WO2021143674A1 - 移动终端、均热板及其制备方法、电子设备 - Google Patents

移动终端、均热板及其制备方法、电子设备 Download PDF

Info

Publication number
WO2021143674A1
WO2021143674A1 PCT/CN2021/071267 CN2021071267W WO2021143674A1 WO 2021143674 A1 WO2021143674 A1 WO 2021143674A1 CN 2021071267 W CN2021071267 W CN 2021071267W WO 2021143674 A1 WO2021143674 A1 WO 2021143674A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover plate
plate
material layer
mobile terminal
middle frame
Prior art date
Application number
PCT/CN2021/071267
Other languages
English (en)
French (fr)
Inventor
靳林芳
陈丘
刘用鹿
牛臣基
刘佳驹
Original Assignee
荣耀终端有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 荣耀终端有限公司 filed Critical 荣耀终端有限公司
Priority to BR112022013989A priority Critical patent/BR112022013989A2/pt
Priority to MX2022008606A priority patent/MX2022008606A/es
Priority to EP21741648.6A priority patent/EP4007468B1/en
Priority to CN202180000700.9A priority patent/CN113455116B/zh
Priority to US17/755,121 priority patent/US20230019481A1/en
Publication of WO2021143674A1 publication Critical patent/WO2021143674A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20509Multiple-component heat spreaders; Multi-component heat-conducting support plates; Multi-component non-closed heat-conducting structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • H04M1/185Improving the rigidity of the casing or resistance to shocks
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20327Accessories for moving fluid, for connecting fluid conduits, for distributing fluid or for preventing leakage, e.g. pumps, tanks or manifolds
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0206Portable telephones comprising a plurality of mechanically joined movable body parts, e.g. hinged housings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • This application relates to the technical field of mobile terminals, in particular to mobile terminals, soaking plates and their preparation methods, and electronic equipment.
  • terminal electronic products take the characteristics of lightness, thinness, and portability as hot spots.
  • the middle frame is partially perforated, and the soaking plate is embedded in the middle frame.
  • the overall structural strength is weakened.
  • the existing soaking plate is also developing towards lightness and thinness and large area and large span, but the thinning of the plate or the large area and large span makes the structural strength of the soaking plate weaker, and it is often easy to deform under the action of external forces such as bending, twisting, and pressing. , Affecting its heat dissipation function. Therefore, how to improve the overall structural stability of the mobile terminal without affecting heat dissipation has become a design focus.
  • the present application provides a mobile terminal, a soaking plate and a preparation method thereof, and electronic equipment.
  • the soaking plate and the middle frame are combined to be used as a structural support to improve the structural strength of the soaking plate. , Without affecting the heat dissipation, improve the overall structural stability of the mobile terminal.
  • the present application provides a mobile terminal, including a middle frame, a display screen, a circuit board, and a battery.
  • the mobile terminal further includes a heat spreader, and the heat spreader includes:
  • a housing the housing includes a first cover plate and a second cover plate, the first cover plate and the second cover plate are hermetically connected to form a sealed cavity, and the inside of the sealed cavity is in a negative pressure environment, and Is provided with a cooling medium; a capillary structure, the capillary structure is arranged in the sealed cavity; the material of the first cover plate and/or the second cover plate is a high-strength composite material, the high-strength composite material includes At least one first material layer and at least one second material layer, the material of the first material layer is at least one of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, and chromium alloy, The material of the second material layer is copper or copper alloy; the second material layer is located inside the casing, so that the first material layer is isolated from the cooling medium;
  • the middle frame is provided with a through hole, and the heat equalizing plate is embedded in the through hole; the heat equalizing plate and the middle frame jointly carry the display screen, the circuit board and the battery.
  • connection between the heat equalizing plate and the middle frame includes any one or more of riveting, bonding, welding, lap joint, and metal overmolding.
  • the middle frame includes a middle frame side wall and a middle frame extension piece, and the middle frame extension piece is connected to a side wall of the middle frame side wall close to the through hole. side.
  • the heat equalizing plate further includes a step fixing portion extending along at least a part of the edge of the equalizing plate, and the step fixing portion is connected to the middle frame extension.
  • the total thickness of the middle frame extension and the step fixing portion is greater than or equal to the thickness of the heat equalizing plate.
  • the mobile terminal further includes a connection layer for connecting the step fixing portion and the middle frame extension piece, the middle frame extension piece and the connection layer
  • the sum of the thicknesses of the step fixing portion and the step fixing portion is greater than or equal to the thickness of the heat equalizing plate.
  • the step fixing portion is provided with openings and/or slots.
  • the heat equalizing plate is provided with mounting grooves and/or mounting holes along the thickness direction.
  • the mounting groove is recessed and formed on the first cover plate or the second cover plate along the thickness direction of the heat equalizing plate;
  • the mounting hole penetrates the first cover plate and/or the second cover plate.
  • a number of electrical connection points are distributed on the middle frame extension and/or the step fixing portion.
  • the heat equalizing plate includes a first section, a second section, and a bending section connecting the first section and the second section, and the first section There is a height difference with the second section, and the capillary structure remains continuous in the first section, the second section, and the bending section.
  • the mobile terminal further includes a heat dissipation layer and a heating device, and the heating device is sandwiched between the heat equalizing plate and the heat dissipation layer to form a sandwich heat dissipation structure .
  • the battery and the display screen are respectively arranged in parallel on both sides of the heat equalizing plate, and the equalizing plate includes a battery surface facing the battery and an orientation
  • the display surface of the display screen, the display screen and the display surface are parallel and do not touch.
  • the mobile terminal is a foldable mobile terminal, and when the mobile terminal is in a folded or bent state, the battery and the display screen are respectively arranged in parallel to the On both sides of the heat equalizing plate, the display screen is parallel and not in contact with the display surface, and the battery is connected to the middle frame and is close to the battery surface of the equalizing plate.
  • the circuit board and the battery are arranged on the same side of the heat equalizing plate, and the area of the battery surface of the equalizing plate is larger than the thickness of the battery The projected area of the direction.
  • the heat equalizing plate includes an evaporation zone and a condensation zone, and the distribution density of the capillary structure in the evaporation zone is greater than the distribution density in the condensation zone.
  • the heat equalizing plate further includes a supporting structure extending from the inner surface of the housing to the inner space of the housing.
  • the support structure abuts against the first cover plate and/or the second cover plate.
  • the inner core material of the support structure is the material of the first material layer
  • the outer periphery material of the support structure is the material of the second material layer.
  • the material of the support structure is any one of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, or chromium alloy.
  • the second material layer is spliced with the capillary structure and arranged around the outer periphery of the support structure.
  • the support structure and the housing are an integral structure, and the support structure is a plurality of columns or bumps arranged in an array.
  • the capillary structure is a porous medium made of metal.
  • the capillary structure is one or more of copper mesh, copper fiber, copper powder, or foamed copper.
  • the cooling medium is deionized water.
  • the capillary structure is disposed on the second material layer of the first cover plate and/or the second cover plate.
  • the surface hardness of the cover plate made of the high-strength composite material is ⁇ 120Hv.
  • a soaking plate which includes:
  • a housing the housing includes a first cover plate and a second cover plate, the first cover plate and the second cover plate are hermetically connected to form a sealed cavity, and the inside of the sealed cavity is in a negative pressure environment, and Is provided with a cooling medium; a capillary structure, the capillary structure is arranged in the sealed cavity; the material of the first cover plate and/or the second cover plate is a high-strength composite material, the high-strength composite material includes At least one first material layer and at least one second material layer, the material of the first material layer is at least one of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, and chromium alloy, The material of the second material layer is copper or copper alloy; the second material layer is located inside the casing, so that the first material layer is isolated from the cooling medium.
  • the heat equalizing plate further includes: a support structure extending from the inner surface of the housing to the inner space of the housing.
  • the material of the inner core of the support structure is the material of the first material layer
  • the material of the outer periphery of the support structure is the material of the second material layer
  • the supporting structure abuts against the first cover plate and/or the second cover plate.
  • the support structure and the housing are an integral structure, and the support structure is a plurality of columns or bumps arranged in an array.
  • the second material layer of the first cover plate and the second material layer of the second cover plate are enclosed to form the sealed cavity.
  • the high-strength composite material further includes a third material layer, and the first material layer is sandwiched between the second material layer and the third material layer. Between the layers, the material of the third material layer is copper or copper alloy.
  • the capillary structure is a porous medium made of metal.
  • the capillary structure is one or more of copper mesh, copper fiber, copper powder, or foamed copper.
  • the cooling medium is deionized water.
  • the capillary structure is disposed on the second material layer of the first cover plate and/or the second cover plate.
  • the surface hardness of the cover plate made of the high-strength composite material is ⁇ 120Hv.
  • the heat equalizing plate further includes a step fixing portion extending along at least part of the edge of the equalizing plate.
  • the step fixing portion is provided with openings and/or slots.
  • the heat equalizing plate is provided with mounting grooves and/or mounting holes along the thickness direction.
  • the mounting groove is recessed and formed on the first cover plate or the second cover plate along the thickness direction of the heat equalizing plate;
  • the mounting hole penetrates the first cover plate and/or the second cover plate.
  • the heat equalizing plate includes a first section, a second section, and a bending section connecting the first section and the second section, and the first section There is a height difference with the second section, and the capillary structure remains continuous in the first section, the second section, and the bending section.
  • the heat equalizing plate includes an evaporation zone and a condensation zone, and the distribution density of the capillary structure in the evaporation zone is greater than the distribution density in the condensation zone.
  • the present application provides a method for preparing a soaking plate, the method including:
  • the second material layer is arranged on one side of the first material layer to form a second cover plate.
  • the material of the first material layer is stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, and chromium alloy. At least one, the material of the second material layer is copper or copper alloy;
  • the support structure is arranged on the inner surface of the housing and extends to the inner space of the housing, the inner core of the support structure is made of the material of the first material layer, and the outer periphery of the support structure
  • the material of is the material of the second material layer;
  • the capillary structure is arranged on the second material layer of the first cover plate or the second material layer of the second cover plate, and the first cover plate and the second cover plate are combined to form a hollow shell , And inject a cooling medium into the casing; the second material layer is located inside the casing, so that the first material layer is isolated from the cooling medium;
  • the heat circulation of the cooling medium in the casing is realized through the capillary structure and the steam passage.
  • the present application provides an electronic device including a working module and a heat dissipation module.
  • the heat dissipation module includes the heat equalizing plate as described in the second aspect above, and the heat equalizing plate is used to dissipate heat from the working module.
  • the electronic device further includes a middle frame and a display screen, the middle frame is provided with a through hole, the heat equalizing plate is embedded in the through hole, and The heat equalizing plate and the middle frame jointly carry the display screen.
  • Fig. 1 is a schematic diagram of the structure of a soaking plate provided in the prior art
  • Figure 2 is a comparison diagram of the heat dissipation capacity of the soaking plate, heat pipe and pure copper;
  • FIG. 3 is a schematic diagram of the heat dissipation mechanism of the soaking plate provided by an embodiment of the application;
  • FIG. 4 is a schematic structural diagram of a soaking plate provided by an embodiment of the application.
  • FIG. 5 is a schematic diagram of a structure of a high-strength composite material provided by an embodiment of the application.
  • FIG. 6 is a schematic structural diagram of another uniform heating plate provided by an embodiment of the application.
  • FIG. 7 is a schematic structural diagram of another uniform heating plate provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of another uniform heating plate provided by an embodiment of the application.
  • FIG. 9 is a schematic structural diagram of another heat spreading plate provided by an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of another uniform heating plate provided by an embodiment of the application.
  • FIG. 11 is a schematic structural diagram of another uniform heating plate provided by an embodiment of the application.
  • FIG. 12 is a schematic structural diagram of another uniform heating plate provided by an embodiment of the application.
  • FIG. 13 is a schematic structural diagram of another heat spreading plate provided by an embodiment of the application.
  • Fig. 14a is a schematic structural diagram of another heat spreader provided by an embodiment of the application.
  • Fig. 14b is a schematic structural diagram of another heat spreader provided by an embodiment of the application.
  • Fig. 15a is a schematic structural diagram of another heat spreader provided by an embodiment of the application.
  • Figure 15b is a schematic structural diagram of another heat spreader provided by an embodiment of the application.
  • FIG. 15c is a schematic structural diagram of another heat spreading plate provided by an embodiment of the application.
  • FIG. 16 is a schematic structural diagram of another heat spreading plate provided by an embodiment of the application.
  • FIG. 17 is a schematic structural diagram of another heat spreading plate provided by an embodiment of the application.
  • FIG. 18 is a schematic structural diagram of another heat spreading plate provided by an embodiment of the application.
  • Figure 19a is a top view of a soaking plate provided by an embodiment of the application.
  • Figure 19b is a top view of a soaking plate provided by an embodiment of the application.
  • Figure 20a is a top view of a soaking plate provided by an embodiment of the application.
  • FIG. 20b is a top view of a soaking plate provided by an embodiment of the application.
  • Fig. 21a is a schematic structural diagram of another heat spreader provided by an embodiment of the application.
  • Figure 21b is a schematic structural diagram of another heat spreader provided by an embodiment of the application.
  • Figure 21c is a schematic structural diagram of another heat spreader provided by an embodiment of the application.
  • Figures 22a-22c are perspective structural schematic diagrams of the soaking plate provided by the embodiments of the application, respectively;
  • FIGS 23a to 23d are respectively perspective structural schematic diagrams of another heat spreading plate provided by an embodiment of the application.
  • 24a-24e are schematic diagrams of the cross-sectional structure of the soaking plate provided by the embodiments of the application.
  • FIG. 25 is a schematic cross-sectional structure diagram of another soaking plate provided by an embodiment of the application.
  • FIG. 26a is a schematic structural diagram of a middle frame of an electronic device provided by an embodiment of this application.
  • FIG. 26b is a schematic diagram of an installation structure of a middle frame and a soaking plate of an electronic device provided by an embodiment of the application;
  • FIG. 26c is a cross-sectional view of a middle frame of an electronic device according to an embodiment of the application.
  • Figures 26d to 26g are respectively exploded views of mobile terminals provided by embodiments of the application.
  • FIG. 27 is a schematic diagram of a middle frame strength test of a mobile terminal according to an embodiment of the application.
  • Figures 28a-28e are respectively perspective views of a soaking plate provided by an embodiment of the application.
  • FIG. 29a is an exploded view of a mobile terminal provided by an embodiment of this application.
  • FIG. 29b is a cross-sectional view of a mobile terminal provided by an embodiment of this application.
  • FIG. 29c is another cross-sectional view of a mobile terminal according to an embodiment of the application.
  • 30a to 30d are respectively schematic diagrams of the distribution structure of a middle frame extension in a mobile terminal according to an embodiment of the application;
  • 31a to 31b are respectively schematic diagrams of the distribution structure of electrical connection points on the middle frame of a mobile terminal according to an embodiment of the application;
  • 32a to 32b are respectively partial exploded schematic diagrams of a middle frame in a mobile terminal provided by an embodiment of this application;
  • FIG. 33 is a schematic partial cross-sectional view of a middle frame of a mobile terminal according to an embodiment of this application.
  • 34a to 34c are respectively schematic diagrams of the distribution of battery glue in a mobile terminal according to an embodiment of the application.
  • connection can also be a detachable connection, or an integral connection, or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium.
  • the soaking plate is usually also called the soaking plate, or super-conducting plate, or heat conducting plate.
  • Vapor chamber Vapor chamber (Vapor chamber, hereinafter referred to as VC) is similar to the principle of heat pipe (Heat pipe), using the working medium (cooling medium) in the sealed chamber to boil and transform into gas phase to absorb heat, and to condense into liquid phase to release heat.
  • VC Vapor chamber
  • the working medium cooling medium
  • the soaking plate can be considered as a heat pipe with higher degree of freedom of shape, which can realize irregular design and large span, that is, the heat pipe is applied to one-dimensional heat dissipation.
  • the soaking plate can also realize two-dimensional and three-dimensional heat dissipation.
  • the soaking plate provided by the technical solution of the present application is applied to electronic devices, such as mobile phones, tablet computers, notebook computers, and related modules, structural parts, functional parts and so on with heat dissipation function.
  • the electronic device includes a working module and a heat dissipating module.
  • the heat dissipating module includes a soaking plate 100, which is used to dissipate heat from the working module.
  • the heat dissipation performance and stability of the electronic device with the heat spreader 100 provided in the present application have been significantly improved, and it also meets the requirements of lightweight and large-area large-span design.
  • FIG. 1 is a schematic diagram of the structure of a heat equalizing plate in the prior art.
  • the equalizing plate 100' consists of an upper cover plate 10', a lower cover plate 20', a capillary structure 30' and a working fluid (not shown) And other composition.
  • the upper cover plate 10' and the lower cover plate 20' of the soaking plate can be welded and sealed to form a sealed cavity 40', and the capillary structure layer 30' can be arranged in the sealed cavity 40', and the capillary structure layer 30' can be arranged in the sealed cavity 40'.
  • the structural layer 30' is filled with a certain amount of cooling medium (for example, water), thereby forming a phase change circulation system.
  • the heat dissipation process of the soaking plate is also a two-phase heat dissipation process in which a gas-liquid two-phase change occurs with the cooling medium.
  • the soaking plate usually uses copper or copper alloy as the upper and lower cover plates
  • the capillary structure is usually a porous medium with copper as the base material, such as copper mesh, copper powder sintering, foamed copper, and copper mesh weaving, drawing, etching, etc. Generated by methods such as electroplating and chemical deposition.
  • the supporting structure can be made separately and then fixed with the upper and lower cover plates by welding or other means, or it can be directly processed on the upper and lower cover plates.
  • the main material is also copper. Copper has good thermal conductivity, and the capillary structure of copper is easier to prepare, and it does not react chemically with water.
  • the sealed cavity is in a negative pressure state, and the sealed cavity is mainly used to prevent the loss of the cooling medium, maintain the vacuum negative pressure state, and play a certain anti-deformation function.
  • the capillary structure is used to form the capillary force to transport the cooling medium, complete the entire power cycle and then complete the thermal cycle, which is the key to maintaining two-phase heat transfer.
  • FIG 2 is a comparison diagram of the equivalent thermal conductivity of the soaking plate, pure copper and heat pipe.
  • the soaking plate absorbs heat at the heat source and evaporates into water vapor and absorbs a large amount of latent heat.
  • the water vapor moves in the sealed cavity to the cold end and releases heat to condense into liquid water. It flows back to the evaporation section through the capillary structure.
  • the equivalent thermal conductivity of the soaking plate is more than 20 times that of pure copper.
  • the upper and lower cover plates of the existing soaking plates are made of copper or copper alloy, which is prone to deformation.
  • the uniform heating The board is easily deformed, which has an adverse effect on electronic equipment using the soaking board.
  • one of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal or chromium alloy material can be used to make upper and lower cover plates and/or support structures, and the support structure can be set Between the upper and lower cover plates to improve the anti-deformation ability of the entire soaking plate.
  • Table 1 shows the comparative physical parameters of several common high-strength metal materials.
  • Table 2 shows a comparison table of performance parameters of soaking plates made of stainless steel or copper alloy materials.
  • the yield strength, elastic modulus and surface hardness of stainless steel and titanium are better than those of copper or copper alloys.
  • the soaking plate made of stainless steel has a surface hardness of stainless steel (159Hv) greater than that of a copper alloy (81.5Hv), which is 95% higher than the latter.
  • FIG. 3 is a schematic diagram of the working principle of the soaking plate provided by the embodiment of the application.
  • the soaking plate 100 includes an evaporation zone and Cooling zone, the two areas are determined according to specific work scenarios. They can be the entire upper cover plate or the entire lower cover plate, or a certain part of the upper cover plate or the entire lower cover plate.
  • the cooling medium in the sealed cavity begins to vaporize after being heated in a low vacuum environment.
  • the heat dissipation function of the soaking plate is mainly realized by the gas-liquid two-phase change of the cooling medium.
  • the heat dissipation process of the soaking plate includes four main steps: conduction, evaporation, convection, and condensation.
  • the internal vaporization of the soaking plate continues, and the internal pressure will maintain a balance as the temperature changes.
  • the soaking plate has a large coverage area and flexible layout, and its size can be designed according to the actual size and distribution of the heat source, so as to flexibly cover the heat source and realize heat dissipation for multiple heat sources at the same time.
  • the soaking plate 100 in the embodiment provides a sealed space for the cooling medium to transform into the gas-liquid two-phase inside.
  • water is usually selected as the cooling medium.
  • Compatibility problems refer to the problem of non-condensable gas generated by the reaction of the plate of the shell with the working fluid, which causes the failure of the soaking plate of the two-phase heat dissipation system.
  • non-condensable gases such as H 2 , O 2, etc.
  • H 2 , O 2, etc. continue to produce a negative pressure environment that destroys the interior of the soaking plate, making the soaking plate unable to work normally and fail.
  • Copper material has good thermal conductivity, and the capillary structure of copper material is also easier to prepare, and does not chemically react with water, and will not damage the negative pressure environment. Therefore, the soaking plate with copper or copper alloy as the base material can improve the durability of the soaking plate.
  • the embodiment of the application provides a high-strength soaking plate. It should be pointed out that the actual soaking plate can be designed with unequal thickness and irregular design according to the product, not limited to cuboid.
  • Fig. 4 shows a schematic diagram of the overall structure of a high-strength soaking plate provided by an embodiment of the present application.
  • the heat equalizing plate 100 includes a housing 110 and a capillary structure 30.
  • the housing 110 includes a first cover plate 10 and a second cover plate 20, and the first cover plate 10 and the second cover plate 20 are hermetically connected to form a sealed cavity 40.
  • the inside of the sealed cavity 40 is in a negative pressure environment and is provided with a cooling medium. Further, through the opening provided on the housing 110, the inside of the sealed cavity 40 can be evacuated in advance, and a cooling medium, such as deionized water, methanol, acetone, etc., can be injected.
  • a cooling medium such as deionized water, methanol,
  • the material of the first cover plate 10 and/or the second cover plate 20 is a high-strength composite material, and the high-strength composite material includes at least one first material layer 11 and at least one layer
  • the second material layer 12 the material of the first material layer 11 is at least one of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, and chromium alloy, and the material of the second material layer 12 It is copper or copper alloy.
  • the second material layer 12 is located inside the housing 110, and the first material layer 11 does not contact the cooling medium.
  • the first material layer and the second material layer can be pressed by vacuum hot rolling, vacuum cold rolling or vacuum diffusion welding to form a high-strength composite material, or the first material layer can be electroplated or chemically deposited. At least one surface of the first material layer is covered with a second material layer.
  • the high-strength composite material may include a first material layer 11 and a second material layer 12.
  • the first material layer 11 may be a composite of a stainless steel layer, a titanium layer, and a titanium alloy layer, and multiple metal layers of different densities are electroplated
  • the first material layer 11 is formed by composite processes such as rolling and pasting.
  • high-strength composite materials can also be formed through composite processes such as electroplating, rolling and pasting.
  • the thickness of the first cover plate 10 and the second cover plate 20 may be different.
  • the thickness of the cover plate facing the battery surface may be greater than the thickness of the cover plate facing the screen surface.
  • the cover plate made of high-strength composite material can be used as a reinforcement structure for the middle frame, which can prevent the middle frame from being hollowed out in a large area, only relying on the side wall of the middle frame to provide strength, causing great strength attenuation.
  • the curved screen and the antenna gap are increased, and the thickness of the side wall of the middle frame is reduced.
  • the surface hardness of the cover plate made of high-strength composite material is ⁇ 120Hv, and specifically can be 120Hv, 150Hv, 170Hv, 180Hv, 200Hv, 220Hv, 250Hv, etc., which are not limited here.
  • the capillary structure 30 is disposed in the sealed cavity 40. Specifically, the capillary structure 30 and the first cover plate 10 and the second cover plate 20 may be arranged in parallel, or may be arranged according to design requirements, which is not limited here.
  • the capillary structure 30 is filled with a cooling medium.
  • the cooling medium may be deionized water, methanol, acetone, etc., and the heat dissipation of the soaking plate can be realized through the gas-liquid two-phase change of the working medium.
  • the specific heat dissipation principle and heat dissipation path are as described above.
  • the capillary structure 30 may be connected to the inner surface of the housing 110 or may not be connected to the inner surface of the housing 110.
  • the capillary structure 30 is a porous medium made of metal.
  • the material of the capillary structure is copper or copper alloy, and the capillary structure may be, for example, one or more of copper mesh, copper fiber, copper powder, or foamed copper.
  • the capillary structure 30 may be disposed on the second material layer 12 of the first cover plate 10 and/or the second cover plate 20.
  • the copper mesh can be combined with the opposing surfaces of the first cover plate 10 and the second cover plate 20 by sintering, thermal welding, or cold pressing, and the copper mesh can be sintered, thermally welded, or cold pressed.
  • the net is fixed on the inner surface of the housing 110, that is, on the second material layer 12 of the first cover plate 10, or on the second material layer 12 of the second cover plate 20, to prevent the position of the copper net from changing during use, Ensure the stability of the product work.
  • the copper mesh can also be put into the sealed cavity 40 without any connection processing, which avoids the influence of processing such as sintering, heat welding or cold pressing on the housing 110 and ensures that the housing 110's structural stability.
  • the sealed cavity 40 of the soaking plate is provided with an opening communicating with the outside.
  • the opening can be a liquid injection port or a vacuum port.
  • a cooling medium is injected into the sealed cavity 40 through the opening, and the sealed cavity 40 is evacuated through the opening, and then the opening is sealed, so that the sealed cavity 40 is in a vacuum negative pressure state.
  • the injected cooling medium is in a negative pressure state.
  • the cooling medium is heated in the evaporation zone, vaporization will occur.
  • the volume of the vaporized cooling medium becomes larger and fills the entire cavity.
  • the gaseous cooling medium dissipates heat and liquefies into a liquid cooling medium.
  • the liquefied cooling medium returns to the evaporation area through the capillary structure 30. In this way, a heat transfer cycle is formed in the sealed cavity 40.
  • the soaking plate provided in this embodiment can not only improve the strength of the soaking plate, but also can isolate high-strength materials (such as stainless steel) from working fluids such as water, and greatly reduce or eliminate compatibility problems.
  • high-strength materials such as stainless steel
  • Figures 6 to 9 respectively show schematic structural diagrams of a soaking plate provided by an embodiment of the present application.
  • the first cover plate 10 or the second cover plate 20 is made of a high-strength composite material, which can increase the strength and resistance to deformation of the soaking plate.
  • the shape, edge sealing form, connection mode, etc. of the first cover plate 10 and the second cover plate 20 can be designed and modified accordingly according to actual needs.
  • the first cover plate 10 and/or the second cover plate 10 and/or the second cover plate 10 and/or the second cover plate made of high-strength composite materials can be used according to actual needs.
  • the cover plate 20 can improve the strength and resistance to deformation of the soaking plate.
  • the second material layer 12 of high-strength composite material is arranged on the inner side of the housing 110, which can realize the isolation of the first material layer 11 from working fluids such as water. Reduce or eliminate compatibility problems, and prevent water and stainless steel from reacting to produce non-condensable gases that damage the negative pressure environment.
  • the second cover 20 may only include the second material layer, but not the first material layer.
  • the first cover plate 10 may only include the second material layer, but not the first material layer.
  • Fig. 10 shows a schematic structural diagram of another heat spreading plate provided by an embodiment of the present application.
  • the high-strength composite material is not limited to the stacked first material layer 11 and the second material layer 12.
  • the first material layer 11 and the second material layer 12 can be spliced, and the splicing method can be partial splicing or Full splicing.
  • the area of the first material layer 11 and the second material layer 12 may be the same size or not.
  • the thickness of each first material layer 11 and each second material layer 12 may be the same or different.
  • Fig. 11 shows a schematic structural diagram of another heat spreading plate provided by an embodiment of the present application.
  • the high-strength composite material further includes a third material layer, the first material layer is sandwiched between the second material layer and the third material layer, and the third material layer
  • the material of the material layer is copper or copper alloy.
  • the thickness of the second material layer 12 and the third material layer 13 may be the same or different.
  • the thickness of the first cover plate and the second cover plate are both less than or equal to 0.15 mm.
  • the shape, edge sealing form, connection mode, etc. of the first cover plate and the second cover plate can be designed and modified accordingly according to actual needs.
  • the cooling medium is deionized water. It is understandable that water as the most commonly used cooling medium has low production cost and simple production, which is beneficial to reduce the production cost of the entire soaking plate, and compared to methanol, acetone, etc., water as a cooling medium is safer and more reliable.
  • FIG. 12 shows a schematic structural diagram of another heat spreading plate provided by an embodiment of the present application.
  • the first cover plate 10 and the second cover plate 20 can be welded,
  • the first cover plate 10 and the second cover plate 20 are hermetically connected to form a sealed cavity 40 by means of bonding or the like.
  • the second material layer 12 of the first cover plate 10 and the second material layer 12 of the second cover plate 20 are enclosed to form the sealed cavity 40, thereby avoiding the cooling medium and the first material layer 11 get in touch with.
  • the housing 110 of the heat equalizing plate 100 further includes a fusion layer 111, and the fusion layer 111 is used to connect the first cover plate 10 and the second cover plate 20, so that the first cover plate 10 and the second cover plate 20
  • the sealing connection forms a sealed cavity 40, that is, the fusion layer 111 may be a welding layer, an adhesive layer, etc. formed by processing processes such as welding and bonding.
  • FIG. 13 is a schematic structural diagram of another heat spreading plate provided by an embodiment of the application. As shown in FIG. 13, the heat spreading plate 100 further includes a support structure 50 that can be used to hold the housing 110 Shape to improve the strength of the soaking plate.
  • the supporting structure 50 extends from the inner surface of the housing 110 to the inner space of the housing 110.
  • the channels between the supporting structures 50 are steam channels and/or capillary structures. It is understandable that the support structure can be used to resist the deformation of the heat spreader caused by the difference in internal and external atmospheric pressure and other external forces, so as to prevent the steam channel and the capillary structure from being flattened and cause the heat spreading plate to fail.
  • a support structure 50 is provided on the second cover plate 20, and the support structures 50 are arranged in an array on the second cover plate 20.
  • the supporting structure 50 forms a supporting protective effect in the sealed cavity 40 to prevent the sealed cavity 40 of the soaking plate 100 from being deformed due to being squeezed.
  • the supporting structure 50 abuts against the first cover plate 10 and/or the second cover plate 20.
  • the height of the support structure 50 is equal to the height of the sealed cavity 40.
  • the array distribution of the support structure 50 is beneficial to the lightweight design of the heat equalizing plate, the uniform distribution of the mass of the equalizing plate, and the design and control of the overall center of gravity of the electronic device.
  • the supporting structure 50 can be directly processed on the first cover plate or the second cover plate. That is, the supporting structure 50 and the housing 110 are an integral structure, and the supporting structure 50 is a plurality of convex columns or convex points arranged in an array. Specifically, the first cover plate 10 and the second cover plate 20 are made by etching. The second material layer 12 of the first cover plate 10 is etched to form a concave surface, and the second material layer of the second cover plate 20 12 The convex pillars arranged in an array are formed by etching the lower surface, and the convex pillars are the supporting structure 50.
  • the support structure 50 obtained by subtractive processing through the etching process can greatly ensure the stability of the connection between the support structure 50 and the second cover plate 20, avoid the bonding or welding process between the two, and simplify the processing.
  • the material of the support structure 50 is copper or copper alloy, and the strength of the entire heat spreading plate can also be ensured by matching with a high-strength shell.
  • the material of the support structure 50 is a high-strength composite material
  • the material of the inner core 51 of the support structure 50 is The material of the first material layer and the material of the outer periphery 52 of the support structure 50 are the material of the second material layer.
  • the supporting structure 50 can also be separately prepared and then fixedly connected to the first cover plate or the second cover plate by welding or the like.
  • the second cover plate 20 is processed by stamping. First, the plate of the second cover plate 20 is stamped and formed, and then reversely stretched to form a recessed area, and finally the support structure 50 is combined with the second cover plate 20.
  • the cover plate 20 is welded and fixed to form a support structure 50 arranged in a uniform array.
  • the outer periphery of the support structure and the second material layer of the second cover plate are made of copper or copper alloy.
  • the inner core of the supporting structure is made of at least one material of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal or chromium alloy.
  • the outer periphery of the support structure is made of copper or copper alloy. The outer periphery of the support structure can effectively separate the cooling medium and the first material layer to eliminate compatibility problems and avoid the generation of non-condensable gases.
  • the high-strength support structure 50 is beneficial to increase the strength of the entire heat spreading plate, so as to prevent the sealed cavity of the heat spreading plate 100 from being deformed due to compression.
  • the soaking plate is a serial structure soaking plate; when the steam channel is parallel to the capillary structure, as shown in Figures 14b, 15a-c, 16, 17, 19a, 20a, the soaking plate is a parallel structure soaking plate.
  • the capillary structure 30 is laid flat on the second cover plate 20, and the capillary structure 30 is located at the bottom of each steam channel.
  • the material of the capillary structure 30 is copper or copper alloy.
  • the parallel structure heat plate, the capillary structure 30 is arranged around the outer periphery or both sides of the supporting structure 50, similar to the function of the second material layer, the capillary structure realizes the separation of the supporting structure and the cooling medium, eliminating or Significantly alleviate compatibility issues.
  • the capillary structure 30 is arranged in parallel with the steam channel.
  • the capillary structure 30 can also be arranged on any side wall inside the housing 110, which is not limited herein.
  • FIG. 15a is a schematic structural diagram of another soaking plate provided by an embodiment of the application.
  • the material of the support structure 50 is stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal or chromium alloy Any of them.
  • the materials of the second material layer and the capillary structure are both copper or copper alloy.
  • the second material layer 12 and the capillary structure 30 are spliced into one body and then arranged around the outer periphery of the support structure 50, as shown in FIG. 15b and FIG. 15c.
  • the splicing method can be partial splicing or half splicing, which is not limited here. , To achieve isolation of high-strength composite material and cooling medium.
  • other metal materials may also be spliced with the capillary structure 30 and arranged around the outer periphery of the support structure 50, and the splicing method is not limited here.
  • other metal materials can be, for example, any one of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, or chromium alloy.
  • the inner core of the support structure is stainless steel, and the outer periphery is made of titanium alloy and copper.
  • the capillary structure is spliced, or the capillary structure made of titanium and copper alloy is spliced on the outer periphery.
  • the splicing method is not limited.
  • the above-mentioned support structure 50 can also be applied to the soaking plate as shown in Figs. 4-12, and the support structure can be made of copper or copper alloy, or made of high-strength composite material.
  • FIG. 17 is a schematic structural diagram of another heat plate provided by an embodiment of the application.
  • the capillary structure 30 is arranged around the outer periphery of the support structure 50, and the material of the support structure 50 is stainless steel, titanium metal, or titanium alloy Any one of tungsten metal, tungsten alloy, chromium metal or chromium alloy, and the material of the capillary structure 30 is copper or copper alloy.
  • the steam channel and the capillary structure 30 are arranged side by side to realize the separation of the support structure 50 from the cooling medium, eliminate or greatly reduce the compatibility problem, and avoid the cooling medium and the first material of the housing 110
  • the layer reaction produces non-condensable gas that destroys the negative pressure environment.
  • the capillary structure 30 completely covers the outer circumference of the supporting structure 50.
  • the high-strength and extremely thin support structure 50 may be an irregularly shaped support structure 50, that is, the cross section is different, such as an I-shaped steel. As shown in FIG. 18, the support structure 50 is an irregular cylindrical shape.
  • FIG. 19a and FIG. 19b are respectively a top view of another heat spreading plate provided by an embodiment of the application
  • FIG. 20a and FIG. 20b are respectively a top view of another heat spreading plate provided by an embodiment of the application, as shown in FIG. 20a
  • the supporting structure 50 is arranged in the sealed cavity 40, and the plurality of supporting structures 50 may be arranged continuously or discontinuously.
  • the shape of the supporting structure 50 is not limited, for example, it may be a cylinder.
  • the support structure 50 can also be a mixed design of the above-mentioned multiple shapes, and it is not limited here.
  • the support structure 50 in FIGS. 19a and 20a is made of high-strength materials, such as at least one of stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, or chromium alloy, similar to the first material layer 11.
  • the capillary structure 30 surrounds the support structure 50.
  • the material of the capillary structure 30 is copper or copper alloy, similar to the second material layer 12, so that the support structure 50 made of high-strength material is isolated from the cooling medium, which greatly reduces compatibility problems. Avoid generating non-condensable gas.
  • common materials such as copper may be selected; as shown in FIG. 20a, the housing 110 may also be selected from high-strength composite materials.
  • the support structure 50 in Figures 19b and 20b is made of high-strength composite materials.
  • the support structure 50 includes an inner core 51 and an outer periphery 52 surrounding the inner core 51.
  • the inner core 51 is made of the material of the first material layer 11, such as stainless steel. , Titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal or chromium alloy.
  • the material of the outer periphery 52 is the material of the second material layer 12, which is copper or copper alloy.
  • the capillary structure 30 is laid flat on the second material layer of the first cover plate 10 and/or the second cover plate 20.
  • the material of the capillary structure 30 is copper or copper alloy, so that the support structure 50 made of high-strength composite material is compatible with The cooling medium is isolated, which greatly reduces compatibility problems and avoids the generation of non-condensable gases.
  • the thickness of the first cover plate 10 and the second cover plate 20 is less than or equal to 0.15 mm.
  • Figures 21a-21c are schematic structural diagrams of another heat spreading plate provided by an embodiment of the application.
  • the heat spreading plate 100 in order to facilitate the installation and fixation of the heat spreading plate, the heat spreading plate 100 further includes a heat spreading plate 100
  • a step fixing portion 60 is formed by extending at least part of the edge, and the step fixing portion 60 is used to install and fix the heat equalizing plate 100.
  • the step fixing portion 60 may be the edge of the first cover plate 10, and the vertical projection area of the first cover plate 10 is larger than the vertical projection area of the second cover plate 20. As shown in FIG. 21 b, the step fixing portion 60 may also be the edge of the second cover plate 20, and the vertical projection area of the second cover plate 20 is larger than the vertical projection area of the first cover plate 10. As shown in FIG. 21c, the step fixing portion 60 may also be an integrated edge formed by connecting the first cover plate 10 and the second cover plate 20. In this embodiment, the vertical projection area of the second cover plate 20 is equal to that of the first cover plate 20. The vertical projection area of a cover plate 10 is the same.
  • the step fixing portion 60 can be directly welded or bonded to the object to be installed.
  • the stability of the installation structure of the soaking plate can be improved. It can also reduce the thickness of the soaking plate and avoid adding additional fixed structures.
  • the object to be installed may be, for example, a middle frame structure of an electronic device.
  • FIGS 22a-22c are schematic diagrams of the structure of the step fixing portion of the soaking plate provided by the embodiment of the application.
  • the step fixing portion 60 is provided with an opening 601 and/or a slot 602 to facilitate rivets
  • a fixing structure such as a screw or a screw fixes the heat equalizing plate 100 on the middle frame through the opening 601 and/or the slot 602.
  • the openings 601 and/or the slots 602 may be arranged at even intervals along the step fixing portion 60, or may be arranged at uneven intervals.
  • the specific shapes of the opening 601 and the opening 602 are not limited, and they may be circular, elliptical, square, fan-shaped, and so on.
  • the heat plate 100 is provided with mounting grooves 71 and/or mounting holes 72 along the thickness direction, and the mounting grooves 71 and/or The mounting hole 72 is used to install electronic components, and the electronic components may be, for example, flexible circuit boards, fingerprint modules, screen modules, and the like.
  • the mounting groove 71 or the mounting hole 72 is opened on the edge of the soaking plate 100, and the capillary structure 30 surrounds a part of the edge provided in the mounting groove 71 or the mounting hole 72, that is, the mounting groove 71 or The mounting hole 72 is next to the capillary structure 30 of the soaking plate 100.
  • the capillary structure 30 completely surrounds the mounting groove 71 or the mounting hole 72.
  • the mounting groove 71 or the mounting hole 72 may also be opened on the step fixing portion 60 of the heat equalizing plate 100.
  • the surrounding of the mounting groove 71 or the mounting hole 72 may also be free of the capillary structure 30. It is understandable that the area where the capillary structure 30 is distributed has higher thermal conductivity than the groove area without the capillary structure 30, and the heat dissipation effect is better.
  • the mounting groove 71 is recessed and formed on the first cover plate 10 or the second cover plate 20 along the thickness direction of the heat equalizing plate 100, That is, the depth of the mounting groove 71 is smaller than the thickness of the first cover plate 10 or the thickness of the second cover plate 20.
  • the shape of the mounting groove 71 may be a square groove, a circular groove, an elliptical groove or other irregularly shaped grooves, which may be formed by processes such as etching or partial stamping.
  • the mounting hole 72 penetrates the first cover plate 10 and/or the second cover plate 20. As shown in FIG. 24c, the mounting hole 72 penetrates the second cover plate 20; as shown in FIG. 24d, the mounting hole 72 penetrates the first cover plate 10 and the second cover plate 20, that is, the mounting hole 72 penetrates the entire heat equalizing plate 100. As shown in FIG. 24e, the mounting holes 72 penetrate the second cover plate 20, and the mounting grooves 71 are recessed and formed on the first cover plate 10 and are respectively located on both sides of the heat equalizing plate 100.
  • the mounting groove 71 and/or the mounting hole 72 provided on the soaking plate 100 will not affect the sealing cavity of the soaking plate 100, and the sealing cavity can be made by local welding (such as soldering) and bonding.
  • the body maintains a negative pressure state.
  • the heat equalizing plate 100 includes a first section 101, a second section 102, and a bending section 103 connecting the first section 101 and the second section 102.
  • the first section 101 and the second section 102 The two sections 102 have a height difference, and the capillary structure 30 maintains a continuous state in the first section 101, the second section 102, and the bending section 103.
  • the height of the sealed cavity in the first section 101 and the sealed cavity in the second section 102 are different, that is, the entire heat spreading plate 100 is a heat spreading plate of unequal thickness.
  • the overall thickness of the section 101 may be smaller or greater than the overall thickness of the second section 102.
  • the first section 101 and the second section 102 are provided with a supporting structure 50, and the specific form of the supporting structure 50 is not limited herein. Understandably, the bent soaking plate can adapt to a small installation space to meet the heat dissipation requirements of local electronic components; and the height of the sealed chamber is appropriately increased, and the vapor passage in the soaking plate is larger, which is beneficial to the cooling medium.
  • the two-phase heat exchange can improve the heat dissipation efficiency.
  • the heating plate 100 may further include a third section and a second bending section connecting the third section and the second section, so that the heating plate 100 is provided with a plurality of bending sections. It should be noted that, since the soaking plate provided in the embodiments of the present application adopts high-strength composite materials, after the bending treatment, the strength of the entire soaking plate can still meet the requirements of use.
  • the embodiment of the present application also provides a method for preparing a soaking plate, and the method includes:
  • the second material layer is arranged on one side of the first material layer to form a second cover plate.
  • the material of the first material layer is stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal, and chromium alloy. At least one, the material of the second material layer is copper or copper alloy;
  • the support structure is arranged on the inner surface of the housing and extends to the inner space of the housing, the inner core of the support structure is made of the material of the first material layer, and the outer periphery of the support structure
  • the material of is the material of the second material layer;
  • the capillary structure is arranged on the second material layer of the first cover plate or the second material layer of the second cover plate, and the first cover plate and the second cover plate are combined to form a hollow shell , And inject a cooling medium into the casing; the second material layer is located inside the casing, so that the first material layer is isolated from the cooling medium;
  • the heat circulation of the cooling medium in the casing is realized through the capillary structure and the steam passage.
  • the second material layer is located on the inner side of the housing 110, and uses high-strength metal materials (such as stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal or chromium alloy) as the copper material. Reinforcement to improve the strength and resistance to deformation of the soaking plate.
  • high-strength metal materials such as stainless steel, titanium metal, titanium alloy, tungsten metal, tungsten alloy, chromium metal or chromium alloy
  • the use of copper as the inner layer can isolate the first material layer 11 from working fluids such as water, and greatly reduce or eliminate compatibility problems.
  • the capillary structure is usually a porous medium with copper as the base material, such as copper mesh, copper powder, and foamed copper, which can be generated by methods such as copper mesh weaving, wire drawing, etching, electroplating, and chemical deposition.
  • the cooling medium can be, for example, water, deionized water, methanol, acetone, and the like.
  • the first cover plate or the second cover plate can also form a support structure through processes such as etching and stamping, which is beneficial to further improve the deformation resistance of the soaking plate.
  • a high-strength composite material is selected and the first cover plate and the second cover plate are formed by stamping.
  • the high-strength composite material includes a first material layer made of stainless steel and a second material layer made of copper.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover plate and the second cover plate are laser welded to form a shell with a sealed cavity.
  • the inner side is the second material layer.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 180-400HV.
  • a high-strength composite material is selected and the first cover plate and the second cover plate are formed by stamping.
  • the high-strength composite material includes a first material layer made of titanium and a second material layer made of copper.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover plate and the second cover plate are laser welded to form a shell with a sealed cavity.
  • the inner side is the second material layer.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 180-400HV.
  • a high-strength composite material is selected and the first cover plate and the second cover plate are formed by stamping.
  • the high-strength composite material includes a first material layer made of titanium alloy and a second material layer made of copper.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover plate and the second cover plate are laser welded to form a shell with a sealed cavity.
  • the inner side is the second material layer.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 180-400HV.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover The plate and the second cover plate are welded by laser to form a shell with a sealed cavity.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 80-120HV.
  • a high-strength composite material is selected to form the first cover plate and the second cover plate by stamping.
  • the high-strength composite material includes a first material layer made of stainless steel and a second material layer made of copper.
  • the support structure arranged in a uniform array is welded on the second cover plate, the inner core of the support structure is made of stainless steel, and the outer periphery of the support structure is made of copper.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover plate and the second cover plate are laser welded to form a shell with a sealed cavity.
  • the inner side is the second material layer.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 180-400HV.
  • a high-strength composite material is used to form the first cover plate and the second cover plate by stamping.
  • the high-strength composite material includes a first material layer made of titanium and a second material layer made of copper.
  • the support structure arranged in a uniform array is welded on the second cover plate, the inner core of the support structure is made of titanium metal, and the outer periphery of the support structure is made of copper.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover plate and the second cover plate are laser welded to form a shell with a sealed cavity.
  • the inner side is the second material layer.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 180-400HV.
  • a high-strength composite material is selected to form the first cover plate and the second cover plate by stamping.
  • the high-strength composite material includes a first material layer made of titanium alloy and a second material layer made of copper.
  • the support structure arranged in a uniform array is welded on the second cover plate, the inner core of the support structure is made of titanium alloy, and the outer periphery of the support structure is made of copper.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover plate and the second cover plate are laser welded to form a shell with a sealed cavity.
  • the inner side is the second material layer.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 180-400HV.
  • copper is selected and the first cover plate and the second cover plate are formed by stamping, wherein the support structure arranged in a uniform array is welded on the second cover plate, and the material of the support structure is copper.
  • the capillary structure is arranged between the first cover plate and the second cover plate, and the first cover plate and the second cover plate are laser welded to form a shell with a sealed cavity.
  • the capillary structure is copper powder.
  • the thickness of the first cover plate and the second cover plate are both 0.15mm, and the test force of 300gf is used to press the soaking plate for 10s, and the surface hardness of the soaking plate is 80-120HV.
  • This embodiment also provides an electronic device, which includes a working module, and the heat dissipation module includes the heat equalizing plate described in the first aspect above, and the equalizing plate is used to dissipate heat from the working module.
  • Electronic devices such as mobile phones, tablet computers, wearable devices (such as smart watches), etc., are not limited here.
  • Fig. 26a is a schematic structural diagram of a middle frame of an electronic device provided by an embodiment of the application.
  • FIG. 26b is a schematic diagram of the installation structure of the middle frame and the soaking plate of the electronic device provided by the embodiment of the application;
  • FIG. 26c is a cross-sectional view of the middle frame of the electronic device provided by the embodiment of the application.
  • the electronic device further includes a middle frame 200 and a display screen.
  • the middle frame is provided with a through hole 201, the heat equalizing plate 100 is embedded in the through hole 201, and the heat equalizing plate 100 is connected to the middle frame. 200 jointly bear the display screen.
  • the ultra-thin soaking plate is usually ⁇ 0.8mm, and the wall thickness of the cover plate is ⁇ 0.2mm.
  • Traditional materials are copper and copper alloys.
  • This ultra-thin, large-area and large-span soaking plate module is prone to flatness problems such as pits and wrinkles on the surface. Compared with the traditional small-area soaking plate, it is greatly deteriorated, resulting in the soaking plate. The module yield rate has dropped significantly, and the cost has increased significantly.
  • the softer copper material is prone to irreversible plastic deformation, especially the copper alloy is welded and sintered and other high temperature processes, the surface hardness of the soaking plate is ⁇ 90Hv, which cannot meet the production and reliability Sexual design requirements.
  • the application of the large-area soaking plate is limited by the soaking plate's structural strength, such as being located between the screen display module and the battery module. Because the mechanical indexes of stainless steel, titanium and titanium alloys are much higher than those of copper or copper alloy materials commonly used in the current industry, especially the modulus of elasticity and surface hardness, it can effectively alleviate problems such as pits, wrinkles and easy plastic deformation under stress.
  • the middle frame structure of the entire mobile terminal is a soaking plate, the whole machine can reach or approach the limit of natural heat dissipation. It supports the heat dissipation requirements of high-performance gaming, camera, and ultra-high-power charging conditions.
  • a structure in which the soaking plate and the middle frame are stacked in series can be used, but the thickness of the whole machine is significantly thicker, and the performance of the large-area soaking plate is difficult to meet the evaporation and condensation requirements, and the heat dissipation capacity cannot be effectively improved. Meet product competitiveness requirements.
  • a hole can be partially or completely opened to the middle frame, and a soaking plate is arranged in the opening.
  • a conventional copper or copper alloy soaking plate is used, after a large area of the middle frame battery compartment area is hollowed out, only the sides of the middle frame provide strength, resulting in great strength attenuation, especially the 3D screen shape and the 5G antenna partition.
  • the seam is increased, the side thickness is reduced, the continuity of the side of the middle frame is broken, the three-bar bending strength is not up to the standard, and it is difficult to optimize the reinforcement.
  • the large-area soaking plate is in a cantilever state in the middle frame, and the After the soldering process, the soaking plate is easily deformed, the flatness is poor, and there is a risk of broken screen when the electronic device falls.
  • Figures 26d and 26e are schematic diagrams of an exploded assembly of the mobile terminal provided by the application embodiment.
  • this embodiment in order to improve the heat dissipation capability of the mobile terminal, this embodiment also provides a mobile terminal, including a middle frame 200, a display screen 300, a heat spreader 100, one or more circuit boards 400, and a battery 500 And the rear shell 600 and so on. There may be 2 or more batteries, circuit boards, etc. in the mobile terminal.
  • the middle frame 200 provides a supporting function.
  • the middle frame 200 is provided with a through hole 201, and the heat equalizing plate 100 is embedded in the through hole 201; the heat equalizing plate 100 and the middle frame 200 are connected and fixed as a whole to jointly carry the display screen 300, circuit board 400 and battery 500, etc.
  • the mobile terminal can be a mobile phone, a tablet computer, a curved screen mobile phone, a folding mobile phone, etc., which are not limited here.
  • the area of the through hole 201 of the middle frame 200 accounts for more than 1/3 of the entire area of the middle frame, or the area of the through hole 201 is more than 70% of the area of the battery 500.
  • the size and shape of the through hole 201 can also be adjusted according to actual requirements, which is not limited here. It should be noted that after the through holes 201 are partially or completely opened in the middle frame, the structural strength of the middle frame is attenuated.
  • the heat equalizing plate 100 in the through holes 201 the heat equalizing plate 100 and the middle frame provide the display screen 300 and the circuit together.
  • the board 400, the battery 500 or other components required by the mobile terminal provide support, which can improve the overall structural stability of the mobile terminal.
  • the PCB 400 with heating devices is sandwiched between the heat dissipation material 701 such as the heat spreading plate 100 and the high thermal conductivity graphene film/ultra-thin heat spreading plate to form a sandwich heat dissipation. It can achieve stronger natural heat dissipation capacity under the same thickness.
  • the heating device mainly refers to the main heating device such as a central processing unit (CPU), a graphics processing unit (GPU), or an application processor (AP).
  • the mobile terminal further includes a heat dissipation layer 701 and a heating device, and the heat dissipation layer 701 is disposed on the inner side of the rear case 600.
  • the heating element is sandwiched between the heat equalizing plate 100 and the heat dissipation layer 701 to form a sandwich heat dissipation structure to achieve a stronger natural heat dissipation capability.
  • the material of the heat dissipation layer 701 may be a non-load-bearing material such as high thermal conductivity graphene, an ultra-thin soaking plate, and the like. It is understandable that in practical applications, the middle frame 200 and the soaking plate 100 are still used as the load-bearing support, and the sandwich heat dissipation structure is adopted, which can achieve a stronger self-heating ability under the same thickness.
  • connection mode of the soaking plate 100 and the middle frame 200 includes any one or more of riveting, bonding, welding, lap joint, and metal overmolding.
  • the soaking plate 100 has two side surfaces, the battery surface 501 facing the battery 500 and the display surface 301 facing the display screen 300.
  • the display screen 300 and the battery 500 are respectively arranged on both sides of the soaking plate 100 in parallel, and the display screen 300 is parallel to the display surface 301 and does not touch.
  • the battery 500 is parallel and not in contact with the battery surface 501, or the battery 500 is fixed to the battery surface 501 by means of adhesive bonding or the like, which is not limited herein.
  • the surface of the display screen 300 module, the soaking plate 100 module and the battery 500 module can be pasted with graphite film, foam, viscose, flexible printed circuit (FPC) and other materials.
  • the soaking plate 100 is located Between the sensitive display screen 300 module and the battery 500 module.
  • the design of the special heat spreading plate structure meets the reliability and safety design requirements of the display, battery and electrical connection structure of the mobile terminal, so as to realize the heat dissipation design of the ultra-thin heat spreading plate covering the key heating components.
  • the circuit board 400 can be fixed on the side of the middle frame 200 away from the display screen 300 by screws or plastic buckles.
  • the middle frame 200 protects and carries the circuit board 400, and the heat generated by the circuit board 400 can be conducted to the heat spreader 100 .
  • the rear case 600 is located on the side of the battery 500 away from the middle frame 200.
  • the mobile terminal may also be a foldable mobile phone.
  • the display screen 300 and the battery 500 are respectively arranged in parallel on both sides of the soaking plate 100, and the display screen 300 is parallel to the display surface 301 without contact.
  • the battery 500 is parallel and not in contact with the battery surface 501, or the battery 500 is fixed to the battery surface 501 by means of adhesive bonding or the like, which is not limited herein.
  • Parallel can mean that the upper and lower surfaces are equidistantly parallel in the curved state.
  • the display screen and the battery are arranged in parallel on both sides of the soaking plate, and the display screen is not in direct contact with the soaking plate, which can avoid the adverse effects of the local deformation of the soaking plate on the display screen and keep the whole moving The stability of the terminal.
  • the soaking plate 100 can directly assume part of the supporting function of the middle frame structure.
  • the heat generated by the circuit board 400 can be conducted to the soaking plate 100.
  • the middle frame 200 has a through hole 201, and the heat equalizing plate 100 is embedded in the middle frame 200, and is arranged in a parallel structure.
  • the middle frame 200 does not have through holes corresponding to the heat spreading plate, and the heat spreading plate 100 is attached to the physical middle frame 200. Even if the slot is partially embedded, the thickness of the serial architecture is still higher than that of the parallel architecture design, and the design of ultra-thin mobile terminals cannot be realized.
  • the serial architecture design has low requirements on the strength of the soaking plate, and traditional soaking plates can be used.
  • the soaking plate Since the high-strength soaking plate directly assumes part of the support function of the middle frame structure, for this parallel architecture, the soaking plate is used, and its performance is much higher than that of the ordinary copper alloy soaking plate in the serial frame assembly, which can improve the uniformity. The strength, surface hardness and reliability of the hot plate, thereby improving the stability and reliability of the entire middle frame structure.
  • the strength of the soaking plate 100 is insufficient, it will be deformed and warped by external force after long-term use, and it will contact the display screen 300, destroy the parallel relationship between the display surface 301 and the display screen 300, affect the display effect, cause blue spots and white spots; similarly, it is easy to touch
  • the battery 500 destroys the parallel relationship between the battery surface 501 and the battery 500, causing a vicious battery safety accident. Therefore, this kind of strong heat dissipation and ultra-thin design and the use of high-strength composite materials to make the soaking plate 100 can improve the stability of the overall mobile terminal.
  • Fig. 27 is a schematic diagram of a middle frame strength test provided by an embodiment of the application; as shown in Fig. 27, when a common copper alloy soaking plate is used as a structural support with the middle frame 200, the three-pole bending strength is only 80 ⁇ 90N/mm, and when using the heat equalizing plate 100 of the present application to cooperate with the middle frame 200 as a structural support, the three-pole bending strength can reach 100-120N/mm, which can be used to carry the display screen and the battery.
  • the area of the evaporation zone contacting the heat source of the soaking plate 100 is smaller than the area of the condensation zone contacting the relatively cold zone, so that the capillary structures 30 are densely distributed in the evaporation zone with a small area and relatively sparsely distributed in the condensation zone with a large area.
  • the evaporation area of the soaking plate 100 is in contact with the heating devices of the mobile terminal (for example, circuit board 400, CPU, GPU, AP, etc.), and the condensation area of the soaking plate 100 can be opposed to the battery 500 of the mobile terminal. catch.
  • the cooling medium in the evaporation zone evaporates to form steam, and the steam flows along the steam channel in the heat equalizing plate to the condensation zone.
  • the condensed cooling medium is under the action of the capillary structure inside the heat equalizing plate. Reflux to the evaporation zone.
  • the capillary structure 30 radiates from the evaporation zone contacting the heat source to the condensation zone, so as to ensure that the cooling medium in the condensation zone can flow back to the evaporation zone.
  • the soaking plate 100 is provided with mounting grooves 71 and/or mounting holes 72 along the thickness direction, and the mounting grooves 71 and/or mounting holes 72 are used for The electronic components are installed.
  • the electronic components can be, for example, flexible circuit boards, fingerprint modules, screen modules, etc. It should be noted that the electronic components here may be heating devices or non-heating devices.
  • the capillary structures (wicks) in the soaking plate are evenly spaced.
  • there will be multiple heat sources in the mobile terminal which have multiple evaporation zones, which are not connected to each other, which will affect the reflux of the cooling medium from the condensation zone to the evaporation zone. Therefore, it is difficult to ensure that the cooling medium returns to the evaporation zone where the heat source is located, which will reduce the heat dissipation performance of the large-area heat spreading plate.
  • the capillary structure 30 in the soaking plate includes a first capillary structure 31 and a second capillary structure 32, wherein the first capillary structure 31 is copper powder, foam At least one of copper and copper mesh is laid flat on the inner surface of the first cover plate 10 and/or the second cover plate 20.
  • the second capillary structure 32 is copper fiber, and its fibrous extension is dispersed and arranged in the sealed cavity 40.
  • the second capillary structure 32 radiates from multiple evaporation zones to the condensation zone, and the capillary structure remains in a continuous state, avoiding the mounting holes 72 or mounting grooves 71 on the heat equalizing plate 100 from blocking the capillary structure, thereby ensuring that the cooling medium in the condensation zone can be Reflux to the evaporation zone.
  • the second capillary structures 32 are densely distributed in the evaporation zone with a small area, and relatively sparsely distributed in the condensation zone with a large area, which improves the heat dissipation performance of the heat equalizing plate 100.
  • Fig. 29a is an exploded schematic diagram of a middle frame of a mobile terminal provided by the present application; as shown in Fig. 29a, the middle frame 200 includes a middle frame side wall 202, a middle frame extension 203 connected to the middle frame side wall 202, and the middle frame The extension 203 is used to optimize and reinforce the strong force-bearing area of the middle frame 200.
  • the middle frame 200 includes four side walls 202, which are two first side walls along the length of the mobile terminal and two second side walls along the width of the mobile terminal; In this manner, the middle frame extension 203 is connected to two first side walls and one second side wall.
  • the middle frame extension 203 is connected to a side of the middle frame side wall 202 close to the through hole 201.
  • the material of the middle frame extension 203 may be metal or alloy materials such as aluminum alloy, stainless steel, titanium alloy, copper alloy, etc.
  • the middle frame extension 203 and the middle frame side wall 202 are integrally processed, or the middle frame extension 203 and the middle frame side wall 202 are separately processed and formed, and then injected, screwed, welded, and glued. Connect and fix the two by means of knots.
  • the extension length of the middle frame extension 203 along the width direction of the mobile terminal is 0.5mm-50mm, and the extension length along the length direction of the mobile terminal is 0.5mm-50mm; specifically it can be 0.5mm, 1.0mm. mm, 2.0mm, 5.0mm, 10mm, 20mm, 30mm or 50mm, etc., can be adjusted according to specific actual needs.
  • the thickness of the middle frame extension 203 is smaller than the thickness of the middle frame side wall 202.
  • the heat equalizing plate 100 further includes a step fixing portion 60 extending along at least part of the edge of the equalizing plate.
  • the soaking plate 100 is set on the middle frame extension 203, and the steps of the soaking plate 100 are fixed by welding, dispensing, riveting, injection molding, etc.
  • the part 60 is connected and fixed to the middle frame extension 203.
  • the total thickness of the middle frame extension 203 and the step fixing portion 60 is greater than or equal to the thickness of the heat equalizing plate 100.
  • the edge of the first cover 11 extends to form a step fixing portion 60, and the step fixing portion 60 is connected to the middle frame extension 203.
  • the first cover plate 11 is made of a high-strength composite material
  • the second cover plate 12 is made of copper or copper alloy, or the second cover plate 12 can also be made of a high-strength composite material.
  • Figures 30a to 30d are schematic diagrams of the distribution state of the middle frame extensions in the mobile terminal provided by the embodiments of the application.
  • the middle frame extension 203 may be in the shape of a rectangular frame, a U-shaped frame, or others. Irregular frame shape.
  • the middle frame extension 203 can be a regular continuous straight edge, and the continuous straight edges can be distributed with equal width or unequal width;
  • the middle frame extension 203 can also be a discontinuous straight edge, and the discontinuous straight edge can also be of equal width or non-uniform width.
  • Equal width distribution; the middle frame extension 203 can also be locally optimized and reinforced according to the strength requirements of the middle frame, showing an irregular shape, which is not limited here.
  • Figures 31a to 31b are schematic diagrams of the electrical connection points of the middle frame of the mobile terminal provided by the embodiments of the application. As shown in Figures 31a to 31b, there are several distributions on the middle frame extension 203 and/or the step fixing part 60.
  • the electrical connection point 204 wherein the realization of the electrical connection point can be conductive glue, gold-plated reeds and other conductive media.
  • the shape of the electrical connection point can be square, round, diamond, rectangular, etc., and the middle frame extension can be riveted , Welding and other methods to connect to the electrical connection point, so that the middle frame and other electronic components are electrically connected.
  • the electrical connection points 204 may be distributed intermittently in series or in parallel, which is not limited herein.
  • an insulating protection layer 205 is provided on the middle frame extension 203 and/or the step fixing portion 60 except for the electrical connection points, and the interface resistance of the insulating protection layer 205 is higher than 500 ⁇ .
  • the insulating protective layer 205 may be formed by area coverage by anodizing, ink, or non-metallic organic matter.
  • the mobile terminal further includes a connecting layer 700 for connecting the step fixing portion 60 of the soaking plate 100 and the middle frame extension 203
  • the connecting layer 700 may be an adhesive layer, a soldering layer, or the like. Understandably, when the connecting layer 700 is provided between the middle frame extension 203 and the step fixing portion 60, the total thickness of the middle frame extension 203, the connecting layer 700 and the step fixing portion 60 is greater than or equal to The thickness of the soaking plate 100 is described.
  • transverse ribs of the battery compartment matched with the cover plate of the soaking plate 100 are partially cut or completely removed, and then fixed to the structure of the middle frame by means of screws, welding, glue dispensing, or the like.
  • the heat equalizing plate 100 is connected to the middle frame extension 203 through the step fixing portion 60. Specifically, it can be fixed on the middle frame extension 203 by dispensing, welding or riveting, so that the heat equalizing plate 100 and the middle frame 200 are connected as a whole; the circuit board 400 and the battery 500 are laid flat on the cover plate of the equalizing plate 100 On the side surface away from the middle frame extension 203.
  • 32a to 32b are partial exploded schematic diagrams of the middle frame and the soaking plate of the mobile terminal provided by the embodiments of the application.
  • the connecting layer 700 may be disposed on the step of the soaking plate 100
  • the fixing portion 60 is close to the surface of the middle frame extension 203, so that the connection between the middle frame extension 203 and the heat equalizing plate 100 is more stable.
  • connection layer 700 may include a first connection layer 701 and a second connection layer 702.
  • the first connection layer 701 is disposed on the step fixing portion 60 of the heat equalizing plate 100 close to the The surface of the middle frame extension 203 corresponds to the arrangement area of the battery 500 of the soaking plate 100.
  • the second connecting layer 702 is disposed on the surface of the step fixing portion 60 of the heat equalizing plate 100 away from the middle frame extension 203 and corresponding to the arrangement area of the circuit board 400 of the equalizing plate 100.
  • FIG. 33 is a schematic diagram of the structure of the border between the middle frame and the heat spreading plate provided by an embodiment of the application; as shown in FIG. It adopts a micro-crimping design, with circular arc, chamfering transition or circular arc, chamfering compound hemming, so that the contact edge is lower than the large plane, and the arc edge radius is 0.05mm-1mm. Therefore, the battery Overhang area can be effectively protected from external forces, and the battery safety can be effectively protected.
  • FIGs 34a to 34c are schematic diagrams of the connection structure between the heat spreading plate and the battery provided by the embodiments of the application; as shown in Figures 34a to 34c, the battery 500 can be fixed to the heat spreading plate 100 away from the middle frame extension 203 by means of battery glue 501.
  • the middle frame side wall 202 or the battery cover does not need to be equipped with battery glue.
  • the middle frame side wall and battery cover are not the load-bearing parts of the battery 500.
  • the middle frame 200 and the soaking plate 100 can be used as the battery 500 load bearing parts.
  • the setting area of the battery glue on the heat equalizing plate 100 can be adjusted according to the installation requirements of various electronic components in the mobile terminal.
  • the battery glue can have a regular shape or an irregular shape, and it can be a whole piece of battery glue or a single piece of battery glue splicing, which is not limited here.
  • holes or slots can be made in the whole battery glue according to the needs of components such as flexible circuit boards, fingerprint modules, screen devices, etc., to adapt to the stacking and interspersing of electronic components.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Signal Processing (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Telephone Set Structure (AREA)
  • Casings For Electric Apparatus (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种移动终端、均热板(100)及其制备方法、电子设备,其中,均热板(100)包括壳体(110),壳体(110)包括第一盖板(10)及第二盖板(20);第一盖板(10)与第二盖板(20)密封连接形成密封腔体(40),密封腔体(40)内部为负压环境,且设有冷却介质;及毛细结构(30),毛细结构(30)设置于密封腔体(40)内;第一盖板(10)和/或第二盖板(20)的材质为高强度复合材料,高强度复合材料包括至少一层第一材料层(11)及至少一层第二材料层(12),第一材料层(11)的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,第二材料层(12)的材质为铜或铜合金。所提供的移动终端、均热板(100)及其制备方法、电子设备,能够在保证均热板(100)轻薄化的同时保证其结构强度,避免长期使用中受外力均热板(100)变形引发显示或电池安全问题。

Description

移动终端、均热板及其制备方法、电子设备
本申请要求于2020年01月14日提交中国专利局,申请号为202010038900.0、发明名称为“高强度均热板及其制备方法、电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动终端技术领域,具体涉及移动终端、均热板及其制备方法、电子设备。
背景技术
目前,终端电子产品以轻薄、便携等特性作为热点,为了减小移动终端的整机厚度,采用中框局部开孔的方式,将均热板嵌设于于中框内,中框开孔后,其整体结构强度减弱。现有的均热板也向轻薄化和大面积大跨度方向发展,但是板材变薄或大面积大跨度使得均热板的结构强度减弱,在弯折、扭曲、按压等外力作用下往往容易变形,影响其散热功能。因此,如何在不影响散热的前提下,提高移动终端的整体结构稳定性成为设计的重点。
申请内容
为了克服上述现有技术存在的问题,本申请提供了移动终端、均热板及其制备方法、电子设备,将均热板与中框结合共同用于结构支撑件,提高均热板的结构强度,在不影响散热的前提下,提高移动终端的整体结构稳定性。
第一方面,本申请提供一种移动终端,包括中框、显示屏、电路板及电池,所述移动终端还包括均热板,所述均热板包括:
壳体,所述壳体包括第一盖板及第二盖板,所述第一盖板与所述第二盖板密封连接形成密封腔体,所述密封腔体内部为负压环境,且设有冷却介质;毛细结构,所述毛细结构设置于所述密封腔体内;所述第一盖板和/或所述第二盖板的材质为高强度复合材料,所述高强度复合材料包括至少一层第一材料层及至少一层第二材料层,所述第一材料层的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层的材质为铜或铜合金;所述第二材料层位于所述壳体的内侧,使得所述第一材料层和所述冷却介质隔离;
所述中框开设有通孔,所述均热板嵌设于所述通孔内;所述均热板与所述中框共同承载所述显示屏、所述电路板及所述电池。
结合第一方面,在一种可行的实施方式中,所述均热板与所述中框连接方式包括铆接、粘接、焊接、搭接、金属包胶注塑中的任意一种或多种。
结合第一方面,在一种可行的实施方式中,所述中框包括中框侧壁及中框延伸件, 所述中框延伸件连接于所述中框侧壁靠近所述通孔的一侧。
结合第一方面,在一种可行的实施方式中,所述均热板还包括沿均热板的至少部分边缘延伸形成的台阶固定部,所述台阶固定部与所述中框延伸件连接。
结合第一方面,在一种可行的实施方式中,沿所述移动终端的厚度方向,所述中框延伸件与所述台阶固定部的厚度总和大于或等于所述均热板的厚度。
结合第一方面,在一种可行的实施方式中,所述移动终端还包括用于连接所述台阶固定部与所述中框延伸件的连接层,所述中框延伸件、所述连接层与所述台阶固定部的厚度总和大于或等于所述均热板的厚度。
结合第一方面,在一种可行的实施方式中,所述台阶固定部开设有开孔和/或开槽。
结合第一方面,在一种可行的实施方式中,所述均热板沿厚度方向设有安装凹槽和/或安装孔。
结合第一方面,在一种可行的实施方式中,所述安装凹槽沿所述均热板的厚度方向凹陷形成于所述第一盖板或所述第二盖板上;或
所述安装孔贯穿所述第一盖板和/或所述第二盖板。
结合第一方面,在一种可行的实施方式中,所述中框延伸件和/或所述台阶固定部上分布有若干个电连接点。
结合第一方面,在一种可行的实施方式中,所述均热板包括第一段、第二段及连接所述第一段与所述第二段的弯折段,所述第一段与所述第二段具有高度差,且所述毛细结构在所述第一段、所述第二段及所述弯折段内保持连续。
结合第一方面,在一种可行的实施方式中,所述移动终端还包括散热层及发热器件,所述发热器件夹设于所述均热板和所述散热层之间,构成夹心散热结构。
结合第一方面,在一种可行的实施方式中,所述电池、所述显示屏分别平行设置于所述均热板的两侧,所述均热板包括朝向所述电池的电池面及朝向所述显示屏的显示面,所述显示屏与所述显示面平行不接触。
结合第一方面,在一种可行的实施方式中,所述移动终端为可折叠移动终端,当所述移动终端在折叠或弯曲状态下,所述电池、所述显示屏分别平行设置于所述均热板的两侧,所述显示屏与所述显示面平行不接触,所述电池与中框连接且靠近所述均热板的电池面。
结合第一方面,在一种可行的实施方式中,所述电路板、所述电池设置于所述均热板的同一侧,且所述均热板的电池面的面积大于所述电池沿厚度方向的投影面积。
结合第一方面,在一种可行的实施方式中,所述均热板包括蒸发区及冷凝区,所述毛细结构在所述蒸发区内的分布密度大于在所述冷凝区内的分布密度。
结合第一方面,在一种可行的实施方式中,所述均热板还包括自所述壳体的内表面向所述壳体的内部空间延伸的支撑结构。
结合第一方面,在一种可行的实施方式中,所述支撑结构抵接于所述第一盖板和/或第二盖板。
结合第一方面,在一种可行的实施方式中,所述支撑结构的内芯材质为所述第一材料层的材质,所述支撑结构的外周材质为所述第二材料层的材质。
结合第一方面,在一种可行的实施方式中,所述支撑结构的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金中的任意一种。
结合第一方面,在一种可行的实施方式中,所述第二材料层与所述毛细结构拼接后环绕设置于所述支撑结构的外周。
结合第一方面,在一种可行的实施方式中,所述支撑结构与所述壳体为一体式结构,所述支撑结构为多个呈阵列排布的柱体或凸点。
结合第一方面,在一种可行的实施方式中,所述毛细结构为金属材质的多孔介质。
结合第一方面,在一种可行的实施方式中,所述毛细结构为铜网、铜纤维、铜粉或泡沫铜中一种或多种。
结合第一方面,在一种可行的实施方式中,所述冷却介质为去离子水。
结合第一方面,在一种可行的实施方式中,所述毛细结构设置于所述第一盖板和/或所述第二盖板的第二材料层上。
结合第一方面,在一种可行的实施方式中,由所述高强度复合材料制成的盖板的表面硬度≥120Hv。
第二方面,本申请提供了一种均热板,所述均热板包括:
壳体,所述壳体包括第一盖板及第二盖板,所述第一盖板与所述第二盖板密封连接形成密封腔体,所述密封腔体内部为负压环境,且设有冷却介质;毛细结构,所述毛细结构设置于所述密封腔体内;所述第一盖板和/或所述第二盖板的材质为高强度复合材料,所述高强度复合材料包括至少一层第一材料层及至少一层第二材料层,所述第一材料层的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层的材质为铜或铜合金;所述第二材料层位于所述壳体的内侧,使得所述第一材料层和所述冷却介质隔离。
结合第二方面,在一种可行的实施方式中,所述均热板还包括:支撑结构,所述支撑结构自所述壳体的内表面向所述壳体的内部空间延伸。
结合第二方面,在一种可行的实施方式中,所述支撑结构的内芯的材质为所述第一材料层的材质,所述支撑结构的外周的材质为所述第二材料层的材质。
结合第二方面,在一种可行的实施方式中,所述支撑结构抵接于所述第一盖板和/或所述第二盖板。
结合第二方面,在一种可行的实施方式中,所述支撑结构与所述壳体为一体式结构,所述支撑结构为多个呈阵列排布的柱体或凸点。
结合第二方面,在一种可行的实施方式中,所述第一盖板的第二材料层与所述第二盖板的第二材料层围合形成所述密封腔体。
结合第二方面,在一种可行的实施方式中,所述高强度复合材料还包括一层第三材料层,所述第一材料层夹设于所述第二材料层和所述第三材料层之间,所述第三材料层的材质为铜或铜合金。
结合第二方面,在一种可行的实施方式中,所述毛细结构为金属材质的多孔介质。
结合第二方面,在一种可行的实施方式中,所述毛细结构为铜网、铜纤维、铜粉或泡沫铜中的一种或多种。
结合第二方面,在一种可行的实施方式中,所述冷却介质为去离子水。
结合第二方面,在一种可行的实施方式中,所述毛细结构设置于所述第一盖板和/或所述第二盖板的第二材料层上。
结合第二方面,在一种可行的实施方式中,由所述高强度复合材料制成的盖板的表面硬度≥120Hv。
结合第二方面,在一种可行的实施方式中,所述均热板还包括沿均热板的至少部分边缘延伸形成的台阶固定部。
结合第二方面,在一种可行的实施方式中,所述台阶固定部开设有开孔和/或开槽。
结合第二方面,在一种可行的实施方式中,所述均热板沿厚度方向设有安装凹槽和/或安装孔。
结合第二方面,在一种可行的实施方式中,所述安装凹槽沿所述均热板的厚度方向凹陷形成于所述第一盖板或所述第二盖板上;或
所述安装孔贯穿所述第一盖板和/或所述第二盖板。
结合第二方面,在一种可行的实施方式中,所述均热板包括第一段、第二段及连接所述第一段与所述第二段的弯折段,所述第一段与所述第二段具有高度差,且所述毛细结构在所述第一段、所述第二段及所述弯折段内保持连续。
结合第二方面,在一种可行的实施方式中,所述均热板包括蒸发区及冷凝区,所述毛细结构在所述蒸发区内的分布密度大于在所述冷凝区内的分布密度。
第三方面,本申请提供一种均热板的制备方法,所述方法包括:
将第二材料层设于第一材料层的一侧形成第一盖板;
将第二材料层设于第一材料层的一侧形成第二盖板,所述第一材料层的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层的材质为铜或铜合金;
将支撑结构设置于所述壳体的内表面上,并向所述壳体的内部空间延伸,所述支撑结构的内芯的材质为所述第一材料层的材质,所述支撑结构的外周的材质为所述第二材料层的材质;
将毛细结构设置在所述第一盖板的第二材料层或所述第二盖板的第二材料层上,将所述第一盖板和所述第二盖板结合形成中空的壳体,并向所述壳体内注入冷却介质;所述第二材料层位于所述壳体的内侧,使得所述第一材料层和所述冷却介质隔离;
通过所述毛细结构和蒸汽通道实现所述冷却介质在所述壳体内的热循环。
第四方面,本申请提供一种电子设备,包括工作模块和散热模块,所述散热模块包括如上述第二方面所述的均热板,所述均热板用于对所述工作模块散热。
结合第四方面,在一种可行的实施方式中,所述电子设备还包括中框和显示屏,所述中框开设有通孔,所述均热板嵌设于所述通孔内,所述均热板与所述中框共同承载所述显示屏。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术提供的均热板的结构示意图;
图2为均热板、热管与纯铜的散热能力比对图;
图3为本申请实施例提供的均热板的散热机理示意图;
图4为本申请实施例提供的一种均热板的结构示意图;
图5为本申请实施例提供的高强度复合材料的一种结构示意图;
图6为本申请实施例提供的另一种均热板的结构示意图;
图7为本申请实施例提供的另一种均热板的结构示意图;
图8为本申请实施例提供的另一种均热板的结构示意图;
图9为本申请实施例提供的另一种均热板的结构示意图;
图10为本申请实施例提供的另一种均热板的结构示意图;
图11为本申请实施例提供的另一种均热板的结构示意图;
图12为本申请实施例提供的另一种均热板的结构示意图;
图13为本申请实施例提供的另一种均热板的结构示意图;
图14a为本申请实施例提供的另一种均热板的结构示意图;
图14b为本申请实施例提供的另一种均热板的结构示意图;
图15a为本申请实施例提供的另一种均热板的结构示意图;
图15b为本申请实施例提供的另一种均热板的结构示意图;
图15c为本申请实施例提供的另一种均热板的结构示意图;
图16为本申请实施例提供的另一种均热板的结构示意图;
图17为本申请实施例提供的另一种均热板的结构示意图;
图18为本申请实施例提供的另一种均热板的结构示意图;
图19a为本申请实施例提供的一种均热板的俯视图;
图19b为本申请实施例提供的一种均热板的俯视图;
图20a为本申请实施例提供的一种均热板的俯视图;
图20b为本申请实施例提供的一种均热板的俯视图;
图21a为本申请实施例提供的另一种均热板的结构示意图;
图21b为本申请实施例提供的另一种均热板的结构示意图;
图21c为本申请实施例提供的另一种均热板的结构示意图;
图22a~22c分别为本申请实施例提供的均热板的透视结构示意图;
图23a~23d分别为本申请实施例提供的另一种均热板的透视结构示意图;
图24a~24e分别为本申请实施例提供的均热板的截面结构示意图;
图25为本申请实施例提供的另一种均热板的截面结构示意图;
图26a为本申请实施例提供的一种电子设备中框的结构示意图;
图26b为本申请实施例提供的一种电子设备中框与均热板的安装结构示意图;
图26c为本申请实施例提供的一种电子设备中框的剖视图;
图26d~26g分别为本申请实施例提供的移动终端的爆炸视图;
图27为本申请实施例提供的一种移动终端的中框强度测试示意图;
图28a~28e分别为本申请实施例提供的一种均热板的透视图;
图29a为本申请实施例提供的一种移动终端的爆炸视图;
图29b为本申请实施例提供的一种移动终端的截面图;
图29c为本申请实施例提供的一种移动终端的另一截面图;
图30a~30d分别为本申请实施例提供的一种移动终端中的中框延伸件的分布结构示意图;
图31a~31b分别为本申请实施例提供的一种移动终端中的中框上的电连接点分布结构示意图;
图32a~32b分别为本申请实施例提供的一种移动终端中的中框局部爆炸示意图;
图33为本申请实施例提供的一种移动终端的中框的局部截面示意图;
图34a~34c分别为本申请实施例提供的一种移动终端中的电池胶的分布示意图。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
在本申请的描述中,除非另有明确的规定和限定,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性;除非另有规定或说明,术语“至少一个”是指一个或者多个,术语“多个”是指两个或两个以上;术语“连接”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接,或电连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
本申请中,“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
为了便于理解,示例的给出了部分与本申请实施例相关概念的说明以供参考。
均热板,通常也可以叫均温板、或超导热板、热导板。蒸汽腔均热板(Vapor chamber,下面简称为VC)与热管(Heat pipe)原理相似,利用密封腔体内工质(冷却介质)液相沸腾相变为气相吸热、气相凝结为液相放热,以毛细力、重力等作为液相工质输运动力,完成气液相在VC冷热区域相变循环,从而利用相变潜热、热传导、对流等方式实现高效的热交换。均热板可以认为是形状自由度更高的热管,可实现不规则设计和大跨度即热管应用于一维散热,均热板还可以实现二维、三维散热。
本申请技术方案所提供的均热板被应用于电子设备,例如手机、平板电脑、笔记本电脑,及相关的具备散热功能的模块、结构件、功能件等等。电子设备包括工作模块和散热模块,散热模块包括均热板100,均热板100用于对工作模块散热。具有本申请提供的均热板100的电子设备散热性能和稳定性具有了显著提升,也满足轻量化和大面积大跨度设计的需求。
图1为现有技术中均热板的结构示意图,如图1所示,均热板100’由上盖板10’、下盖板20’、毛细结构30’和工质(图未示)等组成。具体地,均热板的上盖板10’和下盖板20’可以以焊接密封的方式组成一个密封腔体40’,该密封腔体40’内部可以布置毛细结构层30’,并在毛细结构层30’中填充一定量的冷却介质(例如可以是水),从而形成一个相变循环系统。均热板的散热过程也即利用冷却介质发生气液两相变化的两相散热过程。
应理解,均热板通常采用铜或铜合金作为上下盖板,毛细结构通常是以铜为基材的多孔介质,例如铜网、铜粉烧结、泡沫铜,可用铜网编织、拉丝、蚀刻、电镀、化学沉积等方法生成。支撑结构可以单独做出再与上下盖板的板材通过焊接等方式固定,也可以是在上下盖板的板材上直接加工出来,目前主要材质也是铜材。铜材有良好的导热性能,铜材毛细结构也较容易制备,且与水不产生化学反应。
进一步地,密封腔体内为负压状态,密封腔体主要用于防止冷却介质的流失、维持真空负压状态,并起到一定的抗变形的作用。毛细结构用于形成毛细力运输冷却介质,完成整个动力循环进而完成热力循环,是维持两相换热的关键。
图2为均热板与纯铜、热管的等效导热系数比对图,如图2所示,均热板在热源处液态水吸收热量蒸发成水蒸汽并吸收大量潜热。水蒸汽在密封腔体内运动至冷端放出热量冷凝成液态水。再通过毛细结构回流至蒸发段。通过相变换热,均热板的等效导热系数是纯铜的20倍以上。
但是现有的均热板的上下盖板的材质为铜或铜合金,容易产生变形,在应对弯折、扭曲、拉伸等外部作用力以及内部工质固化、膨胀等内部压力时,均热板容易变形,给使用均热板的电子设备带来不良的影响。
为了增加均热板的抗变形能力,可以使用不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金材料中的一种制作上下盖板和/或支撑结构,将支撑结构设置于上下盖板之间,以提高整个均热板的抗变形能力。表1示出了几种常见高强度金属材料的对比物理参数。表2示出了采用不锈钢或铜合金材料制成的均热板的性能参数比对表。
表1.金属材料物理参数(常温)
Figure PCTCN2021071267-appb-000001
Figure PCTCN2021071267-appb-000002
如表1所示,不锈钢与钛金属的屈服强度、弹性模量及表面硬度均优于铜或铜合金。
表2.采用不锈钢或铜合金材料制成的均热板的性能参数比对表
Figure PCTCN2021071267-appb-000003
如表2所示,采用不锈钢材料制成的均热板,不锈钢表面硬度(159Hv)大于铜合金表面硬度(81.5Hv),较后者提升95%。
为了更好的理解技术方案,这里先对实施例的工作原理进行介绍,图3为本申请实施例提供的均热板的工作原理示意图,如图3所示,均热板100包括蒸发区和冷却区,两个区域根据具体的工作场景需要进行确定,可以分别为整个上盖板或整个下盖板,也可以为上盖板或整个下盖板的某一部分。当热由热源传导至均热板100的蒸发区时,密封腔体内的冷却介质在低真空度的环境中受热后开始产生气化现象,此时吸收热能体积迅速膨胀,气相的冷却介质迅速充满整个密封腔体,当气相冷却介质进入冷却区时便会产生凝结的现象。借由凝结的现象释放出在蒸发时累积的热,凝结后的冷却介质会借由毛细结构再回到蒸发热源处,此运作将在密封腔体内周而复始进行。
因此,均热板的散热功能主要是通过冷却介质的气液两相变化实现的。均热板的散热过程包括了传导、蒸发、对流、凝结四个主要步骤。均热板内部汽化持续进行,随着温度的变化其内部压力会随之维持平衡。均热板的尺寸覆盖范围大、布局灵活,可以根据热源的实际尺寸和分布情况设计其尺寸规格,从而灵活的覆盖热源,实现同时为多个热源散热。
从上述的工作原理可以看出,实施例中的均热板100提供一个密封空间,供冷却介质在内部进行气液两相的转化。考虑到不同冷却介质在发生气液两相转变时,释放的相变潜力能力不同,通常选用水作为该冷却介质。
但是,在长期使用过程中,不锈钢与水有相容性问题,相容性问题是指壳体的板材与工质反应产生不凝性气体,导致两相散热系统均热板失效的问题。如公式一及公式二所示,不凝性气体(如H 2、O 2等)不断产生破坏均热板内部的负压环境,使得均热板无法正常工作而失效。当均热板内部空间相对较大时,可预留空间容纳不凝性气 体(H 2);当均热板厚度极薄时,空间紧张无法预留,不凝性气体破坏负压环境。因此,很少采用不锈钢与水配合制作均热板。
公式一:Fe+2H 2O→Fe(OH) 2+H 2
在120℃以上时,Fe(OH) 2分解,公式二:3Fe(OH) 2→Fe 3O 4+H 2↑+2H 2O
铜材有良好的导热性能,铜材毛细结构也较容易制备,且不与水产生化学反应,不会破坏负压环境。因此以铜或铜合金为基材的均热板能够提高均热板的耐用性。
针对现有技术中存在的问题,下面继续探讨本申请实施例的技术方案。
本申请实施例提供了一种高强度均热板。需要指出的是,实际均热板可根据产品做不等厚不规则设计,不限于长方体。图4示出了本申请实施例提供的一种高强度均热板的整体结构示意图。如图4所示,均热板100包括壳体110及毛细结构30。壳体110包括第一盖板10和第二盖板20,第一盖板10与第二盖板20密封连接形成密封腔体40。所述密封腔体40内部为负压环境,且设有冷却介质。进一步地,通过设置在壳体110上的开口,可以提前对密封腔体40内部进行抽真空,并且注入冷却介质,例如去离子水、甲醇、丙酮等。
如图5所示,所述第一盖板10和/或所述第二盖板20的材质为高强度复合材料,所述高强度复合材料包括至少一层第一材料层11及至少一层第二材料层12,所述第一材料层11的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层12的材质为铜或铜合金。所述第二材料层12位于所述壳体110的内侧,所述第一材料层11不接触所述冷却介质。
具体地,第一材料层与第二材料层可以通过真空热轧、真空冷轧或真空扩散焊接等方式压合形成高强度复合材料,也可以对第一材料层进行电镀、化学沉积等处理,使得第一材料层的至少一个表面覆盖一层第二材料层。
示例性地,高强度复合材料可以包括第一材料层11及第二材料层12,第一材料层11可以由不锈钢层、钛层及钛合金层复合而成,多层不同密度金属层通过电镀、轧制、粘贴等复合工艺制成第一材料层11,当然高强度复合材料也可以通过电镀、轧制、粘贴等复合工艺制成。
进一步地,第一盖板10与第二盖板20的厚度可以不同。例如,为了提高均热板的强度,在将均热板应用于电子设备中时,朝向电池面的盖板厚度可以大于朝向屏幕面的盖板厚度。可以理解地,由高强度复合材料制成的盖板可以作为中框的补强结构,可以避免中框在大面积掏空后,仅靠中框侧壁提供强度,造成极大的强度衰减,特别是曲面屏幕以及天线隔缝增加,中框侧壁厚度减薄,在均热板100的优化补强下能够使得中框刚度满足使用需求。
在本实施例中,由高强度复合材料制成的盖板的表面硬度≥120Hv,具体可以是120Hv、150Hv、170Hv、180Hv、200Hv、220Hv、250Hv等等,在此不做限定。
所述毛细结构30设置于所述密封腔体40内。具体地,毛细结构30与第一盖板10和第二盖板20可以平行设置,也可以根据设计需求进行设置,在此不做限定。毛细结构30内填充冷却介质,该冷却介质例如可以是去离子水、甲醇、丙酮等,通过工质的气液两相变化可以实现均热板的散热。其具体散热原理以及散热路径如上文介绍 所述。
毛细结构30可以与壳体110的内表面连接,也可以不与壳体110的内表面连接。所述毛细结构30为金属材质的多孔介质。具体地,毛细结构的材质为铜或铜合金,毛细结构例如可以是铜网、铜纤维、铜粉或泡沫铜等中一种或多种。
具体地,所述毛细结构30可以设置于所述第一盖板10和/或所述第二盖板20的第二材料层12上。在具体实施方式中,可以将铜网通过烧结、热焊接或冷压等方式与第一盖板10和第二盖板20相对的表面进行结合,利用烧结、热焊接或冷压等方式将铜网固定在壳体110的内表面,即第一盖板10的第二材料层12上,或第二盖板20的第二材料层12上,防止在使用过程中铜网的位置发生变化,确保了产品工作的稳定性。
在其他实施例中,也可以将铜网放入密封腔体40内不做任何连接加工,避免了因烧结、热焊接或冷压等方式加工对壳体110带来的影响,确保了壳体110的结构稳定性。
在具体实施例中,均热板的密封腔体40设有与外界连通的开口。开口可为注液口或抽真空口。通过开口往所述密封腔体40内注入冷却介质,并且通过开口对密封腔体40进行抽真空处理,然后对开口进行密封,使得密封腔体40处于真空负压状态。当密封腔体40内部被抽真空时,被注入的冷却介质就处于负压状态,一旦冷却介质在蒸发区受热,就会发生气化现象。气化后的冷却介体积变大,充斥整个腔体,在冷却区域,气态的冷却介质散掉热量也液化为液态的冷却介质,液化后的冷却介质借助毛细结构30重新回到蒸发区域。这样就在密封腔体40内形成一个热传递的循环。
本实施例提供的均热板既能够提高均热板的强度,又能够实现高强度材料(如:不锈钢)与水等工质的隔离,大幅减弱或消除相容性问题。
图6~9分别示出了本申请实施例提供的一种均热板的结构示意图。可以理解地,第一盖板10或第二盖板20采用高强度复合材料,可以增加均热板的强度,抗变形能力。第一盖板10及第二盖板20的形状、封边形式、连接方式等均可以根据实际需要进行相应地设计及更改,采用高强度复合材料制备的第一盖板10和/或第二盖板20能够提高均热板的强度,抗变形能力,将高强度复合材料的第二材料层12设置于壳体110的内侧,能够实现第一材料层11与水等工质的隔离,大幅减弱或消除相容性问题,避免水与不锈钢发生反应产生破坏负压环境的不凝性气体。需要指出的是,图6方案,第二盖板20可以只包括第二材料层,不包括第一材料层。图7方案,第一盖板10可以只包括第二材料层,不包括第一材料层。
图10示出了本申请实施例提供的另一种均热板的结构示意图。如图10所示,高强度复合材料不局限于层叠设置的第一材料层11及第二材料层12,第一材料层11与第二材料层12可以拼接设置,拼接方式可以是局部拼接或全拼接。第一材料层11与第二材料层12面积可以等大也可以不等大,每个第一材料层11与每个第二材料层12的厚度可以相同或不同。
图11示出了本申请实施例提供的另一种均热板的结构示意图。如图11所示,所述高强度复合材料还包括一层第三材料层,所述第一材料层夹设于所述第二材料层和所述第三材料层之间,所述第三材料层的材质为铜或铜合金。通过夹心结构,提高整 个壳体的抗变形能力。第二材料层12和第三材料层13的厚度可以相同也可以不同。第一盖板、第二盖板的厚度均小于等于0.15mm。第一盖板与第二盖板的形状、封边形式、连接方式等均可以根据实际需要进行相应地设计及更改。
在一种实施方式中,冷却介质为去离子水。可以理解地,水作为最常用的冷却介质,其生产成本低、制作简单,有利于降低整个均热板的生产成本,而且相比于甲醇、丙酮等,水作为冷却介质,更加安全可靠。
图12示出了本申请实施例提供的另一种均热板的结构示意图,如图12所示,在实际制备过程中,所述第一盖板10和第二盖板20可以通过焊接、粘接等方式使得第一盖板10与第二盖板20密封连接形成密封腔体40。具体地,所述第一盖板10的第二材料层12与所述第二盖板20的第二材料层12围合形成所述密封腔体40,从而避免冷却介质与第一材料层11接触。
在本实施例中,均热板100的壳体110还包括融合层111,融合层111用于连接第一盖板10与第二盖板20,以使得第一盖板10第二盖板20密封连接形成密封腔体40,即融合层111可以是焊接、粘接等处理工艺形成的焊接层、粘接层等。
图13为本申请实施例提供的另一种均热板的结构示意图,如图13所示,均热板100还包括支撑结构50,所述支撑结构50可以用于保持所述壳体110的形状,提高均热板的强度。
支撑结构50自壳体110的内表面向壳体110的内部空间延伸。支撑结构50之间的通道为蒸汽通道和/或毛细结构。可以理解地,支撑结构能够用于抵抗内外大气压差以及其他外力对均热板造成的形变,以免蒸汽通道和毛细结构被压扁造成均热板失效。
具体地,在第二盖板20上设置有支撑结构50,支撑结构50呈阵列式的分布在第二盖板20上,当第一盖板10与第二盖板20密封连接形成密封腔体40时,支撑结构50在密封腔体40内形成支撑的保护作用,以防止均热板100的密封腔体40因为受到挤压发生变形。
为了保证支撑结构50能够很好的起到支撑定型的作用,所述支撑结构50抵接于所述第一盖板10和/或所述第二盖板20。在一些实施例中,支撑结构50的高度等于密封腔体40的高度。同时,支撑结构50阵列式分布有利于均热板轻量化设计,有利于均热板质量的均匀分布,有利于电子设备整体重心的设计把控。
支撑结构50可以在第一盖板或第二盖板上直接加工制备。即,支撑结构50与壳体110为一体式结构,支撑结构50为多个呈阵列排布的凸柱或凸点。具体地,采用蚀刻的方式制作第一盖板10和第二盖板20,第一盖板10的第二材料层12用过蚀刻处理降面形成凹面,第二盖板20的第二材料层12通过蚀刻降面形成阵列排列的凸柱,凸柱即为支撑结构50。通过蚀刻工艺以做减法的方式加工得到的支撑结构50,能够极大保证支撑结构50与和第二盖板20连接稳固性,避免了对二者之间的粘接或者焊接工艺,简化了加工的流程。可以理解地,在本实施例中,支撑结构50的材质为铜或铜合金,通过搭配高强度的壳体,同样能够保证整个均热板的强度。
图14a及图14b分别为本申请实施例提供的另一种均热板的结构示意图,如图14a所示,支撑结构50的材质为高强度复合材料,支撑结构50的内芯51的材质为第一材 料层的材质,支撑结构50的外周52的材质为第二材料层的材质。
支撑结构50也可以单独制备出来后与第一盖板或第二盖板通过焊接等方式固定连接。具体地,采用冲压的方式对第二盖板20进行加工,首先对第二盖板20的板材进行冲压成型,然后在进行反向拉伸,形成下凹区域,最后将支撑结构50与第二盖板20焊接固定,形成均匀阵列排布的支撑结构50,支撑结构的外周与第二盖板的第二材料层的材质一样皆为铜或铜合金。支撑结构的内芯为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金中的至少一种材料制成。支撑结构的外周为铜或铜合金,通过支撑结构的外周能有有效分离冷却介质与第一材料层,消除相容性问题,避免产生不凝性气体。
可以理解地,高强度的支撑结构50有利于提高整个均热板的强度,以防止均热板100的密封腔体因为受到挤压发生变形。
进一步地,在第一盖板10与第二盖板20之间,在竖直方向上,当蒸汽通道与毛细结构串行时,如图1、4-13、14a、19b、20b所示,均热板为串行架构均热板;当蒸汽通道与毛细结构并行时,如图14b、15a-c、16、17、19a、20a所示,均热板为并行架构均热板。
如图14a所示的串行架构均热板,毛细结构30平铺设置于第二盖板20上,毛细结构30位于每个蒸汽通道的底部。毛细结构30的材质为铜或铜合金。
如图14b所示的并行架构均热板,毛细结构30环绕设置于所述支撑结构50的外周或两侧,类似第二材料层功能,通过毛细结构实现支撑结构与冷却介质的分离,消除或大幅减缓相容性问题。此时,毛细结构30与蒸汽通道平行设置。
在其他实施例中,毛细结构30还可以设置于壳体110内部的任意侧壁,在此不做限定。
图15a为本申请实施例提供的另一种均热板的结构示意图,如图15a所示,支撑结构50的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金中的任意一种。第二材料层12与毛细结构30的拼接后环绕设置于所述支撑结构50的外周。具体地,第二材料层与毛细结构的材质均为铜或铜合金。
具体地,第二材料层12与毛细结构30拼接为一体后环绕设置于支撑结构50的外周,如图15b及图15c所示,拼接方式可以是局部拼接或对半拼接,在此不做限定,实现高强度复合材料与冷却介质隔离。
进一步地,如图16所示,也可以采用其他金属材料与毛细结构30拼接后环绕设置于支撑结构50的外周,拼接方式在此不做限定。具体地,其他金属材料例如可以是不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金中的任意一种,例如支撑结构的内芯为不锈钢,外周采用钛合金与铜制成的毛细结构拼接,或者外周采用钛金属与铜合金制成的毛细结构拼接。拼接方式不做限定。
可以理解地,上述支撑结构50也可以应用于如图4~图12所述的均热板中,支撑结构可以由铜或铜合金制成,或是由高强度复合材料制成。
图17为本申请实施例提供的另一种均热板的结构示意图,如图17所示,毛细结构30环绕设置于支撑结构50的外周,支撑结构50的材质为不锈钢、钛金属、钛合金、 钨金属、钨合金、铬金属或铬合金中的任意一种,毛细结构30的材质为铜或铜合金。通过在支撑结构50周围环绕设置毛细结构30,蒸汽通道与毛细结构30并列设置,实现支撑结构50与冷却介质分离,消除或大幅减缓相容性问题,避免冷却介质与壳体110的第一材料层反应产生破坏负压环境的不凝性气体。
具体地,毛细结构30全覆盖所述支撑结构50的外周。根据均热板结构强度需求,高强度极薄的可以是不规则形状的支撑结构50,即横截面不同,例如工字钢型,如图18所示,支撑结构50为不规则圆柱形。
进一步地,图19a及图19b分别为本申请实施例提供的另一种均热板的俯视图,图20a及图20b分别为本申请实施例提供的另一种均热板的俯视图,如图20a至图20b所示,支撑结构50设置于密封腔体40内,多个支撑结构50可以连续设置也可以不连续设置,在本实施例中对支撑结构50的形状不做限定,例如可以是圆柱型、方块形、锥形等等,多个支撑结构50也可以是上述多种形状混合设计,在此不做限定。
图19a与图20a中的支撑结构50选用高强度材料,例如不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金中的至少一种,类似于第一材料层11。毛细结构30围绕支撑结构50,毛细结构30的材质为铜或铜合金,类似于第二材料层12,使得由高强度材料制成的支撑结构50与冷却介质隔离,大幅减缓相容性问题,避免产生不凝性气体。此时,如图19a所示,可以选用普通材料如铜;如图20a所示,壳体110也可以选用高强度复合材料。
图19b与图20b中的支撑结构50选用高强度复合材料,支撑结构50包括内芯51及环绕于内芯51外的外周52,内芯51的材质为第一材料层11的材质,例如不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金。外周52的材质为第二材料层12的材质,为铜或铜合金。毛细结构30平铺于第一盖板10和/或第二盖板20的第二材料层上,毛细结构30的材质为铜或铜合金,使得由高强度复合材料制成的支撑结构50与冷却介质隔离,大幅减缓相容性问题,避免产生不凝性气体。
在具体实施例中,为了保证均热板100整体的强度和轻便化设计,第一盖板10、第二盖板20的厚度小于等于0.15mm。
图21a~21c为本申请实施例提供的另一种均热板的结构示意图,如图21a~21c所示,为了便于均热板的安装固定,均热板100还包括沿均热板100的至少部分边缘延伸形成的台阶固定部60,所述台阶固定部60用于将所述均热板100安装固定。
如图21a所示,台阶固定部60可以是第一盖板10的边缘,且第一盖板10的垂直投影面积大于第二盖板20的垂直投影面积。如图21b所示,台阶固定部60也可以是第二盖板20的边缘,且第二盖板20的垂直投影面积大于第一盖板10的垂直投影面积。如图21c所示,台阶固定部60还可以是第一盖板10与第二盖板20相连接形成的一体化边缘,在本实施例中,且第二盖板20的垂直投影面积与第一盖板10的垂直投影面积相同。
可以理解地,台阶固定部60可以与待安装物件直接焊接或粘接,通过将第一盖板10和/或第二盖板20延伸形成台阶固定部60,可以提高均热板的安装结构稳定性,也能够减薄均热板,避免增加额外固定结构。待安装物件例如可以是电子设备的中框结 构。
图22a~22c为本申请实施例提供的均热板的台阶固定部的结构示意图,如图22a~22c所示,台阶固定部60设有开孔601和/或开槽602,以方便铆钉、螺丝或螺钉等固定结构通过开孔601和/或开槽602将均热板100固定在中框上。具体地,开孔601和/或开槽602可以沿台阶固定部60均匀间隔设置,也可以不均匀间隔设置。在本实施例中,不对开孔601、开槽602的具体形状进行限定,可以是圆形、椭圆形、方形、扇形等等。
进一步地,如图23a~23d所示,为了方便电子元器件的安装,所述均热板100沿厚度方向设有安装凹槽71和/或安装孔72,所述安装凹槽71和/或安装孔72用于安装电子元器件,电子元器件例如可以是柔性电路板、指纹模组、屏幕模组等。
如图23a所示,安装凹槽71或安装孔72开设于均热板100的边缘,且毛细结构30围绕设置于所述安装凹槽71或安装孔72的部分边缘,即安装凹槽71或安装孔72紧挨着均热板100的毛细结构30。如图23b所示,毛细结构30完全围绕设置于安装凹槽71或安装孔72的四周。如图23c所示,安装凹槽71或安装孔72也可以开设于均热板100的台阶固定部60上。如图23d所示,安装凹槽71或安装孔72的周围也可以无毛细结构30。可以理解地,分布有毛细结构30的区域比无毛细结构30的凹槽区域导热系数更高,散热效果更好。
如图24a~24b所示,在一种实施方式中,所述安装凹槽71沿所述均热板100的厚度方向凹陷形成于所述第一盖板10或所述第二盖板20,即安装凹槽71的深度小于第一盖板10的厚度或第二盖板20的厚度。安装凹槽71的形状可以是方形凹槽、圆形凹槽、椭圆形凹槽或其他不规则形状的凹槽,可以通过蚀刻或局部冲压等工艺形成。
在另一种实施方式中,所述安装孔72贯穿所述第一盖板10和/或所述第二盖板20。如图24c所示,安装孔72贯穿第二盖板20;如图24d所示,安装孔72贯穿第一盖板10及第二盖板20,即安装孔72贯穿整个均热板100。如图24e所示,安装孔72贯穿第二盖板20,且安装凹槽71凹陷形成于第一盖板10上,且分别位于均热板100的两侧。需要说明的是,设置于均热板100上的安装凹槽71和/或安装孔72不会影响均热板100的密封腔体,可以通过局部焊接(例如锡焊)、粘接使得密封腔体保持负压状态。
进一步地,所述均热板100包括第一段101、第二段102及连接所述第一段101与所述第二段102的弯折段103,所述第一段101与所述第二段102具有高度差,且所述毛细结构30在所述第一段101、所述第二段102及所述弯折段103内保持连续状态。
如图25所示,所述第一段101内的密封腔体与所述第二段102内的密封腔体的高度不同,即整个均热板100为不等厚的均热板,第一段101的整体厚度可以小于或大于第二段102的整体厚度。第一段101与第二段102内设有支撑结构50,支撑结构50的具体形式在此不做限定。可以理解地,弯折的均热板能够适应小的安装空间,以满足局部电子元器件的散热需求;并且适当增高密封腔室的高度,均热板内的蒸气通道更大,有利于冷却介质两相换热的进行,可以提高散热效率。
在其他实施例中,均热板100还可以包括第三段及连接第三段与第二段的第二弯 折段,使得均热板100设有多个弯折段。需要说明的是,由于本申请实施例提供的均热板采用高强度复合材料,在进行弯折处理后,整个均热板的强度仍能够满足使用需求。
第二方面
本申请实施例还提供了一种均热板的制备方法,方法包括:
将第二材料层设于第一材料层的一侧形成第一盖板;
将第二材料层设于第一材料层的一侧形成第二盖板,所述第一材料层的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层的材质为铜或铜合金;
将支撑结构设置于所述壳体的内表面上,并向所述壳体的内部空间延伸,所述支撑结构的内芯的材质为所述第一材料层的材质,所述支撑结构的外周的材质为所述第二材料层的材质;
将毛细结构设置在所述第一盖板的第二材料层或所述第二盖板的第二材料层上,将所述第一盖板和所述第二盖板结合形成中空的壳体,并向所述壳体内注入冷却介质;所述第二材料层位于所述壳体的内侧,使得所述第一材料层和所述冷却介质隔离;
通过所述毛细结构和蒸汽通道实现所述冷却介质在所述壳体内的热循环。
可以理解地,第二材料层位于所述壳体110的内侧,通过利用高强度的金属材料(如不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金)来作为铜材的补强,提高均热板的强度及抗变形能力。同时内层选用铜材能够实现第一材料层11与水等工质的隔离,大幅减弱或消除相容性问题。
其中,毛细结构通常是以铜为基材的多孔介质,例如铜网、铜粉、泡沫铜,可用铜网编织、拉丝、蚀刻、电镀、化学沉积等方法生成。冷却介质例如可以是水、去离子水、甲醇、丙酮等。
第一盖板或第二盖板还可以通过蚀刻、冲压等工艺形成支撑结构,从而有利于进一步提高均热板的抗变形能力。
具体实施例1
本实施例选用高强度复合材料并采用冲压的方式成型第一盖板和第二盖板,高强度复合材料包括由不锈钢制成的第一材料层及由铜制成的第二材料层。
将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体,壳体的内侧为第二材料层。在本实施例中,毛细结构为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为180~400HV。
实施例2
本实施例选用高强度复合材料并采用冲压的方式成型第一盖板和第二盖板,高强度复合材料包括由钛金属制成的第一材料层及由铜制成的第二材料层。
将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体,壳体的内侧为第二材料层。在本实施例中,毛细结构为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为180~400HV。
实施例3
本实施例选用高强度复合材料并采用冲压的方式成型第一盖板和第二盖板,高强度复合材料包括由钛合金制成的第一材料层及由铜制成的第二材料层。
将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体,壳体的内侧为第二材料层。在本实施例中,毛细结构为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为180~400HV。
对比例1
本对比例1选用铜材并采用冲压的方式成型第一盖板和第二盖板,将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体。毛细结构为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为80~120HV。
通过实施例1~3及对比例1的实验数据可见,实施例1~3的表面硬度相比于对比例1的表面硬度提升超过50%。
实施例4
本实施例选用高强度复合材料采用冲压的方式成型第一盖板和第二盖板,高强度复合材料包括由不锈钢制成的第一材料层及由铜制成的第二材料层。其中,在第二盖板上焊接均匀阵列排布的支撑结构,支撑结构的内芯的材质为不锈钢,支撑结构的外周的材质为铜。
将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体,壳体的内侧为第二材料层。毛细结构为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为180~400HV。
实施例5
本实施例选用高强度复合材料采用冲压的方式成型第一盖板和第二盖板,高强度复合材料包括由钛金属制成的第一材料层及由铜制成的第二材料层。其中,在第二盖板上焊接均匀阵列排布的支撑结构,支撑结构的内芯的材质为钛金属,支撑结构的外周的材质为铜。
将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体,壳体的内侧为第二材料层。毛细结构 为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为180~400HV。
实施例6
本实施例选用高强度复合材料采用冲压的方式成型第一盖板和第二盖板,高强度复合材料包括由钛合金制成的第一材料层及由铜制成的第二材料层。其中,在第二盖板上焊接均匀阵列排布的支撑结构,支撑结构的内芯的材质为钛合金,支撑结构的外周的材质为铜。
将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体,壳体的内侧为第二材料层。毛细结构为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为180~400HV。
对比例2
本实施例选用铜材并采用冲压的方式成型第一盖板和第二盖板,其中,在第二盖板上焊接均匀阵列排布的支撑结构,支撑结构的材质为铜。
将毛细结构设置在所述第一盖板和所述第二盖板之间,将所述第一盖板和所述第二盖板通过激光焊接形成具有密封腔体的壳体。毛细结构为铜粉。第一盖板与第二盖板的厚度均为0.15mm,采用300gf的测试力在均热板上按压10s,均热板的表面硬度为80~120HV。
通过实施例4~6及对比例2的实验数据可见,实施例4~6的表面硬度相比于对比例2的表面硬度提升超过50%。
第三方面
本实施例还提供一种电子设备,包括工作模块,所述散热模块包括上述第一方面所述的均热板,所述均热板用于对所述工作模块散热。电子设备例如手机、平板电脑、可穿戴设备(如智能手表)等,在此不做限定。
图26a为本申请实施例提供的电子设备的中框的结构示意图。图26b为本申请实施例提供的电子设备的中框与均热板的安装结构示意图;图26c为本申请实施例提供的电子设备的中框的剖视图。所述电子设备还包括中框200和显示屏,所述中框开设有通孔201,所述均热板100嵌设于所述通孔201内,所述均热板100与所述中框200共同承载所述显示屏。
为提升移动终端的散热能力,大面积均热板成为技术发展趋势。受制于移动终端空间限制,通常为≤0.8mm的超薄均热板,其盖板壁厚≤0.2mm。传统材料为铜及铜合金,这种超薄大面积大跨度均热板模组,其表面容易出现凹坑、褶皱等平面度问题,较传统小面积均热板,大幅恶化,导致均热板模组良率大幅下降,成本大幅提升。后段生产组装、运输和用户日常使用跌落中,较软的铜材易发生不可恢复的塑性变形, 特别是铜合金经焊接烧结等高温制程,均热板表面硬度≤90Hv,无法满足生产和可靠性设计要求。大面积均热板应用受限于均热板承担结构强度,如位于屏幕显示模组与电池模组之间。由于不锈钢、钛及钛合金的力学指标,远高于现有行业通用的铜或铜合金材料,尤其弹性模量和表面硬度,可有效缓解凹坑,褶皱和受力易塑性变形等问题。
在移动终端应用中,均热板面积越大,整体散热能力越强,在理想状态下,整个移动终端的中框结构均为均热板时,整机便可达到或接近自然散热的极限,支撑高性能游戏、拍照以及超高功率充电等工况散热需求。
在一些实施方式中,可以采用均热板与中框串行堆叠的架构,但是整机厚度加厚明显,且大面积的均热板性能难以满足蒸发、冷凝要求,无法有效提升散热能力,不符合产品竞争力需求。
为了减小整机厚度,可以对中框局部或全部开孔,在开孔内设置均热板。若采用常规的铜或铜合金的均热板,中框电池仓区域被大面积掏空后,仅靠中框侧边提供强度,造成极大的强度衰减,特别是3D屏幕造型以及5G天线隔缝增加,侧边厚度减薄,中框侧边连续性被破坏,三杆弯强度不达标,且难以进行优化补强,并且,大面积均热板在中框内处于悬臂梁状态,且经焊接制程后,均热板容易变形,平面度较差,电子设备跌落时有碎屏风险。
图26d、26e为申请实施例提供的移动终端的装配爆炸示意图。如图26d至26e所示,为了提升移动终端的散热能力,本实施例还提供一种移动终端,包括中框200、显示屏300、均热板100、一块或多块电路板400、电池500及后壳600等。移动终端内电池、电路板等可有2个或更多。中框200作为结构件,提供支撑功能。所述中框200开设有通孔201,所述均热板100嵌设于所述通孔201内;所述均热板100与所述中框200连接固定为一体,用于共同承载显示屏300、电路板400及电池500等。移动终端可以是手机、平板电脑、曲面屏手机、折叠手机等等,在此不做限定。
具体地,所述中框200的通孔201的面积占所述中框的整体面积的1/3以上,或者,所述通孔201的面积为电池500的面积的70%以上。当然通孔201的大小、形状也可以根据实际需求进行调整,在此不做限定。需要说明的是,中框局部或全部开设通孔201后,中框的结构强度衰减,通过将均热板100设置于通孔201内,均热板100与中框一起给显示屏300、电路板400、电池500或其他移动终端所需的零部件提供支撑,可以提高移动终端的整体结构稳定性。
如图26f~26g所示,为了进一步提高散热性能,带有发热器件的PCB 400夹在均热板100和高导热石墨烯膜/极薄均热板等散热材料701之间,构成夹心散热,可实现同等厚度下更强的自然散热能力。发热器件主要指中央处理器(central processing unit,CPU)或图形处理器(Graphics Processing Unit,GPU)或应用处理器(Application Processor,AP)等主发热器件。
具体地,移动终端还包括散热层701及发热器件,散热层701设置于后壳600的内侧。如图26f~26g所示,发热器件夹设于均热板100和散热层701之间,形成夹芯散热结构,以实现更强的自然散热能力。在一些实施例中,散热层701的材料可以是 高导热石墨烯、极薄均热板等不承重材料。可以理解地,在实际应用过程中,还是由中框200与均热板100作为承重支撑件,同时采用夹芯散热结构,可以实现同等厚度下更强的自散热能力。
具体地,均热板100与所述中框200连接方式包括铆接、粘接、焊接、搭接、金属包胶注塑中的任意一种或多种。
均热板100设有两个侧面,分别为朝向电池500的电池面501及朝向显示屏300的显示面301,显示屏300、电池500分别平行设置于均热板100的两侧,且显示屏300与显示面301平行不接触。可选地,电池500与电池面501平行不接触,或者,电池500通过背胶粘结等方式与电池面501固定,在此不做限定。
显示屏300模组、均热板100模组和电池500模组的表面,可贴有石墨膜、泡棉、粘胶、柔性电路板(Flexible Printed Circuit,FPC)等材料,均热板100位于敏感的显示屏300模组与电池500模组之间。
通过特殊的均热板架构设计满足对移动终端的显示屏、电池以及电连接结构的可靠性和安全设计要求,从而实现超薄均热板对关键发热器件全覆盖的散热设计。
电路板400可以通过螺钉或者塑料卡扣固定于中框200远离显示屏300的一侧上,中框200对电路板400起保护承载作用,电路板400产生的热量可以传导至均热板100上。后壳600位于电池500远离中框200的一侧。
移动终端也可以是可折叠手机,当可折叠手机在折叠或弯曲状态下,显示屏300、电池500分别平行设置于均热板100的两侧,且显示屏300与显示面301平行不接触。可选地,电池500与电池面501平行不接触,或者,电池500通过背胶粘结等方式与电池面501固定,在此不做限定。这里的平行可为弯曲状态下上下两个表面等距平行。
可以理解地,将显示屏、电池分别平行设置于均热板的两侧,且显示屏不与均热板直接接触,可以避免均热板的局部形变对显示屏造成的不良影响,保持整个移动终端的稳定性。
在本实施例中,均热板100能够直接承担部分中框结构的支撑功能。当电路板400开始工作时,电路板400产生的热量可传导至均热板100。
可以理解地,在本实施方式中,中框200开通孔201,均热板100嵌入中框200,并行架构设置。与之相对的是串行架构,中框200未开均热板对应的通孔,均热板100贴合在实体中框200上。即使开槽部分嵌入,串行架构厚度仍高于并行架构设计,无法实现超薄移动终端设计。但串行架构设计对均热板强度要求低,可采用传统均热板。由于高强均热板直接承担部分中框结构支撑功能,对这种并行架构,采用均热板,其各项性能远高于串行架构中框组件里的普通铜合金均热板,能够提高均热板的强度、表面硬度和可靠性,进而提高整个中框结构的稳定性及可靠性。如果均热板100强度不足,长期使用受外力发生变形翘曲,接触显示屏300,破坏显示面301与显示屏300的平行关系,影响显示效果,引发蓝斑白斑等;同样地,也容易接触电池500,破坏电池面501与电池500的平行关系,引发电池安全恶性事故。因此,这种强散热超薄设计,采用高强度复合材料制作均热板100,能够提高整体移动终端的使用稳定性。
图27为本申请实施例提供的一种中框强度测试示意图;如图27所示,当采用普 通的铜合金均热板与中框200一起做结构支撑件时,三竿弯强度仅为80~90N/mm,而使用本申请的均热板100与所述中框200配合做结构支撑件时,三竿弯强度可达到100~120N/mm,能够用于承载所述的显示屏和电池。
为保持良好散热效果,均热板100接触热源的蒸发区面积小于接触相对冷区的冷凝区面积,使得毛细结构30在面积小的蒸发区密集分布,在面积大的冷凝区相对稀疏分布。需要说明的是,均热板100的蒸发区与移动终端的发热器件(例如电路板400、CPU、GPU、AP等等)相抵接,均热板100的冷凝区可以与移动终端的电池500相抵接。当发热器件的热量传导至蒸发区时,蒸发区的冷却介质蒸发形成蒸汽,蒸汽沿均热板内的蒸汽通道流至冷凝区,冷凝得到的冷却介质在均热板内部的毛细结构作用下,回流至蒸发区内。在本实施例中,毛细结构30从接触热源的蒸发区辐射至冷凝区,从而确保冷凝区的冷却介质能够回流至蒸发区。
为了方便电子元器件的安装,如图28a所示,所述均热板100沿厚度方向设有安装凹槽71和/或安装孔72,所述安装凹槽71和/或安装孔72用于安装电子元器件,电子元器件例如可以是柔性电路板、指纹模组、屏幕模组等,需要说明的是,这里的电子元器件可以是发热器件也可以是不发热器件。
在一种实施方式中,均热板中的毛细结构(吸液芯)的均匀间隔分布。但是,在实际应用过程中,移动终端中会有多个热源,从而具有多个蒸发区,并且相互间不连贯,这样就会影响冷却介质从冷凝区回流至蒸发区。因此,难以确保冷却介质返回热源所在的蒸发区,会降低大面积均热板的散热性能。
如图28b~图28e所示,在另一种实施方式中,均热板中的毛细结构30包括第一毛细结构31及第二毛细结构32,其中,第一毛细结构31为铜粉、泡沫铜、铜网中的至少一种,其平铺设置于第一盖板10和/或第二盖板20的内表面。第二毛细结构32为铜纤维,其纤维状延伸分散设置于密封腔体40内。第二毛细结构32从多个蒸发区辐射至冷凝区,且毛细结构保持连续状态,避免均热板100上的安装孔72或安装凹槽71阻断毛细结构,从而确保冷凝区的冷却介质能够回流至蒸发区。并且,第二毛细结构32在面积小的蒸发区密集分布,在面积大的冷凝区相对稀疏分布,提高均热板100的散热性能。
图29a是本申请提供的一种移动终端的中框的分解示意图;如图29a所示,中框200包括中框侧壁202、与中框侧壁202连接的中框延伸件203,中框延伸件203用于对中框200强受力区域进行优化补强。具体地,中框200包括四个侧壁202,分别为沿所述移动终端长度方向上的两个第一侧壁和沿所述移动终端宽度方向上的两个第二侧壁;在具体实现方式中,中框延伸件203与两个第一侧壁及一个第二侧壁连接。
具体地,中框延伸件203连接于中框侧壁202靠近通孔201的一侧。中框延伸件203的材质可以是铝合金、不锈钢、钛合金、铜合金等金属或合金材料。通过设置中框延伸件203,可以构建中框工字型加强结构,相比于仅依靠中框侧壁202作为支撑,能够大幅提升中框的整体刚度及强度,提升中框的扭转和冲击刚度,为设置于中框两侧的电池、显示屏等提供稳定的支撑。
如图29b~29c所示,中框延伸件203与中框侧壁202一体加工而成,或,中框延 伸件203与中框侧壁202独立加工成型,再通过注塑、螺钉、焊接、粘结等方式将两者连接固定。
可选地,中框延伸件203沿所述移动终端宽度方向上的延伸长度为0.5mm-50mm,沿所述移动终端长度方向上的延伸长度为0.5mm-50mm;具体可以是0.5mm、1.0mm、2.0mm、5.0mm、10mm、20mm、30mm或50mm等等,可以根据具体实际所需进行调整。中框延伸件203的厚度小于中框侧壁202的厚度。
在本实施例中,均热板100还包括沿均热板的至少部分边缘延伸形成的台阶固定部60。当中框延伸件203与中框侧壁202固定为一体后,将均热板100设置于中框延伸件203上,并通过焊接、点胶、铆接、注塑等方式将均热板100的台阶固定部60与中框延伸件203连接固定。
可选地,沿所述移动终端的厚度方向,所述中框延伸件203与所述台阶固定部60的厚度总和大于或等于所述均热板100的厚度。
在一种实施例中,第一盖板11的边缘延伸形成台阶固定部60,台阶固定部60与中框延伸件203连接。第一盖板11采用高强度复合材料制成,第二盖板12采用铜或铜合金制成,或者第二盖板12也可以采用高强度复合材料制成。
图30a~30d分别为本申请实施例提供的移动终端中的中框延伸件的分布状态示意图,如图30a~30d所示,中框延伸件203可以呈矩形框状、U型框状或其他不规则框状。中框延伸件203可以是规整的连续直边,连续直边可以呈等宽度或不等宽度分布;中框延伸件203也可以是不连续的直边,不连续直边也可以等宽度或不等宽度分布;中框延伸件203还可以根据中框强度受力需求进行局部优化补强,呈现不规则形状,在此不做限定。
图31a~31b分别为本申请实施例提供的移动终端中框的电连接点的分布状态示意图,如图31a~31b所示,中框延伸件203和/或台阶固定部60上分布有若干个电连接点204,其中,电连接点的实现方式可为导电胶、镀金簧片等导电介质,电连接点的形状可以是正方形、圆形、菱形、长方形等形状,中框延伸件可以通过铆接、焊接等方式连接在电连接点上,从而中框与其他电子元器件实现电连接。电连接点204可以呈间断串行分布或者并行分布,在此不做限定。
为了避免对电连接点的干扰,中框延伸件203和/或台阶固定部60上除电连接点以外的区域设有绝缘保护层205,绝缘保护层205的界面电阻高于500Ω。在具体实现方式中,可以通过阳极氧化、油墨或者非金属有机物等进行区域覆盖形成绝缘保护层205。
由于均热板100完全覆盖电池区域及电路板区域,为了便于组装,如图29b所示,移动终端还包括用于连接均热板100的台阶固定部60与中框延伸件203的连接层700,所述连接层700可以是粘接层、焊接层等。可以理解地,当中框延伸件203与台阶固定部60之间设有连接层700时,所述中框延伸件203、所述连接层700与所述台阶固定部60的厚度总和大于或等于所述均热板100的厚度。
其中,与均热板100的盖板配合的电池仓横筋部分切除或全部去除后,通过螺钉、焊接、点胶等方式固定于中框部分结构。
在本实施例中,均热板100通过台阶固定部60与中框延伸件203连接。具体可以采用点胶、焊接或者铆接等方式固定在中框延伸件203上,使得均热板100与中框200连接为一体;电路板400与电池500平铺设置于均热板100的盖板远离所述中框延伸件203的一侧表面上。
图32a~32b为本申请实施例提供的移动终端的中框与均热板的局部分解示意图,如图32a所示,在一种实施方式中,连接层700可以设置于均热板100的台阶固定部60靠近所述中框延伸件203的表面,使得中框延伸件203与均热板100连接的更加稳定。
如图32b所示,在另一种实施方式中,连接层700可以包括第一连接层701及第二连接层702,第一连接层701设置于均热板100的台阶固定部60靠近所述中框延伸件203的表面,且与均热板100的电池500布置区域相对应。第二连接层702设置于均热板100的台阶固定部60远离所述中框延伸件203的表面,且与均热板100的电路板400布置区域相对应。
在实际组装应用过程中,在电池的Overhang区域(距离电池头部和尾部边缘6mm~10mm的区域为电池的Overhang区域)会出现>0.05mm的段差,且位于中框镂空的边缘,金属材料的锋边无法保证百分百管控,在高温高湿、跌落过程中,容易导致电池500出现压痕、鼓包甚至刺破等问题,导致短路起火。
为了避免出现上述问题,图33为本申请实施例提供的中框与均热板接壤位置的结构示意图;如图33所示,均热板100的台阶固定部60与中框侧壁202接触边缘采用微压边设计,以圆弧、倒角过渡或圆弧,倒角复合折边,使得接触边低于大平面,其中弧边半径为0.05mm-1mm。从而,可以有效保护电池Overhang区域不承载外力,有效保护电池安全。
图34a~34c为本申请实施例提供的均热板与电池的连接结构示意图;如图34a~34c所示,电池500可以通过电池胶501粘接固定在均热板100远离中框延伸件203的一侧表面上,其中,中框侧壁202或电池盖,不需要设置电池胶,中框侧壁与电池盖不是电池500的受力承载件,中框200与均热板100可以作为电池500的受力承载件。
在具体实施方式中,电池胶在均热板100上的设置区域可以根据移动终端中各个电子元器件的安装需求进行调整。电池胶可以是规则形状也可以是不规则形状,可以是整块电池胶,也可以是单块电池胶拼接,在此不做限定。当采用整块电池胶时,可以根据柔性电路板、指纹模组、屏幕器件等元器件的需要,在整块电池胶上进行开孔或开槽,以适应电子元器件的堆叠和穿插。
以上,仅为本申请较佳的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应该以权利要求的保护范围为准。

Claims (50)

  1. 一种移动终端,包括中框、显示屏、电路板及电池,其特征在于,所述移动终端还包括均热板,所述均热板包括:
    壳体,所述壳体包括第一盖板及第二盖板,所述第一盖板与所述第二盖板密封连接形成密封腔体,所述密封腔体内部为负压环境,且设有冷却介质;
    毛细结构,所述毛细结构设置于所述密封腔体内;
    所述第一盖板和/或所述第二盖板的材质为高强度复合材料,所述高强度复合材料包括至少一层第一材料层及至少一层第二材料层,所述第一材料层的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层的材质为铜或铜合金;所述第二材料层位于所述壳体的内侧,使得所述第一材料层和所述冷却介质隔离;
    所述中框开设有通孔,所述均热板嵌设于所述通孔内;所述均热板与所述中框共同承载所述显示屏、所述电路板及所述电池。
  2. 根据权利要求1所述的移动终端,其特征在于,所述均热板与所述中框连接方式包括铆接、粘接、焊接、搭接、金属包胶注塑中的任意一种或多种。
  3. 根据权利要求1所述的移动终端,其特征在于,所述中框包括中框侧壁及中框延伸件,所述中框延伸件连接于所述中框侧壁靠近所述通孔的一侧。
  4. 根据权利要求3所述的移动终端,其特征在于,所述均热板还包括沿均热板的至少部分边缘延伸形成的台阶固定部,所述台阶固定部与所述中框延伸件连接。
  5. 根据权利要求4所述的移动终端,其特征在于,沿所述移动终端的厚度方向,所述中框延伸件与所述台阶固定部的厚度总和大于或等于所述均热板的厚度。
  6. 根据权利要求4所述的移动终端,其特征在于,所述移动终端还包括用于连接所述台阶固定部与所述中框延伸件的连接层,所述中框延伸件、所述连接层与所述台阶固定部的厚度总和大于或等于所述均热板的厚度。
  7. 根据权利要求4所述的移动终端,其特征在于,所述台阶固定部开设有开孔和/或开槽。
  8. 根据权利要求1所述的移动终端,其特征在于,所述均热板沿厚度方向设有安装凹槽和/或安装孔。
  9. 根据权利要求8所述的移动终端,其特征在于,所述安装凹槽沿所述均热板的厚度方向凹陷形成于所述第一盖板或所述第二盖板上;或
    所述安装孔贯穿所述第一盖板和/或所述第二盖板。
  10. 根据权利要求4所述的移动终端,其特征在于,所述中框延伸件和/或所述台阶固定部上分布有若干个电连接点。
  11. 根据权利要求1所述的移动终端,其特征在于,所述均热板包括第一段、第二段及连接所述第一段与所述第二段的弯折段,所述第一段与所述第二段具有高度差,且所述毛细结构在所述第一段、所述第二段及所述弯折段内保持连续。
  12. 根据权利要求1所述的移动终端,其特征在于,所述移动终端还包括散热层及发热器件,所述发热器件夹设于所述均热板和所述散热层之间,构成夹心散热结构。
  13. 根据权利要求1所述的移动终端,其特征在于,所述电池、所述显示屏分别平行设置于所述均热板的两侧,所述均热板包括朝向所述电池的电池面及朝向所述显示屏的显示面,所述显示屏与所述显示面平行不接触。
  14. 根据权利要求13所述的移动终端,其特征在于,所述移动终端为可折叠移动终端,当所述移动终端在折叠或弯曲状态下,所述电池、所述显示屏分别平行设置于所述均热板的两侧,所述显示屏与所述显示面平行不接触,所述电池与中框连接且靠近所述均热板的电池面。
  15. 根据权利要求13所述的移动终端,其特征在于,所述电路板、所述电池设置于所述均热板的同一侧,且所述均热板的电池面的面积大于所述电池沿厚度方向的投影面积。
  16. 根据权利要求1所述的移动终端,其特征在于,所述均热板包括蒸发区及冷凝区,所述毛细结构在所述蒸发区内的分布密度大于在所述冷凝区内的分布密度。
  17. 根据权利要求1所述的移动终端,其特征在于,所述均热板还包括自所述壳体的内表面向所述壳体的内部空间延伸的支撑结构。
  18. 根据权利要求17所述的移动终端,其特征在于,所述支撑结构抵接于所述第一盖板和/或第二盖板。
  19. 根据权利要求17所述的移动终端,其特征在于,所述支撑结构的内芯材质为所述第一材料层的材质,所述支撑结构的外周材质为所述第二材料层的材质。
  20. 根据权利要求17所述的移动终端,其特征在于,所述支撑结构的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属或铬合金中的任意一种。
  21. 根据权利要求20所述的移动终端,其特征在于,所述第二材料层与所述毛细结构拼接后环绕设置于所述支撑结构的外周。
  22. 根据权利要求17或19所述的移动终端,其特征在于,所述支撑结构与所述壳体为一体式结构,所述支撑结构为多个呈阵列排布的柱体或凸点。
  23. 根据权利要求1所述的移动终端,其特征在于,所述毛细结构为金属材质的多孔介质。
  24. 根据权利要求23所述的移动终端,其特征在于,所述毛细结构为铜网、铜纤维、铜粉或泡沫铜中一种或多种。
  25. 根据权利要求1所述的移动终端,其特征在于,所述冷却介质为去离子水。
  26. 根据权利要求1所述的移动终端,其特征在于,所述毛细结构设置于所述第一盖板和/或所述第二盖板的第二材料层上。
  27. 根据权利要求1所述的移动终端,其特征在于,由所述高强度复合材料制成的盖板的表面硬度≥120Hv。
  28. 一种均热板,其特征在于,所述均热板包括:
    壳体,所述壳体包括第一盖板及第二盖板,所述第一盖板与所述第二盖板密封连接形成密封腔体,所述密封腔体内部为负压环境,且设有冷却介质;
    毛细结构,所述毛细结构设置于所述密封腔体内;
    所述第一盖板和/或所述第二盖板的材质为高强度复合材料,所述高强度复合材料包 括至少一层第一材料层及至少一层第二材料层,所述第一材料层的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层的材质为铜或铜合金;所述第二材料层位于所述壳体的内侧,使得所述第一材料层和所述冷却介质隔离。
  29. 根据权利要求28所述的均热板,其特征在于,所述均热板还包括:支撑结构,所述支撑结构自所述壳体的内表面向所述壳体的内部空间延伸。
  30. 根据权利要求29所述的均热板,其特征在于,所述支撑结构的内芯的材质为所述第一材料层的材质,所述支撑结构的外周的材质为所述第二材料层的材质。
  31. 根据权利要求29所述的均热板,其特征在于,所述支撑结构抵接于所述第一盖板和/或所述第二盖板。
  32. 根据权利要求29或30所述的均热板,其特征在于,所述支撑结构与所述壳体为一体式结构,所述支撑结构为多个呈阵列排布的柱体或凸点。
  33. 根据权利要求28所述的均热板,其特征在于,所述第一盖板的第二材料层与所述第二盖板的第二材料层围合形成所述密封腔体。
  34. 根据权利要求28所述的均热板,其特征在于,所述高强度复合材料还包括一层第三材料层,所述第一材料层夹设于所述第二材料层和所述第三材料层之间,所述第三材料层的材质为铜或铜合金。
  35. 根据权利要求28~34任一项所述的均热板,其特征在于,所述毛细结构为金属材质的多孔介质。
  36. 根据权利要求35所述的均热板,其特征在于,所述毛细结构为铜网、铜纤维、铜粉或泡沫铜中的一种或多种。
  37. 根据权利要求28所述的均热板,其特征在于,所述冷却介质为去离子水。
  38. 根据权利要求28或36所述的均热板,其特征在于,所述毛细结构设置于所述第一盖板和/或所述第二盖板的第二材料层上。
  39. 根据权利要求28所述的均热板,其特征在于,由所述高强度复合材料制成的盖板的表面硬度≥120Hv。
  40. 根据权利要求28所述的均热板,其特征在于,所述均热板还包括沿均热板的至少部分边缘延伸形成的台阶固定部。
  41. 根据权利要求28所述的均热板,其特征在于,所述台阶固定部开设有开孔和/或开槽。
  42. 根据权利要求28所述的均热板,其特征在于,所述均热板沿厚度方向设有安装凹槽和/或安装孔。
  43. 根据权利要求28所述的均热板,其特征在于,所述安装凹槽沿所述均热板的厚度方向凹陷形成于所述第一盖板或所述第二盖板上;或
    所述安装孔贯穿所述第一盖板和/或所述第二盖板。
  44. 根据权利要求28所述的均热板,其特征在于,所述均热板包括第一段、第二段及连接所述第一段与所述第二段的弯折段,所述第一段与所述第二段具有高度差,且所述毛细结构在所述第一段、所述第二段及所述弯折段内保持连续。
  45. 根据权利要求28所述的均热板,其特征在于,所述均热板包括蒸发区及冷凝区,所述毛细结构在所述蒸发区内的分布密度大于在所述冷凝区内的分布密度。
  46. 一种均热板的制备方法,其特征在于,所述方法包括:
    将第二材料层设于第一材料层的一侧形成第一盖板;
    将第二材料层设于第一材料层的一侧形成第二盖板,所述第一材料层的材质为不锈钢、钛金属、钛合金、钨金属、钨合金、铬金属、铬合金中的至少一种,所述第二材料层的材质为铜或铜合金;
    将支撑结构设置于所述壳体的内表面上,并向所述壳体的内部空间延伸,所述支撑结构的内芯的材质为所述第一材料层的材质,所述支撑结构的外周的材质为所述第二材料层的材质;
    将毛细结构设置在所述第一盖板的第二材料层或所述第二盖板的第二材料层上,将所述第一盖板和所述第二盖板结合形成中空的壳体,并向所述壳体内注入冷却介质;所述第二材料层位于所述壳体的内侧,使得所述第一材料层和所述冷却介质隔离;
    通过所述毛细结构和蒸汽通道实现所述冷却介质在所述壳体内的热循环。
  47. 根据权利要求46所述的均热板的制备方法,其特征在于,所述冷却介质为去离子水。
  48. 根据权利要求46所述的均热板的制备方法,其特征在于,所述第一材料层的材质为不锈钢,所述第二材料层的材质为铜。
  49. 一种电子设备,其特征在于,包括工作模块和散热模块,所述散热模块包括如权利要求28-45任意一项所述的均热板,所述均热板用于对所述工作模块散热。
  50. 根据权利要求49所述的电子设备,其特征在于,所述电子设备还包括中框和显示屏,所述中框开设有通孔,所述均热板嵌设于所述通孔内,所述均热板与所述中框共同承载所述显示屏。
PCT/CN2021/071267 2020-01-14 2021-01-12 移动终端、均热板及其制备方法、电子设备 WO2021143674A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
BR112022013989A BR112022013989A2 (pt) 2020-01-14 2021-01-12 Terminal móvel, câmara de vapor e método de preparação da mesma, e dispositivo eletrônico
MX2022008606A MX2022008606A (es) 2020-01-14 2021-01-12 Terminal movil, camara de vapor y metodo de preparacion de la misma, y dispositivo electronico.
EP21741648.6A EP4007468B1 (en) 2020-01-14 2021-01-12 Mobile terminal, vapor chamber and preparation method therefor, and electronic device
CN202180000700.9A CN113455116B (zh) 2020-01-14 2021-01-12 移动终端、均热板及其制备方法、电子设备
US17/755,121 US20230019481A1 (en) 2020-01-14 2021-01-12 Mobile Terminal, Vapor Chamber and Preparation Method Thereof, and Electronic Device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010038900.0 2020-01-14
CN202010038900.0A CN111163621B (zh) 2020-01-14 2020-01-14 高强度均热板及其制备方法、电子设备

Publications (1)

Publication Number Publication Date
WO2021143674A1 true WO2021143674A1 (zh) 2021-07-22

Family

ID=70563363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/071267 WO2021143674A1 (zh) 2020-01-14 2021-01-12 移动终端、均热板及其制备方法、电子设备

Country Status (6)

Country Link
US (1) US20230019481A1 (zh)
EP (1) EP4007468B1 (zh)
CN (3) CN111163621B (zh)
BR (1) BR112022013989A2 (zh)
MX (1) MX2022008606A (zh)
WO (1) WO2021143674A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023099A (zh) * 2021-11-10 2022-09-06 荣耀终端有限公司 电子设备
CN115802728A (zh) * 2023-01-31 2023-03-14 深圳威铂驰热技术有限公司 用于移动终端的真空腔均热板及其加工模具
WO2023108279A1 (en) * 2021-12-17 2023-06-22 9351-0618 Québec Inc. Heat-conducting plate

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111163621B (zh) * 2020-01-14 2021-03-02 华为技术有限公司 高强度均热板及其制备方法、电子设备
CN111552327A (zh) * 2020-05-15 2020-08-18 上海蔚星科技有限公司 基于相变材料及金属微膨胀的航天器用双驱空间热开关
CN111669939A (zh) * 2020-05-25 2020-09-15 嵊州天脉导热科技有限公司 一种由复合金属材料制成的均热板
CN112272487A (zh) * 2020-09-09 2021-01-26 华为机器有限公司 均热板、均热板的制造方法及电子设备
CN114161776A (zh) * 2020-09-10 2022-03-11 华为技术有限公司 均温板及其制备方法、电子设备
CN112420634A (zh) * 2020-10-26 2021-02-26 南昌航空大学 一种强效芯片散热结构
CN112589387B (zh) * 2020-11-30 2022-07-01 瑞声科技(南京)有限公司 均温板加工方法及均温板
CN112672604B (zh) * 2020-12-22 2023-04-21 Oppo(重庆)智能科技有限公司 均热板、外壳和电子装置
CN113734417A (zh) * 2021-09-06 2021-12-03 上海航天精密机械研究所 半主动防热结构及其制造方法
CN113811159A (zh) * 2021-09-14 2021-12-17 维沃移动通信有限公司 电子设备的主板上盖、其制造方法及电子设备
CN114705071B (zh) * 2022-05-13 2022-09-09 华为技术有限公司 移动终端、均温板和均温板的制作方法
WO2023245376A1 (zh) * 2022-06-20 2023-12-28 北京小米移动软件有限公司 散热组件及其制造方法、中框组件、壳体组件、终端设备
CN218570720U (zh) * 2022-08-17 2023-03-03 荣耀终端有限公司 均热板及电子设备
CN115296377B (zh) * 2022-09-30 2023-03-24 荣耀终端有限公司 电子设备
CN115505867B (zh) * 2022-10-25 2024-04-05 北京酷捷科技有限公司 一种氢气还原的不锈钢铬铜合金的制备方法和应用
CN115558831B (zh) * 2022-10-25 2023-08-04 北京酷捷科技有限公司 一种铬钼复合材料及其制备方法和应用
CN117545226A (zh) * 2023-04-27 2024-02-09 荣耀终端有限公司 均热板和电子设备
CN116576703A (zh) * 2023-05-11 2023-08-11 广东思泉热管理技术有限公司 一种具有鱼骨状毛细结构均热板制备工艺及其产品

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941898A (ja) * 1982-08-31 1984-03-08 松下電工株式会社 放熱装置
JPH039552A (ja) * 1989-06-07 1991-01-17 Idemitsu Petrochem Co Ltd 高熱伝導性部材
CN201569346U (zh) * 2009-12-08 2010-09-01 讯凯国际股份有限公司 散热板
CN101970967A (zh) * 2007-10-10 2011-02-09 嘉合科技有限公司 具有可插入式毛细结构系统的鼓形均热板
CN209563090U (zh) * 2018-11-30 2019-10-29 维沃移动通信有限公司 终端设备
CN110440621A (zh) * 2019-07-12 2019-11-12 华为技术有限公司 均热板和其制造方法及电子设备
CN210512786U (zh) * 2019-05-10 2020-05-12 双鸿电子科技工业(昆山)有限公司 均温板
CN111163621A (zh) * 2020-01-14 2020-05-15 华为技术有限公司 高强度均热板及其制备方法、电子设备
CN210892824U (zh) * 2019-08-19 2020-06-30 东莞仁海科技股份有限公司 一种改进型超薄均温板
CN111829380A (zh) * 2020-08-21 2020-10-27 北京中石伟业科技无锡有限公司 一种高强轻质的超薄均热板

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090040726A1 (en) * 2007-08-09 2009-02-12 Paul Hoffman Vapor chamber structure and method for manufacturing the same
CN101472450A (zh) * 2007-12-29 2009-07-01 私立淡江大学 可增强支撑强度与毛细作用的均热装置
CN102052864A (zh) * 2009-11-10 2011-05-11 和硕联合科技股份有限公司 均温板及其制造方法
CN201706933U (zh) * 2010-06-24 2011-01-12 索士亚科技股份有限公司 具有复合式支撑结构的均温板
CN101907416A (zh) * 2010-07-22 2010-12-08 中绿能源科技江阴有限公司 散热板及其制作方法
CN102623421B (zh) * 2011-01-26 2015-02-04 奇鋐科技股份有限公司 微均温板结构
CN203337002U (zh) * 2013-05-21 2013-12-11 泰硕电子股份有限公司 具有支撑结构的均温板
JP2015041768A (ja) * 2013-08-23 2015-03-02 太陽工業株式会社 ヒートシンク
KR101508877B1 (ko) * 2014-04-14 2015-04-07 김흥배 모세관력을 가지는 구조물이 형성된 베이퍼 챔버
JP5788069B1 (ja) * 2014-08-29 2015-09-30 古河電気工業株式会社 平面型ヒートパイプ
CN105828570A (zh) * 2015-09-24 2016-08-03 维沃移动通信有限公司 一种散热装置
CN205546375U (zh) * 2016-02-19 2016-08-31 东莞钱锋特殊胶粘制品有限公司 电子装置的均温散热复合膜结构
CN107306486B (zh) * 2016-04-21 2023-03-24 奇鋐科技股份有限公司 整合式散热装置
CN107782185A (zh) * 2016-08-31 2018-03-09 浙江嘉熙科技有限公司 超薄复合材料相变抑制传热板及其制备方法
CN114760824A (zh) * 2017-01-18 2022-07-15 台达电子工业股份有限公司 均热板
CN207881538U (zh) * 2017-11-03 2018-09-18 中国科学院理化技术研究所 一种平板热管
US20190204019A1 (en) * 2018-01-03 2019-07-04 Asia Vital Components (China) Co., Ltd. Heat dissipation device
CN208835040U (zh) * 2018-08-17 2019-05-07 东莞市宏瑞热传科技有限公司 一种复合型3d均温板
CN109612316A (zh) * 2018-12-12 2019-04-12 上海卫星装备研究所 薄壁均温板及其制造方法
CN209643232U (zh) * 2018-12-14 2019-11-15 奇鋐科技股份有限公司 中框散热结构
CN110234212A (zh) * 2019-04-01 2019-09-13 Oppo广东移动通信有限公司 散热板、散热组件、电子装置以及散热板的制备方法
CN110108139A (zh) * 2019-04-26 2019-08-09 华南理工大学 一种具有支撑柱和沟槽复合结构的均热板
CN110418550B (zh) * 2019-06-25 2021-06-01 华为技术有限公司 均热板和折叠终端
CN110285699A (zh) * 2019-07-26 2019-09-27 联德精密材料(中国)股份有限公司 一种复合型均温板及其制造方法
CN110402068A (zh) * 2019-07-27 2019-11-01 Oppo广东移动通信有限公司 电子设备及电子设备的组装方法
CN209894013U (zh) * 2019-09-12 2020-01-03 爱美达(深圳)热能系统有限公司 一种均温板
CN110678048B (zh) * 2019-10-15 2024-06-11 航天科工微系统技术有限公司 一种高导热均热板结构及其制造工艺

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5941898A (ja) * 1982-08-31 1984-03-08 松下電工株式会社 放熱装置
JPH039552A (ja) * 1989-06-07 1991-01-17 Idemitsu Petrochem Co Ltd 高熱伝導性部材
CN101970967A (zh) * 2007-10-10 2011-02-09 嘉合科技有限公司 具有可插入式毛细结构系统的鼓形均热板
CN201569346U (zh) * 2009-12-08 2010-09-01 讯凯国际股份有限公司 散热板
CN209563090U (zh) * 2018-11-30 2019-10-29 维沃移动通信有限公司 终端设备
CN210512786U (zh) * 2019-05-10 2020-05-12 双鸿电子科技工业(昆山)有限公司 均温板
CN110440621A (zh) * 2019-07-12 2019-11-12 华为技术有限公司 均热板和其制造方法及电子设备
CN210892824U (zh) * 2019-08-19 2020-06-30 东莞仁海科技股份有限公司 一种改进型超薄均温板
CN111163621A (zh) * 2020-01-14 2020-05-15 华为技术有限公司 高强度均热板及其制备方法、电子设备
CN111829380A (zh) * 2020-08-21 2020-10-27 北京中石伟业科技无锡有限公司 一种高强轻质的超薄均热板

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115023099A (zh) * 2021-11-10 2022-09-06 荣耀终端有限公司 电子设备
CN115023099B (zh) * 2021-11-10 2023-11-21 荣耀终端有限公司 电子设备
WO2023108279A1 (en) * 2021-12-17 2023-06-22 9351-0618 Québec Inc. Heat-conducting plate
CN115802728A (zh) * 2023-01-31 2023-03-14 深圳威铂驰热技术有限公司 用于移动终端的真空腔均热板及其加工模具

Also Published As

Publication number Publication date
MX2022008606A (es) 2022-08-11
CN112996346A (zh) 2021-06-18
EP4007468B1 (en) 2024-03-06
CN112996346B (zh) 2022-08-02
BR112022013989A2 (pt) 2022-10-11
EP4007468A1 (en) 2022-06-01
CN111163621B (zh) 2021-03-02
US20230019481A1 (en) 2023-01-19
CN113455116B (zh) 2023-06-27
EP4007468A4 (en) 2022-12-14
CN113455116A (zh) 2021-09-28
CN111163621A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
WO2021143674A1 (zh) 移动终端、均热板及其制备方法、电子设备
CN110418550B (zh) 均热板和折叠终端
TWI763989B (zh) 可撓動之均溫板
CN110191626B (zh) 壳体组件、其制备方法以及电子设备
CN112595155B (zh) 可折叠均温板和可折叠电子设备
CN110035643A (zh) 散热组件以及电子设备
JP2015132400A (ja) ループ型ヒートパイプとその製造方法、及び電子機器
CN112135488A (zh) 导热结构及其制备方法、电子设备
WO2023216482A1 (zh) 移动终端、均温板和均温板的制作方法
WO2021018004A1 (zh) 一种导热装置及终端设备
CN114401625B (zh) 散热模组和电子设备
CN213343091U (zh) 均温板和电子设备
CN110191621B (zh) 一种具有散热结构的印刷电路板叠置组件以及电子设备
CN110149784B (zh) 散热组件及电子设备
CN210137565U (zh) 散热板、散热组件以及电子装置
WO2021190552A1 (zh) 移动终端及中框组件
CN108777255B (zh) 一种散热组件及电子设备
RU2796496C1 (ru) Мобильный терминал, испарительная камера и способ ее изготовления и электронное устройство
CN115551285A (zh) 均热板、散热器及电子设备
WO2019056506A1 (zh) 由冲压工艺形成的薄型均热板
CN210573485U (zh) 便携式平板笔记本
US20200116436A1 (en) Heat transferring module and manufacturing method thereof
CN112911028A (zh) 均温板、终端设备及均温板的制造方法
WO2024021719A1 (zh) 一种均热板及电子设备
CN220798857U (zh) 一种均温板及终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21741648

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021741648

Country of ref document: EP

Effective date: 20220228

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022013989

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 112022013989

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20220714