WO2018094877A1 - 散热板、散热装置和电子设备 - Google Patents

散热板、散热装置和电子设备 Download PDF

Info

Publication number
WO2018094877A1
WO2018094877A1 PCT/CN2017/073037 CN2017073037W WO2018094877A1 WO 2018094877 A1 WO2018094877 A1 WO 2018094877A1 CN 2017073037 W CN2017073037 W CN 2017073037W WO 2018094877 A1 WO2018094877 A1 WO 2018094877A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat
region
heat dissipation
layer
dissipation plate
Prior art date
Application number
PCT/CN2017/073037
Other languages
English (en)
French (fr)
Inventor
杨果
李泉明
刘小虎
李伟
张治国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780024563.6A priority Critical patent/CN109076720B/zh
Priority to EP17873517.1A priority patent/EP3531811A4/en
Priority to JP2019528071A priority patent/JP6890180B2/ja
Priority to US16/462,826 priority patent/US11272639B2/en
Publication of WO2018094877A1 publication Critical patent/WO2018094877A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/20136Forced ventilation, e.g. by fans
    • H05K7/20145Means for directing air flow, e.g. ducts, deflectors, plenum or guides
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1615Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function
    • G06F1/1616Constructional details or arrangements for portable computers with several enclosures having relative motions, each enclosure supporting at least one I/O or computing function with folding flat displays, e.g. laptop computers or notebooks having a clamshell configuration, with body parts pivoting to an open position around an axis parallel to the plane they define in closed position

Definitions

  • the present application relates to the field of electronic devices and, more particularly, to a heat sink, a heat sink, and an electronic device.
  • the heating problem of portable electronic devices is a major factor affecting the normal operation of electronic devices.
  • the heat generated inside the electronic equipment mainly comes from the Central Processing Unit (CPU), the motherboard chip and the graphics card. Therefore, when the system temperature is too high, it may even cause a crash. This not only reduces the user experience, but also seriously affects the running performance and service life of the chip.
  • the present application provides a heat sink, a heat sink, and an electronic device that can be applied to a foldable or bendable electronic device.
  • a heat dissipation device for use in an electronic device, including a heat dissipation plate embedded in the electronic device, the heat dissipation plate including at least:
  • a first heat conducting layer comprising a first surface and a second surface, the first surface being a surface exposed to the outside when the first heat conducting layer is bent, the second surface being opposite to the first surface a first region of the first heat conducting layer for absorbing heat released by the heat generating component and conducting the heat to the second region of the first heat conducting layer to release the heat;
  • the first flexible layer includes a third region that is attached to a position corresponding to the bent region on the second surface of the first heat conductive layer.
  • the heat conductive material is rounded at the bend, and the rounded corner can be used to protect the heat conductive layer from damage during bending or folding, and avoid breakage or breakage.
  • the flexible material relies on its own high flexibility, and the heat sink is not prone to breakage or breakage when bent or folded, and thus the reliability of the heat sink is improved as a whole.
  • the flexibility of the heat dissipation plate is improved by the flexible layer, and the heat dissipation efficiency of the heat dissipation plate is improved by the heat conduction layer.
  • the space occupied by the heat sink can be reduced, and the noise generated during the operation of the device and the problem of ash entering can be reduced.
  • the first flexible layer further includes a fourth region, which is attached to a position on the second surface of the first heat conductive layer except the bending region, so that the third region And the fourth region completely covers the second surface of the first thermally conductive layer.
  • the heat dissipation plate of the structure makes the production process more simple and convenient.
  • the heat dissipation plate further includes a second flexible layer attached to the first surface of the first heat conduction layer, The second flexible layer partially or completely covers the first surface of the first thermally conductive layer.
  • the first and second surfaces of the heat conducting layer are respectively protected by the flexible layer, so that the heat sink can receive the protection of the flexible layer when bent in different directions, and the heat sink is not easy to appear when bending or folding. It is broken or broken; at the same time, it can protect the heat-conducting layer from being scratched or cut by external objects when bending, and further improve the reliability of the heat-dissipating plate.
  • the area of the first area is less than or equal to the area of the second area.
  • the heat sink further includes a fan, the fan is located in a high temperature region of the electronic device, and is configured to circulate air between the high temperature region and the low temperature region to facilitate the heat transfer from the heat
  • the first region of the layer is conducted to the second region, wherein the high temperature region is a region of the electronic device that is adjacent to the heat generating component, and the low temperature region is away from the heat generating component in the electronic device Area.
  • the air is circulated between the high temperature region and the low temperature region by the fan, so that the heat is quickly conducted from the first region to the second region, further improving the heat dissipation efficiency.
  • the heat dissipating device further includes a shielding cover disposed on a lower surface of the heat dissipation plate, the shielding cover and a pre-configured shielding base in the electronic device form a shielding cover, and the shielding cover is used for shielding The chip, wherein a lower surface of the heat dissipation plate is a surface of the heat dissipation plate opposite to the heat generating component.
  • the shielding cover is embedded in a lower layer material of the heat dissipation plate, and the lower layer material is a layer of material of the heat dissipation plate that is closest to the heat generating component.
  • the shielding cover is adhered to a lower surface of the heat dissipation plate.
  • a heat-emitting component such as a chip can be shielded, the external interference to the chip can be reduced, and the contamination of the chip can be reduced.
  • the heat dissipating device further includes a reinforcing plate adhered to the upper surface of the heat dissipation plate and/or a lower surface of the heat dissipation plate corresponding to the bending region, and the lower surface of the heat dissipation plate is a surface of the heat dissipation plate opposite to the heat generating component, and an upper surface of the heat dissipation plate is a surface of the heat dissipation plate opposite to the lower surface.
  • the internal heat dissipation plate can be protected from being easily broken, and the strength of the folded portion can be improved, local bending strengthening can be realized, and reliability can be improved.
  • the reinforcing plate comprises a re-composite stainless steel sheet or a copper alloy sheet.
  • the first heat conducting layer comprises a plurality of isolated strip-shaped heat conducting sheets, the plurality of isolated strip-shaped heat conducting sheets are arranged in parallel in a bending region, and each strip-shaped heat conducting sheet is parallel to a heat conduction direction. Or approximately parallel.
  • the bending resistance of the flexible material can be further improved, and reliability can be improved.
  • the heat conducting layer is formed of a heat conductive material having a thermal conductivity greater than or equal to a first predetermined threshold, and the first predetermined threshold is 50 watts/(m ⁇ degrees).
  • the heat conductive layer is formed of a heat conductive material, and the heat conductive material comprises: graphite, copper foil or aluminum foil.
  • the flexible layer is formed from a flexible material comprising polyimide or polyamide.
  • a heat dissipation plate in a second aspect, is provided, the first heat conduction layer being formed in a sheet shape, formed of a heat conductive material, including a first surface and a second surface, wherein the first surface is when the first heat conduction layer is bent a surface exposed to the outside, the second surface being a surface opposite the first surface;
  • a first flexible layer formed in a sheet shape, formed of a flexible material, the first flexible layer including a third region, the third region being attached to the second surface of the first heat conductive layer and being bent The location corresponding to the area.
  • the heat conductive material is rounded at the bend, and the rounded corner can be used to protect the heat conductive layer from damage during bending or folding, and avoid breakage or breakage.
  • the flexible material relies on its own high flexibility, and the heat sink is not prone to breakage or breakage when bent or folded, and thus the reliability of the heat sink is improved as a whole.
  • the flexibility of the heat dissipation plate is improved by the flexible layer, and the heat dissipation efficiency of the heat dissipation plate is improved by the heat conduction layer.
  • the space occupied by the heat sink can be reduced, and the noise generated during the operation of the device and the problem of ash entering can be reduced.
  • the first flexible layer further includes a fourth region, which is attached to a position on the second surface of the first heat conductive layer except the bending region, so that the third region And the fourth region completely covers the second surface of the first thermally conductive layer.
  • the heat dissipation plate of the structure makes the production process more simple and convenient.
  • the heat dissipation plate further includes a second flexible layer formed in a sheet shape, formed of the flexible material, and the second flexible layer is adhered to the first surface of the first heat conduction layer, The second flexible layer partially or completely covers the first surface of the first thermally conductive layer.
  • the first and second surfaces of the heat conducting layer are respectively protected by the flexible layer, so that the heat sink can receive the protection of the flexible layer when bent in different directions, and the heat sink is not easy to appear when bending or folding. It is broken or broken; at the same time, it can protect the heat-conducting layer from being scratched or cut by external objects when bending, and further improve the reliability of the heat-dissipating plate.
  • the heat conducting layer is formed of a heat conductive material having a thermal conductivity greater than or equal to a first predetermined threshold, and the first predetermined threshold is 50 watts/(m ⁇ degrees).
  • the heat conductive material comprises: graphite, copper foil or aluminum foil.
  • the flexible material comprises polyimide or polyamide.
  • an electronic device comprising:
  • a heat sink in any of the possible implementations of the first aspect is
  • the heat dissipation plate and the heat dissipation device proposed by the present application can be applied to various non-folding, foldable or bendable electronic devices, and the flexibility of the heat dissipation plate is improved by the flexible material, and the heat dissipation efficiency of the heat dissipation plate is improved by the heat conductive material.
  • the space occupied by the heat sink can be reduced, and the noise generated during the operation of the device and the problem of ash entering can be reduced.
  • FIG. 1 and 2 are schematic structural views of a heat dissipation plate according to an embodiment of the present application.
  • FIG. 3 is a schematic structural view of a heat dissipation plate according to another embodiment of the present application.
  • FIG. 4 is a schematic structural view of a heat dissipation plate according to still another embodiment of the present application.
  • 5 to 10 are schematic diagrams of a heat sink applied to an electronic device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural view of a heat dissipation plate according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram showing a heat sink device applied to an electronic device according to another embodiment of the present application.
  • FIG. 13 is a schematic structural view of a heat dissipation plate according to another embodiment of the present application.
  • FIG. 14 is a schematic structural view of a heat dissipation plate according to still another embodiment of the present application.
  • 15 and 16 are schematic views of a heat sink device applied to an electronic device according to still another embodiment of the present application.
  • FIG. 17 is a schematic diagram of a heat sink applied to an electronic device according to still another embodiment of the present application.
  • FIG. 18 is a schematic structural view of a heat dissipation structure according to still another embodiment of the present application.
  • FIG. 19 is a schematic diagram of a heat sink applied to an electronic device according to an embodiment of the present application.
  • 20 and 21 are schematic views of a heat sink applied to an electronic device according to another embodiment of the present application.
  • FIG. 22 is a schematic diagram of a heat sink applied to an electronic device according to still another embodiment of the present application.
  • FIG. 1 and 2 are schematic structural views of a heat dissipation plate 10 according to an embodiment of the present application.
  • the heat dissipation plate 10 includes at least a first heat conductive layer 11 and a first flexible layer 12.
  • the first heat conduction layer is formed in a sheet shape, and is formed of a heat conductive material having a thermal conductivity greater than or equal to a first predetermined threshold
  • the first flexible layer is formed into a sheet shape and formed of a flexible material.
  • the heat sink may be composed of at least one layer of flexible material and at least one layer of heat conductive material.
  • the thermal conductive material has a high thermal conductivity for achieving rapid heat transfer, and the flexible material has strong flexibility, is deformable and foldable.
  • the heat dissipation plate obtained by combining the heat conductive material and the flexible material combines the flexibility of the flexible material and the thermal conductivity of the heat conductive material, so that the heat dissipation plate can be applied to heat dissipation devices of various foldable or bendable electronic devices, for example, Portable electronic devices such as folding mobile phones and folding notebook computers, and wearable devices such as flexible screens, virtual reality (VR), and Augmented Reality (AR).
  • VR virtual reality
  • AR Augmented Reality
  • the first predetermined threshold is 50 watts/(m ⁇ degrees) (W/(m ⁇ K)).
  • the flexible material comprises: Polyimide (PI) or Polyamide (Polyamide, PA, or nylon).
  • the thermally conductive material comprises: graphite, aluminum foil or copper foil.
  • the heat sink is composed of PI and graphite.
  • the thermal conductivity of PI is greater than or equal to 300 W/(m ⁇ K).
  • a flexible material can be understood as a material that is flexible and can withstand proper deformation. Flexibility (or flexibility) can be understood as flexibility, as opposed to stiffness, and is a physical property of the material. The flexible material deforms after being stressed, and the material itself cannot recover its original shape after losing the force.
  • a flexible material is a material that is deformable (for example, stretched, bent, twisted, extruded, deformed, etc.) without losing performance. Therefore, the flexible material can be said to be a material having high tensile strength and high elongation.
  • the deformed flexible material did not break in the deformed area and did not expose the internal structure. After deformation of the flexible material with a smooth surface, the deformed area still exhibits a smooth, seamless surface. Moreover, the flexible material can be restored to its original state by external force after being subjected to several bendings, and has a certain service life.
  • the first thermally conductive layer includes a first surface and a second surface, the first surface being a surface of the first thermally conductive layer that is exposed to the outside when bent (as shown in Figure 2), the first flexibility
  • the layer is bonded to at least the bent region on the second surface of the first thermally conductive layer.
  • the region of the first flexible layer corresponding to the bending region is referred to as a third region.
  • the flexible layer is attached to the bent portion of the heat conductive layer so that the flexible material is rounded at the bend (as shown in FIG. 2), the rounded corner can be used to protect the heat conductive layer from damage during bending or folding.
  • the flexible material relies on its own high flexibility, and the heat sink is not prone to breakage or breakage when bent or folded, thus improving the reliability of the heat sink as a whole.
  • the rounded corners formed by the flexible layer at the bend are described for the sake of understanding, and the present application is for the rounded corner. Size is not special Do not limit.
  • the rounded corner may appear in the form of deformation of the heat conducting layer, and the radius of curvature of the rounded corner formed by the heat conducting layer of the flexible layer when folded or bent is inevitably larger than that of the unbonded flexible layer.
  • the heat dissipating plate is a two-dimensional film on a plane (which is referred to as a first plane, as shown in FIG. 1 for convenience of distinction and description), and the heat dissipating plate may be at least one The layer of thermally conductive material and at least one layer of flexible material are stacked in a first direction (for ease of distinction and description, a direction perpendicular to the first plane is referred to as a first direction, as shown in FIG. 1), any two The layers of material can be bonded by a glue (for example, a double-sided tape).
  • a glue for example, a double-sided tape
  • the first flexible layer further includes a fourth region, which is attached to the second surface of the first heat conductive layer, such that the third region and the fourth region completely cover the first heat conductive layer.
  • the second surface is attached to the fourth region, which is attached to the second surface of the first heat conductive layer, such that the third region and the fourth region completely cover the first heat conductive layer. The second surface.
  • FIG. 3 is a schematic structural view of a heat dissipation plate 20 according to another embodiment of the present application.
  • the heat dissipation plate 20 includes a first heat conduction layer 11 and a first flexible layer 12 as shown in FIG. 1.
  • the first flexible layer may completely cover the first heat conduction layer.
  • the projections of the first flexible layer and the first thermally conductive layer on the first plane are completely coincident. Since the heat sink is a two-dimensional film structure, the structure shown in FIG. 3 is simpler and more convenient than the structure shown in FIG.
  • the heat dissipation plate further includes a second flexible layer attached to the first surface of the first heat conductive layer, the second flexible layer partially or completely covering the first surface of the first heat conductive layer.
  • FIG. 4 is a schematic structural view of a heat dissipation plate 30 according to still another embodiment of the present application.
  • the heat sink 30 includes a second flexible layer 13 in addition to the first heat conductive layer 11 and the first flexible layer 12 as shown in FIG.
  • the second flexible layer is adhered to the first surface of the first heat conductive layer, and the second flexible layer may be attached only to the bent region of the first heat conductive layer, or may completely cover the first heat conductive layer. On the first surface.
  • FIG. 4 is only an example, showing that the first flexible layer completely covers the second surface of the first heat conductive layer, and the second flexible layer completely covers the first surface of the first heat conductive layer, but The present application should not be limited in any way.
  • any one of the first flexible layer and the second flexible layer may only be attached to the bent region of the first heat conductive layer to protect the heat conductive layer when being bent or folded. Free from damage and avoid breakage or breakage.
  • the structure in which the two flexible layers shown in FIG. 4 are combined with one heat conductive layer may be referred to as an "ABA" type structure.
  • the structure of the "ABA" type shown in FIG. 4 is only a typical structure of the heat sink, but this should not constitute any limitation to the present application.
  • the number of layers of the flexible material and the heat conductive material of the present application, and each The order of arrangement between the layers is not particularly limited.
  • the heat sink may also be composed of two layers of flexible material and two layers of heat conductive material, and the two layers of heat conductive material may be located between the two layers of flexible materials to form an "ABBA" type structure.
  • a structure in which at least one heat conductive layer and the at least one flexible layer are composited may be referred to as a flexible heat conductive material, and a layer of flexible heat conductive material includes at least one heat conductive layer and one flexible layer ( As shown in Figure 1, Figure 3, Figure 4.
  • the thermally conductive material may be a liquid or granular material having a high thermal conductivity, for example, the thermal conductivity of the thermally conductive material may be greater than or equal to the first predetermined threshold described above, or depending on the shape of the material itself. State, redefining the threshold of the thermal conductivity, enabling it to conduct heat quickly to achieve heat dissipation.
  • the heat conductive material is a liquid or granular material
  • the heat conductive material needs to be enclosed in a sealed space by other materials to avoid leakage, causing pollution and damage to the electronic device.
  • the material for sealing the heat conductive material may be the flexible material proposed in the present application, or may be other materials having certain flexibility, which is not specifically limited in the present application.
  • the heat dissipation plate of the embodiment of the present application can be applied to heat dissipation of various bendable or foldable electronic devices by combining the flexible material and the heat conductive material, so that the composite material has high flexibility and thermal conductivity. In the device, both reliability and heat dissipation are ensured.
  • FIG. 5 to 10 are schematic diagrams of a heat sink applied to an electronic device according to an embodiment of the present application.
  • the electronic device can be a notebook computer.
  • FIG. 5 is a view showing a cross section of the open state of the notebook screen. It can be seen that the heating component of the notebook computer is located near the rotating shaft inside the main body, as shown in the high temperature region shown in FIG. 5, except for a liquid crystal display (LCD) and the like, and a small amount of heat generated by the driving device, the substrate There is no heat source and therefore a low temperature region of the electronic device, as shown in FIG.
  • LCD liquid crystal display
  • the heat dissipating device may include the heat dissipating plate proposed in the embodiment of the present application, but this should not constitute any limitation to the present application, and the present application does not exclude that it may have high flexibility in the prior art or in the future technology.
  • the possibility of a material of thermal conductivity, for example, the flexible thermally conductive material may be flexible graphite, flexible VC or the like.
  • the heat dissipating plate proposed in the embodiment of the present application can be used.
  • 6 and 7 show cross-sectional views of the heat sink.
  • the heat sink can be stacked from at least one layer of flexible thermally conductive material.
  • the heat dissipation plate includes a first area and a second area, wherein the first area and the second area are two consecutive areas, the first area is close to or in contact with a heat generating component in the notebook computer, and the second area is located at the The low temperature area of the laptop.
  • the first region is for absorbing heat released by the heat generating component and conducting the heat to the second region to release heat.
  • the heat dissipation plate may be composed of two layers of flexible heat conductive materials, and each layer of the flexible heat conductive material may include a first flexible layer, a first heat conductive layer, and a second flexible layer.
  • the first flexible layer and the second flexible layer completely cover the second surface and the first surface of the first thermally conductive layer, respectively (as shown in FIG. 6).
  • the flexible layer is in close contact with or in contact with the heat generating component, absorbing heat released by the heat generating component, and then conducted to the heat conductive layer, and is conducted to the second region by the heat conductive layer.
  • the heat dissipation plate is made of a film material, and its thickness is on the order of micrometers, so the thermal resistance of the flexible material is small, and it is easy to transfer heat to the heat conductive material layer.
  • the flexible layer has a thickness of less than 100 micrometers ( ⁇ m).
  • the flexible layer may have a thickness of 30 ⁇ m or 70 ⁇ m.
  • the second flexible layer may partially cover the first surface of the first heat conductive layer (as shown in FIG. 7), so that the first heat conductive layer can directly approach or contact the heat generating component to better absorb the heat generating component. The heat released helps to improve heat dissipation efficiency.
  • any two layers of the flexible heat conductive materials may be bonded by adhesive.
  • an air gap may be left at the adhesive bond between any two layers of flexible thermally conductive material (as shown in Figures 6 and 7).
  • the heat sink can be stacked from at least one layer of flexible heat conductive material, in the case of folding or bending, the difference in bending radius between the layers may result in an interaction force.
  • the introduction of an air gap can weaken this interaction force, thereby further improving reliability.
  • the adhesive between the layer and the layer of the flexible heat conductive material may leave an air gap, but this is only one possible implementation manner, and the present invention should not be used.
  • the application constitutes any limitation.
  • the layers of the flexible thermally conductive material may also be completely bonded by the glue without retaining the air gap.
  • the heat dissipation plate may also be composed of one or more layers of flexible heat conductive material, or Each layer of the flexible heat conductive material may also be an "ABBA" structure, which is not specifically limited in the present application.
  • a through hole or a blind hole may be reserved for the rotating shaft in the heat dissipation plate, or the heat dissipation plate may also avoid the winding axis.
  • the rotating shaft is bypassed and the rotating shaft is wrapped in the heat dissipating material, which is not particularly limited in the present application.
  • the area of the first area is less than or equal to the area of the second area.
  • the area of the second area may be extended to one or more times the area of the first area, that is, the heat dissipation area is enlarged, so that a better uniform temperature and heat dissipation effect can be achieved, and heat dissipation efficiency can be improved.
  • the heat sink can be made into different shapes in accordance with the position of the heat generating component (that is, the position of the high temperature region), the position of the low temperature region, and the structure of the notebook computer. For example, as shown in FIG. 8, if the heat generating component is located near the center in the main body, the heat sink can be made to match the position of the heat generating component (that is, the position of the high temperature region), the position of the low temperature region, and the structure of the notebook computer. Further, as shown in FIG. 9, if the heat generating component is closer to the edge position on both sides of the main body, the heat sink may be formed in an "H" shape; for example, as shown in FIG. 10, if the heat generating component is only close to the host At one edge position, the heat sink can be made in a "U" shape, or other shape that conducts heat to a low temperature region.
  • heat sink can also be used with other heat sinks such as heat sinks or heat sinks, for example, extending a second region of the heat conductive layer in the heat sink to the heat sink to accelerate heat dissipation.
  • the heat dissipating device proposed by the present application can be applied to various foldable or bendable electronic devices, and the flexibility of the heat dissipating plate is improved by the flexible material, and the heat dissipating efficiency of the heat dissipating plate is improved by the heat conducting material.
  • the space occupied by the heat sink can be reduced, and the noise generated during the operation of the device and the problem of ash entering can be reduced.
  • the heat dissipating device may further include a reinforcing plate adhered to the upper surface of the heat dissipation plate and/or a lower surface of the heat dissipation plate corresponding to the bending region, wherein the heat dissipation plate is lower
  • the surface is a surface of the heat dissipation plate opposite to the heat generating component
  • the upper surface of the heat dissipation plate is a surface opposite to the lower surface of the heat dissipation plate.
  • the heat sink includes a heat sink and a reinforcing plate adhered to the upper surface and/or the lower surface of the heat sink.
  • the lower surface of the heat dissipation plate is a surface opposite to the outer surface of the heat-generating component
  • the upper surface of the heat dissipation plate is a surface opposite to the lower surface, that is, a surface away from the heat-generating component. Since both the upper surface and the lower surface are exposed surfaces of the heat sink, they are easily scratched, cut or punctured by other hard objects.
  • a layer of reinforcing plate may be adhered to the upper surface and/or the lower surface, which not only protects the inner heat dissipation plate from being easily broken, but also increases the strength of the folded portion. Achieve local bending enhancement and improve reliability.
  • the reinforcing plate may be a metal sheet such as a re-composite stainless steel sheet or a copper alloy sheet.
  • the reinforcing plate may be one or more pieces, which is not limited in this application. Further, in the case where the reinforcing sheet is a metal sheet having both flexibility and thermal conductivity, it can be directly used for the heat sink.
  • the heat dissipation device further includes a shielding cover disposed on a lower surface of the heat dissipation plate, and the shielding cover forms a shielding cover with a pre-configured shielding base in the electronic device, and the shielding cover is used for shielding the chip.
  • a chip is one of the main heat-generating components in an electronic device, and the same electronic device (for example, a notebook computer) may be configured with an antenna module for transmitting and receiving signals. In order to avoid interference of the antenna module on the chip, the chip can be shielded by a metal structure.
  • FIG. 12 is a schematic view showing a heat sink device applied to an electronic device according to still another embodiment of the present application. As shown in FIG. 12, the heat sink includes a heat sink and a shield cover.
  • a printed circuit board (PCB) of a electronic device is pre-configured with a shield base, and the heat sink can be configured with a shield cover at a corresponding position of the heat sink according to the position of the shield base. It can be understood that the position of the shielding cover corresponds to the chip, that is, the first area of the heat dissipation plate.
  • PCB printed circuit board
  • the shielding cover can be adhered to the lower surface of the heat dissipation plate.
  • Fig. 13 shows still another example of the heat sink. As shown in FIG. 13, the lower surface of the heat dissipation plate is adhered with a metal shield cover. The shielding cover and the shielding base below form a shielding cover to shield the chip.
  • the shielding cover can be embedded in the underlying material of the heat dissipation plate.
  • the lower layer material is a layer of material closest to the heat generating component in the heat dissipation plate.
  • Fig. 14 shows still another example of the heat sink. As shown in FIG. 14, a metal shield cover is embedded in the lower layer of the heat dissipation plate. The shielding cover is exposed on the surface of the lower flexible material, and forms a shielding cover with the shielding base below to shield the chip.
  • the shielding cover may be disposed in other positions corresponding to the shielding base to form a shielding cover.
  • the chip is shielded, thereby reducing interference of other modules (eg, antenna modules) in the electronic device with the chip.
  • the heat sink further includes a fan located in a high temperature region of the electronic device for circulating air between the high temperature region and the low temperature region to facilitate conduction of heat from the first region to the second region.
  • a fan located in a high temperature region of the electronic device for circulating air between the high temperature region and the low temperature region to facilitate conduction of heat from the first region to the second region.
  • the electronic device may be a notebook computer
  • the heat sink includes a heat sink and a fan.
  • the fan may be located adjacent to the heat generating component in the notebook computer, i.e., in a high temperature region, and in particular, the fan may be disposed adjacent to the source in the direction of heat conduction of the heat sink (as shown in Figure 16).
  • a schematic diagram of the fan accelerating air flow is shown in Figure 16, with arrows schematically illustrating the direction of conduction of hot air.
  • the heat dissipating device can use the fan and the heat dissipating plate to accelerate the air circulation between the high temperature region and the low temperature region through the fan, so that the heat is quickly transmitted from the first region to the second region, thereby further improving the heat dissipation efficiency.
  • the number of the fans may be one or more, which is not specifically limited in the present application.
  • the first heat conducting layer comprises a plurality of isolated strip-shaped heat conducting sheets, the plurality of isolated strip-shaped heat conducting sheets are arranged in parallel in the bending region, and each strip-shaped heat conducting sheet is parallel or approximate to the heat conduction direction. parallel.
  • the electronic device can be a notebook computer.
  • the heat dissipating device can be disposed in the notebook computer in a direction as shown in FIG. 17, the first region is located in the high temperature region, the second region is located in the low temperature region, and the strip heat conducting sheet is located in the bending region of the heat dissipating plate (ie, the The hinge of the notebook computer, corresponding to 40) in Fig. 17, is arranged in parallel in the bending region to form a wire harness type structure.
  • each of the strip-shaped thermally conductive sheets is parallel or nearly parallel to the direction of heat conduction, which is advantageous for heat conduction, that is, is advantageous for heat dissipation.
  • FIG. 18 is a schematic structural view of a heat dissipation plate according to still another embodiment of the present application. Specifically, FIG. 18 shows a plan view of the first flexible layer at the bending region 40 and a structural view of the A-A cross section. As shown in FIG. 18, at least one of the heat conducting layers in the heat dissipating plate may be in a wire bundle type structure arranged in parallel in the bent region. For ease of understanding, a schematic structural view of the A-A section is further illustrated in FIG.
  • the heat sink may include the first heat conductive layer 11, the first flexible layer 12, and the second flexible layer 13 described above (as shown in FIG. 4), wherein the first heat conductive layer presents each at the AA cross section A section of the strip of heat conductive sheet at this position.
  • the heat dissipation plate shown in FIG. 18 is merely illustrative, and at least one of the heat conduction layers included in the heat dissipation plate may be designed as a wire harness type structure as shown in FIG. And optionally, the wire harness structure may penetrate the heat dissipation plate along the heat conduction direction, which is not particularly limited in the present application.
  • the embodiment described above shows the case where the heat sink of the embodiment of the present application is applied to a notebook computer, but this should not be construed as limiting the application.
  • the heat sink of the embodiment of the present application can be applied to various foldable or The flexible electronic device, and the heat sink of the embodiment of the present application can also be applied to a tablet type electronic device, for example, a tablet computer.
  • the electronic device can be a tablet. Assume that the tablet's heat-generating components are located in the lower portion of the tablet (as shown in Figure 19) and are close to the back of the tablet. The structure of the front side and the cross section of the tablet is schematically shown in FIG.
  • the heat dissipating device may be disposed in the electronic device in a form of a flat plate. Specifically, the heat dissipating device may include a heat dissipating plate formed by laminating one or more layers of heat conductive materials, and the heat dissipating device may also include one or more layers.
  • a heat sink made of a flexible heat conductive material.
  • the thermally conductive material may be any one or more of the above-mentioned thermally conductive materials, or the thermally conductive material may be other materials having a higher thermal conductivity.
  • the flexible heat conductive material may be the flexible heat conductive material proposed in the present application, or other materials having high flexibility and thermal conductivity.
  • Fig. 19 is a view showing the arrangement of the heat dissipation plate (shown by the black thick solid line and the black thick broken line in Fig. 19) in the tablet computer. It can be seen that the heat sink can be divided into two consecutive regions, namely, a first region (region A shown by a gray dotted line in FIG. 19) and a second region (a region B shown by a gray dotted line in FIG. 19). ).
  • the first area is an area proximate to the heat generating component
  • the second area is an area extending from the first area to the low temperature area of the electronic device, that is, an area away from the heat generating part.
  • the area of the first area is less than or equal to the area of the second area.
  • the area of the second area may be extended to one or more times the area of the first area, that is, the heat dissipation area is enlarged, so that a better uniform temperature and heat dissipation effect can be achieved, and heat dissipation efficiency can be improved.
  • the heat dissipation plate may only include a heat conductive material or a heat dissipation plate; if the heat dissipation plate is used for the tablet computer
  • the heat sink may be a heat sink when it is bent or folded during heat dissipation.
  • FIGS. 20 and 21 are schematic views of a heat sink applied to an electronic device according to another embodiment of the present application.
  • the electronic device can still be a tablet as described above, the specific location of the heat generating components inside the tablet can be similar to that shown in FIG.
  • the heat dissipation plate shown in FIG. 20 is bent, and therefore, the heat dissipation plate can employ a flexible heat conductive material which has high flexibility and thermal conductivity.
  • the heat sink may employ the flexible heat conductive material proposed in the present application, that is, the heat sink described above in connection with FIGS. 1 through 4.
  • this application should not be construed as limiting the present application.
  • the present application does not exclude materials that may exist in the prior art or in the future, which have both high flexibility and thermal conductivity.
  • it may be a flexible graphite or a flexible temperature equalizing plate. (Vapor Chamber, VC) and so on.
  • Fig. 20 is a view showing the arrangement of the heat dissipation plate (shown by the black thick solid line and the black thick broken line in Fig. 20) on the tablet computer. It can be seen that the heat sink can be divided into two consecutive sections, namely a first zone and a second zone. As seen from the cross-sectional view, since the heat generating component inside the tablet computer may have a certain thickness, the first surface of the first region is opposite to the outer surface of the heat generating component, since the heat generating component is located at the lower portion of the tablet computer (as shown in FIG. 20 In the area A) shown by the dashed line, the second area is extended to the upper area of the tablet near the back side (area B shown by the dashed gray line in Fig. 20) to better release the heat, so it is in the first place. The middle area between the area and the second area may be curved.
  • the embodiment of the present application can effectively release the heat conducted from the first region to the low temperature region by expanding the area of the second region to the low temperature region, thereby facilitating rapid heat dissipation.
  • the space occupied by the heat sink can be reduced, and the noise generated during the operation of the device and the problem of ash entering can be reduced.
  • the area of the first area is less than or equal to the area of the second area.
  • the area of the second area may be extended to one or more times the area of the first area, that is, the heat dissipation area is enlarged, so that a better uniform temperature and heat dissipation effect can be achieved, and heat dissipation efficiency can be improved.
  • Figure 21 shows a schematic cross-sectional view of the heat sink.
  • the heat sink may be constructed of a flexible thermally conductive material as set forth herein, ie, the heat sink may include at least one flexible layer and at least one thermally conductive layer. Viewed in cross section, the flexible layer is outside the heat sink and the heat conductive layer is inside the heat sink.
  • the intermediate portion of the heat dissipation plate shown in FIG. 20 is bent is merely an illustrative description, and should not be construed as limiting the present application.
  • the surface of the heat-generating component may be uneven, in the use of the present invention.
  • the first region may also be bent.
  • FIG. 22 is a schematic diagram of a heat sink applied to an electronic device according to still another embodiment of the present application.
  • the electronic device can still be the tablet computer described above, and the specific position of the heat generating component inside the tablet computer can be similar to that shown in FIGS. 19 and 20.
  • the heat sink shown in FIG. 22 is folded, and therefore, the heat sink can employ a heat sink having both high flexibility and thermal conductivity.
  • the heat sink may be composed of the flexible heat conductive material proposed by the present application, but this should not constitute any limitation to the present application, and the present application does not exclude the high flexibility and heat conduction which may exist in the prior art or in the future technology.
  • the material of the rate for example, may be flexible graphite, flexible VC, or the like.
  • FIG. 22 shows that the heat dissipation plate (shown by the black thick solid line and the black thick broken line in FIG. 22) is disposed on the flat plate.
  • a schematic diagram of the computer It can be seen that the heat sink can still be divided into two consecutive sections, namely a first zone and a second zone.
  • the first surface of the first region may be opposite to the outer surface of the heat generating component, since the heat generating component is located at the lower portion of the tablet computer (as shown in FIG. 22).
  • the second area can be extended to the outer area of the tablet, specifically in the upper area of the back of the tablet (area B shown by the gray dotted line in Fig. 22), so as to better Release the heat.
  • the embodiment of the present application can effectively release the heat conducted from the first region to the low temperature region by expanding the area of the second region to the low temperature region, thereby facilitating rapid heat dissipation.
  • the space occupied by the heat sink can be reduced, and the noise generated during the operation of the device and the problem of ash entering can be reduced.
  • the area of the first area is less than or equal to the area of the second area.
  • the area of the second area is one or more times the area of the first area, that is, the heat dissipation area is enlarged, so that a better uniform temperature and heat dissipation effect can be achieved, and heat dissipation efficiency is improved.
  • the second area located outside the tablet can be accelerated by other means, such as air cooling, water cooling, etc., which is not specifically limited in this application.
  • the heat sink can be constructed of a flexible thermally conductive material as set forth herein, ie, the heat sink can include at least one flexible layer and at least one thermally conductive layer. Viewed from the cross section, the flexibility is outside the heat sink, the heat conductive material is inside the heat sink, and the folded position occurs in the middle region. Depending on the high flexibility of the flexible material, the heat sink is not prone to break when folded. Therefore, the reliability of the heat sink is improved.
  • the intermediate portion of the heat dissipation plate shown in FIG. 22 is folded is merely an illustrative description, and should not be construed as limiting the present application.
  • the surface of the heat-generating component may not be distributed in the same In the plane, when using the heat dissipation plate proposed by the present application, the first region may also need to be folded to better absorb the heat released by the heat generating portion.
  • the heat can still depend on the flexible material. High flexibility to ensure the reliability of the heat sink.
  • the heat dissipation plate may be any one of FIG. 1 to FIG.
  • the heat dissipating device may include a reinforcing plate (as shown in FIG. 11), a shielding cover (shown in FIGS. 12 to 14), and a fan (in addition to any one of the heat dissipating plates of FIGS. 1 to 4).
  • One or more of the strip-shaped thermally conductive sheets are not specifically limited herein.
  • the heat dissipation plate and the heat dissipation device proposed by the present application can be applied to various non-folding, foldable or bendable electronic devices, and the flexibility of the heat dissipation plate is improved by the flexible material, and the heat dissipation plate is improved by the heat conductive material. Cooling efficiency. Compared with the air-cooling heat dissipation method in the prior art, the space occupied by the heat sink can be reduced, and the noise generated during the operation of the device and the problem of ash entering can be reduced.
  • the present application also provides an electronic device including a heat generating component and a heat sink disposed in the electronic device.
  • the heat sink may be any one of the heat sinks described in the above embodiments.
  • heat dissipation plate and the heat dissipation device of the embodiment of the present application are applied to the electronic device for heat dissipation in detail with reference to FIG. 5 to FIG. 10 , FIG. 12 , FIG. 15 to FIG. 17 , FIG. 19 , FIG.
  • the specific method, for the sake of brevity, will not be repeated here.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Thermal Sciences (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种散热板、散热装置和电子设备,能够应用于可折叠或可弯曲的电子设备中。该散热装置包括内嵌于该电子设备中的散热板(10),该散热板(10)至少包括:第一导热层(11),包括第一表面和第二表面,该第一表面是该第一导热层弯折时暴露在外部的面,该第二表面是与该第一表面相背的表面,该第一导热层(11)的第一区域用于吸收发热部件释放的热量,并将该热量传导至该第一导热层(11)的第二区域,以将该热量释放出去;第一柔性层(12),包括第三区域,该第三区域贴合在该第一导热层(11)的该第二表面上与弯折区域对应的位置。

Description

散热板、散热装置和电子设备 技术领域
本申请涉及电子设备领域,并且更具体地,涉及一种散热板、散热装置和电子设备。
背景技术
便携式电子设备,例如,笔记本电脑等的发热问题是影响电子设备正常工作的一个主要因素。电子设备内部产生的热量主要来自中央处理单元(Central Processor Unit,CPU)、主板芯片和显卡。因此,在系统温度过高时,甚至可能导致死机。这不但降低了用户的使用体验,而且严重影响到芯片的运行性能和使用寿命。
当前技术中,很多电子设备,例如,笔记本电脑的散热主要是以风冷为主,即,在笔记本内部安装风扇,通过风扇加速空气流动,以降低笔记本内部发热元件的表面温度。但是,这种散热方式带来了噪声、灰尘等一系列问题,并且散热的效果并不显著,散热效率较低。随着便携式电子设备的发展,芯片集成度、封装密度以及工作频率的不断提高,单个芯片的能耗加大,设备结构的紧凑化设计使得风冷散热更加困难。另外,可弯曲电子设备(例如,柔性屏手机)的出现,也为散热提出了新的挑战。因此,这种传统的散热方式已经越来越不可能满足新型的电子设备的散热要求。
发明内容
本申请提供一种散热板、散热装置和电子设备,能够应用于可折叠或者可弯曲的电子设备。
第一方面,提供了一种散热装置,应用于电子设备,包括内嵌于所述电子设备中的散热板,所述散热板至少包括:
第一导热层,包括第一表面和第二表面,所述第一表面是所述第一导热层弯折时暴露在外部的面,所述第二表面是与所述第一表面相背的表面,所述第一导热层的第一区域用于吸收发热部件释放的热量,并将所述热量传导至所述第一导热层的第二区域,以将所述热量释放出去;
第一柔性层,包括第三区域,所述第三区域贴合在所述第一导热层的所述第二表面上与弯折区域对应的位置。
通过在导热层的弯折区域贴合柔性层,使得导热材料在弯折处形成圆角,这个圆角可以用于保护该导热层在弯曲或折叠时不受损伤,避免出现断裂或者破碎,而柔性材料依赖于自身的高柔韧性,在弯曲或折叠时也散热板不容易出现断裂或者破碎,因此,从整体上提高了该散热板的可靠性。同时,通过柔性层提高散热板的柔韧性,通过导热层提高散热板的散热效率。相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
可选地,所述第一柔性层还包括第四区域,贴合于所述第一导热层的所述第二表面上除所述弯折区域之外的位置,以使所述第三区域和所述第四区域完全覆盖所述第一导热层的所述第二表面。
该结构的散热板使得生产加工更加简单方便。
可选地,所述散热板还包括第二柔性层,贴合于所述第一导热层的所述第一表面上, 所述第二柔性层部分或完全覆盖所述第一导热层的所述第一表面。
在导热层的第一、第二表面都分别通过柔性层来保护,使得该散热板在向不同的方向弯折时都能收到柔性层的保护,在弯曲或折叠时也散热板不容易出现断裂或者破碎;同时,在弯折的时候能够保护导热层不受外界物体的划伤或者割伤,进一步提高该散热板的可靠性。
可选地,所述第一区域的面积小于或等于所述第二区域的面积。
通过使用较大的散热面积使得热量能够更加快速地释放出去,提高了散热效率。
可选地,所述散热装置还包括风扇,所述风扇位于所述电子设备中的高温区域,用于使空气在所述高温区域和低温区域之间流通,以便于所述热量从所述导热层的所述第一区域传导至所述第二区域,其中,所述高温区域为所述电子设备中靠近所述发热部件的区域,所述低温区域为所述电子设备中远离所述发热部件的区域。
通过将风扇和散热板配合使用,通过风扇加速高温区域和低温区域之间的空气流通,使得热量快速地从第一区域传导至第二区域,进一步提高散热效率。
可选地,所述散热装置还包括屏蔽盖,配置于所述散热板的下表面,所述屏蔽盖与所述电子设备中预配置的屏蔽底座构成屏蔽罩,所述屏蔽罩用于屏蔽所述芯片,其中,所述散热板的下表面为所述散热板上与所述发热部件相对的表面。
可选地,所述屏蔽盖内嵌于所述散热板的下层材料中,所述下层材料为所述散热板中最贴近所述发热部件的一层材料。
可选地,所述屏蔽盖粘附于所述散热板的下表面。
通过使用屏蔽盖,与预配置在电子设备中的屏蔽底座组合构成屏蔽罩,可以屏蔽芯片等发热部件,减少外界对芯片的干扰,同时也减少对芯片的污染。
可选地,所述散热装置还包括强化板,粘附于所述散热板的上表面和/或所述散热板的下表面与弯折区域相对应的位置,所述散热板的下表面为所述散热板上与所述发热部件相对的表面,所述散热板的上表面为所述散热板上与所述下表面相背的表面。
通过在散热板的上、下表面加强化板,既可以保护内部的散热板不容易破损,又能够提高折叠处的强度,实现局部折弯强化,提高可靠性。
可选地,所述强化板包括再复合不锈钢片或铜合金片。
可选地,所述第一导热层包括多个相隔离的条状导热片,所述多个相隔离的条状导热片在弯折区域平行排布,每个条状导热片与热传导方向平行或近似平行。
通过在转轴处使用柔韧性更好的条状导热材料,能够进一步提高该柔性材料的抗弯折能力,提高可靠性。
可选地,所述导热层由导热系数大于或等于第一预设门限的导热材料形成,所述第一预设门限为50瓦/(米·度)。
可选地,所述导热层由导热材料形成,所述导热材料包括:石墨、铜箔或铝箔。
可选地,所述柔性层由柔性材料形成,所述柔性材料包括聚酰亚胺或聚酰胺。
第二方面,提供了一种散热板,第一导热层,形成为片状,由导热材料形成,包括第一表面和第二表面,所述第一表面是所述第一导热层弯折时暴露在外部的面,所述第二表面是与所述第一表面相背的表面;
第一柔性层,形成为片状,由柔性材料形成,所述第一柔性层包括第三区域,所述第三区域贴合于所述第一导热层的所述第二表面上与弯折区域对应的位置。
通过在导热层的弯折区域贴合柔性层,使得导热材料在弯折处形成圆角,这个圆角可以用于保护该导热层在弯曲或折叠时不受损伤,避免出现断裂或者破碎,而柔性材料依赖于自身的高柔韧性,在弯曲或折叠时也散热板不容易出现断裂或者破碎,因此,从整体上提高了该散热板的可靠性。同时,通过柔性层提高散热板的柔韧性,通过导热层提高散热板的散热效率。相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
可选地,所述第一柔性层还包括第四区域,贴合于所述第一导热层的所述第二表面上除所述弯折区域之外的位置,以使所述第三区域和所述第四区域完全覆盖所述第一导热层的所述第二表面。
该结构的散热板使得生产加工更加简单方便。
可选地,所述散热板还包括第二柔性层,形成为片状,由所述柔性材料形成,所述第二柔性层贴合于所述第一导热层的所述第一表面上,所述第二柔性层部分或完全覆盖所述第一导热层的所述第一表面。
在导热层的第一、第二表面都分别通过柔性层来保护,使得该散热板在向不同的方向弯折时都能收到柔性层的保护,在弯曲或折叠时也散热板不容易出现断裂或者破碎;同时,在弯折的时候能够保护导热层不受外界物体的划伤或者割伤,进一步提高该散热板的可靠性。
可选地,所述导热层由导热系数大于或等于第一预设门限的导热材料形成,所述第一预设门限为50瓦/(米·度)。
可选地,所述导热材料包括:石墨、铜箔或铝箔。
可选地,所述柔性材料包括聚酰亚胺或聚酰胺。
第三方面,提供了一种电子设备,包括:
发热部件,和
第一方面的任一种可能的实现方式中的散热装置。
本申请提出的散热板和散热装置能够应用于各种非折叠式、可折叠或者可弯曲的电子设备中,通过柔性材料提高散热板的柔韧性,通过导热材料提高散热板的散热效率。相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
附图说明
图1和图2是根据本申请一实施例的散热板的示意性结构图。
图3是根据本申请另一实施例的散热板的示意性结构图。
图4是根据本申请又一实施例的散热板的示意性结构图。
图5至图10是根据本申请一实施例的散热装置应用于电子设备的示意图。
图11是根据本申请一实施例的散热板的示意性结构图。
图12示出了本申请另一实施例的散热装置应用于电子设备的示意图。
图13是根据本申请另一实施例的散热板的示意性结构图。
图14是根据本申请又一实施例的散热板的示意性结构图。
图15和图16是根据本申请再一实施例的散热装置应用于电子设备的示意图。
图17是根据本申请再一实施例的散热装置应用于电子设备的示意图。
图18是根据本申请再一实施例的散热结构的示意性结构图。
图19是根据本申请一实施例的散热装置应用于电子设备的示意图。
图20和图21是根据本申请另一实施例的散热装置应用于电子设备的示意图。
图22是根据本申请又一实施例的散热装置应用于电子设备的示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1和图2是根据本申请实施例的散热板10的示意性结构图。如图1所示,该散热板10至少包括第一导热层11和第一柔性层12。其中,第一导热层形成为片状,由热传导率大于或等于第一预设门限的导热材料形成,第一柔性层形成为片状,由柔性材料形成。
也就是说,该散热板可以由至少一层柔性材料和至少一层导热材料复合而成。导热材料具有较高的导热系数,用于实现热量的快速传导,柔性材料具有较强的柔韧性,可变形、可折叠。将导热材料和柔性材料复合得到的散热板兼具了柔性材料的柔韧性和导热材料的导热性,使得该散热板可以应用于各种可折叠或者可弯曲的电子设备的散热装置中,例如,折叠式手机、折叠式笔记本电脑等便携式电子设备,以及柔性屏、虚拟现实(Virtual Reality,VR)、增强现实(Augmented Reality,AR)等可穿戴设备。
作为示例而非限定,该第一预设门限为50瓦/(米·度)(W/(m·K))。
作为示例而非限定,该柔性材料包括:聚酰亚胺(Polyimide,PI)或者聚酰胺(Polyamide,PA,或者称,尼龙)。该导热材料包括:石墨、铝箔或者铜箔。作为一个实施例,该散热板由PI和石墨构成。
示例性地,PI的导热系数为大于或等于300W/(m·K)。
需要说明的是,柔性材料可以理解为具有柔韧性、可以承受适当变形的材料。柔性(或者说,柔韧性),可以理解为挠性,与刚性相对,是材料的一种物理性质。柔性材料在受力后变形,在失去作用力后材料自身不能恢复原来的形状。柔性材料是一种可变形(例如,伸缩、弯曲、扭转、挤压、变形等)而不失去性能的材料,因此,柔性材料可以说是一种拉伸强度高、延伸率大的材料。变形后的柔性材料在发生变形的区域并未出现破损,也未暴露出内部结构。具有光滑表面的柔性材料在变形后,变形区域仍然呈现出光滑无接缝的表面。并且,柔性材料能够在承受数次弯折后通过外力作用恢复原样,具有一定的使用寿命。
再看图2,该第一导热层包括第一表面和第二表面,第一表面是该第一导热层在弯折时暴露在外部的面(如图2中所示),该第一柔性层至少贴合在该第一导热层的第二表面上的弯折区域。为便于区分,将该第一柔性层中与弯折区域相对应的区域记作第三区域。
由于在导热层的弯折区域贴合了柔性层,使得柔性材料在弯折处形成圆角(如图2所示),这个圆角可以用于保护该导热层在弯曲或折叠时不受损伤,避免出现断裂或者破碎,而柔性材料依赖于自身的高柔韧性,在弯曲或折叠时也散热板不容易出现断裂或者破碎,因此,从整体上提高了该散热板的可靠性。
这里,需要说明的是,由于在导热层的弯折区域贴合柔性层,使得柔性层在弯折处形成的圆角,是为了便于理解而作出比较形象的描述,本申请对于该圆角的大小并未特 别限定。或者说,该圆角在该导热层变形时可能出现的一种形态,贴合了柔性层的导热层在折叠或弯曲时产生的圆角的弯曲半径必然大于未贴合柔性层的导热层在折叠或弯曲时产生的圆角的弯曲半径。因此,它可以保护导热层在变形时不受损伤,不会出现断裂而在变形处形成裂纹,或者,不会出现破碎。
在本申请实施例中,该散热板在所放置的平面(为便于区分和说明,记作第一平面,如图1中所示xoy平面)上呈二维薄膜,该散热板可以由至少一层导热材料与至少一层柔性材料沿第一方向(为便于区分和说明,将与该第一平面垂直的方向记作第一方向,如图1中所示oz方向)堆叠而成,任意两层材料之间可以通过黏胶(例如,双面胶)粘合。
可选地,该第一柔性层还包括第四区域,贴合于该第一导热层的该第二表面上,以使该第三区域和该第四区域完全覆盖该第一导热层的该第二表面。
图3是根据本申请另一实施例的散热板20的示意性结构图。如图3所示,该散热板20包括如图1中示出的第一导热层11和第一柔性层12,与图1不同的是,该第一柔性层可以完全覆盖在第一导热层上,或者说,该第一柔性层和第一导热层在第一平面上的投影是完全重合的。由于该散热板为二维薄膜结构,图3中示出的结构较图1中示出的结构而言,生产加工更加简单方便。
可选地,该散热板还包括第二柔性层,贴合于第一导热层的第一表面上,该第二柔性层部分或完全覆盖该第一导热层的第一表面。
图4是根据本申请又一实施例的散热板30的示意性结构图。如图4所示,该散热板30除了包括如图1中示出的第一导热层11和第一柔性层12之外,还包括第二柔性层13。该第二柔性层贴合于第一导热层的第一表面上,该第二柔性层可以仅贴合在该第一导热层的弯折区域,或者,也可以完全覆盖于该第一导热层的第一表面上。
应理解,图4仅为示例,示出了第一柔性层完全覆盖第一导热层的第二表面,且该第二柔性层完全覆盖该第一导热层的第一表面上的情形,但这不应对本申请构成任何限定,例如,该第一柔性层和第二柔性层中的任意一层都可以仅贴合在于第一导热层的弯折区域,以保护该导热层在弯曲或折叠时不受损伤,避免出现断裂或者破碎。
为方便说明,可以将图4中示出的两个柔性层中间复合了一个导热层的结构称为“ABA”式的结构。应理解,图4中示出的“ABA”式的结构仅为散热板一种比较典型的结构,但这不应对本申请构成任何限定,本申请对于柔性材料和导热材料的层数,以及各层之间的排列顺序并未特别限定。例如,该散热板也可以由两层柔性材料和两层导热材料复合而成,该两层导热材料可以位于该两层柔性材料之间,形成“ABBA”式的结构。
需要说明的是,在本申请实施例中,可以将至少一个导热层和该至少一个柔性层复合而成的结构称为柔性导热材料,一层柔性导热材料至少包括一个导热层和一个柔性层(如图1、图3、图4中所示)。
应理解,以上示出的柔性材料的具体内容以及导热材料的具体内容仅为示例性说明,而不应对本申请构成任何限定。本申请并不排除采用其他的柔性材料或导热材料代替以上列举的材料复合而成散热板,以实现与上述散热板相同的功能。
例如,该导热材料可以为液体或者颗粒状具有高导热系数的材料,例如,该导热材料的导热系数可以为大于或等于上文所描述的第一预设门限,或者,根据材料本身的形 态,重新定义该导热系数的门限,使其能够快速地传导热量,以达到散热的功能。
需要注意的是,在导热材料采用液体或者颗粒状材料的情况下,需要通过其他材料将该导热材料封闭在密闭空间内,以避免泄露,造成对电子设备的污染和损坏。此情况下,该用于封闭导热材料的材料可以为本申请提出的柔性材料,也可以为其他具有一定柔韧性的材料,本申请对此并未特别限定。
因此,本申请实施例的散热板,通过将柔性材料和导热材料复合,使得复合后的材料兼具较高的柔韧性和热传导率,能够应用于各种可弯曲或可折叠的电子设备的散热装置中,既保证了可靠性,同时具有较好的散热效果。
图5至图10是根据本申请一实施例的散热装置应用于电子设备的示意图。如图5至图10所示,该电子设备可以为笔记本电脑。图5示出了该笔记本电脑屏幕打开状态的截面的示意图。可以看到,该笔记本电脑的发热部件处于主机内部靠近转轴的位置,具体如图5中所示的高温区域,屏幕内除了液晶显示器(Liquid Crystal Display,LCD)等及驱动器件少量发热外,基板无热源,因此是该电子设备的低温区域,如图5示出。因此,高温区域和低温区域不在同一平面上,这就要求在使用散热板进行散热时在笔记本电脑的转轴处出现折叠,并且是反复折叠。因此,该散热装置可以采用兼具较高的柔韧性和热传导率的散热板进行散热。例如,该散热装置可以包括本申请实施例中提出的散热板,但这不应对本申请构成任何限定,本申请并不排除在现有技术中或者未来技术中可能存在本身兼具高柔韧性和热传导率的材料的可能性,例如,该柔性导热材料可以为柔性石墨、柔性VC等。
为适应笔记本电脑反复开关,即,在转轴处反复折叠的特性,可以使用本申请实施例中提出的散热板。图6和图7示出了该散热板的截面图。如图所示,该散热板可以由至少一层柔性导热材料堆叠而成。具体地,该散热板包括第一区域和第二区域,该第一区域和第二区域为连续的两个区域,第一区域与该笔记本电脑中的发热部件接近或接触,第二区域位于该笔记本电脑的低温区域。该第一区域用于吸收该发热部件释放的热量,并将该热量传导至第二区域,从而将热量释放出去。
如图6和图7所示,该散热板可以由两层柔性导热材料组成,每一层柔性导热材料可以包括第一柔性层、第一导热层和第二柔性层。该第一柔性层和第二柔性层分别完全覆盖该第一导热层的第二表面和第一表面(如图6所示)。柔性层与发热部件接近或接触,吸收发热部件释放的热量,然后传导至导热层,由导热层传导至第二区域。可以理解的是,该散热板为薄膜材料制备,其厚度在微米级,因此柔性材料的热阻很小,很容易将热量传递到导热材料层。可选地,该柔性层的厚度小于100微米(μm)。示例性地,该柔性层的厚度可以为30μm或者70μm。
或者,该第二柔性层可以部分覆盖该第一导热层的第一表面(如图7所示),以使该第一导热层能够直接与发热部件接近或接触,以更好地吸收发热部件释放的热量,有利于提高散热效率。
应理解,散热板中所包含的各层以及各层之间的相对位置关系在上文中已经结合图1至图4详细说明,为了简洁,这里不再赘述。
在本申请实施例中,若散热板由多层柔性导热材料构成,任意两层柔性导热材料之间可以通过黏胶粘合。可选地,在任意两层柔性导热材料之间的黏胶粘合处可以留有空气间隙(如图6和图7中所示)。
由于该散热板可以由至少一层柔性导热材料堆叠而成,在折叠或弯曲的情况下,层与层之间的弯曲半径不同可能会导致相互作用力。空气间隙的引入可以减弱这一相互作用力,从而进一步提高可靠性。
应理解,图6和图7中示出的散热板中,柔性导热材料的层与层之间的黏胶处可以留有空气间隙,但这仅为一种可能的实现方式,而不应对本申请构成任何限定,在图6和图7示出的散热装置中,柔性导热材料的层与层之间也可以通过黏胶完全粘合,不保留空气间隙。
还应理解,图6和图7中示出的散热板的示意图仅为示例性说明,而不应对本申请构成任何限定,该散热板也可以由一层或者更多层柔性导热材料构成,或者,每一层柔性导热材料也可以为“ABBA”的结构,本申请对此并未特别限定。
需要说明的是,在图中所示的笔记本电脑中,由于在弯折处有转轴,因此在散热板可以为转轴预留通孔或者盲孔,或者,该散热板也可以避开绕轴,或者,绕过转轴并将转轴包裹在散热材料中,本申请对此并未特别限定。
可选地,该第一区域的面积小于或等于第二区域的面积。
具体地,可以将该第二区域的面积扩展至第一区域的面积的一倍或者一倍以上,即,将散热面积扩大,从而能够达到更好的均温和散热的效果,提高散热效率。
图8至图10示出了从屏幕正面的角度看到的笔记本电脑以及散热板的示意图。散热板可以配合发热部件的位置(即,高温区域的位置)、低温区域的位置以及笔记本电脑的结构,做成不同的形状。例如图8中示出,若发热部件位于主机中靠近中心的位置,该散热板可以配合发热部件的位置(即,高温区域的位置)、低温区域的位置以及笔记本电脑的结构,做成“T”字型;又例如图9中示出,若发热部件较靠近主机两侧的边缘位置,该散热板可以做成“H”字型;又例如图10中示出,若发热部件仅靠近主机一侧边缘位置,则该散热板可以做成“U”字型,或者其他能够将热量传导至低温区域的形状。
应理解,上文中结合图5至图10示例的散热板的形状和配置于电子设备中的方式仅为示例性说明,而不应对本申请构成任何限定。该散热板还可以与其他散热器或者散热板等具有散热功能的装置配合使用,例如,将散热板中导热层的第二区域延伸至散热器中,以加速散热。
因此,本申请提出的散热装置能够应用于各种可折叠或者可弯曲的电子设备中,通过柔性材料提高散热板的柔韧性,通过导热材料提高散热板的散热效率。相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
可选地,该散热装置还可以包括强化板,该强化板粘附于该散热板的上表面和/或该散热板的下表面与弯折区域相对应的位置,其中,该散热板的下表面为该散热板上与发热部件相对的表面,该散热板的上表面为与该散热板的下表面相背的表面。。
图11是根据本申请一实施例的散热板的示意性结构图。如图11中示出,该散热装置包括散热板和强化板,该强化板粘附于散热板的上表面和/或下表面。其中,该散热板的下表面是与发热部件的外表面相对的面,该散热板的上表面是与下表面相背的表面,也就是远离发热部件的表面。由于上表面和下表面都是该散热板中外露的表面,容易受到其他坚硬物体的刮伤、割伤或者刺破。因此,可以根据情况,在上表面和/或下表面粘附一层强化板,既可以保护内部的散热板不容易破损,同时还能够提高折叠处的强度, 实现局部折弯强化,提高可靠性。
作为示例而非限定,该强化板可以为再复合不锈钢片、铜合金片等金属片。
在本申请实施例中,该强化板可以为一片或多片,本申请对此并未限定。并且,在该强化板为兼具柔韧性和导热性的金属片的情况下,可直接用于该散热板。
可选地,该散热装置还包括屏蔽盖,配置于该散热板的下表面,该屏蔽盖与电子设备中预配置的屏蔽底座构成屏蔽罩,该屏蔽罩用于屏蔽芯片。
芯片是电子设备中主要的发热部件之一,而同一电子设备(例如,笔记本电脑)还可能配置有天线模块,用于收发信号。为了避免天线模块对芯片的干扰,可以通过金属结构将芯片屏蔽。图12示出了本申请再一实施例的散热装置应用于电子设备的示意图。如图12所示,该散热装置包括散热板和屏蔽盖。通常情况下,在电子设备的印刷电路板(Printed Circuit Broad,PCB)预配置有屏蔽底座,该散热装置可以根据屏蔽底座的位置,在散热板的相应位置配置屏蔽罩。可以理解的是,该屏蔽盖的位置与芯片相对应,也就是位于散热板的第一区域。
在一种可能的实现方式中,该屏蔽盖可以粘附于散热板的下表面。图13示出了该散热板的又一例。如图13所示,该散热板的下表面粘附有金属屏蔽盖。该屏蔽盖与下方的屏蔽底座构成屏蔽罩,将芯片屏蔽。
在另一种可能的实现方式中,该屏蔽盖可以内嵌于散热板的下层材料中。其中,该下层材料即散热板中最贴近发热部件的一层材料。图14示出了该散热板的又一例。如图14所示,该散热板的下层材料中内嵌金属屏蔽盖。该屏蔽盖外露于该下层柔性材料的表面,与下方的屏蔽底座构成屏蔽罩,将芯片屏蔽。
应理解,图12至图14示出的散热板仅为示意,不应对本申请构成任何限定,该屏蔽盖也可以通过其他方式配置于与屏蔽底座相对应的位置,以组合构成屏蔽罩,用于屏蔽芯片,从而减小电子设备中其他模块(例如,天线模块)对芯片的干扰。
可选地,该散热装置还包括风扇,该风扇位于电子设备中的高温区域,用于使空气在高温区域和低温区域之间流通,以便于热量从第一区域传导至第二区域。
图15和图16是根据本申请再一实施例的散热装置应用于电子设备的示意图。如图15中示出,该电子设备可以为笔记本电脑,该散热装置包括散热板和风扇。该风扇可以位于该笔记本电脑中发热部件附近,即高温区域,具体地,该风扇可以配置于沿该散热板的热传导方向的源头附近(如图16所示)。图16中示出了风扇加速空气流通的示意图,图中箭头示意性地画出了热空气的传导方向。可以看到,该散热装置可以将风扇和散热板配合使用,通过风扇加速高温区域和低温区域之间的空气流通,使得热量快速地从第一区域传导至第二区域,进一步提高散热效率。
应理解,该风扇的数量可以为一个或多个,本申请对此并未特别限定。
可选地,该第一导热层包括多个相隔离的条状导热片,该多个相隔离的条状导热片在弯折区域平行排布,每个条状导热片与热传导方向平行或近似平行。
图17是根据本申请再一实施例的散热装置的应用于电子设备的示意图。如图17所示,该电子设备可以为笔记本电脑。该散热装置可以按照如图17所示的方向配置于该笔记本电脑中,第一区域位于高温区域,第二区域位于低温区域,条状导热片位于该散热板的弯折区域,(即,该笔记本电脑的转轴处,可对应于图17中的40),在弯折区域平行排布,形成线束型结构。通过在转轴处使用条状导热材料,例如,石墨纤维,相比于 薄膜形态的石墨,其柔韧性更好,因此能够进一步提高该柔性材料的抗弯折能力,提高可靠性。并且,每个条状导热片与热传导方向平行或者近似平行,有利于热传导,即,有利于散热。
图18是根据本申请再一实施例的散热板的示意性结构图。具体地,图18示出了弯折区域处40除去第一柔性层的俯视图以及A-A截面的结构示意图。如图18所示,该散热板中的至少一个导热层可以在弯折区域呈平行排布的线束型结构。为便于理解,图18中进一步示出了A-A截面的结构示意图。该散热板可以包括上文所描述(如图4所示)的第一导热层11、第一柔性层12和第二柔性层13,其中,第一导热层在A-A截面处呈现的是每个条形导热片在该位置的剖面。
应理解,图18中示出的散热板仅为示意,在散热板所包含的至少一个导热层中,可以至少有一个或者更多个导热层设计为如图18中所示的线束型结构。并且可选地,该线束型结构可以沿热传导方向贯穿于该散热板,本申请对此并未特别限定。
上文所描述的实施例示出了将本申请实施例的散热装置应用于笔记本电脑中的情形,但这不应对本申请构成任何限定,本申请实施例的散热装置可以应用于各种可折叠或可弯曲的电子设备,并且,本申请实施例的散热装置同样可以应用于平板类型的电子设备中,例如,平板电脑。
图19是根据本申请另一实施例的散热装置应用于电子设备的示意图。如图19所示,该电子设备可以为平板电脑。假设该平板电脑的发热部件位于该平板电脑的下部(如图19中所示),并靠近与该平板电脑的背面。图19中示意性地示出了该平板电脑的正面和截面的结构。该散热装置可以以平板的形式配置于该电子设备中,具体地,该散热装置可以包括由一层或多层导热材料复合而成的散热板,该散热装置也可以包括由一层或多层柔性导热材料复合而成的散热板。该导热材料可以为上文列举的导热材料中的任意一种或多种,或者,该导热材料也可以为其他具有较高的热传导率的材料。该柔性导热材料可以为本申请提出的柔性导热材料,也可以为其他兼具有较高的柔韧性和热传导率的材料。
图19示出了将该散热板(如图19中黑色粗实线和黑色粗虚线所示)配置于平板电脑中的示意图。可以看到,该散热板可以分为连续的两个区域,即,第一区域(如图19中灰色虚线示出的区域A)和第二区域(如图19中灰色虚线示出的区域B)。第一区域是接近发热部件的区域,第二区域是由第一区域向电子设备的低温区域延伸出来的区域,也就是远离发热部件的区域。通过将该第二区域的面积扩展至低温区域,即可以通过该第二区域有效地将从第一区域传导过来的热量释放到低温区域,从而有利于快速散热。因此,相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
可选地,该第一区域的面积小于或等于第二区域的面积。
具体地,可以将该第二区域的面积扩展至第一区域的面积的一倍或者一倍以上,即,将散热面积扩大,从而能够达到更好的均温和散热的效果,提高散热效率。
在本申请实施例中,若该散热板平行于平板电脑的背面配置,无折叠或者弯曲,则该散热板可以仅包含导热材料,也可以为散热板;若该散热板在用于该平板电脑的散热时出现弯曲或者折叠,则该散热板可以为散热板。
图20和图21是根据本申请另一实施例的散热装置应用于电子设备的示意图。如图 20所示,该电子设备仍然可以为上文所描述的平板电脑,该平板电脑内部的发热元件的具体位置可以与图19中示出的相似。与图19中示出的散热板不同的是,图20中示出的散热板出现弯曲,因此,该散热板可以采用兼具较高的柔韧性和热传导率的柔性导热材料。例如,该散热板可以采用本申请提出的柔性导热材料,即,在上文中结合图1至图4描述的散热板。但这不应对本申请构成任何限定,本申请并不排除在现有技术中或者未来技术中可能存在的本身兼具高柔韧性和热传导率的材料,例如,可以为柔性石墨、柔性均温板(Vapor Chamber,VC)等。
图20示出了将该散热板(如图20中的黑色粗实线和黑色粗虚线所示)配置于平板电脑的示意图。可以看到,该散热板可以分为连续的两个部分,即,第一区域和第二区域。从截面图上看,由于平板电脑内部的发热部件可能具有一定厚度,该第一区域的第一表面与该发热部件的外表面相对,由于该发热部件位于平板电脑的下部(如图20中灰色虚线所示的区域A),第二区域被延伸至该平板电脑内靠近背面的上部区域(如图20中灰色虚线所示的区域B),以便更好地将热量释放出去,故处于第一区域和第二区域之间的中间区域可能出现弯曲。
因此,本申请实施例通过将该第二区域的面积扩展至低温区域,即可以通过该第二区域有效地将从第一区域传导过来的热量释放到低温区域,从而有利于快速散热。相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
可选地,该第一区域的面积小于或等于第二区域的面积。
具体地,可以将该第二区域的面积扩展至第一区域的面积的一倍或者一倍以上,即,将散热面积扩大,从而能够达到更好的均温和散热的效果,提高散热效率。
图21示出了该散热板的截面示意图。该散热板可以由本申请提出的柔性导热材料构成,即,该散热板可以包括至少一个柔性层和至少一个导热层。从截面上看,柔性层处于该散热板的外部,导热层处于该散热板的内部。通过使用如图21所示的散热板,在需要弯曲或者折叠的情况下,由于导热材料的两个表面(即,第一表面和第二表面)均粘附有柔性材料,在弯曲或者折叠处会有一个圆角,这个圆角用于保护导热材料在折叠时不受损伤,避免出现断裂或者破碎,而柔性材料依赖于自身的高柔韧性,在弯曲或折叠时也散热板不容易出现断裂或者破碎,因此,从整体上提高了该散热板的可靠性。
应理解,图20中示出的散热板的中间区域弯曲的情况仅为示例性说明,而不应对本申请构成任何限定,在某些可能的场景中,发热部件表面可能不平整,在使用本申请提出的散热板时,第一区域可能也会出现弯曲,通过使用本申请提出的散热板,仍热能够依赖于柔性材料的高柔韧性,保证该散热板的可靠性。
图22是根据本申请又一实施例的散热装置应用于电子设备的示意图。如图22所示,该电子设备仍然可以为上文所描述的平板电脑,该平板电脑内部的发热元件的具体位置可以与图19和图20中示出的相似。与图19和图20中示出的散热板不同的是,图22中示出的散热板出现折叠,因此,该散热板可以采用兼具较高的柔韧性和热传导率的散热板。例如,该散热板可以由本申请提出的柔性导热材料构成,但这不应对本申请构成任何限定,本申请并不排除在现有技术中或者未来技术中可能存在的本身兼具高柔韧性和热传导率的材料,例如,可以为柔性石墨、柔性VC等。
图22示出了将该散热板(如图22中的黑色粗实线和黑色粗虚线所示)配置于平板 电脑的示意图。可以看到,该散热板仍然可以分为连续的两个部分,即,第一区域和第二区域。从截面图上看,由于平板电脑内部的发热部件可能具有一定厚度,该第一区域的第一表面可以与该发热部件的外表面相对,由于该发热部件位于平板电脑的下部(如图22中灰色虚线所示的区域A),第二区域可以被延伸至该平板电脑的外部区域,具体位于该平板电脑背面的上部区域(如图22中灰色虚线所示的区域B),以便更好地将热量释放出去。
因此,本申请实施例通过将该第二区域的面积扩展至低温区域,即可以通过该第二区域有效地将从第一区域传导过来的热量释放到低温区域,从而有利于快速散热。相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
可选地,该第一区域的面积小于或等于第二区域的面积。
具体地,该第二区域的面积为第一区域的面积的一倍或者一倍以上,即,将散热面积扩大,从而能够达到更好的均温和散热的效果,提高散热效率。
可选地,位于该平板电脑外部的第二区域还可以通过其他方式来加速散热,例如,风冷、水冷等方式,本申请对此并未特别限定。
图22中还示出了该散热板的截面示意图。由于将第二区域引出至该平板电脑的外部区域,故处于第一区域和第二区域之间的区域可能出现折叠。因此,该散热板可以由本申请提出的柔性导热材料构成,即,该散热板可以包括至少一个柔性层和至少一个导热层。从截面上看,柔性处于该散热板的外部,导热材料处于该散热板的内部,在中间区域出现折叠的位置,依赖于柔性材料的高柔韧性,使得该散热板在折叠时不容易出现断裂,因此,提高了该散热板的可靠性。
应理解,图22中示出的散热板的中间区域折叠的情况仅为示例性说明,而不应对本申请构成任何限定,在某些可能的场景中,发热部件表面可能并不分布于同一个平面上,在使用本申请提出的散热板时,第一区域可能也需要通过折叠,才能更好地吸收发热部分释放的热量,通过使用本申请提出的散热板,仍热能够依赖于柔性材料的高柔韧性,保证该散热板的可靠性。
还应理解,上文中结合附图示出了多种可能的散热板以及散热装置的示意图,但这不应对本申请构成任何限定,该散热板可以为图1至图4中的任意一种,该散热装置除了包括图1至图4中的任意一种散热板,还可以包括强化板(如图11中示出)、屏蔽盖(如图12至图14中示出)、风扇(如图15和图16中示出)以及条状导热片(如图17和图18中示出)中的一种或多种,本申请对此并未特别限定。
根据上述实施例,本申请提出的散热板以及散热装置能够应用于各种非折叠式、可折叠或者可弯曲的电子设备中,通过柔性材料提高散热板的柔韧性,通过导热材料提高散热板的散热效率。相比于现有技术中的风冷的散热方式,可以减小散热装置占用的空间,同时减小设备运行过程中产生的噪声以及进灰问题。
本申请还提供了一种电子设备,该电子设备包括发热部件和配置于该电子设备中的散热装置。具体地,该散热装置可以为上文中实施例所描述的散热装置中的任意一种。
应理解,上文中已经结合图5至图10、图12、图15至图17、图19、图20以及图22详细说明了本申请实施例的散热板、散热装置应用于电子设备中进行散热的具体方法,为了简洁,这里不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (21)

  1. 一种散热装置,其特征在于,应用于电子设备,包括内嵌于所述电子设备中的散热板,所述散热板至少包括:
    第一导热层,包括第一表面和第二表面,所述第一表面是所述第一导热层弯折时暴露在外部的面,所述第二表面是与所述第一表面相背的表面,所述第一导热层的第一区域用于吸收发热部件释放的热量,并将所述热量传导至所述第一导热层的第二区域,以将所述热量释放出去;
    第一柔性层,包括第三区域,所述第三区域贴合在所述第一导热层的所述第二表面上与弯折区域对应的位置。
  2. 根据权利要求1所述的散热装置,其特征在于,所述第一柔性层还包括第四区域,贴合于所述第一导热层的所述第二表面上除所述弯折区域之外的位置,以使所述第三区域和所述第四区域完全覆盖所述第一导热层的所述第二表面。
  3. 根据权利要求1或2所述的散热装置,其特征在于,所述散热板还包括第二柔性层,贴合于所述第一导热层的所述第一表面上,所述第二柔性层部分或完全覆盖所述第一导热层的所述第一表面。
  4. 根据权利要求1至3中任一项所述的散热装置,其特征在于,所述第一区域的面积小于或等于所述第二区域的面积。
  5. 根据权利要求1至4中任一项所述的散热装置,其特征在于,所述散热装置还包括风扇,所述风扇位于所述电子设备中的高温区域,用于使空气在所述高温区域和低温区域之间流通,以便于所述热量从所述导热层的所述第一区域传导至所述第二区域,其中,所述高温区域为所述电子设备中靠近所述发热部件的区域,所述低温区域为所述电子设备中远离所述发热部件的区域。
  6. 根据权利要求1至5中任一项所述的散热装置,其特征在于,所述散热装置还包括屏蔽盖,配置于所述散热板的下表面,所述屏蔽盖与所述电子设备中预配置的屏蔽底座构成屏蔽罩,所述屏蔽罩用于屏蔽所述芯片,其中,所述散热板的下表面为所述散热板上与所述发热部件相对的表面。
  7. 根据权利要求6所述的散热装置,其特征在于,所述屏蔽盖内嵌于所述散热板的下层材料中,所述下层材料为所述散热板中最贴近所述发热部件的一层材料。
  8. 根据权利要求6所述的散热装置,其特征在于,所述屏蔽盖粘附于所述散热板的下表面。
  9. 根据权利要求1至8中任一项所述的散热装置,其特征在于,所述散热装置还包括强化板,粘附于所述散热板的上表面和/或所述散热板的下表面与弯折区域相对应的位置,所述散热板的下表面为所述散热板上与所述发热部件相对的表面,所述散热板的上表面为所述散热板上与所述下表面相背的表面。
  10. 根据权利要求9所述的散热装置,其特征在于,所述强化板包括再复合不锈钢片或铜合金片。
  11. 根据权利要求1至10中任一项所述的散热装置,其特征在于,所述第一导热层包括多个相隔离的条状导热片,所述多个相隔离的条状导热片在弯折区域平行排布,每个条状导热片与热传导方向平行或近似平行。
  12. 根据权利要求1至11中任一项所述的散热装置,其特征在于,所述导热层由导 热系数大于或等于第一预设门限的导热材料形成,所述第一预设门限为50瓦/(米·度)。
  13. 根据权利要求12所述的散热装置,其特征在于,所述导热材料包括:石墨、铜箔或铝箔。
  14. 根据权利要求1至13中任一项所述的散热装置,其特征在于,所述柔性层由柔性材料形成,所述柔性材料包括聚酰亚胺或聚酰胺。
  15. 一种散热板,其特征在于,至少包括:
    第一导热层,形成为片状,由导热材料形成,包括第一表面和第二表面,所述第一表面是所述第一导热层弯折时暴露在外部的面,所述第二表面是与所述第一表面相背的表面;
    第一柔性层,形成为片状,由柔性材料形成,所述第一柔性层包括第三区域,所述第三区域贴合于所述第一导热层的所述第二表面上与弯折区域对应的位置。
  16. 根据权利要求15所述的散热板,其特征在于,所述第一柔性层还包括第四区域,贴合于所述第一导热层的所述第二表面上除所述弯折区域之外的位置,以使所述第三区域和所述第四区域完全覆盖所述第一导热层的所述第二表面。
  17. 根据权利要求15或16所述的散热板,其特征在于,所述散热板还包括第二柔性层,由所述柔性材料形成为片状,所述第二柔性层贴合于所述第一导热层的所述第一表面上,所述第二柔性层部分或完全覆盖所述第一导热层的所述第一表面。
  18. 根据权利要求15至17中任一项所述的散热板,其特征在于,所述导热层由导热系数大于或等于第一预设门限的导热材料形成,所述第一预设门限为50瓦/(米·度)。
  19. 根据权利要求18所述的散热板,其特征在于,所述导热材料包括:石墨、铜箔或铝箔。
  20. 根据权利要求15至19中任一项所述的散热板,其特征在于,所述柔性材料包括聚酰亚胺或聚酰胺。
  21. 一种电子设备,其特征在于,包括:
    发热部件,和
    如权利要求1至14中任一项所述的散热装置。
PCT/CN2017/073037 2016-11-25 2017-02-07 散热板、散热装置和电子设备 WO2018094877A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201780024563.6A CN109076720B (zh) 2016-11-25 2017-02-07 散热板、散热装置和电子设备
EP17873517.1A EP3531811A4 (en) 2016-11-25 2017-02-07 HEAT EXCHANGE PLATE, HEAT DISPOSAL DEVICE AND ELECTRONIC DEVICE
JP2019528071A JP6890180B2 (ja) 2016-11-25 2017-02-07 熱放散パネル、熱放散装置、及び電子デバイス
US16/462,826 US11272639B2 (en) 2016-11-25 2017-02-07 Heat dissipation panel, heat dissipation apparatus, and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201611053761.9 2016-11-25
CN201611053761 2016-11-25

Publications (1)

Publication Number Publication Date
WO2018094877A1 true WO2018094877A1 (zh) 2018-05-31

Family

ID=62194755

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/073037 WO2018094877A1 (zh) 2016-11-25 2017-02-07 散热板、散热装置和电子设备

Country Status (5)

Country Link
US (1) US11272639B2 (zh)
EP (1) EP3531811A4 (zh)
JP (1) JP6890180B2 (zh)
CN (1) CN109076720B (zh)
WO (1) WO2018094877A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109348008A (zh) * 2018-11-05 2019-02-15 北京小米移动软件有限公司 显示装置
WO2020051901A1 (zh) * 2018-09-14 2020-03-19 深圳市柔宇科技有限公司 可折叠电子装置
CN112804385A (zh) * 2021-02-09 2021-05-14 青岛海信移动通信技术股份有限公司 手机及其制造方法、用于电子设备的散热装置
CN113311923A (zh) * 2021-04-21 2021-08-27 北京字节跳动网络技术有限公司 一种温度控制方法、装置及设备
CN114035664A (zh) * 2021-10-26 2022-02-11 荣耀终端有限公司 散热系统及设备

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109699151B (zh) * 2017-10-20 2020-02-14 华为技术有限公司 膜状散热构件、可折弯显示装置以及终端设备
CN109814693A (zh) * 2019-02-28 2019-05-28 华为技术有限公司 电子装置
DE112020002401T5 (de) * 2019-05-16 2022-01-27 Sony Group Corporation Wärmeleitungsmechanismus
WO2020262739A1 (ko) * 2019-06-28 2020-12-30 엘지전자 주식회사 Avn 장치
CN110544431B (zh) * 2019-07-25 2021-02-12 华为技术有限公司 一种复合结构、柔性屏组件及折叠显示终端
WO2021104463A1 (zh) * 2019-11-28 2021-06-03 华为技术有限公司 可折叠均温板和可折叠电子设备
CN111243202A (zh) * 2020-01-15 2020-06-05 王芳 一种多功能金融电子装置
CN111564677A (zh) * 2020-05-25 2020-08-21 京东方科技集团股份有限公司 柔性显示装置
JP2022078601A (ja) * 2020-11-13 2022-05-25 レノボ・シンガポール・プライベート・リミテッド 情報機器
CN112767838B (zh) * 2021-01-19 2022-10-21 Oppo(重庆)智能科技有限公司 柔性显示屏和电子设备
CN115151076A (zh) * 2021-03-29 2022-10-04 北京小米移动软件有限公司 电子设备
US11899506B2 (en) * 2021-03-31 2024-02-13 Motorola Mobility Llc Electronic device having thermal spreading through a hinge of a configurable housing that supports a front flexible display
US11592878B2 (en) 2021-03-31 2023-02-28 Motorola Mobility Llc Electronic device having thermal spreading through a hinge of a configurable housing that supports a back flexible display
CN115499524A (zh) * 2021-06-17 2022-12-20 华为技术有限公司 折叠屏设备
CN113568483B (zh) * 2021-07-26 2023-07-14 南昌华勤电子科技有限公司 一种散热组件及一种服务器
CN113645332A (zh) * 2021-08-13 2021-11-12 维沃移动通信有限公司 电子设备
US20230200019A1 (en) * 2021-12-20 2023-06-22 Meta Platforms Technologies, Llc Thermal conduit for electronic device
CN114415801B (zh) * 2022-03-22 2022-07-08 深圳市信步科技有限公司 一种集成散热的计算机主板
CN114915330A (zh) * 2022-03-31 2022-08-16 航天恒星科技有限公司 一种基带射频一体化的卫星终端
CN115241624B (zh) * 2022-07-29 2023-07-04 沈阳航盛科技有限责任公司 一种高散热小型化的卫星通信天线主承结构件
CN219627749U (zh) * 2022-09-30 2023-09-01 华为技术有限公司 电子设备
CN219124634U (zh) * 2022-10-31 2023-06-02 华为技术有限公司 传热装置和电子设备
CN115586824B (zh) * 2022-12-02 2023-05-09 荣耀终端有限公司 电子设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762514Y (zh) * 2004-12-22 2006-03-01 珍通科技股份有限公司 弯折式均温板散热结构
US20100101763A1 (en) * 2008-10-27 2010-04-29 Meng-Cheng Huang Thin heat dissipating apparatus
CN101901036A (zh) * 2010-07-02 2010-12-01 华南理工大学 一种用于笔记本电脑的散热装置
CN103576779A (zh) * 2013-10-29 2014-02-12 昆山市大久电子有限公司 一种柔性电脑外壳
CN103984398A (zh) * 2014-05-30 2014-08-13 夏维 用上盖传导散热的笔记本电脑结构
CN105159421A (zh) * 2015-07-27 2015-12-16 电子科技大学 笔记本电脑配套用水冷散热装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10262719A (ja) * 1997-03-27 1998-10-06 Mitsubishi Electric Corp ノートパソコン収納ケース
US6075696A (en) 1997-11-06 2000-06-13 Compaq Computer Corporation Portable computer with flexible heat spreader plate structure therein
JP2000010661A (ja) * 1998-06-18 2000-01-14 Mitsubishi Electric Corp 携帯型情報処理装置および携帯型情報処理装置用カバー、卓上型情報処理装置
US6052280A (en) * 1999-01-19 2000-04-18 Alliedsignal Inc. Carbon/carbon heat spreader
US7095309B1 (en) 2000-10-20 2006-08-22 Silverbrook Research Pty Ltd Thermoelastic actuator design
JP4459470B2 (ja) * 2001-04-06 2010-04-28 信越化学工業株式会社 電子部品の放熱構造体及びそれに用いる放熱シート
JP2004200199A (ja) 2002-12-16 2004-07-15 Oki Electric Ind Co Ltd 放熱シート
JP2005057088A (ja) * 2003-08-05 2005-03-03 Agilent Technol Inc 多層構造の熱伝導部材、および、それを用いた電子機器
JP2005321287A (ja) * 2004-05-07 2005-11-17 Sony Corp 冷却装置、電子機器、ヒートシンクおよび放熱フィン
JP2006093546A (ja) 2004-09-27 2006-04-06 Oki Electric Ind Co Ltd 放熱シート、放熱筒状体およびそれらを用いた放熱構造
JP2006216878A (ja) * 2005-02-07 2006-08-17 Ricoh Co Ltd 電子機器
JP2008305284A (ja) * 2007-06-11 2008-12-18 Lenovo Singapore Pte Ltd 携帯式コンピュータ
JP4888413B2 (ja) * 2008-02-14 2012-02-29 富士通株式会社 携帯型電子装置
US8477499B2 (en) 2009-06-05 2013-07-02 Laird Technologies, Inc. Assemblies and methods for dissipating heat from handheld electronic devices
JP2012164852A (ja) * 2011-02-08 2012-08-30 Murata Mfg Co Ltd 半導体パッケージのシールド構造
US8395898B1 (en) * 2011-03-14 2013-03-12 Dell Products, Lp System, apparatus and method for cooling electronic components
US8675363B2 (en) * 2011-07-26 2014-03-18 Hewlett-Packard Development Company, L.P. Thermal conductors in electronic devices
US9127898B2 (en) * 2013-08-04 2015-09-08 Chih-Juh Wong Heat dissipation case
US9600041B2 (en) * 2014-07-28 2017-03-21 Google Technology Holdings LLC Heat management apparatus for an electronic device
US9490860B2 (en) * 2014-12-17 2016-11-08 Asia Vital Components Co., Ltd. Protective device capable of dissipating heat
US20180023904A1 (en) * 2014-12-18 2018-01-25 Kaneka Corporation Graphite laminates, processes for producing graphite laminates, structural object for heat transport, and rod-shaped heat-transporting object
US10488898B2 (en) * 2017-03-31 2019-11-26 Microsoft Technology Licensing, Llc Flexible heat spreader
CN109699151B (zh) * 2017-10-20 2020-02-14 华为技术有限公司 膜状散热构件、可折弯显示装置以及终端设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762514Y (zh) * 2004-12-22 2006-03-01 珍通科技股份有限公司 弯折式均温板散热结构
US20100101763A1 (en) * 2008-10-27 2010-04-29 Meng-Cheng Huang Thin heat dissipating apparatus
CN101901036A (zh) * 2010-07-02 2010-12-01 华南理工大学 一种用于笔记本电脑的散热装置
CN103576779A (zh) * 2013-10-29 2014-02-12 昆山市大久电子有限公司 一种柔性电脑外壳
CN103984398A (zh) * 2014-05-30 2014-08-13 夏维 用上盖传导散热的笔记本电脑结构
CN105159421A (zh) * 2015-07-27 2015-12-16 电子科技大学 笔记本电脑配套用水冷散热装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3531811A4 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020051901A1 (zh) * 2018-09-14 2020-03-19 深圳市柔宇科技有限公司 可折叠电子装置
CN112673717A (zh) * 2018-09-14 2021-04-16 深圳市柔宇科技股份有限公司 可折叠电子装置
CN109348008A (zh) * 2018-11-05 2019-02-15 北京小米移动软件有限公司 显示装置
CN112804385A (zh) * 2021-02-09 2021-05-14 青岛海信移动通信技术股份有限公司 手机及其制造方法、用于电子设备的散热装置
CN113311923A (zh) * 2021-04-21 2021-08-27 北京字节跳动网络技术有限公司 一种温度控制方法、装置及设备
CN113311923B (zh) * 2021-04-21 2023-12-01 北京字节跳动网络技术有限公司 一种温度控制方法、装置及设备
CN114035664A (zh) * 2021-10-26 2022-02-11 荣耀终端有限公司 散热系统及设备
CN114035664B (zh) * 2021-10-26 2022-10-25 荣耀终端有限公司 散热系统及设备

Also Published As

Publication number Publication date
EP3531811A1 (en) 2019-08-28
US11272639B2 (en) 2022-03-08
CN109076720A (zh) 2018-12-21
JP6890180B2 (ja) 2021-06-18
CN109076720B (zh) 2020-01-03
US20210185852A1 (en) 2021-06-17
EP3531811A4 (en) 2019-10-30
JP2019536293A (ja) 2019-12-12

Similar Documents

Publication Publication Date Title
WO2018094877A1 (zh) 散热板、散热装置和电子设备
KR102099255B1 (ko) 방열장치 및 이를 구비한 전자장치
WO2018209985A1 (zh) 显示模组和电子设备
US7480145B2 (en) Thin, passive cooling system
JP4126046B2 (ja) 電子機器の冷却構造
US10234915B2 (en) Graphite thermal conductor, electronic device and method for manufacturing graphite thermal conductor
US20070177350A1 (en) Electronic device
US10303227B2 (en) Information handling system housing heat spreader
US20170083061A1 (en) Hybrid thermal solution for electronic devices
JPWO2006092954A1 (ja) フラットパネル表示装置
JP6311222B2 (ja) 電子機器及び放熱方法
JP2001266760A (ja) 画像表示装置
JP2006216878A (ja) 電子機器
CN217116715U (zh) 芯片散热结构和电子设备
JP2008160029A (ja) 冷却構造および電子機器
JP2006270930A (ja) 携帯機器
JP2018019001A (ja) フィルム状熱伝導部材及び電子機器筐体
CN105555107A (zh) 无风扇散热系统及电子设备
KR100682811B1 (ko) 전자 기기
TWI634811B (zh) Double-sided display device
JP2006203016A (ja) 放熱部品
CN218450983U (zh) 一种导热绝缘膜以及电子设备
CN211152539U (zh) 复合式散热鳍片及散热模块
CN207836053U (zh) 一种电子装置
CN116129741A (zh) 显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17873517

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019528071

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017873517

Country of ref document: EP

Effective date: 20190521