WO2023245376A1 - 散热组件及其制造方法、中框组件、壳体组件、终端设备 - Google Patents
散热组件及其制造方法、中框组件、壳体组件、终端设备 Download PDFInfo
- Publication number
- WO2023245376A1 WO2023245376A1 PCT/CN2022/099941 CN2022099941W WO2023245376A1 WO 2023245376 A1 WO2023245376 A1 WO 2023245376A1 CN 2022099941 W CN2022099941 W CN 2022099941W WO 2023245376 A1 WO2023245376 A1 WO 2023245376A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- heat dissipation
- pipe
- cover plate
- capillary structure
- dissipation component
- Prior art date
Links
- 230000017525 heat dissipation Effects 0.000 title claims abstract description 161
- 238000000034 method Methods 0.000 title claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 22
- 239000007788 liquid Substances 0.000 claims abstract description 47
- 238000002347 injection Methods 0.000 claims description 38
- 239000007924 injection Substances 0.000 claims description 38
- 239000012530 fluid Substances 0.000 claims description 21
- 239000002184 metal Substances 0.000 claims description 8
- 238000007789 sealing Methods 0.000 claims description 6
- 238000005530 etching Methods 0.000 claims description 4
- 238000005245 sintering Methods 0.000 claims description 4
- 239000006260 foam Substances 0.000 claims description 2
- 239000000843 powder Substances 0.000 claims description 2
- 230000004888 barrier function Effects 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 8
- 230000009286 beneficial effect Effects 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000012545 processing Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000002411 adverse Effects 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 230000006978 adaptation Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D15/00—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
- F28D15/02—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
- F28D15/04—Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
Definitions
- the present disclosure relates to the field of terminal equipment, and in particular, to a heat dissipation component and a manufacturing method thereof, a middle frame component, a housing component, and a terminal device.
- Mobile terminals such as mobile phones and tablets have become indispensable technological products in people's life, study and entertainment.
- the number of cores of the CPU (Central Processing Unit, central processing unit) used by them has increased, and its performance has increased day by day, causing the mobile terminal to generate more and more heat.
- temperature rise experience has gradually become an important consideration for consumers when purchasing mobile terminals.
- thinner and lighter heat dissipation structures have become a trend.
- embodiments of the present disclosure propose a heat dissipation component and a manufacturing method thereof, a terminal heat dissipation device, and terminal equipment to solve some or all of the above technical problems.
- a heat dissipation component includes an evaporator, a condenser and a first pipe.
- the evaporator has an output end
- the condenser has an inlet end
- the first pipe The output end of the evaporator and the inlet end of the condenser are connected; at least part of the inner wall of the first pipe is provided with a capillary structure.
- a manufacturing method of a heat dissipation component is proposed.
- the manufacturing method is used to manufacture the heat dissipation component as described above; the manufacturing method includes:
- the first cover plate and the second cover plate are assembled together to form the heat dissipation assembly.
- a middle frame assembly including a middle frame and a heat dissipation component as described above, and the heat dissipation component is provided on the middle frame.
- a housing assembly is proposed, the housing and the heat dissipation component as described above, the heat dissipation component is disposed inside the housing
- a terminal device including: the heat dissipation component as described above, the terminal device further includes a heat source area, the heat source area and the heat dissipation component are in a first preset direction. Orthographic projections overlap at least partially.
- the technical solution provided by the embodiments of the present disclosure may include the following beneficial effects: by providing a capillary structure on at least part of the inner wall of the first pipe, preventing liquid droplets from forming in the first pipe and affecting the flow of steam in the first pipe, Thereby improving the stability of the cooling component.
- Figure 1 is a schematic structural diagram of a heat dissipation structure according to an exemplary embodiment of the present disclosure
- Figure 2 is a schematic structural diagram and a partial cross-sectional view of a heat dissipation structure according to an exemplary embodiment of the present disclosure, wherein; Figure 2 illustrates the internal structure of each part of the heat dissipation component;
- Figure 3 is a schematic structural diagram of another heat dissipation structure according to an exemplary embodiment of the present disclosure.
- Figure 4 is a side view of position A shown in Figure 3;
- Figure 5 is a schematic structural diagram of yet another heat dissipation structure according to an exemplary embodiment of the present disclosure.
- Fig. 6 is a schematic structural diagram of a middle frame assembly according to an exemplary embodiment of the present disclosure.
- Figure 7 is a partial structural schematic diagram of a terminal device according to an exemplary embodiment of the present disclosure.
- Figure 8 is a cross-sectional view of the terminal equipment shown in Figure 7;
- Figure 9 is a partial structural schematic diagram of another terminal device according to an exemplary embodiment of the present disclosure.
- Figure 10 is a cross-sectional view of the terminal equipment shown in Figure 9;
- Figure 11 is a method flow chart of a manufacturing method of a heat dissipation component according to an exemplary embodiment of the present disclosure
- Figure 12 is a schematic structural diagram of a first cover plate and a second cover plate according to an exemplary embodiment of the present disclosure.
- the heat dissipation assembly 100 includes an evaporator 10 , a condenser 20 and a first pipe 30 .
- Evaporator 10 has opposing input 101 and output 102 ends.
- Condenser 20 has opposing inlet 201 and outlet 202 ends.
- the first pipe 30 communicates with the output end 102 of the evaporator 10 and the inlet end 201 of the condenser 20 .
- At least part of the inner wall of the first pipe 30 is provided with a capillary structure.
- Capillary structures can be used to store working fluids.
- the capillary structure in at least part of the inner wall of the first pipe 30, it can be beneficial to store the liquid working fluid present in the first pipe 30, and prevent the formation of liquid droplets in the first pipe and affect the flow of liquid in the first pipe.
- the flow of steam improves the stability of the heat dissipation component.
- the heat dissipation assembly 100 further includes a second pipe 40, a compensation chamber 50 and a working fluid (not shown).
- the second pipe 40 communicates with the outlet end 202 of the condenser 20 and the input end 101 of the evaporator 10 .
- the compensation chamber 50 is located between the second pipe 40 and the evaporator 10 and the inner cavity of the compensation chamber 50 is filled with a capillary structure.
- the working fluid can circulate in the evaporator 10 , the first pipe 30 , the condenser 20 , the second pipe 40 and the liquid replenishing chamber 50 .
- the relative positions between the various parts of the evaporator 10, the first pipe 30, the condenser 20, the second pipe 40 and the liquid replenishing chamber 50 can be determined according to the size of the terminal equipment to be heat dissipated. For example:
- the size of the heat dissipation component 100 in the first preset direction may be 0.2mm-1mm.
- the size of the heat dissipation component in the second preset direction may be 50mm-120mm.
- the overall size of the heat dissipation component 100 along the third preset direction may be 30 mm to 70 mm.
- the second preset direction and the third preset direction are perpendicular.
- the second preset direction may be the length direction L of the heat dissipation component 100
- the third preset direction may be the width direction W of the heat dissipation component 100
- the first preset direction forms an included angle with the plane determined by the second preset direction and the third preset direction.
- the first preset direction may be perpendicular to the second preset direction and the third preset direction. determined plane.
- the first preset direction corresponds to the thickness direction T.
- the inner cavity of the compensation chamber 50 is covered with capillary structures 65 to form a steam retaining wall to prevent the steam in the second pipe from flowing into the evaporator 10 and avoid the steam flowing into the evaporator. 10 adverse effects.
- the size of the compensation cavity 50 along the third preset direction may be 3mm-20mm.
- the size of the compensation cavity 50 along the second preset direction may be 30mm-20mm.
- the evaporator 10 has a first evaporator side wall 11 and a second evaporator side wall 12 that are oppositely arranged along a first preset direction.
- a capillary structure 61 is provided on the side wall 12 of the second evaporator.
- the first preset direction mentioned here can be understood as the thickness direction T of the heat dissipation component 100 .
- the size of the evaporator 10 along the third preset direction may be 10mm-40mm.
- the size of the evaporator 10 along the second preset direction may be 10mm-40mm.
- the size range of the inner cavity of the evaporator 10 along the first preset direction is 0.1mm-0.9mm.
- the thickness of the capillary structure 61 can be set to 0.03mm-0.3mm.
- the capillary structure may be provided on the side wall of the second evaporator without the capillary structure being provided on the side wall of the first evaporator.
- the capillary structure provided on the side wall of the second evaporator refer to the above related description.
- the side wall of the evaporator is provided with a capillary structure, which can be arranged on the side closer to the heat source to store the working fluid in the capillary structure, which is beneficial to improving evaporation.
- the evaporation effect of the heat sink improves the heat dissipation effect of the heat dissipation component.
- the first pipeline 30 has a first pipeline side wall 31 and a second pipeline side wall 32 arranged oppositely along the first preset direction.
- the inner wall of the first pipeline side wall 31 is provided with a capillary structure 631
- the inner wall of the second pipe side wall 32 is provided with a capillary structure 632.
- the first preset direction can also be understood as the thickness direction T of the heat dissipation component 100 .
- the size of the first pipe 20 along the third preset direction may be 5mm-40mm.
- the size of the first pipe 20 along the second preset direction may be 50mm-120mm.
- the size range of the inner cavity of the first pipe 30 along the first preset direction is 0.1mm-0.9mm.
- the thickness of the capillary structure 631 can be set to 0.001mm-0.3mm, and the thickness of the capillary structure 632 can be set to 0.001mm-0.3mm.
- the inner cavity of the first pipe 30 has a first capillary structure area with a capillary structure and a first expansion cavity area 3013 located outside the first capillary structure area.
- the first capillary structure area here includes the capillary structure areas 3011 and 3012 in which the capillary structure 631 is provided.
- the size of the first expansion cavity area 3013 along the first preset direction is larger than the size of the first capillary structure area along the first preset direction to provide sufficient circulation of the vaporized working fluid, which is beneficial to ensuring the heat dissipation assembly 100 heat dissipation efficiency.
- the size of the first expansion cavity region 3013 along the first preset direction is greater than the size of the first capillary structure region along the first preset direction, which can be understood as D3>D1+D2.
- the ratio between the size of the first expansion cavity region 3013 along the first preset direction and the size of the first capillary structure region along the first preset direction is greater than 2, which is more conducive to ensuring that There is enough space in the first pipe 30 for the vaporized working fluid to circulate.
- the ratio between the size of the first expansion cavity region 3013 along the first preset direction and the size of the first capillary structure region along the first preset direction is greater than 2, which can be understood as D3>2(D1+D2 ).
- the capillary structure may also be provided only on the inner wall of the first pipe side wall or the inner wall of the second pipe side wall.
- the thickness of the capillary structure can be set to 0.001mm-0.3mm.
- the second pipeline 40 has a third pipeline side wall 41 and a fourth pipeline side wall 42 arranged oppositely along the first preset direction.
- the inner wall of the third pipeline side wall 41 is provided with a capillary.
- Structure 641 the inner wall of the fourth pipe side wall 42 is provided with a capillary structure 642.
- the size of the second pipe 40 along the third preset direction may be 5mm-30mm.
- the size of the second pipe 40 along the second preset direction may be 50mm-120mm.
- the thickness of the capillary structures 641 and 642 can be set to 0.05mm-1mm respectively. It should be noted that the size range of the second pipe 40 can be adjusted according to actual needs. The above description of the size range of the second pipe 40 is only an example and not a limitation.
- the inner cavity of the second pipe 40 has a second capillary structure area (including the two areas indicated by 4011 and 4012) with a capillary structure and a second expansion chamber located outside the second capillary structure area. Area 4013, so that the second pipe has expansion space, so that the working fluid can flow more smoothly, and can prevent water from freezing and expanding the pipe.
- the size of the second expansion chamber area 4013 in the first preset direction may be 0.03mm-0.5mm, which can well prevent water from freezing and expanding the tube.
- a capillary structure may be provided on the inner wall of one of the third pipe side wall and the fourth pipe side wall.
- the inner cavity of the second pipe 40 may be filled with capillary structures.
- the condenser 20 has a first condenser side wall 21 and a second condenser side wall 22 arranged oppositely along a first preset direction.
- the first condenser side wall 21 is provided with a capillary structure 621
- the inner wall of the second condenser side wall 22 is provided with a capillary structure 622.
- the first preset direction can also be understood as the thickness direction T of the heat dissipation component 100 .
- the thickness of both the capillary structure 621 and the capillary structure 622 can be controlled at 0.001mm-0.3mm.
- the size of the condenser 20 along the third preset direction (can be understood as the width size) may be 30mm-70mm.
- the size of the condenser 20 along the second preset direction (which can be understood as the length size) may be 10 mm-50 mm.
- the capillary structure may also be provided only on the inner wall of one of the first condenser side wall and the second condenser side wall.
- the size of the capillary structure can be controlled within 0.001mm-0.3mm.
- the heat dissipation assembly 100 has a first cover plate 1001 and a second cover plate 1002 that are stacked along a first preset direction (such as the thickness direction T).
- the first cover plate At least one of the capillary structure 1001 and the second cover 1002 is provided with a capillary structure to form the evaporator 10 , the condenser 20 , the first pipe 30 , the second pipe 40 and the compensation chamber 50 .
- At least one of the first cover plate 1001 and the second cover plate 1002 is provided with a plurality of support pillars 1003 spaced apart to support the first cover plate 1001 and the second cover plate 1002 to ensure heat dissipation.
- the shape of the inner cavity of the assembly prevents the adverse effects caused by deformation of the first cover plate 1001 and the second cover plate 1002.
- a plurality of support columns 1003 are located in the inner cavity of at least one of the evaporator 10 , the condenser 20 , the first pipe 30 , the second pipe 40 and the compensation chamber 50 .
- support columns 1003 are provided in the inner cavities of the evaporator 10 , the condenser 20 , the first pipe 30 , the second pipe 40 and the compensation chamber 50 .
- an opening 103 is provided between the first pipe 30 and the second pipe 40 .
- the opening 103 penetrates the first cover plate 1001 and the second cover plate 1002 .
- the size of the end of the opening 103 close to the evaporator 10 is larger than the size of the end of the opening 103 close to the condenser 20 , so that the size of the structure close to the end of the evaporator 10 is Provide enough space for thermal expansion.
- the minimum size D4 of the opening 103 is greater than or equal to 0.1 mm to ensure the existence of the opening 103 for heat dissipation.
- the component 100 reserves a certain expansion space when it expands due to heat.
- the minimum size of the opening 103 is less than or equal to 2 cm, so that the opening 103 is not too large, so that in this direction, the heat dissipation assembly 100 The size is not too big.
- the capillary structure includes one or a combination of one or more of a metal mesh capillary structure, a metal wire braided rope capillary structure, an etched groove capillary structure, a metal powder sintered capillary structure, and a foam metal capillary structure.
- a first mounting portion ie, a skirt structure extending outward is provided on the side edge of the heat dissipation assembly 100 for assembly with other surrounding structures.
- This application provides another heat dissipation component 200 .
- the structure is substantially the same as that of the heat dissipation assembly 100 described above.
- the difference between this heat dissipation component 200 and the above is that the opening 103 is narrowed as a whole in the direction from the first pipe to the second pipe, so that the overall size of the heat dissipation component 200 in this direction can be smaller during assembly. It can provide enough space for other surrounding structures, and is also conducive to the control of the overall size of the assembled product in the direction corresponding to the first pipe toward the second pipe, and is conducive to the miniaturization of the assembled product.
- FIG. 4 illustrates the first mounting part 1004 .
- the first mounting portion 1004 is provided on the side edge of the first cover 1001 .
- the first mounting portion can also be provided on the edge of the second cover plate.
- both the first cover plate and the second cover plate are provided with first mounting portions on their side edges.
- This application also provides a heat dissipation component 300 .
- the structure is substantially the same as that of the heat dissipation assembly 100 described above.
- the difference between this heat dissipation assembly 300 and the above is that the size of the opening 103 in the direction of the first pipe toward the second pipe is larger to form an escape opening at the opening 103 so as to facilitate the corresponding relief opening during assembly. Avoid structures such as wireless charging coils and other wireless charging structures.
- the middle frame assembly includes a middle frame 400 and the heat dissipation assembly 100 or 200 as described above.
- the heat dissipation component 100 or 200 is disposed on the middle frame 400.
- the heat dissipation component 200 is disposed on the middle frame 400 as an example.
- the middle frame 400 is provided with a through hole 401 . At least part of the heat dissipation component 200 is embedded in the through hole 401 , and a first mounting portion 1004 extending outward is provided on a side edge of the heat dissipation component 200 .
- the heat dissipation assembly 200 overlaps the middle frame 400 through the first mounting portion 1004 .
- the housing assembly includes a housing 600 and the heat dissipation assembly 300 as described above.
- the heat dissipation component 300 is disposed inside the housing 600 .
- the heat dissipation component 300 here can also be replaced by the heat dissipation component 100, the heat dissipation component 200 or other heat dissipation components.
- this application further provides a terminal device 1000 , which includes the above-mentioned heat dissipation component 200 .
- the heat dissipation component 200 can also be replaced by the heat dissipation component 100 or the heat dissipation component 300 .
- the terminal device 1000 further includes a heat source area 700.
- the heat source area 700 and the orthographic projection of the heat dissipation assembly 200 in the first preset direction at least partially overlap.
- the first preset direction mentioned here can be understood as the thickness direction T0 of the terminal device 1000 shown in FIG. 8 .
- the thickness direction T0 of the terminal device 1000 is consistent with the thickness direction T of the heat dissipation component 200 of the heat dissipation module.
- the length direction L0 of the terminal device 1000 is consistent with the length direction L of the heat dissipation component 200
- the width direction W0 of the terminal device 1000 is consistent with the width direction W of the heat dissipation component 200 .
- the heat source area 700 is provided with at least one heat source device, such as a central processing unit (CPU) 701 and a control circuit board (PCB) 702 of the terminal device 1000 .
- the heat source device is arranged corresponding to the evaporator 10 of the heat dissipation assembly 200 , that is, the orthographic projections of the heat source device and the evaporator 10 of the heat dissipation assembly 200 in the first preset direction at least partially overlap, so as to dissipate heat through the evaporator 20 .
- the terminal device 1000 includes a middle frame 400, a screen 500 and a casing 600.
- the middle frame 400 , the heat dissipation component 200 and the heat source device are arranged between the screen 500 and the casing 600 .
- the heat dissipation component 200 is provided on the middle frame 400 , and the heat dissipation component 200 is located between the heat source device and the screen 500 .
- the terminal device 1000 may also include a battery 800 .
- the battery 800 can be disposed corresponding to the condenser of the heat dissipation assembly 200 . That is, the orthographic projections of the battery 800 and the condenser of the heat dissipation assembly 200 in the first preset direction at least partially overlap.
- This application also provides a terminal device 2000 .
- the terminal device 2000 is equipped with a heat dissipation component 300 . If the terminal device 2000 is identical or similar to the terminal device 1000 described above, please refer to the above related descriptions.
- the heat dissipation component 300 is disposed inside the casing 600 , and the middle frame 400 and the heat source device are located on the side of the heat dissipation component 300 away from the casing 600 .
- the terminal device 2000 is provided with a wireless charging structure 900 located opposite the heat source area 700, such as a wireless charging coil.
- the evaporator 10, condenser 20, first pipe 30 and second pipe 40 of the heat dissipation assembly 300 form an escape opening (can be understood as the opening 103 shown in Figure 5) located in the middle of the heat dissipation assembly 300.
- the wireless charging structure 900 It is provided corresponding to the avoidance opening so as to be applied to unlimited charging terminal equipment.
- the wireless charging structure 900 mentioned here is arranged corresponding to the escape opening, which can be understood as the orthographic projection of the wireless charging structure 900 along the first preset direction is at least partially located in the escape opening. Preferably, all orthographic projections of the wireless charging structure 900 along the first preset direction are located in the avoidance opening to ensure the efficiency of wireless charging.
- the first pipe 30 and the second pipe 40 respectively do not overlap with the orthographic projection of the wireless charging structure 900 in the first preset direction.
- only one heat dissipation component located only between the heat source device and the casing may be provided.
- the heat dissipation component disposed between the heat source device and the housing can also be replaced by the heat dissipation component 100, the heat dissipation component 200 or other heat dissipation components.
- the terminal device replaced with the heat dissipation component 10 or the heat dissipation component 200 may not be an unlimited charging terminal device.
- terminal equipment mentioned here can be electronic terminals such as mobile phones, tablet computers, and laptop computers.
- This application also provides a method for manufacturing a heat dissipation component. Please refer to FIG. 11 and, if necessary, in conjunction with FIG. 12 , the manufacturing method can be used to manufacture the heat dissipation component as described above.
- the manufacturing method includes the following steps S101, S103 and S105:
- step S101 a first cover plate and a second cover plate are provided;
- step S103 a capillary structure is formed on at least one of the first cover plate and the second cover plate;
- step S105 the first cover plate and the second cover plate are assembled together to form the heat dissipation assembly.
- a first cover plate 1001 and a second cover plate 1002 are provided. It should be noted that the first cover plate 1001 and the second cover plate 1002 are cover plates that respectively form the heat dissipation assembly 200 .
- the covers of other heat dissipation components can be set according to specific conditions.
- forming the capillary structure on at least one of the first cover plate 1001 and the second cover plate 1002 in step S103 may include:
- the capillary structure 60 is formed on at least one of the first cover plate 1001 and the cover plate 1002 by using at least one of etching and sintering methods.
- the method includes:
- At least one of etching and sintering is used to form support pillars on at least one of the first cover plate 1001 and the second cover plate 1002 .
- the support pillars can be formed simultaneously with the capillary structure.
- the method further includes the following steps S1051 and S152:
- step S1051 working fluid is injected.
- step S1052 the place where the working fluid is injected is sealed.
- the working fluid mentioned here can be water.
- other refrigerants that can be used in the heat dissipation structure can also be used.
- a first liquid injection part 1005 for forming a liquid injection structure extends outward at one end of the first cover plate 1001
- a first liquid injection part 1005 for forming a liquid injection structure extends outward at one end of the second cover plate 1002
- the second liquid injection part 1006 corresponds to the first liquid injection part 1005.
- the structures of the first liquid injection part 1005 and the second liquid injection part 1006 are basically the same.
- step S104 After forming the capillary structure in step S103, the method further includes the following step S104
- Step S104 Assemble the first liquid injection part and the second liquid injection part correspondingly (ie, align and assemble) to form a liquid injection structure.
- the liquid injection structure has an inner cavity of the liquid injection structure that communicates with the heat dissipation component and the outside world.
- the inner cavity of the liquid injection structure is connected with the inner cavity of the evaporator.
- This step S104 can be implemented simultaneously with the assembly of the first cover plate 1001 and the second cover plate 1002 in step S105.
- step S1051 can be implemented through the following steps:
- Working fluid is injected through the liquid injection structure.
- the method includes:
- the liquid injection structure is removed, and vacuum sealing is performed on the liquid injection structure.
- the sealing of the injected working fluid in step S1052 can be achieved in the following two steps: first, inject liquid The outer end of the structure (that is, the end of the liquid injection structure facing away from the heat dissipation component) is vacuum sealed; then the liquid injection structure is removed, and the connection to the liquid injection structure on the edge of the heat dissipation component is vacuum sealed.
- the heat dissipation assembly can be operated, such as adjusting the evaporator end of the heat dissipation assembly to face upward, so that the air reserved in the inner cavity of the heat dissipation assembly flows into the inner end of the liquid injection structure. Then the liquid injection structure is removed. Sealing in this manner in step S1052 is beneficial to improving the vacuum degree in the inner cavity of the heat dissipation component and preventing excessive air from being mixed into the inner cavity of the heat dissipation component and affecting the heat dissipation effect.
- this method can also include multiple methods of product testing of the heat dissipation components.
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
本公开涉及一种散热组件及其制造方法、中框组件、壳体组件、终端设备。所述散热组件包括蒸发器、冷凝器及第一管道,所述蒸发器具有输出端,冷凝器具有入口端,所述第一管道连通所述蒸发器的输出端和所述冷凝器的入口端;所述第一管道的至少部分内壁设置有毛细结构。上述结构,通过在第一管道的至少部分内壁设置毛细结构,防止第一管道内形成有液滴而影响第一管道内蒸汽的流动,从而提高散热组件工作的稳定性。
Description
本公开涉及终端设备领域,尤其涉及一种散热组件及其制造方法、中框组件、壳体组件、终端设备。
手机和平板电脑等移动终端已经成为人们生活、学习和娱乐过程中必不可少的科技产品。随着移动终端的发展,其使用的CPU(Central Processing Unit,中央处理器)的核心数增多,性能日益增强,导致移动终端发热量越来越大。尤其是近几年温升体验逐渐成为消费者购买移动终端的一个重要的考虑点。随着移动终端的散热技术不断发展,散热结构轻薄化成为一种趋势。然而,在追求轻薄化设计的同时,势必面临散热结构运行稳定性的问题。
发明内容
有鉴于此,本公开的实施例提出了一种散热组件及其制造方法、终端散热装置、终端设备以解决上述部分或全部技术问题。
根据本公开实施例的第一方面,提出一种散热组件,所述散热组件包括蒸发器、冷凝器及第一管道,所述蒸发器具有输出端,冷凝器具有入口端,所述第一管道连通所述蒸发器的输出端和所述冷凝器的入口端;所述第一管道的至少部分内壁设置有毛细结构。
根据本公开实施例的第二方面,提出一种散热组件的制造方法,所述制造方法用于制作如上所述的散热组件;所述制造方法包括:
提供第一盖板和第二盖板;
在所述第一盖板和第二盖板中的至少一个上形成毛细结构;
将所述第一盖板和所述第二盖板对合组装,形成所述散热组件。
根据本公开实施例的第三方面,提出一种中框组件,包括:中框以及如上所述的散热组件,所述散热组件设于所述中框上。
根据本公开实施例的第四方面,提出一种壳体组件,壳体以及如上所述的散热组件,所述散热组件设置于所述壳体内侧
根据本公开实施例的第五方面,提出一种终端设备,包括:如上所述的散热组件,所述终端设备还包括热源区域,所述热源区域与所述散热组件在第一预设方向的正投影至少部分重叠。
本公开的实施例提供的技术方案可以包括以下有益效果:通过在第一管道的内壁的至少部分内壁设有毛细结构,防止第一管道内形成有液滴而影响第一管道内蒸汽的流动,从而提高散热组件工作的稳定性。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
为了更清楚地说明本公开实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本公开一示例性实施例示出的一种散热结构的结构示意图;
图2是本公开一示例性实施例示出的一种散热结构的结构示意图及局部剖视图,其中;图2示意出散热组件各部分内部结构;
图3是本公开一示例性实施例示出的另一种散热结构的结构示意图;
图4是图3所示A处的侧视图;
图5是本公开一示例性实施例示出的又一种散热结构的结构示意图;
图6是本公开一示例性实施例示出的一种中框组件的结构示意图;
图7是本公开一示例性实施例示出的一种终端设备的部分结构示意图;
图8是图7所示终端设备的剖视图;
图9是本公开一示例性实施例示出的另一种终端设备的部分结构示意图;
图10是图9所示终端设备的剖视图;
图11是本公开一示例性实施例示出的一种散热组件的制造方法的方法流程图;
图12是本公开一示例性实施例示出的一种第一盖板和第二盖板的结构示意图。
下面将结合本公开实施例中的附图,对本公开实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本公开保护的范围。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
下面结合附图1至图对散热组件、中框组件、壳体组件、终端设备进行详细描述。
请参照图1,并在必要时结合图2所示,散热组件100包括蒸发器10、冷凝器20及第一管道30。蒸发器10具有相对的输入端101和输出端102。冷凝器20具有相对的入口端201和出口端202。第一管道30连通蒸发器10的输出端102和冷凝器20的入口端201。第一管道30的至少部分内壁设置有毛细结构。
毛细结构可以用于储存工作流体。
这样,通过在第一管道30的至少部分内壁中设置毛细结构,可以有利于对第一管道30内存在的液态工作流体起到存储作用,防止第一管道内形成液滴而影响第一管道内蒸汽的流动,从而提高散热组件工作的稳定性。
在上述实施例的基础上,该散热组件100还包括第二管道40、补偿腔50及工作流体(未示出)。第二管道40连通冷凝器20的出口端202和蒸发器10的输入端101。补偿腔50位于第二管道40和蒸发器10之间且补偿腔50的内腔中填充有毛细结构。所述工作流体可以在蒸发器10、第一管道30、冷凝器20、第二管道40及补液腔50内循环流通。
需要说明的是,蒸发器10、第一管道30、冷凝器20、第二管道40及补液腔50中各个部分之间的相对位置可以根据待散热的终端设备的尺寸确认。例如:
该散热组件100在第一预设方向上的尺寸可以为0.2mm-1mm。该散热组件在第二预设方向上的尺寸可以为50mm-120mm。该散热组件100的整体在沿第三预设方向上的尺寸可以为30mm-70mm。
第二预设方向和第三预设方向垂直。例如:第二预设方向可以为散热部件100的长度方向L,第三预设方向可以为散热部件100的宽度方向W。相应地,第一预设方向与第二预设方向和第三预设方向所确定的平面呈一夹角,比如,第一预设方向可垂直于第二预设方向和第三预设方向所确定的平面。第一预设方向相应为厚度方向T。
在一些实施例中,请结合图2所示,补偿腔50的内腔中布满毛细结构65,形成蒸汽挡墙,以防止第二管道中的蒸汽流入蒸发器10,避免由于蒸汽流入蒸发器10带来的不利影响。
在一些实施例中,该补偿腔50在沿第三预设方向上的尺寸可以为3mm-20mm。补偿腔50在沿第二预设方向上的尺寸可以为30mm-20mm。
请继续结合图2所示,在一些实施例中,蒸发器10具有沿第一预设方向上相对设置的第一蒸发器侧壁11和第二蒸发器侧壁12。第二蒸发器侧壁12上设置有毛细结构61。
这里所说的第一预设方向,可以理解为散热组件100的厚度方向T。
该蒸发器10在沿第三预设方向上的尺寸可以为10mm-40mm。蒸发器10在沿第二预设方向上的尺寸可以为10mm-40mm。
蒸发器10内腔沿第一预设方向上尺寸范围为0.1mm-0.9mm。毛细结构61的厚度可设置为0.03mm-0.3mm。
当然,在其它一些实施例中,可以在第二蒸发器侧壁上设置毛细结构,而第一蒸发器侧壁上不设置毛细结构。第二蒸发器侧壁上设置的毛细结构的具体情况可参照上述相关描述。需要说明的是,在该散热组件用于终端设备时,蒸发器的设置有毛细结构的侧壁,可设置在更靠近热源的一侧,以将工作流体储于毛细结构处,有利于提高蒸发器的蒸发效果,从而提高散热组件的散热效果。
请继续结合图2所示,第一管道30具有沿第一预设方向上相对设置的第一管 道侧壁31和第二管道侧壁32,第一管道侧壁31的内壁设有毛细结构631,第二管道侧壁32的内壁设有毛细结构632。
该第一预设方向同样可以理解为散热组件100的厚度方向T。
该第一管道20在沿第三预设方向上的尺寸可以为5mm-40mm。第一管道20在沿第二预设方向上的尺寸可以为50mm-120mm。
这里第一管道30内腔沿第一预设方向上尺寸范围为0.1mm-0.9mm。毛细结构631的厚度可设置为0.001mm-0.3mm,毛细结构632的厚度可设置为0.001mm-0.3mm。
在一些实施例中,第一管道30的内腔中具有设置毛细结构的第一毛细结构区域及位于所述第一毛细结构区域外的第一膨胀腔区域3013。这里的第一毛细结构区域包括设置毛细结构631的毛细结构区域3011和3012。
第一膨胀腔区域3013沿第一预设方向上的尺寸大于所述第一毛细结构区域沿第一预设方向上的尺寸,以提供足够的汽化后的工作流体流通,有利于保证散热组件100的散热效率。
这里第一膨胀腔区域3013沿第一预设方向上的尺寸大于所述第一毛细结构区域沿第一预设方向上的尺寸,可以理解为D3>D1+D2。
在一些实施例中,第一膨胀腔区域3013沿第一预设方向上的尺寸与所述第一毛细结构区域沿第一预设方向上的尺寸之间的比值大于2,更有利于以保证第一管道30内有足够的空间供汽化后的工作流体流通。
这里第一膨胀腔区域3013沿第一预设方向上的尺寸与所述第一毛细结构区域沿第一预设方向上的尺寸之间的比值大于2,可以理解为D3>2(D1+D2)。
当然,在其它一些实施例中,也可仅在第一管道侧壁的内壁或第二管道侧壁的内壁设有毛细结构。可选的,该毛细结构的的厚度可设置为0.001mm-0.3mm。该毛细结构及第一管道的具体特征均可参考上述描述。
请继续结合图2所示,第二管道40具有沿第一预设方向上相对设置的第三管道侧壁41、第四管道侧壁42;其中,第三管道侧壁41的内壁设有毛细结构641,第四管道侧壁42的内壁上设有毛细结构642。
该第二管道40在沿第三预设方向上的尺寸可以为5mm-30mm。第二管道40在沿第二预设方向上的尺寸可以为50mm-120mm。毛细结构641、642的厚度分别可设 置为0.05mm-1mm。需要说明的是,可以根据实际需求调整第二管道40的尺寸范围,以上有关第二管道40的尺寸范围的描述只是示例并非限定。
在一些实施例中,第二管道40的内腔中具有设置毛细结构的第二毛细结构区域(包括4011和4012所指两个区域)和位于所述第二毛细结构区域外的第二膨胀腔区域4013,如此使得第二管道留有膨胀空间,以便工作流体更加通畅的流动,且能够防止水结冰胀管。
在一些实施例中,第二膨胀腔区域4013在第一预设方向上的尺寸可以为0.03mm-0.5mm,能够很好地防止水结冰胀管。
当然,在另一些实施例中,可在第三管道侧壁、第四管道侧壁中一个的内壁上设置有毛细结构。
此外,在又一些实施例中,第二管道40的内腔中可布满毛细结构。
请继续结合图2,冷凝器20具有沿第一预设方向上相对设置的第一冷凝器侧壁21和第二冷凝器侧壁22。第一冷凝器侧壁21设有毛细结构621,第二冷凝器侧壁22的内壁上设有毛细结构622。
该第一预设方向同样可以理解为散热组件100的厚度方向T。这里毛细结构621和毛细结构622的厚度均可控制在0.001mm-0.3mm。
该冷凝器20在沿第三预设方向上的尺寸(可以理解为宽度尺寸)可以为30mm-70mm。冷凝器20在沿第二预设方向上的尺寸(可以理解为长度尺寸)可以为10mm-50mm。
当然,在其它一些实施例中,也可仅在第一冷凝器侧壁和第二冷凝器侧壁中一个的内壁上设置毛细结构。可选的,该毛细结构的尺寸可控制在0.001mm-0.3mm。该毛细结构其他具体情况可参照上述相关描述。
请继续结合图2所示,在一些实施例中,散热组件100具有沿第一预设方向(比如厚度方向T)上层叠设置的第一盖板1001和第二盖板1002,第一盖板1001和第二盖板1002中至少一个上设有毛细结构,形成蒸发器10、冷凝器20、第一管道30、第二管道40及补偿腔50。
在一些实施例中,第一盖板1001和第二盖板1002中至少一个上设有间隔的多个支撑柱1003,以对第一盖板1001和第二盖板1002进行支撑,以保证散热组件的内 腔的形状,防止第一盖板1001和第二盖板1002变形带来的不利影响。多个支撑柱1003位于蒸发器10、冷凝器20、第一管道30、第二管道40和补偿腔50中至少一个的内腔中。
比如图2所示,蒸发器10、冷凝器20、第一管道30、第二管道40和补偿腔50的内腔中均设有支撑柱1003。
请参照图1所示,第一管道30和第二管道40之间设置有开孔103。开孔103贯穿第一盖板1001和第二盖板1002。
在一些实施例中,沿第一管道30朝向第二管道40的方向上,开孔103靠近蒸发器10一端的尺寸大于开孔103靠近冷凝器20一端的尺寸,以为靠近蒸发器10一端结构的受热膨胀提供足够的空间。
请参照图1所示,在一些实施例中,沿第一管道30朝向第二管道40的方向上,开孔103的最小尺寸D4大于或等于0.1mm,以保证开孔103的存在,以为散热组件100在受热膨胀时预留一定的膨胀空间。
在一些实施例中,沿第一管道30朝向第二管道40的方向上,开孔103的最小尺寸小于或等于2cm,以使得开孔103不至于太大,使得在该方向上,散热组件100的尺寸不至于太大。
在一些实施例中,所述毛细结构包括金属网毛细结构、金属线编织绳毛细、蚀刻沟槽毛细结构、金属粉烧结毛细结构和泡沫金属毛细结构中的一种或多种的组合。
在一些实施例中,散热组件100的侧边缘设有向外延伸的第一安装部(即一裙边结构),以用于与周边其他结构进行组件。
请参照图3和图4所示,本申请另提供一种散热组件200。与上述散热组件100的结构大致相同。相同或相似之处可参照上述散热组件100中的相关描述。这里仅针对不同之处进行描述。该散热组件200与上述不同的是,开孔103在第一管道朝向第二管道的方向上,整体收窄,以使得散热组件200在该方向上的整体尺寸可以做到更小,在组装时能够为周围其他结构提供足够空间,也有利于所组装成的产品在该对应于第一管道朝向第二管道方向上整体尺寸的控制,有利于所组装成的产品小型化。
请结合图4,图4示意出第一安装部1004。该第一安装部1004设于第一盖板1001的侧边缘。当然,在其它一些实施例中,第一安装部也可设于第二盖板的边缘。或者第一盖板和第二盖板的侧边缘均设有第一安装部。
请参照图5所示,本申请另提供一种散热组件300。与上述散热组件100的结构大致相同。相同或相似之处可参照上述散热组件100中的相关描述。这里仅针对不同之处进行描述。该散热组件300与上述不同的是,开孔103在第一管道朝向第二管道的方向上的尺寸更大,以在开孔103处形成避让口,以便于在组装时对与该避让口对应的结构进行避让,比如对无线充电线圈等无线充电结构的避让。
本申请另提供一种中框组件。请参照图6所示,该中框组件包括中框400以及如上所述的散热组件100或200。散热组件100或200设于中框400上,这里以散热组件200设于中框400中为例进行说明。
中框400设有通孔401。散热组件200的至少部分嵌设在通孔401中,且散热组件200的侧边缘设有向外延伸的第一安装部1004。散热组件200通过第一安装部1004与中框400搭接。
本申请另提供一种壳体组件。可结合图10所示,所述壳体组件包括壳体600以及如上所述的散热组件300。散热组件300设置于壳体600内侧。当然,这里的散热组件300还可以替换为散热组件100、散热组件200或其他散热组件。
请参照图7和图8所示,本申请另提供一种终端设备1000,该终端设备包括上述的散热组件200。在其它一些实施例中,散热组件200也可替换为散热组件100或散热组件300。
在一些实施例中,终端设备1000还包括热源区域700。热源区域700与散热组件200在第一预设方向的正投影至少部分重叠。
在一些实施例中,这里所说的第一预设方向可以理解为图8所示终端设备1000的厚度方向T0。该终端设备1000的厚度方向T0与散热模组散热部件200的厚度方向T一致。
可选的,该终端设备1000的长度方向L0与散热组件200的长度方向L一致,该终端设备1000的宽度方向W0与散热组件200的宽度方向W一致。
在一些实施例中,热源区域700设置有至少一个热源器件,比如终端设备1000的中央处理器(CPU)701,控制电路板(PCB)702。所述热源器件与散热组件200的蒸发器10对应设置,即所述热源器件与散热组件200的蒸发器10在第一预设方向上的正投影至少部分重叠,以通过蒸发器20进行散热。
该终端设备1000包括中框400、屏幕500和壳体600。中框400、散热组件200 及所述热源器件设于屏幕500和壳体600之间。
散热组件200设于中框400上,且散热组件200位于所述热源器件和屏幕500之间。
该终端设备1000还可包括电池800。该电池800可与散热组件200的冷凝器对应设置。即电池800与散热组件200的冷凝器在第一预设方向上的正投影至少部分重叠。
请参照图9和图10所示,本申请还提供一种终端设备2000,该终端设备2000与上述终端设备1000相比,增设一散热组件300。该终端设备2000与上述终端设备1000的相同或相似之处可以参照上述相关描述。散热组件300设于壳体600内侧,中框400及所述热源器件位于散热组件300背离壳体600的一侧。
在一些实施例中,终端设备2000设有位于热源区域700对端的无线充电结构900,比如无线充电线圈。散热组件300的蒸发器10、冷凝器20、第一管道30及第二管道40围成一位于散热组件300中部的避让口(可以理解为图5所示的开孔103),无线充电结构900与所述避让口对应设置,以便于应用于无限充电终端设备。这里所说的无线充电结构900与所述避让口对应设置,可以理解为无线充电结构900沿第一预设方向上的正投影至少部分位于所述避让口中。优选地,无线充电结构900沿第一预设方向上的正投影全部位于所述避让口中,以保证无线充电的效率。
继续参见图9和图10,第一管道30及第二管道40分别与无线充电结构900在第一预设方向上的正投影不重叠。
此外,需要说明的是,在其它终端设备中,还可仅设置一仅位于热源器件和壳体之间的散热组件。该设置于热源器件和壳体之间的散热组件还可替换为散热组件100、散热组件200或其它散热组件。替换为散热组件10或散热组件200的终端设备,其可不是无限充电终端设备。
需要说明的是,这里所说的终端设备,可以为手机、平板电脑、笔记本电脑等电子终端。
本申请另提供一种散热组件的制造方法。请参照图11,并在必要时结合图12所示,所述制造方法可用于制作如上所述的散热组件。所述制造方法包括如下步骤S101、步骤S103及步骤S105:
在步骤S101中,提供第一盖板和第二盖板;
在步骤S103中,在所述第一盖板和第二盖板中的至少一个上形成毛细结构;
在步骤S105中,将所述第一盖板和所述第二盖板对合组装,形成所述散热组件。
结合图12所示,在步骤S101中,提供第一盖板1001和第二盖板1002。需要说明的是,该第一盖板1001和第二盖板1002为对应形成散热组件200的盖板。其他散热组件的盖板可根据具体情况进行设置。
在一些实施例中,在步骤S103中的所述在第一盖板1001和第二盖板1002中的至少一个上形成毛细结构可包括:
采用刻蚀的方式和烧结方式中的至少一种,在第一盖板1001和盖板1002中的至少一个上形成毛细结构60。
进一步,在一些实施例中,在提供第一盖板1001和第二盖板1002后,所述方法包括:
采用刻蚀的方式和烧结方式的至少一种,在第一盖板1001和第二盖板1002中的至少一个上形成支撑柱。这里支撑柱可以和毛细结构同步形成。
在一些实施例中,在将第一盖板1001和第二盖板1002对合组装之后,所述方法还包括如下步骤S1051和S152:
在步骤S1051中,注入工作流体。
在步骤S1052中,对注入工作流体处进行封口。
这里所说的工作流体可以采用水。当然也可采用其他能够用于散热结构中的冷媒。
在一些实施例中,请结合图12所示,第一盖板1001的一端向外延伸有用于形成注液结构的第一注液部1005,第二盖板1002的一端设有向外延伸并与第一注液部1005对应的第二注液部1006。第一注液部1005和第二注液部1006二者的结构基本一样。
在步骤S103形成毛细结构之后,所述方法还包括如下步骤S104
步骤S104:将所述第一注液部和所述第二注液部对应组装(即对齐组装),形成注液结构。
该注液结构具有连通散热组件和外界的注液结构内腔。这里注液结构内腔与蒸发器的内腔连通。
该步骤S104可与步骤S105中将第一盖板1001和第二盖板1002对合组装同步实现。
相应的地,所述步骤S1051可通过如下步骤实现:
通过所述注液结构注入工作流体。
相应地,在通过所述注液结构向内部注入工作流体之后,所述方法包括:
去除所述注液结构,并在所述注液结构处进行真空封口。
需要说明的是,对于通过这种外延的注液结构进行注入工作流体的,在一些实施例中,上述在步骤S1052,对注入工作流体处进行封口,可以分如下两步实现:首先对注液结构的外端(即注液结构背离散热组件的一端)进行真空封口;然后再将注液结构去除,并对散热组件边缘上连接注液结构的连接处进行真空封口。
对注液结构的外端进行真空封口后可以对散热组件进行操作,比如调整散热组件的蒸发器所在的一端朝上,对于散热组件内腔中预留的空气流入注液结构的内端。进而再将注液结构去除。步骤S1052采用这种方式进行封口,有利于提高散热组件内腔中的真空度,避免散热组件的内腔中由于混入过多空气而影响散热效果。
需要说明的是在真空封口后,该方法后续还可包括多个对散热组件进行产品测试的方法。
在本公开中,所述结构实施例与方法实施例在不冲突的情况下,可以互为补充。
本领域技术人员在考虑说明书及实践这里公开的公开后,将容易想到本公开的其它实施方案。本公开旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个 实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上对本公开实施例所提供的方法和装置进行了详细介绍,本文中应用了具体个例对本公开的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本公开的方法及其核心思想;同时,对于本领域的一般技术人员,依据本公开的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本公开的限制。
Claims (31)
- 一种散热组件,其特征在于,所述散热组件包括蒸发器、冷凝器及第一管道,所述蒸发器具有输出端,冷凝器具有入口端,所述第一管道连通所述蒸发器的输出端和所述冷凝器的入口端;所述第一管道的至少部分内壁设置有毛细结构。
- 如权利要求1所述的散热组件,其特征在于,所述散热组件还包括:第二管道,所述蒸发器具有与所述输出端相对的输入端,所述冷凝器具有与所述入口端相对的出口端,所述第二管道连通所述冷凝器的出口端和所述蒸发器的输入端;补偿腔,补偿腔位于所述第二管道和所述蒸发器之间且所述补偿腔的内腔中填充有毛细结构;工作流体,所述工作流体在所述蒸发器、第一管道、冷凝器、第二管道及补液腔内循环流通。
- 如权利要求2所述的散热组件,其特征在于,所述补偿腔的内腔中布满毛细结构,形成蒸汽挡墙。
- 如权利要求2或3所述的散热组件,其特征在于,所述蒸发器具有沿第一预设方向上相对设置的第一蒸发器侧壁和第二蒸发器侧壁,所述第二蒸发器侧壁上设置有毛细结构。
- 如权利要求2或3所述的散热组件,其特征在于,所述第一管道具有沿第一预设方向上相对设置的第一管道侧壁和第二管道侧壁,所述第一管道侧壁和所述第二管道侧壁中至少一个的内壁设有毛细结构。
- 如权利要求5所述的散热组件,其特征在于,所述第一管道的内腔中具有设置毛细结构的第一毛细结构区域及位于所述第一毛细结构区域外的第一膨胀腔区域,所述第一膨胀腔区域沿第一预设方向上的尺寸大于所述第一毛细结构区域沿第一预设方向上的尺寸。
- 如权利要求6所述的散热组件,其特征在于,所述第一膨胀腔区域沿第一预设方向上的尺寸与所述第一毛细结构区域沿第一预设方向上的尺寸之间的比值大于2。
- 如权利要求2或3所述的散热组件,其特征在于,所述第二管道具有沿第一预设方向上相对设置的第三管道侧壁、第四管道侧壁;其中,所述第三管道侧壁和第四管道侧壁中至少一个的内壁上设置有毛细结构。
- 如权利要求8所述的散热组件,其特征在于,所述第二管道的内腔中具有设置毛细结构的第二毛细结构区域和位于所述第二毛细结构区域外的第二膨胀腔区域;或,所述第二管道的内腔中布满毛细结构。
- 如权利要求2或3所述的散热组件,其特征在于,所述冷凝器具有沿第一预设方向上相对设置的第一冷凝器侧壁和第二冷凝器侧壁,所述第一冷凝器侧壁和第二冷凝器侧壁中至少一个的内壁上设有毛细结构。
- 如权利要求2至10中任一项所述的散热组件,其特征在于,所述散热组件具有沿第一预设方向上层叠设置的第一盖板和第二盖板,所述第一盖板和所述第二盖板中至少一个上设有毛细结构,形成所述蒸发器、冷凝器、第一管道、第二管道及补偿腔。
- 如权利要求11所述的散热组件,其特征在于,所述第一盖板和所述第二盖板中至少一个上设有间隔的多个支撑柱,所述多个支撑柱位于所述蒸发器、冷凝器、第一管道、第二管道和补偿腔中至少一个的内腔中。
- 如权利要求11所述的散热组件,其特征在于,所述第一管道和所述第二管道之间设置有开孔,所述开孔贯穿所述第一盖板和第二盖板。
- 如权利要求13所述的散热组件,其特征在于,沿所述第一管道朝向所述第二管道的方向上,所述开孔靠近所述蒸发器一端的尺寸大于所述开孔靠近所述冷凝器一端的尺寸。
- 如权利要求13所述的散热组件,其特征在于,沿所述第一管道朝向所述第二管道的方向上,所述开孔的最小尺寸大于或等于0.1mm。
- 如权利要求15所述的散热组件,其特征在于,沿所述第一管道朝向所述第二管道的方向上,所述开孔的最小尺寸小于或等于2cm。
- 如权利要求1至16中任一项所述的散热组件,其特征在于,所述毛细结构包括金属网毛细结构、金属线编织绳毛细、蚀刻沟槽毛细结构、金属粉烧结毛细结构和泡沫金属毛细结构中的一种或多种的组合。
- 如权利要求1至16中任一项所述的散热组件,其特征在于,所述散热组件的侧边缘设有向外延伸的第一安装部。
- 一种散热组件的制造方法,其特征在于,所述制造方法用于制作如权利要求1至18中任一项所述的散热组件;所述制造方法包括:提供第一盖板和第二盖板;在所述第一盖板和第二盖板中的至少一个上形成毛细结构;将所述第一盖板和所述第二盖板对合组装,形成所述散热组件。
- 如权利要求19所述的散热组件的制造方法,其特征在于,所述在所述第一盖板和第二盖板中的至少一个上形成毛细结构包括:采用刻蚀的方式和/或烧结方式,在所述第一盖板和所述盖板中的至少一个上形成毛细结构。
- 如权利要求19所述的散热组件的制造方法,其特征在于,在提供第一盖板和第二盖板后,所述方法包括:采用刻蚀的方式和/或烧结方式,在所述第一盖板和第二盖板中的至少一个上形成支撑柱。
- 如权利要求19所述的散热组件的制造方法,其特征在于,在将所述第一盖板和所述第二盖板对合组装之后,所述方法还包括:注入工作流体;对注入工作流体处进行封口。
- 如权利要求22所述的散热组件的制造方法,其特征在于,所述第一盖板的一端向外延伸有用于形成注液结构的第一注液部,所述第二盖板的一端设有向外延伸并与所述第一注液部对应的第二注液部;在形成毛细结构之后,所述方法还包括:将所述第一注液部和所述第二注液部对应组装,形成注液结构;所述注入工作流体包括:通过所述注液结构注入工作流体。
- 如权利要求23所述的散热组件的制造方法,其特征在于,在所述通过所述注液结构向内部注入工作流体之后,所述方法包括:去除所述注液结构,并在所述注液结构处进行真空封口。
- 一种中框组件,其特征在于,包括:中框以及如权利要求1至17中任一项所述的散热组件,所述散热组件设于所述中框上。
- 如权利要求25所述的中框组件,其特征在于,所述中框设有通孔,所述散热组件的至少部分嵌设在所述通孔中,且所述散热组件的侧边缘设有向外延伸的第一安装部,所述散热组件通过所述第一安装部与所述中框搭接。
- 一种壳体组件,其特征在于,壳体以及如权利要求1至17中任一项所述的散热组件,所述散热组件设置于所述壳体内侧。
- 一种终端设备,其特征在于,包括:如权利要求1至18中任一项所述的散热组件,所述终端设备还包括热源区域,所述热源区域与所述散热组件在第一预设方向的正投影至少部分重叠。
- 如权利要求28所述的终端设备,其特征在于,所述热源区域设置有至少一个 热源器件,所述热源器件与所述散热组件的蒸发器对应设置,以通过所述蒸发器进行散热。
- 如权利要求28或29所述的终端设备,其特征在于,所述包括:中框、屏幕和壳体;所述中框、所述散热组件及所述热源器件设于所述屏幕和壳体之间;所述散热组件设于所述中框上,且所述散热组件位于所述热源器件和所述屏幕之间;或,所述散热组件设于所述壳体内侧,所述中框及所述热源器件位于所述散热组件背离所述壳体的一侧。
- 如权利要求28或29所述的终端设备,其特征在于,所述终端设备设有位于所述热源区域对端的无线充电结构,所述散热组件的蒸发器、冷凝器、第一管道及第二管道围成一位于所述散热组件中部的避让口,所述无线充电结构与所述避让口对应设置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/099941 WO2023245376A1 (zh) | 2022-06-20 | 2022-06-20 | 散热组件及其制造方法、中框组件、壳体组件、终端设备 |
CN202280004480.1A CN117616244A (zh) | 2022-06-20 | 2022-06-20 | 散热组件及其制造方法、中框组件、壳体组件、终端设备 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2022/099941 WO2023245376A1 (zh) | 2022-06-20 | 2022-06-20 | 散热组件及其制造方法、中框组件、壳体组件、终端设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023245376A1 true WO2023245376A1 (zh) | 2023-12-28 |
Family
ID=89378948
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/099941 WO2023245376A1 (zh) | 2022-06-20 | 2022-06-20 | 散热组件及其制造方法、中框组件、壳体组件、终端设备 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117616244A (zh) |
WO (1) | WO2023245376A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101655328A (zh) * | 2008-08-19 | 2010-02-24 | 何昆耀 | 平板式回路热导装置及其制造方法 |
CN205580271U (zh) * | 2016-04-21 | 2016-09-14 | 广州华钻电子科技有限公司 | 一种气液分离式均温板 |
TWI679393B (zh) * | 2018-12-11 | 2019-12-11 | 奇鋐科技股份有限公司 | 中框散熱結構 |
CN110715570A (zh) * | 2019-09-06 | 2020-01-21 | 华为技术有限公司 | 均温板及终端设备 |
CN111163621A (zh) * | 2020-01-14 | 2020-05-15 | 华为技术有限公司 | 高强度均热板及其制备方法、电子设备 |
CN113983843A (zh) * | 2021-03-01 | 2022-01-28 | 苏州圣荣元电子科技有限公司 | 薄板型环路热管 |
-
2022
- 2022-06-20 WO PCT/CN2022/099941 patent/WO2023245376A1/zh active Application Filing
- 2022-06-20 CN CN202280004480.1A patent/CN117616244A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101655328A (zh) * | 2008-08-19 | 2010-02-24 | 何昆耀 | 平板式回路热导装置及其制造方法 |
CN205580271U (zh) * | 2016-04-21 | 2016-09-14 | 广州华钻电子科技有限公司 | 一种气液分离式均温板 |
TWI679393B (zh) * | 2018-12-11 | 2019-12-11 | 奇鋐科技股份有限公司 | 中框散熱結構 |
CN110715570A (zh) * | 2019-09-06 | 2020-01-21 | 华为技术有限公司 | 均温板及终端设备 |
CN111163621A (zh) * | 2020-01-14 | 2020-05-15 | 华为技术有限公司 | 高强度均热板及其制备方法、电子设备 |
CN113983843A (zh) * | 2021-03-01 | 2022-01-28 | 苏州圣荣元电子科技有限公司 | 薄板型环路热管 |
Also Published As
Publication number | Publication date |
---|---|
CN117616244A (zh) | 2024-02-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11789505B2 (en) | Loop heat pipe | |
TWI407071B (zh) | Thin heat pipe structure and manufacturing method thereof | |
TWI553288B (zh) | 均溫板及其製造方法 | |
WO2020259323A1 (zh) | 壳体组件、其制备方法以及电子设备 | |
CN109104850B (zh) | 电子设备的壳体及制作方法、壳体组件及电子设备 | |
JPWO2018056439A1 (ja) | 断熱構造体 | |
CN107801351B (zh) | 蒸发器及其制作方法 | |
US11864350B2 (en) | Heat conduction apparatus and terminal device | |
EP3779640A1 (en) | Heat-dissipating apparatus and manufacturing method thereof and server | |
WO2023245376A1 (zh) | 散热组件及其制造方法、中框组件、壳体组件、终端设备 | |
WO2016117342A1 (ja) | 冷却装置およびこれを搭載した電子機器 | |
CN116483178A (zh) | 一种计算设备及其冷板 | |
CN213343091U (zh) | 均温板和电子设备 | |
WO2023245360A1 (zh) | 散热部件及其制造方法、中框部件、壳体部件及终端设备 | |
TW201809577A (zh) | 蒸發器及其製作方法 | |
EP3579673B1 (en) | Thermally-conductive component and mobile terminal | |
US11892240B2 (en) | Combination structure of vapor chamber and heat pipe | |
WO2021244448A1 (zh) | 均温板和电子设备 | |
TWM624443U (zh) | 熱導裝置、電連接器和電子裝置 | |
JP2019113232A (ja) | ヒートパイプ | |
CN116952033A (zh) | 散热模块及其制作方法 | |
TWM532022U (zh) | 均溫板及其上殼構件 | |
KR20220137264A (ko) | 방열 모듈 | |
TW202146833A (zh) | 均溫板結構 | |
TW201826912A (zh) | 散熱模組及其製作方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 202280004480.1 Country of ref document: CN |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22947157 Country of ref document: EP Kind code of ref document: A1 |