WO2021104463A1 - 可折叠均温板和可折叠电子设备 - Google Patents

可折叠均温板和可折叠电子设备 Download PDF

Info

Publication number
WO2021104463A1
WO2021104463A1 PCT/CN2020/132309 CN2020132309W WO2021104463A1 WO 2021104463 A1 WO2021104463 A1 WO 2021104463A1 CN 2020132309 W CN2020132309 W CN 2020132309W WO 2021104463 A1 WO2021104463 A1 WO 2021104463A1
Authority
WO
WIPO (PCT)
Prior art keywords
flexible
foldable
uniform temperature
area
side wall
Prior art date
Application number
PCT/CN2020/132309
Other languages
English (en)
French (fr)
Inventor
孙振
杨杰
施健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2021104463A1 publication Critical patent/WO2021104463A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body

Definitions

  • This application relates to the technical field of heat transfer devices, in particular to a foldable uniform temperature plate and a foldable electronic device.
  • Vapor chamber has excellent heat conduction and temperature uniformity, and is an effective way to solve the heat dissipation problem of electronic equipment.
  • the current uniform temperature plate cannot meet the requirements of high folding reliability and high thermal conductivity at the same time.
  • the present application provides a foldable uniform temperature plate and a foldable electronic device, which can meet the use requirements of the electronic device for repeated folding of the uniform temperature plate, and has high thermal conductivity.
  • a foldable temperature equalizing plate in a first aspect, includes a flexible upper cover plate, a flexible lower cover plate and a side wall, wherein the flexible upper cover plate is connected to the flexible lower cover plate through the side wall
  • a heat transfer medium and a capillary structure are arranged in the closed cavity
  • the uniform temperature plate includes a first uniform temperature area, a second uniform temperature area, and a flexible connection area connecting the first uniform temperature area and the second uniform temperature area
  • the flexible upper cover is located on the outer side of the first uniform temperature area and the second uniform temperature area
  • the flexible lower cover is located on the outer side of the first uniform temperature area and the second uniform temperature area
  • a second thermally conductive layer is provided on it.
  • the uniform temperature plate is composed of three parts: the first uniform temperature area, the second uniform temperature area, and the flexible connection area.
  • the application uses the flexible upper cover plate and the flexible lower cover plate to be located in the first uniform temperature area and the second uniform temperature area.
  • the part of the second uniform temperature area is provided with a heat conduction layer, so that the heat transfer efficiency of the first uniform temperature area and the second uniform temperature area can be enhanced.
  • the flexible upper cover and the flexible lower cover of the present application are both composed of flexible materials and have the characteristics of being flexible and bendable.
  • the parts of the flexible upper cover and the flexible lower cover located in the flexible connection area are not provided with a heat conduction layer, which will not affect The bending performance of the uniform temperature plate.
  • the foldable uniform temperature plate provided by this application has good bending characteristics and can meet the needs of repeated folding. At the same time, the foldable uniform temperature plate provided by this application also has good thermal conductivity and temperature uniformity performance, so that the application provides The uniform temperature plate has good overall performance, which improves the user experience.
  • the foldable uniform temperature plate may also include multiple flexible connection areas, and include three or more uniform temperature areas, which is not limited in this application.
  • the first heat-conducting layer and the second heat-conducting layer are made of a heat-conducting material, and are respectively closely attached to the outer surfaces of the flexible upper cover and the flexible lower cover.
  • the first heat conduction layer and the second heat conduction layer can be respectively arranged on the outer surfaces of the flexible upper cover plate and the flexible lower cover plate through techniques such as thermally conductive adhesive bonding, electroplating, atomic layer deposition (atomic layer deposition, ALD).
  • the heat-conducting material may be any one of materials such as metal, ceramics, and graphite.
  • the thermally conductive material may be copper, that is, the first thermally conductive layer and the second thermally conductive layer may be copper films, and the thickness may be several micrometers to hundreds of micrometers.
  • the material of the first heat-conducting layer and the second heat-conducting layer may be the same or different, and the thickness of the two may be the same or different, which is not limited in this application.
  • a third heat conduction layer is provided on the inner side of the portion of the flexible upper cover located in the first and second uniform temperature areas; the flexible lower cover is located in the first uniform temperature area and the second uniform temperature area.
  • a fourth thermally conductive layer is provided on the inner surface of the part of the warm region.
  • the capillary structure is attached to the fourth heat conducting layer, thereby improving the heat conduction efficiency.
  • an escape space is formed between the part of the capillary structure located in the flexible connection area and the flexible lower cover.
  • the avoidance space can avoid (or accommodate) the portion of the flexible lower cover located in the flexible connection area during folding, thereby improving the reliability of folding.
  • a support column is also provided in the enclosed cavity, one end of the support column is connected with the third heat conducting layer or the flexible upper cover plate, and the other end of the support column extends in the direction of the capillary structure, thereby preventing The shell of the uniform temperature plate is squashed by external air pressure.
  • the support pillar may be a metal pillar, such as a copper pillar.
  • the supporting column may be formed on the third thermal conductive layer or the flexible upper cover plate by etching or electroplating.
  • the side wall includes a first side wall located in the first uniform temperature region and the second uniform temperature region; the upper end of the first side wall is in hermetically connected with the third heat conducting layer; the first side wall The lower end of the heat-conducting layer is hermetically connected with the fourth heat conducting layer.
  • the first side wall, the third heat conduction layer, and the fourth heat conduction layer are all made of metal materials; the upper end is welded and sealed with the third heat conduction layer; the lower end is welded and sealed with the fourth heat conduction layer .
  • the welding may include any one of brazing, diffusion welding, laser welding, and the like.
  • the flexible upper cover and the flexible lower cover are provided with a sealing coating on the outer surface of the part where the flexible connection area is located, so as to reduce the leakage of the heat transfer medium through the flexible upper cover and the flexible lower cover.
  • the probability of reaching the external environment ensures the reliability of the uniform temperature plate.
  • atomic layer deposition technology can be used to deposit the sealing coating.
  • the material of the sealing coating can be any one of copper, aluminum oxide, titanium dioxide, etc., and the thickness of the sealing coating can be tens of nanometers to tens of nanometers. Micrometers.
  • the side wall includes a second side wall located in the flexible connection area, and the second side wall is made of a flexible material, so as to ensure the reliability of folding.
  • the flexible material is a flexible sealant, for example, it may be a polyurethane sealant.
  • the material of the flexible upper cover plate and the flexible lower cover plate is at least one of the following materials: flexible graphite, flexible rubber or flexible resin.
  • the flexible upper cover and the lower flexible cover may be polyimide (PI) films, and the thickness may be several micrometers to hundreds of micrometers.
  • PI polyimide
  • the material of the flexible upper cover and the flexible lower cover may be the same or different, and the thickness of the two may be the same or different, which is not limited in this application.
  • the flexible upper cover is integrally formed, and the flexible lower cover is integrally formed.
  • the flexible upper cover and the flexible lower cover can be integrally formed instead of being spliced by multiple parts, thereby reducing the possibility of liquid leakage (splicing It is easy to leak at places).
  • the capillary structure is at least one of the following structures: porous fibers, tows, microgrooves, sintered powder, mesh, or micropillar arrays.
  • the heat transfer medium is at least one of the following substances: water, methanol, ethanol, acetone or liquid ammonia.
  • a foldable temperature equalizing plate comprising a flexible upper cover plate, a flexible lower cover plate and side walls, wherein the flexible upper cover plate includes a first flexible material layer and a first sealing layer, and the first sealing The layer is disposed on the inner or outer wall of the first flexible material layer; the flexible lower cover includes a second flexible material layer and a second sealing layer, and the second sealing layer is disposed on the inner or outer surface of the second flexible material layer.
  • the flexible upper cover plate is connected with the flexible lower cover plate through the side wall to form a closed cavity, and the closed cavity is provided with a heat transfer medium and a capillary structure;
  • the foldable uniform temperature plate includes a first uniform temperature area, A second uniform temperature area and a bending area connecting the first uniform temperature area and the second uniform temperature area, and the capillary structure connects the first uniform temperature area and the second uniform temperature area.
  • both the flexible upper cover and the flexible lower cover are composed of flexible materials and have the characteristics of being flexible and bendable.
  • the second sealing layer is provided on the inner wall surface or the outer wall surface of the two flexible material layers, which can effectively avoid the leakage of the heat transfer medium and improve the reliability of heat dissipation of the uniform temperature plate.
  • the foldable uniform temperature plate may also include multiple flexible connection areas, and include three or more uniform temperature areas, which is not limited in this application.
  • the capillary structure includes a plurality of strip-shaped capillary substructures, and the plurality of capillary substructures are arranged at intervals.
  • the capillary structure is composed of a plurality of capillary substructures arranged at intervals, thereby increasing the contact area between the capillary structure and the steam, thereby improving the heat transfer efficiency of the uniform temperature plate.
  • a plurality of capillary substructures are arranged in parallel, and the folding axis of the capillary substructure and the folding axis of the foldable uniform temperature plate are parallel to each other; or, one end of the capillary substructure is located in the first uniform temperature region, and the other end is located in the first uniform temperature region.
  • the capillary substructure and the folding axis of the foldable uniform temperature plate are perpendicular to each other.
  • the bottom end of the capillary substructure is attached to the flexible lower cover plate, and the top end of the capillary substructure is arranged close to the flexible upper cover plate to support the flexible upper cover plate.
  • the capillary structure can simultaneously play a supporting role, which not only has good thermal conductivity, but also simplifies the structure of the temperature equalization plate.
  • the capillary structure is attached to the flexible lower cover, and a support column is also provided in the enclosed cavity.
  • One end of the support column is connected to the flexible upper cover, and the other end faces the capillary structure. The direction extends, so as to prevent the housing of the uniform temperature plate from being crushed by external air pressure.
  • the support pillar may be a metal pillar, such as a copper pillar.
  • the material of the first sealing layer or the second sealing layer includes at least one of the following substances: titanium dioxide, aluminum oxide, copper or aluminum, and the thickness can be several nanometers to tens of micrometers.
  • the side wall includes a first side wall located in a first uniform temperature area and a second uniform temperature area; wherein, the upper end of the first side wall is in a sealed connection with the flexible upper cover; the second The lower end of one side wall is in sealing connection with the flexible lower cover.
  • the side wall further includes a second side wall located in the bending area, and the second side wall is made of a flexible material, so as to ensure the reliability of folding.
  • the flexible material is a flexible sealant, for example, it may be a polyurethane sealant.
  • the material of the first flexible material layer or the second flexible material layer is at least one of the following substances: flexible graphite, flexible rubber or flexible resin.
  • the capillary structure is at least one of the following structures: porous fibers, tows, microgrooves, sintered powder, mesh, or micropillar arrays.
  • the heat transfer medium is at least one of the following substances: water, methanol, ethanol, acetone or liquid ammonia.
  • a foldable electronic device which includes a housing, a folding screen, and the foldable uniform temperature plate provided in the aforementioned first and second aspects.
  • the folding screen is installed on the shell, and a heating element is arranged in the shell, and the foldable uniform temperature plate is used to conduct the heat generated by the heating element to the folding screen.
  • it further includes a foldable middle frame arranged in the housing, and the heating element conducts the generated heat to the foldable temperature equalizing plate through the foldable middle frame.
  • a circuit board, a camera, a sensor, a microphone, a battery, etc. are also arranged in the housing, but it is not limited thereto.
  • the heating element may be an application processor, a radio frequency amplifier, a power amplifier, a power management chip (power management IC, PMIC), etc., but it is not limited thereto.
  • the foldable electronic device can be any one of the following electronic devices: mobile phones, tablet computers, watches, e-readers, notebook computers, in-vehicle devices, Internet TVs, or wearable devices.
  • Fig. 1 is a schematic diagram of the structure of a temperature equalizing plate in the prior art.
  • Fig. 2 is a schematic diagram of the overall structure of a foldable uniform temperature plate provided by an embodiment of the present application.
  • Fig. 3 is an exploded view of a foldable uniform temperature plate provided by an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view taken along the AA direction in Fig. 2.
  • Fig. 5 is a schematic diagram of the assembly structure of the first side wall.
  • Fig. 6 is another schematic cross-sectional view taken along the AA direction in Fig. 2.
  • FIG. 7 is another schematic cross-sectional view along the AA direction in FIG. 2.
  • Fig. 8 is a schematic cross-sectional view taken along the direction BB in Fig. 2.
  • FIG. 9 is a schematic diagram of a foldable electronic device provided by an embodiment of the present application.
  • connection should be understood in a broad sense, unless otherwise clearly specified and limited.
  • it can be a fixed connection or a detachable connection.
  • Connected or integrally connected it can be mechanically connected, or it can be electrically connected or can communicate with each other; it can be directly connected, or indirectly connected through an intermediary, it can be the internal communication of two components or the interaction of two components relationship.
  • connection should be understood according to specific circumstances.
  • the temperature equalizing plate is usually called the equalizing plate, or super-conducting plate, thermal conductive plate, etc.
  • the temperature equalization plate is mainly composed of a shell, a capillary structure, a working fluid, a supporting structure, etc.
  • FIG. 1 is a schematic structural diagram of a temperature equalization plate in the prior art.
  • the uniform temperature plate includes a condensation side shell a, an evaporation side shell b, and a side wall c.
  • the condensation side shell a is connected to the evaporation side shell b through the side wall c and is sealed to define the uniform temperature plate.
  • a capillary structure e is arranged in the internal cavity d, and the internal cavity d is vacuumed and filled with a certain amount of working fluid, and the working fluid can be adsorbed in the capillary structure e.
  • a support structure f can also be provided in the inner cavity d. The two ends of the support structure f are respectively connected to the condensing side shell a and capillary structure e are connected.
  • the working liquid in the capillary structure e absorbs heat, and the phase change of vaporization and boiling begins to occur in a low vacuum environment, changing from a liquid phase to a gas phase (capillary structure e in Figure 1
  • the arrow in indicates the flow direction of the working liquid in the liquid phase
  • the arrow outside the capillary structure e indicates the flow direction of the working liquid in the gas phase).
  • the working liquid in the gas phase will quickly fill the entire internal cavity d. When the working liquid in the gas phase comes into contact with a relatively cold area, it will condense, thereby releasing the heat accumulated during evaporation.
  • the uniform temperature plate can effectively diffuse the concentrated heat, and its effective thermal conductivity is 10-20 times that of pure copper. Because the temperature equalization plate has excellent heat conduction and temperature equalization performance, it is an effective way to solve the heat dissipation problem of terminal electronic products.
  • foldable electronic devices such as foldable mobile phones
  • foldable electronic devices have become an important trend in the development of next-generation electronic devices, and research on foldable electronic devices has also received more and more attention.
  • the heat dissipation problem of foldable electronic equipment is an important aspect that cannot be ignored in the research process, and the heat dissipation performance is an important factor that affects whether the electronic equipment can have good performance.
  • the uniform temperature plate has excellent heat conduction and temperature uniformity performance, which is an effective way to solve the heat dissipation problem of electronic equipment.
  • the uniform temperature plate can also be used to dissipate the foldable electronic equipment.
  • the current uniform temperature plate cannot meet the requirements of high folding reliability and high thermal conductivity at the same time.
  • the existing housing of the temperature equalizing plate cannot meet the requirements of foldability and high thermal conductivity.
  • the existing temperature equalizing plate usually adopts a metal shell (for example, the condensing side shell a and the evaporation side shell b in Figure 1 can be made of copper or copper alloy materials), which is prone to fatigue limit after multiple folding, which eventually leads to The shell is broken, and the uniform temperature plate leaks and fails.
  • some uniform temperature plates use flexible graphite film as the outer shell. Compared with metals, graphite films have better toughness.
  • Graphite material has the advantages of low density, low thermal expansion coefficient and high thermal conductivity, and is the most promising heat conduction material in recent years.
  • the normal temperature thermal conductivity of graphite materials is only about 70-150W/(m ⁇ K), while the theoretical thermal conductivity of graphite films is as high as 2500W/(m ⁇ K).
  • the high thermal conductivity of graphite materials stems from the high thermal conductivity along the direction of the graphite sheet composed of the carbon hexagonal network structure.
  • the thermal conductivity of the graphite film is usually less than 1200W/(m ⁇ K), and only in the plane direction, the thermal conductivity is lower in the normal direction, and the preparation process is more complicated.
  • the equivalent thermal conductivity of the uniform temperature plate can reach 8000 ⁇ 15000W/(m ⁇ K).
  • the present application provides a foldable uniform temperature plate and a foldable electronic device, which can meet the use requirements of the electronic device for repeated folding of the uniform temperature plate, and has high thermal conductivity.
  • the embodiment of the present application first provides a foldable uniform temperature plate 100.
  • the foldable temperature equalizing plate 100 can be used to dissipate heat for foldable electronic devices such as foldable mobile phones.
  • FIG. 2 is a schematic diagram of the overall structure of the foldable uniform temperature plate 100 provided by an embodiment of the present application.
  • FIG. 3 is an exploded view of the foldable uniform temperature plate 100 provided by an embodiment of the present application.
  • Fig. 4 is a schematic cross-sectional view taken along the AA direction in Fig. 2.
  • the foldable temperature equalizing plate 100 provided by the embodiment of the present application includes a flexible upper cover plate 1, a flexible lower cover plate 2, and a side wall 3.
  • the flexible upper cover 1 is connected with the flexible lower cover 2 through the side walls 3 to form a sealed cavity 4, and the sealed cavity 4 is provided with a heat transfer medium and a capillary structure 5.
  • the uniform temperature plate 100 includes a first uniform temperature region 100a, a second uniform temperature region 100b, and a flexible connection region 100c connecting the first uniform temperature region 100a and the second uniform temperature region 100b.
  • the flexible upper cover 1 is provided with a first heat conducting layer 6 on the outer surface of the part of the first uniform temperature region 100a and the second uniform temperature region 100b.
  • the flexible lower cover 1 is provided with a second heat conducting layer 7 on the outer surface of the part of the first uniform temperature region 100a and the second uniform temperature region 100b.
  • the uniform temperature plate 100 is composed of three parts: a first uniform temperature area 100a, a second uniform temperature area 100b, and a flexible connection area 100c.
  • the portions located in the first uniform temperature region 100a and the second uniform temperature region 100b are provided with a thermally conductive layer, so that the heat transfer efficiency of the first uniform temperature region 100a and the second uniform temperature region 100b can be enhanced.
  • the flexible upper cover 1 and the flexible lower cover 2 of the present application are both composed of flexible materials and have the characteristics of being flexible and bendable.
  • the parts of the flexible upper cover 1 and the flexible lower cover 2 located in the flexible connection area 100c are not provided with a thermally conductive layer Therefore, the bending performance of the uniform temperature plate 100 will not be affected.
  • the temperature equalizing plate 100 provided by the embodiment of the present application has good bending characteristics and can meet the needs of repeated folding. At the same time, the temperature equalizing plate 100 provided by the embodiment of the present application also has good thermal conductivity and temperature equalization performance, so that the present invention The uniform temperature plate 100 provided in the application has good overall performance and improves the user experience.
  • the temperature equalization plate 100 may also include multiple flexible connection areas, and include three or more equal temperature areas, which is not limited in this application.
  • the flexible upper cover 1 and the flexible lower cover 2 may be composed of flexible materials, have good bending characteristics, and can meet the requirements of repeated folding.
  • the flexible material may include at least one of flexible graphite and flexible polymer materials.
  • the flexible polymer material may include flexible rubber and flexible resin.
  • the flexible material may be a polyimide (PI) film, that is, the flexible upper cover 1 and the flexible lower cover 2 may be PI films, and the thickness may be several micrometers to hundreds of micrometers.
  • PI polyimide
  • the material of the flexible upper cover 1 and the flexible lower cover 2 may be the same or different, and the thickness of the two may be the same or different, which is not limited in this application.
  • the first heat-conducting layer 6 and the second heat-conducting layer 7 are made of a heat-conducting material, and are closely attached to the outer surfaces of the flexible upper cover plate 1 and the flexible lower cover plate 2, respectively.
  • the first heat conduction layer 6 and the second heat conduction layer 7 can be arranged on the flexible upper cover plate 1 and the flexible lower cover plate 2 respectively by thermally conductive adhesive bonding, electroplating, atomic layer deposition (atomic layer deposition, ALD) and other techniques. On the outside surface.
  • the heat-conducting material may be any one of materials such as metal, ceramics, and graphite.
  • the thermally conductive material may be copper, that is, the first thermally conductive layer 6 and the second thermally conductive layer 7 may be copper films, and the thickness may be several micrometers to hundreds of micrometers.
  • first heat-conducting layer 6 and the second heat-conducting layer 7 may be the same or different, and the thickness of the two may be the same or different, which is not limited in this application.
  • the heat transfer medium in the sealed cavity 4 may be at least one of water, methanol, ethanol, acetone, or liquid ammonia, which is not limited in the present application.
  • the capillary structure 5 should also be flexible and bendable, and will not break or damage after multiple bending.
  • the capillary structure 5 may be at least one of porous fibers, tows, microgrooves, sintered powder, mesh or micropillar arrays, etc., which is not limited in this application.
  • the flexible upper cover 1 and the flexible lower cover 2 may be integrally formed instead of being spliced by multiple parts, thereby reducing The possibility of liquid leakage (leakage is likely to occur at the splice).
  • a sealing coating 12 can be provided on the outer surface of the flexible upper cover 1 and the flexible lower cover 2 in the flexible connection area 100c, so as to reduce the heat transfer medium passing through the flexible upper cover 1. And the probability that the flexible lower cover 2 leaks to the external environment, to ensure the reliability of the use of the uniform temperature plate 100.
  • the sealing coating 12 can be deposited using atomic layer deposition technology.
  • the material of the sealing coating 12 can be any one of copper, aluminum oxide, titanium dioxide, etc., and the thickness of the sealing coating 12 can be several tens of nanometers. To tens of microns.
  • a third heat conducting layer 8 is provided on the inner side of the portion of the flexible upper cover 1 located in the first uniform temperature region 100a and the second uniform temperature region 100b.
  • the flexible lower cover 2 is provided with a fourth heat conducting layer 9 on the inner side of the part of the first uniform temperature region 100a and the second uniform temperature region 100b.
  • the third heat-conducting layer 8 and the fourth heat-conducting layer 9 are made of a heat-conducting material, and are tightly attached to the inner sides of the flexible upper cover 1 and the flexible lower cover 2, respectively.
  • the third heat conduction layer 8 and the fourth heat conduction layer 9 can be arranged on the inner sides of the flexible upper cover plate 1 and the flexible lower cover plate 2 respectively by thermally conductive adhesive bonding, electroplating, atomic layer deposition and other techniques.
  • the materials of the first thermally conductive layer 6, the second thermally conductive layer 7, the third thermally conductive layer 8, and the fourth thermally conductive layer 9 can be the same or different, and the thickness can be the same or different, which is not done in this application. limited.
  • the first thermally conductive layer 6, the second thermally conductive layer 7, the third thermally conductive layer 8, and the fourth thermally conductive layer 9 may all be copper films, and have the same thickness, and the thickness may be several micrometers to hundreds of micrometers. between.
  • the capillary structure 5 can be attached to the fourth heat-conducting layer 9, thereby improving the heat-conducting efficiency.
  • the fourth heat-conducting layer 9 and the capillary structure 5 may both be made of metal materials.
  • the capillary structure 5 can be closely attached to the fourth heat-conducting layer 9 by a process such as diffusion welding.
  • the capillary structure 5 is located in the portion of the flexible connection area 100c and the flexible lower cover 2
  • An avoidance space 10 is formed therebetween, and the avoidance space 10 can avoid (or accommodate) the portion of the flexible lower cover 2 located in the flexible connection area 100c during folding, thereby improving the reliability of folding.
  • a support column 11 is also provided in the enclosed cavity 4, one end of the support column 11 is connected to the third heat conducting layer 8 or the flexible upper cover 1, and the other end of the support column 11 faces the capillary structure 5.
  • Direction extension is also provided.
  • a supporting column 11 can also be provided in the sealed cavity 4, and one end of the supporting column 11 is connected to the third heat conducting layer 8, or connected to
  • the flexible upper cover 1 is located on the part of the flexible connection area 100c, and the other end extends in the direction of the capillary structure 5.
  • it can be connected to the capillary structure 5, or a certain gap can be reserved (that is, the shell is allowed to have a certain gap at this time. The amount of deformation) or extends into the capillary structure 5, which is not limited in this application.
  • the support pillar 11 may be a metal pillar, such as a copper pillar.
  • the supporting column 11 may be formed on the third thermal conductive layer 8 or the flexible upper cover plate 1 by etching or electroplating.
  • the side wall 3 is composed of two parts, namely the first side wall 3a located in the first uniform temperature region 100a and the second uniform temperature region 100b, and The second side wall 3b of the connection area 100c.
  • the upper end of the first side wall 3a is in sealed connection with the third heat conducting layer 8, and the lower end of the first side wall 3 a is in sealed connection with the fourth heat conducting layer 9.
  • FIG. 5 is a schematic diagram of the assembly structure of the first side wall 3a. As shown in FIGS. 4 and 5, in order to improve the sealing performance, the first sidewall 3a may be formed on the fourth heat conductive layer 9 by etching or electroplating.
  • first side wall 3a, the third heat-conducting layer 8 and the fourth heat-conducting layer 9 can all be made of metal materials.
  • the upper end of the first side wall 3a can be welded and sealed with the third heat-conducting layer, and the The lower end of a side wall 3a is welded and sealed with the fourth heat conducting layer.
  • the welding may include any one of brazing, diffusion welding, laser welding, and the like.
  • the second side wall 3b provided in the flexible connection area 100c may be made of a flexible material.
  • the flexible material may be a flexible sealant, for example, it may be a polyurethane sealant.
  • Fig. 6 is another schematic cross-sectional view taken along the AA direction in Fig. 2.
  • the foldable temperature equalizing plate provided by the embodiment of the present application includes a flexible upper cover 1, a flexible lower cover 2 and a side wall 3.
  • the flexible upper cover 1 includes a first flexible material layer 1a and a first sealing layer 1b, and the first sealing layer 1b is disposed on the inner wall surface or the outer wall surface of the first flexible material layer 1a;
  • the flexible lower cover 2 includes a second flexible material layer 2a and a second sealing layer 2b, and the second sealing layer is disposed on the inner wall surface or the outer wall surface of the second flexible material layer 2b.
  • the first sealing layer 1b is disposed on the inner wall surface of the first flexible material layer 1a, and the second sealing layer 2b is disposed inside the second flexible material layer 2a. Wall surface.
  • the first sealing layer 1b is disposed on the inner wall surface of the first flexible material layer 1a, and the second sealing layer 2b is disposed on the second flexible material layer 2a. On the outer wall.
  • the first sealing layer 1b is disposed on the outer wall surface of the first flexible material layer 1a, and the second sealing layer 2b is disposed on the second flexible material layer 2a. On the inner wall surface.
  • the first sealing layer 1b is disposed on the outer wall surface of the first flexible material layer 1a, and the second sealing layer 2b is disposed on the second flexible material layer 2a. On the outer wall.
  • the upper flexible cover 1 is connected with the lower flexible cover 2 through the side walls 3 to form a closed cavity 4 in which a heat transfer medium and a capillary structure 5 are arranged.
  • the foldable uniform temperature plate 100 includes a first uniform temperature area 100a, a second uniform temperature area 100b, and a bending area 100c connecting the first uniform temperature area 100a and the second uniform temperature area 100b, and the capillary structure 5 is connected to the first uniform temperature area.
  • first flexible material layer 1a and the second flexible material layer 2a may be composed of flexible materials, have good bending characteristics, and can meet the requirements of repeated folding.
  • the flexible material may include at least one of flexible graphite and flexible polymer materials.
  • the flexible polymer material may include flexible rubber and flexible resin.
  • the flexible material may be a polyimide (PI) film
  • the flexible material may also be polyethylene (PE)
  • the thickness may be several micrometers to hundreds of micrometers.
  • the material of the first flexible material layer 1a and the second flexible material layer 2a may be the same or different, and the thickness of the two may be the same or different, which is not limited in this application.
  • the first sealing layer 2a and the second sealing layer 2b may be metal, metal oxide or other thin sealing layers.
  • first sealing layer 2a and the second sealing layer 2b can be deposited using atomic layer deposition technology.
  • the first sealing layer 2a and the second sealing layer 2b can be copper, aluminum, aluminum oxide, titanium dioxide, etc.
  • the thickness can be several nanometers to tens of micrometers.
  • first sealing layer 2a and the second sealing layer 2b may be the same or different, and the thickness of the two may be the same or different, which is not limited in this application.
  • sealing layer may be attached to the inner wall surface or the outer wall surface of the flexible material layer through a process such as electroplating, gluing, or welding.
  • the side wall 3 includes a first side wall located in a first uniform temperature region and a second uniform temperature region, wherein the upper end of the first side wall is in sealed connection with the flexible upper cover 1, and the lower end is connected to the flexible lower
  • the cover plate 2 is hermetically connected.
  • the first side wall can be sealed to the flexible upper cover plate and the flexible lower cover plate by brazing, diffusion welding, laser welding, etc., or the first side wall can be connected to the flexible upper cover plate and the flexible cover plate by glue.
  • the lower cover plate realizes a sealed connection.
  • the side wall 3 further includes a second side wall located in the bending area, and the second side wall is made of a flexible material.
  • the flexible material is a flexible sealant, for example, it may be a polyurethane sealant.
  • both the flexible upper cover and the flexible lower cover are composed of flexible materials and have the characteristics of being flexible and bendable.
  • the second sealing layer is provided on the inner wall surface or the outer wall surface of the two flexible material layers, which can effectively avoid the leakage of the heat transfer medium and improve the reliability of heat dissipation of the uniform temperature plate.
  • the flexible upper cover 1 may further include a first thermally conductive layer 1c, and the first thermally conductive layer 1c is disposed on the flexible upper cover 1 in the first uniform temperature region 100a and the second uniform temperature.
  • the inner wall surface of the area 100b; the flexible lower cover 2 may also include a second thermally conductive layer 2c disposed on the flexible lower cover 2 in the first uniform temperature area 100a and the second uniform temperature area 100b On the inner wall.
  • the first heat conduction layer and the second heat conduction layer can strengthen the heat transfer efficiency of the first uniform temperature region and the second uniform temperature region, so that the foldable uniform temperature plate not only has higher thermal conductivity, but also Avoid the leakage of the heat transfer medium, thereby improving the overall performance of the foldable uniform temperature plate.
  • FIG. 7 is another schematic cross-sectional view along the AA direction in FIG. 2, and FIG. 8 is a schematic cross-sectional view along the BB direction in FIG. 2.
  • the capillary structure includes a plurality of strip-shaped capillary substructures 5a, the plurality of capillary substructures 5a are arranged at intervals, and the heat transfer channels are formed between the plurality of capillary substructures 5a.
  • the multiple capillary substructures 5a are arranged in parallel, and the capillary substructures 5a are parallel to the folding axis of the foldable uniform temperature plate 100.
  • the multiple capillary substructures 5a are arranged in parallel, one end of the capillary substructure 5a is located in the first uniform temperature region 100a, and the other end of the capillary substructure 5a is located in the second uniform temperature region 100b
  • the inner part is perpendicular to the folding axis of the foldable uniform temperature plate 100.
  • the capillary substructure 5a can also be arranged at a certain angle with the folding axis of the foldable uniform temperature plate 100, such as 30 degrees, 45 degrees, etc., which is not limited in the embodiment of the present application.
  • the bottom end of the capillary structure is attached to the flexible lower cover plate 2 and the top end is arranged close to the flexible upper cover plate 1 to support the flexible upper cover plate.
  • the capillary structure can play a supporting role while transferring heat, which not only has good heat conduction performance, but also simplifies the structure of the uniform temperature plate.
  • one end of the capillary structure 5 may be attached to the flexible lower cover plate 2 and the other end is close to the flexible upper cover plate 1, for example, another end of the capillary structure 5
  • One end can be connected with the flexible upper cover plate 1, or a certain gap can be reserved (that is, a certain amount of deformation of the shell is allowed at this time).
  • the capillary structure 5 When the bottom end of the capillary structure 5 is attached to the flexible lower cover plate 2 and the top end is set close to the flexible upper cover plate 1, the capillary structure 5 can play a supporting role.
  • This technical solution simplifies the structure of the foldable uniform temperature plate , And improve the heat conduction efficiency of the uniform temperature plate.
  • the capillary structure 5 is attached to the flexible lower cover plate 2, and a support column is also arranged in the enclosed cavity, one end of the support column is connected with the flexible upper cover plate, and the other end extends in the direction of the capillary structure 5.
  • the support pillar may be a metal pillar, such as a copper pillar.
  • one end of the support column is connected to the flexible upper cover plate 1, and the other end can be connected to the capillary structure 5, or it can be at a certain distance from the capillary structure 5, and it can also go deep into the capillary structure 5.
  • the embodiment of the present application There is no restriction on this.
  • the capillary structure 5 may be a porous fiber, a tow, a micro groove, a sintered powder, a mesh or a micro-pillar array, etc.
  • the capillary structure 5 may be a copper mesh, sintered copper powder, etched grooves, electroplated porous structure, and the like.
  • the heat transfer substance in the sealed cavity may be water, methanol, ethanol, acetone, liquid ammonia, or the like.
  • an embodiment of the present application also provides a foldable electronic device, which includes the foldable uniform temperature plate 100 provided in the foregoing first aspect.
  • the foldable electronic device may be any device with communication and/or storage functions, for example, it may be a smart device such as a mobile phone, a tablet computer, a watch, an e-reader, a notebook computer, a vehicle-mounted device, a network TV, a wearable device, and the like.
  • FIG. 9 is a schematic diagram of a foldable electronic device 1000 according to an embodiment of the present application.
  • the electronic device 1000 is a mobile phone.
  • the electronic device 1000 includes a folding screen 200 and a housing 300, and the folding screen 200 is installed on the housing 300.
  • the electronic device 1000 further includes a foldable middle frame 400 and a circuit board 500 arranged inside the housing 300.
  • the circuit board 500 is provided with a heating element 600.
  • the housing 300 is also provided with a camera, a sensor, a microphone, a battery, etc. Not limited to this.
  • the heating element 600 may be an application processor, a radio frequency amplifier, a power amplifier, a power management chip (power management IC, PMIC), etc., but is not limited thereto.
  • the foldable electronic device 1000 provided by the embodiment of the present application includes the foldable uniform temperature plate 100 provided in the foregoing first aspect.
  • a foldable temperature equalizing plate 100 may be provided between the foldable middle frame 400 and the folding screen 200.
  • the upper surfaces of the first uniform temperature area 100a and the second uniform temperature area 100b of the uniform temperature plate can be fixed under the folding screen 200 by means of adhesive; or, the first uniform temperature area 100a and the second uniform temperature area
  • the lower surface of 100b can be fixed on the foldable middle frame 400 by means of gluing, welding, etc.; or, the first uniform temperature area 100a and the second uniform temperature area 100b can be glued together with the foldable middle frame 400 and
  • the folding screen 200 is pasted and fixed.
  • the flexible connection area 100c may not be fixed, so that the flexible connection area 100c can be bent freely.
  • the circuit board 500 is provided with a heating element 600 which can generate heat during operation.
  • the heating element 600 is connected to the foldable temperature equalizing plate 100 through the foldable middle frame 400, and generates heat through the foldable middle frame 400
  • the heat is conducted to the foldable uniform temperature plate 100.
  • the first uniform temperature area 100a and the flexible connection area 100c are sequentially conducted to the second uniform temperature area 100b, so that the heat is transferred to the foldable uniform temperature plate 100.
  • the upper part is distributed as evenly as possible, and finally the heat is conducted to the folding screen 200 through the foldable temperature equalizing plate 100, and is dissipated to the environment.
  • the temperature equalizing plate provided by the embodiments of the present application can satisfy high thermal conductivity while meeting good bending performance, thereby also improving the heat dissipation performance and the bending performance of the rotating shaft of the foldable electronic device using the equalizing plate. Provide users with a good experience.
  • the foldable electronic device 1000 provided in the embodiment of the present application includes the foldable uniform temperature plate 100 provided in the foregoing second aspect.
  • the foldable temperature equalizing plate provided by the embodiment of the present application can provide a first sealing layer on the inner or outer wall surface of the first flexible material layer and a second sealing layer on the inner or outer wall surface of the second flexible material layer. Effectively avoid the leakage of the heat transfer medium, and improve the reliability of heat dissipation of the uniform temperature plate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请提供了一种可折叠均温板和可折叠电子设备,该可折叠均温板包括柔性上盖板、柔性下盖板以及侧壁,其中,所述柔性上盖板通过所述侧壁与所述柔性下盖板相连接以形成密闭腔体,所述密闭腔体内设置有传热介质和毛细结构;所述均温板包括第一均温区域、第二均温区域以及连接所述第一均温区域和所述第二均温区域的柔性连接区域;所述柔性上盖板位于所述第一均温区域和所述第二均温区域的部分的外侧面上设置第一导热层;所述柔性下盖板位于所述第一均温区域和所述第二均温区域的部分的外侧面上设置第二导热层。本申请提供的可折叠均温板能够满足电子设备对均温板反复折叠的使用要求,并且具有较高的热传导性能。

Description

可折叠均温板和可折叠电子设备
本申请要求于2019年11月28日提交中国专利局、申请号为201911188346.8、申请名称为“可折叠均温板和可折叠电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及传热装置技术领域,特别涉及一种可折叠均温板和可折叠电子设备。
背景技术
近年来手机、平板电脑等电子消费品越来越趋向于轻薄化,更大的显示屏幕能带给用户更好的视觉体验。折叠屏相比全面屏,在满足更大屏幕的同时还能进一步缩减携带体积,使用场景更灵活,因此折叠技术将引领终端电子设备的发展。在可折叠电子设备的研究过程中,需要突破多个关键领域的技术壁垒,可折叠电子设备的散热是其中不可忽视的重要问题。
均温板(vapor chamber,VC)具有优异的热传导及均温性能,是解决电子设备散热问题的有效途径。然而,当前的均温板无法同时满足高折叠可靠性和高导热能力的要求。
发明内容
本申请提供一种可折叠均温板和可折叠电子设备,能够满足电子设备对均温板反复折叠的使用要求,并且具有较高的热传导性能。
第一方面,提供了一种可折叠均温板,该可折叠均温板包括柔性上盖板、柔性下盖板以及侧壁,其中,柔性上盖板通过侧壁与柔性下盖板相连接以形成密闭腔体,密闭腔体内设置有传热介质和毛细结构;均温板包括第一均温区域、第二均温区域以及连接第一均温区域和第二均温区域的柔性连接区域;柔性上盖板位于第一均温区域和第二均温区域的部分的外侧面上设置第一导热层;柔性下盖板位于第一均温区域和第二均温区域的部分的外侧面上设置第二导热层。
在本申请中,均温板由第一均温区域、第二均温区域以及柔性连接区域三个部分组成,本申请通过在柔性上盖板和柔性下盖板位于第一均温区域、第二均温区域的部分设置导热层,从而能够强化第一均温区域和第二均温区域的传热效率。本申请的柔性上盖板和柔性下盖板均由柔性材料构成,具有柔韧可弯折的特性,柔性上盖板和柔性下盖板位于柔性连接区域的部分未设置导热层,从而不会影响均温板的弯折性能。
本申请提供的可折叠均温板具有良好的弯折特性,能够满足反复折叠的使用需求,同时,本申请提供的可折叠均温板还具有良好的导热和均温性能,从而使得本申请提供的均温板具有良好的整体性能,提高了用户的使用体验。
可选地,可折叠均温板也可以包括多个柔性连接区域,并且包括三个甚至更多个均温 区域,本申请对此不做限定。
第一导热层和第二导热层由导热材料构成,分别紧密贴合在柔性上盖板和柔性下盖板的外侧面上。例如,可以通过导热胶粘接、电镀、原子层沉积(atomic layer deposition,ALD)等技术将第一导热层和第二导热层分别设置在柔性上盖板和柔性下盖板的外侧面上。
可选地,该导热材料可以为金属、陶瓷、石墨等材料中的任意一种。
例如,该导热材料可以为铜,即第一导热层和第二导热层可以为铜膜,厚度可以为几微米到几百微米。
可选地,第一导热层和第二导热层的材质可以相同,也可以不同,二者的厚度可以相同,也可以不同,本申请对此不做限定。
在一种可能的设计中,柔性上盖板位于第一均温区域和第二均温区域的部分的内侧面上设置第三导热层;柔性下盖板位于第一均温区域和第二均温区域的部分的内侧面上设置第四导热层。通过以上设置,可以进一步提高均温板的导热和均温性能。
在一种可能的设计中,毛细结构与第四导热层相贴合,从而提高导热效率。
在一种可能的设计中,毛细结构位于柔性连接区域的部分和柔性下盖板之间形成有避让空间。该避让空间能够在折叠时避让(或者说容置)柔性下盖板位于柔性连接区域的部分,从而提高折叠的可靠性。
在一种可能的设计中,密闭腔体内还设置有支撑柱,支撑柱的一端与第三导热层或者所述柔性上盖板相连接,支撑柱的另一端向毛细结构方向延伸,从而能够防止均温板的壳体被外部气压压扁。
可选地,该支撑柱可以为金属柱,例如铜柱。
可选地,可以通过蚀刻或者电镀等工艺在第三导热层或者柔性上盖板上形成该支撑柱。
在一种可能的设计中,侧壁包括位于第一均温区域和第二均温区域的第一侧壁;第一侧壁的上端部与所述第三导热层密封连接;第一侧壁的下端部与第四导热层密封连接。
在一种可能的设计中,第一侧壁、第三导热层以及第四导热层均由金属材料制成;上端部与第三导热层焊接密封;下端部与所述第四导热层焊接密封。
可选地,该焊接可以包括钎焊、扩散焊、激光焊等中的任意一种。
在一种可能的设计中,柔性上盖板和柔性下盖板位于柔性连接区域的部分的外侧面上设置有密封涂层,从而能够降低传热介质通过柔性上盖板和柔性下盖板泄露到外部环境的概率,保证均温板的使用可靠性。
例如,可以使用原子层沉积技术沉积形成该密封涂层,该密封涂层的材质可以为铜、三氧化二铝、二氧化钛等中的任意一种,密封涂层厚度可以为几十纳米到几十微米。
在一种可能的设计中,侧壁包括位于柔性连接区域的第二侧壁,第二侧壁由柔性材料制成,从而能够保证折叠的可靠性。
在一种可能的设计中,柔性材料为柔性密封胶,例如,可以是聚氨酯密封胶。
在一种可能的设计中,柔性上盖板和柔性下盖板的材料为以下物质中的至少一种:柔性石墨、柔性橡胶或者柔性树脂。
例如,该柔性上盖板和柔性下盖板可以为聚酰亚胺(polyimide,PI)膜,厚度可以为几 微米到几百微米。
可选地,柔性上盖板和柔性下盖板的材质可以相同,也可以不同,二者的厚度可以相同,也可以不同,本申请对此不做限定。
在一种可能的设计中,柔性上盖板一体成型,柔性下盖板一体成型。为了满足密封性能,防止传热介质从均温板中泄露,柔性上盖板、柔性下盖板可以为一体成型,而不是由多个部分拼接而成,从而能够减少漏液的可能性(拼接处容易发生泄露)。
在一种可能的设计中,毛细结构为以下结构中的至少一种:多孔纤维、丝束、微沟槽、烧结粉末、网目或者微柱阵列。
在一种可能的设计中,传热介质为以下物质中的至少一种:水、甲醇、乙醇、丙酮或者液氨。
第二方面,提供了一种可折叠均温板,包括柔性上盖板、柔性下盖板以及侧壁,其中,柔性上盖板包括第一柔性材料层和第一密封层,该第一密封层设置于第一柔性材料层的内壁面或者外壁面上;该柔性下盖板包括第二柔性材料层和第二密封层,该第二密封层设置于第二柔性材料层的内壁面或者外壁面上;该柔性上盖板通过侧壁与柔性下盖板相连接以形成密闭腔体,该密闭腔体内设置有传热介质和毛细结构;该可折叠均温板包括第一均温区域、第二均温区域以及连接第一均温区域和第二均温区域的弯折区域,该毛细结构连通所述第一均温区域和所述第二均温区域。
基于本申请实施例,柔性上盖板和柔性下盖板均由柔性材料构成,具有柔韧可弯折的特性,通过在第一柔性材料层的内壁面或外壁面设置第一密封层,在第二柔性材料层的内壁面或外壁面设置第二密封层,能够有效避免传热介质的泄露,提升了均温板散热的可靠性。
可选地,可折叠均温板也可以包括多个柔性连接区域,并且包括三个甚至更多个均温区域,本申请对此不做限定。
在一种可能的设计中,该毛细结构包括多个呈条带状的毛细子结构,多个毛细子结构间隔设置。
基于本申请实施例,毛细结构由多个间隔设置的毛细子结构组成,从而增加了毛细结构与蒸汽的接触面积,从而可以提升均温板的传热效率。
在一种可能的设计中,多个毛细子结构平行设置,毛细子结构与可折叠均温板的折叠轴相互平行;或者,毛细子结构的一端位于第一均温区域内,另一端位于第二均温区域内,毛细子结构与可折叠均温板的折叠轴相互垂直。
在一种可能的设计中,该毛细子结构的底端与柔性下盖板相贴合,毛细子结构的顶端靠近该柔性上盖板设置,以支撑该柔性上盖板。
基于本申请实施例,毛细结构同时能够起到支撑作用,既具有良好的热传导性能又简化了均温板的结构。
在一种可能的设计中,该毛细结构与所述柔性下盖板相贴合,该密闭腔体内还设置有支撑柱,该支撑柱的一端与柔性上盖板相连接,另一端向毛细结构方向延伸,从而能够防止均温板的壳体被外部气压压扁。
可选地,该支撑柱可以为金属柱,例如铜柱。
在一种可能的设计中,该第一密封层或者第二密封层的材质包括以下物质中的至少一 种:二氧化钛、三氧化二铝、铜或铝,厚度可以为几纳米到几十微米。
在一种可能的设计中,该侧壁包括位于第一均温区域和第二均温区域的第一侧壁;其中,该第一侧壁的上端部与柔性上盖板密封连接;该第一侧壁的下端部与柔性下盖板密封连接。
在一种可能的设计中,该侧壁还包括位于弯折区域的第二侧壁,该第二侧壁由柔性材料制成,从而能够保证折叠的可靠性。
在一种可能的设计中,该柔性材料为柔性密封胶,例如,可以是聚氨酯密封胶。
在一种可能的设计中,该第一柔性材料层或者第二柔性材料层的材料为以下物质中的至少一种:柔性石墨、柔性橡胶或者柔性树脂。
在一种可能的设计中,该毛细结构为以下结构中的至少一种:多孔纤维、丝束、微沟槽、烧结粉末、网目或者微柱阵列。
在一种可能的设计中,该传热介质为以下物质中的至少一种:水、甲醇、乙醇、丙酮或者液氨。
第三方面,提供了一种可折叠电子设备,包括壳体、折叠屏以及前述第一方面、第二方面提供的可折叠均温板。折叠屏安装在壳体上,壳体内设置有发热元件,可折叠均温板用于将发热元件产生的热量传导至折叠屏。
在一种可能的设计中,还包括设置于壳体内的可折叠中框,发热元件通过可折叠中框将产生的热量传导至可折叠均温板。可选地,壳体内还设置有电路板、摄像头、传感器、麦克风、电池等,但不限于此。
可选地,发热元件可以是应用处理器、射频放大器、功率放大器,电源管理芯片(power management IC,PMIC)等,但不限于此。
在一种可能的设计中,可折叠电子设备可以为以下电子设备中的任意一种:手机、平板电脑、手表、电子阅读器、笔记本电脑、车载设备、网络电视或者可穿戴设备。
附图说明
图1是现有技术中一种均温板的结构示意图。
图2是本申请实施例提供的可折叠均温板的整体结构示意图。
图3是本申请实施例提供的可折叠均温板的爆炸图。
图4是沿图2中AA方向的截面示意图。
图5是第一侧壁的装配结构示意图。
图6是沿图2中AA方向的另一截面示意图。
图7是沿图2中AA方向的另一截面示意图。
图8是沿图2中BB方向的截面示意图。
图9是本申请实施例提供的一种可折叠电子设备的示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,需要理解的是,术语“第一”、“第二”、“第三”、“第四”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”、“第四”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本申请的描述中,需要理解的是,术语“上”、“下”、“侧”、“内”、“外”等指示的方位或位置关系为基于安装的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
为便于理解,本申请首先对均温板进行简单的介绍。
均温板,通常也可以叫均热板、或超导热板、热导板等。均温板主要由外壳、毛细结构以及工作液体、支撑结构等组成,图1是现有技术中一种均温板的结构示意图。
如图1所示,该均温板包括冷凝侧外壳a、蒸发侧外壳b、侧壁c,冷凝侧外壳a通过侧壁c与蒸发侧外壳b相连接并且实现密封,从而限定出均温板的内部腔体d,在内部腔体d内设置毛细结构e,对内部腔体d进行抽真空处理并且充入一定量的工作液体,工作液体能够被吸附在毛细结构e内。此外,由于内部腔体d被抽真空处理,为了防止均温板的外壳被外部气压压扁,还可以在内部腔体d内设置支撑结构f,该支撑结构f的两端分别与冷凝侧外壳a和毛细结构e相连接。
当热量由热源g传导至蒸发侧外壳b时,毛细结构e里面的工作液体吸收热量,在低真空度的环境中开始发生蒸发沸腾相变,由液相变成气相(图1中毛细结构e中的箭头表示液相的工作液体的流向,毛细结构e外部的箭头表示气相的工作液体的流向)。气相的工作液体会很快充满整个内部腔体d,当气相工作液体接触到一个比较冷的区域时便会产生凝结的现象,从而释放出在蒸发时累积的热,凝结后的液相工作液体由于毛细结构e的毛细吸附作用再次回到蒸发热源处,此过程将在腔体内周而复始进行,如此循环便能将热源g产生的热量带出到外部环境。作为一种两相传热设备,均温板能有效的将集中热量扩散开来,其有效导热系数为纯铜的10-20倍。由于均温板具有优异的热传导及均温性能,是解决终端电子产品散热问题的有效途径。
针对目前消费者对大屏体验的追求,可折叠电子设备(例如可折叠手机)已成为下一代电子设备发展的重要趋势,可折叠电子设备的研究也受到了越来越多的关注。其中,可折叠电子设备的散热问题是研究过程中不可忽视的重要方面,散热性能是影响电子设备能否具有良好使用性能的重要因素。
均温板具有优异的热传导及均温性能,是解决电子设备散热问题的有效途径,同样可以使用均温板来对可折叠电子设备进行散热。然而,当前的均温板无法同时满足高折叠可靠性和高导热能力的要求。
具体地,现有的均温板的壳体无法兼顾可折叠性以及高导热性的要求。例如,现有的均温板通常采用金属外壳(例如图1中的冷凝侧外壳a、蒸发侧外壳b可以采用铜或者铜合金材料制成),在多次折叠后容易产生疲劳极限,最终导致外壳断裂,均温板出现泄漏而失效。
再例如,为了满足可折叠的特性,也有的均温板采用柔性石墨薄膜作为外壳。相对于金属,石墨薄膜具有更好的韧性。
石墨材料具有低密度、低热膨胀系数和较高的热导率等优点,是近年来最具发展前景的导热材料。一般石墨材料的常温热导率仅为70~150W/(m·K)左右,而石墨薄膜理论热导率高达2500W/(m·K)。石墨材料的高导热特性源于沿碳六角网状结构组成的石墨片层方向具有的高导热系数。
然而,虽然能够满足可折叠电子设备的折叠可靠性要求,但是石墨薄膜的导热率通常小于1200W/(m·K),而且只是平面方向,在法向上导热率更低,同时制备工艺较复杂。而作为两相传热设备的均温板的等效导热率能达到8000~15000W/(m·K)。采用柔性石墨薄膜作为导热部件,由于其导热率偏低,导致均温效果不好。因此大功耗场景下无法满足可折叠电子设备的散热需求。
针对上述问题,本申请提供一种可折叠均温板和可折叠电子设备,能够满足电子设备对均温板反复折叠的使用要求,并且具有较高的热传导性能。
第一方面,本申请实施例首先提供一种可折叠均温板100。该可折叠均温板100可以用于对可折叠手机等可折叠电子设备进行散热。图2是本申请实施例提供的可折叠均温板100的整体结构示意图。图3是本申请实施例提供的可折叠均温板100的爆炸图。图4是沿图2中AA方向的截面示意图。
如图2-4所示,本申请实施例提供的可折叠均温板100包括柔性上盖板1、柔性下盖板2以及侧壁3。
其中,柔性上盖板1通过侧壁3与柔性下盖板2相连接以形成出密闭腔体4,密闭腔体4内设置有传热介质和毛细结构5。
均温板100包括第一均温区域100a、第二均温区域100b以及连接第一均温区域100a和第二均温区域100b的柔性连接区域100c。
柔性上盖板1位于第一均温区域100a和第二均温区域100b的部分的外侧面上设置第一导热层6。
柔性下盖板1位于第一均温区域100a和第二均温区域100b的部分的外侧面上设置第二导热层7。
在本申请实施例中,均温板100由第一均温区域100a、第二均温区域100b以及柔性连接区域100c三个部分组成,本申请通过在柔性上盖板1和柔性下盖板2位于第一均温区域100a、第二均温区域100b的部分设置导热层,从而能够强化第一均温区域100a和第二均温区域100b的传热效率。本申请的柔性上盖板1和柔性下盖板2均由柔性材料构成,具有柔韧可弯折的特性,柔性上盖板1和柔性下盖板2位于柔性连接区域100c的部分未 设置导热层,从而不会影响均温板100的弯折性能。
本申请实施例提供的均温板100具有良好的弯折特性,能够满足反复折叠的使用需求,同时,本申请实施例提供的均温板100还具有良好的导热和均温性能,从而使得本申请提供的均温板100具有良好的整体性能,提高了用户的使用体验。
应理解,在其他实施例中,均温板100也可以包括多个柔性连接区域,并且包括三个甚至更多个均温区域,本申请对此不做限定。
柔性上盖板1和柔性下盖板2可以由柔性材料构成,具有良好的弯折特性,能够满足反复折叠的使用需求。
可选地,该柔性材料可以包括柔性石墨、柔性高分子(polymer)材料中的至少一种。
例如,该柔性高分子材料可以包括柔性橡胶和柔性树脂。
例如,该柔性材料可以为聚酰亚胺(polyimide,PI)膜,即该柔性上盖板1和柔性下盖板2可以为PI膜,厚度可以为几微米到几百微米。
应理解,柔性上盖板1和柔性下盖板2的材质可以相同,也可以不同,二者的厚度可以相同,也可以不同,本申请对此不做限定。
第一导热层6和第二导热层7由导热材料构成,分别紧密贴合在柔性上盖板1和柔性下盖板2的外侧面上。例如,可以通过导热胶粘接、电镀、原子层沉积(atomic layer deposition,ALD)等技术将第一导热层6和第二导热层7分别设置在柔性上盖板1和柔性下盖板2的外侧面上。
可选地,该导热材料可以为金属、陶瓷、石墨等材料中的任意一种。
例如,该导热材料可以为铜,即第一导热层6和第二导热层7可以为铜膜,厚度可以为几微米到几百微米。
应理解,第一导热层6和第二导热层7的材质可以相同,也可以不同,二者的厚度可以相同,也可以不同,本申请对此不做限定。
可选地,密闭腔体4内的传热介质可以为水、甲醇、乙醇、丙酮或者液氨等中的至少一种,本申请对此不做限定。
应理解,为了使均温板100满足反复折叠的使用需求,在本申请实施例中,毛细结构5也应当是柔韧可弯折的,在多次弯折之后不会发生断裂或破坏。
可选地,毛细结构5可以为多孔纤维、丝束、微沟槽、烧结粉末、网目或者微柱阵列等中的至少一种,本申请对此不做限定。
可选地,为了满足密封性能,防止传热介质从均温板100中泄露,柔性上盖板1、柔性下盖板2可以为一体成型,而不是由多个部分拼接而成,从而能够减少漏液的可能性(拼接处容易发生泄露)。
如图3、4所示,可以在柔性上盖板1和柔性下盖板2位于柔性连接区域100c的部分的外侧面上设置密封涂层12,从而能够降低传热介质通过柔性上盖板1和柔性下盖板2泄露到外部环境的概率,保证均温板100的使用可靠性。
例如,可以使用原子层沉积技术沉积形成该密封涂层12,该密封涂层12的材质可以为铜、三氧化二铝、二氧化钛等中的任意一种,密封涂层12厚度可以为几十纳米到几十微米。
如图3、4所示,在本申请实施例中,柔性上盖板1位于第一均温区域100a和第二均 温区域100b的部分的内侧面上设置第三导热层8。柔性下盖板2位于第一均温区域100a和第二均温区域100b的部分的内侧面上设置第四导热层9。通过以上设置,可以进一步提高均温板100的导热和均温性能。
类似地,第三导热层8和第四导热层9由导热材料构成,分别紧密贴合在柔性上盖板1和柔性下盖板2的内侧面上。例如,可以通过导热胶粘接、电镀、原子层沉积等技术将第三导热层8和第四导热层9分别设置在柔性上盖板1和柔性下盖板2的内侧面上。
可选地,第一导热层6、第二导热层7、第三导热层8以及第四导热层9的材质可以相同,也可以不同,厚度可以相同,也可以不同,本申请对此不做限定。
作为一种可能的实施例,第一导热层6、第二导热层7、第三导热层8以及第四导热层9可以均为铜膜,并且厚度相同,厚度可以在几微米到几百微米之间。
进一步地,在柔性下盖板2的内侧面上设置第四导热层9的前提下,毛细结构5可以与第四导热层9相贴合,从而提高导热效率。
可选地,第四导热层9和毛细结构5可以均由金属材质构成,此时可以通过扩散焊等工艺将毛细结构5紧密贴合于第四导热层9之上。
如图4所示,由于柔性下盖板2位于柔性连接区域100c的部分的内表面上并未设置第四导热层9,此时毛细结构5位于柔性连接区域100c的部分和柔性下盖板2之间形成有避让空间10,该避让空间10能够在折叠时避让(或者说容置)柔性下盖板2位于柔性连接区域100c的部分,从而提高折叠的可靠性。
如图3、4所示,密闭腔体4内还设置有支撑柱11,支撑柱11的一端与第三导热层8或者柔性上盖板1相连接,支撑柱11的另一端向毛细结构5方向延伸。
具体地,为了防止均温板100的壳体被外部气压压扁,还可以在密闭腔体4内设置支撑柱11,该支撑柱11的一端连接于第三导热层8之上,或者连接于柔性上盖板1位于柔性连接区域100c的部分之上,而另一端向毛细结构5方向延伸,例如可以和毛细结构5相连接,也可以预留一定的间隙(即此时允许壳体有一定的变形量)或者伸入毛细结构5之内,本申请对此不做限定。
可选地,该支撑柱11可以为金属柱,例如铜柱。
可选地,可以通过蚀刻或者电镀等工艺在第三导热层8或者柔性上盖板1上形成该支撑柱11。
如图2-4所示,在本申请实施例中,侧壁3由两部分组成,分别是位于第一均温区域100a和第二均温区域100b的第一侧壁3a,以及,位于柔性连接区域100c的第二侧壁3b。
其中,第一侧壁3a的上端部与第三导热层8密封连接,第一侧壁3a的下端部与第四导热层9密封连接。
图5是第一侧壁3a的装配结构示意图。如图4、5所示,为了提高密封性能,可以通过刻蚀或者电镀等工艺将第一侧壁3a形成于第四导热层9之上。
此外,第一侧壁3a、第三导热层8以及第四导热层9可以均由金属材料制成,此时第一侧壁3a的上端部可以与所述第三导热层焊接密封,并且第一侧壁3a的下端部与所述第四导热层焊接密封,例如,该焊接可以包括钎焊、扩散焊、激光焊等中的任意一种。
在本申请实施例中,为了保证折叠的可靠性,设置于柔性连接区域100c的第二侧壁3b可以由柔性材料制成。该柔性材料可以为柔性密封胶,例如,可以是聚氨酯密封胶。
图6是沿图2中AA方向的另一截面示意图。如图6所示,本申请实施例提供的可折叠均温板包括柔性上盖板1、柔性下盖板2以及侧壁3。
其中,柔性上盖板1包括第一柔性材料层1a和第一密封层1b,该第一密封层1b设置于第一柔性材料层1a的内壁面或者外壁面上;
柔性下盖板2包括第二柔性材料层2a和第二密封层2b,该第二密封层设置于第二柔性材料层2b的内壁面或者外壁面上。
在一个示例中,如图6中的(a)所示,该第一密封层1b设置于第一柔性材料层1a的内壁面上,第二密封层2b设置于第二柔性材料层2a的内壁面上。
在另一个示例中,如图6中的(b)所示,该第一密封层1b设置于第一柔性材料层1a的内壁面上,第二密封层2b设置于第二柔性材料层2a的外壁面上。
在另一个示例中,如图6中的(c)所示,该第一密封层1b设置于第一柔性材料层1a的外壁面上,第二密封层2b设置于第二柔性材料层2a的内壁面上。
在另一个示例中,如图6中的(d)所示,该第一密封层1b设置于第一柔性材料层1a的外壁面上,第二密封层2b设置于第二柔性材料层2a的外壁面上。
柔性上盖板1通过侧壁3与柔性下盖板2相连接以形成出密闭腔体4,该密闭腔体4内设置有传热介质和毛细结构5。
可折叠均温板100包括第一均温区域100a、第二均温区域100b以及连接第一均温区域100a和第二均温区域100b的弯折区域100c,该毛细结构5连通第一均温区域100a和第二均温区域100b。
应理解,第一柔性材料层1a和第二柔性材料层2a可以由柔性材料构成,具有良好的弯折特性,能够满足反复折叠的使用需求。
可选地,该柔性材料可以包括柔性石墨、柔性高分子(polymer)材料中的至少一种。
例如,该柔性高分子材料可以包括柔性橡胶和柔性树脂。
例如,该柔性材料可以为聚酰亚胺(polyimide,PI)膜,该柔性材料还可以为聚乙烯(polyethylene,PE),厚度可以为几微米到几百微米。
应理解,第一柔性材料层1a和第二柔性材料层2a的材质可以相同,也可以不同,二者的厚度可以相同,也可以不同,本申请对此不做限定。
第一密封层2a和第二密封层2b可以为金属、金属氧化物或其他密封薄层。
例如,可以使用原子层沉积技术沉积形成该第一密封层2a和第二密封层2b,该第一密封层2a和第二密封层2b可以为铜、铝、三氧化二铝、二氧化钛等中的任意一种,厚度可以为几纳米到几十微米。
应理解,该第一密封层2a和第二密封层2b的材质可以相同,也可以不同,二者的厚度可以相同,也可以不同,本申请对此不做限定。
应理解,密封层可以通过电镀或胶粘或焊接等工艺附着于柔性材料层的内壁面上或外壁面上。
可选地,侧壁3包括位于第一均温区域和第二均温区域的第一侧壁,其中,该第一侧壁的上端部与柔性上盖板1密封连接,下端部与柔性下盖板2密封连接。
例如,该第一侧壁可以通过钎焊、扩散焊、激光焊等焊接方式与柔性上盖板、柔性下盖板实现密封连接,或者该第一侧壁可以通过胶水与柔性上盖板、柔性下盖板实现密封连 接。
可选地,侧壁3还包括位于弯折区域的第二侧壁,该第二侧壁由柔性材料制成。
可选地,该柔性材料为柔性密封胶,如,可以是聚氨酯密封胶。
基于本申请实施例,柔性上盖板和柔性下盖板均由柔性材料构成,具有柔韧可弯折的特性,通过在第一柔性材料层的内壁面或外壁面设置第一密封层,在第二柔性材料层的内壁面或外壁面设置第二密封层,能够有效避免传热介质的泄露,提升了均温板散热的可靠性。
可选地,在一个示例中,该柔性上盖板1还可以包括第一导热层1c,该第一导热层1c设置于该柔性上盖板1位于第一均温区域100a和第二均温区域100b的内壁面上;该柔性下盖板2还可以包括第二导热层2c,该第二导热层2c设置于该柔性下盖板2位于第一均温区域100a和第二均温区域100b的内壁面上。
基于该技术方案,该第一导热层和第二导热层能够强化第一均温区域和第二均温区域的传热效率,从而使得可折叠均温板不仅具有较高的热传导性能,而且可以避免传热介质的泄露,从而提升了可折叠均温板的整体性能。
图7是沿图2中AA方向的另一截面示意图,图8是沿图2中BB方向的截面示意图。如图7、8所示,该毛细结构包括多个呈条带状的毛细子结构5a,该多个毛细子结构5a间隔设置,多个毛细子结构5a之间为传热通道。
在一种可能的实现方式中,该多个毛细子结构5a平行设置,该毛细子结构5a与可折叠均温板100的折叠轴平行。
在另一种可能的实现方式中,该多个毛细子结构5a平行设置,该毛细子结构5a的一端位于第一均温区域100a内,毛细子结构5a的另一端位于第二均温区域100b内与可折叠均温板100的折叠轴垂直。
应理解,该毛细子结构5a还可以与可折叠均温板100的折叠轴呈一定的角度设置,如30度、45度等,本申请实施例对此不予限定。
在另一种可能的实现方式中,该毛细结构的底端与柔性下盖板2相贴合,顶端靠近柔性上盖板1设置,以用于支撑该柔性上盖板。该毛细结构在传热的同时能够起到支撑作用,既具有良好的热传导性能又简化了均温板的结构。
示例性地,为了防止均温板100的壳体被外部气压压扁,毛细结构5的一端可以与柔性下盖板2贴合,另一端靠近柔性上盖板1,例如,毛细结构5的另一端可以与柔性上盖板1相连接,也可以预留一定的间隙(即此时允许壳体有一定的变形量)。
当毛细结构5的底端与柔性下盖板2相贴合,顶端靠近柔性上盖板1设置时,该毛细结构5能够起到支撑作用,该技术方案既简化了可折叠均温板的结构,又提高了均温板的导热效率。
可选地,该毛细结构5与柔性下盖板2相贴合,且密闭腔体内还设置有支撑柱,该支撑柱的一端与柔性上盖板相连接,另一端向毛细结构5方向延伸。
示例性地,该支撑柱可以为金属柱,如铜柱。
同样的,该支撑柱的一端与柔性上盖板1相连接,另一端可以与毛细结构5相连接,也可以与毛细结构5距离一定的间隙,还可以深入毛细结构5内,本申请实施例对此不予限定。
可选地,该毛细结构5可以为多孔纤维、丝束、微沟槽、烧结粉末、网目或者微柱阵列等。
例如,该毛细结构5可以为铜网、烧结铜粉、蚀刻沟槽、电镀多孔结构等。
可选地,该密闭腔体内的传热物质可以为水、甲醇、乙醇、丙酮或者液氨等。
另一方面,本申请实施例还提供的一种可折叠电子设备,该电子设备包括前述第一方面提供的可折叠均温板100。该可折叠电子设备可以是任何具有通信和/或存储功能的设备,例如可以是手机、平板电脑、手表、电子阅读器、笔记本电脑、车载设备、网络电视、可穿戴设备等智能设备。
请参阅图9,图9是本申请实施例提供的一种可折叠电子设备1000的示意图。作为示例而非限定,在本实施例中,电子设备1000为手机。
如图9所示,电子设备1000包括折叠屏200和壳体300,折叠屏200安装在壳体300上。电子设备1000还包括设置于壳体300内部的可折叠中框400以及电路板500,电路板500上设置有发热元件600,此外壳体300内还设置有摄像头、传感器、麦克风、电池等,但不限于此。
可选地,该发热元件600可以是应用处理器、射频放大器、功率放大器,电源管理芯片(power management IC,PMIC)等,但不限于此。
进一步地,本申请实施例提供的可折叠电子设备1000包括前述第一方面提供的可折叠均温板100。
具体地,可以在可折叠中框400和折叠屏200之间设置可折叠均温板100。例如,均温板的第一均温区域100a和第二均温区域100b的上表面可以通过胶粘的方式固定在折叠屏200的下方;或者,第一均温区域100a和第二均温区域100b的下表面可以通过胶粘、焊接等方式固定在可折叠中框400上;或者,第一均温区域100a和第二均温区域100b可以通过胶粘的方式同时与可折叠中框400和折叠屏200贴合并固定。其中,柔性连接区域100c可以不固定,使得柔性连接区域100c可以自由弯折。
电路板500上设置有发热元件600,该发热元件600在工作时能够产生热量,发热元件600通过可折叠中框400与可折叠均温板100相连接,并且通过可折叠中框400将产生的热量传导至可折叠均温板100上,在可折叠均温板100上依次由第一均温区域100a、柔性连接区域100c传导至第二均温区域100b,使热量在可折叠均温板100上尽可能的分布均匀,最终热量通过可折叠均温板100传导至折叠屏200上,并且散发至环境中。
本申请实施例提供的均温板可以在满足高导热性能的同时,满足良好的弯折性能,进而也提高了应用该均热板的可折叠电子设备的散热性能和转轴处的弯折性能,为用户提供了良好的使用体验。
可选地,本申请实施例提供的可折叠电子设备1000包括前述第二方面提供的可折叠均温板100。
本申请实施例提供的可折叠均温板,通过在第一柔性材料层的内壁面或外壁面设置第一密封层,在第二柔性材料层的内壁面或外壁面设置第二密封层,能够有效避免传热介质的泄露,提升了均温板散热的可靠性。以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应 以所述权利要求的保护范围为准。

Claims (30)

  1. 一种可折叠均温板,其特征在于,包括柔性上盖板、柔性下盖板以及侧壁,其中,
    所述柔性上盖板通过所述侧壁与所述柔性下盖板相连接以形成密闭腔体,所述密闭腔体内设置有传热介质和毛细结构;
    所述均温板包括第一均温区域、第二均温区域以及连接所述第一均温区域和所述第二均温区域的柔性连接区域;
    所述柔性上盖板位于所述第一均温区域和所述第二均温区域的部分的外侧面上设置第一导热层;
    所述柔性下盖板位于所述第一均温区域和所述第二均温区域的部分的外侧面上设置第二导热层。
  2. 根据权利要求1所述的可折叠均温板,其特征在于,所述柔性上盖板位于所述第一均温区域和所述第二均温区域的部分的内侧面上设置第三导热层;
    所述柔性下盖板位于所述第一均温区域和所述第二均温区域的部分的内侧面上设置第四导热层。
  3. 根据权利要求2所述的可折叠均温板,其特征在于,所述毛细结构与所述第四导热层相贴合。
  4. 根据权利要求3所述的可折叠均温板,其特征在于,所述毛细结构位于所述柔性连接区域的部分和所述柔性下盖板之间形成有避让空间。
  5. 根据权利要求3或4所述的可折叠均温板,其特征在于,所述密闭腔体内还设置有支撑柱,所述支撑柱的一端与所述第三导热层或者所述柔性上盖板相连接,所述支撑柱的另一端向所述毛细结构方向延伸。
  6. 根据权利要求2-5中任一项所述的可折叠均温板,其特征在于,所述侧壁包括位于所述第一均温区域和所述第二均温区域的第一侧壁;
    所述第一侧壁的上端部与所述第三导热层密封连接;
    所述第一侧壁的下端部与所述第四导热层密封连接。
  7. 根据权利要求6所述的可折叠均温板,其特征在于,所述第一侧壁、所述第三导热层以及所述第四导热层均由金属材料制成;
    所述上端部与所述第三导热层焊接密封;
    所述下端部与所述第四导热层焊接密封。
  8. 根据权利要求1-7中任一项所述的可折叠均温板,其特征在于,所述柔性上盖板和所述柔性下盖板位于所述柔性连接区域的部分的外侧面上设置有密封涂层。
  9. 根据权利要求8所述的可折叠均温板,其特征在于,所述密封涂层的材质包括以下物质中的至少一种:
    二氧化钛、三氧化二铝、铜或铝。
  10. 根据权利要求1-9中任一项所述的可折叠均温板,其特征在于,所述侧壁包括位于所述柔性连接区域的第二侧壁,所述第二侧壁由柔性材料制成。
  11. 根据权利要求10所述的可折叠均温板,其特征在于,所述柔性材料为柔性密封 胶。
  12. 根据权利要求1-11中任一项所述的可折叠均温板,其特征在于,所述柔性上盖板和所述柔性下盖板的材料为以下物质中的至少一种:
    柔性石墨、柔性橡胶或者柔性树脂。
  13. 根据权利要求1-12中任一项所述的可折叠均温板,其特征在于,所述柔性上盖板一体成型,所述柔性下盖板一体成型。
  14. 根据权利要求1-13中任一项所述的可折叠均温板,其特征在于,所述毛细结构为以下结构中的至少一种:
    多孔纤维、丝束、微沟槽、烧结粉末、网目或者微柱阵列。
  15. 根据权利要求1-14中任一项所述的可折叠均温板,其特征在于,所述传热介质为以下物质中的至少一种:
    水、甲醇、乙醇、丙酮或者液氨。
  16. 一种可折叠均温板,其特征在于,包括柔性上盖板、柔性下盖板以及侧壁,其中,
    所述柔性上盖板包括第一柔性材料层和第一密封层,所述第一密封层设置于所述第一柔性材料层的内壁面或者外壁面上;
    所述柔性下盖板包括第二柔性材料层和第二密封层,所述第二密封层设置于所述第二柔性材料层的内壁面或者外壁面上;
    所述柔性上盖板通过所述侧壁与所述柔性下盖板相连接以形成密闭腔体,所述密闭腔体内设置有传热介质和毛细结构;
    所述可折叠均温板包括第一均温区域、第二均温区域以及连接所述第一均温区域和所述第二均温区域的弯折区域,所述毛细结构连通所述第一均温区域和所述第二均温区域。
  17. 根据权利要求16所述的可折叠均温板,其特征在于,所述毛细结构包括多个呈条带状的毛细子结构,多个所述毛细子结构间隔设置。
  18. 根据权利要求17所述的可折叠均温板,其特征在于,多个所述毛细子结构平行设置,所述毛细子结构与所述可折叠均温板的折叠轴相互平行;或者,
    所述毛细子结构的一端位于所述第一均温区域内,另一端位于所述第二均温区域内,所述毛细子结构与所述可折叠均温板的折叠轴相互垂直。
  19. 根据权利要求17或18所述的可折叠均温板,其特征在于,所述毛细子结构的底端与所述柔性下盖板相贴合,所述毛细子结构的顶端靠近所述柔性上盖板设置,以支撑所述柔性上盖板。
  20. 根据权利要求16-18中任一项所述的可折叠均温板,其特征在于,所述毛细结构与所述柔性下盖板相贴合,所述密闭腔体内还设置有支撑柱,所述支撑柱的一端与所述柔性上盖板相连接,另一端向所述毛细结构方向延伸。
  21. 根据权利要求16-20中任一项所述的可折叠均温板,其特征在于,所述第一密封层或者所述第二密封层的材质包括以下物质中的至少一种:
    二氧化钛、三氧化二铝、铜或铝。
  22. 根据权利要求16-21中任一项所述的可折叠均温板,其特征在于,所述侧壁包括位于所述第一均温区域和所述第二均温区域的第一侧壁;
    其中,所述第一侧壁的上端部与所述柔性上盖板密封连接;
    所述第一侧壁的下端部与所述柔性下盖板密封连接。
  23. 根据权利要求22所述的可折叠均温板,其特征在于,所述侧壁还包括位于所述弯折区域的第二侧壁,所述第二侧壁由柔性材料制成。
  24. 根据权利要求23所述的可折叠均温板,其特征在于,所述柔性材料为柔性密封胶。
  25. 根据权利要求16-24中任一项所述的可折叠均温板,其特征在于,所述第一柔性材料层或者所述第二柔性材料层的材料为以下物质中的至少一种:
    柔性石墨、柔性橡胶或者柔性树脂。
  26. 根据权利要求16-25中任一项所述的可折叠均温板,其特征在于,所述毛细结构为以下结构中的至少一种:
    多孔纤维、丝束、微沟槽、烧结粉末、网目或者微柱阵列。
  27. 根据权利要求16-26中任一项所述的可折叠均温板,其特征在于,所述传热介质为以下物质中的至少一种:
    水、甲醇、乙醇、丙酮或者液氨。
  28. 一种可折叠电子设备,其特征在于,包括壳体、折叠屏以及如权利要求1-15、16-27中任一项所述的可折叠均温板,所述折叠屏安装在所述壳体上,所述壳体内设置有发热元件,所述可折叠均温板用于将所述发热元件产生的热量传导至所述折叠屏。
  29. 根据权利要求28所述的可折叠电子设备,其特征在于,还包括设置于所述壳体内的可折叠中框,所述发热元件通过所述可折叠中框将产生的热量传导至所述可折叠均温板。
  30. 根据权利要求28或29所述的可折叠电子设备,其特征在于,所述可折叠电子设备可以为以下电子设备中的任意一种:
    手机、平板电脑、手表、电子阅读器、笔记本电脑、车载设备、网络电视或者可穿戴设备。
PCT/CN2020/132309 2019-11-28 2020-11-27 可折叠均温板和可折叠电子设备 WO2021104463A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911188346.8 2019-11-28
CN201911188346 2019-11-28

Publications (1)

Publication Number Publication Date
WO2021104463A1 true WO2021104463A1 (zh) 2021-06-03

Family

ID=75187198

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/132309 WO2021104463A1 (zh) 2019-11-28 2020-11-27 可折叠均温板和可折叠电子设备

Country Status (2)

Country Link
CN (1) CN112595155B (zh)
WO (1) WO2021104463A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046414A (zh) * 2022-07-05 2022-09-13 深圳垒石热管理技术股份有限公司 一种均温板的生产工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113556919B (zh) * 2021-06-10 2023-03-24 华为技术有限公司 散热件及电子设备
CN115707170A (zh) * 2021-08-10 2023-02-17 庆鼎精密电子(淮安)有限公司 电路板及其制作方法
CN113834358A (zh) * 2021-09-23 2021-12-24 华南理工大学 一种纤维型柔性平板热管及其制备方法
CN115930645A (zh) * 2022-12-01 2023-04-07 华南理工大学 一种超薄柔性均热板构造及其制备方法
CN117042422B (zh) * 2023-10-10 2023-12-22 歌尔股份有限公司 均温板及电子设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762508Y (zh) * 2004-12-22 2006-03-01 珍通科技股份有限公司 弯折式均温板
CN107529315A (zh) * 2016-06-15 2017-12-29 台达电子工业股份有限公司 均温板与散热装置
US20190204018A1 (en) * 2018-01-03 2019-07-04 Asia Vital Components Co., Ltd. Anti-pressure structure of heat dissipation device
CN110418550A (zh) * 2019-06-25 2019-11-05 华为技术有限公司 均热板和折叠终端

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001183080A (ja) * 1999-12-24 2001-07-06 Furukawa Electric Co Ltd:The 圧縮メッシュウイックの製造方法、および、圧縮メッシュウイックを備えた平面型ヒートパイプ
CN101307996B (zh) * 2007-05-17 2010-06-02 私立淡江大学 平板蒸发器结构及具有平板蒸发器结构的回路式热管
CN101839663A (zh) * 2010-05-12 2010-09-22 锘威科技(深圳)有限公司 一种烧结式平板热管及其制作方法
EP3531811A4 (en) * 2016-11-25 2019-10-30 Huawei Technologies Co., Ltd. HEAT EXCHANGE PLATE, HEAT DISPOSAL DEVICE AND ELECTRONIC DEVICE
CN106813525A (zh) * 2017-02-08 2017-06-09 锘威科技(深圳)有限公司 一种平板热管结构及其制造方法
CN109509402B (zh) * 2017-09-14 2022-03-18 广州国显科技有限公司 一种柔性显示装置
CN110425918A (zh) * 2019-07-24 2019-11-08 南京航空航天大学 一种超薄柔性平板热管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2762508Y (zh) * 2004-12-22 2006-03-01 珍通科技股份有限公司 弯折式均温板
CN107529315A (zh) * 2016-06-15 2017-12-29 台达电子工业股份有限公司 均温板与散热装置
US20190204018A1 (en) * 2018-01-03 2019-07-04 Asia Vital Components Co., Ltd. Anti-pressure structure of heat dissipation device
CN110418550A (zh) * 2019-06-25 2019-11-05 华为技术有限公司 均热板和折叠终端

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115046414A (zh) * 2022-07-05 2022-09-13 深圳垒石热管理技术股份有限公司 一种均温板的生产工艺

Also Published As

Publication number Publication date
CN112595155B (zh) 2023-01-13
CN112595155A (zh) 2021-04-02

Similar Documents

Publication Publication Date Title
WO2021104463A1 (zh) 可折叠均温板和可折叠电子设备
WO2021143674A1 (zh) 移动终端、均热板及其制备方法、电子设备
WO2021238450A1 (zh) 柔性显示装置
CN107407531B (zh) 片型热管
TW202037871A (zh) 可撓動之均溫板
CN110966882B (zh) 一种均温板、均温板的制备方法及电子设备
WO2021203825A1 (zh) 散热装置、散热装置的制备方法及电子设备
WO2021018004A1 (zh) 一种导热装置及终端设备
KR102415707B1 (ko) 증기 챔버 열 스트랩 조립체 및 방법
US20210131754A1 (en) Vapor Chamber and Capillary Film Thereof
WO2022135262A1 (zh) 电子设备
Chen et al. Design, fabrication and thermal performance of a novel ultra-thin loop heat pipe with printed wick structure for mobile electronics cooling
CN111770222A (zh) 终端中板、中框和终端
TW202126979A (zh) 具有雙面毛細結構之超薄型均溫板及其製作方法
JP2007093033A (ja) シート状ヒートパイプおよびその製造方法
WO2021190552A1 (zh) 移动终端及中框组件
CN111432598A (zh) 电子设备的壳体组件及电子设备
WO2023024564A1 (zh) 壳体组件及电子设备
CN116182608A (zh) 具有微细结构层的均温板
KR102683236B1 (ko) 증기 챔버 열 스트랩 조립체 및 방법
TWI793843B (zh) 熱導裝置及其製造方法、電連接器和電子裝置
TWI721574B (zh) 複合材料散熱器及其電子裝置
US20220087073A1 (en) Heat conducting part and electronic device
CN118215258A (zh) 散热装置及电子设备
TWM624443U (zh) 熱導裝置、電連接器和電子裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20893591

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20893591

Country of ref document: EP

Kind code of ref document: A1