WO2018131519A1 - 電解用電極、電解槽、電極積層体及び電極の更新方法 - Google Patents

電解用電極、電解槽、電極積層体及び電極の更新方法 Download PDF

Info

Publication number
WO2018131519A1
WO2018131519A1 PCT/JP2017/047365 JP2017047365W WO2018131519A1 WO 2018131519 A1 WO2018131519 A1 WO 2018131519A1 JP 2017047365 W JP2017047365 W JP 2017047365W WO 2018131519 A1 WO2018131519 A1 WO 2018131519A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
electrolysis
opening
mesh
less
Prior art date
Application number
PCT/JP2017/047365
Other languages
English (en)
French (fr)
Inventor
誠 西澤
佳典 角
蜂谷 敏徳
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=62839803&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2018131519(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to CN202210045889.XA priority Critical patent/CN114351178A/zh
Priority to BR112019013822A priority patent/BR112019013822A2/pt
Priority to JP2018561333A priority patent/JP6778459B2/ja
Priority to CN201780073743.3A priority patent/CN110023541B/zh
Priority to EP17891083.2A priority patent/EP3569740A4/en
Priority to US16/477,343 priority patent/US20190360112A1/en
Priority to KR1020197019742A priority patent/KR102349667B1/ko
Priority to KR1020217011243A priority patent/KR102422917B1/ko
Publication of WO2018131519A1 publication Critical patent/WO2018131519A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/34Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis
    • C25B1/46Simultaneous production of alkali metal hydroxides and chlorine, oxyacids or salts of chlorine, e.g. by chlor-alkali electrolysis in diaphragm cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • C25B11/031Porous electrodes
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • C25B9/19Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof with diaphragms

Definitions

  • the present invention relates to an electrode for electrolysis, an electrolytic cell, an electrode laminate, and an electrode renewal method.
  • Ion exchange membrane method salt electrolysis is a method for producing caustic soda, chlorine, and hydrogen by electrolyzing (electrolyzing) salt water using an electrode for electrolysis.
  • a technique capable of maintaining a low electrolysis voltage over a long period of time is required to reduce power consumption from the viewpoint of environmental load and energy problems.
  • a breakdown of the breakdown of the electrolysis voltage reveals that, in addition to the theoretically required electrolysis voltage, the voltage resulting from the resistance of the ion exchange membrane and the structure resistance of the electrolytic cell, the overvoltage of the anode and cathode as electrolysis electrodes, the anode and cathode It has been clarified that a voltage or the like due to the distance between is included. Further, when electrolysis is continued for a long period of time, a voltage increase or the like caused by various causes such as impurities in salt water may occur.
  • Patent Document 1 discloses a technique of an insoluble anode obtained by coating a platinum base metal oxide such as ruthenium on a titanium substrate. This anode is called DSA (registered trademark, Dimension Stable Anode).
  • DSA registered trademark, Dimension Stable Anode
  • Non-Patent Document 1 describes the transition of soda electrolysis technology using DSA.
  • Patent Document 2 a metallic porous plate having a predetermined thickness, pore diameter, and porosity, or an anode using an expanded metal having a predetermined thickness, major diameter, minor diameter, and aperture ratio
  • Patent Document 3 proposes an anode which is substantially made of a diamond-shaped metal mesh and has a mesh strand and ratio of openings, a longitudinal distance LWD of the openings, and a width direction SWD of the openings.
  • Patent Document 3 discloses that a platinum group metal oxide, magnetite, ferrite, cobalt spinel, or mixed metal oxide can be used as a coating on the surface of the metal mesh having the shape.
  • Patent Document 4 a titanium expanded metal or a titanium wire mesh is used as the anode base material, the opening ratio / thickness of the anode base material is set within a predetermined range, and the catalyst is applied to the anode base material.
  • the cell voltage during electrolysis can be lowered by adjusting the ratio of the vertical and horizontal apertures of the opening to about half or less of the thickness of the anode in the prior art.
  • Attempts have been made to reduce the amount of impurity gas generated by reaction of hydroxide ions diffusing from the cathode chamber through the ion exchange membrane, that is, oxygen gas.
  • a method of reducing the voltage during electrolysis in the direction of reducing the thickness of the anode and increasing the aperture ratio of the anode base material is employed.
  • Patent Documents 2 to 4 discuss the expanded metal aperture ratio, the distance between the mesh in the longitudinal direction and the width direction, and the like, but the relationship between the anode shape and the electrolysis voltage is fully studied. However, there is a demand for further reduction of the electrolysis voltage. In particular, an anode with a thin anode mesh and a high aperture ratio also causes problems such as insufficient practical strength.
  • Patent Document 5 a technique is attempted to lower the anode voltage and reduce the amount of oxygen gas generated by setting the anode thickness to about half or less of the conventional thickness.
  • an ion exchange membrane electrolytic cell at an industrial level is used. Since the anode chamber is pressurized and operated, if the anode mesh thickness is too thin, the strength cannot be maintained, and it is necessary to use two expanded metals. Needs further improvement.
  • an object of the present invention is to provide an electrode for electrolysis capable of suppressing the voltage and power consumption during electrolysis to a low level and also having practical strength and an electrolytic cell equipped with the electrode for electrolysis. To do.
  • the inventors of the present invention have made extensive studies to solve the above problems. As a result, by setting the thickness of the electrode for electrolysis within a specific range and further dividing the sum of the peripheral lengths of the openings of the electrode for electrolysis by the aperture ratio of the electrode for electrolysis as a specific range, The present inventors have found that an electrode for electrolysis can be provided that can suppress the voltage and power consumption of the battery, and has practical strength, and has led to the present invention. In addition, the present inventors have found that the above problem can be solved by making the opening of the electrode for electrolysis a specific shape, and have made the present invention. That is, the present invention is as follows.
  • An electrode for electrolysis comprising: The shape of the opening of the electrode for electrolysis is symmetric with respect to the first virtual center line extending in the short direction of the mesh, and with respect to the second virtual center line extending in the long direction of the mesh. Asymmetrical, The electrode for electrolysis whose thickness of the electrode for electrolysis is more than 0.5 mm and 1.2 mm or less.
  • a value obtained by dividing the area Sa of the part a by the area Sb of the part b is 1.15 or more
  • the electrode for electrolysis according to [11] which is 2.0 or less.
  • a value obtained by dividing, by SW, a value St obtained by subtracting the maximum mesh opening in the short direction of the mesh of the opening from the distance SW between the centers in the short direction of the mesh of the opening is [11 or more] ]
  • an electrode for electrolysis that can keep voltage and power consumption during electrolysis low and that has practical strength.
  • FIG. 1 is a schematic diagram for explaining the relationship between the total perimeter of the opening and the aperture ratio of the electrode for electrolysis assuming that the electrode for electrolysis and the opening are square.
  • FIG. 2 is a schematic view according to a typical example of a projection plane obtained by observing the electrode for electrolysis according to one aspect of the present embodiment with a microscope.
  • FIG. 3 is an explanatory diagram showing the relationship between the mesh center distance SW in the short direction, the mesh center distance LW in the long mesh direction, and the distance d in the present embodiment, based on the schematic diagram of FIG.
  • FIG. 4A is an explanatory view schematically showing a typical example of the shape of the opening of the electrode for electrolysis according to another aspect of the present embodiment.
  • FIG. 4A is an explanatory view schematically showing a typical example of the shape of the opening of the electrode for electrolysis according to another aspect of the present embodiment.
  • FIG. 4B is an explanatory diagram showing a part a and a part b in FIG.
  • FIG. 4C is an explanatory view schematically showing a typical example of the shape of the opening of the conventional electrode for electrolysis.
  • FIG. 5 is an explanatory diagram schematically showing an example of the positional relationship between adjacent openings in the electrode for electrolysis according to another aspect of the present embodiment.
  • FIG. 6 is a schematic diagram showing an example of a cross section of the electrolytic cell of the present embodiment.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • the electrode for electrolysis according to the first aspect of the present embodiment includes a conductive substrate made of a perforated metal plate, and the conductive substrate. Electrolysis electrode provided with at least one catalyst layer formed on the surface, wherein the thickness of the electrolysis electrode is more than 0.5 mm and 1.2 mm or less, and the sum of the peripheral lengths of the openings of the electrolysis electrode A value C obtained by dividing B by an aperture ratio A of the electrode for electrolysis is more than 2 and 5 or less. Since it is configured in this way, the first electrode for electrolysis can keep the voltage and power consumption during electrolysis low, and also has practical strength.
  • the first electrode for electrolysis can be used as a chlorine generating electrode particularly suitable for ion exchange membrane salt electrolysis.
  • the electrode for electrolysis according to the second aspect of the present embodiment includes a conductive substrate made of a perforated metal plate, and the conductive substrate.
  • An electrode for electrolysis comprising at least one catalyst layer formed on the surface, wherein the shape of the opening of the electrode for electrolysis is left and right with respect to the first virtual center line extending in the short direction of the mesh It is symmetrical and is vertically asymmetric with respect to the second virtual center line extending in the long direction of the mesh, and the thickness of the electrode for electrolysis is more than 0.5 mm and not more than 1.2 mm. Since it is configured in this manner, the second electrolysis electrode can also keep the voltage and power consumption during electrolysis low and has practical strength.
  • the second electrode for electrolysis can also be used as a chlorine generating electrode suitable for ion exchange membrane salt electrolysis.
  • the term “electrode for electrolysis according to the present embodiment” includes the first electrode for electrolysis and the second electrode for electrolysis.
  • the conductive substrate is made of a perforated metal plate, and is used in a chlorine gas generating atmosphere in a highly concentrated saline solution close to saturation.
  • the material of the conductive substrate is preferably a corrosion-resistant valve metal.
  • the valve metal include, but are not limited to, titanium, tantalum, niobium, zirconium, and the like.
  • titanium is preferable from the viewpoint of economy and affinity with the catalyst layer.
  • the shape of the conductive substrate is not particularly limited as long as it is made of metal and has a flat shape, and examples thereof include expanded metal, a perforated plate, a wire net, and the like.
  • expanded metal is used.
  • Expanded metal is generally a flat metal plate or metal foil that is flattened by rolling it up to a desired thickness by forming a mesh by slitting with an upper blade and lower blade while slitting. It is. Because continuous hoop processing is possible, production efficiency is high, there is no waste loss of the original plate material, and it is economical, and because it is a monolithic structure, complete electrical conductivity is secured unlike a wire mesh, and it does not unravel .
  • the electrode for electrolysis according to the present embodiment is configured by forming at least one catalyst layer on the surface of the conductive base material.
  • the thickness of the electrode for electrolysis according to the present embodiment is more than 0.5 mm and 1.2 mm or less. If the thickness of the electrode for electrolysis is a thin substrate of 0.5 mm or less, due to the pressure difference between the anode chamber and the cathode chamber generated during electrolysis or the pressing pressure of the cathode, the anode falls due to the pressure by which the ion exchange membrane presses the anode. As the distance increases, the electrolysis voltage increases.
  • the thickness of the electrode for electrolysis exceeds 1.2 mm, the aperture ratio, the SW of the opening (the distance between the centers of the short direction of the mesh of the opening) and the LW (the length of the mesh of the opening) are suitable in this embodiment.
  • An expanded metal having a distance between the eye centers cannot be formed.
  • the thickness of the electrode for electrolysis is preferably more than 0.5 mm and 1.0 mm or less, more preferably more than 0.5 mm and 0.9 mm or less, and even more preferably 0.7 mm or more and 0.0 mm or less. 9 mm or less.
  • the aperture ratio A here refers to the ratio (S B / S A ) of the total area S B of the openings in the projected area S A of either surface of the electrode for electrolysis.
  • the total area S B of the opening, in the electrode for electrolysis it is possible that the sum of the projected area of the region cations or electrolytes, etc. is not blocked by the conductive substrate (perforated metal plate).
  • the opening is assumed to be square, but the shape of the opening formed in the electrode for electrolysis according to the present embodiment is different.
  • FIG. 1A when one square (2 mm ⁇ 2 mm) opening 2 is formed in a square (4 mm ⁇ 4 mm) electrode 1, the opening area is 4 mm 2 and the aperture ratio is 25%, the sum total of the peripheral length of the opening is 8 mm.
  • FIG. 1B when four square (1 mm ⁇ 1 mm) opening portions 3 are formed in the electrode 1 having the same shape, the opening area is 4 mm 2, which is the same as FIG.
  • the aperture ratio is 25%, which is the same as that shown in FIG. 1A, but the total peripheral length of the opening is 16 mm, which is larger than that shown in FIG.
  • the number of openings increases as the sum of the peripheral lengths of the openings increases. That is, the larger the value obtained by dividing the sum of the peripheral lengths of the openings by the opening ratio, the larger the number of openings.
  • the gas flow path is dispersed, so that the remaining bubbles are reduced, which contributes to the suppression of voltage rise.
  • the method for measuring the total aperture ratio and the total peripheral length of the aperture is not limited to the following.
  • an electrode for electrolysis is cut into a square 10 cm wide and 10 cm wide and copied by a copying machine.
  • a method of measuring the weight and the peripheral length of each of the paper cut out from the obtained paper, and observing the surface of one of the electrodes for electrolysis with an image observation device such as a microscope Examples include a method of measuring by analyzing image data obtained by photographing a projection plane.
  • FIG. 2 schematically shows a typical example of such image data. As shown in FIG. 2, it can be seen that a plurality of openings 20 are formed in the electrode 10 for electrolysis.
  • the aperture ratio (%) is calculated by 100 ⁇ (w1 ⁇ w2) / w1 from the weight w1 of the paper before cutting out the opening and the weight w2 of the paper after cutting out all the opening. it can. Further, the total sum of the peripheral lengths can be obtained as the sum of the peripheral lengths of the cut-out portions.
  • image data analysis method for example, the use of “Image J” publicly developed by the National Institutes of Health (NIH) for image processing may be used.
  • the opening ratio increases or a small number of large openings
  • the specific surface area of the electrode for electrolysis is reduced, the apparent current density is increased and the electrolysis voltage is increased.
  • the aperture ratio becomes low or the conductive base material has a large number of small openings, which adversely affects the circulation of the electrolyte and the detachment of gas generated at the electrodes. By causing it to occur, the electrolysis voltage may increase.
  • the aperture ratio of the electrode for electrolysis is preferably 5% or more and less than 25%, more preferably 7% or more and 20% or less, and more preferably 10% or more and 18% or less. It is particularly preferred. If the aperture ratio of the electrode for electrolysis is 5% or more, the adverse effect such as retention of gas generated at the electrode during electrolysis tends to be effectively eliminated without adversely affecting the circulation of the electrolyte. There is a tendency to reduce the electrolysis voltage. Further, when the aperture ratio of the electrode for electrolysis is less than 25%, the specific surface area of the electrode for electrolysis can be sufficiently secured, that is, the substantial electrode surface facing the ion exchange membrane tends to be sufficiently secured. As a result, the apparent current density can be lowered, and the electrolytic voltage tends to be reduced.
  • the peripheral length of one opening of the electrode for electrolysis is preferably 1 mm or more, and more preferably 2.5 mm or more.
  • the peripheral length of one opening of the electrode for electrolysis is preferably 4.8 mm or less, and more preferably 4.55 mm or less from the viewpoint of sufficiently securing the specific surface area of the electrode for electrolysis.
  • the minor axis SW that is the distance between the meshes in the short direction of the mesh of the opening of the electrode for electrolysis is 1.5 mm or more and 3 mm or less, and the distance between the centers in the long direction of the mesh.
  • the certain long diameter LW is preferably 2.5 mm or more and 5 mm or less
  • the short diameter SW is 1.5 mm or more and 2.5 mm or less
  • the long diameter LW is more preferably 3 mm or more and 4.5 mm or less.
  • the SW and LW can be specified as shown in FIG. That is, SW can be specified as a distance connecting the centers of two openings adjacent in the short direction of the mesh.
  • LW can be specified as a distance connecting the centers of two openings adjacent to each other in the long direction of the mesh.
  • the SW is 1.5 mm or more and the LW is 2.5 mm or more, it is easy to ensure a suitable thickness and aperture ratio in the present embodiment.
  • the SW is 3 mm or less and the LW is 5 mm or less, it is easy to secure a suitable aperture ratio range in the present embodiment, that is, it is easy to secure the specific surface area of the electrode for electrolysis. .
  • the distance d is calculated as the square root of the value obtained by adding the square of LW to the square of SW, and the smaller this value, the more the mass transfer of gas or the like tends to be promoted. From such a viewpoint, the value of d is preferably 2.9 to 5.8 mm, and more preferably 3.4 to 5.1 mm.
  • the electrode for electrolysis it is obtained from the sum B of the peripheral length of the opening, the opening ratio A of the opening, the short diameter SW of the opening, and the long diameter LW of the opening, and is represented by the following formula (1).
  • the value E is preferably 0.5 or more, more preferably 0.69 or more, and further preferably 0.69 or more and 1.5 or less.
  • E B / (A ⁇ (SW 2 + LW 2 ) 1/2 ) (1)
  • (SW 2 + LW 2 ) 1/2 corresponds to d described above.
  • the spatial dispersion degree of the opening of the electrode for electrolysis is suitable for the circulation of the electrolyte, and the electrolysis voltage is reduced. It tends to be possible.
  • the second electrode for electrolysis is an electrode for electrolysis comprising a conductive base material made of a perforated metal plate and at least one catalyst layer formed on the surface of the conductive base material.
  • the shape of the electrode opening is bilaterally symmetric with respect to the first virtual center line extending in the short direction of the mesh, and is vertically asymmetric with respect to the second virtual center line extending in the long direction of the mesh
  • the thickness of the electrode for electrolysis is more than 0.5 mm and 1.2 mm or less.
  • a typical example of the shape of the opening in the second electrode for electrolysis is shown in FIG.
  • the opening 100 in FIG. 4A is symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh.
  • the left-right symmetry means that when the opening is divided into a right part and a left part with respect to the first virtual center line, the shape of the right part matches the shape of the left part, that is, the first virtual center line is the reference.
  • the right part and the left part are line-symmetric.
  • the symmetry can be confirmed by the above-described image analysis.
  • the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh.
  • the vertical asymmetry means that when the opening is divided into an upper part and a lower part with the second virtual center line as a reference, the shape of the upper part does not match the shape of the lower part, that is, the second virtual center line is the reference.
  • the upper part and the lower part are not line-symmetric.
  • the symmetry can be confirmed by the above-described image analysis.
  • the opening 100 can be divided into an upper part a and a lower part b when the second virtual center line 102 extending in the long direction ⁇ of the mesh is used as a reference. It can be easily confirmed by comparing the shapes of the part a and the part b.
  • the present invention is not limited to this assumption, and is included in the second electrode for electrolysis as long as it is an electrode for electrolysis having the above-described configuration.
  • a typical shape of the opening in the conventional electrode for electrolysis is one that is bilaterally symmetric with respect to the first virtual center line and that is vertically symmetric with respect to the second virtual center line. It is done.
  • the opening 100 ′ is symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh.
  • the opening 100 ′ when the second virtual center line 102 extending in the long direction ⁇ of the mesh is used as a reference, the upper part a and the lower part b are symmetrical with respect to the virtual center line 102. It has become.
  • the opening typically, the opening has a rhombus shape, and the four sides constituting the opening are positioned at approximately the same distance from the center point of the opening.
  • the generated gas typically spherical
  • the gas contacts with four sides (that is, four points) constituting the opening. By doing so, it is estimated that the passage resistance tends to increase.
  • the second electrode for electrolysis is symmetrical with respect to the first virtual center line and is vertically asymmetric with respect to the second virtual center line, so that gas generated at the electrode is generated.
  • the passage resistance tends to be reduced when trying to pass through the opening (typically spherical). That is, there is a tendency that the contact point between the gas generated at the electrode during electrolysis and each side constituting the opening tends to be reduced, so that the gas can be effectively desorbed, and the electrolytic solution is circulated.
  • the electrolysis voltage can be reduced without adverse effects.
  • the area of the opening with respect to the projected area of 1 cm 2 on either surface is not particularly limited, but is 0.05 cm 2 or more from the viewpoint of further reducing the voltage and power consumption during electrolysis. It is preferable that The number of openings for the projected area of 1 cm 2 is not particularly limited, but is preferably 15 or more from the viewpoint of further reducing the voltage and power consumption during electrolysis. The values of the area of the opening and the number of openings can be measured by the image analysis described above.
  • the area Sa of the part a is divided by the area Sb of the part b.
  • the value (Sa / Sb) is preferably 1.15 or more and 2.0 or less. In this case, the vertical asymmetry of the processed part described above tends to become more prominent. That is, it can be said from the value of Sa / Sb that the shape of the opening of the electrode for electrolysis is vertically asymmetric with respect to the second virtual center line extending in the long direction of the mesh.
  • Sa and Sb correspond to the area of the part a and the area of the part b, respectively, and Sa> Sb.
  • the values of Sa and Sb can be measured by the image analysis described above.
  • a value St obtained by subtracting the shortest direction maximum opening of the mesh of the opening from the distance SW between the short direction of the mesh of the opening is divided by the SW (St / SW) is preferably 0.4 or more, more preferably more than 0.67 and less than 1.0.
  • a plurality of openings are formed in the electrode 300 for electrolysis, and the SW is specified by the distance 310 between the centers in the short direction of the mesh of the openings from two adjacent openings. .
  • two adjacent openings means an opening that first touches the first virtual center line when the first virtual center line is extended from a certain opening.
  • the LW is specified by the distance 320 between the centers of the meshes of the openings in the longitudinal direction from two adjacent openings.
  • two adjacent openings means an opening that first touches the second virtual center line when the second virtual center line is extended from a certain opening.
  • the second virtual center line 330 divides the opening into a part a and a part b, and the part a (340) and the virtual center line 330 are used as a reference. It is shown that the part b (350) is vertically asymmetric. Further, in FIG.
  • the distance 360 between two openings adjacent in the short direction of the mesh of the opening is the maximum distance in the short direction of the mesh of the opening from the distance SW between the short direction centers of the mesh of the opening. This corresponds to the value St obtained by reducing the opening.
  • the shortest direction maximum opening of the mesh of the opening corresponds to the length of the first virtual center line 101 in the example illustrated in FIG.
  • the electrode for electrolysis according to the present embodiment is formed by forming at least one catalyst layer on the surface of the above-described conductive substrate.
  • the contact surface of the conductive substrate with the catalyst layer is in contact with the catalyst layer.
  • a treatment for increasing the surface area of the conductive substrate examples include, but are not limited to, blasting using a cut wire, steel grid, alumina grid or the like; acid treatment using sulfuric acid or hydrochloric acid, or the like.
  • an acid treatment method is preferred after forming irregularities on the surface of the conductive substrate by blast treatment.
  • the catalyst layer formed on the surface of the conductive base material in the electrode for electrolysis according to the present embodiment, preferably on the surface of the conductive base material subjected to the above-described treatment, is a platinum group in order to lower the electrolysis voltage. It preferably contains an electrode catalyst material such as metal oxide, magnetite, ferrite, cobalt spinel, or mixed metal oxide. From the viewpoint of lowering the voltage during electrolysis, it is more preferable that the ruthenium element, the iridium element, and the titanium element are each in the form of an oxide among the electrode catalyst materials described above. Examples of the ruthenium oxide include, but are not limited to, RuO 2 and the like. Examples of the iridium oxide include, but are not limited to, IrO 2 and the like. Examples of the titanium oxide include, but are not limited to, TiO 2 and the like.
  • the ruthenium oxide, iridium oxide, and titanium oxide form a solid solution.
  • a solid solution generally refers to a substance in which two or more kinds of substances are dissolved in each other and the whole is a uniform solid phase. Examples of the substance forming the solid solution include a metal simple substance and a metal oxide.
  • a metal oxide solid solution suitable for the present embodiment two or more types of metal atoms are irregularly arranged on equivalent lattice points in the unit lattice in the oxide crystal structure.
  • a substitution type in which ruthenium oxide, iridium oxide and titanium oxide are mixed with each other, and when viewed from the ruthenium oxide side, the ruthenium atom is substituted by iridium atom or titanium atom or both of them.
  • a solid solution is preferred.
  • the solid solution state is not particularly limited, and a partial solid solution region may exist. Due to the solid solution, the size of the unit cell in the crystal structure changes slightly. The degree of this change can be confirmed, for example, by measuring the powder X-ray diffraction without changing the diffraction pattern due to the crystal structure and changing the peak position due to the size of the unit cell.
  • the content ratio of the ruthenium element, the iridium element, and the titanium element is 0.2 to 3 mol of the iridium element with respect to 1 mol of the ruthenium element, and the titanium element 0.2 to 8 mol is preferable; with respect to 1 mol of ruthenium element, iridium element is 0.3 to 2 mol, and titanium element is more preferably 0.2 to 6 mol; ruthenium element It is particularly preferable that the amount of iridium element is 0.5 to 1.5 mol and that of titanium element is 0.2 to 3 mol with respect to 1 mol.
  • Each of iridium, ruthenium, and titanium may be included in the catalyst layer as a form other than an oxide, for example, as a simple metal.
  • the catalyst layer in the electrode for electrolysis according to the present embodiment may contain only the above-described ruthenium element, iridium element, and titanium element as constituent elements, or may contain other metal elements besides these. Also good. Specific examples of other metal elements include, but are not limited to, elements selected from tantalum, niobium, tin, platinum, vanadium, and the like. Examples of the existence form of these other metal elements include existence as a metal element contained in an oxide. When the catalyst layer in the present embodiment contains other metal elements, the content ratio is 20 mol% or less as the molar ratio of the other metal elements to the entire metal elements contained in the catalyst layer. Preferably, it is 10 mol% or less.
  • the thickness of the catalyst layer is preferably 0.1 to 5 ⁇ m, and more preferably 0.5 to 3 ⁇ m.
  • the catalyst layer may be composed of only one layer or two or more layers. When there are two or more catalyst layers, at least one of them may be the catalyst layer in the present embodiment. When there are two or more catalyst layers, at least the innermost layer is preferably the catalyst layer in the present embodiment. When at least the innermost layer is a solid solution formed of ruthenium oxide, iridium oxide, and titanium oxide, the durability of the catalyst layer tends to be further improved. It is also preferable that the catalyst layer in the present embodiment has two or more layers with the same composition or different compositions. Even when there are two or more catalyst layers, the thickness of the catalyst layer in this embodiment is preferably 0.1 to 5 ⁇ m, more preferably 0.5 to 3 ⁇ m, as described above. preferable.
  • the electrode for electrolysis according to the present embodiment forms a mesh by forming a mesh on a valve metal flat plate while slitting with an upper blade and a lower blade, and rolling it to a desired thickness by rolling a roll or the like.
  • the surface of the conductive substrate is subjected to the surface area increasing treatment, and then a catalyst layer containing ruthenium element, iridium element, and titanium element is formed on the conductive substrate. It can be manufactured by forming.
  • the electrode for electrolysis is formed by forming at least one catalyst layer on the surface of the conductive substrate, the thickness is more than 0.5 mm and not more than 1.2 mm, and the peripheral length of the opening
  • the thickness of the electrode for electrolysis falls within a range suitable for the present embodiment by adjusting the thickness of the flat plate made of valve metal used as the material of the conductive base material and the rolling strength at the time of flattening processing by rolling by rolling. Can be adjusted. Further, the aperture ratio of the electrode for electrolysis and the short diameter SW that is the distance between the mesh short direction of the opening are a series of forming a mesh by pushing the valve metal flat plate while slitting with the upper blade and the lower blade. In this step, it is possible to adjust the range suitable for the present embodiment by adjusting the step width continuously fed forward by the feed roller in conjunction with the vertical movement of the upper blade.
  • the step width when slitting the valve metal flat plate with the upper blade and the lower blade is 0.8 mm or less.
  • 0.5 mm or more is preferable from a viewpoint of maintaining the shape of the opening part of this embodiment.
  • the major axis LW which is the distance between the mesh length direction centers of the openings, is adjusted to a range suitable for this embodiment by appropriately selecting the upper blade and lower blade molds into which the valve metal flat plate is slit. can do.
  • the sum of the peripheral lengths of the openings of the electrode for electrolysis increases and decreases depending on the increase and decrease of the number of openings, it can be adjusted by the number of upper and lower blades into which slits are inserted.
  • a perforated plate such as punching metal
  • it can be obtained by punching a metal flat plate with a punching press mold.
  • the aperture ratio, the sum of the peripheral lengths of the openings, SW and LW can be adjusted within the preferred range of the present embodiment.
  • a wire mesh as a conductive base material, it can be obtained by weaving using a plurality of metal wires for wire mesh production obtained by various known methods.
  • the aperture ratio and opening By appropriately selecting the weight per unit length of metal wire (denier, equivalent to the thickness of the metal wire) and the number of metal wires woven per unit area of the metal mesh (number of meshes), the aperture ratio and opening The sum of the peripheral lengths of the sections, SW, and LW can be adjusted within the preferred range of this embodiment. Further, the shape related to the second electrolysis electrode tends to be easily obtained by the same control as described above.
  • the formation of the catalyst layer on the conductive substrate described above is preferably performed by a thermal decomposition method.
  • a coating liquid containing a mixture of the above-described elements (precursor) is applied on a conductive substrate, and then baked in an oxygen-containing atmosphere.
  • the catalyst layer can be formed by thermally decomposing these components. According to this method, the electrode for electrolysis can be manufactured with high productivity with a smaller number of steps than the conventional manufacturing method.
  • thermal decomposition means that a precursor metal salt or the like is fired in an oxygen-containing atmosphere and decomposed into a metal oxide or metal and a gaseous substance.
  • the decomposition product obtained can be controlled by the metal species contained in the precursor blended in the coating liquid as a raw material, the type of metal salt, the atmosphere in which thermal decomposition is performed, and the like.
  • thermal decomposition is usually performed in air.
  • the range of the oxygen concentration at the time of firing is not particularly limited, and it is sufficient to perform in the air. However, if necessary, air may be circulated in the firing furnace or oxygen may be supplied.
  • the ruthenium compound, the iridium compound, and the titanium compound may be oxides, but are not necessarily oxides.
  • a metal salt or the like may be used.
  • these metal salts include, but are not limited to, any one selected from the group consisting of chloride salts, nitrates, sulfates, and metal alkoxides.
  • the metal salt of the ruthenium compound is not limited to the following, and examples thereof include ruthenium chloride and ruthenium nitrate.
  • the metal salt of the iridium compound include, but are not limited to, iridium chloride and iridium nitrate.
  • it does not limit to the following as a metal salt of a titanium compound For example, titanium tetrachloride etc. are mentioned.
  • the above compounds are appropriately selected and used according to the desired metal element ratio in the catalyst layer.
  • the coating liquid may further contain a compound other than the compound contained in the above compound. Examples of other compounds include, but are not limited to, metal compounds containing metal elements such as tantalum, niobium, tin, platinum, rhodium, and vanadium; metal elements such as tantalum, niobium, tin, platinum, rhodium, and vanadium; metal elements such as tantalum, niobium, tin, platinum, rhodium, and vanadium
  • An organic compound containing The coating liquid is preferably a liquid composition in which the above compound group is dissolved or dispersed in an appropriate solvent.
  • the solvent for the coating solution used here can be selected according to the type of the compound. For example, water; alcohols such as butanol can be used.
  • the total compound concentration in the coating solution is not particularly limited, but is preferably 10 to 150 g / L from the viewpoint of appropriately
  • the method of coating the coating liquid on the surface of the conductive substrate is not limited to the following, but, for example, a dipping method in which the conductive substrate is immersed in the coating liquid, or coating on the surface of the conductive substrate.
  • An electrocoating method or the like can be used.
  • the roll method and the electrostatic coating method are preferable from the viewpoint of excellent industrial productivity.
  • a coating film of the coating liquid can be formed on at least one surface of the conductive substrate.
  • the coating film After applying the coating liquid to the conductive substrate, it is preferable to perform a step of drying the coating film as necessary.
  • the drying step can be more firmly formed on the surface of the conductive substrate.
  • the drying conditions can be appropriately selected depending on the composition of the coating liquid, the solvent type, and the like.
  • the drying step is preferably performed at a temperature of 10 to 90 ° C. for 1 to 20 minutes.
  • the firing temperature can be appropriately selected depending on the composition of the coating liquid and the solvent type.
  • the firing temperature is preferably 300 to 650 ° C.
  • the precursor such as ruthenium compound is not sufficiently decomposed, and a catalyst layer containing ruthenium oxide or the like may not be obtained.
  • the firing temperature exceeds 650 ° C., the conductive base material may be oxidized, so that the adhesion at the interface between the catalyst layer and the base material may be lowered. This tendency should be emphasized particularly when a titanium substrate is used as the conductive substrate. A longer firing time is preferred.
  • the above-mentioned steps of coating, drying and firing the catalyst layer can be repeated a plurality of times to form the catalyst layer in a desired thickness.
  • firing can be performed for a longer time if necessary to further improve the stability of the catalyst layer that is extremely chemically, physically and thermally stable.
  • the conditions for the long-term firing are preferably about 30 minutes to 4 hours at 400 to 650 ° C.
  • the electrode for electrolysis according to the present embodiment has low overvoltage even in the initial stage of electrolysis, and can be electrolyzed with low voltage and low power consumption over a long period of time. Therefore, it can be used for various electrolysis.
  • it is preferably used as an anode for chlorine generation, and more preferably used as an anode for salt electrolysis in the ion exchange membrane method.
  • the electrolytic cell of the present embodiment includes the electrode for electrolysis according to the present embodiment. That is, the electrolytic cell of this embodiment includes an anode chamber including the electrode for electrolysis according to this embodiment as an anode, a cathode chamber including a cathode, and an ion exchange membrane that separates the anode chamber and the cathode chamber. Prepare. This electrolytic cell has a reduced initial voltage during electrolysis.
  • An example of the cross section of the electrolytic cell of this embodiment is schematically shown in FIG.
  • the electrolytic bath 200 connects the electrolytic solution 210, a container 220 for containing the electrolytic solution 210, the anode 230 and the cathode 240 immersed in the electrolytic solution 210, the ion exchange membrane 250, and the anode 230 and the cathode 240 to a power source.
  • Wiring 260 is provided.
  • a space on the anode side partitioned by the ion exchange membrane 250 is referred to as an anode chamber
  • a space on the cathode side is referred to as a cathode chamber.
  • the electrolytic cell of this embodiment can be used for various electrolysis.
  • an aqueous alkali chloride solution such as a 2.5 to 5.5 N (N) aqueous sodium chloride solution (saline solution) or an aqueous potassium chloride solution is provided.
  • aqueous alkali hydroxide aqueous solution for example, sodium hydroxide aqueous solution, potassium hydroxide aqueous solution, etc.
  • water can be used.
  • the electrode for electrolysis according to this embodiment is used.
  • the ion exchange membrane 250 for example, a fluororesin membrane having an ion exchange group can be used.
  • an ion exchange membrane formed by forming a protruding portion (microprojection: delta shape) made of a polymer that forms the ion exchange membrane on the anode side surface of the ion exchange membrane is used as an electrode for electrolysis according to this embodiment. It is preferable to use as an electrolytic cell in combination. Specific examples thereof include “Aciplex” (registered trademark) F6801 (manufactured by Asahi Kasei Corporation).
  • ion exchange membrane having a delta shape By using an ion exchange membrane having a delta shape, supply of salt water between the ion exchange membrane and the anode is promoted, and damage to the ion exchange membrane and increase in the sodium chloride concentration in caustic soda tend to be suppressed. Stable electrolytic performance can be maintained by combining the ion exchange membrane having a delta shape and the electrode for electrolysis according to the present embodiment.
  • a method for forming a protrusion part For example, it can form by the method etc. which are described in patent 4573715 specification and patent 4708133 specification.
  • the cathode 240 is a cathode for hydrogen generation, and an electrode or the like in which a catalyst is coated on a conductive substrate is used.
  • a cathode a known one can be adopted. Specifically, for example, nickel, nickel oxide, an alloy of nickel and tin, a combination of activated carbon and oxide, ruthenium oxide, platinum, etc. on a nickel base.
  • the structure of the electrolytic cell of this embodiment is not specifically limited, A monopolar type or a bipolar type may be sufficient.
  • the material constituting the electrolytic cell is not particularly limited.
  • the material for the anode chamber is preferably titanium or the like resistant to alkali chloride and chlorine; the material for the cathode chamber is resistant to alkali hydroxide and hydrogen. Nickel or the like is preferred.
  • the electrode for electrolysis (anode 230) according to the present embodiment may be disposed with an appropriate interval between the electrode and the ion exchange membrane 250, or may be disposed in contact with the ion exchange membrane 250. Can be used without problems.
  • the cathode 240 may be arranged with an appropriate interval from the ion exchange membrane 250, or even if it is a contact type electrolytic cell (zero gap type electrolytic cell) with no gap between the ion exchange membrane 250, Can be used without any problems.
  • the electrolysis conditions of the electrolytic cell of the present embodiment are not particularly limited, and can be operated under known conditions. For example, it is preferable to perform electrolysis by adjusting the electrolysis temperature to 50 to 120 ° C. and the current density to 0.5 to 10 kA / m 2 .
  • the electrode for electrolysis which concerns on this embodiment can be used suitably for the use which updates an electrode, when the activity of the catalyst coating electrode existing in the electrolytic cell falls. That is, the electrode renewal method in the present embodiment includes a step of welding the electrode for electrolysis according to the present embodiment onto the existing electrode in the electrolytic cell. As described above, simply by newly welding the electrode for electrolysis according to the present embodiment on the existing electrode, the electrolysis performance of the existing electrode with reduced activity is returned to the level before deterioration or further improved, that is, easily. Can be reactivated.
  • the electrode for electrolysis according to the present embodiment welded and the existing electrode in the electrolytic cell can be regarded as a laminate. That is, the electrode laminate of the present embodiment includes the electrode for electrolysis according to the present embodiment and a base electrode different from the electrode for electrolysis.
  • the base material electrode here is not specifically limited, Typically, it is the existing electrode in the electrolytic cell mentioned above, Comprising: The electrode which activity fell can be mentioned.
  • the thickness B is more than 0.5 mm and not more than 0.65 mm, and the sum B of the peripheral lengths of the openings is defined as the aperture ratio A.
  • the electrode for electrolysis according to the present embodiment can lower the electrolysis voltage in salt electrolysis than before. Therefore, according to the electrolytic cell of this embodiment provided with this electrode for electrolysis, the power consumption required for salt electrolysis can be reduced. Furthermore, since the electrode for electrolysis according to the present embodiment has a chemically, physically and thermally stable catalyst layer, it has excellent long-term durability. Therefore, according to the electrolytic cell of this embodiment provided with the electrode for electrolysis, the catalytic activity of the electrode is maintained high for a long time, and it becomes possible to stably produce high-purity chlorine.
  • an electrolytic cell comprising an anode cell having an anode chamber and a cathode cell having a cathode chamber was prepared.
  • a nickel wire mesh base material coated with a ruthenium oxide catalyst was used as the cathode.
  • an expanded base material made of metallic nickel as a current collector was cut out and welded at the same size as the anode, and then a cushion mat knitted with nickel wire was placed on it.
  • a cathode was placed.
  • a rubber gasket made of EPDM (ethylene propylene diene) was used as the gasket, and an ion exchange membrane was sandwiched between the anode cell and the cathode cell.
  • a cation exchange membrane “Aciplex” (registered trademark) F6801 (manufactured by Asahi Kasei Corporation) for salt electrolysis was used.
  • the electrolytic voltage was measured by measuring the potential difference between the cathode and the anode. In order to measure the initial electrolysis performance of the anode, the electrolysis voltage was measured after 5 days from the start of electrolysis.
  • the electrolysis conditions were a current density of 6 kA / m 2 , a salt water concentration of 205 g / L in the anode cell, a NaOH concentration of 32% by mass in the cathode cell, and a temperature of 90 ° C.
  • As a rectifier for electrolysis “PAD36-100LA” (manufactured by Kikusui Electronics Co., Ltd.) was used.
  • Example 1 As the conductive base material, a titanium expanded metal having a mesh center distance (SW) of 2.1 mm, a mesh center distance (LW) of 3 mm, and a plate thickness of 0.81 mm was used. The plate thickness was measured with a thickness meter. SW, LW, St, the aperture ratio, and the sum of the peripheral lengths of the openings are images obtained by observing a predetermined range of the surface of the conductive substrate with an image observation device such as a microscope and photographing the projection surface. It was determined by analyzing the data. As a method for analyzing image data, “Image J”, which was developed by the National Institutes of Health (NIH) and used publicly, was used for image processing.
  • NASH National Institutes of Health
  • the image size used for the image processing was in the range of 8.0 ⁇ 5.3 mm of the conductive substrate. That is, for the openings existing in this range, the distance between the short direction center of the mesh specified for each of the adjacent openings, the distance between the center of the long direction of the mesh, and the mesh of the opening part The value obtained by subtracting the shortest direction maximum opening of the mesh of the opening from the short direction center distance was measured, and the average value thereof was calculated as SW, LW, and St, respectively.
  • an aqueous ruthenium chloride solution (manufactured by Tanaka Kikinzoku Co., Ltd., ruthenium concentration 100 g / L) is adjusted to 5 ° C. or less with dry ice so that the element ratio (molar ratio) of ruthenium, iridium and titanium is 25:25:50.
  • the coating liquid CL1 is poured into a liquid receiving vat of the coating machine, and the EPDM sponge roll is rotated to suck up and impregnate the coating liquid CL1, and the PVC roll is brought into contact with the upper part of the sponge roll. Arranged. And it applied through the electroconductive base material which gave the pre-treatment between the said EPDM sponge roll and the said PVC roll. Immediately after the coating, the conductive substrate after the coating was passed between two EPDM sponge rolls wound with cloth, and the excess coating solution was wiped off. Then, after drying at 50 ° C. for 10 minutes, baking was performed in the air at 475 ° C. for 10 minutes.
  • the cycle consisting of roll coating, drying and firing was repeated a total of 7 times, followed by further firing for 1 hour at 520 ° C. to form a black-brown first catalyst layer on the conductive substrate.
  • the coating liquid is changed to CL2
  • roll coating is performed in the same manner as when coating is performed using the coating liquid CL1
  • drying is performed in the atmosphere.
  • Firing was performed at 440 ° C. for 10 minutes.
  • it was baked at 440 ° C. for 60 minutes in the atmosphere to produce an electrode for electrolysis.
  • the obtained electrode for electrolysis had a thickness of 0.81 mm, an aperture ratio of 7.4%, the number of apertures per projected area of the electrode exceeded 20 / cm 2 , and a value obtained by dividing the sum of the peripheral lengths of the apertures by the aperture ratio.
  • the shape of the opening was observed to be the same as that in FIG. 4A, and the opening 100 was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.28, and the value obtained by dividing St by SW was 0.76.
  • Example 1 The conductive base material in Example 1 was a titanium expanded metal having a mesh center distance (SW) of 3 mm, a mesh center distance (LW) of 6 mm, and a plate thickness of 1.0 mm. Except for the above, an electrode for electrolysis was produced in the same manner as in Example 1. The obtained electrode for electrolysis had a thickness of 1.0 mm, an aperture ratio of 37.8%, the number of apertures per projected area of the electrode was 13 / cm 2 , and the value obtained by dividing the total perimeter of the aperture by the aperture ratio was 1.06. In addition, the shape of the opening was the same as that in FIG.
  • the opening 100 ′ was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 ′ is vertically symmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.03, and the value obtained by dividing St by SW was 0.667.
  • Example 2 The conductive substrate in Example 1 is made of titanium having a mesh center distance (SW) of 2.2 mm, a mesh mesh center distance (LW) of 4.2 mm, and a plate thickness of 0.8 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that expanded metal was used.
  • the obtained electrode for electrolysis had a thickness of 0.80 mm, an aperture ratio of 10.9%, the number of apertures per projected area of the electrode was 20 / cm 2 , and the value obtained by dividing the sum of the peripheral lengths of the apertures by the aperture ratio was 3.26.
  • the shape of the opening was the same as that shown in FIG.
  • the opening 100 was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.64, and the value obtained by dividing St by SW was 0.73.
  • Example 3 The conductive base material in Example 1 is made of titanium having a mesh center distance (SW) of 2.3 mm, a mesh mesh center distance (LW) of 3.3 mm, and a plate thickness of 0.83 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that expanded metal was used.
  • the obtained electrode for electrolysis had a thickness of 0.83 mm, an aperture ratio of 9.25%, the number of openings per projected area of the electrode exceeded 20 / cm 2 , and a value obtained by dividing the sum of the peripheral lengths of the openings by the aperture ratio. Was 3.65.
  • the shape of the opening was observed to be the same as that in FIG.
  • the opening 100 was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.27, and the value obtained by dividing St by SW was 0.70.
  • Example 4 The conductive base material in Example 1 is made of titanium having a mesh center distance (SW) of 2.3 mm, a mesh mesh center distance (LW) of 3.3 mm, and a plate thickness of 0.81 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that expanded metal was used.
  • the obtained electrode for electrolysis had a thickness of 0.81 mm, an aperture ratio of 22.1%, the number of apertures per projected area of the electrode exceeded 20 / cm 2 , and a value obtained by dividing the sum of the peripheral lengths of the apertures by the aperture ratio.
  • the shape of the opening was observed to be the same as that in FIG.
  • the opening 100 was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.28, and the value obtained by dividing St by SW was 0.43.
  • Example 5 The conductive base material in Example 1 is made of titanium having a mesh center distance (SW) of 1.6 mm, a mesh mesh center distance (LW) of 3.0 mm, and a plate thickness of 0.56 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that expanded metal was used.
  • the obtained electrode for electrolysis had a thickness of 0.56 mm, an aperture ratio of 17.5%, the number of openings per projected area of the electrode was 43 / cm 2 , and the value obtained by dividing the sum of the peripheral lengths of the openings by the aperture ratio was 3.30.
  • the shape of the opening was observed to be the same as that in FIG.
  • the opening 100 was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.88, and the value obtained by dividing St by SW was 0.65.
  • Example 6 The conductive substrate in Example 1 is made of titanium having a mesh center distance (SW) of 2.1 mm, a mesh center distance (LW) of 3.1 mm, and a plate thickness of 0.81 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that expanded metal was used.
  • the obtained electrode for electrolysis had a thickness of 0.81 mm, an aperture ratio of 15.5%, the number of apertures per projected area of the electrode exceeded 20 / cm 2 , and a value obtained by dividing the sum of the peripheral lengths of the apertures by the aperture ratio.
  • the shape of the opening was observed to be the same as that in FIG.
  • the opening 100 was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.42, and the value obtained by dividing St by SW was 0.67.
  • Example 7 For the titanium expanded metal produced in the same manner as in Example 6 (SW: 2.2 mm, LW: 3.2 mm, plate thickness 0.82 mm), the coating liquid CL1 in Example 1 was treated in the same manner as in Example 1. The first catalyst layer was formed on the conductive substrate. Next, an aqueous ruthenium nitrate solution (manufactured by Furuya Metals Co., Ltd., ruthenium concentration 100 g / wt) so that the element ratio (molar ratio) of ruthenium, iridium, titanium, and vanadium is 21.25: 21.25: 42.5: 15.
  • aqueous ruthenium nitrate solution manufactured by Furuya Metals Co., Ltd., ruthenium concentration 100 g / wt
  • Titanium tetrachloride manufactured by Wako Pure Chemical Industries, Ltd.
  • an aqueous iridium chloride solution manufactured by Tanaka Kikinzoku Co., Ltd., iridium concentration 100 g / L
  • Vanadium chloride (III) manufactured by Kishida Chemical Co., Ltd.
  • the first firing temperature is 400 ° C.
  • the temperature was raised to 450 ° C. and repeated three more times.
  • baking was further performed at 520 ° C. for 1 hour to prepare an electrode for electrolysis.
  • the obtained electrode for electrolysis had a thickness of 0.82 mm, an aperture ratio of 16.1%, the number of apertures per projected area of the electrode exceeded 20 / cm 2 , and a value obtained by dividing the sum of the peripheral lengths of the apertures by the aperture ratio.
  • the shape of the opening was observed to be the same as that in FIG.
  • the opening 100 was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh. Further, the opening 100 is vertically asymmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.38, and the value obtained by dividing St by SW was 0.63.
  • Example 2 The conductive base material in Example 1 was rolled with a mesh center distance (SW) of 2.3 mm, a mesh center distance (LW) of 3.0 mm, and a sheet thickness of 0.6 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that titanium expanded metal that was not flattened by a roll was used.
  • the obtained electrode for electrolysis had a thickness of 0.6 mm, an aperture ratio of 43.3%, and a value obtained by dividing the total peripheral length of the aperture by the aperture ratio was 1.07.
  • the shape of the opening was the same as that in FIG. 4C, and the opening 100 ′ was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh.
  • the opening 100 ′ is vertically symmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 0.90, and the value obtained by dividing St by SW was 0.45.
  • Example 3 The conductive base material in Example 1 is made of titanium having a mesh center distance (SW) of 2.1 mm, a mesh mesh center distance (LW) of 4.0 mm, and a plate thickness of 0.5 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that expanded metal was used.
  • the obtained electrode for electrolysis had a thickness of 0.5 mm, an aperture ratio of 35.7%, and a value obtained by dividing the total peripheral length of the openings by the aperture ratio was 1.78.
  • the shape of the opening was the same as that in FIG. 4C, and the opening 100 ′ was symmetrical with respect to the first virtual center line 101 extending in the short direction ⁇ of the mesh.
  • the opening 100 ′ is vertically symmetric with respect to the second virtual center line 102 extending in the long direction ⁇ of the mesh. Furthermore, the value obtained by dividing the area Sa of the part a by the area Sb of the part b was 1.10, and the value obtained by dividing St by SW was 0.48.
  • the reduction in electrolysis voltage relative to Comparative Example 1 is 35 mV in Example 1, 43 mV in Example 2, 41 mV in Example 3, 8 mV in Example 4, and in Example 5. 42 mV, 19 mV in Example 6, and it was found that both can reduce the electrolysis voltage relative to Comparative Example 1.
  • Comparative Examples 2 and 3 the electrolytic voltage increased by 23 mV and 19 mV, respectively, compared to Comparative Example 1.
  • the decrease in the electrolysis voltage with reference to Comparative Example 1 is 19 mV in Example 6 and 39 mV in Example 7, and both can reduce the electrolysis voltage relative to Comparative Example 1. I understood.
  • the electrode for electrolysis according to this embodiment has a vanadium-containing catalyst layer, the effect of reducing the electrolysis voltage is further increased.
  • Example 8 The electrode for electrolysis of Example 5 was used for reactivation of the electrode with reduced activity.
  • This base electrode was attached to the rib of the anode chamber of the anode cell by welding.
  • the electrolytic voltage at a current density of 6 kA / m 2 of this substrate electrode was increased by 32 mV with respect to Comparative Example 1.
  • the electrode for electrolysis of Example 5 was welded as a renewal electrode, and it was set as the electrolytic cell containing an electrode laminated body.
  • Example 9 The conductive base material in Example 1 is made of titanium having a mesh center distance (SW) of 2.2 mm, a mesh mesh center distance (LW) of 3.0 mm, and a plate thickness of 0.52 mm.
  • An electrode for electrolysis was produced in the same manner as in Example 1 except that expanded metal was used.
  • the obtained electrode for electrolysis had a thickness of 0.52 mm, an aperture ratio of 23.3%, and a value obtained by dividing the total peripheral length of the aperture by the aperture ratio was 2.36.
  • the above-described electrode for electrolysis was used to reactivate an electrode with reduced activity.
  • the base electrode was attached to the rib of the anode chamber of the anode cell by welding.
  • the electrolysis voltage at a current density of 6 kA / m 2 of this substrate electrode was increased by 35 mV with respect to Comparative Example 1.
  • the above-mentioned electrolysis electrode was welded as a renewal electrode to obtain an electrolytic cell containing an electrode laminate.
  • the electrode for electrolysis of the present invention can be suitably used in the field of salt electrolysis because it can keep the voltage and power consumption during electrolysis low and has practical strength.
  • it is useful as an anode for salt exchange electrolysis by ion exchange membrane method, and enables high-purity chlorine gas having a low oxygen gas concentration to be produced at low voltage and low power consumption over a long period of time.
  • Electrolysis electrode 20 Opening part 100 Opening part 100 'Opening part 101 1st virtual center line 102 2nd virtual center line a Part a b part b 200 Electrolysis Cell for Electrolysis 210 Electrolyte 220 Container 230 Anode (Electrode for Electrolysis) 240 Cathode 250 Ion Exchange Membrane 260 Wiring 300 Electrode for Electrode 310 Distance in Center of Short Mesh Direction of Opening Mesh (Short Diameter SW) 320 Distance between centers of long mesh direction of opening (long diameter LW) 330 Second virtual center line 340 portion a 350 part b 360 Distance between opening and opening in short direction of opening mesh

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

有孔金属製板からなる導電性基材と、 該導電性基材の表面上に形成された少なくとも一層の触媒層と、 を備える電解用電極であって、 前記電解用電極の厚みが0.5mm超1.2mm以下であり、 前記電解用電極の開口部の周辺長の総和Bを前記電解用電極の開口率Aで除した値Cが、2超5以下である、電解用電極。

Description

電解用電極、電解槽、電極積層体及び電極の更新方法
 本発明は、電解用電極、電解槽、電極積層体及び電極の更新方法に関する。
 イオン交換膜法食塩電解とは、電解用電極を用いて塩水を電気分解(電解)し、苛性ソーダ、塩素、及び水素を製造する方法である。イオン交換膜法食塩電解プロセスにおいては、環境への負荷およびエネルギー問題の観点から、消費電力量削減のため、低い電解電圧を長期間に亘って維持できる技術が求められている。
 電解電圧の内訳を詳細に解析すると、理論的に必要な電解電圧以外に、イオン交換膜の抵抗及び電解槽の構造抵抗に起因する電圧、電解用電極である陽極及び陰極の過電圧、陽極と陰極との間の距離に起因する電圧等が含まれることが明らかになっている。また、長期に亘って電解を継続すると、塩水中の不純物等の種々の原因に惹起される電圧上昇等が生じることもある。
 上述した電解電圧の中でも、塩素発生用の陽極の過電圧を低減させることを目的として、様々な検討が行われている。例えば、特許文献1には、ルテニウム等の白金族金属の酸化物をチタン基材上に被覆して成る不溶性陽極の技術が開示されている。この陽極は、DSA(登録商標、Dimension Stable Anode:寸法安定性陽極)と呼ばれる。また非特許文献1には、DSAを用いるソーダ電解技術の変遷が記載されている。
 上述のDSAに関しては、これまでにも様々な改良がなされ、性能改善に向けた検討が行われてきた。
 例えば、特許文献2には、所定の厚み・孔径・多孔率を有する金属性の多孔板、又は所定の厚み・長径・短径・開口率を有するエクスパンデッドメタルを用いた陽極に対して、陽イオン交換膜の陽極面を可及的に近づけて電解する方法が提案されている。特許文献3には、実質上ダイヤモンド形状の金属メッシュから成り、メッシュのストランド及び開口部の割合、開口部の長手方向間隔LWD及び幅方向間隔SWDを所定の値とした陽極が提案されている。この特許文献3には、該形状を有する金属メッシュの表面上にコーティングとして、白金族金属酸化物、マグネタイト、フェライト、コバルトスピネル、または混合金属酸化物を用いることが出来ると開示されている。
 また特許文献4では、陽極基材としてチタン製エクスパンデッドメタルまたはチタン製金網を用い、該陽極基材の開口率・厚みを所定の範囲とすること、及び該陽極基材への触媒塗布後の陽極表面上の凹凸高低差の最大値を所定の範囲とすることによって、電解性能を向上させる技術が提案されている。
 さらに特許文献5においては、陽極の厚みを従来の約半分以下とし、かつ開口部の縦方向、横方向の孔開きの比率を調整することで、電解時のセル電圧を下げることができる旨が記載されており、この電極により、陰極室からイオン交換膜を介して拡散する水酸化物イオンが反応して発生する不純物ガス、すなわち、酸素ガス量を低減させる試みがなされている。
 このように従来技術では、陽極の厚みを薄くし、陽極基材の開口率を大きくする方向で、電解時の電圧を下げる方策が採用されている。
特公昭46-021884号公報 特開昭58-130286号公報 特表昭62-502820号公報 特許第4453973号明細書 国際公開第2015/108115号
相川洋明著、「国立科学博物館 技術の系統化調査報告 第8集」、独立行政法人 国立科学博物館発行、2007年3月30日、p32
 しかしながら、特許文献1に記載のDSA等の従来の陽極では、電解開始直後における過電圧が高く、触媒の活性化によって低い過電圧に落ち着くまでに一定の期間を要するため、電解時に消費電力損失が生じてしまうという問題がある。
 また、特許文献2~4では、エクスパンデッドメタルの開口率、メッシュの長手方向及び幅方向の各間隔等について検討されているが、陽極の形状と電解電圧との関係については充分に検討されたものではなく、更なる電解電圧の低減化が求められている。特に陽極メッシュ厚みが薄く、かつ開口率の高い陽極では、実用上の強度が不足する等の問題も生じる。
 特許文献5では、陽極の厚みを従来の約半分以下とすることによって、陽極の低電圧化と酸素ガス発生量の低減を試みる手法が採られているが、工業レベルでのイオン交換膜電解槽では陰極室から加圧して運転されるため、陽極メッシュ厚みが薄すぎると強度が保てず、エクスパンドメタルを2枚重ねて使用する必要がある等、陽極の強度と電解電圧の低減を満足させるには、更なる改善が必要である。
 本発明は、上述した問題を解決するためになされたものである。従って本発明は、電解時の電圧・消費電力量を低く抑えることが可能であり、かつ実用上の強度を兼ね備えた電解用電極及び該電解用電極を備えた電解槽を提供することを目的とする。
 本発明者らは、前記課題を解決するために鋭意研究を重ねた。その結果、電解用電極の厚みを特定の範囲とし、さらに該電解用電極の開口部の周辺長の総和を該電解用電極の開口率で除した値を特定の範囲とすることにより、電解時の電圧・消費電力量を低く抑えることが可能であり、かつ実用上の強度を兼ね備えた電解用電極を与えることを見出し、本発明をなすに至った。また、本発明者らは、電解用電極の開口部を特定の形状とすることによっても、上記課題を解決できることを見出し、本発明をなすに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 有孔金属製板からなる導電性基材と、
 該導電性基材の表面上に形成された少なくとも一層の触媒層と、
 を備える電解用電極であって、
 前記電解用電極の厚みが0.5mm超1.2mm以下であり、
 前記電解用電極の開口部の周辺長の総和Bを前記電解用電極の開口率Aで除した値Cが、2超5以下である、電解用電極。
[2]
 前記開口率Aが、5%以上25%未満である、[1]に記載の電解用電極。
[3]
 前記開口部のメッシュの短目方向中心間距離SWが1.5以上3以下であり、かつ、前記メッシュの長目方向中心間距離LWが2.5以上5以下である、[1]又は[2]に記載の電解用電極。
[4]
 前記電解用電極の厚みが、0.5mm超0.9mm以下である、[1]~[3]のいずれかに記載の電解用電極。
[5]
 下記式(1)で表される値Eが、0.5以上である、[1]~[4]のいずれかに記載の電解用電極:
  E=B/(A×(SW+LW1/2)   (1)
[6]
 [1]~[5]のいずれかに記載の電解用電極を陽極として含む陽極室と、
 陰極を含む陰極室と、
 前記陽極室と前記陰極室とを隔離するイオン交換膜と、
 を備える、電解槽。
[7]
 前記イオン交換膜の陽極側表面において、当該イオン交換膜を構成するポリマーからなる突出部を有する、[6]に記載の電解槽。
[8]
 [1]~[3]のいずれかに記載の電解用電極と、
 前記電解用電極とは異なる基材電極と、
 を備える、電極積層体。
[9]
 前記電解用電極の厚みが、0.5mm超0.65mm以下である、[8]に記載の電極積層体。
[10]
 [1]~[3]のいずれかに記載の電解用電極を、電解槽における既設の電極上に溶接する工程を含む、電極の更新方法。
[11]
 有孔金属製板からなる導電性基材と、
 該導電性基材の表面上に形成された少なくとも一層の触媒層と、
 を備える電解用電極であって、
 前記電解用電極の開口部の形状が、メッシュの短目方向に伸びる第1の仮想中心線に対して左右対称であり、かつ、メッシュの長目方向に伸びる第2の仮想中心線に対して上下非対称であり、
 前記電解用電極の厚みが0.5mm超1.2mm以下である、電解用電極。
[12]
 前記開口部を、前記第2の仮想中心線により一方の部分aと他方の部分bに区分したとき、前記部分aの面積Saを前記部分bの面積Sbで除した値が、1.15以上2.0以下である、[11]に記載の電解用電極。
[13]
 前記開口部のメッシュの短目方向中心間距離SWから前記開口部のメッシュの短目方向最大目開きを減じた値Stを、前記SWで除した値が、0.4以上である、[11]又は[12]に記載の電解用電極。
 本発明により、電解時の電圧・消費電力量を低く抑えることが可能であり、かつ実用上の強度を兼ね備えた電解用電極が提供される。
図1は、電解用電極及び開口部を正方形と仮定し、開口部の周辺長の総和と該電解用電極の開口率との関係について説明するための模式図である。 図2は、本実施形態の一態様に係る電解用電極をマイクロスコープで観察した投影面の典型例に係る模式図である。 図3は、図2の模式図に基づき、本実施形態における開口部のメッシュの短目方向中心間距離SWとメッシュの長目方向中心間距離LWと距離dの関係を示す説明図である。 図4(A)は、本実施形態の他の態様に係る電解用電極の開口部の形状の典型例を模式的に示す説明図である。図4(B)は、図4(A)における、部分aと部分bを示す説明図である。図4(C)は、従来の電解用電極の開口部の形状の典型例を模式的に示す説明図である。 図5は、本実施形態の他の態様に係る電解用電極における、隣接する開口部の位置関係の例を模式的に示す説明図である。 図6は、本実施形態の電解槽の断面の一例を示す模式図である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について、詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
 本実施形態の第1の態様に係る電解用電極(以下、単に「第1の電解用電極」ともいう。)は、有孔金属製板からなる導電性基材と、該導電性基材の表面上に形成された少なくとも一層の触媒層と備える電解用電極であって、前記電解用電極の厚みが0.5mm超1.2mm以下であり、前記電解用電極の開口部の周辺長の総和Bを前記電解用電極の開口率Aで除した値Cが、2超5以下である。このように構成されているため、第1の電解用電極は、電解時の電圧・消費電力量を低く抑えることができ、かつ、実用上の強度も兼ね備えている。第1の電解用電極は、特にイオン交換膜法食塩電解に好適な塩素発生用電極として用いることができる。
 本実施形態の第2の態様に係る電解用電極(以下、単に「第2の電解用電極」ともいう。)は、有孔金属製板からなる導電性基材と、該導電性基材の表面上に形成された少なくとも一層の触媒層と、を備える電解用電極であって、前記電解用電極の開口部の形状が、メッシュの短目方向に伸びる第1の仮想中心線に対して左右対称であり、かつ、メッシュの長目方向に伸びる第2の仮想中心線に対して上下非対称であり、前記電解用電極の厚みが0.5mm超1.2mm以下である。このように構成されているため、第2の電解用電極も、電解時の電圧・消費電力量を低く抑えることができ、かつ、実用上の強度も兼ね備えている。第2の電解用電極も、特にイオン交換膜法食塩電解に好適な塩素発生用電極として用いることができる。
 以下、「本実施形態に係る電解用電極」と称するときは、第1の電解用電極及び第2の電解用電極を包含するものとする。
(導電性基材)
 本実施形態に係る電解用電極において、導電性基材は、有孔金属製板からなり、飽和に近い高濃度の食塩水中で、塩素ガス発生雰囲気で用いられる。そのため、該導電性基材の材質としては、耐食性のあるバルブ金属が好ましい。バルブ金属としては、以下に限定されないが、例えば、チタン、タンタル、ニオブ、ジルコニウム等が挙げられる。該バルブ金属の中でも、経済性及び触媒層との親和性の観点からチタンが好ましい。
 導電性基材の形状としては、金属製で孔を有する平坦状のものであれば特に限定されないが、例えば、エクスパンドメタル、多孔板、金網等の形状が挙げられ、本実施形態においてはエクスパンドメタルが好適に用いられる。エクスパンドメタルとは、一般的に、金属製平板や金属箔に対し、上刃と下刃でスリットを入れながら押し広げてメッシュを形成し、所望の厚みまで圧延ロール掛け等により平坦化加工したものである。連続フープ加工が可能なため生産効率が高く、元の板材の廃棄ロスもなく経済性に優れており、また一体構造のため、金網と異なり完全な電気伝導度が確保され、ほどけることがない。
 本実施形態に係る電解用電極は、上述の導電性基材の表面上に少なくとも一層の触媒層が形成されて構成される。本実施形態に係る電解用電極の厚みは、0.5mm超1.2mm以下である。電解用電極の厚みが0.5mm以下の薄い基材であると、電解時に生ずる陽極室と陰極室の圧力差や陰極の押しつけ圧力により、イオン交換膜が陽極を押しつける圧力で陽極が落ち込み、電極間距離が広がるため、電解電圧が高くなる。また電解用電極の厚みが1.2mm超であると、本実施形態において好適な開口率及び開口部のSW(開口部のメッシュの短目方向中心間距離)及びLW(開口部のメッシュの長目方向中心間距離)を有するエクスパンドメタルが形成できない。電解用電極の厚みは、上記と同様の観点から、好ましくは0.5mm超1.0mm以下であり、より好ましくは0.5mm超0.9mm以下であり、更に好ましくは0.7mm以上0.9mm以下である。
 第1の電解用電極においては、当該電解用電極の開口部の周辺長の総和Bを電解用電極の開口率Aで除した値C(=B/A)が2超5以下であり、好ましくは2.5以上4.5以下であり、より好ましくは3以上4以下である。
 ここでいう開口率Aとは、電解用電極のいずれか一方の表面の投影面積Sにおける開口部の総面積Sの割合(S/S)をいう。開口部の総面積Sとは、電解用電極において、陽イオンや電解液等が導電性基材(有孔金属製板)によって遮断されない領域の投影面積の総計ということができる。
 また、ここでいう開口部の周辺長の総和Bとは、電解用電極の単位面積あたりにおける開口部の周辺の長さLiをそれぞれ計測し、該周辺長を単位面積当たりの個数nで積算した値(ΣLi、i=1~n)をいう。
 開口部の周辺長の総和と開口率との関係について、図1を参照して説明する。なお、図1では、説明の便宜上、開口部を正方形と仮定しているが、本実施形態に係る電解用電極に形成される開口部の形状とは異なるものである。図1(a)に示すように、正方形(4mm×4mm)の電極1において、正方形(2mm×2mm)の開口部2が1つ形成されているとき、開口部面積は4mm、開口率は25%、開口部の周辺長の総和は8mmとなる。一方、図1(b)に示すように、同じ形状の電極1において正方形の(1mm×1mm)開口部3が4つ形成されているとき、開口部面積は4mmで図1(a)と同様であり、開口率も25%で図1(a)と同様であるが、開口部の周辺長の総和は16mmとなり、図1(a)よりも大きくなる。このように、同じ開口率で比べたとき、開口部の周辺長の総和が大きい方が開口部の数も多くなる。つまり、開口部の周辺長の総和を開口率で除した値が大きくなるほど開口部の数が多くなることを意味する。開口部の数が多くなるほど、ガス流路が分散するため、滞留気泡が低減され、電圧上昇の抑制に寄与することとなる。
 上述した開口率及び開口部の周辺長の総和を計測する方法としては、以下に限定されないが、例えば、(I)電解用電極を縦10cm横10cmの正方形に切り出し、コピー機により複写して得られた紙より開口部分を切り出し、開口部分として切り出されたものの重量及び周辺長を各々計測する方法;(II)電解用電極のいずれか一方の表面をマイクロスコープ等の画像観察機器で観察し、投影面を撮影した画像データを解析することにより計測する方法等が挙げられる。かかる画像データの典型例を模式的に示した図を図2に示す。図2に示されているように、電解用電極10には複数の開口部20が形成されていることがわかる。
 上記(I)について、開口率(%)は、開口部分を切り出す前の紙の重量w1と、開口部分を全て切り出した後の紙の重量w2から、100×(w1-w2)/w1により算出できる。また、周辺長の総和は、開口部分として切り出されたものの各周辺長の合計として求めることができる。
 上記(II)について、画像データの解析方法としては、例えば、米国国立衛生研究所(NIH)が開発し公有の「Image J」を画像処理に用いること等が挙げられる。
 電解用電極の開口部の周辺長の総和Bを電解用電極の開口率Aで除した値C(=B/A)が2以下であると、開口率が大きくなるか、あるいは少数の大きな開口部を有する電解用電極となり、電解用電極の比表面積が小さくなることで、見かけ上の電流密度が高くなり、電解電圧が上昇する。また上述のCの値が5超であると、開口率が低くなるか、あるいは小さな開口部を多数有する導電性基材となり、電解液の循環や電極で発生するガスの脱離性に悪影響を生じさせることで、電解電圧が上昇する恐れがある。
 従来技術では、電極の厚みを0.5mm以下として電解電圧を下げるための種々の技術が開示されていたが、第1の電解用電極においては、電解用電極の厚みを、0.5mm超1.2mm以下とし、該電解用電極の開口部の周辺長の総和Bを開口率Aで除した値C(=B/A)が2超5以下とすることで、電解時の電圧・消費電力量を低く抑え、かつ実用上の強度を兼ね備えた電解用電極としている。
 本実施形態に係る電解用電極において、電解用電極の開口率は、5%以上25%未満であることが好ましく、7%以上20%以下であることがより好ましく、10%以上18%以下であることが特に好ましい。電解用電極の開口率が5%以上であると、電解液の液循環に悪影響を与えることなく、電解時に電極で発生するガスが滞留する等の悪影響を効果的に解消することができる傾向にあり、電解電圧を低減できる傾向にある。また電解用電極の開口率が25%未満であると、電解用電極の比表面積を十分に確保できる、すなわち、イオン交換膜に対向する実質的な電極表面を十分に確保できる傾向にあり、結果として見かけ上の電流密度を低くでき、電解電圧を低減できる傾向にある。
 本実施形態に係る電解用電極において、電解用電極の開口部一つの周辺長は、1mm以上が好ましく、2.5mm以上がより好ましい。電解用電極の開口部一つの周辺長が1mm以上であると、開口部における電解液流れの圧力損失を抑えることができ、電解電圧を低減できる傾向にある。電解用電極の開口部一つの周辺長は、電解用電極の比表面積を十分に確保する観点から、4.8mm以下が好ましく、4.55mm以下がさらに好ましい。電解用電極の開口部一つの周辺長は、上述した電解用電極のいずれか一方の表面をマイクロスコープ等の画像観察機器で観察し、投影面を撮影した画像データを解析することにより計測する方法(画像解析)によって測定することができる。
 本実施形態に係る電解用電極において、電解用電極の開口部のメッシュの短目方向中心間距離である短径SWが1.5mm以上3mm以下であり、かつメッシュの長目方向中心間距離である長径LWが2.5mm以上5mm以下であることが好ましく、短径SWが1.5mm以上2.5mm以下であり、かつ長径LWが3mm以上4.5mm以下であることがより好ましい。
 上記SW及びLWは図3のように特定できる。すなわち、SWは、メッシュの短目方向に隣接する2つの開口部の中心を結んだ距離として特定できる。また、LWはメッシュの長目方向に隣接する2つの開口部の中心を結んだ距離として特定できる。
 上記SWが1.5mm以上であり、上記LWが2.5mm以上であると、本実施形態において好適な厚み及び開口率を確保しやすくなる。また、上記SWが3mm以下であり、かつ、上記LWが5mm以下であると、本実施形態において好適な開口率の範囲を確保しやすくなる、すなわち、電解用電極の比表面積を確保しやすくなる。
 さらに、図3に示すように、開口部間の距離dも調整することが好ましい。距離dは、SWの二乗にLWの二乗を加えた値の平方根で算出され、この数値が小さいほどガス等の物質移動が促進される傾向にある。かかる観点から、dの値は、2.9~5.8mmであることが好ましく、3.4~5.1mmであることがより好ましい。
 本実施形態に係る電解用電極において、開口部の周辺長の総和B、開口部の開口率A、開口部の短径SW及び開口部の長径LWから得られ、下記式(1)で表される値Eが、0.5以上であることが好ましく、0.69以上であることがより好ましく、0.69以上1.5以下であることがさらに好ましい。
  E=B/(A×(SW+LW1/2)   (1)
 式(1)において、(SW+LW1/2は前述のdに対応している。このように、A、B及びdの関係を適切な範囲に調整することにより、開口部の空間的な分散度合が好適となり、電解電圧を低減できる傾向にある。すなわち、電解用電極におけるEの値が0.5以上1.5以下であると、電解液の液循環に対して電解用電極の開口部の空間的な分散度合が好適となり、電解電圧を低減できる傾向にある。
 次いで、第2の電解用電極について詳述する。第2の電解用電極は、有孔金属製板からなる導電性基材と、該導電性基材の表面上に形成された少なくとも一層の触媒層と、を備える電解用電極であって、電解用電極の開口部の形状が、メッシュの短目方向に伸びる第1の仮想中心線に対して左右対称であり、かつ、メッシュの長目方向に伸びる第2の仮想中心線に対して上下非対称であり、前記電解用電極の厚みが0.5mm超1.2mm以下である。
 第2の電解用電極における開口部形状の典型例を図4(A)に示す。図4(A)における開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称である。左右対称とは、第1の仮想中心線を基準として開口部を右部分と左部分に分けたとき、右部分の形状が左部分の形状に一致すること、すなわち第1の仮想中心線を基準として右部分と左部分とが線対称であることをいう。左右対称であることは、上述した画像解析により確認することができる。
 さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称である。上下非対称とは、第2の仮想中心線を基準として開口部を上部分と下部分に分けたとき、上部分の形状が下部分の形状と一致しないこと、すなわち第2の仮想中心線を基準として上部分と下部分とが線対称とならないことをいう。左右対称であることは、上述した画像解析により確認することができる。例えば、図4(B)に示す例において、開口部100はメッシュの長目方向βに伸びる第2の仮想中心線102を基準としたとき、上側の部分aと下側の部分bに区分でき、部分aと部分bの形状を比較することで容易に確認することができる。
 第2の電解用電極が、電解時の電圧・消費電力量を低く抑えることができる理由については明らかではないが、本発明者らは下記に起因するものと推測している。ただし、かかる推測に限定されるものではなく、上述した構成を備える電解用電極である限り、第2の電解用電極に包含される。
 従来の電解用電極における開口部の典型的な形状としては、上記第1の仮想中心線に対して左右対称であり、かつ、上記第2の仮想中心線に対して上下対称であるものが挙げられる。例えば、図4(C)に示す例において、開口部100’は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称である。また、開口部100’において、メッシュの長目方向βに伸びる第2の仮想中心線102を基準としたとき、仮想中心線102を基準として上側の部分aと下側の部分bとは線対称となっている。このような形状である場合、典型的には、開口部は菱形形状であり、当該開口部を構成する4辺は、当該開口部の中心点から略等距離に位置することとなる。このような従来の電解用電極において、発生するガス(典型的には球状である。)が開口部を通過しようとするとき、当該ガスが開口部を構成する4辺(すなわち4点)と接触することで通過抵抗が増加する傾向にあると推測される。すなわち、電解時に電極で発生するガスが開口部に内接して滞留し易い傾向にあり、電解液の液循環に悪影響を与えて電解電圧が上昇するといった問題が生じうる。
 これに対して、第2の電解用電極は、第1の仮想中心線に対して左右対称であり、かつ、第2の仮想中心線に対して上下非対称であることにより、電極で発生するガス(典型的には球状である。)が開口部を通過しようとするときの通過抵抗が低減される傾向にあると推測される。すなわち、電解時に電極で発生するガスと開口部を構成する各辺との接触点が少なくなる傾向にあるため、ガスを効果的に脱離させることができる傾向にあり、電解液の液循環に悪影響を与えることなく、電解電圧を低減できるものとなる。
 第2の電解用電極において、いずれか一方の表面の投影面積1cmに対する開口部の面積は、特に限定されないが、電解時の電圧・消費電力量をより低減する観点から、0.05cm以上であることが好ましい。また、上記投影面積1cmに対する開口部数についても、特に限定されないが、電解時の電圧・消費電力量をより低減する観点から、15個以上であることが好ましい。上記開口部の面積及び開口部数の値は、上述した画像解析により測定することができる。
 第2の電解用電極において、開口部を、前記第2の仮想中心線により一方の部分aと他方の部分bに区分したとき、前記部分aの面積Saを前記部分bの面積Sbで除した値(Sa/Sb)が、1.15以上2.0以下であることが好ましい。この場合、上述した加工部の上下非対称性がより顕著となる傾向にある。すなわち、電解用電極の開口部の形状が、メッシュの長目方向に伸びる第2の仮想中心線に対して上下非対称であることは、Sa/Sbの値からも示唆されるものといえる。また、Sa/Sbの値が1.15以上2.0以下であると、電解液の液循環に悪影響を与えることなく、電解時に電極で発生するガスを効果的に脱離させることができる傾向にあり、電解電圧を低減できる傾向にある。Sa及びSbは、図4(B)の例において、それぞれ部分aの面積及び部分bの面積に該当し、Sa>Sbとなる。Sa及びSbの値は、上述した画像解析により測定することができる。
 第2の電解用電極において、前記開口部のメッシュの短目方向中心間距離SWから前記開口部のメッシュの短目方向最大目開きを減じた値Stを、前記SWで除した値(St/SW)が、0.4以上であることが好ましく、0.67超1.0未満であることがより好ましい。図5に示す例において、電解用電極300には複数の開口部が形成されており、SWは、隣接する2つの開口部より、開口部のメッシュの短目方向中心間距離310により特定される。ここでの「隣接する2つの開口部」とは、ある開口部から第1の仮想中心線を伸ばしたとき、その第1の仮想中心線が最初に接する開口部を意味する。また、LWは、隣接する2つの開口部より、開口部のメッシュの長目方向中心間距離320により特定される。ここでの「隣接する2つの開口部」とは、ある開口部から第2の仮想中心線を伸ばしたとき、その第2の仮想中心線が最初に接する開口部を意味する。なお、図5では、電解用電極300において、第2の仮想中心線330は部分aと部分bとに開口部を区分するものであり、仮想中心線330を基準とし、部分a(340)と部分b(350)とが、上下非対称であることが示されている。さらに、図5では、開口部のメッシュの短目方向に隣接する2つの開口部間の距離360が、開口部のメッシュの短目方向中心間距離SWから前記開口部のメッシュの短目方向最大目開きを減じた値Stに対応する。なお、開口部のメッシュの短目方向最大目開きは、図4(A)に示されている例では第1の仮想中心線101の長さに対応する。St/SWが、0.4以上であると、電解液の液循環に悪影響を与えることなく、電解用電極の比表面積を十分に確保でき、電解電圧を低減できる傾向にある。St及びSWの値は、上述した画像解析により測定することができる。
 本実施形態に係る電解用電極は、上述の導電性基材の表面上に少なくとも一層の触媒層を形成してなるが、該導電性基材における触媒層との接触表面は、触媒層との密着性を向上させるために、導電性基材の表面積を増大化する処理を実施することが好ましい。表面積増大化処理の方法としては、以下に限定されないが、例えば、カットワイヤ、スチールグリッド、アルミナグリッド等を用いるブラスト処理;硫酸又は塩酸を用いる酸処理等が挙げられる。これらの処理の中でも、ブラスト処理により導電性基材の表面に凹凸を形成させた後、更に酸処理する方法が好ましい。
(触媒層)
 本実施形態に係る電解用電極における導電性基材の表面上に、好ましくは上述の処理を施した導電性基材の表面上に形成される触媒層は、電解電圧を下げるために、白金族金属酸化物、マグネタイト、フェライト、コバルトスピネル、または混合金属酸化物等の電極触媒物質を含むことが好ましい。電解時の電圧をより低く抑える観点から、上述した電極触媒物質の中でも、ルテニウム元素、イリジウム元素及びチタン元素が、それぞれ、酸化物の形態にあることがより好ましい。
 ルテニウム酸化物としては、以下に限定されないが、例えばRuO等が挙げられる。
 イリジウム酸化物としては、以下に限定されないが、例えばIrO等が挙げられる。
 チタン酸化物としては、以下に限定されないが、例えばTiO等が挙げられる。
 本実施形態に係る電解用電極の触媒層において、ルテニウム酸化物、イリジウム酸化物、及びチタン酸化物は、固溶体を形成していることが好ましい。ルテニウム酸化物、イリジウム酸化物、及びチタン酸化物が固溶体を形成することによって、ルテニウム酸化物の耐久性が一層向上し、電解電圧が長期に亘って低く抑えられる傾向にある。
 固溶体とは、一般的に、2種類以上の物質が互いに溶け合い、全体が均一の固相となっているものをいう。固溶体を形成する物質としては、金属単体、金属酸化物等が挙げられる。特に本実施形態に好適な金属酸化物の固溶体の場合には、酸化物結晶構造における単位格子中の等価な格子点上に、2種類以上の金属原子が不規則に配列している。具体的には、ルテニウム酸化物とイリジウム酸化物とチタン酸化物とが相互に混合し、ルテニウム酸化物の側から見れば、ルテニウム原子がイリジウム原子若しくはチタン原子又はこれらの双方によって置換された置換型固溶体であることが好ましい。その固溶状態は特に限定されず、部分固溶の領域が存在していてもよい。
 固溶によって、結晶構造における単位格子の大きさがわずかに変化する。この変化の度合いは、例えば、粉末X線回折の測定において、結晶構造に起因する回折パターンは変化せず、単位格子の大きさに起因するピーク位置が変化すること等から確認することができる。
 本実施形態に係る電解用電極の触媒層において、ルテニウム元素、イリジウム元素、及びチタン元素の含有割合は、ルテニウム元素1モルに対して、イリジウム元素0.2~3モルであり、かつ、チタン元素0.2~8モルであることが好ましく;ルテニウム元素1モルに対して、イリジウム元素0.3~2モルであり、かつ、チタン元素0.2~6モルであることがより好ましく;ルテニウム元素1モルに対して、イリジウム元素0.5~1.5モルであり、かつ、チタン元素0.2~3モルであることが特に好ましい。3種類の元素の含有割合を上述の範囲とすることによって、電解用電極の長期耐久性がより向上する傾向にある。イリジウム、ルテニウム、及びチタンは、それぞれ、酸化物以外の形態、例えば金属単体として触媒層に含まれていてもよい。
 本実施形態に係る電解用電極における触媒層は、構成元素として、上述したルテニウム元素、イリジウム元素、及びチタン元素のみを含有していてもよいし、これら以外に、他の金属元素を含んでいてもよい。他の金属元素の具体例としては、以下に限定されないが、タンタル、ニオブ、スズ、白金、バナジウム等から選ばれる元素が挙げられる。これら他の金属元素の存在形態としては、例えば酸化物中に含まれる金属元素として存在すること等が挙げられる。
 本実施形態における触媒層が、他の金属元素を含んでいる場合、その含有割合は、触媒層に含まれる金属元素の全部に対する他の金属元素のモル比として、20モル%以下であることが好ましく、10モル%以下であることがより好ましい。
 本実施形態における触媒層の厚さは、0.1~5μmであることが好ましく、0.5~3μmであることがより好ましい。触媒層の厚さを上述の下限値以上とすることにより、初期電解性能を十分に維持できる傾向にある。また触媒層の厚みを上述の上限値以下とすることにより、経済性に優れた電解用電極が得られる傾向にある。触媒層の厚みは、基材断面を切断し、光学顕微鏡や電子顕微鏡により計測することができる。
 触媒層は、一層のみから成っていてもよいし、二層以上であってもよい。
 触媒層が二層以上である場合には、そのうちの少なくとも一層が本実施形態における触媒層であればよい。触媒層が二層以上である場合には、少なくとも最内層が本実施形態における触媒層であることが好ましい。少なくとも最内層が、ルテニウム酸化物、イリジウム酸化物、及びチタン酸化物から形成される固溶体であることにより、触媒層の耐久性が一層向上する傾向にある。本実施形態における触媒層を、同じ組成又は異なる組成で二層以上有している態様も好ましい。
 触媒層が二層以上である場合であっても、本実施形態における触媒層の厚さは、上記のとおり、0.1~5μmであることが好ましく、0.5~3μmであることがより好ましい。
(電解用電極の製造方法)
 次に、本実施形態に係る電解用電極の製造方法について、導電性基材としてエクスパンドメタルを用いる場合を例にして詳細に説明する。
 本実施形態に係る電解用電極は、導電性基材として、バルブ金属製平板に上刃と下刃でスリットを入れながら押し広げてメッシュを形成し、所望の厚みまで圧延ロール掛け等により圧延して平坦化加工したエクスパンドメタルを用い、該導電性基材に、上述の表面積増大化処理を施した後、該導電性基材上に、ルテニウム元素、イリジウム元素、及びチタン元素を含む触媒層を形成することにより、製造することができる。
 本実施形態におけるエクスパンドメタルの製造方法としては、バルブ金属製平板に上刃と下刃でスリットを入れながら押し広げてメッシュを形成する工程、次いで、ロール掛け等により圧延して平坦化加工する工程を経ることにより、導電性基材の表面上に少なくとも一層の触媒層を形成してなる電解用電極としたときに、厚みが0.5mm超1.2mm以下であり、かつ開口部の周辺長の総和Bを電解用電極の開口率Aで除した値C(=B/A)が2より大きく5以下となるエクスパンドメタルを製造する。
 電解用電極の厚みは、導電性基材の材料として用いるバルブ金属製平板の厚み、及びロール掛け等により圧延する平坦化加工時の圧延強度を調整することによって、本実施形態に好適な範囲に調整することができる。
 また、電解用電極の開口率と、開口部のメッシュ短目方向中心間距離である短径SWは、バルブ金属製平板に上刃と下刃でスリットを入れながら押し広げてメッシュを形成する一連の工程において、上刃の上下運動に連動して送りローラーによって連続的に前方へ送る刻み幅を調整することによって、本実施形態に好適な範囲に調整することができる。すなわち、本実施形態の開口部の分散の程度を調整する観点から、バルブ金属製平板に上刃と下刃でスリットを入れる際の刻み幅を0.8mm以下に調整することが好ましい。また、本実施形態の開口部の形状を維持する観点から0.5mm以上が好ましい。
 さらに、開口部のメッシュ長目方向中心間距離である長径LWは、バルブ金属製平板にスリットを入れる上刃と下刃の型を適切に選択することにより、本実施形態に好適な範囲に調整することができる。
 さらにまた、電解用電極の開口部の周辺長の総和は、開口部の数の増減に依存して増減することから、スリットを入れる上刃と下刃の数等により調整できる。
 一方、パンチングメタル等の多孔版を導電性基材として採用する場合は、金属の平板に対して、パンチングプレスの金型で穴あけ加工を施して得ることができ、その際に、例えば、当該金型の形状や配置を適切に選択することにより、開口率、開口部の周辺長の総和、SW及びLWを本実施形態の好適な範囲に調整することができる。
 さらに、金網を導電性基材として採用する場合は、種々公知の方法により得られた金網製造用の金属線を複数使用して織り込むことによって得ることができ、その際に、例えば、金網製造用の金属線の単位長さ当たりの重量(デニール、金属線の太さに相当)や、金網の単位面積当たりに織り込む金属線の本数(メッシュ数)を適切に選択することにより、開口率、開口部の周辺長の総和、SW及びLWを本実施形態の好適な範囲に調整することができる。また、上記同様の制御により、第2の電解用電極に係る形状が得られやすくなる傾向にある。
 上述した導電性基材上への触媒層の形成は熱分解法により行うことが好ましい。
 熱分解法による製造方法では、導電性基材上に、上記元素を含有する化合物(前駆体)の混合物を含む塗工液を塗工した後、酸素含有雰囲気下で焼成し、塗工液中の成分を熱分解させることにより、触媒層を形成することができる。この方法によると、従来の製造方法よりも少ない工程数で、高い生産性で、電解用電極を製造することができる。
 ここでいう熱分解とは、前駆体となる金属塩等を酸素含有雰囲気下で焼成して、金属酸化物又は金属と、ガス状物質と、に分解することを意味する。原料として塗工液に配合される前駆体に含まれる金属種、金属塩の種類、熱分解を行う雰囲気等により、得られる分解生成物を制御することができる。通常、酸化性雰囲気下においては、多くの金属は酸化物を形成し易い傾向にある。電解用電極の工業的な製造プロセスにおいて、熱分解は、通常、空気中で行われている。本実施形態においても、焼成の際の酸素濃度の範囲は特に限定されず、空気中で行うことで十分である。しかしながら、必要に応じて焼成炉内に空気を流通し、或いは酸素を供給してもよい。
 塗工液に含まれる化合物において、ルテニウム化合物、イリジウム化合物、及びチタン化合物は、酸化物であってもよいが、必ずしも酸化物である必要はない。例えば、金属塩等であってもよい。これらの金属塩としては、以下に限定されないが、例えば、塩化物塩、硝酸塩、硫酸塩、及び金属アルコキシドからなる群より選ばれるいずれか1つが挙げられる。
 ルテニウム化合物の金属塩としては、以下に限定されないが、例えば、塩化ルテニウム、硝酸ルテニウム等が挙げられる。
 イリジウム化合物の金属塩としては、以下に限定されないが、例えば、塩化イリジウム、硝酸イリジウム等が挙げられる。
 チタン化合物の金属塩としては、以下に限定されないが、例えば、四塩化チタン等が挙げられる。
 上記化合物は、触媒層における所望の金属元素比に応じて適宜に選択して使用される。
 塗工液には、上記化合物に含まれる化合物以外の他の化合物を、更に含んでいてもよい。他の化合物としては、以下に限定されないが、例えば、タンタル、ニオブ、スズ、白金、ロジウム、バナジウム等の金属元素を含有する金属化合物;タンタル、ニオブ、スズ、白金、ロジウム、バナジウム等の金属元素を含有する有機化合物等が挙げられる。
 塗工液は、上記の化合物群が適当な溶媒に溶解又は分散されて成る液体状の組成物であることが好ましい。ここで使用される塗工液の溶媒としては、上記化合物の種類に応じて選択できる。例えば、水;ブタノール等のアルコール類等を用いることができる。塗工液中の総化合物濃度は、特に限定されないが、触媒層の厚さを適正に制御するとの観点から、10~150g/Lであることが好ましい。
 塗工液を導電性基材上の表面に塗工する方法としては、以下に限定されないが、例えば、導電性基材を塗工液に浸漬するディップ法、導電性基材の表面に塗工液を刷毛で塗る方法、塗工液を含浸させたスポンジ状のロールに導電性基材を通過させるロール法、導電性基材と塗工液とを反対荷電に帯電させてスプレー噴霧を行う静電塗布法等を用いることができる。これらの塗工法の中でも、工業的な生産性に優れるという観点から、ロール法及び静電塗布法が好ましい。これらの塗工法により、導電性基材の少なくとも片面上に、塗工液の塗膜を形成することができる。
 導電性基材に塗工液を塗工した後、必要に応じて、塗膜を乾燥させる工程を行うことが好ましい。この乾燥工程により、塗膜をより強固に導電性基材の表面に形成することができる。乾燥条件は、塗工液の組成、溶媒種等によって適宜選択することができる。乾燥工程は、10~90℃の温度において1~20分間行うことが好ましい。
 導電性基材の表面に塗工液の塗膜を形成させた後、酸素含有雰囲気下で焼成する。焼成温度は、塗工液の組成及び溶媒種により、適宜選択することができる。焼成温度は、300~650℃であることが好ましい。焼成温度が300℃未満では、ルテニウム化合物等の前駆体の分解が不十分となり、酸化ルテニウム等を含む触媒層が得られない場合がある。焼成温度が650℃を超えると、導電性基材が酸化を受ける場合があるため、触媒層と基材との界面の密着性が低下することがある。特に導電性基材としてチタン製の基材を用いる場合には、この傾向は重視されるべきである。
 焼成時間は、長い方が好ましい。一方、電極の生産性の観点からは、焼成時間が過度に長くなりすぎないように調整することが好ましい。これらを勘案すると、1回の焼成時間は、5~60分間であることが好ましい。
 必要に応じて、上述した触媒層の塗工・乾燥・焼成の各工程を複数回繰り返し、触媒層を所望の厚みに形成することができる。触媒層を形成した後に、必要に応じて更に長時間の焼成を行い、化学的、物理的、及び熱的に極めて安定な触媒層の安定性を更に向上させることもできる。長時間焼成の条件としては、400~650℃において30分~4時間程度が好ましい。
 本実施形態に係る電解用電極は、電解初期においても過電圧が低く、かつ長期に亘って低電圧・低消費電力量で電解可能である。そのため、種々の電解に用いることができる。特に、塩素発生用陽極として用いることが好ましく、イオン交換膜法の食塩電解用陽極として用いることがより好ましい。
(電解槽)
 本実施形態の電解槽は、本実施形態に係る電解用電極を備えるものである。すなわち、本実施形態の電解槽は、本実施形態に係る電解用電極を陽極として含む陽極室と、陰極を含む陰極室と、前記陽極室と前記陰極室とを隔離するイオン交換膜と、を備える。この電解槽は、電解する際の初期電圧が低減されたものである。本実施形態の電解槽の断面の一例を図6に模式的に示す。
 電解槽200は、電解液210、電解液210を収容するための容器220、電解液210中に浸漬された陽極230及び陰極240、イオン交換膜250、並びに陽極230及び陰極240を電源に接続するための配線260を備える。電解槽200のうち、イオン交換膜250で区切られた陽極側の空間を陽極室、陰極側の空間を陰極室という。本実施形態の電解槽は、種々の電解に使用できる。以下にはその代表例として、塩化アルカリ水溶液の電解に使用する場合について説明する。
 本実施形態の電解槽に供給する電解液210としては、例えば、陽極室には、2.5~5.5規定(N)の塩化ナトリウム水溶液(食塩水)、塩化カリウム水溶液等の塩化アルカリ水溶液を、陰極室には、希釈した水酸化アルカリ水溶液(例えば水酸化ナトリウム水溶液、水酸化カリウム水溶液等)又は水を、それぞれ使用することができる。
 陽極230として、本実施形態に係る電解用電極を使用する。
 イオン交換膜250としては、例えば、イオン交換基を有するフッ素樹脂膜等を使用できる。イオン交換膜の中でも、イオン交換膜の陽極側表面にイオン交換膜を形成するポリマーからなる突出部(微小突起:デルタ形状)を形成させてなるイオン交換膜を、本実施形態に係る電解用電極と組み合わせて、電解槽として用いることが好ましい。その具体例として、例えば「Aciplex」(登録商標)F6801(旭化成株式会社製)等を挙げることができる。
 デルタ形状を有するイオン交換膜を用いることにより、イオン交換膜と陽極の間への塩水供給が促進され、イオン交換膜の損傷と苛性ソーダ中の食塩濃度上昇を抑えられる傾向にある。デルタ形状を有するイオン交換膜と、本実施形態に係る電解用電極とを組み合わせることによって、安定した電解性能を維持することができる。突出部を形成するための方法としては、特に限定されないが、例えば、特許第4573715号明細書及び特許第4708133号明細書に記載の方法等により形成することができる。
 陰極240としては、水素発生用の陰極であって、導電性基材上に触媒を塗工した電極等が用いられる。この陰極としては公知のものを採用でき、具体的には、例えば、ニッケル基材上に、ニッケル、酸化ニッケル、ニッケルとスズとの合金、活性炭と酸化物との組み合わせ、酸化ルテニウム、白金等をコーティングした陰極;ニッケル製の金網基材の上に酸化ルテニウムの被覆を形成した陰極等が挙げられる。
 本実施形態の電解槽の構成は、特に限定されず、単極式でも複極式でもよい。電解槽を構成する材料としては、特に限定されないが、例えば、陽極室の材料としては、塩化アルカリ及び塩素に耐性があるチタン等が好ましく;陰極室の材料としては、水酸化アルカリ及び水素に耐性があるニッケル等が好ましい。
 本実施形態に係る電解用電極(陽極230)は、イオン交換膜250との間に適当な間隔を設けて配置してもよいし、イオン交換膜250と接触して配置されていても、何ら問題なく使用できる。陰極240は、イオン交換膜250と適当な間隔を設けて配置してもよいし、イオン交換膜250との間に間隔がない接触型の電解槽(ゼロギャップ式電解槽)であっても、何ら問題なく使用できる。
 本実施形態の電解槽の電解条件については特に限定されず、公知の条件で運転することができる。例えば、電解温度を50~120℃、電流密度を0.5~10kA/mに調整して、電解を実施することが好ましい。
(電解用電極の再活性化)
 本実施形態に係る電解用電極は、電解槽に既設の触媒被覆電極の活性が低下した際に、電極を更新する用途に好適に用いることができる。すなわち、本実施形態における電極の更新方法は、本実施形態に係る電解用電極を、電解槽における既設の電極上に溶接する工程を含む。このように、本実施形態に係る電解用電極を既存の電極上に新たに溶接するだけで、活性が低下した既設電極における電解性能を劣化前の水準に戻す、またはさらに向上させる、すなわち、容易に再活性化させることが可能である。そのため、従来は、活性の低下した既存の電極を更新する際に、既存の電極を電解槽から剥ぎ取る工程、さらに新たな電極を溶接する工程、の2つの工程を経ていた電極更新時の負荷を軽減できる。
 上記のようにして、溶接された本実施形態に係る電解用電極と、電解槽における既設の電極とは、積層体とみなすことができる。すなわち、本実施形態の電極積層体は、本実施形態に係る電解用電極と、前記電解用電極とは異なる基材電極と、を備えるものである。ここでいう基材電極は特に限定されないが、典型的には、上述した電解槽における既設の電極であって、活性が低下した電極を挙げることができる。
 なお、電解用電極の再活性化に好適な、本実施形態に係る電解用電極としては、厚みが0.5mm超0.65mm以下であり、かつ開口部の周辺長の総和Bを開口率Aで除した値C(=B/A)が2より大きく5以下であることが好ましい。厚みが上述の範囲であると、既存の電極上に新たに溶接する際に溶接し易く、既存の電解槽の内部構造・使用部品等を特に変更することなく、電解性能を劣化前の水準に戻す、またはさらに向上させる、すなわち、再活性化させることが可能である。すなわち、本実施形態の電極積層体において、電解用電極の厚みが0.5mm超0.65mm以下であることが好ましい。
 本実施形態に係る電解用電極は、食塩電解における電解電圧を従来よりも低下させることが可能である。そのため、該電解用電極を備える本実施形態の電解槽によれば、食塩電解に要する消費電力を低くすることができる。
 更に本実施形態に係る電解用電極は、化学的、物理的、及び熱的に極めて安定な触媒層を有するため、長期の耐久性に優れる。よって、該電解用電極を備える本実施形態の電解槽によれば、長時間に亘って電極の触媒活性が高く維持され、高純度の塩素を安定して製造することが可能となる。
 以下に、本実施形態を実施例に基づいて更に詳細に説明する。本実施形態はこれらの実施例にのみ限定されるものではない。
 先ず、実施例及び比較例における各評価方法について、以下に示す。
(イオン交換膜法食塩電解試験)
 電解セルとして、陽極室を有する陽極セルと、陰極室を有する陰極セルと、を具備する電解セルを用意した。
 各実施例及び比較例で準備した電解用電極を所定のサイズ(95×110mm=0.01045m)に切り出したものを試験用電極とし、該試験用電極を溶接によって陽極セルの陽極室のリブに装着して、陽極として用いた。
 陰極としては、ニッケル製の金網基材の上に酸化ルテニウムの触媒被覆を行ったものを用いた。先ず、陰極セルの陰極室のリブ上に、集電体として金属ニッケル製のエキスパンド基材を、陽極と同じサイズで切り出して溶接した後、ニッケル製ワイヤーを編んだクッションマットを乗せ、その上に陰極を配置した。
 ガスケットとしては、EPDM(エチレンプロピレンジエン)製のゴムガスケットを用い、陽極セルと陰極セルとの間にイオン交換膜を挟んだ。このイオン交換膜としては、食塩電解用の陽イオン交換膜「Aciplex」(登録商標)F6801(旭化成株式会社製)を用いた。
 電解電圧の測定は、陰極と陽極との間の電位差を測定することによって実施した。陽極の初期電解性能を測定するため、電解電圧は、電解開始5日経過後の値を測定した。電解条件は、電流密度6kA/m、陽極セル内の塩水濃度205g/L、陰極セル内のNaOH濃度32質量%、温度90℃で行った。電解用の整流器としては、「PAD36-100LA」(菊水電子工業社製)を用いた。
[実施例1]
 導電性基材として、メッシュの短目方向中心間距離(SW)が2.1mm、メッシュの長目方向中心間距離(LW)が3mm、板厚0.81mmのチタン製エクスパンドメタルを用いた。上記板厚は厚み計で測定した。また、SW、LW、St、開口率、及び開口部の周辺長の総和の値は、導電性基材の表面の所定範囲をマイクロスコープ等の画像観察機器で観察し、投影面を撮影した画像データを解析することにより求めた。画像データの解析方法として、米国国立衛生研究所(NIH)が開発し公有の「Image J」を画像処理に用いた。画像処理に用いた画像サイズは、導電性基材の8.0×5.3mmの範囲とした。すなわち、この範囲に存在する開口部を対象として、隣接する開口部の各々に対して特定されるメッシュの短目方向中心間距離、メッシュの長目方向中心間距離、及び、開口部のメッシュの短目方向中心間距離から前記開口部のメッシュの短目方向最大目開きを減じた値を測定し、これらの平均値を算出して、それぞれSW、LW及びStとした。以下、各実施例及び比較例における導電性基材及び電解用電極についても、上記と同様にSW、LW、St、開口率A、開口部の周辺長の総和B、開口部1つの周辺長、E(=B/(A×(SW+LW1/2))及び厚みの値を求めることとした。このエクスパンドメタルを、大気中540℃で4時間焼成し、表面に酸化被膜を形成させた後、25質量%硫酸中において85℃で4時間酸処理を行い、導電性基材の表面に細かい凹凸を設ける前処理を施した。
 次に、ルテニウムとイリジウムとチタンとの元素比(モル比)が25:25:50になるように、塩化ルテニウム水溶液(田中貴金属社製、ルテニウム濃度100g/L)をドライアイスで5℃以下に冷却及び撹拌しながら、四塩化チタン(キシダ化学社製)を少量ずつ加えた後、更に塩化イリジウム水溶液(田中貴金属社製、イリジウム濃度100g/L)を少量ずつ加えて、総金属濃度が100g/Lの水溶液である塗工液CL1を得た。一方で、ルテニウムとチタンとの元素比(モル比)が35:65になるように、上述の塩化ルテニウム水溶液と四塩化チタンを、上述と同様の混合方法によって、総金属濃度が100g/Lの水溶液である塗工液CL2を得た。
 この塗工液CL1を塗工機の液受けバット内に注入し、EPDM製スポンジロールを回転させることにより塗工液CL1を吸い上げて含浸させ、該スポンジロールの上部に接するようにPVC製ロールを配置した。そして、前記EPDM製スポンジロールと前記PVC製ロールとの間に、前処理を施した導電性基材を通して塗工した。塗工後直ちに、布を巻いた2本のEPDM製スポンジロールの間に、上記塗工後の導電性基材を通し、過剰な塗工液を拭き取った。その後、50℃において10分間乾燥した後、大気中、475℃において10分間、焼成を行った。
 上記のロール塗工、乾燥、及び焼成から成るサイクルを合計7回繰り返し行い、次いで520℃における1時間の焼成を更に行うことにより、導電性基材上に黒褐色の第一触媒層を形成した。この第一触媒層を形成した基材に対して、塗工液をCL2に代える以外は、塗工液CL1を用いて塗工した時と同様にロール塗工、次いで乾燥を実施し、大気中、440℃において10分間、焼成を行った。最後に大気中、440℃において60分間焼成し、電解用電極を作製した。
 得られた電解用電極は、厚み0.81mm、開口率7.4%、電極の投影面積当たりの開口部数は20個/cm超、開口部の周辺長の総和を開口率で除した値は4.54であった。また、開口部の形状は図4(A)と同様の形状が観察され、開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.28、StをSWで除した値は0.76であった。
[比較例1]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が3mm、メッシュの長目方向中心間距離(LW)が6mm、板厚1.0mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み1.0mm、開口率37.8%、電極の投影面積当たりの開口部数は13個/cm、開口部の周辺長の総和を開口率で除した値は1.06であった。また、開口部の形状は図4(C)と同様の形状が観察され、開口部100’は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100’は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.03、StをSWで除した値は0.667であった。
[実施例2]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が2.2mm、メッシュの長目方向中心間距離(LW)が4.2mm、板厚0.8mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.80mm、開口率10.9%、電極の投影面積当たりの開口部数は20個/cm、開口部の周辺長の総和を開口率で除した値は3.26であった。また 、開口部の形状は図4(A)と同様の形状が観察され、開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.64、StをSWで除した値は0.73であった。
[実施例3]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が2.3mm、メッシュの長目方向中心間距離(LW)が3.3mm、板厚0.83mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.83mm、開口率9.25%、電極の投影面積当たりの開口部数は20個/cm超、開口部の周辺長の総和を開口率で除した値は3.65であった。また、開口部の形状は図4(A)と同様の形状が観察され、開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.27、StをSWで除した値は0.70であった。
[実施例4]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が2.3mm、メッシュの長目方向中心間距離(LW)が3.3mm、板厚0.81mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.81mm、開口率22.1%、電極の投影面積当たりの開口部数は20個/cm超、開口部の周辺長の総和を開口率で除した値は2.05であった。また、開口部の形状は図4(A)と同様の形状が観察され、開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.28、StをSWで除した値は0.43であった。
[実施例5]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が1.6mm、メッシュの長目方向中心間距離(LW)が3.0mm、板厚0.56mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.56mm、開口率17.5%、電極の投影面積当たりの開口部数は43個/cm、開口部の周辺長の総和を開口率で除した値は3.30であった。また、開口部の形状は図4(A)と同様の形状が観察され、開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.88、StをSWで除した値は0.65であった。
[実施例6]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が2.1mm、メッシュの長目方向中心間距離(LW)が3.1mm、板厚0.81mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.81mm、開口率15.5%、電極の投影面積当たりの開口部数は20個/cm超、開口部の周辺長の総和を開口率で除した値は2.72であった。また、開口部の形状は図4(A)と同様の形状が観察され、開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.42、StをSWで除した値は0.67であった。
[実施例7]
 実施例6と同様に作製したチタン製エクスパンドメタル(SW:2.2mm、LW:3.2mm、板厚0.82mm)に対し、実施例1における塗工液CL1を実施例1と同様の方法で塗工し、上記導電性基材上に第一触媒層を形成した。
 次に、ルテニウムとイリジウムとチタンとバナジウムとの元素比(モル比)が21.25:21.25:42.5:15になるように、硝酸ルテニウム水溶液(フルヤ金属社製、ルテニウム濃度100g/L)をドライアイスで5℃以下に冷却及び撹拌しながら、四塩化チタン(和光純薬社製)を少量ずつ加えた後、更に塩化イリジウム水溶液(田中貴金属社製、イリジウム濃度100g/L)及び塩化バナジウム(III)(キシダ化学社製)を少量ずつ加えて、総金属濃度が100g/Lの水溶液である塗工液CL3を得た。上記第一触媒層を形成した基材に対して、塗工液CL3を用いて実施例1と同様にロール塗工、乾燥、及び焼成から成るサイクルを、1回目の焼成温度を400℃とし、次いで450℃に昇温して更に3回繰り返し行い、最後に520℃における1時間の焼成を更に行うことにより、電解用電極を作製した。
 得られた電解用電極は、厚み0.82mm、開口率16.1%、電極の投影面積当たりの開口部数は20個/cm超、開口部の周辺長の総和を開口率で除した値は2.73であった。また、開口部の形状は図4(A)と同様の形状が観察され、開口部100は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下非対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.38、StをSWで除した値は0.63であった。
[比較例2]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が2.3mm、メッシュの長目方向中心間距離(LW)が3.0mm、板厚0.6mmで、圧延ロールによる平坦化を実施していないチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.6mm、開口率43.3%、開口部の周辺長の総和を開口率で除した値は1.07であった。また、開口部の形状は図4(C)と同様の形状が観察され、開口部100’は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100’は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は0.90、StをSWで除した値は0.45であった。
[比較例3]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が2.1mm、メッシュの長目方向中心間距離(LW)が4.0mm、板厚0.5mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.5mm、開口率35.7%、開口部の周辺長の総和を開口率で除した値は1.78であった。また、開口部の形状は図4(C)と同様の形状が観察され、開口部100’は、メッシュの短目方向αに伸びる第1の仮想中心線101に対して左右対称であった。さらに、開口部100’は、メッシュの長目方向βに伸びる第2の仮想中心線102に対して上下対称であった。さらにまた、部分aの面積Saを部分bの面積Sbで除した値は1.10、StをSWで除した値は0.48であった。
[イオン交換膜法食塩電解試験]
 実施例1~6及び比較例1~3でそれぞれ作製した電解用電極を用いて、イオン交換膜法食塩電解試験を実施した。その結果を表1に示す。
 なお表1において、導電性基材として用いるエクスパンドメタルに対し、圧延ロールによる平坦化を実施したものを「FR化○」、実施していないものを「FR化×」と記した。また、比較例1を基準とした電解電圧の低減分を「効果:ΔV」の正の値とした。
Figure JPOXMLDOC01-appb-T000001
 電流密度6kA/mにおいて、比較例1を基準とした電解電圧の低減分は、実施例1において35mV、実施例2において43mV、実施例3において41mV、実施例4において8mV、実施例5において42mV、実施例6において19mVであり、いずれも比較例1に対して電解電圧を低減できることが分かった。
 一方、比較例2、3においては、比較例1に対してそれぞれ、23mV、19mV、電解電圧が増大した。
 また、実施例6~7及び比較例1でそれぞれ作製した電解用電極を用いて、イオン交換膜法食塩電解試験を実施した。その結果を、触媒層の塗工液の種類と共に表2に示す。
Figure JPOXMLDOC01-appb-T000002
 電流密度6kA/mにおいて、比較例1を基準とした電解電圧の低減分は、実施例6において19mV、実施例7において39mVであり、いずれも比較例1に対して電解電圧を低減できることが分かった。特に実施例6と実施例7の比較から、本実施形態に係る電解用電極がバナジウム含有触媒層を有する場合、電解電圧の低減効果は更に大きくなることが分かった。
[実施例8]
 実施例5の電解用電極を、活性の低下した電極の再活性化に用いた。活性の低下した電極として、セミコマーシャルプラントの電解槽で6.9年通電した比較例1と同様に作製した電解用電極を、所定のサイズ(95×110mm=0.01045m)に切り出したものを基材電極とし、この基材電極を溶接によって陽極セルの陽極室のリブに装着した。この基材電極の電流密度6kA/mにおける電解電圧は、比較例1を基準として32mV上昇していた。この基材電極の上に、実施例5の電解用電極を更新用電極として溶接し、電極積層体を含む電解槽とした。
[実施例9]
 実施例1における導電性基材を、メッシュの短目方向中心間距離(SW)が2.2mm、メッシュの長目方向中心間距離(LW)が3.0mm、板厚0.52mmのチタン製エクスパンドメタルとした以外は、実施例1と同様の方法により、電解用電極を作製した。
 得られた電解用電極は、厚み0.52mm、開口率23.3%、開口部の周辺長の総和を開口率で除した値は2.36であった。
 上述の電解用電極を、活性の低下した電極の再活性化に用いた。活性の低下した電極として、製造プラントの電解槽で7.1年通電した比較例1と同様に作製した電解用電極を所定のサイズ(95×110mm=0.01045m)に切り出したものを基材電極とし、この基材電極を溶接によって陽極セルの陽極室のリブに装着した。この基材電極の電流密度6kA/mにおける電解電圧は、比較例1を基準として35mV上昇していた。この基材電極の上に、上記の電解用電極を更新用電極として溶接し、電極積層体を含む電解槽とした。
 実施例8~9のそれぞれで作製した電解槽を用いて、イオン交換膜法食塩電解試験を実施した。その結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 電流密度6kA/mにおいて、比較例1を基準とした電解電圧の低減分は、実施例8において33mV、実施例9において24mVであり、いずれも比較例1に対して電解電圧が低減しており、活性の低下した既存の電極を更新する際に、電解性能を劣化前の水準に戻す、またはさらに向上させる、すなわち、再活性化できることが分かった。
 本発明の電解用電極は、電解時の電圧・消費電力量を低く抑えることが可能であり、かつ実用上の強度を兼ね備えるため、食塩電解の分野において好適に利用できる。特に、イオン交換膜法食塩電解用陽極として有用であり、酸素ガス濃度の低い高純度の塩素ガスを長期に亘って低電圧・低消費電力量で製造することを可能とする。
 1  電極
 2,3  開口部
 10  電解用電極
 20  開口部
 100  開口部
 100’  開口部
 101  第1の仮想中心線
 102  第2の仮想中心線
 a  部分a
 b  部分b
 200  電気分解用電解槽
 210  電解液
 220  容器
 230  陽極(電解用電極)
 240  陰極
 250  イオン交換膜
 260  配線
 300  電解用電極
 310  開口部のメッシュの短目方向中心間距離(短径SW)
 320  開口部のメッシュの長目方向中心間距離(長径LW)
 330  第2の仮想中心線
 340  部分a
 350  部分b
 360  開口部のメッシュの短目方向の開口部と開口部との間の距離

Claims (13)

  1.  有孔金属製板からなる導電性基材と、
     該導電性基材の表面上に形成された少なくとも一層の触媒層と、
     を備える電解用電極であって、
     前記電解用電極の厚みが0.5mm超1.2mm以下であり、
     前記電解用電極の開口部の周辺長の総和Bを前記電解用電極の開口率Aで除した値Cが、2超5以下である、電解用電極。
  2.  前記開口率Aが、5%以上25%未満である、請求項1に記載の電解用電極。
  3.  前記開口部のメッシュの短目方向中心間距離SWが1.5以上3以下であり、かつ、前記メッシュの長目方向中心間距離LWが2.5以上5以下である、請求項1又は2に記載の電解用電極。
  4.  前記電解用電極の厚みが、0.5mm超0.9mm以下である、請求項1~3のいずれか一項に記載の電解用電極。
  5.  下記式(1)で表される値Eが、0.5以上である、請求項1~4のいずれか一項に記載の電解用電極:
      E=B/(A×(SW+LW1/2)   (1)
  6.  請求項1~5のいずれか一項に記載の電解用電極を陽極として含む陽極室と、
     陰極を含む陰極室と、
     前記陽極室と前記陰極室とを隔離するイオン交換膜と、
     を備える、電解槽。
  7.  前記イオン交換膜の陽極側表面において、当該イオン交換膜を構成するポリマーからなる突出部を有する、請求項6に記載の電解槽。
  8.  請求項1~3のいずれか一項に記載の電解用電極と、
     前記電解用電極とは異なる基材電極と、
     を備える、電極積層体。
  9.  前記電解用電極の厚みが、0.5mm超0.65mm以下である、請求項8に記載の電極積層体。
  10.  請求項1~3のいずれか一項に記載の電解用電極を、電解槽における既設の電極上に溶接する工程を含む、電極の更新方法。
  11.  有孔金属製板からなる導電性基材と、
     該導電性基材の表面上に形成された少なくとも一層の触媒層と、
     を備える電解用電極であって、
     前記電解用電極の開口部の形状が、メッシュの短目方向に伸びる第1の仮想中心線に対して左右対称であり、かつ、メッシュの長目方向に伸びる第2の仮想中心線に対して上下非対称であり、
     前記電解用電極の厚みが0.5mm超1.2mm以下である、電解用電極。
  12.  前記開口部を、前記第2の仮想中心線により一方の部分aと他方の部分bに区分したとき、前記部分aの面積Saを前記部分bの面積Sbで除した値が、1.15以上2.0以下である、請求項11に記載の電解用電極。
  13.  前記開口部のメッシュの短目方向中心間距離SWから前記開口部のメッシュの短目方向最大目開きを減じた値Stを、前記SWで除した値が、0.4以上である、請求項11又は12に記載の電解用電極。
PCT/JP2017/047365 2017-01-13 2017-12-28 電解用電極、電解槽、電極積層体及び電極の更新方法 WO2018131519A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
CN202210045889.XA CN114351178A (zh) 2017-01-13 2017-12-28 电解用电极、电解单元、电解槽、电极层积体和电极的更新方法
BR112019013822A BR112019013822A2 (pt) 2017-01-13 2017-12-28 eletrodo para eletrólise, eletrolisador, laminado de eletrodo, e, método para regenerar um eletrodo.
JP2018561333A JP6778459B2 (ja) 2017-01-13 2017-12-28 電解用電極、電解槽、電極積層体及び電極の更新方法
CN201780073743.3A CN110023541B (zh) 2017-01-13 2017-12-28 电解用电极、电解槽、电极层积体和电极的更新方法
EP17891083.2A EP3569740A4 (en) 2017-01-13 2017-12-28 ELECTRODE FOR ELECTROLYSIS, ELECTROLYTIC CELL, ELECTRODE LAMINATE AND METHOD FOR RENEWING THE ELECTRODE
US16/477,343 US20190360112A1 (en) 2017-01-13 2017-12-28 Electrode for electrolysis, electrolyzer, electrode laminate and method for renewing electrode
KR1020197019742A KR102349667B1 (ko) 2017-01-13 2017-12-28 전해용 전극, 전해조, 전극 적층체 및 전극의 갱신 방법
KR1020217011243A KR102422917B1 (ko) 2017-01-13 2017-12-28 전해용 전극, 전해조, 전극 적층체 및 전극의 갱신 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-004383 2017-01-13
JP2017004383 2017-01-13

Publications (1)

Publication Number Publication Date
WO2018131519A1 true WO2018131519A1 (ja) 2018-07-19

Family

ID=62839803

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/047365 WO2018131519A1 (ja) 2017-01-13 2017-12-28 電解用電極、電解槽、電極積層体及び電極の更新方法

Country Status (8)

Country Link
US (1) US20190360112A1 (ja)
EP (1) EP3569740A4 (ja)
JP (2) JP6778459B2 (ja)
KR (2) KR102349667B1 (ja)
CN (2) CN110023541B (ja)
BR (1) BR112019013822A2 (ja)
TW (1) TWI666343B (ja)
WO (1) WO2018131519A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020255882A1 (en) 2019-06-18 2020-12-24 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Electrolysis electrode and electrolyzer
EP3929331A4 (en) * 2019-02-22 2022-04-27 LG Chem, Ltd. ELECTRODE FOR ELECTROLYSIS
JP7464313B1 (ja) 2023-01-20 2024-04-09 ウェスコ エレクトロード シーオーエルティーディー イオン交換膜法クロルアルカリ電解用電極、その製造方法及びそれを用いたゼロギャップ型イオン交換膜電解槽
KR102677353B1 (ko) * 2018-09-21 2024-06-21 아사히 가세이 가부시키가이샤 적층체 제조용 지그, 적층체의 제조 방법, 곤포체, 적층체, 전해조, 및 전해조의 제조 방법

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130286A (ja) 1982-01-26 1983-08-03 Toyo Soda Mfg Co Ltd 電解方法
JPS6244589A (ja) * 1985-08-23 1987-02-26 Permelec Electrode Ltd 電解用電極
JPS62502820A (ja) 1985-05-07 1987-11-12 エルテック・システムズ・コ−ポレ−ション エキスパンデッド金属メッシュおよび被覆陽極構造体
JP2007023374A (ja) * 2005-07-12 2007-02-01 Ask:Kk 電解用電極構造体
JP4453973B2 (ja) 2002-11-27 2010-04-21 旭化成ケミカルズ株式会社 複極式ゼロギャップ電解セル
JP2010174346A (ja) * 2009-01-30 2010-08-12 Tosoh Corp イオン交換膜法電解槽及びその製造方法
JP4573715B2 (ja) 2004-07-09 2010-11-04 旭化成ケミカルズ株式会社 電解用フッ素系陽イオン交換膜
JP4708133B2 (ja) 2005-09-14 2011-06-22 旭化成ケミカルズ株式会社 電解用フッ素系陽イオン交換膜及びその製造方法
WO2015108115A1 (ja) 2014-01-15 2015-07-23 クロリンエンジニアズ株式会社 イオン交換膜電解槽用陽極およびこれを用いたイオン交換膜電解槽
JP2016196674A (ja) * 2015-04-02 2016-11-24 株式会社東芝 電気化学セル、この電気化学セルを用いた電気化学装置、及びこの電気化学装置を用いた保管庫。
JP2019021884A (ja) 2017-07-21 2019-02-07 株式会社ディスコ ウェーハの加工方法

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4621884Y1 (ja) 1966-07-13 1971-07-28
IT989421B (it) * 1973-06-25 1975-05-20 Oronzio De Nora Impiantielettr Cella di elettrolisi con elettrodi di forma particolare e deflettori atti ad allontanare i gas che si sviluppano agli elettrodi fuori dal lo spazio interelettrodico
JPS5842778B2 (ja) * 1979-05-28 1983-09-21 新日本製鐵株式会社 冷延鋼板用鋳片の連続鋳造方法
JPS5842778Y2 (ja) * 1979-07-06 1983-09-28 株式会社東芝 ドレン回収処理装置
JPS5689520A (en) * 1979-12-21 1981-07-20 Unitika Ltd Bonding method of metal plate
JPS6244589Y2 (ja) * 1979-12-26 1987-11-26
IN154740B (ja) * 1980-04-15 1984-12-15 Asahi Chemical Ind
JPS5842778A (ja) * 1981-09-09 1983-03-12 Toyo Soda Mfg Co Ltd 電解方法
JPS5842778U (ja) * 1981-09-18 1983-03-22 シチズン時計株式会社 ダイバ−ウオツチに於けるレジスタ−リングの回転防止構造
JPS5883466U (ja) * 1981-11-27 1983-06-06 ペルメレツク電極株式会社 イオン交換膜を用いる電解用電極
US4708888A (en) * 1985-05-07 1987-11-24 Eltech Systems Corporation Coating metal mesh
JPS6227584A (ja) * 1985-07-29 1987-02-05 Permelec Electrode Ltd 電解用電極
JPS6244589U (ja) * 1985-09-05 1987-03-18
JPS6321251A (ja) * 1986-07-16 1988-01-28 新日本製鐵株式会社 炭化珪素系セラミツク焼結体
JP2594245B2 (ja) * 1988-11-23 1997-03-26 ペルメレック電極株式会社 不溶性金属電極の再活性化方法
JPH02141593U (ja) * 1989-04-26 1990-11-28
JP3002232B2 (ja) * 1990-05-29 2000-01-24 ペルメレック電極株式会社 電解用電極の再活性化方法
JPH0456791A (ja) * 1990-06-22 1992-02-24 Permelec Electrode Ltd 不溶性金属電極の再活性化方法
JPH0456791U (ja) * 1990-09-20 1992-05-15
JP3075580B2 (ja) * 1991-04-05 2000-08-14 旭硝子株式会社 電解用含フッ素陽イオン交換膜
JP2003041388A (ja) * 2001-07-31 2003-02-13 Association For The Progress Of New Chemistry イオン交換膜電解槽および電解方法
KR100603536B1 (ko) * 2003-11-19 2006-07-26 박상길 메쉬형 전극판을 갖는 전기분해장치
CN101656320B (zh) * 2009-09-04 2012-01-18 新奥科技发展有限公司 电化学池用的流场板
US10513787B2 (en) * 2010-12-15 2019-12-24 Asahi Kasei Kabushiki Kaisha Electrode for electrolysis, electrolytic cell and production method for electrode for electrolysis
CN201990733U (zh) * 2011-01-10 2011-09-28 华南理工大学 一种基于固体电解质电解池的制氢器
RU2561720C1 (ru) * 2011-12-26 2015-09-10 Торэй Индастриз, Инк. Газодиффузионная среда для топливного элемента, мембранно-электродный блок и топливный элемент
ES2593354T3 (es) * 2012-03-19 2016-12-07 Asahi Kasei Kabushiki Kaisha Celda de electrólisis y cuba electrolítica
JP5548296B1 (ja) * 2013-09-06 2014-07-16 ペルメレック電極株式会社 電解用電極の製造方法
CN106661743B (zh) * 2014-09-19 2019-12-10 株式会社东芝 电极单元、具备电极单元的电解槽、电解装置、电极单元的电极的制造方法
US20160191181A1 (en) * 2014-12-31 2016-06-30 Qualcomm Technologies International, Ltd. Audio broadcast retransmissions
WO2016125333A1 (ja) * 2015-02-02 2016-08-11 株式会社 東芝 電極ユニットおよびそれを用いた電解装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58130286A (ja) 1982-01-26 1983-08-03 Toyo Soda Mfg Co Ltd 電解方法
JPS62502820A (ja) 1985-05-07 1987-11-12 エルテック・システムズ・コ−ポレ−ション エキスパンデッド金属メッシュおよび被覆陽極構造体
JPS6244589A (ja) * 1985-08-23 1987-02-26 Permelec Electrode Ltd 電解用電極
JP4453973B2 (ja) 2002-11-27 2010-04-21 旭化成ケミカルズ株式会社 複極式ゼロギャップ電解セル
JP4573715B2 (ja) 2004-07-09 2010-11-04 旭化成ケミカルズ株式会社 電解用フッ素系陽イオン交換膜
JP2007023374A (ja) * 2005-07-12 2007-02-01 Ask:Kk 電解用電極構造体
JP4708133B2 (ja) 2005-09-14 2011-06-22 旭化成ケミカルズ株式会社 電解用フッ素系陽イオン交換膜及びその製造方法
JP2010174346A (ja) * 2009-01-30 2010-08-12 Tosoh Corp イオン交換膜法電解槽及びその製造方法
WO2015108115A1 (ja) 2014-01-15 2015-07-23 クロリンエンジニアズ株式会社 イオン交換膜電解槽用陽極およびこれを用いたイオン交換膜電解槽
JP2016196674A (ja) * 2015-04-02 2016-11-24 株式会社東芝 電気化学セル、この電気化学セルを用いた電気化学装置、及びこの電気化学装置を用いた保管庫。
JP2019021884A (ja) 2017-07-21 2019-02-07 株式会社ディスコ ウェーハの加工方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AIKAWA HIROAKI: "Survey Report on Technology Systematization, the eighth series", 30 March 2007, INDEPENDENT ADMINISTRATIVE AGENCY, THE NATIONAL SCIENCE MUSEUM, pages: 32
See also references of EP3569740A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102677353B1 (ko) * 2018-09-21 2024-06-21 아사히 가세이 가부시키가이샤 적층체 제조용 지그, 적층체의 제조 방법, 곤포체, 적층체, 전해조, 및 전해조의 제조 방법
EP3929331A4 (en) * 2019-02-22 2022-04-27 LG Chem, Ltd. ELECTRODE FOR ELECTROLYSIS
WO2020255882A1 (en) 2019-06-18 2020-12-24 Thyssenkrupp Uhde Chlorine Engineers (Japan) Ltd. Electrolysis electrode and electrolyzer
JP2022537986A (ja) * 2019-06-18 2022-08-31 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解用電極および電解装置
JP7236568B2 (ja) 2019-06-18 2023-03-09 ティッセンクルップ・ウーデ・クロリンエンジニアズ ゲー エム ベー ハー 電解用電極および電解装置
JP7464313B1 (ja) 2023-01-20 2024-04-09 ウェスコ エレクトロード シーオーエルティーディー イオン交換膜法クロルアルカリ電解用電極、その製造方法及びそれを用いたゼロギャップ型イオン交換膜電解槽

Also Published As

Publication number Publication date
EP3569740A1 (en) 2019-11-20
US20190360112A1 (en) 2019-11-28
JP6778459B2 (ja) 2020-11-04
KR102349667B1 (ko) 2022-01-12
KR20190088067A (ko) 2019-07-25
CN110023541B (zh) 2022-02-08
KR102422917B1 (ko) 2022-07-21
CN114351178A (zh) 2022-04-15
JPWO2018131519A1 (ja) 2019-11-07
TW201829847A (zh) 2018-08-16
JP6956842B2 (ja) 2021-11-02
CN110023541A (zh) 2019-07-16
BR112019013822A2 (pt) 2020-01-21
KR20210044912A (ko) 2021-04-23
EP3569740A4 (en) 2020-04-08
TWI666343B (zh) 2019-07-21
JP2021008672A (ja) 2021-01-28

Similar Documents

Publication Publication Date Title
JP6956842B2 (ja) 電解用電極、電解槽、電極積層体及び電極の更新方法
KR102272749B1 (ko) 전해용 전극
JP2013166994A (ja) 電解用電極、電解槽及び電解用電極の製造方法
JP4673628B2 (ja) 水素発生用陰極
CN103981534A (zh) 用于氯气制备的电催化剂,电极涂层和电极
US20170067172A1 (en) Catalyst coating and process for production thereof
JP6216806B2 (ja) イオン交換膜電解槽
US20220018032A1 (en) Electrode For Electrolysis
JP2016204732A (ja) 電解用電極
JP7236568B2 (ja) 電解用電極および電解装置
JP2012077381A (ja) 輸送および貯蔵安定性酸素消費電極の製造方法
KR102576668B1 (ko) 전기분해용 전극
KR102358447B1 (ko) 전기분해 양극용 코팅액 조성물
US20150017554A1 (en) Process for producing transport and storage-stable oxygen-consuming electrode
WO2023249011A1 (ja) 電解用電極及び電解槽
KR102472146B1 (ko) 전해용 전극의 제조방법 및 이를 사용하여 제조된 전해용 전극
Hachiya et al. Ruthenium oxide cathodes for chlor-alkali electrolysis
KR102393900B1 (ko) 전기분해 음극용 코팅액 조성물
JPH06173060A (ja) ガス電極構造体及び該構造体を使用する電解方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17891083

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018561333

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197019742

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019013822

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017891083

Country of ref document: EP

Effective date: 20190813

ENP Entry into the national phase

Ref document number: 112019013822

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190703