for a time shorter than a predetermined post-excitation time t2 and perform pre-excitation for a time shorter than the predetermined pre-excitation time t1.
  • the feeder controller 30 continues the post-excitation and the pre-excitation when a drive instruction for the next feed operation is received during the post-excitation in the drive stop of the previous feed operation. It is not limited to this.
  • the feeder controller 30 may continue the post-excitation and the pre-excitation when a drive instruction for the next feed operation is received during the rotational drive of the previous feed operation. That is, the feeder controller 30 may continue the post-excitation and the pre-excitation when a drive instruction for the next feed operation is received before the post-excitation in the drive stop of the previous feed operation is completed.
  • the feeder controller 30 may continue the post-excitation and the pre-excitation regardless of the timing at which the drive instruction is received. For example, when performing the feeding operation a plurality of times, the feeder controller 30 may control so that the total time of the post-excitation and the pre-excitation of the continuous feeding operation is always continued with a short excitation time.
  • the currents in the pre-excitation and the post-excitation are the same.
  • the present invention is not limited to this, and the current levels in the pre-excitation and the post-excitation may be different.
  • the current necessary for correcting the displacement of the rotor of the stepping motor 25 is set for the pre-excitation
  • the current necessary for optimizing the stop position of the rotor of the stepping motor 25 is set for the post-excitation. The For this reason, when the currents in the pre-excitation and the post-excitation are different, securing the current having the larger set value is effective in preventing the stepping motor 25 from stepping out.
  • the feeder controller 30 shortens the excitation time of the smaller current setting value and sets the current when the post-excitation and the pre-excitation are continued. What is necessary is just to ensure the excitation time of the larger value.
  • the tape feeder is exemplified as the feeder 20.
  • the feeder 20 is not limited to this, and other feeders such as a tray feeder that supplies components from a flat tray containing components may be used.
  • the stepping motor control device is not limited to one that controls the stepping motor 25 used in the feeder, and may be a device that controls a stepping motor used in any application.
  • the motor control device of the present disclosure described above may be configured as follows.
  • the stepping motor when the stepping motor is drive-controlled based on the drive instruction from the drive instruction device, and the next drive instruction is received before the post-excitation in the previous drive stop is completed
  • the post-excitation and the pre-excitation may be made continuous. In this way, since it is sufficient to determine whether or not the post-excitation and the pre-excitation are continued until the post-excitation is completed, it is possible to easily provide an opportunity to continue the post-excitation and the pre-excitation in a short excitation time. . Note that the post-excitation and the pre-excitation may be continued when the next drive instruction is received during the post-excitation in the previous drive stop.
  • the post-excitation when the post-excitation and the pre-excitation are continued, the post-excitation is performed for the second time and the pre-excitation is performed for a time shorter than the first time. It may be a thing. By doing so, it is possible to smoothly shift to the next drive after securing the post-excitation time and appropriately stopping the stepping motor.
  • the present invention can be used in the manufacturing industry of devices using a stepping motor.
  • 10 component mounter 11 base, 12 body frame, 14 support base, 16 substrate transport device, 20 feeder, 21 case, 22 reel, 24 tape feed mechanism, 25 stepping motor, 25a gear, 26 transmission gear, 27 sprocket, 28 optical sensor, 29 connector, 30 feeder controller, 32 microcomputer (microcomputer), 34 motor driver, 40 XY robot, 41 X axis guide rail, 42 X axis slider, 43 Y axis guide rail, 44 Y axis slider, 50 head 51 suction nozzle, 60 mark camera, 62 parts camera, 70 mounting machine controller, 71 CPU, 72 ROM, 73 HDD, 74 RAM, 75 I / O interface, 76 bus, S substrate.
  • microcomputer microcomputer
  • 34 motor driver 40 XY robot, 41 X axis guide rail, 42 X axis slider, 43 Y axis guide rail, 44 Y axis slider, 50 head 51 suction nozzle, 60 mark camera, 62 parts camera, 70 mounting machine controller, 71 CPU, 72 ROM, 73 HDD

Abstract

モータ制御装置は、ステッピングモータを駆動開始する前または駆動開始する際に駆動中よりも低い電流で第1時間に亘って励磁する前励磁と、ステッピングモータを駆動停止する際または駆動停止した後に駆動中よりも低い電流で第2時間に亘って励磁する後励磁と、を伴ってステッピングモータの駆動制御が可能であり、ステッピングモータの先の駆動停止における後励磁と、ステッピングモータの次の駆動開始における前励磁とを無励磁状態を介さずに実行する際に、第1時間と第2時間との和よりも短い時間に亘って後励磁と前励磁とを連続させるものである。

Description

モータ制御装置およびフィーダ
 本明細書は、モータ制御装置およびフィーダを開示する。
 従来より、部品が収容されたテープをステッピングモータ(パルスモータ)の駆動により所定量ずつ送り出しながら部品実装機に部品を供給するフィーダが提案されている(例えば、特許文献1参照)。このフィーダでは、部品実装機から送信される部品要求信号を受信する度に、部品を供給位置に送り出すようステッピングモータを駆動する。また、部品実装機は、部品要求信号の送信タイミングから所定の供給時間が経過した時点でフィーダによる部品の供給動作が完了したと判断して吸着ノズルなどで部品を吸着して実装する。これにより、フィーダが部品供給完了の信号を部品実装機に送信するものに比して、通信遅れの影響を排除して、タクトタイムを短縮することができるとしている。
特開2007-129054号公報
 上述したように、ステッピングモータにより部品の供給などの送り動作を行うものにおいて、タクトタイムの短縮が求められることがある。タクトタイムを短縮してスループットを向上させるためには、ステッピングモータの制御を含め、なお改善の余地がある。
 本開示のモータ制御装置およびフィーダは、ステッピングモータを適切に駆動させつつスループットを向上させることを主目的とする。
 本開示のモータ制御装置およびフィーダは、上述の主目的を達成するために以下の手段を採った。
 本開示のモータ制御装置は、ステッピングモータを駆動開始する前または駆動開始する際に駆動中よりも低い電流で第1時間に亘って励磁する前励磁と、前記ステッピングモータを駆動停止する際または駆動停止した後に駆動中よりも低い電流で第2時間に亘って励磁する後励磁と、を伴って前記ステッピングモータの駆動制御が可能であり、前記ステッピングモータの先の駆動停止における前記後励磁と、前記ステッピングモータの次の駆動開始における前記前励磁とを無励磁状態を介さずに実行する際に、前記第1時間と前記第2時間との和よりも短い時間に亘って前記後励磁と前記前励磁とを連続させることを要旨とする。
 本開示のモータ制御装置では、ステッピングモータの先の駆動停止における後励磁と、次の駆動開始における前励磁とを無励磁状態を介さずに実行する際に、第1時間と第2時間との和よりも短い時間に亘って後励磁と前励磁とを連続させる。これにより、ステッピングモータの脱調を抑えるための後励磁および前励磁を行いつつ、先の駆動における回転停止から次の駆動における回転開始までの時間を短縮することができる。このため、ステッピングモータを適切に作動させつつスループットを向上させることができる。
 本開示のフィーダは、上述したモータ制御装置と、前記モータ制御装置により駆動制御されるステッピングモータを含み、前記ステッピングモータの駆動により部品を送り出すフィーダ機構と、を備えることを要旨とする。
 本開示のフィーダは、上述したモータ制御装置を備えるから、ステッピングモータの脱調を抑えるための後励磁および前励磁を行いつつ、先の駆動における回転停止から次の駆動における回転開始までの時間を短縮することができる。このため、複数の部品を連続的に送り出して供給する際のタクトタイムを短縮してスループットを向上させることができる。
部品実装機10の構成図。 フィーダ20の構成図。 部品実装機10の電気的な接続関係を示す説明図。 フィーダ駆動処理の一例を示すフローチャート。 送り動作が連続する場合の比較例の励磁時間を示す説明図。 送り動作が連続する場合の実施形態の励磁時間を示す説明図。
  次に、本開示の発明を実施するための形態について説明する。
 図1は、部品実装機10の構成図である。図2は、フィーダ20の構成図である。図3は、部品実装機10の電気的な接続関係を示す説明図である。なお、図1の左右方向がX軸方向であり、前後方向がY軸方向であり、上下方向がZ軸方向である。
 部品実装機10は、図1に示すように、基台11と、基台11に支持された本体枠12と、本体枠12に設けられた支持台14とを備える。また、部品実装機10は、基板搬送装置16と、フィーダ20と、ヘッド50と、XYロボット40と、実装機コントローラ70(図3参照)とを備える。また、部品実装機10は、これらの他に、ヘッド50に設けられ基板Sに付された基準マークを撮像するためのマークカメラ60や、吸着ノズル51が吸着した部品の吸着姿勢を撮像するためのパーツカメラ62なども備える。
 基板搬送装置16は、図1に示すように、2つの基板搬送路が設けられたデュアルレーン式の搬送装置である。基板搬送装置16は、ベルトコンベア装置を備えており、ベルトコンベア装置の駆動により基板Sを図1の左から右(基板搬送方向)へと搬送する。なお、基板搬送装置16は、シングルレーン式の搬送装置であってもよい。
 ヘッド50は、複数の吸着ノズル51の各々で部品を吸着して、基板搬送装置16により搬送された基板S上へ実装するものである。ヘッド50は、図示は省略するが、複数の吸着ノズル51を旋回移動させるR軸アクチュエータや各吸着ノズル51を回転(自転)させるθ軸アクチュエータ、所定位置にある吸着ノズル51を昇降させるZ軸アクチュエータ、各吸着ノズル51の吸着有無を切り替える電磁弁などを備える。
 XYロボット40は、ヘッド50をXY方向へ移動させるものである。XYロボット40は、図1に示すように、Y軸スライダ44と、X軸スライダ42とを備える。Y軸スライダ44は、本体枠12の上段部にY軸方向に沿って設けられた左右一対のY軸ガイドレール43に沿って移動可能である。また、X軸スライダ42は、Y軸スライダ44の下面にX軸方向に沿って設けられたX軸ガイドレール41に沿って移動可能である。X軸スライダ42には、ヘッド50が取り付けられている。実装機コントローラ70は、XYロボット40を駆動制御することでXY平面上の任意の位置にヘッド50を移動可能である。
 フィーダ20は、図1に示すように、支持台14に着脱可能であり、支持台14に左右方向(X軸方向)に並ぶように複数配置される。フィーダ20は、図2に示すように、ケース21と、キャリアテープが巻回されたリール22とを備えるテープフィーダである。ケース21は、リール22からキャリアテープを引き出してキャリアテープに収容された部品をヘッド50の吸着ノズル51が吸着可能な供給位置まで送り出すテープ送り機構24と、フィーダ20の動作を制御するフィーダコントローラ30とを収容する。なお、キャリアテープは、長手方向に所定ピッチでキャビティ(凹部)が形成されたボトムテープと、各キャビティにそれぞれ部品が収容された状態でボトムテープの上面に貼り付けられたトップフィルムとを有する。キャリアテープは、図示しない剥離部により供給位置の手前でボトムテープからトップフィルムが剥がされて部品が露出し、吸着ノズル51が部品を吸着可能な状態となる。ボトムテープの側縁近傍には、後述するスプロケット27のスプロケット歯が係合する図示しないスプロケット孔が所定間隔で形成されている。
 テープ送り機構24は、ステッピングモータ25と、ステッピングモータ25の回転軸に設けられたギヤ25aに噛合する伝達ギヤ26と、伝達ギヤ26に噛合するスプロケット歯が形成されたスプロケット27とを備える。テープ送り機構24は、キャリアテープに形成されたスプロケット孔にスプロケット27のスプロケット歯を係合させると共にステッピングモータ25の駆動により伝達ギヤ26を介してスプロケット27を間欠回転させる。これにより、テープ送り機構24は、キャリアテープをリール22から引き出してピッチ送りする。また、テープ送り機構24は、伝達ギヤ26を挟んで互いに向かい合う発光素子と受光素子とを有する光学センサ28を備える。この光学センサ28は、伝達ギヤ26のスリットの有無を検知する。
 フィーダコントローラ30は、図3に示すように、図示しないCPUやROM,RAMなどを内蔵するマイクロコンピュータ(以下、マイコンという)32と、ステッピングモータ25の駆動回路としてのモータドライバ34とを備える。マイコン32は、光学センサ28からの検知信号に基づいて、伝達ギヤ26の回転位置や回転量、即ち伝達ギヤ26と噛み合うスプロケット27の回転位置や回転量を検知可能である。フィーダコントローラ30は、コネクタ29を介して実装機コントローラ70と通信可能に接続されており、互いに制御信号やデータのやりとりを行う。マイコン32は、モータドライバ34にパルス信号を出力する。モータドライバ34は、入力したパルス信号に基づいて駆動電流を生成してステッピングモータ25へ出力する。これにより、ステッピングモータ25が有する複数のコイルが順に励磁されて、ステッピングモータ25が回転駆動する。本実施形態のフィーダコントローラ30は、ステッピングモータ25の脱調を防止するために、前励磁と後励磁とを伴ってステッピングモータ25を駆動制御する。前励磁は、ステッピングモータ25(コイル)を励磁していない無励磁状態でステッピングモータ25を駆動開始する場合において、ステッピングモータ25の駆動開始前に回転駆動中の電流(例えば1.5Aなど)よりも低い電流(例えば0.5Aなど)を予め通電して励磁するものである。これにより、フィーダコントローラ30は、ステッピングモータ25のロータの位置ずれを修正して、ステッピングモータ25を駆動開始することができる。また、後励磁は、ステッピングモータ25を駆動停止する場合において、ステッピングモータ25の駆動停止後に回転駆動中の電流(例えば1.5Aなど)よりも低い電流(例えば0.5Aなど)を通電して励磁するものである。これにより、フィーダコントローラ30は、ステッピングモータ25のロータの振動を抑えて適切な停止位置として、ステッピングモータ25のロータを停止させることができる。なお、前励磁や後励磁をステッピングモータ25の駆動中の処理に含めて、前励磁はステッピングモータ25の駆動を開始する際に行われるものとし、後励磁はステッピングモータ25の駆動を停止する際に行われるものとしてもよい。
 実装機コントローラ70は、図3に示すように、CPU71とROM72とHDD73とRAM74と入出力インターフェース75とを備える。これらはバス76を介して電気的に接続されている。実装機コントローラ70には、マークカメラ60からの画像信号やパーツカメラ62からの画像信号、フィーダ20のフィーダコントローラ30からの制御信号などが入出力インターフェース75を介して入力される。また、実装機コントローラ70からは、基板搬送装置16への制御信号やフィーダコントローラ30への制御信号、XYロボット40への駆動信号、マークカメラ60やパーツカメラ62への制御信号、ヘッド50への駆動信号などが入出力インターフェース75を介して出力される。なお、ヘッド50への駆動信号は、R軸アクチュエータへの駆動信号やθ軸アクチュエータへの駆動信号、Z軸アクチュエータの駆動信号、電磁弁への駆動信号などが挙げられる。
 こうして構成された部品実装機10の動作について説明する。部品実装機10の実装機コントローラ70は、フィーダ20に対して部品を供給位置まで供給するよう駆動信号としての送り動作指示を送信すると共に、XYロボット40とヘッド50とを駆動制御して供給位置まで吸着ノズル51を移動させて部品を吸着する吸着動作を行わせる。実装機コントローラ70は、ヘッド50の複数の吸着ノズル51がそれぞれ部品を吸着するよう、フィーダ20による部品の送り動作と吸着ノズル51による吸着動作とを繰り返し行わせる。次に、実装機コントローラ70は、XYロボット40を駆動制御して吸着ノズル51に吸着させた部品をパーツカメラ62の上方へ移動させてパーツカメラ62で部品の吸着姿勢を撮像し、得られた画像を処理して実装位置を補正する。そして、実装機コントローラ70は、XYロボット40とヘッド50とを駆動制御して吸着した部品を基板上の実装位置に実装する実装動作を行わせる。これらの動作のうち特に吸着動作のタクトタイムを短縮するため、実装機コントローラ70は、フィーダ20が部品を供給している間に吸着ノズル51を供給位置に向かって下降させる。また、実装機コントローラ70は、供給位置で部品を吸着した吸着ノズル51が上昇してボトムテープのキャビティから部品が取り出されたタイミングで、次の部品の送り動作指示をフィーダ20に送信する。
 次に、フィーダ20の動作について説明する。図4は、フィーダコントローラ30により実行されるフィーダ駆動処理の一例を示すフローチャートである。この処理は、フィーダ20がコネクタ29を介して実装機コントローラ70と接続されて駆動可能な状態となった場合に実行される。
 フィーダ駆動処理が実行されると、フィーダコントローラ30は、まず、実装機コントローラ70から送り動作指示を受信するのを待つ(S100)。フィーダコントローラ30は、送り動作指示を受信すると、ステッピングモータ25の回転駆動を開始する前の前励磁を行い(S110)、所定の前励磁時間t1が経過するのを待つ(S120)。ここで、前励磁時間t1は、数msecから数十msecの時間である。フィーダコントローラ30は、S120で前励磁時間t1が経過したと判定すると、ステッピングモータ25の回転駆動を開始して(S130)、キャリアテープの所定量の送り動作が完了するのを待つ(S140)。フィーダコントローラ30は、S140で送り動作が完了したと判定すると、ステッピングモータ25の回転駆動を停止する際の後励磁を行う(S150)。そして、フィーダコントローラ30は、所定の後励磁時間t2が経過したか(S160)、実装機コントローラ70から次の送り動作指示を受信したか(S170)、のいずれかを判定するのを待つ。ここで、後励磁時間t2は、数msecから数十msecの時間である。フィーダコントローラ30は、S170で次の送り動作指示を受信したと判定する前に、S160で後励磁時間t2が経過したと判定すると、後励磁を終了して無励磁状態とすることでステッピングモータ25の回転駆動を停止して(S180)、S100に戻り処理を繰り返す。
 一方、フィーダコントローラ30は、S160で後励磁時間t2が経過したと判定する前に、S170で実装機コントローラ70から次の送り動作指示を受信したと判定すると、次のように処理を行う。即ち、フィーダコントローラ30は、S160と同様に後励磁時間t2が経過するのを待ち(S190)、S190で後励磁時間t2が経過したと判定すると、続けて次の送り動作のための前励磁を行う(S200)。そして、フィーダコントローラ30は、短縮前励磁時間t1sが経過するのを待つ(S210)。短縮前励磁時間t1sは、所定の前励磁時間t1よりも短い時間(数msec程度)とする。フィーダコントローラ30は、短縮前励磁時間t1sが経過したと判定すると、S130でステッピングモータ25の回転駆動を開始して以降の処理を行う。即ち、本実施形態では、先の送り動作の後励磁の実行中に、実装機コントローラ70から次の送り動作の指示を受けると、実行中の後励磁と次の送り動作の前励磁とを連続して実行すると共に、前励磁時間を短縮して次の送り動作の前励磁を実行するのである。
 図5は、送り動作が連続する場合の比較例の励磁時間を示す説明図である。また、図6は、送り動作が連続する場合の実施形態の励磁時間を示す説明図である。図5,図6のいずれも、フィーダコントローラ30は、ステッピングモータ25に励磁していない無励磁状態における時刻T11で実装機コントローラ70から送り動作指示を受信すると前励磁を開始する。そして、フィーダコントローラ30は、所定の前励磁時間t1が経過した時刻T12でステッピングモータ25を回転駆動し、所定量の送り動作が完了した時刻T13で後励磁を開始する。フィーダコントローラ30は、時刻T13から時刻T15まで所定の後励磁時間t2に亘り後励磁を実行する。また、フィーダコントローラ30は、後励磁を実行中の時刻T14で、次の送り動作の動作指示を実装機コントローラ70から受信するものとする。図5の比較例では、フィーダコントローラ30は、後励磁が終了した時刻T15から所定の前励磁時間t1に亘り前励磁を実行して、時刻T16でステッピングモータ25を回転駆動する。そして、フィーダコントローラ30は、所定量の送り動作が完了した時刻T17から時刻T18まで所定の後励磁時間t2に亘り後励磁を実行する。一方、図6の本実施形態では、フィーダコントローラ30は、後励磁が終了した時刻T15から短縮前励磁時間t1sだけ前励磁を実行して、時刻T26でステッピングモータ25を回転駆動する。そして、フィーダコントローラ30は、所定量の送り動作が完了した時刻T27から時刻T28まで所定の後励磁時間t2に亘り後励磁を実行する。このように、本実施形態では、送り動作が続くために後励磁と前励磁とが連続する場合には、前励磁時間を短縮するから、後励磁と前励磁との合計の励磁時間が比較例よりも短い時間となる。このため、フィーダコントローラ30が複数回の送り動作を連続して行う場合、2回目以降の送り動作に要する時間を短縮することができ、ヘッド50の各吸着ノズル51に部品を吸着させる場合の所要時間を短くすることができる。このような時間の短縮効果は、部品実装機10が多数の部品を実装する際に特に顕著なものとなる。また、後励磁に続けて前励磁を実行する場合、後励磁によって適正位置とされたロータをそのまま前励磁で保持しつつステッピングモータ25の回転駆動を開始するから、前励磁時間を短縮してもステッピングモータ25の脱調などの不具合が生じるのを防止することができる。
 ここで、本実施形態の構成要素と本開示の構成要素との対応関係を明らかにする。本実施形態のステッピングモータ25が本開示のステッピングモータに相当し、フィーダコントローラ30がモータ制御装置に相当する。また、実装機コントローラ70が駆動指示装置に相当する。また、テープ送り機構24がフィーダ機構に相当し、フィーダ20がフィーダに相当する。
 以上説明した本実施形態のフィーダコントローラ30は、ステッピングモータ25の先の駆動停止における後励磁と、次の駆動開始における前励磁とを無励磁状態を介さずに実行する際に、所定の後励磁時間t2(第2時間)と所定の前励磁時間t1(第1時間)との和よりも短い時間に亘って後励磁と前励磁とを連続させる。これにより、フィーダコントローラ30は、ステッピングモータ25の脱調を抑えつつ、先の駆動停止から次の駆動開始までの時間を短縮することができるから、ステッピングモータ25を適切に作動させつつスループットを向上させることができる。
 また、フィーダコントローラ30は、ステッピングモータ25の先の送り動作の駆動停止における後励磁中に次の送り動作の指示が受け付けられた場合に後励磁と前励磁とを連続させる。このため、後励磁と前励磁とを短い励磁時間で連続させる機会を設け易くすることができる。
 また、フィーダコントローラ30は、後励磁と前励磁とを連続させる場合、後励磁を所定の後励磁時間t2に亘って行い且つ前励磁を所定の前励磁時間t1よりも短い短縮前励磁時間t1sに亘って行う。このため、フィーダコントローラ30は、後励磁の時間を確保してステッピングモータ25を適切に停止させてから次のステッピングモータ25の回転駆動にスムーズに移行することができる。
 なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
 例えば、上述した実施形態では、フィーダコントローラ30は、後励磁と前励磁とを連続させる場合、後励磁を所定の後励磁時間t2に亘って行うと共に前励磁を短縮前励磁時間t1sに亘って行うものとしたが、これに限られるものではない。例えば、フィーダコントローラ30は、後励磁を所定の後励磁時間t2よりも短い時間に亘って行うと共に前励磁を所定の前励磁時間t1に亘って行うものとしてもよい。あるいは、フィーダコントローラ30は、後励磁を所定の後励磁時間t2よりも短い時間に亘って行うと共に前励磁を所定の前励磁時間t1よりも短い時間に亘って行うものとしてもよい。
 また、上述した実施形態では、フィーダコントローラ30は、先の送り動作の駆動停止における後励磁中に次の送り動作の駆動指示が受け付けられた場合に後励磁と前励磁とを連続させたが、これに限られるものではない。例えば、フィーダコントローラ30は、先の送り動作の回転駆動中に次の送り動作の駆動指示が受け付けられた場合に、後励磁と前励磁とを連続させてもよい。即ち、フィーダコントローラ30は、先の送り動作の駆動停止における後励磁が終了するまでに次の送り動作の駆動指示が受け付けられた場合に後励磁と前励磁とを連続させてもよい。あるいは、フィーダコントローラ30は、駆動指示が受け付けられるタイミングに拘わらず、後励磁と前励磁とを連続させてもよい。例えば、フィーダコントローラ30は、複数回の送り動作を行う場合には、連続する送り動作の後励磁と前励磁との合計時間を常に短い励磁時間で連続させるよう制御してもよい。
 また、上述した実施形態では、前励磁と後励磁とにおける電流が同じものを例示したが、これに限られず、前励磁と後励磁とにおける電流の大小が異なるものでもよい。上述したように、前励磁は主にステッピングモータ25のロータの位置ずれ修正に必要な電流が設定され、後励磁は主にステッピングモータ25のロータの停止位置の適正化に必要な電流が設定される。このため、前励磁と後励磁とにおける電流が異なる場合には、設定値の大きい方の電流を確保する方が、ステッピングモータ25の脱調の防止に有効である。したがって、フィーダコントローラ30は、前励磁と後励磁とにおける電流が異なる場合に後励磁と前励磁とを連続する際には、電流の設定値が小さい方の励磁時間を短くして、電流の設定値が大きい方の励磁時間を確保するものなどとすればよい。
 また、上述した実施形態では、フィーダ20としてテープフィーダを例示したが、これに限られず、部品を収容した平板状のトレイから部品を供給するトレイフィーダなど他のフィーダとしてもよい。また、ステッピングモータの制御装置としては、フィーダに用いられるステッピングモータ25を制御するものに限られず、如何なる用途に用いられるステッピングモータを制御するものでもよい。
 以上説明した本開示のモータ制御装置において、以下のように構成してもよい。
 本開示のモータ制御装置において、駆動指示装置からの駆動指示に基づいて前記ステッピングモータを駆動制御し、前記先の駆動停止における前記後励磁が終了するまでに次の駆動指示が受け付けられた場合に、前記後励磁と前記前励磁とを連続させるものとしてもよい。こうすれば、後励磁と前励磁とを連続させるか否かを後励磁が終了するまでに決めればよいから、後励磁と前励磁とを短い励磁時間で連続させる機会を設け易くすることができる。なお、前記先の駆動停止における前記後励磁中に次の駆動指示が受け付けられた場合に、前記後励磁と前記前励磁とを連続させるものとしてもよい。
 本開示のモータ制御装置において、前記後励磁と前記前励磁とを連続させる場合、前記後励磁を前記第2時間に亘って行い且つ前記前励磁を前記第1時間よりも短い時間に亘って行うものとしてもよい。こうすれば、後励磁の時間を確保してステッピングモータを適切に停止させてから次の駆動にスムーズに移行することができる。
 本発明は、ステッピングモータを用いる装置の製造産業などに利用可能である。
 10 部品実装機、11 基台、12 本体枠、14 支持台、16 基板搬送装置、20 フィーダ、21 ケース、22 リール、24 テープ送り機構、25 ステッピングモータ、25a ギヤ、26 伝達ギヤ、27 スプロケット、28 光学センサ、29 コネクタ、30 フィーダコントローラ、32 マイクロコンピュータ(マイコン)、34 モータドライバ、40 XYロボット、41 X軸ガイドレール、42 X軸スライダ、43 Y軸ガイドレール、44 Y軸スライダ、50 ヘッド、51 吸着ノズル、60 マークカメラ、62 パーツカメラ、70 実装機コントローラ、71 CPU、72 ROM、73 HDD、74 RAM、75 入出力インターフェース、76 バス、S 基板。

Claims (4)

  1.  ステッピングモータを駆動開始する前または駆動開始する際に駆動中よりも低い電流で第1時間に亘って励磁する前励磁と、前記ステッピングモータを駆動停止する際または駆動停止した後に駆動中よりも低い電流で第2時間に亘って励磁する後励磁と、を伴って前記ステッピングモータの駆動制御が可能であり、
     前記ステッピングモータの先の駆動停止における前記後励磁と、前記ステッピングモータの次の駆動開始における前記前励磁とを無励磁状態を介さずに実行する際に、前記第1時間と前記第2時間との和よりも短い時間に亘って前記後励磁と前記前励磁とを連続させる
     モータ制御装置。
  2.  請求項1に記載のモータ制御装置であって、
     駆動指示装置からの駆動指示に基づいて前記ステッピングモータを駆動制御し、
     前記先の駆動停止における前記後励磁が終了するまでに次の駆動指示が受け付けられた場合に、前記後励磁と前記前励磁とを連続させる
     モータ制御装置。
  3.  請求項1または2に記載のモータ制御装置であって、
     前記後励磁と前記前励磁とを連続させる場合、前記後励磁を前記第2時間に亘って行い且つ前記前励磁を前記第1時間よりも短い時間に亘って行う
     モータ制御装置。
  4.  請求項1ないし3のいずれか1項に記載のモータ制御装置と、
     前記モータ制御装置により駆動制御されるステッピングモータを含み、前記ステッピングモータの駆動により部品を送り出すフィーダ機構と、
     を備えるフィーダ。
PCT/JP2017/004753 2017-02-09 2017-02-09 モータ制御装置およびフィーダ WO2018146774A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP17895988.8A EP3582390A4 (en) 2017-02-09 2017-02-09 MOTOR CONTROL DEVICE AND FEEDER
PCT/JP2017/004753 WO2018146774A1 (ja) 2017-02-09 2017-02-09 モータ制御装置およびフィーダ
US16/479,268 US11258385B2 (en) 2017-02-09 2017-02-09 Motor control device and feeder
JP2018566709A JP6946357B2 (ja) 2017-02-09 2017-02-09 部品実装機
CN201780084927.XA CN110313124B (zh) 2017-02-09 2017-02-09 马达控制装置及供料器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/004753 WO2018146774A1 (ja) 2017-02-09 2017-02-09 モータ制御装置およびフィーダ

Publications (1)

Publication Number Publication Date
WO2018146774A1 true WO2018146774A1 (ja) 2018-08-16

Family

ID=63108037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004753 WO2018146774A1 (ja) 2017-02-09 2017-02-09 モータ制御装置およびフィーダ

Country Status (5)

Country Link
US (1) US11258385B2 (ja)
EP (1) EP3582390A4 (ja)
JP (1) JP6946357B2 (ja)
CN (1) CN110313124B (ja)
WO (1) WO2018146774A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111031781A (zh) * 2019-12-31 2020-04-17 哈工汇智(深圳)科技有限公司 一种贴片机元器件吸取的多轴协同控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654593A (ja) * 1992-07-29 1994-02-25 Fujitsu Ltd ステッピングモータのロック時間制御方式
JP2007129054A (ja) 2005-11-03 2007-05-24 Fuji Mach Mfg Co Ltd 電子部品実装システム及びフィーダ
US20110001449A1 (en) * 2009-07-01 2011-01-06 Samsung Electronics Co., Ltd Motor controlling apparatus and motor controlling method thereof
JP2012215644A (ja) * 2011-03-31 2012-11-08 Nikon Corp レンズ鏡筒、カメラおよびカメラボディ
JP2013088647A (ja) * 2011-10-19 2013-05-13 Nikon Corp レンズ及びレンズ駆動用モータの制御方法

Family Cites Families (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3952238A (en) * 1973-11-29 1976-04-20 Hymie Cutler Programmable positioning apparatus and acceleration control system particularly useful therein
GB1486428A (en) * 1974-04-11 1977-09-21 Int Computers Ltd Motor drive control arrangements
EP0200959A3 (en) * 1985-04-16 1987-12-16 Hitachi, Ltd. Stepping motor control system
GB2264405B (en) * 1992-02-12 1996-06-12 Mars Inc Stepper motor drive circuit
US5623464A (en) * 1994-09-29 1997-04-22 Fujitsu Limited Optical disk apparatus and seek control method
JP3633095B2 (ja) * 1996-04-22 2005-03-30 富士通株式会社 光学的記憶装置
JP3553741B2 (ja) * 1996-09-02 2004-08-11 三菱電機株式会社 数値制御装置および数値制御装置の主軸モータ加減速制御方法
JPH1084699A (ja) * 1996-09-09 1998-03-31 Alps Electric Co Ltd ステッピングモータの制御方法
JP3579274B2 (ja) * 1998-03-09 2004-10-20 東芝テック株式会社 シリアルプリンタ
JPH11277468A (ja) * 1998-03-30 1999-10-12 Denso Corp ロボットの制御装置
JP3715850B2 (ja) * 1999-11-08 2005-11-16 キヤノン株式会社 モータ制御装置及び該装置を用いたプリンタ
US6927880B2 (en) * 2001-09-28 2005-08-09 Kabushiki Kaisha Toshiba Image reading device and method
JP4320199B2 (ja) * 2002-05-24 2009-08-26 富士機械製造株式会社 テープフィーダおよび電子部品供給システム
JP2005237043A (ja) * 2004-02-17 2005-09-02 Canon Finetech Inc ステッピングモータ駆動制御方法および装置
US7338260B2 (en) * 2004-03-17 2008-03-04 Baxier International Inc. System and method for controlling current provided to a stepping motor
JP4199688B2 (ja) * 2004-03-18 2008-12-17 本田技研工業株式会社 オートチョーク装置
JP2005276307A (ja) * 2004-03-24 2005-10-06 Pioneer Electronic Corp ステッピングモータ駆動システム、情報記録再生装置及びステッピングモータ駆動方法
TWI268044B (en) * 2004-08-20 2006-12-01 Transpacific Plasma Llc Stepper motor acceleration system and method
JP2006352940A (ja) * 2005-06-13 2006-12-28 Seiko Epson Corp ステッピングモータ制御装置、印刷装置、ステッピングモータ制御方法、および、ステッピングモータ制御プログラム
ITTO20050528A1 (it) * 2005-07-28 2007-01-29 I G L Elettronics S P A Gruppo motore in alimentatori di trama per telai di tessitura
JP2009017670A (ja) * 2007-07-04 2009-01-22 Juki Corp ステッピングモータ制御装置
JP5408868B2 (ja) * 2007-12-21 2014-02-05 キヤノン株式会社 モータ制御装置
JP5161693B2 (ja) * 2008-08-04 2013-03-13 大和製衡株式会社 組合せ秤
JP2010217550A (ja) * 2009-03-17 2010-09-30 Kyocera Mita Corp トナー攪拌用ステッピングモータ制御装置、画像形成装置、ステッピングモータ制御方法
JP5489575B2 (ja) * 2009-07-30 2014-05-14 キヤノン株式会社 画像形成装置
JP5812783B2 (ja) * 2011-09-21 2015-11-17 富士機械製造株式会社 電子回路部品装着機
JP2014171344A (ja) * 2013-03-05 2014-09-18 Hitachi Ltd 撮像装置、モータ駆動装置、および撮像方法
JP2015035926A (ja) * 2013-08-09 2015-02-19 ミネベア株式会社 ステッピングモータの制御装置及びステッピングモータの制御方法
JP6018036B2 (ja) * 2013-11-28 2016-11-02 シャープ株式会社 ステッピングモータの制御装置及びそれを備えた搬送装置
US9479090B2 (en) * 2013-12-20 2016-10-25 Semiconductor Components Industries, Llc Motor control circuit and method
CN106063117B (zh) * 2014-02-25 2019-06-04 株式会社富士 步进电动机控制装置、具备该步进电动机控制装置的元件安装机及步进电动机控制方法
CN108430532B (zh) * 2015-12-28 2020-12-11 心脏器械股份有限公司 具有自适应启动的泵电机控制
US9960716B2 (en) * 2016-02-29 2018-05-01 Allegro Microsystems, Llc Control timing and sequencing for a multi-phase electric motor
US10312847B2 (en) * 2016-05-09 2019-06-04 Allegro Microsystems, Llc Motor control using phase current and phase voltage
US10116243B2 (en) * 2016-06-16 2018-10-30 Allegro Microsystems, Llc Determining motor position with complementary drive and detect and slight move
US10181810B2 (en) * 2016-06-16 2019-01-15 Allegro Microsystems, Llc Determining motor position with complementary driving and detection and current injection
JP6648063B2 (ja) * 2017-04-11 2020-02-14 ミネベアミツミ株式会社 ステッピングモータの制御装置及びステッピングモータの制御方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0654593A (ja) * 1992-07-29 1994-02-25 Fujitsu Ltd ステッピングモータのロック時間制御方式
JP2007129054A (ja) 2005-11-03 2007-05-24 Fuji Mach Mfg Co Ltd 電子部品実装システム及びフィーダ
US20110001449A1 (en) * 2009-07-01 2011-01-06 Samsung Electronics Co., Ltd Motor controlling apparatus and motor controlling method thereof
JP2012215644A (ja) * 2011-03-31 2012-11-08 Nikon Corp レンズ鏡筒、カメラおよびカメラボディ
JP2013088647A (ja) * 2011-10-19 2013-05-13 Nikon Corp レンズ及びレンズ駆動用モータの制御方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3582390A4

Also Published As

Publication number Publication date
JP6946357B2 (ja) 2021-10-06
US11258385B2 (en) 2022-02-22
JPWO2018146774A1 (ja) 2019-11-07
US20190379311A1 (en) 2019-12-12
EP3582390A1 (en) 2019-12-18
EP3582390A4 (en) 2020-01-01
CN110313124A (zh) 2019-10-08
CN110313124B (zh) 2023-03-21

Similar Documents

Publication Publication Date Title
JP5528316B2 (ja) 部品供給装置、電子部品実装機、部品供給方法
JP4777209B2 (ja) 部品供給装置
US10274929B2 (en) Servo controller
WO2018146774A1 (ja) モータ制御装置およびフィーダ
JPWO2015145565A1 (ja) 部品装着装置
WO2015151863A1 (ja) 電子部品装着装置
JP4850751B2 (ja) 表面実装機
JP6204995B2 (ja) 対基板作業装置
JP5980933B2 (ja) 部品実装機の制御システム及び制御方法
WO2017081809A1 (ja) 部品実装装置、部品実装方法、及び、表面実装機
JP6626750B2 (ja) 搬送装置
JP2010157578A (ja) 部品供給装置及びそれを備えた表面実装機
WO2021166133A1 (ja) 部品実装機
US11510350B2 (en) Component mounter, component supply reel driving method
JP5805875B2 (ja) コンベア式の部品供給装置及び表面実装機
JP6204498B2 (ja) 電子部品装着機
WO2024084703A1 (ja) 部品装着作業機及び装着ライン
JP2006203081A (ja) 部品搬送装置及びこれを有する表面実装機
CN117063624A (zh) 元件供给装置及元件安装装置
JP6869734B2 (ja) 表面実装機、表面実装機のノズル交換プログラムおよび表面実装機のノズルの交換方法
JP2007142211A (ja) 部品実装方法及び部品実装機
JP4805376B2 (ja) 電子部品の吸着方法
JP2017135345A (ja) 部品実装装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17895988

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018566709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017895988

Country of ref document: EP

Effective date: 20190909