JP2007023374A - 電解用電極構造体 - Google Patents

電解用電極構造体 Download PDF

Info

Publication number
JP2007023374A
JP2007023374A JP2005230030A JP2005230030A JP2007023374A JP 2007023374 A JP2007023374 A JP 2007023374A JP 2005230030 A JP2005230030 A JP 2005230030A JP 2005230030 A JP2005230030 A JP 2005230030A JP 2007023374 A JP2007023374 A JP 2007023374A
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
bubbles
opening
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005230030A
Other languages
English (en)
Inventor
Shigeharu Akatsuka
重治 赤塚
Takayuki Shimamune
孝之 島宗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CS GIJUTSU KENKYUSHO KK
Ask Corp
Original Assignee
CS GIJUTSU KENKYUSHO KK
Ask Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CS GIJUTSU KENKYUSHO KK, Ask Corp filed Critical CS GIJUTSU KENKYUSHO KK
Priority to JP2005230030A priority Critical patent/JP2007023374A/ja
Publication of JP2007023374A publication Critical patent/JP2007023374A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】本発明は主にイオン交換膜法食塩電解において、電解によって発生する気泡の電極からの離脱を素早く行うことによって、電解時の消費電力の低減、電解電圧の低下を達成できる電極の最適な形状を見出すことを課題とした。
【解決手段】開口部が丸形ないし菱形を有する多孔体基材の開口する辺に微少な凸部を有してなり、発生気泡が成長する前に該凸部より離脱させる事によって電極周辺の気泡の存在を減らす様にして電解電圧の低減を行った。
【選択図】図1

Description

本発明は電解により主として塩素や酸素等比較的大きな気泡となりやすい気泡を発生する電極に使用してより早い気泡離脱と極面へのスムーズな液供給が行える電解用電極に関するものである。
食塩電解のように電気分解により製品を製造する場合その製品の製造量は電解時の電流x時間によってほぼ決まり、その時の電圧は反応に必要とされる最小の電圧は有るものの実際に行われる電解電圧にはよらない。一方この時の消費エネルギーは電流x時間x電圧であり、同じ反応での省エネルギー化あるいはコストダウンを狙うためには電解電圧を低下させることが最も重要である事は論を待たない。
このために化学工業の基礎原料となる水酸化ナトリウムと塩素とを製造するいわゆる食塩電解では電圧の低下に最大の努力が払われていることがよく知られている。 つまりこの電解は主にイオン交換膜法で行われるが、隔膜であるイオン交換膜に陽極及び陰極を密着させることにより、電解液抵抗を最小にする方法が行われる。しかしながら、電解による電圧は(理論分解電圧)+(陽極過電圧)+(陰極過電圧)+(電解液抵抗)+(膜抵抗)で示され、このうち(理論分解電圧)+(陽極過電圧)+(陰極過電圧)は反応と使用する電極物質で決まってしまい、また(膜抵抗は)はほぼ限界まで下げられているので、電解電圧を下げる可能性は(電解液抵抗)の低下しかなく、そのために陽極と陰極の間の距離を最小限にすることが重要となり陰極、陽極を膜に密着させることが行われている。
一方電解反応に関しては目的のイオンあるいは被電解物質が電極表面に十分に到達する必要があり、電極表面には常に電解液が供給されるような構造となっていることが必要である。これらのためにイオン交換膜それ自身は現在十分な親水化が行われている。つまり膜表面の改質や膜表面にセラミックスの表面層を形成がなされている。それに応じて電極で発生したガスが膜表面に付着することもなくなり、また電解液の供給もスムーズに行われるようになっている。これらの改良と品質の安定化により、現在では電解電圧の制御を10mVのオーダーで行えるとされている。
電極表面では電解により気泡を発生させるが、発生気泡それ自身は絶縁体であり、電流は気泡と気泡の間の電解液中を流れることになるので気泡の存在により液部分を流れる電流密度が大きくなってしまい、それによる抵抗損が大きくなる。従って発生気泡は出来るだけ速やかに取り除かれることが必要である。電極面で発生する気泡は集合してある程度大きくなるとその浮力により電極表面から離れる事が知られている。これは気泡の種類によっても変化することが知られている。水素は非常に細かい気泡のまま容易に離れていくので電解ではほとんど問題となることはないが、塩素はその比重の大きな事もあり電極面から離れにくく、従って気泡が大きくなり易いと言う特徴がある。これを避けるために種々の工夫がなされており、たとえば初期のイオン交換膜法電解ではイオン交換膜が疎水性であり、そこについた気泡によって電解電圧が高くなるために電極をイオン交換膜に近づけられず、電解液の液抵抗が大きくってしまうことが見られたので、それを避けるために上述のようにイオン交換膜表面に親水性コーティングを行うなどが行われた。(たとえば1981年第5回ソーダ工業討論会講演要旨集p.11(1980)に示されている。)またガスそのものを早く取り除くために、電極表面に溝を作って液流れを良くすることが行われている。さらにはイオン交換膜内の電流分布を均一にするために電極の開口を出来るだけ小さくすると共に、電極の開口部を小さな丸形や菱形にするなど種々の工夫が行われている。(たとえば、電気化学および工業物理化学vol.56,p306(1988)には電解電圧とメッシュの目開きの関係が示されている。)。これらでもそれなりの効果があるが、なおかつ気泡の大きさがより小さいことが望ましいことは言うまでもない。またそれぞれ特失があり、上記に示した様な溝を作るなどは実際には機械加工によらなければならない場合が多く、どうしても高価になってしまうという問題を抱えている。しかしながら最近のイオン交換膜の親水化は当然であり、発生ガス抜きが当然である現在でも、電極周辺のガス抜きについて電極側からの検討がほとんどなされていない。最近のエネルギーコストの上昇は、工業的に能力の限界まで生産をしてもなおかつ赤字になるという問題をかかえてしまい、わずかの点でも改良し、省エネルギー化をより進める必要性があり新たな工夫を必要とされている。特に基材である穴あき板やエクスパンドメッシュの構造あるいは加工法についてはせいぜい目の大きさを変える程度であり、形状を変化させてより高機能化をねらうことは全く行われていない。ただし、メッシュの加工方法のみを見ると、エクスパンドメッシュの目の部分を加工して目の形状を変化させる方法が開示されており、そこでは、メッシュ面に凹部をつける方法が開示されている(特開昭55−92235)。ただしこれは一辺が10センチメートル以上あるような大型メッシュの加工であり、電解用の数ミリメートルから最大でも1から2センチメートルという目開きに関する物は全く見られていない。
特開昭55−92235公報 1981年第5回ソーダ工業討論会講演要旨集p.11(1980) 電気化学および工業物理化学vol.56,p306(1988)
本発明では電解用電極、特にイオン交換膜法食塩電解において、電解によって発生する気泡の電極からの離脱を素早く行うことによって、電解時の消費電力の低減、電解電圧の低下を達成する電極、特に気泡が大きくなりやすい電極の最適な形状を見出すことを課題とした。
本発明は開口部が丸形ないし菱形を有する多孔体基材の開口する辺に微少な凸部を有してなり、発生気泡が成長する前に該凸部より離脱させる事によって電極周辺の気泡の存在を減らす様にした事を特徴とする電解により気泡を発生する電解用電極であり、電解反応によって発生する気泡が電極極面上で成長するよりも該凸部で離れやすくすることが出来、より小さい気泡の間に素早く電極面から解放され、それによって電極基材周辺の気泡率が下がり、より導電性を向上することが出来、電解電圧を低下させることが可能となった。更に、気泡が大きく成長する前に電極表面から離れることによって、電極表面では連続的な液流れを実現することが出来、電流効率の向上も可能となった。
以下詳細に説明する。
本目的を達成するために、電極基材としてはガス離れが良好で、それにより電解液の供給がより効率的に行われる多孔板を使用する。また通常接触して使用されるイオン交換膜は比較的摩擦に弱く、また機械強度も十分でない場合が多いので、電極基材あるいは電極の表面は平滑であることが望ましくそれを満足する打ち抜きの穴あき板を使用することが望ましいが、凹凸を制御したエクスパンドメッシュ構造体でも使用することが出来ることはもちろんである。この場合の開口の大きさは従来議論されてきたとおりイオン交換膜内の電流分布を良好にする点からは開口部の長さが3から20mm程度が望ましいとされ、本発明の目的である発生気泡を出来るだけ小さくする点からは必ずしもこれらに指定されるものではないが、電解電圧の低下という点からはこれらを満足し、なおかつ本目的に添っての気泡を小さくする効果のある方が望ましい。開口率についても同様である。本発明においてはこの開口部分の辺(稜)に沿って、突起部を設けてそれにより気泡離れを良くする。突起の大きさは気泡にある程度合わせることが必要であり、特には指定されないが、0.3mmより小さいと、そこでの気泡離れが悪くなり、平滑なままとあまり変わらない様な様相を呈する。従って0.4mm程度より大きなことが必要であり、望ましくは1mm程度あることが必要である。
突起の間隔もそれぞれで発生した気泡が互いに干渉してしまうようなことがなければ特には指定されないが、通常は0.5mm以上が適当であり、特に1から5mm程度が良い。たとえば通常のエクスパンドメッシュである8LWx4SWx1ST、つまり切り目の幅が1mm、菱形の長手方向の繰り返し周期が8mm、その直角方向が4mmのメッシュでは目の穴部分の一辺が約4.5mmとなるので、その辺一つに一つの突起が出ているような形状が望ましく用いられる。またいわゆる2φ3ピッチと呼ばれる穴あき板の場合、穴の直径が2mmであり、穴の周辺の長さが約6mmであるのでこれには突起が1ないし2個あることが望ましい。この時突起が1mm以上ある場合には穴部分をかえってふさいでしまうという可能性がありそれ故突起の大きさは0.5mm程度であることが望ましい。これにより突起がない場合、このような開口に気泡が開口と同じ大きさまで発達してしまい、この部分の通電が事実上出来なくなり、電圧が大きく上昇するということが起こるが、それをほぼ解消して、低い電圧での電解が可能となる。また菱形の穴あき板の場合も菱形頂部に気泡が詰まってしまうことがあるが、辺の中央付近に突起を設けることによってそこを中心に気泡が発生、成長する前に離れてしまい液中に抜けてしまうので、気泡は小さく早く抜け電極周辺への液供給も十分に行われる。そのため槽電圧を低く、電流効率を高く保持することが可能となる。
このようにして気泡の抜けが良くなり、電極周辺では気泡の密度がさがり、その分液抵抗が小さくなるので、電解電圧が低下する。
尚突起の向きは工作法により、板面内にあっても良いが、イオン交換膜法電解の場合にイオン交換膜との反対側に僅かに傾いていることがガス抜けの面から望ましい。
突起の製造方法については特には指定されないが、打ち抜きに依る穴あき板では金型にあらかじめ突起をつけたようにしておけばよい。エクスパンドメッシュの場合はメッシュの切り型に凸加工することにより可能となる。
このようにして作成した基材表面に電極物質の被覆を行う。電極物質は電解の対象によって異なるが、代表的なイオン交換膜食塩電解では、イリジウム−ルテニウム−チタンからなる複合酸化物被覆が使用される場合が多い。これらの塗布液を、あらかじめ前処理を行った基材に刷毛、スプレー、ローラーなどの方法で塗布し、空気中で460℃から520℃で10から15分熱分解を行う。この操作を繰り返すことによって所望の電極を作ることが出来る。
このような基材を用いることによってたとえば穴あき板では発生気泡が穴部分をふさいでしまうようなことが無くなり、従って突起部分からの脱ガスが容易に進むので、気泡サイズが小さくなり、上記したように、数十ミリボルトの電圧の低下が期待できる。
発明を実施するための最良の手段
以上に述べたように開口部にわずかな突起をつけることによってそこに成長した気泡が容易に離れるようになり脱ガスが進む。実施例を以下に示すがこれらの実施例によって。本発明が制限されることはない。
「実施例1」
図1に示すような2つのチタンエクスパンドメッシュを作成した。図1(a)は一つのメッシュは1mmのチタンについてLwd=8mm、Swd=4mm、Strand=1.2mmであり、メッシュ作成時に目の途中をプレスでつぶすようにして0.8から1mmの突起を作った。これを実施例とし、対比用としては本実施例と同じであるが、目の途中の突起を設けないようにしたもの(図1(b)に示す)を作成した。両メッシュとも、ロール掛けして平滑化をした。これらの二つのメッシュについて表面をアルミナサンドを使ってブラスト掛けして表面の酸化物を除去した後に95℃20%塩酸で酸洗して基材とした。これらの基材の表面に、Ir:Ru:Ti=1:1:2(モル比)の割合で混合した塩化イリジウム、塩化ルテニウム、四塩化チタンを含む希塩酸溶液に全量の10%(体積)のイソプロピルアルコールを加えたものを塗布液とし、これらのメッシュに塗布し、乾燥後460℃の流通空気中で熱分解をした。この塗布、熱分解を6回繰り返した後に510℃で60分間安定化を行って電極とした。このようにして作成した電極の被膜は酸化物として9g/m2に相当した。これらにより得られた電極について、小型の試験用イオン交換膜電解槽に陽極として設置した。尚イオン交換膜としてはDuPont社製商品名Nafion#965を用い、陽極はイオン交換膜に密着させて設置した。これを用いて電解を行った。陰極−陽極距離1mm、電解条件は陰極液:32%苛性ソーダ、陽極液:170g/l食塩水溶液(pH=1.8)、温度90℃、電流密度60A/dm2で電解を行った。この時の電解電圧は本実施例の突起がある場合3.11Vであり、突起のない対比例では3.14Vであり本実施例が0.03V低いことがわかった。尚本実施例の電極発生気泡が小さいためか、僅かではあるが発生塩素中の酸素の低いことが見られた。これにより電解電圧が30mV低く、約1%の電力の節約のできることがわかった。
「実施例2」
直径2mmの円形の穴を3mmピッチで千鳥状に配置したいわゆる2φx3ピッチの厚さ1mmのチタン多孔板についてこれを基材として電極を作成し、電解試験を行った。本実施例ではこのうち抜き型を変えて、円の一端に0.5から0.7mmの突起が出る様にし、対比例は突起の無いものとした。これらの基材について実施例1と同じ条件で電極コーティングを行い、不溶性金属電極を作成した。これらの電極について実施例1で使用したのと同じ電解槽を用い電流密度を50A/dm2とした以外同じ条件で電気分解を行った。この時の電解電圧は突起を有する本実施例が3.08Vであり、突起のない従来型の電極(本対比例)が3.11Vであった。これにより本実施例の方が電解電圧で約30mV低下させることの出来ることがわかった。
産業上の利用の可能性
本発明の電極構造体は主に工業電解用に使用するガス発生型電極として、特に陽極として使用するものであり、これによって塩素や酸素などの電解により発生ガス気泡が大きくなり見かけ液抵抗が大きくなる様な場合に使用して電解電圧を下げることが出来、消費エネルギーの低下に有効に働く。つまり工業電解における最大用途であるイオン交換膜法食塩電解の陽極材料として極めて有効な電極構造体である。今後よりエネルギーコストが高くなることが予想されており、エネルギー消費の優位性によりこれらが使われていくと考える。
本発明にかかるメッシュの投影図である。
符号の説明
(a)本発明のメッシュであり、メッシュの目の部分に突起を設けた。
(b)対比用のメッシュであり、通常のエクスパンドメッシュである。

Claims (8)

  1. 開口部が丸形ないし菱形を有する多孔体基材の開口する辺に微少な凸部を有してなり、発生気泡が成長する前に該凸部より離脱させる事によって電極周辺の気泡の存在を減らす様にした事を特徴とする電解により気泡を発生する電解用電極。
  2. 多孔基材が丸形穴あき板であり開口部に凸部を設けてなることを特徴とする請求項1の電解用電極。
  3. 多孔体基材が菱形穴あき板であり、菱形開口部に沿って0.2から2mmの突起部を有することを特徴とする請求項1の電解用電極。
  4. 多孔体がエクスパンドメッシュであることを特徴とする請求項1及び3の電解用電極。
  5. 開口部の周囲長が3から30mmであることを特徴とする請求項1から4の電解用電極。
  6. 基材が弁金属であり、該弁金属機体表面にイリジウム、ルテニウム及びチタンの複合酸化物を含む被膜を有することを特徴とする請求項1から2の電解用電極。
  7. 電解用電極が陽イオン交換膜に密着して使用される食塩電解用の陽極であることを特徴とする請求項1から6の電解用電極。
  8. 電解用電極が塩素酸塩の電解製造の陽極として使用されることを特徴とする請求項1から7の電解用電極。
JP2005230030A 2005-07-12 2005-07-12 電解用電極構造体 Pending JP2007023374A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005230030A JP2007023374A (ja) 2005-07-12 2005-07-12 電解用電極構造体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005230030A JP2007023374A (ja) 2005-07-12 2005-07-12 電解用電極構造体

Publications (1)

Publication Number Publication Date
JP2007023374A true JP2007023374A (ja) 2007-02-01

Family

ID=37784537

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005230030A Pending JP2007023374A (ja) 2005-07-12 2005-07-12 電解用電極構造体

Country Status (1)

Country Link
JP (1) JP2007023374A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131519A1 (ja) * 2017-01-13 2018-07-19 旭化成株式会社 電解用電極、電解槽、電極積層体及び電極の更新方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018131519A1 (ja) * 2017-01-13 2018-07-19 旭化成株式会社 電解用電極、電解槽、電極積層体及び電極の更新方法
CN110023541A (zh) * 2017-01-13 2019-07-16 旭化成株式会社 电解用电极、电解槽、电极层积体和电极的更新方法
JPWO2018131519A1 (ja) * 2017-01-13 2019-11-07 旭化成株式会社 電解用電極、電解槽、電極積層体及び電極の更新方法
CN110023541B (zh) * 2017-01-13 2022-02-08 旭化成株式会社 电解用电极、电解槽、电极层积体和电极的更新方法

Similar Documents

Publication Publication Date Title
JP2739607B2 (ja) 電 極
US5082543A (en) Filter press electrolysis cell
JP2003041388A (ja) イオン交換膜電解槽および電解方法
JP3344828B2 (ja) 塩水の電解方法
JPH08333693A (ja) 電解槽
JP2010526938A (ja) 膜電解セル用の電極
US20050011753A1 (en) Low energy chlorate electrolytic cell and process
JP2008530357A (ja) 電解セル用電極
JP6216806B2 (ja) イオン交換膜電解槽
US3974051A (en) Production of hypochlorite from impure saline solutions
JPH08302492A (ja) ガス拡散電極を使用する電解槽
JP3421021B2 (ja) 塩化アルカリの電解方法
JPH1025587A (ja) 液透過型ガス拡散電極
US9540740B2 (en) Undivided electrolytic cell and use thereof
JPS5867882A (ja) 電極
US5584976A (en) Gas diffusion electrode
JPH1081987A (ja) ガス拡散陰極及び該ガス拡散陰極を使用する塩水電解槽
JP2007023374A (ja) 電解用電極構造体
US3945907A (en) Electrolytic cell having rhenium coated cathodes
JP7236568B2 (ja) 電解用電極および電解装置
JP3725685B2 (ja) 過酸化水素製造装置
JPS6059086A (ja) 電解方法
JP7464313B1 (ja) イオン交換膜法クロルアルカリ電解用電極、その製造方法及びそれを用いたゼロギャップ型イオン交換膜電解槽
JP4029944B2 (ja) 液透過型ガス拡散陰極構造体
JP3677120B2 (ja) 液透過型ガス拡散陰極