WO2019056506A1 - 由冲压工艺形成的薄型均热板 - Google Patents

由冲压工艺形成的薄型均热板 Download PDF

Info

Publication number
WO2019056506A1
WO2019056506A1 PCT/CN2017/108935 CN2017108935W WO2019056506A1 WO 2019056506 A1 WO2019056506 A1 WO 2019056506A1 CN 2017108935 W CN2017108935 W CN 2017108935W WO 2019056506 A1 WO2019056506 A1 WO 2019056506A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover
heat equalizing
equalizing plate
plate
heat
Prior art date
Application number
PCT/CN2017/108935
Other languages
English (en)
French (fr)
Inventor
张军
李伟
邹柳君
张治国
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780067533.3A priority Critical patent/CN109891178A/zh
Publication of WO2019056506A1 publication Critical patent/WO2019056506A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present application relates to the technical field of heat sinks for electronic products, and in particular, to a heat equalizing plate.
  • the existing electronic product heat dissipation scheme commonly uses a "substrate + heat pipe" scheme, which transmits heat of the CPU chip to various regions of the substrate through a heat pipe, thereby achieving an overall temperature equalization effect of the substrate.
  • a substrate + heat pipe which transmits heat of the CPU chip to various regions of the substrate through a heat pipe, thereby achieving an overall temperature equalization effect of the substrate.
  • the uniform temperature layout design on the substrate is affected, resulting in poor overall temperature uniformity of the heat dissipation module, and it is necessary to find a uniform temperature capacity.
  • VC Vapor Chamber
  • the soaking plate is a vacuum chamber having a fine structure on the inner wall and injecting a working medium (ie, a working medium).
  • the working principle of the soaking plate is the same as that of the heat pipe, including four main steps of conduction, evaporation, convection and condensation: the heat enters the plate from the external high temperature zone through heat conduction, and the pure water around the heat source absorbs heat and rapidly vaporizes. At the same time, a large amount of heat is taken away; and the latent heat of water vapor is utilized, when the steam in the plate diffuses from the high pressure zone to the low pressure zone (ie, the low temperature zone), when the water vapor contacts the inner wall of the lower temperature, it will quickly condense into a liquid state and be released.
  • Thermal energy water condensed into a liquid state is returned to the heat source by the capillary force of the fine structure, thereby completing a heat conduction cycle to form a two-way circulation system in which water and water vapor coexist.
  • the soaking plate achieves heat conduction diffusion in the plate due to its structural characteristics, and its uniform temperature effect is greater than that of the heat pipe.
  • soaking plates are commonly used in electronic products that are small or fast to dissipate heat.
  • the steam chamber inside the existing soaking plate and the supporting column for supporting the upper and lower covers need to be processed by an etching process, and the cost of the entire soaking plate is high due to the high etching process cost.
  • the embodiment of the present application provides a soaking plate to reduce the cost of the soaking plate.
  • a soaking plate comprising:
  • first cover plate and a second cover plate oppositely disposed, a first surface of the first cover plate is opposite to a first surface of the second cover plate, and the first cover plate and the second cover plate are both Including an inner region and an edge region surrounding the inner region, a plurality of first supporting bosses spaced apart from each other are disposed on the first surface of the inner portion of the first cover;
  • the heat equalizing plate further includes: a capillary layer disposed between the inner region of the first cover and the inner region of the second cover;
  • the first cover inner region, the capillary layer and the second cover inner region are fixedly connected, and the edge region of the first cover and the edge region of the second cover are sealingly connected.
  • the technical solution can reduce the manufacturing cost of the heat equalizing plate and make the heat equalizing plate have a higher overall structural strength.
  • a plurality of mutually spaced second support bosses are disposed on the first surface of the second cover inner region; the first support boss and the second support boss are perpendicular to the first surface
  • the projections on the top do not overlap.
  • the height of the second support boss is equal to the height of the first support boss.
  • the capillary layer is a uniform and continuous layer structure of capillary structure.
  • the technical solution can make the heat equalizing plate have good thermal conductivity.
  • a sum of the height of the first boss and the thickness of the capillary layer is equal to a spacing between the first surface of the first cover and the first surface of the second cover.
  • the capillary layer is spaced apart from the plurality of through holes, and the through holes are located opposite to the position of the first support boss.
  • the capillary layer is spaced apart from the plurality of through holes, and the through holes are respectively positioned opposite to the positions of the first support boss and the second support boss.
  • the height of the first support boss is equal to the spacing between the first cover plate and the second cover plate.
  • a cover strength reinforcement structure is disposed on the first cover inner region and/or the second cover inner region. This technical solution can make the heat equalizing plate have a higher overall structural strength.
  • the cover strength reinforcing structure is a boss structure protruding from the first surface. This technical solution can make the heat equalizing plate have a higher overall structural strength.
  • the cover strength reinforcing structure is a groove structure recessed on the first surface. This technical solution can make the heat equalizing plate have a higher overall structural strength.
  • the first cover edge region and the edge region of the second cover are both provided with a rib structure, wherein the rib structure disposed at the edge region of the first cover is disposed on the second cover
  • the rib structure of the edge region is stacked.
  • the reinforcing rib structure protrudes from the first surface, or the reinforcing rib structure is recessed on the first surface.
  • the capillary layer is filled with a working medium.
  • the technical solution can make the heat equalizing plate have better thermal conductivity.
  • a terminal includes a heat equalizing plate, which is a soaking plate according to any one of the above technical solutions.
  • the technical solution can reduce the manufacturing cost of the terminal and improve the thermal conductivity of the terminal.
  • the supporting structure of the heat equalizing plate provided by the embodiment of the present application is a plurality of mutually spaced first supporting bosses disposed on the inner surface of the first cover, the first The support boss can be punched by a more general processing process such as a stamping process, and the processing cost of the more general processing process is lower than the cost of the etching process. Therefore, the heat spreader plate is lower than the prior art. The processing cost of the soaking plate.
  • the steam chamber of the working medium is in the process of combining the first cover plate, the second cover plate and the capillary layer, and is between the adjacent two first support bosses.
  • the spacers are automatically formed, and the steam chamber of the working medium is not required to be formed by a processing process. Therefore, in this respect, the soaking plate provided by the embodiment of the present application also reduces the processing cost of the heat equalizing plate.
  • FIG. 1 is a schematic cross-sectional structural view of a thin type heat equalizing plate commonly used in the prior art
  • FIG. 2A is an exploded perspective view of a heat equalizing plate provided by a specific implementation manner of an embodiment of the present application
  • FIG. 2B is a combined cross-sectional view of an inner region of a heat equalizing plate according to a specific implementation of the embodiment of the present application;
  • 2C is a first plan view of the first cover 21 in a specific implementation manner of the embodiment of the present application;
  • 3A is an exploded perspective view of a heat equalizing plate provided by another specific implementation of the embodiment of the present application.
  • 3B is a combined sectional view of an inner region of a heat equalizing plate according to another specific implementation of the embodiment of the present application.
  • FIG. 4A is an exploded perspective view of a heat equalizing plate according to another embodiment of the present application.
  • 4B is a combined sectional view of an inner region of a heat equalizing plate according to still another specific implementation of the embodiment of the present application.
  • FIG. 5A is an exploded perspective view of a heat equalizing plate according to another embodiment of the present application.
  • FIG. 5B is a combined perspective view of a heat equalizing plate according to another embodiment of the present application.
  • Figure 5C is a cross-sectional view of the area I in Figure 5B;
  • Figure 5D is a cross-sectional view of the area II in Figure 5B;
  • FIG. 6 is an exploded perspective view of a heat equalizing plate according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • 21 first cover, 22: second cover, 23: capillary layer
  • 21a inner area of the first cover
  • 21b first cover edge area
  • 22a second cover inner area
  • 22b second Cover edge area
  • 211 first cover first surface
  • 221 second cover first surface
  • 212 first support boss
  • 222 second support boss
  • 24 steam chamber
  • 231 through hole
  • 213 cover strength reinforcing structure
  • 214 first reinforcing rib structure
  • 223 second reinforcing rib structure
  • the thickness of the heat equalizing plate needs to be thinner.
  • the thickness of the heat equalizing plate is about 0.6 mm.
  • the thinner heat spreader plate may be referred to as a thin heat spreader.
  • the structural design of the thin soaking plate is also quite different from that of a conventional soaking plate (thickness of about 3 mm).
  • a cross-sectional structure of a heat equalizing plate provided by an embodiment of the present application is as shown in FIG. 1 , and includes: a first cover 11 and a second cover 12 disposed opposite to each other, and a first cover 11 and a second cover A capillary layer 13 between 12 and a working medium (not shown in FIG. 1), wherein a plurality of support columns 14 and a soaking plate internal steam chamber 15 are etched on the first cover plate 11.
  • the support columns 14 are generally cylindrical and distributed over the entire surface of the first cover 11 to support the soaking plate. In the heat equalizing plate, it is necessary to etch the first cover plate 11 to form the support column 14 and the steam chamber 15, which is costly.
  • the heat equalizing plate described in the embodiment of the present application may be a thin heat equalizing plate.
  • a soaking plate provided by a specific implementation of the embodiment of the present application is described below with reference to FIG. 2A to FIG. 2C.
  • FIG. 2A is an exploded perspective view of a heat equalizing plate provided by a specific implementation of the embodiment of the present application
  • FIG. 2B is a combined cross-sectional view of an inner region of the heat equalizing plate provided by a specific implementation of the embodiment of the present application
  • FIG. 2C is a first plan view of the first cover plate 21 in a specific implementation manner of the embodiment of the present application.
  • the heat equalizing plate includes a first cover 21 and a second cover 22 disposed opposite to each other, the first cover 21 includes an inner region 21 a and surrounding the inner region The edge region 21b of 21a, likewise, the second cover 22 includes an inner region 22a and an edge region 22b surrounding the inner region 22a.
  • the first cover inner region 21a is opposite to the second cover inner region 22a
  • the first cover edge region 21b is opposite to the second cover edge region 22b.
  • the first cover plate 21 and the second cover plate 22 correspond to a housing of the heat equalizing plate, which may be made of a metal material having good thermal conductivity.
  • One of the first cover plate 21 and the second cover plate 22 is a heat absorbing surface of the heat equalizing plate, and the other is a heat releasing surface of the heat equalizing plate.
  • the interior of the heat equalizing plate is prevented from collapsing.
  • a plurality of mutually spaced portions are disposed on the first surface 211 of the first cover inner region 21a.
  • the first supporting boss 212 is configured to protrude from the first surface 211.
  • the first supporting boss 212 is located inside the heat equalizing plate and is located between the first cover 21 and the second cover 22 .
  • the first supporting boss 212 can be processed by a stamping process.
  • the shape of the first supporting boss 212 is not specifically limited, and may be a cylindrical shape, a truncated cone shape, or a tapered shape.
  • the first supporting boss 212 is located inside the heat equalizing plate, and therefore, the first supporting boss 212 The height is not greater than the distance between the two first surfaces of the two cover plates.
  • the heat equalizing plate further includes a capillary layer 23 disposed between the first cover inner region 21a and the second cover inner region 22a. More specifically, one surface of the capillary layer 23 is opposed to the first cover inner region 21a, not to the first cover edge region 21b, and the other surface of the capillary layer 23 is disposed opposite to the second cover inner region 22a. Not opposed to the second cover edge region 22b.
  • the size and shape of the capillary layer 23 are the same as the size and shape of the second cover inner region 22a.
  • the capillary layer 23 can be made of a metal powder sintered or a metal mesh, and has a large number of small holes therein to produce Produce capillary action.
  • the capillary layer 23 is filled with a working fluid (not shown).
  • the working fluid can be pure water.
  • the capillary layer 23 is not provided with a through hole, compared with the capillary layer provided with the through hole, the capillary layer 23 in the embodiment of the present application and the heat conducting surface for transferring heat
  • the contact area of a cover plate 21 and the second cover plate 22 is relatively large, so that the heat transfer effect of the heat equalizing plate in the embodiment is better.
  • the capillary structure inside thereof is a continuous capillary structure, and the capillary layer of the capillary layer is compared with the capillary layer provided with the through hole.
  • the microstructure has a larger capillary force, which is more favorable for the circulation of the working medium in the capillary layer. In this respect, the heat transfer effect of the soaking plate in the specific embodiment is also good.
  • the first cover plate 21, the second cover plate 22, and the capillary layer 23 are combined into a heat equalizing plate, inside the heat equalizing plate, the first cover inner region 21a, The capillary layer 23 and the second cover inner region 22a are fixedly connected, and the edge region 21b of the first cover and the edge region 22b of the second cover are sealingly connected.
  • the first cover 21, the second cover 22, and the capillary layer 23 inside the heat equalizing plate are all fixed together, and the first cover 21 and the first portion of the edge region of the heat equalizing plate
  • the two cover plates 22 are also fixed together.
  • the components of the assembled heat-generating plates are connected together to form a unitary structure. Therefore, the overall structure of the soaking plate provided by the embodiment of the present application is better.
  • the process of the first cover 21, the second cover 22, and the capillary layer 23 to achieve a fixed connection may be specifically as follows:
  • the capillary layer 23 is fixed on the first surface 221 of the second cover inner region 22a, and then in the first support boss 212 of the first cover 21, the edge region 21b of the first cover 21, and the second cover
  • the edge region 22b of the 22 is coated with solder, and the first cover inner region 21a and the capillary layer 23 are fixedly connected together inside the heat equalizing plate by diffusion welding or brazing process, and in the edge region of the heat equalizing plate,
  • the first cover edge region 21b and the second cover edge region 22b are also welded together such that the edge regions of the first cover and the second cover achieve a sealed connection.
  • the capillary layer 23 may be bonded to the first surface 221 of the second cover inner region 22a by an adhesive or may be attached to the first surface 221 of the second cover inner region 22a by a soldering process, thereby A fixed connection of the capillary layer 23 to the first surface 221 of the second cover inner region 22 is achieved. Further, as another example, the capillary layer 23 may also be placed directly between the first cover 21 and the second cover 22, and the capillary layer 23 is positionally constrained by the two cover plates.
  • the capillary layer 23 is a continuous layer structure, as shown in FIG. 2B, the capillary layer 23 is sandwiched between the first cover 21 and the second cover 22, and therefore, the first cover The first support boss 212 and the capillary layer 23 are included between the first surface 211 of the second surface 21 and the first surface 221 of the second cover 22, and thus, in order to realize the first cover inner region 21a, the capillary layer 23, and the second cover
  • the inner region 22a of the plate is more firmly fixedly connected, and the distance between the first surface 211 of the first cover 21 and the first surface 221 of the second cover 22 may be equal to the height of the first support boss 212 and the thickness of the capillary layer 23. with. That is, in the embodiment of the present application, the height of the first supporting boss 212 is equal to the distance between the first surface 211 of the first cover 21 and the first surface 221 of the second cover 22 and the thickness of the capillary layer 23 Difference.
  • the first supporting bosses 221 are spaced apart from each other on the first surface 211 of the first cover plate 21, and therefore, between the first supporting bosses 212.
  • the interval area can be used as a steaming agent
  • the steam chamber 24 is provided with a plurality of first support bosses 212 spaced apart on the first surface 211 of the first cover plate 21, so that a plurality of steam chambers 24 can be formed in the space between the first support bosses 212.
  • Each steam chamber 24 may be formed by being surrounded by two adjacent first support bosses 212, a capillary layer 23, and a second cover plate 22.
  • a special processing process is not required to form the vapor chamber 24 of the heat equalizing plate, which may be in the process of combining the first cover 21, the second cover 22, and the capillary layer 23. This is automatically formed, and therefore, this embodiment can reduce the manufacturing cost of the heat equalizing plate.
  • the thickness of the heat equalizing plate is the sum of the thicknesses of the first cover plate 21, the capillary layer 23, and the second cover plate 22.
  • the thickness of the thin heat spreader is generally 0.6 mm, and the thickness of the first cover 21, the second cover 22, and the capillary layer 23 may both be 0.1 mm. Therefore, in this specific implementation, the formed steam The cavity 24 height can be 0.3 mm.
  • the heat equalizing plate includes an edge region and an inner region, wherein the inner portion of the heat equalizing plate is composed of the first cover inner region 21a and the second cover inner region 22a and the capillary layer 23.
  • the edge region of the heat equalizing plate is composed of a first cover edge region 21b and a second cover edge region 22b.
  • the first support boss 212 for reinforcing the structural strength of the heat equalizing plate can be formed by a stamping process, because the processing cost of the stamping process is lower, compared to forming the supporting boss by the etching process.
  • the specific implementation manner of the heat equalizing plate provided by the embodiment of the present application can reduce the processing cost of the heat equalizing plate.
  • the vapor chamber of the working medium is combined at the first cover 21, the second cover 22, and the capillary layer 23, and the interval between the adjacent two first support bosses 212 is
  • the specific implementation of the soaking plate provided by the embodiment of the present application can also reduce the processing cost of the heat equalizing plate.
  • the first cover inner region 21a, the capillary layer 23 and the second cover inner region 22a are directly fixedly connected together, and in the edge region of the heat equalizing plate, The first cover edge region 21b and the second cover edge region 22b are directly fixedly coupled together, and thus, the components constituting the heat equalizing plate constitute an integral structure, and the structural strength of the integral structure is high.
  • the embodiment of the present application also provides another implementation of the soaking plate.
  • a plurality of mutually spaced through holes are provided on the capillary layer to further improve the structural strength of the heat equalizing plate and improve the tensile performance of the heat equalizing plate. See FIG. 3A to FIG. 3B for details.
  • FIG. 3A is an exploded perspective view of a heat equalizing plate according to another embodiment of the present application
  • FIG. 3B is a combined cross-sectional view of a heat equalizing plate provided by another specific implementation of the embodiment of the present application.
  • the structure of the soaking plate of another specific implementation of the present application has many similarities with the structure of the soaking plate shown in the above specific implementation manner.
  • the specific embodiments of the present application only describe the differences in detail.
  • the capillary layer is compared with an implementation of the heat equalizing plate shown in FIG. 2A and FIG. 2B.
  • 23 is provided with a plurality of mutually spaced through holes 231, and the position of the through holes 231 is aligned with the position of the first support boss 212, and the size of the through holes 231 enables the first support boss 212 to pass through the through holes 231, the first support boss 212 can be placed on the capillary layer 23.
  • the through holes 231 provided on the capillary layer 23 may be punched holes punched out by a stamping process.
  • the first support boss 212 can pass through the through hole 231 on the capillary layer 23, and thus the first support boss 212 can be coupled to the first surface 221 of the second cover 22 Directly connected, therefore, the height of the first support boss 212 may be equal to the distance between the first surface 211 of the first cover 21 and the first surface 221 of the second cover 22.
  • the first support boss 212 on the first surface 211 of the inner region of the first cover can be fixed to the first surface 221 of the second cover 22 inside the heat equalizing plate. connected.
  • the first cover edge region 21b and the second cover edge region 22b are also welded together such that the first cover The edge regions of the plate and the second cover are sealed.
  • the overall structure of the heat equalizing plate is very
  • the fixed connection of each of the first supporting bosses 212 and the second cover plate 22 ensures the thickness of each partial region. Therefore, when the working fluid in the heat equalizing plate is vaporized and the pressure inside the temperature equalizing plate is increased, It also does not result in a hot plate bulge. Therefore, by providing through holes in the capillary layer 23, the structural strength of the heat equalizing plate can be improved, and the tensile properties of the heat equalizing plate can be improved.
  • the thickness of the capillary layer 23 does not affect the overall thickness of the heat equalizing plate, and therefore, the soaking heat as shown in FIGS. 2A and 2B
  • the thickness of the soaking plate provided in the specific embodiment of the present application can be made thinner.
  • the support structure inside the heat equalizing plate is disposed on the first cover 21, and as another implementation manner of the present application, the first cover 21 and the second cover may also be used.
  • the cover plate 22 is provided with a support structure. Please refer to FIG. 4A to FIG. 4B for the specific implementation.
  • FIG. 4A is an exploded perspective view of a heat equalizing plate according to another embodiment of the present application
  • FIG. 4B is a combined cross-sectional view of a heat equalizing plate according to another embodiment of the present application.
  • FIG. 4A and FIG. 4B have many similarities with the heat equalizing plates shown in FIG. 3A and FIG. 3B.
  • the embodiments of the present application only describe the differences, and the similarities are shown in the figure. 3A and related description of FIG. 3B.
  • not only the first supporting boss 212 but also the first surface 221 of the second cover 22 is provided on the first surface 211 of the first cover plate 21.
  • a plurality of second support bosses 222 spaced apart from each other are disposed, and the projections of the first support bosses 212 and the second support bosses 222 in a direction perpendicular to the first surface do not overlap.
  • the projections of the first support boss 212 and the second support boss 222 in a direction perpendicular to the first surface may be a staggered projection.
  • the first cover 21 and the second cover 22 and the capillary layer 23' are assembled, and each support boss (including the first support boss 212 and the second support protrusion) There is a gap between the stages 222).
  • the inner region of the first cover 21 and the inner region of the second cover 22 may be fixedly connected by the first support boss 212 and the second support boss 222.
  • the first support boss 212 can be fixedly connected to the first surface 221 of the second cover 22, and the second support boss 222 can be fixedly connected to the first surface 211 of the first cover 21.
  • the heat equalizing plates shown in FIGS. 4A and 4B have the same advantageous effects as the heat equalizing plates shown in FIGS. 3A and 3B described above, and are not described herein again.
  • the embodiment of the present application further provides another specific implementation manner of the heat equalizing plate. See Figures 5A through 5D for details.
  • FIG. 5A is an exploded perspective view of a heat equalizing plate according to another embodiment of the present application
  • FIG. 5B is a combined perspective view of a soaking plate provided by a specific implementation of the embodiment of the present application
  • FIG. 5D is a cross-sectional view of the region II in FIG. 5B.
  • a cover strength reinforcing structure 213 is disposed in an inner region of the first cover 21 , and the cover strength reinforcing structure 213 may protrude from the first cover 21 .
  • the boss structure of the surface 211 may also be a groove structure recessed in the first surface 211 of the first cover plate 21. More specifically, the cover strength reinforcing structure 213 may be a rib structure. It should be noted that when the cover strength reinforcing structure 213 is a groove structure recessed on the first surface 211 of the first cover 21, the groove structure can increase the volume of the working medium vapor chamber of the heat equalizing plate, which is beneficial to improve both The soaking performance of the hot plate.
  • the cover strength reinforcing structure 213 can also be formed by stamping using a metal stamping process.
  • a cover strength reinforcing structure may be disposed on the second cover inner region 22a to further improve the overall structural strength of the heat equalizing plate. Similar to the cover strength reinforcing structure disposed on the inner portion 21a of the first cover, the cover strength reinforcing structure disposed on the inner portion 22a of the second cover may protrude from the first surface 211 of the second cover 22.
  • the boss structure may also be a groove structure recessed on the first surface 221 of the second cover plate 22. More specifically, the cover strength reinforcing structure on the second cover inner region 22a may be a rib structure.
  • the cover strength reinforcing structure on the second cover inner region 22a is a groove structure recessed on the first surface 221 of the first cover 22, the groove structure can increase the working fluid vapor of the heat equalizing plate.
  • the volume of the cavity is beneficial to improve the soaking performance of the soaking plate.
  • a first reinforcing rib structure 214 may be disposed at an edge region of the first cover plate 21, and the second cover is provided.
  • the second rib structure 223 is disposed in the edge region of the panel 22, and the first rib structure 214 and the second rib structure 223 are laminated.
  • the first rib structure 214 and the second rib structure 223 may be punched by a stamping process before the first cover plate 21 and the second cover plate 22 are assembled, or may be in the first cover plate. 21 and the second cover 22 are assembled into a heat equalizing plate and then punched by a single stamping process.
  • the embodiment of the present application also provides another possible implementation manner of the heat equalizing plate.
  • a schematic exploded view of the soaking plate of the possible implementation is shown in FIG. 6.
  • the heat equalizing plate shown in FIG. 6 is provided with a middle frame 61 between the first cover plate 21 and the second cover plate 22, and the middle frame 61 is in the heat equalizing plate structure.
  • the main function is to support the strengthening of the overall structural strength of the soaking plate.
  • the surrounding area of the heat equalizing plate is fixed and combined with the first cover plate 21 and the second cover plate 22 by the middle frame 61.
  • the first cover plate 21 is defined by the support boss and the second cover plate 22. combine together. Due to the arrangement of the middle frame 61, the overall structural strength of the heat equalizing plate can be further improved.
  • the welding of the edge region of the heat equalizing plate requires two weldings, one is the welding of the first cover plate 21 and the middle frame 61, and the other is the welding of the second cover plate 22 and the middle frame 61. .
  • the embodiment of the present application further provides a specific implementation manner of the terminal.
  • FIG. 7 is a schematic structural diagram of a terminal provided by an embodiment of the present application.
  • the terminal 70 includes a CPU chip 71 and a heat equalizing plate 72, wherein the heat equalizing plate 72 is a heat equalizing plate as shown in any of the above specific embodiments.
  • the first cover 21 of the heat equalizing plate 72 is adjacent to the outer surface of the CPU chip 71, and the second cover 22 is away from the outer surface of the CPU chip 72.
  • the heat generated when the CPU chip 71 is in operation passes through the first cover plate 21 to enter the inside of the heat equalizing plate 72 via heat conduction, and the working medium close to the first cover plate 21 absorbs heat and rapidly vaporizes, and takes away the heat generated by the CPU chip 72.
  • the capillary force of the fine structure of the capillary layer 23 is returned to the first cover plate 21 (i.e., near the heat source), thereby completing a heat conduction cycle, and forming a two-way circulation system in which a liquid working medium and a gaseous working medium coexist in the heat equalizing plate. .
  • the heat dissipation of the CPU chip 71 is achieved by the bidirectional circulation system.

Abstract

本申请实施例公开了一种均热板,该均热板内部起支撑作用的支撑结构为设置在第一盖板内表面上的多个相互间隔的第一支撑凸台,该第一支撑凸台可以采用较为通用的加工工艺例如冲压工艺冲制而成,而该较为通用的加工工艺的加工成本较刻蚀工艺的成本低,因此,该均热板相较于现有技术,降低了均热板的加工成本。而且在该均热板中,工质的蒸汽腔是在第一盖板、第二盖板以及毛细层组合的过程中,由相邻两个第一支撑凸台之间的间隔区域自动形成的,无需专门通过加工工艺来形成工质的蒸汽腔,因此,从这方面来说,本申请实施例提供的均热板也降低了均热板的加工成本。

Description

由冲压工艺形成的薄型均热板
本申请要求于2017年09月19日提交中国专利局、申请号为201710851720.2、发明名称为“一种薄型均温板”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电子产品的散热装置技术领域,尤其涉及一种均热板。
背景技术
电子产品在工作时会产生热量,若这些热量不及时散逸出去。而积累在电子产品内部,将会导致电子产品温度的升高,从而会影响电子产品的性能,严重者将会导致电子产品发生故障并损坏。因此,业界一直不断研发电子产品的各种散热方案以解决电子产品的散热问题。
目前,现有的电子产品散热方案常用“基板+热管”方案,该方案通过热管将CPU芯片热量传导至基板各个区域,实现基板整体均温效果。但由于热管自身传热能力有限,加上热管结构设计时其折弯半径较大,影响其在基板上的均温布局设计,导致散热模组整体均温能力较差,需要寻找均温能力更强、结构设计自由度更高的散热解决方案,如此,均热板(Vapor Chamber,VC)应运而生。
均热板是一个内壁具有微细结构,并注入工质(即工作介质)的真空腔体。均热板的工作原理与热管的工作原理相同,包括了传导、蒸发、对流、凝结四个主要步骤:热量由外部高温区经由热传导进入板内,接近热源周围的纯水吸收热量后迅速汽化,同时带走大量热量;再利用水蒸汽的潜热性,当板内蒸汽由高压区扩散至低压区(即低温区),水蒸汽接触到温度较低的内壁时,会迅速凝结成液态并释放出热能;凝结成液态的水通过微细结构的毛细力作用返回热源处,由此完成一次热传导循环,形成一个水与水蒸汽并存的双向循环系统。均热板由于其结构特性在板内实现热传导扩散,其均温效果较热管有更大的提升。目前,均热板通常用于体积小或快速散热的电子产品中。
现有的均热板内部的蒸汽腔以及用于支撑上下盖板的支撑柱均需要通过刻蚀工艺加工完成,由于刻蚀工艺成本较高,所以导致整个均热板成本都较高。
发明内容
有鉴于此,本申请实施例提供了一种均热板,以降低均热板的成本。
为了解决上述技术问题,本申请实施例采用了如下技术方案:
一种均热板,包括:
相对设置的第一盖板和第二盖板,所述第一盖板的第一表面与所述第二盖板的第一表面相对,所述第一盖板和所述第二盖板均包括内部区域以及包围所述内部区域的边缘区域,在第一盖板内部区域的第一表面上设置有多个相互间隔的第一支撑凸台;
所述均热板还包括:设置在第一盖板内部区域和第二盖板内部区域之间的毛细层;
所述第一盖板内部区域、所述毛细层以及所述第二盖板内部区域固定连接,所述第一盖板的边缘区域和所述第二盖板的边缘区域密封连接。
该技术方案可以降低均热板的制造成本,并使得均热板具有较高的整体结构强度。
可选地,第二盖板内部区域的第一表面上设置有多个相互间隔的第二支撑凸台;所述第一支撑凸台与所述第二支撑凸台在垂直于第一表面方向上的投影不交叠。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述第二支撑凸台的高度与所述第一支撑凸台的高度相等。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述毛细层为毛细组织结构均匀且连续的层结构。该技术方案可以使得均热板具有良好的导热性能。
可选地,所述第一凸台高度与所述毛细层的厚度之和等于第一盖板第一表面和第二盖板第一表面之间的间距。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述毛细层上间隔设置有多个通孔,所述通孔的位置与所述第一支撑凸台的位置相对。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述毛细层上间隔设置有多个通孔,所述通孔的位置分别与所述第一支撑凸台和所述第二支撑凸台的位置相对。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述第一支撑凸台的高度等于第一盖板和第二盖板之间的间距。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述第一盖板内部区域和/或所述第二盖板内部区域上设置有盖板强度加强结构。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述盖板强度加强结构为凸伸于所述第一表面的凸台结构。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述盖板强度加强结构为凹陷于所述第一表面的沟槽结构。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述第一盖板边缘区域和所述第二盖板的边缘区域均设置有加强筋结构,其中,设置在第一盖板边缘区域的加强筋结构与设置在第二盖板边缘区域的加强筋结构层叠设置。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述加强筋结构凸伸于所述第一表面,或者,所述加强筋结构凹陷于所述第一表面。该技术方案可以使得均热板具有较高的整体结构强度。
可选地,所述毛细层内填注有工质。该技术方案可以使得均热板具有较好的导热性能
一种终端,包括均热板,所述均热板为上述任一技术方案所述的均热板。该技术方案可以降低终端的制造成本,并提高终端的导热性能。
本领域技术人员应当将上述各个技术方案作为一个整体,各个技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
相较于现有技术,本申请实施例具有以下有益效果:
基于以上技术方案可知,本申请实施例提供的均热板,其内部起到支撑作用的支撑结构为设置在第一盖板内表面上的多个相互间隔的第一支撑凸台,该第一支撑凸台可以采用较为通用的加工工艺例如冲压工艺冲制而成,而该较为通用的加工工艺的加工成本较刻蚀工艺的成本低,因此,该均热板相较于现有技术,降低了均热板的加工成本。
而且在本申请实施例提供的均热板中,工质的蒸汽腔是在第一盖板、第二盖板以及毛细层组合的过程中,由相邻两个第一支撑凸台之间的间隔区域自动形成的,无需专门通过加工工艺来形成工质的蒸汽腔,因此,从这方面来说,本申请实施例提供的均热板也降低了均热板的加工成本。
附图说明
图1是现有技术中常用的一种薄型均热板的剖面结构示意图;
图2A是本申请实施例一种具体实现方式提供的均热板的分解立体图;
图2B是本申请实施例一种具体实现方式提供的均热板内部区域的组合剖面图;
图2C是本申请实施例一种具体实现方式中的第一盖板21的第一平面示意图;
图3A是本申请实施例另一种具体实现方式提供的均热板的分解立体图
图3B是本申请实施例另一种具体实现方式提供的均热板内部区域的组合剖面图;
图4A是本申请实施例又一种具体实现方式提供的均热板的分解立体图;
图4B是本申请实施例又一种具体实现方式提供的均热板内部区域的组合剖面图;
图5A是本申请实施例又一种具体实现方式提供的均热板的分解立体图;
图5B为本申请实施例又一种具体实现方式提供的均热板的组合立体图;
图5C是图5B中的区域I的剖面图;
图5D是图5B中的区域II的剖面图;
图6是本申请实施例又一种具体实现方式提供的均热板的分解立体图;
图7是本申请实施例提供的一种终端的结构示意图。
附图标记说明:
11:第一盖板,12:第二盖板,13:毛细层,14:支撑柱,15:蒸汽腔;
21:第一盖板,22:第二盖板,23:毛细层,21a:第一盖板内部区域,21b:第一盖板边缘区域,22a:第二盖板内部区域,22b:第二盖板边缘区域,211:第一盖板第一表面,221:第二盖板第一表面,212:第一支撑凸台,222:第二支撑凸台,24:蒸汽腔,231:通孔,213:盖板强度加强结构,214:第一加强筋结构,223:第二加强筋结构;
70:终端,71:CPU芯片,72:均热板。
具体实施方式
需要说明,下文公开提供了许多不同的实施例或例子用来实现本申请实施例的不同结构。为了简化本申请实施例的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本申请实施例。此外,本申请实施例可以在不同例子中重复参考数字。这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施例和/或设置之间的关系。
由于电子产品如智能手机、平板、笔记本类终端产品朝着轻薄、方便携带的趋势发展,因此,终端产品对其散热模组的厚度也有一定要求,通常会限制在1mm以下。因此,作为散热模组中的重要部件,均热板的厚度需要较薄设计。例如均热板的厚度在0.6mm左右。 该厚度较小的均热板可以称为薄型均热板。该薄型均热板的结构设计相较于常规均热板(厚度在3mm左右)也有很大区别。
本申请实施例提供的一种均热板的剖面结构如图1所示,其包括:相对设置的第一盖板11和第二盖板12、夹在第一盖板11和第二盖板12之间的毛细层13以及工质(图1中未示出),其中,在第一盖板11上刻蚀有多个支撑柱14以及均热板内部蒸汽腔15。支撑柱14一般为圆柱体,分布在整个第一盖板11表面上,对均热板起到支撑的作用。在该均热板中,需要刻蚀第一盖板11形成支撑柱14和蒸汽腔15,成本较高。
需要说明,本申请实施例所述的均热板可以为薄型均热板。
下面参考图2A至图2C介绍本申请实施例一种具体实现方式提供的均热板的。
图2A是本申请实施例一种具体实现方式提供的均热板的分解立体图,图2B是本申请实施例一种具体实现方式提供的均热板内部区域的组合剖面图。图2C是本申请实施例一种具体实现方式中的第一盖板21的第一平面示意图。
请参见图2A至图2C,在该具体实现方式中,该均热板包括相对设置的第一盖板21和第二盖板22,该第一盖板21包括内部区域21a以及包围该内部区域21a的边缘区域21b,同样,该第二盖板22均包括内部区域22a以及包围该内部区域22a的边缘区域22b。其中,第一盖板内部区域21a与第二盖板内部区域22a相对,第一盖板边缘区域21b与第二盖板边缘区域22b相对。
在本申请实施例中,第一盖板21和第二盖板22相当于均热板的壳体,其可以由导热性能良好的金属材料制成。第一盖板21和第二盖板22中,其中一个为均热板的吸热面,另一个为均热板的放热面,当将均热板安装在电子元件中时,均热板的安装位置满足以下要求:吸热面处于靠近电子元件所在的位置,放热面处于远离电子元件所在的位置。
为了使得均热板的结构强度满足一定要求,防止均热板的内部发生塌陷,在本申请具体实施方式中,在第一盖板内部区域21a的第一表面211上设置有多个相互间隔的第一支撑凸台212。该第一支撑凸台212为凸伸于第一表面211的结构,如此,该第一支撑凸台212位于均热板内部,并且位于第一盖板21和第二盖板22之间。为了节省均热板的制造成本,该第一支撑凸台212可以采用冲压工艺加工而成。另外,本申请具体实施方式,对该第一支撑凸台212的形状不做具体限定,其可以为圆柱形,也可以为圆台形,也可以为锥形。此外,因在均热板中,第一盖板21和第二盖板22相当于均热板的壳体,第一支撑凸台212位于均热板的内部,因此,第一支撑凸台212的高度不大于两盖板的两第一表面之间的距离。
此外,该均热板还包括设置在第一盖板内部区域21a和第二盖板内部区域22a之间的毛细层23。更具体地说,毛细层23的一表面仅与第一盖板内部区域21a相对,不与第一盖板边缘区域21b相对,毛细层23的另一表面与第二盖板内部区域22a相对设置,不与第二盖板边缘区域22b相对。
在本申请实施例中,毛细层23的尺寸和形状与第二盖板内部区域22a的尺寸和形状相同。
该毛细层23可以为金属粉末烧结或金属网状物所制成,其内部具有大量细小孔洞以产 生毛细作用。在该毛细层23内填充有工质(图中未示出)。借助工质在均热板内的气液相循环变化,均热板可以将电子发热元件所产生的热量持续地传递出去。作为示例,工质可以为纯水。
在本申请具体实施方式中,因毛细层23上未设置有通孔,相较于设置有通孔的毛细层,本申请具体实施方式中的毛细层23与用于传递热量的导热面的第一盖板21和第二盖板22的接触面积较大,从而使得该具体实施方式中的均热板的导热效果较好。
而且,在本申请具体实施方式中,因毛细层23上未设置有通孔,其内部的毛细组织结构为连续的毛细组织结构,相较于设置有通孔的毛细层,该毛细层的毛细组织结构具有更大的毛细力,从而有利于工质在毛细层内的循环流动更加通畅,从这一方面来说,该具体实施方式中的均热板的导热效果也较好。
为了使得均热板的结构强度满足一定要求,在将第一盖板21、第二盖板22以及毛细层23组合成均热板时,在均热板内部,第一盖板内部区域21a、毛细层23以及第二盖板内部区域22a固定连接,第一盖板的边缘区域21b和第二盖板的边缘区域22b密封连接。如此,在本申请具体实现方式中,均热板内部的第一盖板21、第二盖板22以及毛细层23均固定在一起,并且均热板的边缘区域的第一盖板21和第二盖板22也固定在一起,如此,组装在一起的均热板的各个部件连接在一起,形成整体结构,因此,本申请实施例提供的均热板的整体结构强度较好。
作为示例,第一盖板21、第二盖板22以及毛细层23实现固定连接的过程可以具体如下:
先将毛细层23固定在第二盖板内部区域22a的第一表面221上,然后在第一盖板21的第一支撑凸台212、第一盖板21的边缘区域21b以及第二盖板22的边缘区域22b上涂上焊料,通过扩散焊或者钎焊工艺,在均热板内部,将第一盖板内部区域21a与毛细层23固定连接在一起,在均热板的边缘区域,将第一盖板边缘区域21b和第二盖板边缘区域22b也焊接在一起,使得第一盖板和第二盖板的边缘区域实现密封连接。
作为示例,毛细层23可以通过粘结胶粘接在第二盖板内部区域22a的第一表面221上,也可以通过焊接工艺连接在第二盖板内部区域22a的第一表面221上,从而实现毛细层23与第二盖板内部区域22的第一表面221的固定连接。此外,作为另一示例,毛细层23还可以直接放置在第一盖板21和第二盖板22之间,由两盖板对毛细层23进行位置约束。
在本申请具体实施方式中,因毛细层23为一连续层结构,如图2B所示,该毛细层23夹在第一盖板21和第二盖板22之间,因此,第一盖板21的第一表面211和第二盖板22的第一表面221之间包括第一支撑凸台212以及毛细层23,因此,为了实现第一盖板内部区域21a、毛细层23以及第二盖板内部区域22a更牢固地固定连接,第一盖板21第一表面211和第二盖板22第一表面221之间的距离可以等于第一支撑凸台212的高度和毛细层23的厚度之和。也就是说,在本申请实施例中,第一支撑凸台212的高度等于第一盖板21第一表面211和第二盖板22第一表面221之间的距离与毛细层23的厚度的差值。
如图2B所示,在本申请具体实施方式的均热板中,因第一支撑凸台221间隔设置在第一盖板21的第一表面211上,因此,第一支撑凸台212之间的间隔区域可以作为工质的蒸 汽腔24,因在第一盖板21的第一表面211上间隔设置有多个第一支撑凸台212,因此,可以在第一支撑凸台212之间的间隔区域形成多个蒸汽腔24,每个蒸汽腔24可以由相邻两个第一支撑凸台212、毛细层23以及第二盖板22包围形成。如此,在本申请具体实施方式中,无需专门的加工工艺来形成均热板的蒸汽腔24,该蒸汽腔24可以在第一盖板21、第二盖板22以及毛细层23的组合过程中自动形成,因此,该具体实施方式能够减少均热板的制造成本。
在图2A和图2B所示的均热板的一种具体实现方式中,均热板的厚度为第一盖板21、毛细层23以及第二盖板22的厚度之和。而在业界,薄型均热板的厚度一般为0.6mm,第一盖板21、第二盖板22以及毛细层23的厚度可以均为0.1mm,因此,在该具体实现方式中,形成的蒸汽腔24高度可以为0.3mm。
需要说明,在本申请具体实施方式中,均热板包括边缘区域和内部区域,其中,均热板内部区域由第一盖板内部区域21a和第二盖板内部区域22a以及毛细层23组成。均热板边缘区域由第一盖板边缘区域21b和第二盖板边缘区域22b组成。
以上为本申请实施例一种具体实现方式提供的均热板。在该具体实现方式中,用于加强均热板结构强度的第一支撑凸台212可以通过冲压工艺加工形成,因冲压工艺的加工成本较低,相较于通过刻蚀工艺形成支撑凸台的方式,本申请实施例提供的均热板的该具体实现方式能够降低均热板的加工成本。
另外,在本申请具体实施方式,工质的蒸汽腔是在第一盖板21、第二盖板22以及毛细层23组合在一起,由相邻两个第一支撑凸台212之间的间隔区域自动形成的,无需专门通过加工工艺来形成工质的蒸汽腔,因此,从这方面来说,本申请实施例提供的均热板的该具体实现方式也能够降低均热板的加工成本。
另外,本申请具体实施方式中,在均热板内部区域,第一盖板内部区域21a、毛细层23以及第二盖板内部区域22a直接固定连接在一起,且在均热板的边缘区域,第一盖板边缘区域21b和第二盖板边缘区域22b直接固定连接在一起,如此,组成均热板的各部件组成了一整体结构,该整体结构的结构强度较高。
以上为本申请实施例一种具体实现方式提供的均热板。
另外,在均热板中,若电子元件放出的热量较多,导致均热板内部的工质汽化,因而,导致均热板内部的压力增大,若均热板的结构强度不是很大的话,有可能发生均热板鼓包的现象。为了避免均热板鼓包现象,本申请实施例还提供了均热板的另一种实现方式。在该具体实现方式中,在毛细层上设置有多个相互间隔的通孔,以进一步提高均热板的结构强度,提高均热板的抗拉性能。具体参见图3A至图3B所示。
图3A是本申请实施例另一种具体实现方式提供的均热板的分解立体图,图3B是本申请实施例另一种具体实现方式提供的均热板的组合剖面图。
本申请另一种具体实现方式的均热板的结构与上述具体实现方式所示的均热板的结构有诸多相似之处,为了简要起见,本申请具体实施方式仅详细描述其不同之处,其相似之处请参见图2A和图2B所示的具体实施方式。
与图2A和图2B所示的均热板的一种实现方式相比,在本申请实施例另一种具体实现方式提供的均热板的中,如图3A和图3B所示,毛细层23上设置有多个相互间隔的通孔231,并且通孔231的位置与第一支撑凸台212的位置相对准,并且通孔231的大小能够使得第一支撑凸台212能够穿过通孔231,使第一支撑凸台212能够套在毛细层23上。
作为一具体示例,为了降低均热板的加工成本,设置在毛细层23上的通孔231可以为通过冲压工艺冲压出的冲孔。
在本申请的另一种实现方式中,因第一支撑凸台212可以穿过毛细层23上的通孔231,因而,第一支撑凸台212可以与第二盖板22的第一表面221直接连接,因此,第一支撑凸台212的高度可以等于第一盖板21第一表面211和第二盖板22第一表面221之间的距离。如此,在该另一种实现方式中,在均热板的内部,第一盖板内部区域的第一表面211上的第一支撑凸台212可以与第二盖板22的第一表面221固定连接在一起。在均热板的边缘区域,与图2A和图2B所示的均热板的实现方式类似,将第一盖板边缘区域21b和第二盖板边缘区域22b也焊接在一起,使得第一盖板和第二盖板的边缘区域实现密封连接。
在图3A和图3B所示的均热板的具体实现方式中,因第一盖板21的支撑凸台与第二盖板的第一表面221直接连接,使得均热板的整体结构性很好,同时各第一支撑凸台212与第二盖板22的固定连接又保证了各局部区域的厚度,因此,当均热板内的工质汽化,均温板内部的压力增大时,也不会导致均热板鼓包。因此,通过在毛细层23上设置通孔的方式可以提高均热板的结构强度,提高均热板的抗拉性能。
此外,在图3A和图3B所示的均热板的具体实现方式中,毛细层23的厚度不会影响均热板的整体厚度,因此,相较于图2A和图2B所示的均热板,本申请具体实施方式中提供的均热板的厚度可以做到更薄。
在上述具体实施方式所示的均热板中,均热板内部的支撑结构均设置在第一盖板21上,作为本申请的又一实现方式,也可以在第一盖板21和第二盖板22上均设置有支撑结构。该具体实现方式请参见图4A至图4B。
图4A是本申请实施例又一种具体实现方式提供的均热板的分解立体图,图4B是本申请实施例又一种具体实现方式提供的均热板的组合剖面图。
图4A和图4B所示的均热板与图3A和图3B所示的均热板有诸多相似之处,为了简要起见,本申请实施例仅描述不同之处,其相似之处请参见图3A和图3B的相关描述。
在图4A和图4B所示的均热板中,其不仅在第一盖板21的第一表面211上设置有第一支撑凸台212,还在第二盖板22的第一表面221上设置有多个相互间隔的第二支撑凸台222,并且,第一支撑凸台212与第二支撑凸台222在垂直于第一表面方向上的投影不交叠。并且为了形成工质的蒸汽腔,第一支撑凸台212与第二支撑凸台222在垂直于第一表面方向上的投影之间可以存在一定间隙。作为示例,第一支撑凸台212与第二支撑凸台222在垂直于第一表面方向上的投影可以为交错设置的投影。而且,为了能够形成工质的蒸汽腔,第一盖板21和第二盖板22以及与毛细层23’组装在一起后,各个支撑凸台(包括第一支撑凸台212和第二支撑凸台222)之间存在间隙。
在本申请实施例中,在均热板内部,第一盖板21内部区域和第二盖板22的内部区域可以通过第一支撑凸台212和第二支撑凸台222固定连接。具体地,第一支撑凸台212可以与第二盖板22的第一表面221固定连接,第二支撑凸台222可以与第一盖板21的第一表面211固定连接。
需要说明,为了保证工质具有足够的蒸汽腔,图4A和图4B所示的均热板结构中,可以认为将图3A和图3B所示的均热板中的一部分设置在第一盖板第一表面211上的第一支撑结构转移到第二盖板的第一表面上。
图4A和图4B所示的均热板具有与上述图3A和图3B所示的均热板相同的有益效果,在此不再赘述。
此外,为了进一步提高均热板的整体结构强度,本申请实施例还提供了均热板的又一种具体实现方式。具体参见图5A至图5D。
图5A是本申请实施例又一种具体实现方式提供的均热板的分解立体图,图5B为本申请实施例有一种具体实现方式提供的均热板的组合立体图;图5C是图5B中的区域I的剖面图,图5D是图5B中的区域II的剖面图。
如图5A至图5C所示,该具体实现方式中,在第一盖板21内部区域设置盖板强度加强结构213,该盖板强度加强结构213可以为凸伸于第一盖板21第一表面211的凸台结构,还可以为凹陷于第一盖板21第一表面211的沟槽结构。更具体地说,该盖板强度加强结构213可以为加强筋结构。需要说明,当盖板强度加强结构213为凹陷于第一盖板21第一表面211的沟槽结构时,该沟槽结构可以增大均热板的工质蒸汽腔的体积,有利于提高均热板的均热性能。
在本申请具体实施方式中,盖板强度加强结构213也可以采用金属冲压工艺冲压制成。
此外,作为本申请的又一具体实现方式,也可以在第二盖板内部区域22a上设置盖板强度加强结构,以进一步提高均热板的整体结构强度。与设置在第一盖板内部区域21a上的盖板强度加强结构类似,该设置在第二盖板内部区域22a上的盖板强度加强结构可以为凸伸于第二盖板22第一表面211的凸台结构,还可以为凹陷于第二盖板22第一表面221的沟槽结构。更具体地说,该第二盖板内部区域22a上的盖板强度加强结构可以为加强筋结构。需要说明,当第二盖板内部区域22a上的盖板强度加强结构为凹陷于第一盖板22第一表面221的沟槽结构时,该沟槽结构可以增大均热板的工质蒸汽腔的体积,有利于提高均热板的均热性能。
此外,为了更进一步提高均热板的整体结构强度,如图5D所示的均热板边缘区域剖面示意图,还可以在第一盖板21边缘区域设置第一加强筋结构214,在第二盖板22的边缘区域设置第二加强筋结构223,并且,第一加强筋结构214和第二加强筋结构223层叠在一起。在该具体实现方式中,第一加强筋结构214和第二加强筋结构223可以在第一盖板21和第二盖板22组装之前通过冲压工艺冲制而成,也可以在第一盖板21和第二盖板22组装成均热板之后通过一次冲压工艺冲制而成。
为了提高均热板的结构强度,本申请实施例还提供了均热板的又一种可能实现方式。该可能实现方式的均热板的立体分解示意图如图6所示。相较于图2A所示的均热板的结构,图6所示的均热板在第一盖板21和第二盖板22之间增设有一中框61,中框61在均热板结构中主要起到支撑加强均热板整体结构强度的作用。如此,均热板的四周区域由中框61与第一盖板21、第二盖板22固定并结合在一起,在中间区域,第一盖板21通过支撑凸台与第二盖板22定结合在一起。由于中框61的设置,均热板的整体结构强度能够得到进一步提高。
在该可能实现方式中,均热板的边缘区域的焊接需要两处焊接,一处是第一盖板21与中框61的焊接,另一处是第二盖板22与中框61的焊接。
以上为本申请实施例提供的均热板的具体实现方式。
基于上述均热板的具体实现方式,本申请实施例还提供了一种终端的具体实现方式。
请参见图7。图7是本申请实施例提供的终端结构示意图。如图7所示,该终端70包括CPU芯片71和均热板72,其中,均热板72为上述任一具体实现方式所示的均热板。其中,均热板72的第一盖板21靠近CPU芯片71的外表面,第二盖板22远离CPU芯片72的外表面。如此,CPU芯片71工作时产生的热量,通过第一盖板21经由热传导进入均热板72内部,靠近第一盖板21的工质吸收热量后迅速汽化,同时带走CPU芯片72产生的热量,再利用工质的潜热性,当均热板内蒸汽由高压区扩散至低压区(即低温区),如此,汽化的工质会运动到第二盖板22的第一表面,因第二盖板22第一表面远离CPU芯片,其温度较低,因而汽化的工质运动到第二盖板22的第一表面时,会迅速凝结成液态并释放出热能;凝结成液态的工质通过毛细层23的微细结构的毛细力作用返回第一盖板21处(即靠近热源处),由此完成一次热传导循环,在均热板内部形成一个液态工质与气态工质并存的双向循环系统。通过该双向循环系统,实现CPU芯片71的散热。
应当理解,虽然本申请说明书按照实施方式加以描述,但并非每个实施方式仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施方式中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。
以上为本申请实施例提供的具体实现方式。

Claims (15)

  1. 一种均热板,其特征在于,包括:
    相对设置的第一盖板和第二盖板,所述第一盖板的第一表面与所述第二盖板的第一表面相对,所述第一盖板和所述第二盖板均包括内部区域以及包围所述内部区域的边缘区域,在第一盖板内部区域的第一表面上设置有多个相互间隔的第一支撑凸台;
    所述均热板还包括:设置在第一盖板内部区域和第二盖板内部区域之间的毛细层;
    所述第一盖板内部区域、所述毛细层以及所述第二盖板内部区域固定连接,所述第一盖板的边缘区域和所述第二盖板的边缘区域密封连接。
  2. 根据权利要求1所述的均热板,其特征在于,第二盖板内部区域的第一表面上设置有多个相互间隔的第二支撑凸台;
    所述第一支撑凸台与所述第二支撑凸台在垂直于第一表面方向上的投影不交叠。
  3. 根据权利要求2所述的均热板,其特征在于,所述第二支撑凸台的高度与所述第一支撑凸台的高度相等。
  4. 根据权利要求1-3任一项所述的均热板,其特征在于,所述毛细层为毛细组织结构均匀且连续的层结构。
  5. 根据权利要求4所述的均热板,其特征在于,所述第一凸台高度与所述毛细层的厚度之和等于第一盖板第一表面和第二盖板第一表面之间的间距。
  6. 根据权利要求1所述的均热板,其特征在于,所述毛细层上间隔设置有多个通孔,所述通孔的位置与所述第一支撑凸台的位置相对。
  7. 根据权利要求2或3所述的均热板,其特征在于,所述毛细层上间隔设置有多个通孔,所述通孔的位置分别与所述第一支撑凸台和所述第二支撑凸台的位置相对。
  8. 根据权利要求6或7所述的均热板,其特征在于,所述第一支撑凸台的高度等于第一盖板和第二盖板之间的间距。
  9. 根据权利要求1-8任一项所述的均热板,其特征在于,所述第一盖板内部区域和/或所述第二盖板内部区域上设置有盖板强度加强结构。
  10. 根据权利要求9所述的均热板,其特征在于,所述盖板强度加强结构为凸伸于所述第一表面的凸台结构。
  11. 根据权利要求9所述的均热板,其特征在于,所述盖板强度加强结构为凹陷于所述第一表面的沟槽结构。
  12. 根据权利要求1-11任一项所述的均热板,其特征在于,所述第一盖板边缘区域和所述第二盖板的边缘区域均设置有加强筋结构,其中,设置在第一盖板边缘区域的加强筋结构与设置在第二盖板边缘区域的加强筋结构层叠设置。
  13. 根据权利要求12所述的均热板,其特征在于,所述加强筋结构凸伸于所述第一表面,或者,所述加强筋结构凹陷于所述第一表面。
  14. 根据权利要求1-13任一项所述的均热板,其特征在于,所述毛细层内填注有工质。
  15. 一种终端,其特征在于,包括均热板,所述均热板为权利要求1-14任一项所述的均热板。
PCT/CN2017/108935 2017-09-19 2017-11-01 由冲压工艺形成的薄型均热板 WO2019056506A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201780067533.3A CN109891178A (zh) 2017-09-19 2017-11-01 由冲压工艺形成的薄型均热板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710851720.2 2017-09-19
CN201710851720 2017-09-19

Publications (1)

Publication Number Publication Date
WO2019056506A1 true WO2019056506A1 (zh) 2019-03-28

Family

ID=65810931

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108935 WO2019056506A1 (zh) 2017-09-19 2017-11-01 由冲压工艺形成的薄型均热板

Country Status (2)

Country Link
CN (1) CN109891178A (zh)
WO (1) WO2019056506A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147861A1 (zh) * 2021-01-11 2022-07-14 东莞领杰金属精密制造科技有限公司 均热板的制造方法、均热板及中框均热板

Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2758975Y (zh) * 2004-12-14 2006-02-15 业强科技股份有限公司 均热板的结构改良
US20060098411A1 (en) * 2004-11-11 2006-05-11 Taiwan Microloops Corp. Bendable heat spreader with metallic wire mesh-based microstructure and method for fabricating same
CN201589557U (zh) * 2009-12-07 2010-09-22 唯耀科技股份有限公司 发泡毛细结构及其均温散热器
CN201600071U (zh) * 2009-12-07 2010-10-06 唯耀科技股份有限公司 均温散热器的金属网散热结构
CN202025740U (zh) * 2011-04-12 2011-11-02 广州智择电子科技有限公司 一种平板烧结热管
CN102299491A (zh) * 2011-06-16 2011-12-28 杭州恒信电气有限公司 一种适用于大电流开关柜散热的均热板
CN202166348U (zh) * 2011-07-07 2012-03-14 王勤文 均温板毛细成型结构
CN102378547A (zh) * 2010-08-18 2012-03-14 中国科学院研究生院 均热板
CN202335183U (zh) * 2011-11-02 2012-07-11 奇鋐科技股份有限公司 均热板毛细结构
CN202514230U (zh) * 2012-03-12 2012-10-31 华南理工大学 一种带内烧结结构支撑柱的均热板
CN103398613A (zh) * 2013-07-22 2013-11-20 施金城 均热板及其制造方法
CN104279899A (zh) * 2013-07-08 2015-01-14 奇鋐科技股份有限公司 均温板结构及其制造方法
US20150083372A1 (en) * 2013-09-24 2015-03-26 Asia Vital Components Co., Ltd. Heat dissipation unit
CN204478896U (zh) * 2015-01-14 2015-07-15 厦门大学 一种具有嵌套式多孔吸液芯的平板热管
CN105865241A (zh) * 2016-04-11 2016-08-17 广州华钻电子科技有限公司 一种超薄均热板及其制作方法
CN205825779U (zh) * 2016-07-28 2016-12-21 苏州聚力电机有限公司 均热板的毛细组织配置结构
US20170010048A1 (en) * 2015-07-09 2017-01-12 Chaun-Choung Technology Corp. Thin vapor chamber and manufacturing method thereof
CN106813525A (zh) * 2017-02-08 2017-06-09 锘威科技(深圳)有限公司 一种平板热管结构及其制造方法
CN106996710A (zh) * 2016-01-25 2017-08-01 昆山巨仲电子有限公司 薄形均温板结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6045360B2 (ja) * 1979-03-16 1985-10-08 日本特殊陶業株式会社 ヒ−トパイプウイツクの製造法
CN1853849A (zh) * 2005-04-19 2006-11-01 协禧电机股份有限公司 一种薄板式热导管及其成型的方法
CN101105376B (zh) * 2006-07-12 2010-11-03 捷飞有限公司 热传导基座及具有该热传导基座的均温板
CN101232794B (zh) * 2007-01-24 2011-11-30 富准精密工业(深圳)有限公司 均热板及散热装置
JP2011017463A (ja) * 2009-07-07 2011-01-27 Sony Corp 熱輸送デバイスの製造方法及び熱輸送デバイス
CN102095323A (zh) * 2010-11-04 2011-06-15 华中科技大学 一种平板均热板
CN104315903B (zh) * 2012-10-21 2016-03-09 大连三维传热技术有限公司 石棉非金属纤维毡吸液芯的热板
CN202974002U (zh) * 2012-11-28 2013-06-05 双鸿科技股份有限公司 超薄型均温板
CN203337002U (zh) * 2013-05-21 2013-12-11 泰硕电子股份有限公司 具有支撑结构的均温板
TWI513069B (zh) * 2013-05-21 2015-12-11 Subtron Technology Co Ltd 散熱板
TW201531368A (zh) * 2014-02-12 2015-08-16 Jia-Hao Li 均溫板封邊結構改良(一)
TW201544783A (zh) * 2014-05-19 2015-12-01 Forcecon Technology Co Ltd 均溫板真空密合結構及其製法
CN105222627B (zh) * 2014-06-13 2017-06-27 昆山巨仲电子有限公司 热导板封合方法及其结构
CN204065998U (zh) * 2014-08-22 2014-12-31 联想(北京)有限公司 终端设备
CN105841535A (zh) * 2016-05-14 2016-08-10 广东工业大学 分段式复合结构平板传热管及其制备方法
CN206131829U (zh) * 2016-08-10 2017-04-26 广东工业大学 一种斜坡沟槽式平板热管
JP6294981B1 (ja) * 2017-01-27 2018-03-14 古河電気工業株式会社 ベーパーチャンバ

Patent Citations (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060098411A1 (en) * 2004-11-11 2006-05-11 Taiwan Microloops Corp. Bendable heat spreader with metallic wire mesh-based microstructure and method for fabricating same
CN2758975Y (zh) * 2004-12-14 2006-02-15 业强科技股份有限公司 均热板的结构改良
CN201589557U (zh) * 2009-12-07 2010-09-22 唯耀科技股份有限公司 发泡毛细结构及其均温散热器
CN201600071U (zh) * 2009-12-07 2010-10-06 唯耀科技股份有限公司 均温散热器的金属网散热结构
CN102378547A (zh) * 2010-08-18 2012-03-14 中国科学院研究生院 均热板
CN202025740U (zh) * 2011-04-12 2011-11-02 广州智择电子科技有限公司 一种平板烧结热管
CN102299491A (zh) * 2011-06-16 2011-12-28 杭州恒信电气有限公司 一种适用于大电流开关柜散热的均热板
CN202166348U (zh) * 2011-07-07 2012-03-14 王勤文 均温板毛细成型结构
CN202335183U (zh) * 2011-11-02 2012-07-11 奇鋐科技股份有限公司 均热板毛细结构
CN202514230U (zh) * 2012-03-12 2012-10-31 华南理工大学 一种带内烧结结构支撑柱的均热板
CN104279899A (zh) * 2013-07-08 2015-01-14 奇鋐科技股份有限公司 均温板结构及其制造方法
CN103398613A (zh) * 2013-07-22 2013-11-20 施金城 均热板及其制造方法
US20150083372A1 (en) * 2013-09-24 2015-03-26 Asia Vital Components Co., Ltd. Heat dissipation unit
CN204478896U (zh) * 2015-01-14 2015-07-15 厦门大学 一种具有嵌套式多孔吸液芯的平板热管
US20170010048A1 (en) * 2015-07-09 2017-01-12 Chaun-Choung Technology Corp. Thin vapor chamber and manufacturing method thereof
CN106996710A (zh) * 2016-01-25 2017-08-01 昆山巨仲电子有限公司 薄形均温板结构
CN105865241A (zh) * 2016-04-11 2016-08-17 广州华钻电子科技有限公司 一种超薄均热板及其制作方法
CN205825779U (zh) * 2016-07-28 2016-12-21 苏州聚力电机有限公司 均热板的毛细组织配置结构
CN106813525A (zh) * 2017-02-08 2017-06-09 锘威科技(深圳)有限公司 一种平板热管结构及其制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022147861A1 (zh) * 2021-01-11 2022-07-14 东莞领杰金属精密制造科技有限公司 均热板的制造方法、均热板及中框均热板

Also Published As

Publication number Publication date
CN109891178A (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN212205767U (zh) 均温板
US10517192B2 (en) Bendable heat plate
JP6057952B2 (ja) シート型ヒートパイプ
WO2021082414A1 (zh) 一种均温部件及电子设备
WO2020026908A1 (ja) ベーパーチャンバー
CN211261893U (zh) 均热板、散热设备以及电子设备
TW202037871A (zh) 可撓動之均溫板
JPWO2007026833A1 (ja) ヒートパイプ及びその製造方法
CN211429852U (zh) 散热板和具有散热板的电子装置
WO2022057938A1 (zh) 均温腔,电子设备以及制造均温腔的方法
US20110315351A1 (en) Vapor chamber having composite supporting structure
US11193718B2 (en) Heat dissipation unit and heat dissipation device using same
TW201947180A (zh) 液、汽分離之迴路均溫板
WO2021018004A1 (zh) 一种导热装置及终端设备
TWI701992B (zh) 均溫板
US11039549B2 (en) Heat transferring module
WO2013005622A1 (ja) 冷却装置およびその製造方法
WO2019056506A1 (zh) 由冲压工艺形成的薄型均热板
US11371784B2 (en) Heat dissipation unit and heat dissipation device using same
CN214852419U (zh) 电子设备以及真空腔均热板
WO2021190552A1 (zh) 移动终端及中框组件
CN107801351B (zh) 蒸发器及其制作方法
US20230107867A1 (en) Vapor chamber and electronic device
WO2023145397A1 (ja) 熱拡散デバイス及び電子機器
WO2023085350A1 (ja) 熱拡散デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17926320

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17926320

Country of ref document: EP

Kind code of ref document: A1