WO2018101057A1 - カリックスアレーン化合物及び硬化性組成物 - Google Patents

カリックスアレーン化合物及び硬化性組成物 Download PDF

Info

Publication number
WO2018101057A1
WO2018101057A1 PCT/JP2017/041223 JP2017041223W WO2018101057A1 WO 2018101057 A1 WO2018101057 A1 WO 2018101057A1 JP 2017041223 W JP2017041223 W JP 2017041223W WO 2018101057 A1 WO2018101057 A1 WO 2018101057A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
acrylate
calixarene compound
mmol
Prior art date
Application number
PCT/JP2017/041223
Other languages
English (en)
French (fr)
Inventor
辰弥 山本
正紀 宮本
今田 知之
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to US16/463,037 priority Critical patent/US11111225B2/en
Priority to JP2018536216A priority patent/JP6428978B2/ja
Priority to KR1020197009984A priority patent/KR102555271B1/ko
Priority to CN201780074462.XA priority patent/CN110023284B/zh
Publication of WO2018101057A1 publication Critical patent/WO2018101057A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/22Ethers with hydroxy compounds containing no oxirane rings with monohydroxy compounds
    • C07D303/23Oxiranylmethyl ethers of compounds having one hydroxy group bound to a six-membered aromatic ring, the oxiranylmethyl radical not being further substituted, i.e.
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/56Coatings, e.g. enameled or galvanised; Releasing, lubricating or separating agents
    • B29C33/60Releasing, lubricating or separating agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/12Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/10Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton
    • C07C323/11Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/16Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and singly-bound oxygen atoms bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C327/00Thiocarboxylic acids
    • C07C327/02Monothiocarboxylic acids
    • C07C327/04Monothiocarboxylic acids having carbon atoms of thiocarboxyl groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C327/06Monothiocarboxylic acids having carbon atoms of thiocarboxyl groups bound to hydrogen atoms or to acyclic carbon atoms to hydrogen atoms or to carbon atoms of an acyclic saturated carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C39/00Compounds having at least one hydroxy or O-metal group bound to a carbon atom of a six-membered aromatic ring
    • C07C39/24Halogenated derivatives
    • C07C39/367Halogenated derivatives polycyclic non-condensed, containing only six-membered aromatic rings as cyclic parts, e.g. halogenated poly-hydroxyphenylalkanes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/225Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing halogen
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/82Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups
    • C07C49/83Ketones containing a keto group bound to a six-membered aromatic ring containing hydroxy groups polycyclic
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/40Unsaturated compounds
    • C07C59/58Unsaturated compounds containing ether groups, groups, groups, or groups
    • C07C59/64Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings
    • C07C59/66Unsaturated compounds containing ether groups, groups, groups, or groups containing six-membered aromatic rings the non-carboxylic part of the ether containing six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/62Halogen-containing esters
    • C07C69/65Halogen-containing esters of unsaturated acids
    • C07C69/653Acrylic acid esters; Methacrylic acid esters; Haloacrylic acid esters; Halomethacrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/66Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • C07C69/67Esters of carboxylic acids having esterified carboxylic groups bound to acyclic carbon atoms and having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety of saturated acids
    • C07C69/708Ethers
    • C07C69/712Ethers the hydroxy group of the ester being etherified with a hydroxy compound having the hydroxy group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D201/00Preparation, separation, purification or stabilisation of unsubstituted lactams
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D209/00Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
    • C07D209/02Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
    • C07D209/44Iso-indoles; Hydrogenated iso-indoles
    • C07D209/48Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/34Compounds containing oxirane rings with hydrocarbon radicals, substituted by sulphur, selenium or tellurium atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D305/00Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms
    • C07D305/02Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings
    • C07D305/04Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members
    • C07D305/06Heterocyclic compounds containing four-membered rings having one oxygen atom as the only ring hetero atoms not condensed with other rings having no double bonds between ring members or between ring members and non-ring members with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F1/00Compounds containing elements of Groups 1 or 11 of the Periodic Table
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/04Esters of silicic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/06Phosphorus compounds without P—C bonds
    • C07F9/08Esters of oxyacids of phosphorus
    • C07F9/09Esters of phosphoric acids
    • C07F9/12Esters of phosphoric acids with hydroxyaryl compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F9/00Compounds containing elements of Groups 5 or 15 of the Periodic Table
    • C07F9/02Phosphorus compounds
    • C07F9/28Phosphorus compounds with one or more P—C bonds
    • C07F9/38Phosphonic acids [RP(=O)(OH)2]; Thiophosphonic acids ; [RP(=X1)(X2H)2(X1, X2 are each independently O, S or Se)]
    • C07F9/40Esters thereof
    • C07F9/4003Esters thereof the acid moiety containing a substituent or a structure which is considered as characteristic
    • C07F9/4006Esters of acyclic acids which can have further substituents on alkyl
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, which oxygen atoms are present only as part of the carboxyl radical
    • C08L33/10Homopolymers or copolymers of methacrylic acid esters
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/0002Lithographic processes using patterning methods other than those involving the exposure to radiation, e.g. by stamping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/92Systems containing at least three condensed rings with a condensed ring system consisting of at least two mutually uncondensed aromatic ring systems, linked by an annular structure formed by carbon chains on non-adjacent positions of the aromatic system, e.g. cyclophanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes

Definitions

  • the present invention relates to a compound useful as a release agent, a release agent containing the compound, a curable composition, and a resin material for nanoimprint lithography.
  • Molding technology for resin materials using molds is used in a wide range of applications, from processing thermoplastic resins by injection molding to the latest nanoimprints.
  • a shaping technique using a mold releasability between the mold and the resin molded product is always an important issue regardless of the type of resin material and the shape of the mold.
  • As a general method for improving the releasability there are known methods such as applying a release agent to a mold and adding a release agent component to a resin material.
  • a compound having a group is widely used (see, for example, Patent Document 1).
  • the problem to be solved by the present invention is to provide a compound useful as a release agent, a release agent containing the compound, a curable composition, and a resin material for nanoimprint lithography.
  • a calixarene compound having a specific chemical structure has a very high performance as a mold release agent, and a curable composition containing this has a
  • the present inventors have found that it has high releasability without impairing the coatability on various substrates, and have completed the present invention.
  • R 1 is a structural moiety having a perfluoroalkyl group.
  • R 2 is any of a hydrogen atom, a polar group, a polymerizable group, a polar group, or a structural moiety having a polymerizable group.
  • R 3 is hydrogen.
  • An atom, an aliphatic hydrocarbon group which may have a substituent, or an aryl group which may have a substituent, n is an integer of 2 to 10. * is an aromatic ring It is a coupling point.
  • It relates to a calixarene compound having a molecular structure represented by
  • the present invention further relates to a release agent containing the calixarene compound.
  • the present invention further relates to a curable composition containing the calixarene compound and a curable resin material.
  • the present invention further relates to a resin material for nanoimprint lithography containing the calixarene compound.
  • a calixarene compound useful as a release agent a release agent containing the compound, a curable composition, and a resin material for nanoimprint lithography can be provided.
  • FIG. 1 is an FD-MS chart of calixarene compound (1) obtained in Example 1.
  • FIG. FIG. 2 is a 1 H-NMR chart of the calixarene compound (1) obtained in Example 1.
  • FIG. 3 is a 13 C-NMR chart of the calixarene compound (1) obtained in Example 1.
  • FIG. 4 is a 19 F-NMR chart of the calixarene compound (1) obtained in Example 1.
  • the calixarene compound of the present invention has the following structural formula (1):
  • R 1 is a structural moiety having a perfluoroalkyl group.
  • R 2 is any of a hydrogen atom, a polar group, a polymerizable group, a polar group, or a structural moiety having a polymerizable group.
  • R 3 is hydrogen.
  • An atom, an aliphatic hydrocarbon group which may have a substituent, or an aryl group which may have a substituent, n is an integer of 2 to 10. * is an aromatic ring It is a coupling point.) It has a molecular structure represented by
  • N in the structural formula (1) is an integer of 2 to 10.
  • n 4, 6 or 8 are preferable because they are structurally stable.
  • the bonding positions of R 1 and R 2 and the position of the bonding point represented by * are not particularly limited, and may have any structure. Among them, since it becomes a calixarene compound having further excellent performance as a release agent, the following structural formula (1-1) or (1-2)
  • R 1 is a structural moiety having a perfluoroalkyl group.
  • R 2 is any of a hydrogen atom, a polar group, a polymerizable group, a polar group, or a structural moiety having a polymerizable group.
  • R 3 is hydrogen.
  • R 1 in the structural formula (1) is a structural portion having a perfluoroalkyl group, and is a portion contributing to releasability when the calixarene compound is used for a release agent.
  • the number of carbon atoms in the perfluoroalkyl group is not particularly limited, but those having 1 to 6 carbon atoms are preferable from the viewpoint of biosafety.
  • the structural site other than the R 1 perfluoroalkyl group is not particularly limited, and may have any structure. As a specific structure of R 1 , when a perfluoroalkyl group is represented by R F , for example, one represented by —X—R F can be mentioned.
  • X represents, for example, an alkylene group which may have a substituent, a (poly) alkylene ether structure, a (poly) alkylene thioether structure, a (poly) ester structure, a (poly) urethane structure, or a combination thereof.
  • part etc. are mentioned, It is preferable that it is a (poly) alkylene ether chain
  • each R 4 independently represents a direct bond or an alkylene group having 1 to 6 carbon atoms.
  • R F represents a perfluoroalkyl group.
  • Y represents a direct bond, a carbonyl group, an oxygen atom or a sulfur atom.
  • R 4 in the structural formula (2) is independently an alkylene group having 1 to 6 carbon atoms.
  • the alkylene group may be either a straight-chain type or one having a branched structure, but a straight-chain type is preferable because it becomes a calixarene compound having excellent performance as a release agent.
  • R 2 in the structural formula (1) is any one of a hydrogen atom, a polar group, a polymerizable group, a polar group, or a structural site having a polymerizable group.
  • the substitution position of R 2 on the aromatic ring is not particularly limited, but when R 2 is any one of a polar group, a polymerizable group, a polar group, or a structural moiety having a polymerizable group, the aromatic ring
  • the upper substitution position is preferably the para position of R 1 .
  • R 2 When R 2 is positioned in the para position with respect to R 1 that exhibits releasability, R 2 functions as an affinity group with the mold side or matrix component side, or reacts with the matrix component side. This results in a calixarene compound that is further excellent in performance as a release agent.
  • R 2 in the structural formula (1) includes, for example, a hydroxyl group, a thiol group, a phosphine oxide group, or a hydroxyl group, an amino group, a carboxy group, a thiol group, a phosphoric acid group, a phosphonic acid group, and a phosphinic acid as a polar group.
  • the structural part other than the polar group is not particularly limited, and may have any structure.
  • X represents, for example, an alkylene group which may have a substituent, a (poly) alkylene ether structure, a (poly) alkylene thioether structure, a (poly) ester structure, a (poly) urethane structure, or a combination thereof.
  • part etc. are mentioned.
  • an alkylene group is preferable, and an alkylene group having 1 to 6 carbon atoms is more preferable.
  • preferred examples of the structural moiety having a polar group include structural moieties represented by any of the following structural formulas (3-1) to (3-7).
  • each R 4 independently represents an alkylene group having 1 to 6 carbon atoms.
  • R 5 represents an alkyl group having 1 to 3 carbon atoms.
  • R 2 in the structural formula (1) for example, as a polymerizable group, a vinyloxy group, an ethynyloxy group, a (meth) acryloyloxy group, a glycidyloxy group, a (2-methyl) glycidyl group, (2- Methyl) glycidyloxy group, 3-alkyloxetanylmethyloxy group, or vinyl group, vinyloxy group, ethynyl group, ethynyloxy group, (meth) acryloyl group, (meth) acryloyloxy group, glycidyl group, glycidyloxy group, (2 Examples thereof include a structural site having a polymerizable group of any of (methyl) glycidyl group, (2-methyl) glycidyloxy group, 3-alkyloxetanylmethyl group, and 3-alkyloxetanylmethyloxy group.
  • the structural part other than the polymerizable group is not particularly limited, and may have any structure.
  • Specific examples of the structural moieties having a polymerizable group if a polymerizable group represented by R P2, for example, those represented by -O-X-R P2.
  • X represents, for example, an alkylene group which may have a substituent, a (poly) alkylene ether structure, a (poly) alkylene thioether structure, a (poly) ester structure, a (poly) urethane structure, or a combination thereof.
  • part etc. are mentioned.
  • Preferable examples of the structural moiety having a polymerizable group include structural moieties represented by any of the following structural formulas (4-1) to (4-8).
  • each R 4 is independently an alkylene group having 1 to 6 carbon atoms.
  • R 6 is a hydrogen atom or a methyl group.
  • R 3 in the structural formula (1) is any one of a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, and an aryl group which may have a substituent.
  • a structural site such as a tolyl group or a xylyl group in which a hydroxyl group, an al
  • the calixarene compound of the present invention may be produced by any method. Hereinafter, an example of the method for producing the calixarene compound of the present invention will be described.
  • the calixarene compound of the present invention has, for example, the following structural formula (5)
  • R 3 is any one of a hydrogen atom, an aliphatic hydrocarbon group which may have a substituent, and an aryl group which may have a substituent.
  • N is an integer of 2 to 10.
  • the intermediate (A) represented by the structural formula (5) can be produced by directly producing a phenol and an aldehyde compound or by reacting a paraalkylphenol and an aldehyde compound to form an intermediate (a) having a calixarene structure. After being obtained, it can be produced by a dealkylation reaction in the presence of phenol and aluminum chloride. In particular, since the intermediate (A) can be produced in a higher yield, the presence of phenol and aluminum chloride is obtained after obtaining an intermediate (a) having a calixarene structure by reacting a paraalkylphenol with an aldehyde compound. It is preferable to manufacture by the method of dealkylating reaction under.
  • the paraalkylphenol is not particularly limited as long as it is a phenol compound having an alkyl group at the para position, and any compound may be used.
  • the alkyl group include a methyl group, an ethyl group, a propyl group, a butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and a nonyl group, but the intermediate (a) is obtained in a higher yield.
  • a bulky product such as a tert-butyl group is preferable.
  • the aldehyde compound is not particularly limited as long as it can cause a condensation reaction with the paraalkylphenol to form a calixarene structure.
  • aliphatic aldehyde compounds such as acetaldehyde and propionaldehyde; benzaldehyde, naphthaldehyde and the like
  • An aromatic aldehyde compound etc. are mentioned. These may be used alone or in combination of two or more. Among them, it is preferable to use formaldehyde because of excellent reactivity.
  • Formaldehyde may be used either as formalin in an aqueous solution or as paraformaldehyde in a solid state.
  • the reaction of the paraalkylphenol and the aldehyde compound can be performed, for example, in the presence of an acid or base catalyst at a temperature of about 80 to 250 ° C. After completion of the reaction, it is preferable to obtain a high-purity intermediate (a) by washing the product with water.
  • the reaction ratio between the paraalkylphenol and the aldehyde compound is such that the intermediate (a) can be produced in a high yield, so that the aldehyde compound is in the range of 0.6 to 2 mol relative to 1 mol of the paraalkylphenol. preferable.
  • the acid catalyst examples include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid, organic acids such as methanesulfonic acid, paratoluenesulfonic acid, and oxalic acid, and Lewis acids such as boron trifluoride, anhydrous aluminum chloride, and zinc chloride. Is mentioned. These may be used alone or in combination of two or more.
  • the addition amount of the acid catalyst is preferably in the range of 0.05 to 10 parts by mass with respect to 100 parts by mass in total of the paraalkylphenol and the aldehyde compound.
  • the base catalyst acts as a catalyst and is not particularly limited. Examples thereof include sodium hydroxide and potassium hydroxide. Examples thereof include alkali metal hydroxides such as rubidium hydroxide, and alkali metal carbonates such as sodium carbonate and potassium carbonate. These may be used alone or in combination of two or more.
  • the addition amount of the base catalyst is preferably in the range of 0.01 to 1 part by mass with respect to 100 parts by mass in total of the paraalkylphenol and the aldehyde compound.
  • the reaction between the paraalkylphenol and the aldehyde compound may be performed in an organic solvent.
  • the organic solvent include ester solvents such as ethyl acetate, methyl acetate, butyl acetate, methyl lactate, ethyl lactate, and butyl lactate; ketone solvents such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diacetone alcohol, and cyclohexane; methanol , Ethanol, n-propanol, isopropanol, n-butanol, isobutanol, t-butanol, ethyl hexanol, and other alcohol solvents; dimethyl ether, diethyl ether, isopropyl ether, methyl cellosolve, cellosolve, butyl cellosolve, THF, dioxane, butylcarbi
  • ether solvents such
  • the intermediate (a) and phenol are added to an organic solvent which is a poor solvent for the intermediate (a) and is a good solvent for phenol. And it can carry out by the method of adding aluminum chloride to this and stirring.
  • the reaction is preferably performed under an ice bath or room temperature.
  • the amount of phenol added is preferably in the range of 1 to 2 mol with respect to 1 mol of the hydroxyl group in the intermediate (a).
  • the addition amount of aluminum chloride is preferably in the range of 1 to 2 moles with respect to 1 mole of hydroxyl groups in the intermediate (a).
  • organic solvent examples include aromatic hydrocarbon solvents such as benzene, alkylbenzene such as toluene and xylene, and the like.
  • the step of reacting the intermediate (A) with an allyl halide to form an allyl ether (step 1) is, for example, in the same manner as in the so-called Williamson ether synthesis, under the basic catalyst conditions, the intermediate (A ) And allyl halide can be stirred under a temperature condition of about room temperature.
  • the reaction may be carried out in an organic solvent.
  • the reaction proceeds more efficiently by reacting in a polar solvent such as N-dimethylformamide, N-dimethylacetamide or tetrahydrofuran.
  • a polar solvent such as N-dimethylformamide, N-dimethylacetamide or tetrahydrofuran.
  • the allyl etherified product obtained in the step 1 is heated and stirred in the presence of a large excess of amine compound to transfer the allyl group, and an intermediate represented by the structural formula (6) ( B) is obtained.
  • amine compound examples include tertiary amines such as N, N-dimethylaniline, N, N-diethylaniline, N, N, N-trimethylamine, N, N, N-triethylamine, diisopropylethylamine, and N, N— Secondary amines such as dimethylamine and N, N-diethylamine are listed. These may be used alone or in combination of two or more.
  • a perfluoroalkyl group is introduced into the intermediate (B) obtained in step 2.
  • the perfluoroalkyl group introducing agent is not particularly limited as long as it can react with the allyl group of the intermediate (B) to introduce a perfluoroalkyl group.
  • Examples of particularly high reactivity include thiol compounds having a perfluoroalkyl group.
  • the thiol compound is, for example, the following structural formula (7)
  • R 7 is an alkylene group having 1 to 6 carbon atoms, and R F is a perfluoroalkyl group.
  • the thiol compounds may be used alone or in combination of two or more.
  • the addition amount of the thiol compound is preferably excessive with respect to the allyl group contained in the intermediate (B), more preferably about 1 to 5 mol of the thiol compound with respect to 1 mol of the allyl group.
  • the reaction between the intermediate (B) and the thiol compound can be performed, for example, in the presence of a catalyst under a temperature condition of about 50 to 80 ° C.
  • the reaction may be performed in an organic solvent.
  • the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene; alcohol solvents such as methanol, ethanol and isopropanol; ketone solvents such as methyl isobutyl ketone and methyl ethyl ketone.
  • Examples of the catalyst include 2,2'-azobis (2,4-dimethylvaleronitrile).
  • the addition amount of these catalysts is preferably in the range of 0.05 to 0.5 mol with respect to 1 mol of allyl group contained in the intermediate (B).
  • the product is preferably purified by washing with water or reprecipitation.
  • a functional group corresponding to R 2 is added.
  • the functional group introducing agent is not particularly limited as long as it is a compound capable of reacting with a phenolic hydroxyl group.
  • the target product can be produced efficiently by a method in which a halide having a structural site corresponding to R 2 is reacted under basic catalytic conditions in the same manner as in the so-called Williamson ether synthesis.
  • the calixarene compound of the present invention can be suitably used particularly for a release agent, but the use is not limited to the release agent.
  • Other uses include, for example, surface smoothing agents and leveling agents for coating agents, water / oil repellents, antifouling agents, etc., and instead of known perfluoroalkyl group-containing compounds and perfluoropolyether compounds. Can be used.
  • the calixarene compound of the present invention When used for a release agent, it may be used as a release agent that is applied to a mold or may be added to the resin material side. As described above, the calixarene compound of the present invention is also effective as a surface smoothing agent, leveling agent, water / oil repellent, and antifouling agent. Is useful in that sufficient performance can be exhibited without using these additives separately.
  • the curable composition containing the calixarene compound of the present invention may be of any curing type such as thermosetting and active energy ray curable.
  • the curable resin material contained in the composition includes urethane resin, epoxy resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, silicon resin, and the like. Can be mentioned.
  • examples of the curable resin material contained in the composition include a compound having a (meth) acryloyl group.
  • the compound having the (meth) acryloyl group include a mono (meth) acrylate compound and a modified product thereof (R1), an aliphatic hydrocarbon type poly (meth) acrylate compound and a modified product thereof (R2), and an alicyclic poly (Meth) acrylate compound and modified product (R3), aromatic poly (meth) acrylate compound and modified product (R4), (meth) acrylate resin having silicone chain and modified product (R5), epoxy (meth) Acrylate resin and its modified product (R6), urethane (meth) acrylate resin and its modified product (R7), acrylic (meth) acrylate resin and its modified product (R8), dendrimer type (meth) acrylate resin and its modified product ( R9) and the like.
  • Examples of the mono (meth) acrylate compound and the modified product (R1) include methyl (meth) acrylate, ethyl (meth) acrylate, hydroxyethyl (meth) acrylate, propyl (meth) acrylate, hydroxypropyl (meth) acrylate, Aliphatic mono (meth) acrylate compounds such as butyl (meth) acrylate and 2-ethylhexyl (meth) acrylate; cycloaliphatic mono (meta) such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate and adamantyl mono (meth) acrylate ) Acrylate compounds; heterocyclic mono (meth) acrylate compounds such as glycidyl (meth) acrylate and tetrahydrofurfuryl acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate, pheno
  • Mono (meth) acrylate compounds such as compounds represented by: (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, etc. in the molecular structure of the various mono (meth) acrylate compounds (Poly) oxyalkylene-modified products in which a (poly) oxyalkylene chain is introduced; lactone-modified products in which a (poly) lactone structure is introduced into the molecular structure of the various mono (meth) acrylate compounds.
  • Examples of the aliphatic hydrocarbon type poly (meth) acrylate compound and the modified product (R2) include ethylene glycol di (meth) acrylate, propylene glycol di (meth) acrylate, butanediol di (meth) acrylate, and hexanediol diene.
  • Aliphatic di (meth) acrylate compounds such as (meth) acrylate and neopentyl glycol di (meth) acrylate; trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylol Aliphatic tri (meth) acrylate compounds such as propane tri (meth) acrylate and dipentaerythritol tri (meth) acrylate; pentaerythritol tetra (meth) acrylate and ditrimethylol
  • Four or more functional aliphatic poly (meth) acrylate compounds such as lopantetra (meth) acrylate, dipentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, dipentaerythritol hexa (meth) acryl
  • Examples of the alicyclic poly (meth) acrylate compound and the modified product (R3) include 1,4-cyclohexanedimethanol di (meth) acrylate, norbornane di (meth) acrylate, norbornane dimethanol di (meth) acrylate, Alicyclic di (meth) acrylate compounds such as dicyclopentanyl di (meth) acrylate and tricyclodecane dimethanol di (meth) acrylate; in the molecular structure of the various alicyclic poly (meth) acrylate compounds ( (Poly) oxyalkylene chain such as (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, etc.) (poly) oxyalkylene modified product; various alicyclic poly (meth) acrylates described above Lactone modification by introducing (poly) lactone structure into the molecular structure of the compound Body, and the like.
  • aromatic poly (meth) acrylate compound and its modified product (R4) are, for example, biphenol di (meth) acrylate, bisphenol di (meth) acrylate, and the following structural formula (9)
  • R 9 is independently a (meth) acryloyl group, a (meth) acryloyloxy group or a (meth) acryloyloxyalkyl group.
  • R 9 is independently a (meth) acryloyl group, a (meth) acryloyloxy group or a (meth) acryloyloxyalkyl group.
  • An aromatic di (meth) acrylate compound such as a fluorene compound represented by: (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) in the molecular structure of the various aromatic poly (meth) acrylate compounds (Poly) oxyalkylene modified products in which (poly) oxyalkylene chains such as oxytetramethylene chains are introduced; lactone modified products in which (poly) lactone structures are introduced into the molecular structures of the various aromatic poly (meth) acrylate compounds Etc.
  • the (meth) acrylate resin having a silicone chain and the modified product (R5) thereof are not particularly limited as long as they are compounds having a silicone chain and a (meth) acryloyl group in the molecular structure. Good. Moreover, the manufacturing method is not particularly limited. Specific examples of the (meth) acrylate resin having a silicone chain and the modified product (R5) include, for example, a reaction product of a silicone compound having an alkoxysilane group and a hydroxyl group-containing (meth) acrylate compound.
  • silicone compounds having an alkoxysilane group examples include, for example, “X-40-9246” (alkoxy group content 12 mass%), “KR-9218” (alkoxy group-containing) manufactured by Shin-Etsu Chemical Co., Ltd.
  • the alkoxy group content is preferably in the range of 15 to 40% by mass.
  • the average value of the alkoxy group content is preferably in the range of 15 to 40% by mass.
  • hydroxyl group-containing (meth) acrylate compound examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, and ditrimethylolpropane tri (meth).
  • Hydroxyl group-containing (meth) acrylate compounds such as acrylate and dipentaerythritol penta (meth) acrylate; in the molecular structure of the various hydroxyl group-containing (meth) acrylate compounds, (poly) oxyethylene chain, (poly) oxypropylene chain, ( (Poly) oxyalkylene chain-modified (poly) oxyalkylene chain such as poly) oxytetramethylene chain; (poly) lactone structure is introduced into the molecular structure of the various hydroxyl group-containing (meth) acrylate compounds Lactone-modified products thereof were.
  • (meth) acrylate resin having a silicone chain and the modified product (R5) “X-22-174ASX” (methacryloyl) manufactured by Shin-Etsu Chemical Co., Ltd., which is a silicone oil having a (meth) acryloyl group at one end.
  • X-22-164 (methacryloyl group equivalent 190 g / equivalent), “X-22-164AS” (methacryloyl group equivalent 450 g / equivalent), “X-22-164A” (methacryloyl group equivalent) 860 g / equivalent), “X-22-164B” (methacryloyl group equivalent 1,600 g / equivalent), “X-22-164C” (methacryloyl group equivalent 2,400 g / equivalent), “X-22-164E” (methacryloyl) Group equivalent 3,900 g / equivalent), “X-22-2445” (acryloyl group equivalent 1,600 g / equivalent); Shin-Etsu Chemical Co., Ltd., an oligomer type silicone compound having a plurality of (meth) acryloyl groups in one molecule “KR-513” (methacryloyl group equivalent 210 g / equivalent), “-40-9296” (methacryloyl group equivalent 23 g / equivalent), Toago
  • AC-SQ TA-100 (acryloyl group equivalent 165 g / equivalent)
  • AC-SQ SI-20 (acryloyl group equivalent 207 g / equivalent)
  • MAC-SQ TM- Commercially available products such as “100” (methacryloyl group equivalent 179 g / equivalent), “MAC-SQ SI-20” (methacryloyl group equivalent 224 g / equivalent), “MAC-SQ HDM” (methacryloyl group equivalent 239 g / equivalent) good.
  • the (meth) acrylate resin having a silicone chain and the modified product (R5) preferably have a weight average molecular weight (Mw) in the range of 1,000 to 10,000, and in the range of 1,000 to 5,000. Is more preferable.
  • the (meth) acryloyl group equivalent is preferably in the range of 150 to 5,000 g / equivalent, and more preferably in the range of 150 to 2,500 g / equivalent.
  • Examples of the epoxy (meth) acrylate resin and the modified product (R6) include those obtained by reacting an epoxy resin with (meth) acrylic acid or an anhydride thereof.
  • Examples of the epoxy resin include diglycidyl ethers of dihydric phenols such as hydroquinone and catechol; diglycidyl ethers of biphenol compounds such as 3,3′-biphenyldiol and 4,4′-biphenyldiol; bisphenol A type epoxy resins; Bisphenol type epoxy resins such as bisphenol B type epoxy resin, bisphenol F type epoxy resin and bisphenol S type epoxy resin; 1,4-naphthalenediol, 1,5-naphthalenediol, 1,6-naphthalenediol, 2,6-naphthalene Polyglycidyl ethers of naphthol compounds such as diols, 2,7-naphthalenediol, binaphthol, bis (2,7-dihydroxynaphthyl) methane;
  • Examples of the urethane (meth) acrylate resin and the modified product (R7) include those obtained by reacting various polyisocyanate compounds, hydroxyl group-containing (meth) acrylate compounds, and various polyol compounds as necessary. It is done.
  • polyisocyanate compound examples include aliphatic diisocyanate compounds such as butane diisocyanate, hexamethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 2,4,4-trimethylhexamethylene diisocyanate; norbornane diisocyanate, isophorone diisocyanate, hydrogenated Alicyclic diisocyanate compounds such as xylylene diisocyanate and hydrogenated diphenylmethane diisocyanate; aromatic diisocyanate compounds such as tolylene diisocyanate, xylylene diisocyanate, tetramethylxylylene diisocyanate, diphenylmethane diisocyanate and 1,5-naphthalene diisocyanate; 11) Polymethylene polyphenyl poly having a repeating structure represented by Isocyanate; These isocyanurate modified product, a biuret modified product, and allophanate modified compounds and the like
  • R 10 is independently a hydrogen atom or a hydrocarbon group having 1 to 6 carbon atoms.
  • R 11 is each independently an alkyl group having 1 to 4 carbon atoms or a bonding point linked to a structural moiety represented by the structural formula (11) via a methylene group marked with *.
  • q is 0 or an integer of 1 to 3
  • p is an integer of 1 or more.
  • hydroxyl group-containing (meth) acrylate compound examples include hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, trimethylolpropane di (meth) acrylate, pentaerythritol tri (meth) acrylate, and ditrimethylolpropane tri (meth).
  • Hydroxyl group-containing (meth) acrylate compounds such as acrylate and dipentaerythritol penta (meth) acrylate; in the molecular structure of the various hydroxyl group-containing (meth) acrylate compounds, (poly) oxyethylene chain, (poly) oxypropylene chain, ( (Poly) oxyalkylene chain-modified (poly) oxyalkylene chain such as poly) oxytetramethylene chain; (poly) lactone structure is introduced into the molecular structure of the various hydroxyl group-containing (meth) acrylate compounds Lactone-modified products thereof were.
  • polyol compound examples include aliphatic polyol compounds such as ethylene glycol, propylene glycol, butanediol, hexanediol, glycerin, trimethylolpropane, ditrimethylolpropane, pentaerythritol, and dipentaerythritol; aromatics such as biphenol and bisphenol.
  • (Poly) oxyalkylene in which (poly) oxyethylene chain, (poly) oxypropylene chain, (poly) oxytetramethylene chain, or other (poly) oxyalkylene chain is introduced into the molecular structure of the various polyol compounds.
  • Modified body lactone modified body in which a (poly) lactone structure is introduced into the molecular structure of the various polyol compounds.
  • the acrylic (meth) acrylate resin and the modified product (R8) are polymerized using, for example, a (meth) acrylate monomer ( ⁇ ) having a reactive functional group such as a hydroxyl group, a carboxy group, an isocyanate group, or a glycidyl group as an essential component. Obtained by introducing a (meth) acryloyl group by further reacting a (meth) acrylate monomer ( ⁇ ) having a reactive functional group capable of reacting with these functional groups into an acrylic resin intermediate obtained by Is mentioned.
  • a (meth) acrylate monomer ( ⁇ ) having a reactive functional group such as a hydroxyl group, a carboxy group, an isocyanate group, or a glycidyl group as an essential component. Obtained by introducing a (meth) acryloyl group by further reacting a (meth) acrylate monomer ( ⁇ ) having a reactive functional group capable of reacting with these functional groups into an acrylic
  • the (meth) acrylate monomer ( ⁇ ) having a reactive functional group is, for example, a hydroxyl group-containing (meth) acrylate monomer such as hydroxyethyl (meth) acrylate or hydroxypropyl (meth) acrylate; a carboxy such as (meth) acrylic acid Group-containing (meth) acrylate monomer; isocyanate group-containing (meth) acrylate monomer such as 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate; glycidyl (meth) acrylate And glycidyl group-containing (meth) acrylate monomers such as 4-hydroxybutyl acrylate glycidyl ether. These may be used alone or in combination of two or more.
  • the acrylic resin intermediate may be a copolymer obtained by copolymerizing other polymerizable unsaturated group-containing compound as required in addition to the (meth) acrylate monomer ( ⁇ ).
  • the other polymerizable unsaturated group-containing compound include (meth) methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like.
  • Acrylic acid alkyl ester Cyclo ring-containing (meth) acrylate such as cyclohexyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate; phenyl (meth) acrylate, benzyl (meth) acrylate, phenoxyethyl acrylate Aromatic ring-containing (meth) acrylates; silyl group-containing (meth) acrylates such as 3-methacryloxypropyltrimethoxysilane; styrene derivatives such as styrene, ⁇ -methylstyrene, chlorostyrene, etc. . These may be used alone or in combination of two or more.
  • the (meth) acrylate monomer ( ⁇ ) is not particularly limited as long as it can react with the reactive functional group of the (meth) acrylate monomer ( ⁇ ), but is the following combination from the viewpoint of reactivity. Is preferred. That is, when the hydroxyl group-containing (meth) acrylate is used as the (meth) acrylate monomer ( ⁇ ), it is preferable to use an isocyanate group-containing (meth) acrylate as the (meth) acrylate monomer ( ⁇ ).
  • the carboxy group-containing (meth) acrylate is used as the (meth) acrylate monomer ( ⁇ )
  • the isocyanate group-containing (meth) acrylate is used as the (meth) acrylate monomer ( ⁇ )
  • the hydroxyl group-containing (meth) acrylate is preferably used as the (meth) acrylate monomer ( ⁇ ).
  • the carboxy group-containing (meth) acrylate is preferably used as the (meth) acrylate monomer ( ⁇ ).
  • the weight average molecular weight (Mw) of the acrylic (meth) acrylate resin and the modified product (R8) is preferably in the range of 5,000 to 50,000.
  • the (meth) acryloyl group equivalent is preferably in the range of 200 to 300 g / equivalent.
  • the dendrimer type (meth) acrylate resin and the modified product (R9) are a resin having a regular multi-branched structure and having a (meth) acryloyl group at the end of each branched chain.
  • it is called a hyperbranch type or a star polymer.
  • examples of such compounds include, but are not limited to, those represented by the following structural formulas (12-1) to (12-8), and a regular multi-branched structure is not limited thereto. Any resin can be used as long as it has a (meth) acryloyl group at the end of each branched chain.
  • R 8 is a hydrogen atom or a methyl group
  • R 12 is a hydrocarbon group having 1 to 4 carbon atoms.
  • the weight average molecular weight (Mw) of the dendrimer type (meth) acrylate resin and its modified product (R9) is preferably in the range of 1,000 to 30,000. Further, those having an average (meth) acryloyl group number per molecule of 5 to 30 are preferable.
  • the compound having the (meth) acryloyl group is appropriately selected and used depending on the intended use.
  • the composition viscosity without solvent is 1,000 mPa ⁇ s or less as measured by an E-type rotational viscometer. It is preferable that it is 100 mPa ⁇ s or less.
  • the curable composition When the curable composition is an active energy ray curable composition, it preferably contains a photopolymerization initiator. What is necessary is just to select and use the suitable photoinitiator by the kind etc. of the active energy ray to irradiate.
  • the photopolymerization initiator include, for example, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1, 2- (dimethylamino) Alkylphenone photopolymerization initiators such as -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone; 2,4,6-trimethylbenzoyl-diphenyl- Examples include acylphosphine oxide photopolymerization initiators such as phosphine oxide; intramolecular hydrogen abstraction type photopolymerization initiators such as benzophenone
  • photopolymerization initiators include, for example, “IRGACURE127”, “IRGACURE184”, “IRGACURE250”, “IRGACURE270”, “IRGACURE290”, “IRGACURE369E”, “IRGACURE379EG”, “IRGACURE500”, “IRGACURE500”, manufactured by BASF. , “IRGACURE 754”, “IRGACURE 819”, “IRGACURE 907”, “IRGACURE 1173”, “IRGACURE 2959”, “IRGACURE MBF”, “IRGACURE TPO”, “IRGACURE OXE 01”, “IRGACURE OX”, etc.
  • the photopolymerization initiator is preferably used in an amount of 0.05 to 20 parts by mass with respect to 100 parts by mass of the component excluding the organic solvent in the active energy ray-curable composition. More preferably, it is used in the range of ⁇ 10 parts by mass.
  • the curable composition of the present invention may be diluted with an organic solvent.
  • the organic solvent is ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monopropyl ether, alkylene glycol monoalkyl ether such as ethylene glycol monobutyl ether propylene glycol monomethyl ether; diethylene glycol dimethyl ether, diethylene glycol diethyl ether, diethylene glycol dipropyl ether, Dialkylene glycol dialkyl ethers such as diethylene glycol dibutyl ether; alkylene glycol alkyl ether acetates such as ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate; acetone, methyl ethyl Ketone compounds such as ketone, cyclohexanone, methyl amyl ketone; cyclic ethers such as dioxane; methyl 2-
  • the curable composition of the present invention may contain various additives depending on the desired performance.
  • additives include UV absorbers, antioxidants, photosensitizers, silicone additives, silane coupling agents, fluorine additives, rheology control agents, defoaming agents, antistatic agents, and antifogging agents.
  • Adhesion aids organic pigments, inorganic pigments, extender pigments, organic fillers, inorganic fillers and the like.
  • the curable composition containing the calixarene compound of the present invention is particularly useful as a resin material for shaping because it has a feature of excellent releasability, but may be used for other purposes.
  • a cured coating film having excellent surface smoothness and antifouling properties can be obtained.
  • the curable composition of the present invention When used as a resin material for shaping, it can be molded by a known general method.
  • a pattern forming method when an active energy ray-curable composition of the present invention is used as a resin material for nanoimprint lithography will be described. To do.
  • the resin material for nanoimprint lithography of the present invention is applied on a substrate to form an uncured resin film.
  • the thickness of the resin film depends on the shape of the pattern to be formed, it is preferably about 0.1 to 5 ⁇ m.
  • Coating method is not particularly limited, spray method, spin coating method, dip method, roll coating method, blade coating method, doctor roll method, doctor blade method, curtain coating method, slit coating method, bar coating method, screen printing method Any method such as an inkjet printing method, a gravure printing method, and an offset printing method may be used.
  • the resin material for nanoimprint lithography contains an organic solvent
  • the resin film is obtained by drying for several tens of seconds to several minutes under a temperature condition of about 50 to 100 ° C. after coating.
  • the shape and material of the substrate are not particularly limited, and a pattern can be formed on a desired base.
  • the substrate shape include a sheet shape, a three-dimensional structure, a plane shape, and a curved shape.
  • the material for the base material include triacetyl cellulose base material, polyester base material, acrylic base material, cycloolefin polymer base material, polyamide base material, polyimide base material, polyethylene base material, polypropylene base material, polystyrene base material, and polycarbonate.
  • Resin or plastic substrate such as substrate, polyphenylene sulfide (PPS) substrate, acrylonitrile-butadiene-styrene copolymer resin (ABS) substrate, sheet molding compound (SMC) substrate, bulk molding compound (BMC) substrate; Metals such as nickel, copper, chromium, iron, aluminum, and stainless steel or metal deposited film bases; Transparent conductive film bases such as ITO (In 2 O 3 —SnO 2 ); Silicon bases, polysilicon bases, silicon carbide Base material, silicon nitride base material, silicon oxide Agent, amorphous silicon base, a semiconductor substrate such as gallium nitride substrate; quartz, sapphire, glass, ceramic, coated glass film (SOG), include coating the carbon film (SOC) and the like.
  • PPS polyphenylene sulfide
  • ABS acrylonitrile-butadiene-styrene copolymer resin
  • SMC sheet molding compound
  • BMC bulk molding compound
  • Metals such
  • a mold for forming a pattern is pressed on the uncured resin film, and an active energy ray is irradiated from the mold side or the substrate side to cure the resin material, thereby forming a pattern.
  • Materials for the mold include light transmissive materials such as quartz, ultraviolet transmissive glass, silicone materials such as sapphire, diamond and polydimethylsiloxane, and transparent resins such as cycloolefin; light transmissive materials such as metal, silicon carbide and mica.
  • the shape of the mold is not particularly limited, and may be any shape such as a flat shape, a belt shape, a roll shape, and a roll belt shape.
  • the heating temperature is preferably such that the curing reaction of the resin material does not proceed.
  • the heating temperature is about 25 to 80 ° C. Is preferred.
  • the active energy ray to be irradiated is not particularly limited as long as it is capable of curing the resin material and having a wavelength capable of transmitting the base material or the mold.
  • a compound having a (meth) acryloyl group is used as the active energy ray-curable resin material, light having a wavelength of 450 nm or less (such as ultraviolet rays, X-rays, and ⁇ rays) is used because the curing reaction proceeds efficiently. Active energy rays) are preferred.
  • the application destination of the pattern formed by the resin material for nanoimprint lithography of the present invention is not particularly limited, and may be used in any application field. Since the resin material for nanoimprint lithography of the present invention has a feature of excellent releasability, it is difficult for defects and pattern collapse to occur even in the formation of fine and complicated patterns, so that processing of optical members, integrated circuit (LSI) applications, etc. It can also be suitably used for applications that require high resolution and dimensional control.
  • LSI integrated circuit
  • the molecular weight of the resin is a value measured under the following conditions using a gel permeation chromatograph (GPC).
  • Measuring device HLC-8220 manufactured by Tosoh Corporation Column: Tosoh Corporation guard column H XL -H + Tosoh Corporation TSKgel G5000HXL + Tosoh Corporation TSKgel G4000HXL + Tosoh Corporation TSKgel G3000HXL + Tosoh Corporation TSKgel G2000HXL Detector: RI (differential refractometer) Data processing: Tosoh Corporation SC-8010 Measurement conditions: Column temperature 40 ° C Solvent Tetrahydrofuran Flow rate 1.0 ml / min Standard; Polystyrene sample; 0.4% by mass tetrahydrofuran solution in terms of resin solids filtered through microfilter (100 ⁇ l)
  • the reaction mixture was transferred to a separatory funnel and the organic phase was recovered.
  • the operation of adding 20 g of chloroform to the aqueous phase to extract organic components was performed three times, and the resulting extract was combined with the organic phase recovered earlier.
  • anhydrous magnesium sulfate was added to the organic phase for dehydration, the organic phase was recovered by filtration.
  • the solvent was distilled off with an evaporator to obtain a mixture of white crystals and a light green transparent liquid.
  • Methanol was slowly added to the mixture to reprecipitate the product that had been dissolved in the liquid.
  • the white crystals were filtered with a Kiriyama funnel, washed with methanol, and then vacuum dried to obtain 12.77 g of an intermediate (B-1) represented by the following structural formula (c).
  • Example 2 Production of Calixarene Compound (2)
  • 10.00 g of the calixarene compound (1) obtained in Example 1 ( 4.750 mmol)
  • 55.00 g (947.0 mmol) of anhydrous acetone 55.00 g (947.0 mmol) of anhydrous acetone
  • 7.88 g (57.00 mmol) of potassium carbonate 7.88 g (57.00 mmol) of potassium carbonate
  • 8.72 g (57.02 mmol) of methyl 2-bromoacetate were added and heated to reflux for 60 hours.
  • ion-exchanged water and 1N hydrochloric acid were added to pH 6.
  • Example 3 Preparation of calixarene compound (3)
  • 8.00 g (110.94 mmol) of tetrahydrofuran was placed, and hydrogenated in an ice bath.
  • 0.507 g (13.36 mmol) of lithium aluminum was slowly added.
  • 4.00 g (1.6711 mmol) of calixarene compound (2) dissolved in 32.00 g (443.77 mmol) of tetrahydrofuran with a dropping funnel was slowly added at 5 ° C. or lower. Gray suspension. The reaction was carried out at room temperature for 6 hours.
  • the solvent was concentrated and reprecipitated by adding chloroform / methanol.
  • the white solid was filtered with a Kiriyama funnel, and the obtained white solid was vacuum-dried (at 60 ° C. for 6 hours or longer) to obtain 2.978 g of calixarene compound (3) represented by the following structural formula (f). Yield 78.1%.
  • Example 4 Production of calixarene compound (4)
  • 2.00 g (0.9499 mmol) of calixarene compound (1) was prepared.
  • 20.55 g (285.0 mmol) of dehydrated THF 1.96 g (49.40 mmol) of 60% NaH
  • 30.48 g (120.0 mmol) of N- (2-bromoethyl) phthalimide was prepared.
  • the solution was distilled off, 50 g of chloroform and 1N HCl were added to pH 3 and the organic phase was separated. The aqueous phase was then extracted 3 times with 20 g of chloroform and combined with the organic phase. After further washing with 1M Na2CO3 aqueous solution and ion-exchanged water, the organic phase was pre-dried with anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator, and reprecipitation was performed by adding methanol in an ice bath. The milky white solid was filtered with a Kiriyama funnel and washed with methanol. The obtained milky white solid was vacuum-dried (at 60 ° C. for 12 hours or longer) to obtain 1.2864 g of calixarene compound (4) represented by the following structural formula (g). Yield 48.4%.
  • Example 5 Production of calixarene compound (5)
  • a stirrer In a 100 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel and a reflux condenser, 1.2864 g (0.4597 mmol) of calixarene compound (4) was prepared.
  • 15.42 g (334.70 mmol) of ethanol and 0.4845 g (0.9195 mmol) of 95% hydrazine monohydrate were quickly charged and heated to reflux at 300 rpm for 5 hours under a nitrogen flow. A pale yellow suspension was obtained.
  • the solution After cooling, the solution was distilled off, 20 g of chloroform and 20 g of ion-exchanged water were added, and the organic phase was separated.
  • the aqueous phase was then extracted 3 times with 20 g of chloroform and combined with the organic phase.
  • the organic phase was pre-dried with anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator.
  • 7.00 g (218.5 mmol) of methanol and 0.3644 g (3.698 mmol) of 37% concentrated hydrochloric acid were charged, and the mixture was heated to reflux for 4 hours under a nitrogen flow.
  • the reaction mixture was cooled to room temperature, transferred to a separatory funnel, charged with 20 g of ion exchange water and 20 g of chloroform, and the organic phase was separated.
  • the aqueous phase was then extracted 3 times with 20 g of chloroform and combined with the organic phase.
  • Example 6 Production of calixarene compound (6)
  • a 500 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser 4.00 g (1.671 mmol) of calixarene compound (2), tetrahydrofuran 30 0.000 g (416.05 mmol), ethanol 26.00 g (564.4 mmol) and potassium hydroxide 1.24 g (22.11 mmol) were added, and the mixture was heated to reflux for 6 hours.
  • White suspension After cooling to room temperature, ion-exchanged water and chloroform were added and ice bathed. About 5N hydrochloric acid was slowly added until pH1.
  • the reaction mixture was transferred to a separatory funnel with 50 g of chloroform, and the organic phase was separated.
  • the aqueous phase was then extracted 3 times with 30 g of chloroform and combined with the organic phase.
  • the organic phase was pre-dried with anhydrous magnesium sulfate and filtered.
  • the solvent was distilled off with an evaporator to obtain a milky white solid.
  • the obtained milky white solid was vacuum-dried (at 60 ° C. for 12 hours or longer) to obtain 3.883 g of calixarene compound (6) represented by the following structural formula (i). Yield 99.4%.
  • Example 7 Production of calixarene compound (7) 5.00 g (2.416 mmol) of calixarene compound (1) was placed in a 100 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser. ), 17.66 g (241.6 mmol) of dehydrated N, N-dimethylformamide and 1.16 g (29.00 mmol) of 50% aqueous NaOH solution were quickly charged and stirred at 65 ° C. and 300 rpm under a nitrogen flow. A pale yellow clear solution was obtained. Then, 4.38 g (29.00 mmol) of allyl bromide was dropped over 30 minutes using a dropping funnel.
  • Example 8 Production of calixarene compound (8)
  • a 200 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser 1.500 g (0.6621 mmol) of calixarene compound (8) was prepared.
  • 6.01 g (66.21 mmol) of dehydrated toluene, 0.0658 g (0.2649 mmol) of 2,2′-azobis (2,4-dimethylvaleronitrile) manufactured by Wako Pure Chemical Industries, Ltd.
  • 0.4031 g of thioacetic acid 0.5296 mmol
  • reaction mixture was transferred to a separatory funnel, 15 g of 1N NaHCO 3 aqueous solution and 15 g of chloroform were added, and the organic phase was separated. The aqueous phase was then extracted 3 times with 15 g of chloroform and combined with the organic phase. Further, after separating with 15 g of 1N NaOH aqueous solution, the organic phase was pre-dried with anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain a red transparent liquid. In an ice bath, methanol was added for reprecipitation.
  • the milky white solid was filtered with a Kiriyama funnel and washed with methanol.
  • the obtained milky white solid was vacuum-dried (at 60 ° C. for 12 hours or longer) to obtain 1.543 g of calixarene compound (8) represented by the following structural formula (k). Yield 90.7%.
  • Example 9 Production of calixarene compound (9)
  • a 100 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser 1.543 g (0.6004 mmol) of calixarene compound (8), THF2.
  • 00 g (27.74 mmol) 4.00 g (124.84 mmol) of methanol and 0.9754 g (9.900 mmol) of 37% concentrated hydrochloric acid were charged and stirred at 65 ° C. and 300 rpm for 8 hours under a nitrogen flow.
  • the reaction mixture was cooled to room temperature, transferred to a separatory funnel, charged with 20 g of ion exchange water and 20 g of chloroform, and the organic phase was separated. The aqueous phase was then extracted 3 times with 20 g of chloroform and combined with the organic phase. Further, after washing with 15 g of a saturated aqueous NaHCO 3 solution and saturated brine, the organic phase was pre-dried with anhydrous magnesium sulfate and filtered. The solvent was distilled off with an evaporator to obtain a red transparent liquid. In an ice bath, normal hexane and methanol were added for reprecipitation. The milky white solid was filtered with a Kiriyama funnel and washed with methanol. The obtained milky white solid was vacuum-dried (at 60 ° C. for 12 hours or longer) to obtain 1.084 g of calixarene compound (9) represented by the following structural formula (l). Yield 75.2%.
  • Example 10 Preparation of calixarene compound (10) In a 100 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser, 1.500 g (0.7248 mmol) of calixarene compound (1) was prepared. ), Dehydrated THF 15.68 g (217.45 mmol), 60% NaH 0.3479 g (8.698 mmol) and diethyl 2-bromobutylphosphonate 2.3755 g (8.698 mmol) were quickly charged under nitrogen flow at room temperature at 300 rpm. Stir with. A pale yellow suspension was obtained. The temperature was raised and the mixture was heated to reflux for 12 hours. Methanol was added slowly to quench the reaction.
  • the ocherous solid was filtered with a Kiriyama funnel, and the obtained ocherous solid was vacuum-dried (at 60 ° C. for 6 hours or longer) to obtain 1.078 g of calixarene compound (10) represented by the following structural formula (m). It was. Yield 52.4%.
  • Example 11 Preparation of calixarene compound (11)
  • a stirrer a thermometer, a dropping funnel, and a reflux condenser
  • 1.078 g (0.8258 mmol) of calixarene compound (10) was prepared.
  • 8.00 g (194.9 mmol) of dehydrated acetonitrile and 2.086 g (13.63 mmol) of trimethylsilyl bromide were quickly charged and heated to reflux at 300 rpm for 6 hours under a nitrogen flow. A pale yellow suspension was obtained.
  • 5.00 g (156.0 mmol) of methanol was added, and the mixture was further heated to reflux for 2 hours.
  • the ocherous solid was filtered with a Kiriyama funnel, and the obtained ocherous solid was vacuum-dried (at 60 ° C. for 6 hours or more) to obtain 1.399 g of calixarene compound (11) represented by the following structural formula (n). It was. Yield 64.8%.
  • Example 12 Preparation of calixarene compound (12) 1.00 g (0.4383 mmol) of calixarene compound (3) was placed in a 100 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser. ), Dissolved in 8.00 g (94.20 mmol) of anhydrous dichloromethane, and 1.7767 g (17.470 mmol) of anhydrous triethylamine was added. Next, 1.6808 g (4.4306 mmol) of bis (2,2,2-trichloroethyl) phosphorochloride was added in an ice bath and allowed to react at room temperature for 12 hours.
  • Example 13 Preparation of calixarene compound (13) 1.00 g (0.4414 mmol) of calixarene compound (3) was placed in a 30 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser. ), 2.078 g (22.07 mmol) of dehydrated toluene, 0.00127 g (0.0033 mmol) of 1,3-divinyl-1,1,3,3-tetramethyldisiloxane platinum (0) complex xylene solution were quickly charged, The mixture was stirred for 30 minutes at 300 rpm in an ice bath under a nitrogen flow.
  • Example 14 Production of calixarene compound (14) In a 50 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 1.000 g (0.4278 mmol) of calixarene compound (6), tetrabutyl 0.03160 g (0.0856 mmol) of ammonium iodide, 7.711 g (85.56 mmol) of 1-methoxy-2-propanol, 0.003 g (0.0171 mmol) of phenothiazine, 0.5140 g (5.133 mmol) of vinyl glycidyl ether The mixture was stirred. Heated at 90 ° C. for 20 hours with oxygen bubbling.
  • Example 15 Preparation of calixarene compound (15) 1.00 g (0.4832 mmol) of calixarene compound (1) was placed in a 50 ml four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser. ), Dehydrated N, N-dimethylformamide (3.53 g, 48.32 mmol) was charged, and 60% NaH (0.0928 g, 3.866 mmol) was charged little by little in an ice bath. When stirring and the color of the solution changed, 0.5748 g (3.866 mmol) of propargyl bromide (80% toluene solution, about 9.2 mol / L) was added.
  • Example 16 Preparation of calixarene compound (16) In a 100 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 2.00 g (0.9664 mmol) of calixarene compound (1), tetrahydrofuran 14 0.000 g (194.2 mmol), 0.76 g (2.900 mmol) of triphenylphosphine, and 0.3773 g (2.899 mmol) of hydroxyethyl methacrylate were added and stirred. Pale yellow clear solution. Then, 0.5863 g (2.899 mmol) of diisopropyl azodicarboxylate was added dropwise over 30 minutes in an ice bath.
  • Example 17 Production of calixarene compound (17)
  • 2.00 g (0.9664 mmol) of calixarene compound (1) 2.00 g (0.9664 mmol) of calixarene compound (1), tetrahydrofuran 14 0.000 g (194.2 mmol), 0.76 g (2.900 mmol) of triphenylphosphine, and 0.3367 g (2.899 mmol) of ⁇ -hydroxyethyl acrylate were added and stirred. Pale yellow clear solution. Then, 0.5863 g (2.899 mmol) of diisopropyl azodicarboxylate was added dropwise over 30 minutes in an ice bath. Orange clear solution.
  • Example 18 Preparation of calixarene compound (18) In a 200 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 2.00 g (0.8906 mmol) of calixarene compound (3), tetrahydrofuran 13 0.000 g (180.3 mmol), triphenylphosphine 1.4016 g (5.343 mmol), and acrylic acid 0.3851 g (5.344 mmol) were added and stirred. Pale yellow clear solution. Next, 1.0805 g (5.344 mmol) of diisopropyl azodicarboxylate was added dropwise over 30 minutes in an ice bath. Red clear solution. Stir at room temperature for 6 hours.
  • Example 19 Production of calixarene compound (19) To a 300 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 1.000 g (0.4278 mmol) of calixarene compound (6), tetrabutyl 0.03160 g (0.0856 mmol) of ammonium iodide, 7.711 g (85.56 mmol) of 1-methoxy-2-propanol, 0.003 g (0.0171 mmol) of phenothiazine, and 0.7300 g (5.133 mmol) of GMA were stirred. . Heated at 90 ° C. for 20 hours with oxygen bubbling. Brown clear solution.
  • Example 20 Production of calixarene compound (20) In a 100 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 1.000 g (0.4453 mmol) of calixarene compound (3), N- Methylpyrrolidone 5.00 g (50.44 mmol), 2-acryloyloxyethyl isocyanate 0.3771 g (2.672 mmol), phenothiazine 0.001 g (0.005018 mmol), dibutyltin dilaurate 0.001 g (0.001583 mmol) were added and stirred. did. Heated at 780 ° C. for 10 hours while bubbling with oxygen. Brown clear solution.
  • Example 21 Preparation of calixarene compound (21) In a 100 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser, 1.000 g (0.4414 mmol) of calixarene compound (7), dichloromethane 7 Dissolved in .50 g (88.27 mmol). Next, 0.2225 g (2.648 mmol) of sodium hydrogen carbonate was added, and 0.516 g (1.942 mmol) of m-chloroperbenzoic acid was added in small portions. Stir at room temperature for 7 days. Cream suspension. The reaction mixture was washed with saturated aqueous sodium bicarbonate.
  • Example 22 Preparation of calixarene compound (22) 1.000 g (0.4832 mmol) of calixarene compound (1), tetrabutyl was added to a 50 ml four-necked flask equipped with a stirrer, a thermometer and a reflux condenser. Ammonium iodide 0.0357 g (0.09664 mmol), N-methylpyrrolidone 10.00 g (100.87 mmol), (3-ethyl-3-oxetanyl) methyl p-toluenesulfonate 0.7838 g (2.899 mmol), water Potassium oxide 0.1627g (2.899mmol) was added and stirred. Heated at 80 ° C.
  • Example 23 Preparation of calixarene compound (23) To a 100 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser, was charged 3.61 g (91.3 mmol) of sodium hydride, The mineral oil was washed away with 40 mL of hexane, and the hexane solution was extracted with a syringe. The hexane cleaning operation was performed once again. Next, 20 mL of dimethylformamide was added and stirred under ice cooling.
  • the reaction mixture was put into a 200 mL beaker containing ice to stop the reaction, and concentrated hydrochloric acid was added until the pH of the aqueous layer was 2 or less. Thereto, 100 mL of chloroform was added, stirred for a while, then transferred to a separatory funnel, and after separating the organic layer, the operation of adding 80 mL of chloroform to the aqueous layer and extracting the organic components was repeated twice. After all the organic layer was transferred to a separatory funnel, the organic layer was washed in order of 3 times with 100 mL of water, once with 60 mL of saturated aqueous sodium hydrogen carbonate solution and once with 60 mL of saturated brine.
  • Example 24 Production of calixarene compound (24) A 200 mL four-necked flask equipped with a stirrer, a thermometer, a dropping funnel, and a reflux condenser was charged with trifluoromethanesulfonic acid (50 g), and the intermediate obtained above. Body (A-1) (7 g, 16.5 mmol) was added in several portions and dissolved. To this orange solution, 4,4,5,5,5-pentafluoropentanoyl chloride (16.7 g, 79.2 mmol) synthesized by the method described in Japanese Patent No. 4856310 was added dropwise over 20 minutes. Generation of hydrochloric acid gas was observed along with the dropwise addition.
  • reaction mixture was stirred at room temperature for 6 hours.
  • the reaction mixture was poured into ice to stop the reaction, and the precipitated orange solid was separated by filtration and further washed with a large amount of water.
  • the obtained solid was dissolved in 200 mL of ethyl acetate and then transferred to a separatory funnel, and further 100 mL of water was added to wash the organic layer.
  • the same washing operation was repeated three more times, and then the organic layer was washed with 100 mL of saturated brine and dried over anhydrous magnesium sulfate.
  • the solution was filtered to recover the organic phase, and then the solvent was distilled off with an evaporator to obtain an orange solid.
  • Example 25 Preparation of calixarene compound (25)
  • a 500 ml four-necked flask equipped with a stirrer, thermometer, dropping funnel and reflux condenser was charged with trifluoroacetic acid (270 mL), then calixarene compound ( 24) (7 g, 6.25 mmol) was added in several portions and dissolved.
  • triethylsilane (14.5 g, 125 mmol) was added dropwise from a dropping funnel. After completion of the dropwise addition, the colorless and transparent solution was stirred at room temperature for 72 hours. The reaction mixture was poured into water to stop the reaction, and the precipitated brown solid was separated by filtration and further washed with a large amount of water.
  • the obtained solid was dissolved in 200 mL of ethyl acetate and then transferred to a separatory funnel, and further 100 mL of water was added to wash the organic layer.
  • the organic layer was once transferred to a beaker, 100 mL of water was added thereto, and neutralized with solid sodium hydrogen carbonate.
  • the neutralization solution was transferred to the station funnel in an entire amount, the organic layer was separated, and 100 mL of ethyl acetate was added to the aqueous layer to extract the organic component twice. After all the organic layer was transferred to a separatory funnel, it was washed once with 100 mL of saturated brine, and the organic layer was dried over anhydrous magnesium sulfate.
  • Example 26 Production of calixarene compound (26) Production in accordance with Example 1 except that calixarene compound (25) (6 g, 5.63 mmol) was used instead of calixarene compound (1) in Example 2. Then, 6.47 g (yield 85%) of calixarene compound (26) represented by the following structural formula (cc) was obtained.
  • Example 27 Production of calixarene compound (27) Production was carried out according to Example 3 except that calixarene compound (26) (6 g, 4.43 mmol) was used instead of calixarene compound (2) in Example 3. Then, 4.12 g (yield 75%) of calixarene compound (27) represented by the following structural formula (dd) was obtained.
  • Example 28 Production of calixarene compound (28) Production according to Example 18 except that calixarene compound (27) (4 g, 3.22 mmol) was used instead of calixarene compound (3) in Example 18. Then, 2.81 g (yield 60%) of calixarene compound (28) represented by the following structural formula (ee) was obtained.
  • Examples 29-74 and Comparative Examples 1-2 A curable composition and a cured product were produced in the following manner, and various evaluations were performed. The evaluation results are shown in Tables 1-5.
  • R2-1 trimethylolpropane triacrylate (“Biscoat # 295” manufactured by Osaka Organic Chemical Industry Co., Ltd.)
  • R3-1) Tricyclodecane dimethanol diacrylate (“NK Ester A-DCP” manufactured by Shin-Nakamura Chemical Co., Ltd.)
  • R4-1) a compound represented by the following structural formula (“Ogsol EA-0200” manufactured by Osaka Gas Chemical Co., Ltd.)
  • the curable composition was spin-coated on a silicon wafer substrate so as to have a film thickness of 1.0 ⁇ m, and dried on a 110 ° C. hot plate for 60 seconds.
  • the obtained coating film was visually evaluated according to the following criteria. A: A smooth coating film was formed without repelling. B: A repellency etc. arise and a smooth coating film is not formed.
  • the curable composition was spin-coated on a silicon wafer substrate so as to have a film thickness of 1.0 ⁇ m, and dried on a 110 ° C. hot plate for 60 seconds. In a nitrogen atmosphere, exposure was performed under the condition of 500 mJ / cm 2 using an LED light source having a peak wavelength of 365 ⁇ 5 nm to obtain a cured coating film.
  • the curable composition was spin-coated on a silicon wafer substrate so as to have a film thickness of 1.0 ⁇ m, and dried on a 110 ° C. hot plate for 60 seconds. It was set on the lower surface stage of the nanoimprint apparatus ("X300" manufactured by SCIVAX). Next, quartz mold (“NIM PHH-100” manufactured by NTT Advanced Technology, duty ratio 1/1/1/2/1/3, hole width 70 to 3000 nm, groove depth 200 nm, cleaned with UV ozone cleaner. The water contact angle of the mold surface was less than 10 °) was set on the upper stage of the nanoimprint apparatus.
  • the upper surface stage was lowered to bring the mold into contact with the curable composition, pressurized to 100 N over 10 seconds at room temperature, and held for 30 seconds to remove bubbles in the film.
  • the upper surface stage was raised at a speed of 1 mm / min, and the mold was peeled to obtain a sample.
  • the same mold was used continuously without washing, and a total of 10 samples were produced by the same method.
  • Various evaluation tests were performed on the tenth sample. When the curable composition produced in Comparative Example 2 was used, a smooth coating film was not formed on the silicon wafer, and various evaluation tests could not be performed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Macromonomer-Based Addition Polymer (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

離型剤として有用な化合物、これを含有する離型剤、硬化性組成物、及びナノインプリントリソグラフィー用樹脂材料を提供する。具体的には、下記構造式(1) (式中Rはパーフルオロアルキル基を有する構造部位である。Rは水素原子、極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである。Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。*は芳香環との結合点である。) で表される分子構造を有するカリックスアレーン化合物、及びこれを用いる組成物を提供する。

Description

カリックスアレーン化合物及び硬化性組成物
 本発明は、離型剤として有用な化合物、これを含有する離型剤、硬化性組成物、及びナノインプリントリソグラフィー用樹脂材料に関する。
 成形型を使った樹脂材料の賦形技術は、射出成形による熱可塑性樹脂の加工から最新のナノインプリントまで、幅広い用途に利用されている。成形型を使った賦形技術においては、樹脂材料の種類や成形型の形状如何に関わらず、常に、成形型と樹脂成形品との離型性が重要な課題の一つとなる。離型性を改善する一般的な方法としては、離型剤を金型に塗布する、離型剤成分を樹脂材料に添加するなどの方法が知られており、離型剤としてはパーフルオロアルキル基を有する化合物が広く利用されている(例えば、特許文献1参照)。
 昨今実用化が進む前述のナノインプリント技術においては、成形型の形状が微細かつ複雑であることから離型性の問題が特に顕著である。特に、ナノインプリントリソグラフィーのような電材用途においては、些細なパターンの欠損やパターン倒れが最終製品において致命的な欠陥を誘発する可能性もある。このような状況下、従来の離型剤では市場要求に対応しきれなくなってきており、新しい分子設計の離型剤の開発が求められている。
特開2014-129517号公報
 したがって、本発明が解決しようとする課題は、離型剤として有用な化合物、これを含有する離型剤、硬化性組成物、及びナノインプリントリソグラフィー用樹脂材料を提供することにある。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、特定の化学構造を有するカリックスアレーン化合物が離型剤として非常に高い性能を有し、これを含有する硬化性組成物は様々な基材に対する塗工性を損なうことなく、高い離形性を有することを見出し、本発明を完成させるに至った。
 即ち、本発明は、下記構造式(1)
Figure JPOXMLDOC01-appb-C000004
(式中Rはパーフルオロアルキル基を有する構造部位である。Rは水素原子、極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである。Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。*は芳香環との結合点である。)
で表される分子構造を有するカリックスアレーン化合物に関する。
 本発明はさらに、前記カリックスアレーン化合物を含有する離型剤に関する。
 本発明はさらに、前記カリックスアレーン化合物と硬化性樹脂材料とを含有する硬化性組成物に関する。
 本発明はさらに、前記カリックスアレーン化合物を含有するナノインプリントリソグラフィー用樹脂材料に関する。
 本発明によれば、離型剤として有用なカリックスアレーン化合物、これを含有する離型剤、硬化性組成物、及びナノインプリントリソグラフィー用樹脂材料を提供することができる。
図1は、実施例1で得られたカリックスアレーン化合物(1)のFD-MSチャート図である。 図2は、実施例1で得られたカリックスアレーン化合物(1)のH-NMRチャート図である 図3は、実施例1で得られたカリックスアレーン化合物(1)の13C-NMRチャート図である。 図4は、実施例1で得られたカリックスアレーン化合物(1)の19F-NMRチャート図である。
 以下、本発明を詳細に説明する。
 本発明のカリックスアレーン化合物は、下記構造式(1)
Figure JPOXMLDOC01-appb-C000005
(式中Rはパーフルオロアルキル基を有する構造部位である。Rは水素原子、極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである。Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。*は芳香環との結合点である。)
で表される分子構造を有する。
 前記構造式(1)中のnは2~10の整数である。中でも、構造的に安定であることからnが4、6又は8であるものが好ましい。
 本発明のカリックスアレーン化合物においては、前記Rで表されるパーフルオロアルキル基を有する構造部位が比較的密集して存在するため、一般的な線状ポリマー型の離型剤と比較して非常に優れた離形性能を発現する。前記構造式(1)中、R、Rの結合位置や、*で表される結合点の位置は特に限定されず、どのような構造を有していてもよい。中でも、離型剤としての性能に一層優れるカリックスアレーン化合物となることから、下記構造式(1-1)又は(1-2)
Figure JPOXMLDOC01-appb-C000006
(式中Rはパーフルオロアルキル基を有する構造部位である。Rは水素原子、極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである。Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。)
で表される分子構造を有するものが好ましい。
 前記構造式(1)中のRはパーフルオロアルキル基を有する構造部位であり、前記カリックスアレーン化合物を離型剤用途に用いた場合の離型性に寄与する部位である。前記パーフルオロアルキル基の炭素原子数は特に制限されないが、生体安全性の観点から炭素原子数が1~6の範囲であるものが好ましい。前記Rのパーフルオロアルキル基以外の構造部位は特に制限されず、どのような構造を有していてもよい。Rの具体構造としては、パーフルオロアルキル基をRで表した場合、例えば、―X―Rで表されるものが挙げられる。
 前記Xは、例えば、置換基を有していてもよいアルキレン基、(ポリ)アルキレンエーテル構造、(ポリ)アルキレンチオエーテル構造、(ポリ)エステル構造、(ポリ)ウレタン構造、これらの組み合わせからなる構造部位等が挙げられ、(ポリ)アルキレンエーテル鎖又は(ポリ)アルキレンチオエーテル鎖であることが好ましい。また、製造上、容易である観点から、下記構造式(2)で表され構造部位であることが好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中Rはそれぞれ独立に直接結合又は炭素原子数1~6のアルキレン基である。Rはパーフルオロアルキル基である。Yは直接結合、カルボニル基、酸素原子又は硫黄原子である。)
 前記構造式(2)中のRはそれぞれ独立に炭素原子数1~6のアルキレン基である。アルキレン基は直鎖型のもの、分岐構造を有するもののどちらでも良いが、離型剤としての性能に優れるカリックスアレーン化合物となることから、直鎖型のものが好ましい。
 前記構造式(1)中のRは水素原子、極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである。前述のとおり、芳香環上のRの置換位置は特に限定されないが、Rが極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである場合には、芳香環上の置換位置はRのパラ位であることが好ましい。離型性を発現するRに対しRがパラ位に位置することにより、Rがモールド側又はマトリックス成分側との親和性基として機能する、或いはマトリックス成分側と反応する等の効果が生じ、離型剤としての性能に一層優れるカリックスアレーン化合物となる。
 前記構造式(1)中のRとしては、例えば、極性基として、水酸基、チオール基、ホスフィンオキシド基、又は水酸基、アミノ基、カルボキシ基、チオール基、リン酸基、ホスホン酸基、ホスフィン酸基、ホスフィンオキシド基、アルコキシシリル基の何れかの極性基を有する構造部位等が挙げられる。前記極性基を有する構造部位において、極性基以外の構造部位は特に制限されず、どのような構造を有していてもよい。極性基を有する構造部位の具体例としては、極性基をRP1で表した場合、例えば、―O―X―RP1で表されるものが挙げられる。前記Xは、例えば、置換基を有していてもよいアルキレン基、(ポリ)アルキレンエーテル構造、(ポリ)アルキレンチオエーテル構造、(ポリ)エステル構造、(ポリ)ウレタン構造、これらの組み合わせからなる構造部位等が挙げられる。中でも、アルキレン基であることが好ましく、炭素原子数1~6のアルキレン基であることがより好ましい。したがって、極性基を有する構造部位の好ましい例としては、下記構造式(3-1)~(3-7)の何れかで表される構造部位が挙げられる。
Figure JPOXMLDOC01-appb-C000008
(式中Rはそれぞれ独立に炭素原子数1~6のアルキレン基である。Rは炭素数1~3のアルキル基である。)
 前記構造式(1)中のRとしては、例えば、重合性基としては、ビニルオキシ基、エチニルオキシ基、(メタ)アクリロイルオキシ基、グリシジルオキシ基、(2-メチル)グリシジル基、(2-メチル)グリシジルオキシ基、3-アルキルオキセタニルメチルオキシ基、又はビニル基、ビニルオキシ基、エチニル基、エチニルオキシ基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、グリシジル基、グリシジルオキシ基、(2-メチル)グリシジル基、(2-メチル)グリシジルオキシ基、3-アルキルオキセタニルメチル基、3-アルキルオキセタニルメチルオキシ基の何れかの重合性基を有する構造部位が挙げられる。前記重合性基を有する構造部位において、重合性基以外の構造部位は特に制限されず、どのような構造を有していてもよい。重合性基を有する構造部位の具体例としては、重合性基をRP2で表した場合、例えば、―O―X―RP2で表されるものが挙げられる。前記Xは、例えば、置換基を有していてもよいアルキレン基、(ポリ)アルキレンエーテル構造、(ポリ)アルキレンチオエーテル構造、(ポリ)エステル構造、(ポリ)ウレタン構造、これらの組み合わせからなる構造部位等が挙げられる。重合性基を有する構造部位の好ましい例としては、下記構造式(4-1)~(4-8)の何れかで表される構造部位が挙げられる。
Figure JPOXMLDOC01-appb-C000009
(式中Rはそれぞれ独立に炭素原子数1~6のアルキレン基である。Rは水素原子又はメチル基である。)
 前記構造式(1)中のRは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、t-ブチル基、ペンチル基、へキシル基、シクロへキシル基、ヘプチル基、オクチル基、ノニル基の脂肪族炭化水素基や、これら脂肪族炭化水素基の水素原子の一つ乃至複数が水酸基、アルコキシ基、ハロゲン原子等で置換された構造部位;フェニル基、ナフチル基、アントリル基等の芳香環含有炭化水素基や、これらの芳香核上に水酸基やアルキル基、アルコキシ基、ハロゲン原子等が置換したトリル基、キシリル基等の構造部位が挙げられる。中でも、Rは水素原子であることが好ましい。
 本発明のカリックスアレーン化合物はどのような方法にて製造されたものであってもよい。以下、本発明のカリックスアレーン化合物を製造する方法の一例について説明する。
 本発明のカリックスアレーン化合物は、例えば、下記構造式(5)
Figure JPOXMLDOC01-appb-C000010
(式中Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。)
で表される中間体(A)とハロゲン化アリルとを反応させてアリルエーテル化する工程(工程1)、次いで大過剰のアミン化合物の存在下で加熱撹拌してアリル基を転移させ、下記構造式(6)
Figure JPOXMLDOC01-appb-C000011
(式中Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。)
で表される中間体(B)を得る工程(工程2)、パーフルオロアルキル基を導入する工程(工程3)、必要に応じてRに相当する官能基を導入する工程(工程4)を経る方法にて製造することができる。
 前記構造式(5)で表される中間体(A)は、フェノールとアルデヒド化合物とから直接製造する方法や、パラアルキルフェノールとアルデヒド化合物とを反応させてカリックスアレーン構造を有する中間体(a)を得た後、フェノールと塩化アルミニウムとの存在下で脱アルキル化反応させる方法等にて製造することができる。特に、前記中間体(A)をより高い収率で製造できることから、パラアルキルフェノールとアルデヒド化合物とを反応させてカリックスアレーン構造を有する中間体(a)を得た後、フェノールと塩化アルミニウムとの存在下で脱アルキル化反応させる方法で製造することが好ましい。
 前記パラアルキルフェノールは、パラ位にアルキル基を有するフェノール化合物であれば特に限定なく、何れの化合物を用いてもよい。前記アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、へプチル基、オクチル基、ノニル基等が挙げられるが、前記中間体(a)をより高い収率で製造できることからtert-ブチル基等の嵩高いものが好ましい。
 前記アルデヒド化合物は、前記パラアルキルフェノールと縮合反応を生じてカリックスアレーン構造を形成しうるものであればよく、例えば、ホルムアルデヒドの他、アセトアルデヒド、プロピオンアルデヒド等の脂肪族アルデヒド化合物;ベンズアルデヒド、ナフトアルデヒド等の芳香族アルデヒド化合物等が挙げられる。これらは一種類のみを単独で用いてもよいし、二種類以上を併用してもよい。中でも、反応性に優れることからホルムアルデヒドを用いることが好ましい。ホルムアルデヒドは水溶液の状態であるホルマリンとして用いても、固形の状態であるパラホルムアルデヒドとして用いても、どちらでも良い。
 前記パラアルキルフェノールとアルデヒド化合物との反応は、例えば、酸もしくは塩基触媒の存在下、80~250℃程度の温度条件にて行うことができる。反応終了後は生成物を水洗する等し、純度の高い中間体(a)を得ることが好ましい。
 前記パラアルキルフェノールとアルデヒド化合物との反応割合は、前記中間体(a)を高収率で製造できることから、前記パラアルキルフェノール1モルに対し、アルデヒド化合物が0.6~2モルの範囲であることが好ましい。
 前記酸触媒は、例えば、塩酸、硫酸、リン酸などの無機酸、メタンスルホン酸、パラトルエンスルホン酸、シュウ酸などの有機酸、三フッ化ホウ素、無水塩化アルミニウム、塩化亜鉛などのルイス酸などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。酸触媒の添加量は、前記パラアルキルフェノールとアルデヒド化合物との合計100質量部に対し、0.05~10質量部の範囲であることが好ましい。
 前記塩基触媒は、触媒として作用するものであって、特に限定されないが、例えば、水酸化ナトリウム、水酸化カリウム.水酸化ルビジウムなどのアルカリ金属水酸化物、炭酸ナトリウム、炭酸カリウムなどのアルカリ金属炭酸塩などが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。塩基触媒の添加量は、前記パラアルキルフェノールとアルデヒド化合物との合計100質量部に対し、0.01~1質量部の範囲であることが好ましい。
 前記パラアルキルフェノールとアルデヒド化合物との反応は有機溶媒中で行ってもよい。前記有機溶媒は、例えば、酢酸エチル、酢酸メチル、酢酸ブチル、乳酸メチル、乳酸エチル、乳酸ブチル等のエステル系溶媒;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジアセトンアルコール、シクロヘキサン等のケトン系溶媒;メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、イソブタノール、t-ブタノール、エチルヘキノール等のアルコール系溶媒;ジメチルエーテル、ジエチルエーテル、イソプロピルエーテル、メチルセロソルブ、セロソルブ、ブチルセロソルブ、THF、ジオキサン、ブチルカルビトール、ビフェニルエーテル等のエーテル系溶媒;メトキシエタノール、エトキシエタノール、ブトキシエタノール等のアルコールエーテル系溶媒等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記中間体(a)の脱アルキル化工程は、例えば、前記中間体(a)の貧溶媒であり、かつ、フェノールの良溶媒である有機溶剤中に前記中間体(a)とフェノールとを添加し、これに塩化アルミニウムを加えて撹拌する方法にて行うことができる。反応は氷浴乃至室温程度の温度条件下で行うことが好ましい。
 フェノールの添加量は、前記中間体(a)中の水酸基1モルに対し、1~2モルの範囲であることが好ましい。また、塩化アルミニウムの添加量は、前記中間体(a)中の水酸基1モルに対し、1~2モルの範囲であることが好ましい。
 前記有機溶剤は、例えば、ベンゼン、トルエンやキシレン等のアルキルベンゼンなどの香族炭化水素溶媒等が挙げられる。
 反応終了後は水洗や再沈殿操作にて生成物を精製し、純度の高い中間体(A)を得ることが好ましい。
 前記中間体(A)とハロゲン化アリルとを反応させてアリルエーテル化する工程(工程1)は、例えば、所謂ウイリアムソンエーテル合成と同様の要領で、塩基性触媒条件下、前記中間体(A)とハロゲン化アリルとを室温程度の温度条件で撹拌して行うことができる。反応は有機溶媒中で行ってもよく、特にN-ジメチルホルムアミド、N-ジメチルアセトアミド、テトラヒドロフラン等の極性溶媒中で反応させることにより、より効率的に反応が進行する。反応終了後はアルコール溶媒等で洗浄し、生成物を精製することが好ましい。
 前記工程1に続く工程2では、工程1で得たアリルエーテル化物を大過剰のアミン化合物の存在下で加熱撹拌してアリル基を転移させ、前記構造式(6)で表される中間体(B)を得る。
 前記アミン化合物は、例えば、N,N-ジメチルアニリン、N,N-ジエチルアニリン、N,N,N-トリメチルアミン、N,N,N-トリエチルアミン、ジイソプロピルエチルアミン等の三級アミンや、N,N-ジメチルアミン、N,N-ジエチルアミン等の二級アミンが挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 反応終了後はアルコール溶媒等で洗浄し、生成物を精製することが好ましい。
 工程3では、工程2で得た中間体(B)にパーフルオロアルキル基を導入する。パーフルオロアルキル基導入剤は、前記中間体(B)が有するアリル基と反応してパーフルオロアルキル基を導入し得るものであれば特に限定されない。特に反応性が高いものとしては、パーフルオロアルキル基を有するチオール化合物が挙げられる。
 前記チオール化合物は、例えば、下記構造式(7)
Figure JPOXMLDOC01-appb-C000012
(式中Rは炭素原子数1~6のアルキレン基である。Rはパーフルオロアルキル基である。)で表されるものが挙げられる。チオール化合物はそれぞれ単独で用いても良いし、2種類以上を併用しても良い。チオール化合物の添加量は、前記中間体(B)が含有するアリル基に対し過剰量であることが好ましく、アリル基1モルに対しチオール化合物が1~5モル程度であることがより好ましい。
 前記中間体(B)と前記チオール化合物との反応は、例えば、触媒の存在下、50~80℃程度の温度条件下で行うことができる。反応は有機溶媒中で行ってもよい。前記有機溶剤は、例えば、トルエンやキシレン等の芳香族炭化水素溶媒;メタノール、エタノール、イソプロパノール等のアルコール溶媒;メチルイソブチルケトン、メチルエチルケトン等のケトン溶媒等が挙げられる。
 前記触媒は、例えば、2,2’-アゾビス(2,4-ジメチルバレロニトリル)等が挙げられる。これら触媒の添加量は、前記中間体(B)が含有するアリル基1モルに対し、0.05~0.5モルの範囲で用いることが好ましい。
 反応終了後は生成物の水洗或いは再沈殿等にて精製することが好ましい。
 前記工程4は、前記構造式(1)中のRが極性基、重合性基、極性基又は重合性基を有する構造部位である化合物を製造する場合に、Rに相当する官能基を導入するために行う。官能基導入剤は、フェノール性水酸基と反応し得る化合物であれば特に限定されない。一般的には、所謂ウイリアムソンエーテル合成と同様の要領で、塩基性触媒条件下、Rに相当する構造部位を有するハロゲン化物を反応させる方法より、目的物を効率よく製造することができる。
 前述のとおり、本発明のカリックスアレーン化合物は特に離型剤用途に好適に用いることができるが、その用途は離型剤に限定されるものではない。その他の用途としては、例えば、コーティング剤の表面平滑剤やレベリング剤、撥水・撥油剤、防汚剤用途等が挙げられ、公知のパーフルオロアルキル基含有化合物やパーフルオロポリエーテル化合物に替えて用いることができる。
 本発明のカリックスアレーン化合物を離型剤用途に用いる場合、成形型に塗布するタイプの離型剤として用いてもよいし、樹脂材料側に添加して用いてもよい。前述の通り、本発明のカリックスアレーン化合物は表面平滑剤やレベリング剤、撥水・撥油剤、防汚剤としても有効であることから、本発明のカリックスアレーン化合物を樹脂材料に添加して用いる場合には、これらの添加剤を別々に用いずとも十分な性能を発揮し得る点で有用である。
 本発明のカリックスアレーン化合物を含有する硬化性組成物は、熱硬化性や、活性エネルギー線硬化性等、どのような硬化様式のものであってもよい。前記硬化性組成物が熱硬化性組成物である場合、組成物が含有する硬化性樹脂材料としてはウレタン樹脂、エポキシ樹脂、フェノール樹脂、ウレア樹脂、メラミン樹脂、不飽和ポリエステル樹脂、シリコン樹脂等が挙げられる。
 前記硬化性組成物が活性エネルギー線硬化性組成物である場合、組成物が含有する硬化性樹脂材料としては、(メタ)アクリロイル基を有する化合物等が挙げられる。前記(メタ)アクリロイル基を有する化合物は、例えば、モノ(メタ)アクリレート化合物及びその変性体(R1)、脂肪族炭化水素型ポリ(メタ)アクリレート化合物及びその変性体(R2)、脂環式ポリ(メタ)アクリレート化合物及びその変性体(R3)、芳香族ポリ(メタ)アクリレート化合物及びその変性体(R4)、シリコーン鎖を有する(メタ)アクリレート樹脂及びその変性体(R5)、エポキシ(メタ)アクリレート樹脂及びその変性体(R6)、ウレタン(メタ)アクリレート樹脂及びその変性体(R7)、アクリル(メタ)アクリレート樹脂及びその変性体(R8)、デンドリマー型(メタ)アクリレート樹脂及びその変性体(R9)等が挙げられる。
 前記モノ(メタ)アクリレート化合物及びその変性体(R1)は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ヒドロキシエチル(メタ)アクリレート、プロピル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の脂肪族モノ(メタ)アクリレート化合物;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、アダマンチルモノ(メタ)アクリレート等の脂環型モノ(メタ)アクリレート化合物;グリシジル(メタ)アクリレート、テトラヒドロフルフリルアクリレート等の複素環型モノ(メタ)アクリレート化合物;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシ(メタ)アクリレート、フェノキシエチル(メタ)アクリレート、フェノキシエトキシエチル(メタ)アクリレート、2-ヒドロキシ-3-フェノキシプロピル(メタ)アクリレート、フェニルフェノール(メタ)アクリレート、フェニルベンジル(メタ)アクリレート、フェノキシベンジル(メタ)アクリレート、ベンジルベンジル(メタ)アクリレート、フェニルフェノキシエチル(メタ)アクリレート、パラクミルフェノール(メタ)アクリレート等の芳香族モノ(メタ)アクリレート化合物;下記構造式(8)
Figure JPOXMLDOC01-appb-C000013
(式中Rは水素原子又はメチル基である。)
で表される化合物等のモノ(メタ)アクリレート化合物:前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のモノ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 前記脂肪族炭化水素型ポリ(メタ)アクリレート化合物及びその変性体(R2)は、例えば、エチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ブタンジオールジ(メタ)アクリレート、ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート等の脂肪族ジ(メタ)アクリレート化合物;トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート等の脂肪族トリ(メタ)アクリレート化合物;ペンタエリスリトールテトラ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等の4官能以上の脂肪族ポリ(メタ)アクリレート化合物;前記各種の脂肪族炭化水素型ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種の脂肪族炭化水素型ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 前記脂環式ポリ(メタ)アクリレート化合物及びその変性体(R3)は、例えば、1,4-シクロヘキサンジメタノールジ(メタ)アクリレート、ノルボルナンジ(メタ)アクリレート、ノルボルナンジメタノールジ(メタ)アクリレート、ジシクロペンタニルジ(メタ)アクリレート、トリシクロデカンジメタノールジ(メタ)アクリレート等の脂環型ジ(メタ)アクリレート化合物;前記各種の脂環式ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種の脂環式ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 前記芳香族ポリ(メタ)アクリレート化合物及びその変性体(R4)は、例えば、ビフェノールジ(メタ)アクリレート、ビスフェノールジ(メタ)アクリレート、下記構造式(9)
Figure JPOXMLDOC01-appb-C000014
[式中Rはそれぞれ独立に(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキル基の何れかである。]
で表されるビカルバゾール化合物、下記構造式(10-1)又は(10-2)
Figure JPOXMLDOC01-appb-C000015
[式中Rはそれぞれ独立に(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、(メタ)アクリロイルオキシアルキル基の何れかである。]
で表されるフルオレン化合物等の芳香族ジ(メタ)アクリレート化合物;前記各種の芳香族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種の芳香族ポリ(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 前記シリコーン鎖を有する(メタ)アクリレート樹脂及びその変性体(R5)は、分子構造中にシリコーン鎖と(メタ)アクリロイル基とを有する化合物であれば特に限定されず、多種多様なものを用いてよい。また、その製造方法も特に限定されない。前記シリコーン鎖を有する(メタ)アクリレート樹脂及びその変性体(R5)の具体例としては、例えば、アルコキシシラン基を有するシリコーン化合物と水酸基含有(メタ)アクリレート化合物との反応物等が挙げられる。
 前記アルコキシシラン基を有するシリコーン化合物は、市販品の例として、例えば、信越化学工業株式会社製「X-40-9246」(アルコキシ基含有量12質量%)、「KR-9218」(アルコキシ基含有量15質量%)、「X-40-9227」(アルコキシ基含有15質量%)、「KR-510」(アルコキシ基含有量17質量%)、「KR-213」(アルコキシ基含有量20質量%)、「X-40-9225」(アルコキシ基含有量24質量%)、「X-40-9250」(アルコキシ基含有量25質量%)、「KR-500」(アルコキシ基含有量28質量%)、「KR-401N」(アルコキシ基含有量33質量%)、「KR-515」(アルコキシ基含有量40質量%)、「KC-89S」(アルコキシ基含有量45質量%)等が挙げられる。これらはそれぞれ単独で用いてもよいし、2種類以上を併用してもよい。中でも、アルコキシ基含有量が15~40質量%の範囲であることが好ましい。また、シリコーン化合物として2種類以上を併用する場合には、それぞれのアルコキシ基含有量の平均値が15~40質量%の範囲であることが好ましい。
 前記水酸基含有(メタ)アクリレート化合物は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の水酸基含有(メタ)アクリレート化合物;前記各種の水酸基含有(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種の水酸基含有(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 また、前記シリコーン鎖を有する(メタ)アクリレート樹脂及びその変性体(R5)として、片末端に(メタ)クリロイル基を有するシリコーンオイルである信越化学工業株式会社製「X-22-174ASX」(メタクリロイル基当量900g/当量)、「X-22-174BX」(メタクリロイル基当量2,300g/当量)、「X-22-174DX」(メタクリロイル基当量4,600g/当量)、「KF-2012」(メタクリロイル基当量4,600g/当量)、「X-22-2426」(メタクリロイル基当量12,000g/当量)、「X-22-2404」(メタクリロイル基当量420g/当量)、「X-22-2475」(メタクリロイル基当量420g/当量);両末端に(メタ)クリロイル基を有するシリコーンオイルである信越化学工業株式会社製「X-22-164」(メタクリロイル基当量190g/当量)、「X-22-164AS」(メタクリロイル基当量450g/当量)、「X-22-164A」(メタクリロイル基当量860g/当量)、「X-22-164B」(メタクリロイル基当量1,600g/当量)、「X-22-164C」(メタクリロイル基当量2,400g/当量)、「X-22-164E」(メタクリロイル基当量3,900g/当量)、「X-22-2445」(アクリロイル基当量1,600g/当量);1分子中に(メタ)アクリロイル基を複数有するオリゴマー型シリコーン化合物である信越化学工業株式会社製「KR-513」(メタクリロイル基当量210g/当量)、「-40-9296」(メタクリロイル基当量230g/当量)、東亞合成株式会社製「AC-SQ TA-100」(アクリロイル基当量165g/当量)、「AC-SQ SI-20」(アクリロイル基当量207g/当量)、「MAC-SQ TM-100」(メタクリロイル基当量179g/当量)、「MAC-SQ SI-20」(メタクリロイル基当量224g/当量)、「MAC-SQ HDM」(メタクリロイル基当量239g/当量)等の市販品を用いても良い。
 前記シリコーン鎖を有する(メタ)アクリレート樹脂及びその変性体(R5)は、重量平均分子量(Mw)が1,000~10,000の範囲であるものが好ましく、1,000~5,000の範囲であるものがより好ましい。また、その(メタ)アクリロイル基当量が150~5,000g/当量の範囲であることが好ましく、150~2,500g/当量の範囲であることがより好ましい。
 前記エポキシ(メタ)アクリレート樹脂及びその変性体(R6)は、例えば、エポキシ樹脂に(メタ)アクリル酸又はその無水物を反応させて得られるものが挙げられる。前記エポキシ樹脂は、例えば、ヒドロキノン、カテコール等の2価フェノールのジグリシジルエーテル;3,3’-ビフェニルジオール、4,4’-ビフェニルジオール等のビフェノール化合物のジグリシジルエーテル;ビスフェノールA型エポキシ樹脂、ビスフェノールB型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂等のビスフェノール型エポキシ樹脂;1,4-ナフタレンジオール、1,5-ナフタレンジオール、1,6-ナフタレンジオール、2,6-ナフタレンジオール、2,7-ナフタレンジオール、ビナフトール、ビス(2,7-ジヒドロキシナフチル)メタン等のナフトール化合物のポリグリジシルエーテル;4,4’,4”-メチリジントリスフェノール等のトリグリシジルエーテル;フェノールノボラック型エポキシ樹脂、クレゾールノボラック樹脂等のノボラック型エポキシ樹脂;前記各種のエポキシ樹脂の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のエポキシ樹脂の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 前記ウレタン(メタ)アクリレート樹脂及びその変性体(R7)は、例えば、各種のポリイソシアネート化合物、水酸基含有(メタ)アクリレート化合物、及び必要に応じて各種のポリオール化合物を反応させて得られるものが挙げられる。前記ポリイソシアネート化合物は、例えばブタンジイソシアネート、ヘキサメチレンジイソシアネート、2,2,4-トリメチルヘキサメチレンジイソシアネート、2,4,4-トリメチルヘキサメチレンジイソシアネート等の脂肪族ジイソシアネート化合物;ノルボルナンジイソシアネート、イソホロンジイソシアネート、水添キシリレンジイソシアネート、水添ジフェニルメタンジイソシアネート等の脂環式ジイソシアネート化合物;トリレンジイソシアネート、キシリレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ジフェニルメタンジイソシアネート、1,5-ナフタレンジイソシアネート等の芳香族ジイソシアネート化合物;下記構造式(11)で表される繰り返し構造を有するポリメチレンポリフェニルポリイソシアネート;これらのイソシアヌレート変性体、ビウレット変性体、アロファネート変性体等が挙げられる。
Figure JPOXMLDOC01-appb-C000016
[式中、R10はそれぞれ独立に水素原子、炭素原子数1~6の炭化水素基の何れかである。R11はそれぞれ独立に炭素原子数1~4のアルキル基、又は構造式(11)で表される構造部位と*印が付されたメチレン基を介して連結する結合点の何れかである。qは0又は1~3の整数であり、pは1以上の整数である。]
 前記水酸基含有(メタ)アクリレート化合物は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート等の水酸基含有(メタ)アクリレート化合物;前記各種の水酸基含有(メタ)アクリレート化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種の水酸基含有(メタ)アクリレート化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 前記ポリオール化合物は、例えば、エチレングリコール、プロプレングリコール、ブタンジオール、ヘキサンジオール、グリセリン、トリメチロールプロパン、ジトリメチロールプロパン、ペンタエリスリトール、ジペンタエリスリトール等の脂肪族ポリオール化合物;ビフェノール、ビスフェノール等の芳香族ポリオール化合物;前記各種のポリオール化合物の分子構造中に(ポリ)オキシエチレン鎖、(ポリ)オキシプロピレン鎖、(ポリ)オキシテトラメチレン鎖等の(ポリ)オキシアルキレン鎖を導入した(ポリ)オキシアルキレン変性体;前記各種のポリオール化合物の分子構造中に(ポリ)ラクトン構造を導入したラクトン変性体等が挙げられる。
 前記アクリル(メタ)アクリレート樹脂及びその変性体(R8)は、例えば、水酸基やカルボキシ基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレートモノマー(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、これらの官能基と反応し得る反応性官能基を有する(メタ)アクリレートモノマー(β)を更に反応させることにより(メタ)アクリロイル基を導入して得られるものが挙げられる。
 前記反応性官能基を有する(メタ)アクリレートモノマー(α)は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレートモノマー;(メタ)アクリル酸等のカルボキシ基含有(メタ)アクリレートモノマー;2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基含有(メタ)アクリレートモノマー;グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等のグリシジル基含有(メタ)アクリレートモノマー等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記アクリル樹脂中間体は、前記(メタ)アクリレートモノマー(α)の他、必要に応じてその他の重合性不飽和基含有化合物を共重合させたものであってもよい。前記その他の重合性不飽和基含有化合物は、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;シクロヘキシル(メタ)アクリレート、イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等のシクロ環含有(メタ)アクリレート;フェニル(メタ)アクリレート、ベンジル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体等が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 前記(メタ)アクリレートモノマー(β)は、前記(メタ)アクリレートモノマー(α)が有する反応性官能基と反応し得るものでれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレートモノマー(α)として前記水酸基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)としてイソシアネート基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレートモノマー(α)として前記カルボキシ基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)として前記グリシジル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレートモノマー(α)として前記イソシアネート基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)として前記水酸基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレートモノマー(α)として前記グリシジル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)として前記カルボキシ基含有(メタ)アクリレートを用いることが好ましい。
 前記アクリル(メタ)アクリレート樹脂及びその変性体(R8)は、重量平均分子量(Mw)が5,000~50,000の範囲であることが好ましい。また、(メタ)アクリロイル基当量が200~300g/当量の範囲であることが好ましい。
 前記デンドリマー型(メタ)アクリレート樹脂及びその変性体(R9)とは、規則性のある多分岐構造を有し、各分岐鎖の末端に(メタ)アクリロイル基を有する樹脂のことをいい、デンドリマー型の他、ハイパーブランチ型或いはスターポリマーなどと呼ばれている。このような化合物は、例えば、下記構造式(12-1)~(12-8)で表されるものなどが挙げられるが、これらに限定されるものではなく、規則性のある多分岐構造を有し、各分岐鎖の末端に(メタ)アクリロイル基を有する樹脂であればいずれのものも用いることができる。
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
(式中Rは水素原子又はメチル基であり、R12は炭素原子数1~4の炭化水素基である。)
 このようなデンドリマー型(メタ)アクリレート樹脂及びその変性体(R9)として、大阪有機化学株式会社製「ビスコート#1000」[重量平均分子量(Mw)1,500~2,000、一分子あたりの平均(メタ)アクリロイル基数14]、「ビスコート1020」[重量平均分子量(Mw)1,000~3,000]、「SIRIUS501」[重量平均分子量(Mw)15,000~23,000]、MIWON社製「SP-1106」[重量平均分子量(Mw)1,630、一分子あたりの平均(メタ)アクリロイル基数18]、SARTOMER社製「CN2301」、「CN2302」[一分子あたりの平均(メタ)アクリロイル基数16]、「CN2303」[一分子あたりの平均(メタ)アクリロイル基数6]、「CN2304」[一分子あたりの平均(メタ)アクリロイル基数18]、新日鉄住金化学株式会社製「エスドリマーHU-22」、新中村化学株式会社製「A-HBR-5」、第一工業製薬株式会社製「ニューフロンティアR-1150」、日産化学株式会社製「ハイパーテックUR-101」等の市販品を用いても良い。
 前記デンドリマー型(メタ)アクリレート樹脂及びその変性体(R9)は、重量平均分子量(Mw)が1,000~30,000の範囲であることが好ましい。また、一分子あたりの平均(メタ)アクリロイル基数が5~30の範囲であるものが好ましい。
 前記(メタ)アクリロイル基を有する化合物は、目的の用途に応じて適宜好ましいものを選択して用いる。特に、前記硬化性組成物をナノインプリントリソグラフィー用途等、微細な形状を形成する目的に用いる場合には、無溶剤での組成物粘度がE型回転粘度計による測定値で1,000mPa・s以下であることが好ましく、100mPa・s以下であることがより好ましい。
 前記硬化性組成物が活性エネルギー線硬化性組成物である場合には、光重合開始剤を含有していることが好ましい。前記光重合開始剤は、照射する活性エネルギー線の種類等により適切なものを選択して用いればよい。光重合開始剤の具体例としては、例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニル-ホスフィンオキサイド等のアシルホスフィンオキサイド系光重合開始剤;ベンゾフェノン化合物等の分子内水素引き抜き型光重合開始剤等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記光重合開始剤の市販品は、例えば、BASF社製「IRGACURE127」、「IRGACURE184」、「IRGACURE250」、「IRGACURE270」、「IRGACURE290」、「IRGACURE369E」、「IRGACURE379EG」、「IRGACURE500」、「IRGACURE651」、「IRGACURE754」、「IRGACURE819」、「IRGACURE907」、「IRGACURE1173」、「IRGACURE2959」、「IRGACURE MBF」、「IRGACURE TPO」、「IRGACURE OXE 01」、「IRGACURE OXE 02」等が挙げられる。
 前記光重合開始剤の使用量は、前記活性エネルギー線硬化性組成物中の有機溶剤を除いた成分100質量部に対して0.05~20質量部の範囲で用いることが好ましく、0.1~10質量部の範囲で用いることがより好ましい。
 本発明の硬化性組成物は有機溶剤で希釈されていてもよい。前記有機溶剤は、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノプロピルエーテル、エチレングリコールモノブチルエーテルプロピレングリコールモノメチルエーテル等のアルキレングリコールモノアルキルエーテル;ジエチレングリコールジメチルエーテル、ジエチレングリコールジエチルエーテル、ジエチレングリコールジプロピルエーテル、ジエチレングリコールジブチルエーテル等のジアルキレングリコールジアルキルエーテル;エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート等のアルキレングリコールアルキルエーテルアセテート;アセトン、メチルエチルケトン、シクロヘキサノン、メチルアミルケトン等のケトン化合物;ジオキサン等の環式エーテル;2-ヒドロキシプロピオン酸メチル、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、オキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシブチルアセテート、3-メチル-3-メトキシブチルアセテート、蟻酸エチル、酢酸エチル、酢酸ブチル、アセト酢酸メチル、アセト酢酸エチル等のエステル化合物が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。有機溶剤の添加量は所望の組成物粘度等によって適宜調整される。
 本発明の硬化性組成物は、所望の性能に応じて各種添加剤を含有していてもよい。添加剤の例としては、紫外線吸収剤、酸化防止剤、光増感剤、シリコーン系添加剤、シランカップリング剤、フッ素系添加剤、レオロジーコントロール剤、脱泡剤、帯電防止剤、防曇剤、密着補助剤、有機顔料、無機顔料、体質顔料、有機フィラー、無機フィラー等が挙げられる。
 本発明のカリックスアレーン化合物を含有する硬化性組成物は離型性に優れる特徴を有することから賦形用樹脂材料として特に有用であるが、この他の用途に用いてもよい。例えば、コーティング剤や塗料用途に用いた場合には、表面平滑性や防汚性に優れる硬化塗膜を得ることができる。
 本発明の硬化性組成物を賦形用樹脂材料として用いる場合には、公知一般の方法にて成形することができる。以下、成形型を用いた賦形技術のうち比較的新しい技術として、本発明の硬化性組成物のうち活性エネルギー線硬化性組成物をナノインプリントリソグラフィー用樹脂材料として用いた場合のパターン形成方法について説明する。
 まず、基材上に本発明のナノインプリントリソグラフィー用樹脂材料を塗布し、未硬化の樹脂膜を形成する。樹脂膜の厚さは形成するパターンの形状等にもよるが、0.1~5μm程度であることが好ましい。塗工方法は特に限定されず、スプレー法、スピンコート法、ディップ法、ロールコート法、ブレードコート法、ドクターロール法、ドクターブレード法、カーテンコート法、スリットコート法、バーコート法、スクリーン印刷法、インクジェット印刷法、グラビア印刷法、オフセット印刷法等、何れの方法でもよい。ナノインプリントリソグラフィー用樹脂材料が有機溶剤を含有する場合には、塗布後50~100℃程度の温度条件下で数十秒~数分程度乾燥させて樹脂膜を得る。
 前記基材の形状及び材質は特に限定なく、所望の基剤上にパターンを形成することができる。基材形状としては、シート状のもの、立体構造を有するもの、平面のもの、曲面のもの等が挙げられる。基材の材質としては、例えば、トリアセチルセルロース基材、ポリエステル基材、アクリル基材、シクロオレフィンポリマー基材、ポリアミド基材、ポリイミド基材、ポリエチレン基材、ポリプロピレン基材、ポリスチレン基材、ポリカーボネート基材、ポリフェニレンサルファイド(PPS)基材、アクリロニトリル-ブタジエン-スチレン共重合樹脂(ABS)基材、シートモールディングコンパウンド(SMC)基材、バルクモールディングコンパウンド(BMC)基材等の樹脂又はプラスチック基材;ニッケル、銅、クロム、鉄、アルミ、ステンレス等の金属或いは金属蒸着膜基材;ITO(In-SnO)等の透明導電膜基材;シリコン基材、ポリシリコン基剤、炭化シリコン基材、窒化シリコン基材、酸化シリコン基剤、アモルファスシリコン基材、窒化ガリウム基材等の半導体基材;石英、サファイア、ガラス、セラミック、塗布ガラス膜(SOG)、塗布炭素膜(SOC)等が挙げられる。
 次に、未硬化の樹脂膜上にパターンを形成するためのモールドを押し付け、モールド側或いは基材側から活性エネルギー線を照射して樹脂材料を硬化させ、パターンを形成する。前記モールドの材料としては、石英、紫外線透過ガラス、サファイア、ダイヤモンド、ポリジメチルシロキサン等のシリコーン材料、シクロオレフィン等の透明樹脂等の光透過性の材料;金属、炭化シリコン、マイカ等の光透過性のない材料が挙げられる。モールドの形状は特に限定されず、平面状、ベルト状、ロール状、ロールベルト状等、何れの形状であってもよい。
 モールドを押し付ける際には、樹脂材料の流動性を高める目的で適宜加熱してもよい。加熱温度は樹脂材料の硬化反応が進行しない程度の温度であることが好ましく、活性エネルギー線硬化性樹脂材料として(メタ)アクリロイル基を有する化合物を用いる場合には、25~80℃程度であることが好ましい。
 照射する活性エネルギー線は、樹脂材料を硬化させることができ、かつ、基材又はモールドを透過し得る波長のものであれば特に限定されない。特に、活性エネルギー線硬化性樹脂材料として(メタ)アクリロイル基を有する化合物を用いる場合には、効率的に硬化反応が進行することから450nm以下の波長の光(紫外線、X線、γ線等の活性エネルギー線)が好ましい。
 本発明のナノインプリントリソグラフィー用樹脂材料により形成されるパターンの応用先は特に限定されず、どのような応用分野に用いてもよい。本発明のナノインプリントリソグラフィー用樹脂材料は離型性に優れる特徴を有することから微細かつ複雑なパターンの形成においても欠損やパターン倒れが生じにくいため、光学部材の加工や集積回路(LSI)用途等、高い解像度や寸法制御が求められる用途にも好適に用いることができる。
 以下に製造例及び実施例を挙げて本発明をより具体的に説明するが、本発明はこれら実施例に限定されるものではない。例中の部及び%は、特に記載のない限り、すべて質量基準である。
 本願実施例において樹脂の分子量はゲルパーミエーションクロマトグラフ(GPC)を用い、下記の条件により測定した値である。
 測定装置 ; 東ソー株式会社製 HLC-8220
 カラム  ; 東ソー株式会社製ガードカラムHXL-H
       +東ソー株式会社製 TSKgel G5000HXL
       +東ソー株式会社製 TSKgel G4000HXL
       +東ソー株式会社製 TSKgel G3000HXL
       +東ソー株式会社製 TSKgel G2000HXL
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製 SC-8010
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
 H-NMRはJEOL RESONANCE製「JNM-ECM400S」を用い、下記条件により測定した。
 磁場強度:400MHz
 積算回数:16回
   溶媒:重水素化クロロホルム
 試料濃度:2mg/0.5ml
 13C-NMRはJEOL RESONANCE製「JNM-ECM400S」を用い、下記条件により測定した。
 磁場強度:100MHz
 積算回数:1000回
   溶媒:重水素化クロロホルム
 試料濃度:2mg/0.5ml
 19F-NMRはJEOL RESONANCE製「JNM-ECM400S」を用い、下記条件により測定した。
 磁場強度:400MHz
 積算回数:16回
   溶媒:重水素化クロロホルム
 試料濃度:2mg/0.5ml
 FD-MSは日本電子株式会社製「JMS-T100GC AccuTOF」を用い、下記条件により測定した。
 測定範囲:m/z=50.00~2000.00
 変化率:25.6mA/min
 最終電流値:40mA
 カソード電圧:-10kV
実施例1 カリックスアレーン化合物(1)の製造
〈中間体(A-1)の製造〉
 攪拌装置、温度計及び還流冷却管を取り付けた1リットルの四つ口フラスコに、下記構造式(a)で表されるtert-ブチルカリックス[4]アレーン50g、フェノール32.26gおよび脱水トルエン350mlを仕込み、窒素フロー環境下、300rpmで撹拌した。tert-ブチルカリックス[4]アレーンは溶解せずに懸濁していた。フラスコを氷浴に漬けながら無水塩化アルミニウム(III)51.37gを数回に分けて投入した。溶液の色が淡橙透明に変化すると共に、底に無水塩化アルミニウム(III)が沈殿していた。室温で5時間撹拌を続けた後、反応混合物を1Lのビーカーに移し、氷、1N塩酸100ml、トルエン350mlを加えて反応を停止させた。溶液の色は淡黄色透明に変化した。反応混合物を分液ロートに移し、有機相を回収した。水相にトルエン100mlを加えて有機成分を抽出する作業を3回行い、得られた抽出液を先で回収した有機相と合わせた。有機相に無水硫酸マグネシウムを加えて脱水した後、ろ過して有機相を回収した。エバポレーターで溶媒を留去し、白色結晶と無色透明液体の混合物を得た。混合物を撹拌しながらメタノールをゆっくり添加し、液体中に溶解していた生成物を再沈殿させた。桐山ロートで白色結晶をろ過し、メタノールで洗浄した後、真空乾燥して下記構造式(b)で表される中間体(A-1)29.21gを得た。
Figure JPOXMLDOC01-appb-C000019
〈中間体(A-1)のアリルエーテル化〉
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた1リットルの四つ口フラスコに、先で得た中間体(A-1)16.41g、脱水N,N-ジメチルホルムアミド65.64ml、49%水酸化ナトリウム水溶液37.87gを仕込み、窒素フロー環境下、300rpmで撹拌した。溶液は淡黄色透明を呈していた。室温条件下、滴下ロートを用いて臭化アリル56.13gを30分かけて滴下した。滴下終了から30分後、乳白色の固体が析出しスラリー状になった。更に2時間反応させた後、酢酸と純水をゆっくり加え、反応を停止させた。桐山ロートで結晶をろ過し、メタノールで洗浄した後、真空乾燥して前記中間体(A-1)のアリルエーテル化物17.94gを得た。
〈中間体(B-1)の製造〉
 攪拌装置、温度計及び還流冷却管を取り付けた1リットルの四つ口フラスコに、先で得た中間体(A-1)のアリルエーテル化物14.69gとN,N-ジメチルアニリン58.76gを仕込み、窒素フロー環境下、300rpmで撹拌した。還流するまで加熱し、3時間撹拌を続けた。室温まで冷却した後、反応混合物をビーカーに移し、氷とクロロホルム20gを投入した。ビーカーを氷浴に漬けながら38%濃塩酸48.04gゆっくり添加すると、溶液は淡黄色透明となった。反応混合物を分液ロートに移し、有機相を回収した。水相にクロロホルム20gを加えて有機成分を抽出する作業を3回行い、得られた抽出液を先で回収した有機相と合わせた。有機相に無水硫酸マグネシウムを加えて脱水した後、ろ過して有機相を回収した。エバポレーターで溶媒を留去し、白色結晶と淡緑色透明液体の混合物を得た。混合物にメタノールをゆっくり添加し、液体中に溶解していた生成物を再沈殿させた。桐山ロートで白色結晶をろ過し、メタノールで洗浄した後、真空乾燥して下記構造式(c)で表される中間体(B-1)12.77gを得た。
〈パーフルオロアルキル基の導入〉
 攪拌装置、温度計及び還流冷却管を取り付けた1リットルの四つ口フラスコに、先で得た中間体(B-1)10.00g、2,2’-アゾビス(2,4-ジメチルバレロニトリル(和光純薬社製)1.70g、脱水トルエン31.5ml、及び1,1,2,2-テトラヒドロパーフルオロオクタンチオール52.02gを仕込み、窒素フロー環境下、300rpmで撹拌した。65℃まで加熱し、12時間反応させた。室温まで冷却した後、反応混合物を分液ロートに移し、1N炭酸水素ナトリウム水溶液30gとクロロホルム30gを添加して、有機相を分液した。水相にクロロホルム20gを加えて有機成分を抽出する作業を3回行い、得られた抽出液を先で回収した有機相と合わせた。有機相を1N水酸化ナトリウム水溶液で洗浄した後、有機相に無水硫酸マグネシウムを加えて脱水し、ろ過した。エバポレーターで溶媒を留去し、得られた赤色透明液体を氷冷しながら、メタノールを加えて結晶物を再沈殿させた。桐山ロートで灰色結晶をろ過し、メタノールで洗浄した後、真空乾燥して下記構造式(d)で表されるカリックスアレーン化合物(1)31.08gを得た。
Figure JPOXMLDOC01-appb-C000021
 実施例2 カリックスアレーン化合物(2)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた300ミリリットルの四つ口フラスコに、実施例1で得られたカリックスアレーン化合物(1)を10.00g(4.750mmol)、無水アセトン55.00g(947.0mmol)、炭酸カリウム7.88g(57.00mmol)、2-ブロモ酢酸メチル8.72g(57.02mmol)を入れ、60時間加熱還流させた。室温まで冷却したのちイオン交換水、1N塩酸をpH6まで加えた。クロロホルム50gを加えて、反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム50gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=3:1)にて、橙色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで黄土色固体をろ過し、得られた黄土色固体を真空乾燥(60℃で6時間以上)し、下記構造式(e)で表されるカリックスアレーン化合物(2)9.84g得た。収率は86.5%。
Figure JPOXMLDOC01-appb-C000022
 実施例3 カリックスアレーン化合物(3)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた500ミリリットルの四つ口フラスコに、テトラヒドロフラン8.00g(110.94mmol)を入れ、氷浴しながら水素化アルミニウムリチウム0.507g(13.36mmol)をゆっくり加えた。そこに、滴下ロートでテトラヒドロフラン32.00g(443.77mmol)に溶かしたカリックスアレーン化合物(2)4.00g(1.6711mmol)を5℃以下で、ゆっくり添加した。灰色懸濁液。室温下で6時間反応させた。氷浴下、イオン交換水2g、1N塩酸5g、イオン交換水20g、クロロホルム30gを添加した。反応液を珪藻土濾過した。濾液にクロロホルム30gを加えて、反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム30gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=3:1)にて、淡黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで白色固体をろ過し、得られた白色固体を真空乾燥(60℃で6時間以上)し、下記構造式(f)で表されるカリックスアレーン化合物(3)を2.978g得た。収率は78.1%。
Figure JPOXMLDOC01-appb-C000023
 実施例4 カリックスアレーン化合物(4)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた200ミリリットルの四つ口フラスコに、カリックスアレーン化合物(1)を2.00g(0.9499mmol)、脱水THF20.55g(285.0mmol)、60%NaH1.96g(49.40mmol)、N-(2-ブロモエチル)フタルイミド30.48g(120.0mmol)を素早く仕込み、窒素フロー下、室温下、300rpmで撹拌した。淡黄色懸濁液になった。昇温し、12時間加熱還流させた。メタノールをゆっくり加えて、反応をクエンチした。溶液を留去し、クロロホルム50gおよび1N HClをpH3まで投入し、有機相を分液した。次に水相をクロロホルム20gで3回抽出し、有機相に合わせた。さらに1M Na2CO3水溶液とイオン交換水で洗浄した後、有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、氷浴下、メタノールを加えて再沈殿させた。桐山ロートで乳白色固体をろ過し、メタノールで洗浄した。得られた乳白色固体を真空乾燥(60℃で12時間以上)し、下記構造式(g)で表されるカリックスアレーン化合物(4)を1.2864g得た。収率は48.4%。
Figure JPOXMLDOC01-appb-C000024
 実施例5 カリックスアレーン化合物(5)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(4)を1.2864g(0.4597mmol)、エタノール15.42g(334.70mmol)、95%ヒドラジン一水和物0.4845g(0.9195mmol)を素早く仕込み、窒素フロー下、300rpmで5時間加熱還流させた。淡黄色懸濁液になった。冷却後、溶液を留去し、クロロホルム20gおよびイオン交換水20gを投入し、有機相を分液した。次に水相をクロロホルム20gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去した。ついで、メタノール7.00g(218.5mmol)、37%濃塩酸0.3644g(3.698mmol)を仕込み、窒素フロー下、4時間加熱還流させた。室温まで冷却し、反応混合物を分液ロートに移し、イオン交換水20gおよびクロロホルム20g投入し、有機相を分液した。次に水相をクロロホルム20gで3回抽出し、有機相に合わせた。飽和食塩水で洗浄した後、有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=3:1)にて、淡青色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで灰色固体をろ過し、得られた灰色固体を真空乾燥(60℃で6時間以上)し、下記構造式(h)で表されるカリックスアレーン化合物(5)を0.3664g得た。収率は35.0%。
Figure JPOXMLDOC01-appb-C000025
 実施例6 カリックスアレーン化合物(6)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた500ミリリットルの四つ口フラスコに、カリックスアレーン化合物(2)を4.00g(1.671mmol)、テトラヒドロフラン30.00g(416.05mmol)、エタノール26.00g(564.4mmol)、水酸化カリウム1.24g(22.11mmol)加え、6時間加熱還流させた。白色懸濁液。室温まで冷却したのちイオン交換水、クロロホルムを加え、氷浴した。ついてpH1まで5N塩酸をゆっくり加えた。クロロホルム50gで反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム30gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、乳白色固体を得た。得られた乳白色固体を真空乾燥(60℃で12時間以上)し、下記構造式(i)で表されるカリックスアレーン化合物(6)を3.883g得た。収率は99.4%。
Figure JPOXMLDOC01-appb-C000026
 実施例7 カリックスアレーン化合物(7)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(1)を5.00g(2.416mmol)、脱水N,N-ジメチルホルムアミド17.66g(241.6mmol)、50%NaOH水溶液1.16g(29.00mmol)を素早く仕込み、窒素フロー下、65℃、300rpmで撹拌した。淡黄色透明溶液になった。ついで、滴下ロートを用いて臭化アリル4.38g(29.00mmol)30分かけて滴下した。滴下終了後30分で、乳白色の固体が析出しスラリー状になった。その後、10時間反応させた。酢酸とイオン交換水をゆっくり加えて、反応をクエンチした。析出した固体を桐山ロートにてろ過し、メタノールで洗浄した。得られた桃色固体を真空乾燥(60℃で12時間以上)し、下記構造式(j)で表されるカリックスアレーン化合物(7)を4.029g得た。収率は73.6%。
Figure JPOXMLDOC01-appb-C000027
 実施例8 カリックスアレーン化合物(8)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた200ミリリットルの四つ口フラスコに、カリックスアレーン化合物(8)を1.500g(0.6621mmol)、脱水トルエン6.01g(66.21mmol)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)(和光純薬社製)0.0658g(0.2649mmol)、およびチオ酢酸0.4031g(0.5296mmol)を仕込み、窒素フロー下、12時間65℃、300rpmで撹拌した。室温まで冷却し、反応混合物を分液ロートに移し、1N NaHCO3水溶液15gおよびクロロホルム15g投入し、有機相を分液した。次に水相をクロロホルム15gで3回抽出し、有機相に合わせた。さらに1N NaOH水溶液15gで分液した後、有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色透明液体を得た。氷浴下、メタノールを加えて再沈殿させた。桐山ロートで乳白色固体をろ過し、メタノールで洗浄した。得られた乳白色固体を真空乾燥(60℃で12時間以上)し、下記構造式(k)で表されるカリックスアレーン化合物(8)を1.543g得た。収率は90.7%。
Figure JPOXMLDOC01-appb-C000028
 実施例9 カリックスアレーン化合物(9)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(8)を1.543g(0.6004mmol)、THF2.00g(27.74mmol)、メタノール4.00g(124.84mmol)、37%濃塩酸0.9754g(9.900mmol)を仕込み、窒素フロー下、8時間65℃、300rpmで撹拌した。室温まで冷却し、反応混合物を分液ロートに移し、イオン交換水20gおよびクロロホルム20g投入し、有機相を分液した。次に水相をクロロホルム20gで3回抽出し、有機相に合わせた。さらに飽和NaHCO3水溶液15gついで、飽和食塩水で洗浄した後、有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色透明液体を得た。氷浴下、ノルマルヘキサンとメタノールを加えて再沈殿させた。桐山ロートで乳白色固体をろ過し、メタノールで洗浄した。得られた乳白色固体を真空乾燥(60℃で12時間以上)し、下記構造式(l)で表されるカリックスアレーン化合物(9)を1.084g得た。収率は75.2%。
Figure JPOXMLDOC01-appb-C000029
 実施例10 カリックスアレーン化合物(10)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(1)を1.500g(0.7248mmol)、脱水THF15.68g(217.45mmol)、60%NaH0.3479g(8.698mmol)、2-ブロモブチルホスホン酸ジエチル2.3755g(8.698mmol)を素早く仕込み、窒素フロー下、室温下、300rpmで撹拌した。淡黄色懸濁液になった。昇温し、12時間加熱還流させた。メタノールをゆっくり加えて、反応をクエンチした。溶液を留去し、クロロホルム50gおよび1N HCl25gで投入し、有機相を分液した。次に水相をクロロホルム20gで3回抽出し、有機相に合わせた。イオン交換水で洗浄した後、有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=3:1)にて、橙色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで黄土色固体をろ過し、得られた黄土色固体を真空乾燥(60℃で6時間以上)し、下記構造式(m)で表されるカリックスアレーン化合物(10)を1.078g得た。収率は52.4%。
Figure JPOXMLDOC01-appb-C000030
 実施例11 カリックスアレーン化合物(11)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(10)を1.078g(0.8258mmol)、脱水アセトニトリル8.00g(194.9mmol)、臭化トリメチルシリル2.086g(13.63mmol)を素早く仕込み、窒素フロー下、300rpmで6時間加熱還流した。淡黄色懸濁液になった。さらにメタノール5.00g(156.0mmol)を加えてさらに2時間加熱還流した。冷却し、溶液を留去、クロロホルム20gおよびイオン交換水20gで投入し、有機相を分液した。次に水相をクロロホルム10gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=3:1)にて、黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで黄土色固体をろ過し、得られた黄土色固体を真空乾燥(60℃で6時間以上)し、下記構造式(n)で表されるカリックスアレーン化合物(11)を1.399g得た。収率は64.8%。
Figure JPOXMLDOC01-appb-C000031
 実施例12 カリックスアレーン化合物(12)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(3)を1.00g(0.4383mmol)、無水ジクロロメタン8.00g(94.20mmol)に溶解し、無水トリエチルアミン1.7677g(17.470mmol)を加えた。ついで、氷浴下、ホスホロクロリド酸ビス(2,2,2-トリクロロエチル)1.6808g(4.4306mmol)を加え、室温で12時間反応させた。ジクロロメタン20gおよび飽和NaHCO水20gで投入し、有機相を分液した。次に水相をジクロロメタン20g3回抽出し、有機相に合わせた。有機相を飽和食塩水で洗浄し、無水硫酸マグネシウムで予備乾燥し、ろ過した。残渣をピリジン:酢酸=5:1)に溶解し、0℃に保ち、活性化した亜鉛6gを添加した。反応混合物を室温で一晩撹拌した。固体を濾別し、溶媒を除去した後、反応液を珪藻土濾過し、5N 水酸化ナトリウム水溶液で処理し、ジクロロメタンで洗浄した。水層を2N塩酸で処理し、沈殿物を得た。0.1N塩酸で洗浄し、白色固体を得た。得られた黄土色固体を真空乾燥(60℃で6時間以上)し、下記構造式(o)で表されるカリックスアレーン化合物(12)を0.2486g得た。収率は21.8%。
Figure JPOXMLDOC01-appb-C000032
 実施例13 カリックスアレーン化合物(13)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた30ミリリットルの四つ口フラスコに、カリックスアレーン化合物(3)を1.00g(0.4414mmol)、脱水トルエン2.078g(22.07mmol)、1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン白金(0)錯体キシレン溶液0.00127g(0.0033mmol)を素早く仕込み、窒素フロー下、氷浴下、300rpmで30分撹拌した。ついで、シリンジを用いてトリエトキシシラン0.8701g(5.296mmol)を30分かけて滴下した。滴下終了後30分で50℃に昇温し、8時間反応させた。溶液は淡黄色透明溶液となった。冷却後、活性炭と珪藻土で白金錯体を濾過し、濾液を濃縮し淡黄色透明オイルを得た。得られたオイルをラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=3:1)にて、橙色透明液体として得た。溶媒を濃縮し、淡黄色透明オイルを得た。得られた淡黄色透明オイルを真空乾燥(60℃で6時間以上)し、下記構造式(p)で表されるカリックスアレーン化合物(13)を0.4244g得た。収率は32.9%。
Figure JPOXMLDOC01-appb-C000033
 実施例14 カリックスアレーン化合物(14)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた50ミリリットルの四つ口フラスコに、カリックスアレーン化合物(6)を1.000g(0.4278mmol)、テトラブチルアンモニウムアイオダイド0.03160g(0.0856mmol)、1-メトキシ-2-プロパノール7.711g(85.56mmol)、フェノチアジン0.003g(0.0171mmol)、ビニルグリシジルエーテル0.5140g(5.133mmol)を入れ攪拌した。酸素バブリングしながら90℃で20時間加熱した。茶色透明溶液。室温まで冷却し、混合溶液をビーカーに移し、1N塩酸、クロロホルム30gを加えて、反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム30gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=95:5)にて、淡黄色透明液体として得た。溶媒を濃縮し、溶媒を濃縮し、淡黄色透明オイルを得た。得られた淡黄色透明オイルを真空乾燥(60℃で6時間以上)し、下記構造式(q)で表されるカリックスアレーン化合物(14)を0.3537g得た。収率は30.2%。
Figure JPOXMLDOC01-appb-C000034
 実施例15 カリックスアレーン化合物(15)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた50ミリリットルの四つ口フラスコに、カリックスアレーン化合物(1)を1.00g(0.4832mmol)、脱水N,N-ジメチルホルムアミド3.53g(48.32mmol)を仕込み、氷浴下、60%NaH0.0928g(3.866mmol)を少量ずつ仕込んだ。攪拌し、溶液の色が変わったら、プロパルギルブロミド(80%トルエン溶液,約9.2mol/L)0.5748g(3.866mmol)を添加した。室温で5時間攪拌した。茶色懸濁溶液。イオン交換水をゆっくり加えて、反応をクエンチした。ついで1N塩酸をpH3まで加えた。クロロホルム30gを加えて、反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム30gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで灰色固体をろ過し、得られた灰色固体を真空乾燥(60℃で6時間以上)し、下記構造式(r)で表されるカリックスアレーン化合物(15)を0.7265g得た。収率は66.6%。
Figure JPOXMLDOC01-appb-C000035
 実施例16 カリックスアレーン化合物(16)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(1)を2.00g(0.9664mmol)、テトラヒドロフラン14.00g(194.2mmol)、トリフェニルフォスフィン0.76g(2.900mmol)、ヒドロキシエチルメタクリルレート0.3773g(2.899mmol)を入れ攪拌した。淡黄色透明溶液。ついで、氷浴下、アゾジカルボン酸ジイソプロピル0.5863g(2.899mmol)を30分かけ、滴下した。橙色透明溶液。室温で6時間攪拌した。反応溶液にヘキサンを加え、トリフェニルフォスフィン等の副生成物を析出除去した後、クロロホルムで抽出を行い、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=95:5)にて、淡黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで白色結晶をろ過し、得られた白色結晶を真空乾燥(60℃で6時間以上)し、下記構造式(s)で表されるカリックスアレーン化合物(16)を1.33g得た。収率は60.0%。
Figure JPOXMLDOC01-appb-C000036
 実施例17 カリックスアレーン化合物(17)の製造
攪拌装置、温度計及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(1)を2.00g(0.9664mmol)、テトラヒドロフラン14.00g(194.2mmol)、トリフェニルフォスフィン0.76g(2.900mmol)、β-ヒドロキシエチルアクリルレート0.3367g(2.899mmol)を入れ攪拌した。淡黄色透明溶液。ついで、氷浴下、アゾジカルボン酸ジイソプロピル0.5863g(2.899mmol)を30分かけ、滴下した。橙色透明溶液。室温で6時間攪拌した。反応溶液にヘキサンを加え、トリフェニルフォスフィン等の副生成物を析出除去した後、クロロホルムで抽出を行い、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=95:5)にて、淡黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで白色結晶をろ過し、得られた白色結晶を真空乾燥(60℃で6時間以上)し、下記構造式(t)で表されるカリックスアレーン化合物(17)を1.2590g得た。収率は57.5%。
Figure JPOXMLDOC01-appb-C000037
 実施例18 カリックスアレーン化合物(18)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた200ミリリットルの四つ口フラスコに、カリックスアレーン化合物(3)を2.00g(0.8906mmol)、テトラヒドロフラン13.00g(180.3mmol)、トリフェニルフォスフィン1.4016g(5.343mmol)、アクリル酸0.3851g(5.344mmol)を入れ攪拌した。淡黄色透明溶液。ついで、氷浴下、アゾジカルボン酸ジイソプロピル1.0805g(5.344mmol)を30分かけ、滴下した。赤色透明溶液。室温で6時間攪拌した。反応溶液にヘキサンを加え、トリフェニルフォスフィン等の副生成物を析出除去した後、クロロホルムで抽出を行い、水、飽和食塩水で洗浄した後、硫酸マグネシウムで乾燥した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=95:5)にて、淡黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで白色結晶をろ過し、得られた白色結晶を真空乾燥(60℃で6時間以上)し、下記構造式(u)で表されるカリックスアレーン化合物(18)を1.3418g得た。収率は61.2%。
Figure JPOXMLDOC01-appb-C000038
 実施例19 カリックスアレーン化合物(19)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた300ミリリットルの四つ口フラスコに、カリックスアレーン化合物(6)を1.000g(0.4278mmol)、テトラブチルアンモニウムアイオダイド0.03160g(0.0856mmol)、1-メトキシ-2-プロパノール7.711g(85.56mmol)、フェノチアジン0.003g(0.0171mmol)、GMA0.7300g(5.133mmol)を入れ攪拌した。酸素バブリングしながら90℃で20時間加熱した。茶色透明溶液。室温まで冷却し、混合溶液をビーカーに移し、1N塩酸、クロロホルム30gを加えて、反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム30gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=95:5)にて、淡黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで白色固体をろ過し、得られた白色固体を真空乾燥(60℃で6時間以上)し、下記構造式(v)で表されるカリックスアレーン化合物(19)を0.5483g得た。収率は44.1%。
Figure JPOXMLDOC01-appb-C000039
 実施例20 カリックスアレーン化合物(20)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(3)を1.000g(0.4453mmol)、N―メチルピロリドン5.00g(50.44mmol)、2-アクリロイルオキシエチルイソシアナート0.3771g(2.672mmol)、フェノチアジン0.001g(0.005018mmol)、ジブチルスズジラウレート0.001g(0.001583mmol)を入れ攪拌した。酸素でバブリングしながら780℃で10時間加熱した。茶色透明溶液。室温まで冷却し、イオン交換水300gに、攪拌しながら反応溶液をゆっくり滴下し、固体を析出させた。クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで白色結晶をろ過し、得られた白色結晶を真空乾燥(60℃で6時間以上)し、下記構造式(w)で表されるカリックスアレーン化合物(20)を0.3929g得た。収率は31.4%。
Figure JPOXMLDOC01-appb-C000040
 実施例21 カリックスアレーン化合物(21)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、カリックスアレーン化合物(7)を1.000g(0.4414mmol)、ジクロロメタン7.50g(88.27mmol)に溶解させた。ついで炭酸水素ナトリウム0.2225g(2.648mmol)を加えた後、少量ずつm-クロロ過安息香酸0.516g(1.942mmol)添加した。室温で7日攪拌した。クリーム色懸濁液。反応混合物を飽和炭酸水素ナトリウム水溶液で洗浄した。ジクロロメタン20gを加えて、反応混合物を分液ロートに移し、有機相を分液した。次に水相をジクロロメタン20gで3回抽出し、有機相に合わせた。有機相を10%チオ硫酸ナトリウム水溶液で洗浄した。無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、黄色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=90:10)にて、淡黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで橙色個体をろ過し、得られた橙色個体を真空乾燥(60℃で6時間以上)し、下記構造式(x)で表されるカリックスアレーン化合物(21)を0.5281g得た。収率は51.7%。
Figure JPOXMLDOC01-appb-C000041
 実施例22 カリックスアレーン化合物(22)の製造
 攪拌装置、温度計及び還流冷却管を取り付けた50ミリリットルの四つ口フラスコに、カリックスアレーン化合物(1)を1.000g(0.4832mmol)、テトラブチルアンモニウムアイオダイド0.0357g(0.09664mmol)、N―メチルピロリドン10.00g(100.87mmol)、(3-エチル-3-オキセタニル)メチル p-トルエンスルホナート0.7838g(2.899mmol)、水酸化カリウム0.1627g(2.899mmol)を入れ攪拌した。80℃で20時間加熱した。茶色透明溶液。室温まで冷却し、混合溶液をビーカーに移し、1N塩酸、クロロホルム30gを加えて、反応混合物を分液ロートに移し、有機相を分液した。次に水相をクロロホルム30gで3回抽出し、有機相に合わせた。有機相を無水硫酸マグネシウムで予備乾燥し、ろ過した。エバポレーターで溶媒を留去し、赤色粘稠液体をカラムクロマトグラフィー(展開溶媒:n-ヘキサン:アセトン=95:5)にて、淡黄色透明液体として得た。溶媒を濃縮し、クロロホルム/メタノールを加えて再沈殿させた。桐山ロートで橙色個体をろ過し、得られた橙色固体を真空乾燥(60℃で6時間以上)し、下記構造式(y)で表されるカリックスアレーン化合物(22)を0.5282g得た。収率は44.4%
Figure JPOXMLDOC01-appb-C000042
 実施例23 カリックスアレーン化合物(23)の製造
 攪拌装置、温度計、滴下漏斗及び還流冷却管を取り付けた100ミリリットルの四つ口フラスコに、水素化ナトリウム3.61g(91.3mmol)を投入し、40mLのヘキサンでミネラルオイルを洗浄除去し、ヘキサン溶液をシリンジで抜き取った。ヘキサン洗浄作業をもう1回行った。次いで、ジメチルホルムアミド20mLを添加し、氷冷下に撹拌した。先で得た中間体(B-1)(4.0g,6.8mmol)をジメチルホルムアミド20mLに溶解させた溶液を別途調製しておき、これを滴下漏斗より、フラスコ内に30分かけて滴下した。滴下終了後、氷浴を除き、室温にて30分撹拌した後、再度、氷浴にて冷却した。滴下漏斗より、1,1,1,2,2-ペンタフルオロ-4-ヨードブタン(22.5g,82.1mmol)を20分かけて滴下した。滴下終了後、氷浴を除き、反応混合物を室温にて20時間撹拌した。氷を入れた200mLのビーカーに反応混合物を投入し、反応を停止させ、更に水層のpHが2以下になるまで、濃塩酸を添加した。そこへ、100mLのクロロホルムを追加し、しばらく撹拌した後、分液漏斗に移し、有機層を分離した後、水層に80mLのクロロホルムを加えて有機成分を抽出する作業を2回繰り返した。有機層を全て分液漏斗に移した後、100mLの水で3回、60mLの飽和炭酸水素ナトリウム水溶液で1回、60mLの飽和食塩水で1回、の順で、有機層を洗浄し、有機層を無水硫酸マグネシウムで乾燥した。この溶液をろ過して有機相を回収した後、エバポレーターで溶媒を留去し、橙色液体を得た。この液体をシリカゲルカラムクロマトグラフィーにて精製し、下記構造式(z)で表されるカリックスアレーン化合物(23)7.15g(収率90%)を得た。
Figure JPOXMLDOC01-appb-C000043
 実施例24 カリックスアレーン化合物(24)の製造
 攪拌装置、温度計、滴下ロート、及び還流冷却管を取り付けた200mLの四つ口フラスコに、トリフルオロメタンスルホン酸(50g)を仕込み、先で得た中間体(A-1)(7g,16.5mmol)を数回に分けて添加し、溶解させた。この橙色溶液に、特許4856310号に記載の方法で合成した、4,4,5,5,5-ペンタフルオロペンタノイルクロリド(16.7g,79.2mmol)を20分以上かけて滴下した。滴下と共に、塩酸ガスの発生を認めた。滴下終了後、反応混合物を室温にて6時間撹拌した。反応混合物を氷に投入し、反応を停止させた後、析出した橙色固体を濾過にて分離し、更に大量の水で洗浄した。得られた固体を200mLの酢酸エチルに溶解した後、分液漏斗に移し、さらに100mLの水を加えて、有機層を洗浄した。同様の洗浄操作を更に3回繰り返した後、有機層を100mLの飽和食塩水で洗浄し、無水硫酸マグネシウムを加えて乾燥させた。この溶液をろ過して有機相を回収した後、エバポレーターで溶媒を留去し、橙色固体を得た。得られた固体に100mLのクロロホルムを加えたところ、白色固体を橙色液体の混合物が得られ、濾過にて白色固体を分離した後、減圧乾燥した。このクロロホルムによる洗浄を再度繰り返し、下記構造式(aa)で表されるカリックスアレーン化合物(24)7.4g(収率40%)を得た。
Figure JPOXMLDOC01-appb-C000044
 実施例25 カリックスアレーン化合物(25)の製造
 攪拌装置、温度計、滴下漏斗及び還流冷却管を取り付けた500ミリリットルの四つ口フラスコに、トリフルオロ酢酸(270mL)を仕込み、次いで、カリックスアレーン化合物(24)(7g,6.25mmol)を数回に分けて添加し、溶解させた。この橙色溶液に、トリエチルシラン(14.5g,125mmol)を滴下漏斗より滴下した。滴下終了後、無色透明となった溶液を室温にて72時間撹拌した。反応混合物を水に投入し、反応を停止させた後、析出した茶色固体を濾過にて分離し、更に大量の水で洗浄した。得られた固体を200mLの酢酸エチルに溶解した後、分液漏斗に移し、さらに100mLの水を加えて、有機層を洗浄した。有機層を一旦、ビーカーに移し、そこへ100mLの水を加えて、固体状の炭酸水素ナトリウムにて中和した。この中和溶液を全量分駅漏斗に移し、有機層を分離し、水層に100mLの酢酸エチルを加えて有機成分を抽出する作業を2回繰り返した。有機層を全て分液漏斗に移した後、100mLの飽和食塩水で1回洗浄し、有機層を無水硫酸マグネシウムで乾燥した。この溶液をろ過して有機相を回収した後、エバポレーターで溶媒を留去し、茶色固体を得た。この固体をシリカゲルカラムクロマトグラフィーにて精製し、下記構造式(bb)で表されるカリックスアレーン化合物(25)6.0g(収率90%)を得た。
Figure JPOXMLDOC01-appb-C000045
 実施例26 カリックスアレーン化合物(26)の製造
 実施例2において、カリックスアレーン化合物(1)の代わりに、カリックスアレーン化合物(25)(6g,5.63mmol)を用いた以外は実施例1に従って製造を行い、下記構造式(cc)で表されるカリックスアレーン化合物(26)6.47g(収率85%)を得た。
Figure JPOXMLDOC01-appb-C000046
 実施例27 カリックスアレーン化合物(27)の製造
 実施例3において、カリックスアレーン化合物(2)の代わりに、カリックスアレーン化合物(26)(6g,4.43mmol)を用いた以外は実施例3に従って製造を行い、下記構造式(dd)で表されるカリックスアレーン化合物(27)4.12g(収率75%)を得た。
Figure JPOXMLDOC01-appb-C000047
 実施例28 カリックスアレーン化合物(28)の製造
 実施例18において、カリックスアレーン化合物(3))の代わりに、カリックスアレーン化合物(27)(4g,3.22mmol)を用いた以外は実施例18に従って製造を行い、下記構造式(ee)で表されるカリックスアレーン化合物(28)2.81g(収率60%)を得た。
Figure JPOXMLDOC01-appb-C000048
 製造例1 シリコーン鎖を有する(メタ)アクリレート樹脂(R5-1)の製造
 シリコーンレジン(信越化学工業社製「KR-500」、アルコキシ基含有量28質量%)110.8g、2-ヒドロキシエチルアクリレート58.1g、パラトルエンスルホン酸一水和物0.034gを混合し、120℃まで加熱した。縮合反応により生成したメタノールを留去しながら3時間撹拌して反応させ、シリコーン鎖を有する(メタ)アクリレート樹脂(R5-1)153.9gを得た。シリコーン鎖を有する(メタ)アクリレート樹脂(R5-1)の重量平均分子量(Mw)は1,650であった。
 実施例29~74及び比較例1~2
 下記要領で硬化性組成物及び硬化物を製造し、各種評価を行った。評価結果を表1~5に示す。
〈硬化性組成物の製造〉
 下記表に示す割合で各成分を配合し、プロピレングリコールモノメチルエーテルアセテートを加えて不揮発分50質量%に希釈し、硬化性組成物を得た。
 表中の各成分の詳細は以下の通り。各成分の組成は質量部にて記載している。
・(R1-1):エチレンオキサイド変性オルソフェニルフェノールアクリレート(東亞合成株式会社製「アロニックスM-106」、一分子中のエチレンオキサイド鎖の平均繰り返し単位数=1)
・(R2-1):トリメチロールプロパントリアクリレート(大阪有機化学工業株式会社製「ビスコート#295」)
・(R3-1):トリシクロデカンジメタノールジアクリレート(新中村化学工業株式会社製「NKエステルA-DCP」)
・(R4-1):下記構造式で表される化合物(大阪ガスケミカル株式会社製「オグソールEA-0200」)
Figure JPOXMLDOC01-appb-C000049
(式中mとnとの和は平均で2である。)
・(R5-1):製造例1で得たシリコーン鎖を有する(メタ)アクリレート樹脂(R5-1)
・光重合開始剤(1):BASF社製「イルガキュア369」
・光重合開始剤(2):BASF社製「イルガキュア184」
・光重合開始剤(3):BASF社製「イルガキュア379EG」
・光重合開始剤(4):サンアプロ社製「CPI-100P」
〈塗工性の評価〉
 硬化性組成物を膜厚1.0μmとなるようにシリコンウエハ基板上にスピンコートし、110℃のホットプレート上で60秒乾燥させた。得られた塗膜について下記基準で目視評価した。
A:はじきがなく、平滑な塗膜が形成された。
B:はじき等が生じ平滑な塗膜が形成されない。
〈離型性の評価〉
 テクスチャーアナライザーを用い、下記要領で代替評価を行った。
 テクスチャーアナライザー(Stable Micro Systems製「TA.XT Plus」)にガラス板をセットして基板固定治具で固定した。ガラス板上に硬化性組成物を1μL滴下し、ガラスビーズがついた圧子を硬化性組成物上に荷重10gで接触させた。窒素雰囲気下、ガラス板の裏面からピーク波長365±5nmのLED光源を用いて300mJ/cmの条件で露光させた。圧子を0.01mm/秒の速度で引き上げた時の最大引張荷重(MPa)を測定した。同様の操作を5回行い、最大値と最小値を除く3点の平均値で評価した。
〈硬化物の製造〉
 硬化性組成物を膜厚1.0μmとなるようにシリコンウエハ基板上にスピンコートし、110℃のホットプレート上で60秒乾燥させた。窒素雰囲気中、ピーク波長365±5nmのLED光源を用いて500mJ/cmの条件で露光させ、硬化塗膜を得た。
〈水接触角の測定〉
自動接触角測定装置(Dataphysics社製「OCA40型」を)用い、JIS R1257:1999に定める空気中での静滴法によって、硬化塗膜上の水接触角を5回測定し、その平均値で評価した。
〈パターン形成サンプルの製造〉
 硬化性組成物を膜厚1.0μmとなるようにシリコンウエハ基板上にスピンコートし、110℃のホットプレート上で60秒乾燥させた。ナノインプリント装置(SCIVAX社製「X300」)の下面ステージにセットした。次いで、石英製のモールド(NTTアドバンストテクノロジ社製「NIM PHH-100」、デューティー比1/1・1/2・1/3、ホール幅70~3000nm、溝深さ200nm、UVオゾンクリーナーで洗浄済、モールド表面の水接触角10°未満)を前記ナノインプリント装置の上面ステージにセットした。上面ステージを下降させてモールドを硬化性組成物に接触させ、室温で10秒間かけて100Nまで加圧し、30秒間保持して膜中の気泡を除去した。モールド側からピーク波長365±5nmのLED光源を用いて500mJ/cmの条件で露光させた後、1mm/分の速度で上面ステージを上昇させてモールドを剥離し、サンプルを得た。同一のモールドを洗浄せずに連続で用い、同様の方法でサンプルを合計10枚作製した。10枚目のサンプルについて、各種評価試験を行った。なお、比較例2で製造した硬化性組成物を用いた場合にはシリコンウエハ上に平滑な塗膜が形成されず、各種評価試験を行うことができなかった。
〈パターン倒れの有無〉
 先で得たパターン形成サンプルについて、デューティー比1/1で、ホール幅が最小である70nm×70nmである領域について、パターンの倒れの有無を走査型電子顕微鏡で観察し、以下の基準で評価した。
 A:パターン倒れが全く見られない
 B:パターン倒れが見られる
Figure JPOXMLDOC01-appb-T000050
Figure JPOXMLDOC01-appb-T000051
Figure JPOXMLDOC01-appb-T000052
Figure JPOXMLDOC01-appb-T000053
Figure JPOXMLDOC01-appb-T000054

Claims (8)

  1. 下記構造式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中Rはパーフルオロアルキル基を有する構造部位である。Rは水素原子、極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである。Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。*は芳香環との結合点である。)
    で表される分子構造を有するカリックスアレーン化合物。
  2. 下記構造式(1-1)又は(1-2)
    Figure JPOXMLDOC01-appb-C000002
    (式中Rはパーフルオロアルキル基を有する構造部位である。Rは水素原子、極性基、重合性基、極性基又は重合性基を有する構造部位の何れかである。Rは水素原子、置換基を有していてもよい脂肪族炭化水素基、置換基を有していてもよいアリール基の何れかである。nは2~10の整数である。)
    で表される分子構造を有する請求項1記載のカリックスアレーン化合物。
  3. 前記構造式(1)中のRが、下記構造式(2)
    Figure JPOXMLDOC01-appb-C000003
    (式中Rはそれぞれ独立に直接結合又は炭素原子数1~6のアルキレン基である。Rはパーフルオロアルキル基である。Yは直接結合、カルボニル基、酸素原子又は硫黄原子である。)
    で表される構造部位である請求項1記載のカリックスアレーン化合物。
  4. 前記Rが水酸基、チオール基或いはホスフィンオキシド基、又は
    水酸基、アミノ基、カルボキシ基、チオール基、リン酸基、ホスホン酸基、ホスフィン酸基、ホスフィンオキシド基、アルコキシシリル基の何れかの基を有する構造部位である請求項1記載のカリックスアレーン化合物。
  5. 前記Rがビニルオキシ基、エチニルオキシ基、(メタ)アクリロイルオキシ基、グリシジルオキシ基、(2-メチル)グリシジルオキシ基、或いは3-アルキルオキセタニルメチルオキシ基、又は
    ビニル基、ビニルオキシ基、エチニル基、エチニルオキシ基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、グリシジル基、グリシジルオキシ基、(2-メチル)グリシジル基、(2-メチル)グリシジルオキシ基、3-アルキルオキセタニルメチル基、3-アルキルオキセタニルメチルオキシ基の何れかの基を有する構造部位である請求項1記載のカリックスアレーン化合物。
  6. 請求項1~5のいずれか一つに記載のカリックスアレーン化合物を含有する離型剤。
  7. 請求項1~5のいずれか一つに記載のカリックスアレーン化合物と硬化性樹脂材料とを含有する硬化性組成物。
  8. 請求項1~5のいずれか一つに記載のカリックスアレーン化合物を含有するナノインプリントリソグラフィー用樹脂材料。
PCT/JP2017/041223 2016-12-01 2017-11-16 カリックスアレーン化合物及び硬化性組成物 WO2018101057A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/463,037 US11111225B2 (en) 2016-12-01 2017-11-16 Calixarene compound and curable composition
JP2018536216A JP6428978B2 (ja) 2016-12-01 2017-11-16 カリックスアレーン化合物及び硬化性組成物
KR1020197009984A KR102555271B1 (ko) 2016-12-01 2017-11-16 칼릭스아렌 화합물인 이형제, 경화성 조성물 및 나노 임프린트 리소그래피용 수지 재료
CN201780074462.XA CN110023284B (zh) 2016-12-01 2017-11-16 杯芳烃化合物及固化性组合物

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-234109 2016-12-01
JP2016234109 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101057A1 true WO2018101057A1 (ja) 2018-06-07

Family

ID=62241325

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/041223 WO2018101057A1 (ja) 2016-12-01 2017-11-16 カリックスアレーン化合物及び硬化性組成物

Country Status (6)

Country Link
US (1) US11111225B2 (ja)
JP (1) JP6428978B2 (ja)
KR (1) KR102555271B1 (ja)
CN (1) CN110023284B (ja)
TW (1) TWI759359B (ja)
WO (1) WO2018101057A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021758A1 (ja) * 2017-07-27 2019-01-31 Dic株式会社 レジスト材料
WO2019031182A1 (ja) * 2017-08-08 2019-02-14 Dic株式会社 カリックスアレーン化合物、硬化性組成物及び硬化物

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102296812B1 (ko) 2019-09-18 2021-09-02 주식회사 쎄코 이형제용 화합물 및 그 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260556A (ja) * 1997-03-19 1998-09-29 Konica Corp 静電荷像現像用二成分現像剤及び画像形成方法
JP2002302674A (ja) * 2001-04-05 2002-10-18 Fuji Photo Film Co Ltd 液晶組成物、それを用いた液晶素子およびアゾ化合物
JP2014129517A (ja) * 2012-11-29 2014-07-10 Daikin Ind Ltd 離型剤、離型剤組成物及び離型剤の製造方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5622687A (en) * 1994-11-15 1997-04-22 Molecular Biosystems, Inc. Calixarene conjugates useful as MRI and CT diagnostic imaging agents
US20080115627A1 (en) * 2004-08-20 2008-05-22 Wang Joanna S Metal Extraction In Liquid Or Supercritical-Fluid Solvents
JP4465371B2 (ja) * 2007-07-13 2010-05-19 シャープ株式会社 トナーおよび二成分現像剤
WO2015075552A1 (en) * 2013-11-19 2015-05-28 Bioflex Devices Method of patterning a base layer
WO2015075553A1 (en) * 2013-11-19 2015-05-28 Bioflex Device Method of patterning a bioresorbable material
CN107251190B (zh) * 2014-12-24 2020-11-10 正交公司 电子装置的光刻图案化

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10260556A (ja) * 1997-03-19 1998-09-29 Konica Corp 静電荷像現像用二成分現像剤及び画像形成方法
JP2002302674A (ja) * 2001-04-05 2002-10-18 Fuji Photo Film Co Ltd 液晶組成物、それを用いた液晶素子およびアゾ化合物
JP2014129517A (ja) * 2012-11-29 2014-07-10 Daikin Ind Ltd 離型剤、離型剤組成物及び離型剤の製造方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BUSCEMI, S. ET AL.: "Lower rim arylation of calix[n]arenes with extended perfluorinated domains", TETRAHEDRON LETTERS, vol. 47, no. 51, 16 November 2006 (2006-11-16), pages 9049 - 9052, XP005728874 *
BUTTRESS, J. P ET AL.: ""Janus" Calixarenes: double-sided molecular linkers for facile, multianchor point, multifunctional, surface modification", LANGMUIR, vol. 32, no. 31, 15 July 2016 (2016-07-15), pages 7806 - 7813, XP055512030 *
GLENNON, J. D. ET AL.: "Molecular baskets in supercritical CO2", ANALYTICAL CHEMISTRY, vol. 69, no. 11, 1 June 1997 (1997-06-01), pages 2207 - 2212, XP055512028 *
HUANG, W. ET AL.: "Synthesis and properties of p-perfluoroalkyl calix[4]arenes", CHINESE JOURNAL OF CHEMISTRY, vol. 11, no. 4, 1993, pages 370 - 375 *
IQBAL, M. ET AL.: "The conformations and structures of the products of aroylation of the calix[4]arenes, Tetrahedron", CALIXARENES, vol. 43, no. 21, 1987, pages 4917 - 4930, XP055512031 *
MARTIN, 0. M. ET AL.: "Solution self-assembly and solid state properties of fluorinated amphiphilic calix[4]arenes", CHEMICAL COMMUNICATIONS, 8 September 2005 (2005-09-08), pages 4964 - 4966, XP055512026 *
MARTIN, 0. M. ET AL.: "Synthesis and pH-dependent self-assembly of semifluorinated calix[4]arenes", TETRAHEDRON, vol. 63, no. 25, 19 May 2007 (2007-05-19), pages 5539 - 5547, XP022084926 *
OSIPOV, M. ET AL.: "Synthesis of deep-cavity fluorous calix[4]arenes as molecular recognition scaffold", BEILSTEIN JOURNAL OF ORGANIC CHEMISTRY, vol. 4, no. 36, 20 October 2008 (2008-10-20), pages 1 - 6, XP055512024 *
ZHANG, C. ET AL.: "Significant effect of bromo substituents on nonlinear optical properties of polymer and chromophores", JOURNAL OF PHYSICAL CHEMISTRY B, vol. 114, no. 1, 14 January 2010 (2010-01-14), pages 42 - 48, XP055196332 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019021758A1 (ja) * 2017-07-27 2019-01-31 Dic株式会社 レジスト材料
JP6478005B1 (ja) * 2017-07-27 2019-03-06 Dic株式会社 レジスト材料
US11487204B2 (en) 2017-07-27 2022-11-01 Dic Corporation Resist material
WO2019031182A1 (ja) * 2017-08-08 2019-02-14 Dic株式会社 カリックスアレーン化合物、硬化性組成物及び硬化物
US11472763B2 (en) 2017-08-08 2022-10-18 Dic Corporation Calixarene compound, curable composition, and cured product

Also Published As

Publication number Publication date
TW201831298A (zh) 2018-09-01
CN110023284A (zh) 2019-07-16
US11111225B2 (en) 2021-09-07
TWI759359B (zh) 2022-04-01
US20190276421A1 (en) 2019-09-12
JPWO2018101057A1 (ja) 2018-12-27
JP6428978B2 (ja) 2018-11-28
KR102555271B1 (ko) 2023-07-17
CN110023284B (zh) 2022-01-18
KR20190088462A (ko) 2019-07-26

Similar Documents

Publication Publication Date Title
JP4556151B2 (ja) フッ素化合物及びそれを用いた活性エネルギー線硬化型樹脂組成物
KR101868665B1 (ko) 플루오렌 골격을 갖는 다관능성 (메트)아크릴레이트 및 그의 경화성 조성물
US10189983B2 (en) Curable resin composition, resin mold for imprinting, method for photo imprinting, method for manufacturing semiconductor integrated circuit, and method for manufacturing fine optical element
JP6428978B2 (ja) カリックスアレーン化合物及び硬化性組成物
WO2015137438A1 (ja) 酸素プラズマエッチング用レジスト材料、レジスト膜、及びそれを用いた積層体
TW201936723A (zh) 有機聚矽氧烷化合物及包含該化合物之活性能量線硬化性組成物
TW201819442A (zh) 光壓印用硬化性組成物及使用其之圖案轉印方法
TWI572677B (zh) 用於透明塑膠基材之樹脂組成物
TWI476219B (zh) An amine ester acrylate and a reactive composition containing the same
JP2019210248A (ja) カリックスアレーン化合物、滑水性表面改質剤、硬化性樹脂組成物および滑水性塗膜
CN109912798B (zh) 有机聚硅氧烷化合物和包含其的活性能量线固化性组合物
JP5109324B2 (ja) シール剤用光硬化性組成物、液晶シール剤、及び液晶パネル
JP6668212B2 (ja) (メタ)アクリレート化合物、その合成方法および該(メタ)アクリレート化合物の利用
TWI510466B (zh) Epoxy acrylate, acrylic composition, hardened product and method for producing the same
JP6187847B1 (ja) 活性エネルギー線硬化型組成物及びプラスチックレンズ
JP6139448B2 (ja) 光インプリント用硬化性組成物、パターン形成方法、パターンおよび含フッ素化合物
JP6599785B2 (ja) カルボキシル基含有フルオレン系ポリエステル樹脂、及びその製造方法
JPWO2019031312A1 (ja) モールド用離型剤
CN110959138B (zh) 抗蚀剂材料
JP6551624B2 (ja) カリックスアレーン化合物、硬化性組成物及び硬化物
WO2019221195A1 (ja) カリックスアレーン化合物、硬化性組成物及び硬化物
TW202225327A (zh) 矽酮樹脂組合物、成形體、層疊體及成形體的製造方法
TW202415683A (zh) 活性能量線硬化性組成物、硬化物及層疊體

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018536216

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17875112

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197009984

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17875112

Country of ref document: EP

Kind code of ref document: A1