WO2021082414A1 - 一种均温部件及电子设备 - Google Patents

一种均温部件及电子设备 Download PDF

Info

Publication number
WO2021082414A1
WO2021082414A1 PCT/CN2020/092146 CN2020092146W WO2021082414A1 WO 2021082414 A1 WO2021082414 A1 WO 2021082414A1 CN 2020092146 W CN2020092146 W CN 2020092146W WO 2021082414 A1 WO2021082414 A1 WO 2021082414A1
Authority
WO
WIPO (PCT)
Prior art keywords
heating element
capillary structure
cover plate
temperature equalization
temperature
Prior art date
Application number
PCT/CN2020/092146
Other languages
English (en)
French (fr)
Inventor
孙永富
施健
袁志
靳林芳
杨杰
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20880755.2A priority Critical patent/EP4037444A4/en
Publication of WO2021082414A1 publication Critical patent/WO2021082414A1/zh
Priority to US17/732,684 priority patent/US20220256740A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • H05K7/20436Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing
    • H05K7/20445Inner thermal coupling elements in heat dissipating housings, e.g. protrusions or depressions integrally formed in the housing the coupling element being an additional piece, e.g. thermal standoff
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2029Modifications to facilitate cooling, ventilating, or heating using a liquid coolant with phase change in electronic enclosures
    • H05K7/20336Heat pipes, e.g. wicks or capillary pumps
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/20Cooling means
    • G06F1/203Cooling means for portable computers, e.g. for laptops
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/20Indexing scheme relating to G06F1/20
    • G06F2200/201Cooling arrangements using cooling fluid

Definitions

  • This application relates to the field of heat dissipation technology, and in particular to a temperature equalizing component and electronic equipment.
  • thermo-equalizing components to dissipate heat from the heating elements of the electronic devices.
  • copper blocks are arranged between the temperature-equalizing components and the heating elements.
  • the heat equalizing component is in contact with the heating element, and the heat emitted by the heating element needs to be conducted by the copper block to be absorbed by the temperature equalizing component. Therefore, the heat dissipation efficiency of the temperature equalizing component is affected by the thermal conductivity of the copper block, resulting in low heat dissipation efficiency and easy heat generation It accumulates near the heating element and affects the normal operation of the surrounding heating element.
  • the purpose of this application is to provide a temperature equalization component and an electronic device that can solve the problem of low heat dissipation efficiency of the temperature equalization component.
  • An embodiment of the present application provides a temperature equalization component, which includes a housing and a capillary structure, the housing includes a cavity, and the capillary structure is located in the cavity;
  • the housing is provided with a first convex portion and/or a first concave portion, and the first convex portion and/or the first concave portion is used to contact the heating element;
  • the capillary structure is arranged on the shell near the side of the heating element.
  • the temperature equalizing component can directly contact the heating element, eliminating the need for copper blocks for heat transfer and reducing the factors that affect the efficiency of heat transfer , To improve the heat conduction efficiency between the heating element and the temperature equalizing component, thereby improving the heat dissipation efficiency of the temperature equalizing component.
  • the housing includes a first cover plate, and the first cover plate is close to the heating element;
  • the first cover plate includes a main body portion, the first convex portion and/or the first recessed portion is disposed on the first cover plate, and the first convex portion is convex relative to the main body portion. And/or, the first recessed portion is recessed relative to the main body portion;
  • the capillary structure covers the main body, the first protrusion and/or the first recess.
  • the housing may include a first cover plate, the first cover plate is provided on the side of the housing facing the heating element, the first cover plate may include a main body, and the first protrusion and/or the first recess are provided on the first cover Plate, so that the first protrusion and/or the first recess can directly contact the heating element, and the capillary structure is arranged on the first cover plate to reduce the distance between the capillary structure and the heating element, and improve the heat dissipation of the temperature equalization component Efficiency, the capillary structure covering the first cover, the first protrusion and/or the first recess can increase the heat dissipation area and further improve the heat dissipation efficiency of the temperature equalization component.
  • the first recessed portion is recessed toward the inside of the cavity
  • the first recess includes a first contact surface, the first contact surface is used for contacting the heating element, and the area of the first contact surface is larger than the area of the heating element in contact with the first contact surface.
  • the area of the first contact surface is larger than the area of the heating element to facilitate contact between the temperature equalizing component and the heating element, so that the first contact surface is in full contact with the heating element, and the heat dissipation efficiency of the temperature equalizing component is improved.
  • the housing further includes a second cover plate disposed opposite to the first cover plate, and a second recessed portion is provided on a side of the second cover plate away from the heating element ,
  • the depression direction of the second recessed portion is the same as that of the first recessed portion;
  • At least part of the first recessed portion extends into the second recessed portion.
  • the second recessed portion is provided on the second cover plate to avoid the first recessed portion, so that the first recessed portion can be recessed to a sufficient depth.
  • the first recessed portion can still be in contact with the heating element.
  • the overall thickness of the temperature equalizing parts is reduced, making the electronic equipment lighter and thinner.
  • the first cover plate is provided with the first protrusion and the first recess, and the first protrusion protrudes toward the outside of the cavity, so The first recessed portion is recessed toward the inside of the cavity;
  • the first convex portion is used for contacting a part of the heating element, and the first recessed portion is used for contacting another part of the heating element.
  • the temperature equalizing part can be in contact with a plurality of heating elements of different heights at the same time, and the heat dissipation of the plurality of heating elements is performed at the same time, thereby improving the heat equalizing part's performance. Utilization rate, cost saving.
  • the first protrusion includes a second contact surface, the second contact surface is used to contact the heating element, and the area of the second contact surface is larger than that of the heating element in contact with it. area;
  • the first recess includes a first contact surface, the first contact surface is used for contacting the heating element, and the area of the first contact surface is larger than the area of the heating element in contact with the first contact surface.
  • the area of the first contact surface and the second contact surface are both larger than the area of the heating elements that are in contact with them. This design can make the first protrusion and the first recess fully contact the heating element, and improve the heat dissipation efficiency of the temperature equalization component .
  • the capillary structure includes a first capillary structure and a second capillary structure, and the capillary rate of the second capillary structure is greater than that of the first capillary structure.
  • the capillary structure can store more heat conduction medium, and at the same time, it is more convenient for the capillary structure to collect the returned heat conduction medium.
  • the first capillary structure and the second capillary structure abut along the thickness direction of the temperature equalization component
  • the area of the second capillary structure is smaller than the area of the first capillary structure.
  • the first capillary structure abuts against the second capillary structure, which can reduce the overall thickness of the uniform temperature component, and the position where the second capillary structure is not provided can form a channel, so that the phase-change heat transfer medium can flow out of the capillary structure to take heat away from the heating element , Reduce the possibility of heat accumulation, and improve the heat dissipation effect of the temperature equalizing parts.
  • the capillary structure abuts against the housing; it is used to support the housing.
  • the capillary structure sintered by metal powder or other capillary structures with higher strength can be used to support the housing of the temperature equalizing component.
  • the capillary structure is provided with a second convex portion and/or a third concave portion, the second convex portion is provided corresponding to the first convex portion, and the third The recessed portion is arranged corresponding to the first recessed portion;
  • the second convex portion abuts against the first convex portion and the second cover plate of the housing, and/or, the third concave portion is in contact with the first concave portion and the second The cover plate abuts.
  • the first convex portion and/or the first concave portion are supported, and the structural strength of the temperature equalization component is improved.
  • the housing includes a first cover plate and a second cover plate that are arranged opposite to each other;
  • the temperature equalization component includes a support structure, the support structure is located in the cavity, and the support structure is used to support the first cover plate and the second cover plate.
  • the overall strength of the temperature equalization component is improved, and the possibility of deformation of the shell when it is squeezed by an external force is reduced, and sufficient space is reserved for the heat transfer medium after the phase change, so that it can be far away from the heating element. The heat is released, and the heat dissipation effect of the temperature equalization component is improved.
  • the supporting structure includes a supporting column
  • the supporting column is integrally formed with the housing, or;
  • the supporting column and the shell are in a split structure, and two ends of the supporting column are in contact with the shell and the capillary structure, respectively.
  • the support structure can include support columns.
  • the support columns can be integrated with the shell during processing to simplify the processing steps, or they can be formed separately. When assembling the temperature-equalizing components, different lengths of support columns can be selected according to actual needs. The use of support columns More flexible.
  • the first cover includes a main body, the first protrusion and/or the first recess are disposed on the first cover, and the first protrusion
  • the raised portion is convex relative to the main body portion, and/or the first concave portion is concave relative to the main body portion;
  • the supporting structure includes a foamed metal layer and a supporting column, and the supporting column is used to support the main body and the second cover plate;
  • the foamed metal layer is used to support the first convex portion and the second cover plate, and/or the foamed metal layer is used to support the first recessed portion and the second cover plate;
  • the foamed metal layer is provided with through holes, and the through holes penetrate the foamed metal layer in a thickness direction.
  • the foam metal layer is provided to support the first protrusion and/or the first recess, so as to reduce the deformation of the first protrusion and/or the first recess, resulting in a decrease in the heat dissipation effect of the temperature equalization component.
  • the foam metal layer A through hole may be provided on the upper surface, and the heat-conducting medium after the phase change can be moved away from the heating element along the through hole, which reduces the possibility of heat accumulation and improves the heat dissipation effect of the temperature equalization component.
  • the temperature equalization component includes an escape hole, and the escape hole penetrates the temperature equalization component along a thickness direction of the temperature equalization component.
  • the heating elements with higher avoiding height and low heat generation are used to reduce the thickness of the temperature equalizing parts and at the same time make the overall thickness of the electronic device lighter and thinner.
  • a second aspect of the present application provides an electronic device.
  • the electronic device includes a heating element, a mounting bracket, and a temperature equalizing component, the temperature equalizing component is connected to the mounting bracket, and the mounting bracket includes a communicating hole, and the heating element Abut the first protrusion and/or the first recess through the communication hole;
  • the temperature equalization component is the temperature equalization component described in any of the above embodiments.
  • the temperature equalizing component is arranged inside the electronic device through the mounting bracket, and is in contact with the heating element through the communication hole, so as to improve the heat transfer efficiency of the temperature equalizing component and reduce the possibility of heating and jamming of the electronic device.
  • the housing includes a first cover, the first cover includes a main body, and the first protrusion and/or the first recess are disposed on the first cover.
  • a cover
  • the communication hole includes a first hole section and a second hole section, the first hole section and the second hole section are in communication with each other, and the cross-sectional area of the first hole section is smaller than the cross-sectional area of the second hole section , A step surface is formed between the first hole section and the second hole section;
  • the main body is located in the second hole section and abuts against the step surface;
  • At least part of at least one of the first protrusion, the first recess, and the heating element is located in the first hole section.
  • the main body of the temperature equalizing component is installed in the second hole section, and the heating element is in contact with the temperature equalizing component through the first hole section to reduce the overall size of the electronic device. Thickness, at the same time, it is convenient to locate the heating element and the temperature equalizing part during installation.
  • the temperature equalization component provided by the embodiment of the present application may include a housing and a capillary structure, wherein the housing is provided with a first protrusion and/or a first recess, and the uniformity is achieved by the first protrusion and/or the first recess.
  • the warm component is directly in contact with the heating element, eliminating the need for the copper block used to transfer heat between the two, reducing the factors that affect the heat transfer efficiency, and directly transferring heat through contact and heat conduction, which improves the heat transfer efficiency and improves the uniformity.
  • the heat dissipation effect of warm parts may include a housing and a capillary structure, wherein the housing is provided with a first protrusion and/or a first recess, and the uniformity is achieved by the first protrusion and/or the first recess.
  • FIG. 1 is a schematic structural diagram of the temperature equalization component provided in an embodiment of the application applied to an electronic device
  • Figure 2 is a side view of Figure 1;
  • FIG. 3 is a schematic structural diagram of another embodiment of a temperature equalization component provided in an embodiment of the application applied to an electronic device;
  • FIG. 4 is a schematic structural diagram of a first embodiment of a temperature equalization component provided by an embodiment of the application;
  • Figure 5 is a cross-sectional view of Figure 4 along the A-A direction;
  • Fig. 6 is a schematic structural diagram of a second embodiment of a temperature equalization component provided by an embodiment of the application.
  • Figure 7 is a cross-sectional view of Figure 6 along the B-B direction;
  • FIG. 8 is a schematic structural diagram of a third embodiment of a temperature equalization component provided by an embodiment of the application.
  • Figure 9 is a cross-sectional view of Figure 8 along the C-C direction
  • Fig. 10 is a schematic structural diagram of a fourth embodiment of a temperature equalization component provided by an embodiment of the application.
  • Figure 11 is a cross-sectional view of Figure 10 along the D-D direction;
  • Figure 12 is a cross-sectional view along the D-D direction of another embodiment of Figure 10;
  • FIG. 13 is a schematic structural diagram of a fifth embodiment of a temperature equalization component provided by an embodiment of the application.
  • Figure 14 is a cross-sectional view of Figure 13 along the E-E direction;
  • Fig. 15 is an exploded view of a sixth embodiment of a temperature equalization component provided in an embodiment of the application.
  • the housing 11 of the temperature-equalizing component 1 can be made of a metal material with good thermal conductivity, such as Copper, a capillary structure 12 is arranged inside the temperature equalizing component 1, and the heat generated by the heating element 2 is absorbed by the heat transfer medium in the capillary structure 12, so that the heating element 2 is in a good working condition.
  • the temperature equalizing component 1 is a flat plate.
  • the structure that is, along the length direction X or width direction Y of the temperature equalizing part 1, the thickness of the temperature equalizing part 1 is unchanged, or the thickness changes less, but the height of the heating elements 2 inside the electronic device is not consistent, so the flat plate type is uniform
  • the warm component 1 cannot directly contact the heating element 2, and a copper block needs to be arranged between the uniform temperature component 1 and the heating element 2 so that the heat generated by the heating element 2 is conducted to the uniform temperature component 1 through the copper block, and is absorbed by the uniform temperature component 1.
  • this method will reduce the heat dissipation efficiency of the uniform temperature component 1, resulting in heat accumulation around the heating element 2, making the heating element 2 and its environment
  • the increase in temperature causes the heating element 2 to fail to work normally, which in turn causes the electronic device to become hot and stuck, which affects the use of the electronic device.
  • an embodiment of the present application provides a temperature equalization component 1 and an electronic device.
  • the temperature equalization component 1 may be a Vapor Chamber (VC), and the temperature equalization component 1 can directly contact the heating element 2 , The heat generated by the heating element 2 can be directly transferred to the temperature equalizing component 1, reducing the temperature of the heating element 2, so that the heating element 2 is maintained in a good working condition, thereby keeping the electronic device in a normal working condition, and improving the user experience .
  • VC Vapor Chamber
  • the temperature equalization component 1 may include a housing 11 and a capillary structure 12, a cavity 111 is formed inside the housing 11, and the capillary structure 12 is located inside the cavity 111.
  • the heat-conducting medium is in a liquid state and stored in the capillary structure 12.
  • the cavity 111 of the temperature equalizing part 1 can be in a vacuum state. In the vacuum state, the heat-conducting medium can quickly evaporate after being heated to produce a phase change. It is transformed into a gaseous heat-conducting medium and absorbs a large amount of heat, which improves the overall working efficiency of the temperature equalizing component 1.
  • the capillary structure 12 can not only store the liquid heat-conducting medium, but also can make the liquid heat-conducting medium flow directionally in the capillary structure 12 through capillary action, that is, flow toward the direction of the heating element 2 to reduce the gap between the heat-conducting medium and the heating element 2.
  • the heat conduction distance improves the heat dissipation efficiency of the temperature equalizing component 1.
  • the capillary structure 12 is arranged on the side of the housing 11 facing the heating element 2, and a heat-conducting medium is arranged inside the capillary structure 12, and the heat-conducting medium can be pure water.
  • the heating element 2 is a heating element 2 capable of generating heat inside an electronic device, such as a chip.
  • the housing 11 is provided with a first protrusion 112 and/or a first recess 113, so that the temperature equalizing member 1 has a structure of unequal thickness along its length direction X or width direction Y.
  • the first protrusion 112 and/or the first recess 113 are made of materials that can dissipate heat
  • the first protrusion 112 and/or the first protrusion 112 and/or the first recess 113 are made of materials that can dissipate heat.
  • the arrangement of a recess 113 can reduce the distance between the temperature equalizing component 1 and the heating element 2, and the structure and size of the first protrusion 112 and/or the first recess 113 can be based on the heating element 2 in contact with it.
  • the position of is determined, so that the temperature equalizing component 1 is in contact with the heating element 2 through the first protrusion 112 and/or the first recess 113.
  • the temperature equalizing component 1 can directly contact the heating element 2 through the first protrusion 112 and/or the first recess 113, that is, the temperature equalizing component 1 and the heating element 2 conduct contact and heat conduction.
  • This method has fast heat transfer speed and high efficiency.
  • This design can improve the heat transfer efficiency between the heating element 2 and the temperature equalizing component 1, so that the heat generated by the heating element 2 is quickly absorbed by the heat conduction medium in the temperature equalizing component 1, reducing the heating element 2 and its work
  • the temperature of the environment keeps the heating element 2 in a good working state, which in turn makes the electronic device as a whole in a good working state.
  • the temperature equalization component 1 provided by the embodiment of the present application may include a plurality of first protrusions 112 and/or a plurality of first recesses 113, a first protrusion 112 and a first recess 113
  • the number can be set according to actual conditions.
  • the electronic device may include multiple heating elements 2, and when the height of each heating element 2 is inconsistent, it can be based on The actual height of each heating element 2 adjusts the number and height of the first protrusion 112 and/or the first recess 113, so that the temperature equalizing component 1 can directly contact each heating element 2, and improving the overall work of the equalizing component 1 effectiveness.
  • the housing 11 of the temperature equalizing component 1 may include a first cover 114.
  • the first cover 114 is provided on the side of the housing 11 close to the heating element 2 and is used for a first protrusion that contacts the heating element 2.
  • 112 and/or the first recessed portion 113 may be provided on the first cover 114, and the first cover 114 may include a main body portion 114a, the first convex portion 112 is convex relative to the main body 114a, and/or the first concave portion 113 is recessed relative to the main body portion 114a, that is, the first protrusion 112 protrudes toward the outside of the cavity 111, and the first recess 113 is recessed toward the interior of the cavity 111.
  • the capillary structure 12 may be disposed on the first cover 114 and cover the main body 114a and the first protrusion 112 and/or the first recess 113 disposed on the main body 114a to reduce the gap between the capillary structure 12 and the heating element 2 The distance to improve the heat transfer efficiency, and further improve the working efficiency of the temperature equalization component 1.
  • the capillary structure 12 can be provided only on one side of the housing 11, and the capillary structure 12 is not required to be provided on the side of the housing 11 away from the heating element 2.
  • Such a design It can not only meet the heat dissipation requirement of the temperature equalizing component 1, but also reduce the thickness of the temperature equalizing component 1, conforming to the trend of lighter and thinner electronic equipment.
  • the capillary structure 12 provided on the first cover 114 may be a continuous structure, that is, the capillary structure 12 covers each of the main body portion 114a and the first convex portion 112 and/or the first concave portion 113.
  • the continuous capillary structure 12 facilitates the return of the heat transfer medium to the heat source, and can increase the contact area between the capillary structure 12 and the first cover 114, and improve the efficiency of the heat transfer medium in the capillary structure 12 to absorb heat, thereby improving uniformity Heat dissipation efficiency of warm component 1.
  • the present application provides an embodiment.
  • the first cover 114 may only be provided with the first recessed portion 113, and the first recessed portion 113 may be one or more ,
  • the first recessed portion 113 is recessed toward the inside of the cavity 111
  • the capillary structure 12 is a continuous structure, which is disposed on the side of the first cover 114 facing the cavity 111, and covers each of the main body portion 114a and the first recessed portion 113
  • the temperature equalizing member 1 of this structure can be applied to the heating element 2 with a large height (the distance from the equalizing member 1 is small).
  • the first recess 113 may include a first contact surface 113a, which is used to contact the heating element 2.
  • the area of the first contact surface 113a is generally larger than that of the heating element 2.
  • the area of the heating element 2 can make full contact with the uniform temperature component 1, improve the heat transfer efficiency between the two, accelerate the heat transfer from the heating element 2 to the uniform temperature component 1, and reduce the heat generated by the heating element 2 Accumulation in or around the heating element 2 may cause the heating element 2 to fail to work normally.
  • an embodiment of the present application provides a temperature equalization component 1, wherein the housing 11 may include a first cover plate 114 and a second cover plate 115 disposed oppositely, and the second cover plate 115 is disposed on The housing 11 is far away from the heating element 2, and the first cover 114 is provided with a first recess 113.
  • the first recess 113 is used to contact the heating element 2. When the height of the heating element 2 is high, the first The recessed depth of the recessed portion 113 is deepened.
  • the recessed depth of the first recessed portion 113 reaches a certain limit, it will be against the second cover 115, and the second cover 115 will hinder the recessing of the first recessed portion 113, thereby affecting the uniform temperature
  • the component 1 is in contact with the heating element 2.
  • the second cover 115 in this embodiment is provided with a second recess 115a.
  • the second recess 115a has the same recessing direction as the first recess 113, that is, the second recess 115a faces the cavity 111.
  • the first recessed portion 113 can at least partially extend into the second recessed portion 115a, and the second recessed portion 115a can be used to avoid the first recessed portion 113, so that the first recessed portion 113 has a sufficient depth of recess to make the temperature uniform
  • the component 1 can make sufficient contact with the heating element 2 to improve the heat dissipation efficiency of the temperature equalizing component 1.
  • the present application provides an embodiment, in which the first cover 114 may be provided with only the first protrusion 112, and the first protrusion 112 may be one or more,
  • the first protruding portion 112 protrudes toward the outside of the cavity 111
  • the capillary structure 12 is a continuous structure, which is arranged on the side of the first cover 114 facing the cavity 111 and covers the main body 114a and the first protruding portion 112 Facing each wall surface of the cavity 111, the temperature equalization member 1 of this structure can be applied to the heating element 2 with a relatively low height (the distance from the temperature equalization member 1 is large).
  • the first protrusion 112 it can be The temperature equalizing component 1 is brought into contact with the heating element 2 to improve the efficiency of heat transfer, reduce the possibility of heat accumulation, and improve the heat dissipation effect of the equalizing component 1.
  • the present application provides an embodiment in which the first cover 114 is provided with a first convex portion 112 and a first concave portion 113 at the same time, and the first convex portion 112 faces the cavity
  • the outer side of the 111 is convex
  • the first concave portion 113 is concave toward the inside of the cavity 111
  • the capillary structure 12 is a continuous structure, and is arranged on the side of the first cover 114 facing the cavity 111, covering the main body 114a and the first convex
  • the raised portion 112 and the first recessed portion 113 face each wall surface of the cavity 111.
  • the first raised portion 112 is used for contacting the heating element 2 with a lower height
  • the first recessed portion 113 is used for contacting the heating element 2 with a higher height. contact.
  • the first protrusion 112 and the first recess 113 are provided at the same time, so that the temperature equalizing component 1 can be in contact with multiple heating elements 2 of different heights at the same time.
  • Such a design does not require multiple installations inside the electronic device.
  • One temperature equalization component 1 can dissipate heat, and multiple heating elements 2 can be dissipated at the same time through only one temperature equalization component 1, which improves the heat dissipation efficiency and use efficiency of the temperature equalization component 1, saves the cost of electronic equipment, and reduces the cost of electronic equipment. Complexity.
  • the first convex portion 112 in the foregoing embodiments may include a second contact surface 112a
  • the first concave portion 113 may include a first contact surface 113a.
  • the first contact surface 113a and the second contact surface 112a are respectively used for Make contact with different heating elements 2, and the area of the first contact surface 113a is larger than the area of the heating element 2 in contact with it; the area of the second contact surface 112a is larger than the area of the heating element 2 in contact with it.
  • This design can make heat generation
  • the sufficient contact between the element 2 and the temperature equalizing component 1 improves the heat conduction efficiency between the two, so that the heat generated by the heating element 2 is quickly absorbed by the equalizing component 1, reducing the possibility of heat accumulation around the heating element 2, so that the heating element 2 can normal work.
  • first convex portion 112, the first concave portion 113, and the second concave portion 115a may be integrally formed by stamping when the first cover plate 114 and the second cover plate 115 are processed.
  • the capillary structure 12 may include a first capillary structure 121 and a second capillary structure 122, and the capillary rate of the second capillary structure 122 is greater than that of the first capillary structure 121 Capillary rate.
  • the capillary ratio is the percentage of the total volume of the holes used to store the heat-conducting medium on the capillary structure 12. Increasing the capillary ratio of the capillary structure 12 can make the capillary structure 12 store more heat-conducting medium and improve the heat-conducting efficiency of the temperature equalization component 1.
  • the second capillary structure 122 with a larger capillary rate is provided to increase the capillary rate of the overall capillary structure 12 and improve the heat conduction efficiency of the temperature equalizing component 1.
  • the heat-conducting medium stored in the capillary structure 12 absorbs heat and produces a phase change, for example, the liquid heat-conducting medium stored in the capillary structure 12 absorbs heat and vaporizes, and the heat-conducting medium that is transformed into a gaseous state flows out of the capillary structure 12.
  • the capillary effect of the second capillary structure 122 is better, which can collect the condensed liquid heat transfer medium again, and reduce the condensation of the gaseous heat transfer medium into the liquid heat transfer medium. Afterwards, it may not be recollected by the capillary structure 12, which improves the utilization rate of the heat-conducting medium, thereby improving the heat-conducting efficiency of the temperature equalizing component 1.
  • the first capillary structure 121 may be a net-like capillary structure 12
  • the second capillary structure 122 may be a fiber capillary structure 12
  • the fiber capillary structure 12 has a higher level than the net-like capillary structure 12.
  • Capillary rate can store more heat transfer medium, and easy to collect the heat transfer medium after cooling.
  • the uniform temperature component 1 may include a high temperature zone and a low temperature zone.
  • the high temperature zone is the area where the uniform temperature component 1 is close to the heating element 2 that generates heat
  • the low temperature zone is the area where the uniform temperature component 1 is far away from the heat generating element 2 that generates heat. After absorbing heat in the high-temperature zone, it flows to the low-temperature zone, and then cools in the low-temperature zone, releasing the absorbed heat and returning to the initial state to complete the heat dissipation process.
  • the second capillary structure 122 and the first capillary structure 121 are arranged along the thickness direction Z of the temperature equalizing member 1, and they abut to reduce the space occupied by the capillary structure 12.
  • the area of the second capillary structure 122 may be smaller than
  • the area of the first capillary structure 121 such a design can form a channel in the area where the second capillary structure 122 is not provided.
  • the channel can be used for the heat transfer medium after the phase change to flow out and be far away from the heating element 2 that generates heat.
  • the heat transfer medium can pass through The passage reaches the low temperature zone, so that the heat transfer medium can carry the heat away from the heating element 2, reducing the possibility that the heat transfer medium after the phase change cannot flow to the low temperature zone due to insufficient internal space of the temperature equalizing component 1, and the heat is still accumulated in the high temperature zone, which is further improved Heat dissipation efficiency.
  • the capillary structure 12 can be formed by sintering metal powder. Generally, copper powder is used for sintering, which can be used on the first cover plate 114 or the second cover plate. 115 copper powder is set and sintered at high temperature to form the capillary structure 12.
  • the capillary structure 12 processed in this way has good rigidity and strength.
  • the capillary structure 12 can directly abut the shell 11 for support
  • the housing 11 improves the strength and rigidity of the temperature equalizing component 1.
  • the capillary structure 12 can also adopt a net-like capillary structure. By providing a multi-layer net-like capillary structure, it can abut the first cover 114 and the second cover 115 and support the housing 11
  • the thickness of the capillary structure 12 can be increased or decreased at the corresponding position according to the position of the first protrusion 112 and/or the first recess 113, so as to form the second protrusion 123 and/or on the capillary structure 12 Or the third recessed portion 124, wherein the second raised portion 123 can abut against the first raised portion 112 and the second cover 115, and the third recessed portion 124 can be contacted with the first recessed portion 113 and the second cover 115 By abutting, the capillary structure 12 can provide support for the first protrusion 112 and/or the first recess 113, thereby improving the overall structural strength of the temperature equalization component 1.
  • the capillary structure 12 When sintering the capillary structure 12, some space can be reserved in advance, and the capillary structure 12 can be sintered only at a part of the first cover plate 114 or the second cover plate 115, and the position where the capillary structure 12 is not provided forms a channel to make the phase change
  • the subsequent heat transfer medium can flow from the high temperature area to the low temperature area.
  • the housing 11 of the temperature equalization component 1 provided in the present application may include a first cover 114 and a second cover 115, and the first cover 114 and the second cover
  • the plate 115 encloses a cavity 111
  • the temperature equalization component 1 may further include a supporting structure 13 located in the cavity 111 and used for supporting the first cover plate 114 and the second cover plate 115.
  • Such a design can increase the overall strength of the temperature equalization component 1 and at the same time reduce the possibility of the temperature equalization component 1 being squeezed and deformed by an external force, thereby reducing the risk of fracture and damage of the temperature equalization component 1 and prolonging the service life of the temperature equalization component 1.
  • the supporting structure 13 may include a supporting column 131, and the supporting column 131 may be connected to the first cover plate 114 or the second cover plate. 115 is integrally formed.
  • support columns 131 of unequal height are processed on the first cover 114 and/or the second cover 115 by stamping, so that the main body 114a and the second cover 115 are Supported by the support pillar 131, the first protrusion 112 and the second cover 115 are supported by the support pillar 131, and/or the first recess 113 and the second cover 115 are supported by the support pillar 131, Reduce the possibility of deformation of the first convex portion 112 and/or the first recessed portion 113 under force, and reduce the risk of deformation of the first contact surface 113a and/or the second contact surface 112a, so that the first contact surface 113a and/or The second contact surface 112a can better contact the heating element 2 that generates heat, and improve the heat dissipation efficiency of the temperature equalizing component 1.
  • the support column 131 can also be processed separately.
  • the support column 131 is installed in the cavity 111, and both ends of the support column 131 are connected to the first cover 114 respectively. It abuts against the second cover 115 to provide support for the housing 11.
  • support columns 131 of different lengths can be pre-processed during processing, and the support columns 131 of appropriate length can be selected for use according to actual needs during assembly. Therefore, there is no need to design the stamping die separately according to the length of the support column 131, which reduces the development cost.
  • the supporting structure 13 may include a supporting column 131 and a foamed metal layer 132.
  • the supporting column 131 is used to support the main body 114a and the second cover 115, and the foamed metal layer 132 is used for It supports the first protrusion 112 and the second cover 115, and/or the first recess 113 and the second cover 115, so as to strengthen the temperature equalization component 1 and improve the structural strength of the temperature equalization component 1.
  • the metal foam layer 132 may be provided with a through hole 132a, and the through hole 132a penetrates the metal foam layer 132 along the thickness direction Z.
  • the through hole 132a can be used as a channel for the heat transfer medium to flow. The heat transfer medium moves away from the high temperature zone through the channel, reaches the low temperature zone, and releases the absorbed heat.
  • a channel can be provided in the capillary structure 12. Such a design can facilitate the flow of the heat transfer medium after the phase change to the low temperature area.
  • the present application provides an embodiment in which the temperature equalization component 1 may include an escape hole 116 that penetrates the temperature equalization component 1 along the thickness direction of the temperature equalization component 1, and the escape hole 116 is used to avoid high-height electronic components.
  • the electronic components can generate low heat and do not require the temperature equalizing part 1 to dissipate heat.
  • the avoiding holes 116 the thickness of the electronic device can be reduced, which conforms to the lightness and thinness of the electronic device. The trend of globalization.
  • an embodiment of the present application also provides an electronic device.
  • the electronic device may include a screen 8, a heating element 2, a mounting bracket 3, and a temperature equalizer.
  • Component 1 the temperature equalizing component 1 is connected to the mounting bracket 3, and the connection method can be bonding.
  • the temperature equalizing component 1 and the mounting bracket 3 can be connected by placing a viscous substance 6 between the temperature equalizing component 1 and the mounting bracket 3.
  • the mounting bracket 3 can also be provided with a battery compartment for installing batteries and other components.
  • the mounting bracket 3 is provided with a communication hole 31.
  • the heating element 2 is installed on the housing 4 through the circuit board 5, and the heating element 2 passes through the communication hole. 31 is in contact with the first protrusion 112 and/or the first recess 113.
  • a heat conduction is provided between the heating element 2 and the first protrusion 112 and/or the first recess 113.
  • the interface material 7, the thermal interface material 7 can be silica gel. The thermal interface material 7 makes the connection between the heating element 2 and the temperature equalizing component 1 stronger, improves the stability of the connection, and improves the heat transfer efficiency between the two.
  • connection method between the temperature equalization component 1 and the mounting bracket 3 can also be as follows: install metal on the mounting bracket 3 and/or the housing of the temperature equalization component 1, heat the metal to melt, and connect the two after the metal is melted to cool down After the metal is solidified, the temperature equalizing component 1 and the mounting bracket 3 are connected.
  • the connection between the temperature equalizing component 1 and the mounting bracket 3 may also include any other connection methods that meet the strength requirements.
  • the temperature equalization component 1 may include a first cover 114, and the first cover 114 may include a main body 114a, a first protrusion 112 and/or a first recess 113
  • the communicating hole 31 may include a first hole section 311 and a second hole section 312, the first hole section 311 and the second hole section 312 are in communication with each other, and the cross-sectional area of the first hole section 311 is smaller than that of the second hole section 312 ,
  • the step surface 313 is formed between the first hole section 311 and the second hole section 312.
  • the main body 114a When the temperature equalizing component 1 is installed on the mounting bracket 3, the main body 114a is located in the second hole section 312, and the main body 114a can pass through the viscous material. 6 is connected with the stepped surface 313, so that the temperature equalizing plate 1 can be fixedly connected with the mounting bracket 3.
  • At least one of the first protrusion 112 and the heating element 2 extends into the first hole section 311 to realize the first protrusion
  • the rising portion 112 and the heating element 2 can be in contact, or the main body 114a is located in the second hole section 312, and the heating element 2 extends into the first hole section 311 and passes through the first hole section 311 to make contact with the first recess 113
  • the heat-conducting interface material 7 can be arranged between the heating element 2 and the temperature equalizing component 1.
  • Such a design facilitates the positioning of the temperature equalizing component 1 and/or the heating element 2 during installation, and can reduce the overall thickness of the electronic device at the same time. Conform to the needs of thinner and lighter electronic equipment.
  • the embodiment of the present application provides a temperature equalization component 1, including a cavity 111 and a capillary structure 12.
  • the capillary structure 12 is located in the cavity 111, and the capillary structure 12 is disposed on a side of the housing 11 facing the heating element 2.
  • the temperature equalizing component 1 has a structure of unequal thickness, and the housing 11 is provided with a first protrusion 112 and/or a first recess 113, and the first protrusion 112 and/or the first recess 113 are combined with each other.
  • the heating element 2 of the heat is directly in contact without heat transfer through other parts, which improves the heat conduction efficiency, improves the heat dissipation efficiency of the temperature equalizing part 1, reduces the possibility of heat accumulation, and reduces the heating element 2 and the environment in which it is located.
  • the temperature keeps the heating element 2 in a good working condition, which in turn makes the electronic device run more smoothly, reduces the possibility of heat generation, jams, etc., and improves the user experience.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Human Computer Interaction (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本申请涉及一种均温部件及电子设备,均温部件可以包括壳体和毛细结构,壳体可以包括腔体,毛细结构位于腔体,且设置在朝向发热元件的一侧的壳体,壳体设置有第一凸起部和/或第一凹陷部,通过第一凸起部和/或第一凹陷部实现均温部件与发热元件直接接触,提升热量的传递效率,进而降低热量在发热元件周围积累的可能,提升均温部件的散热效果。

Description

一种均温部件及电子设备 技术领域
本申请涉及散热技术领域,尤其涉及一种均温部件及电子设备。
背景技术
通常情况下,电子设备如手机、平板电脑等,在其内部设置有均温部件用于对电子设备的发热元件进行散热,具体地,均温部件与发热元件之间设置铜块,铜块与均温部件和发热元件接触,发热元件散发的热量需经过铜块传导才能被均温部件吸收,因此,该均温部件的散热效率受到铜块导热能力的影响,导致散热效率低下,容易造成热量在发热元件附近积累,影响周围发热元件的正常工作。
申请内容
鉴于背景技术中存在的问题,本申请的目的在提供一种均温部件及电子设备,该均温部件及电子设备能够解决均温部件散热效率低的问题。
本申请实施例提供了一种均温部件,包括壳体和毛细结构,所述壳体包括腔体,所述毛细结构位于所述腔体;
所述壳体设置有第一凸起部和/或第一凹陷部,所述第一凸起部和/或所述第一凹陷部用于与发热元件接触;
所述毛细结构设置在靠近所述发热元件一侧的壳体。
通过在均温部件的壳体设置第一凸起部和/或第一凹陷部,使均温部件能够直接与发热元件进行接触,省去传热用的铜块,减少影响热传递效率的因素,提升发热元件和均温部件之间的导热效率,进而提升均温部件的散热效率。
在一种可能的实现方式中,所述壳体包括第一盖板,所述第一盖板靠近发热元件;
所述第一盖板包括主体部,所述第一凸起部和/或所述第一凹陷部设置于所述第一盖板,且所述第一凸起部相对于所述主体部凸起,和/或,所述第一凹陷部相对于所述主体部凹陷;
所述毛细结构覆盖所述主体部、所述第一凸起部和/或所述第一凹陷部。
壳体可以包括第一盖板,第一盖板设置在壳体朝向发热元件的一侧,第一盖板可以包括主体部,第一凸起部和/或第一凹陷部设置在第一盖板,以使第一凸起部和/或第一凹陷部能够直接与发热元件接触,毛细结构设置在第一盖板能够减小毛细结构与发热元件之间的距离,提升均温部件的散热效率,毛细结构覆盖第一盖板、第一凸起部和/或第一凹陷部能够增加散热面积,进一步提升均温部件的散热效率。
在一种可能的实现方式中,所述第一凹陷部朝向所述腔体的内部凹陷;
所述第一凹陷部包括第一接触面,所述第一接触面用于与发热元件接触,所述第一接触面的面积大于与其接触的发热元件的面积。
第一接触面的面积大于发热元件的面积更加便于均温部件与发热元件进行接触,使第一接触面与发热元件充分接触,提高均温部件的散热效率。
在一种可能的实现方式中,所述壳体还包括与所述第一盖板相对设置的第二盖板,所述第二盖板远离所述发热元件的一侧设置有第二凹陷部,所述第二凹陷部与所述第一凹陷部的凹陷方向相同;
所述第一凹陷部的至少部分伸入所述第二凹陷部。
通过在第二盖板设置第二凹陷部对第一凹陷部进行避让,使第一凹陷部能够凹陷足够的深度,当发热元件的高度较高时,第一凹陷部仍然能够与发热元件接触,同时减小均温部件的整体厚度,是电子设备更加轻薄。
在一种可能的实现方式中,所述第一盖板设置有所述第一凸起部和所述第一凹陷部,所述第一凸起部朝向所述腔体的外侧凸起,所述第一凹陷部朝向所述腔体的内部凹陷;
所述第一凸起部用于与部分发热元件接触,所述第一凹陷部用于与另一部分发热元件接触。
通过在第一盖板同时设置第一凸起部和第一凹陷部,使均温部件能够同时与多个高度不同的发热元件接触,并对多个发热元件同时进行散热,提高均温部件的利用率,节约成本。
在一种可能的实现方式中,所述第一凸起部包括第二接触面,所述第二接触面用于与发热元件接触,所述第二接触面的面积大于与其接触的发热元件的面积;
所述第一凹陷部包括第一接触面,所述第一接触面用于与发热元件接触,所述第一接触面的面积大于与其接触的发热元件的面积。
第一接触面和第二接触面的面积均大于与其各自接触的发热元件的面积,这样的设计能够使第一凸起部和第一凹陷部与发热元件充分接触,提高均温部件的散热效率。
在一种可能的实现方式中,所述毛细结构包括第一毛细结构和第二毛细结构,所述第二毛细结构的毛细率大于所述第一毛细结构的毛细率。
通过设置毛细率不同的第一毛细结构和第二毛细结构以使毛细结构能够储存更多的导热介质,同时也更加便于毛细结构收集回流的导热介质。
在一种可能的实现方式中,所述第一毛细结构与所述第二毛细结构沿所述均温部件的厚度方向抵接;
所述第二毛细结构的面积小于所述第一毛细结构的面积。
第一毛细结构和第二毛细结构抵接,能够减小均温部件的整体厚度,未设置第二毛细结构的位置能够形成通道,使产生相变的导热介质流出毛细结构将热量带离发热元件,降低热量积累的可能,提升均温部件的散热效果。
在一种可能的实现方式中,所述毛细结构与所述壳体抵接;用于支撑所述壳体。
通过金属粉末烧结的毛细结构或设置其他具有较高的强度的毛细结构,能够对均温部件的壳体进行支撑。
在一种可能的实现方式中,所述毛细结构设置有第二凸起部和/或第三凹陷部,所述第二凸起部与所述第一凸起部对应设置,所述第三凹陷部与所述第一凹陷部对应设置;
所述第二凸起部与所述第一凸起部和所述壳体的第二盖板抵接,和/或,所述第三凹陷部与所述第一凹陷部和所述第二盖板抵接。
通过在毛细结构设置第二凸起部和/或第三凹陷部,对第一凸起部和/或第一凹陷部进行支撑,提升均温部件的结构强度。
在一种可能的实现方式中,所述壳体包括相对设置的第一盖板和第二盖板;
所述均温部件包括支撑结构,所述支撑结构位于所述腔体,所述支撑结构用于支撑所述第一盖板和所述第二盖板。
通过在腔体内设置支撑结构,提升均温部件的整体强度,同时减小壳体受到外力挤压时变形的可能,为相变后的导热介质留出充足的空间,使其能够远离发热元件,将热量释放,提升均温部件的散热效果。
在一种可能的实现方式中,所述支撑结构包括支撑柱;
所述支撑柱与所述壳体一体成型,或者;
所述支撑柱与所述壳体为分体式结构,且所述支撑柱的两端分别与所述壳体和所述毛细结构抵接。
支撑结构可以包括支撑柱,支撑柱可以在加工的时候与壳体一体成型简化加工步骤,也可以单独成型,在组装均温部件的时候可以根据实际需要选择不同长度的支撑柱,支撑柱的使用更加灵活。
在一种可能的实现方式中,所述第一盖板包括主体部,所述第一凸起部和/或所述第一凹陷部设置于所述第一盖板,且所述第一凸起部相对于所述主体部凸起,和/或,所述第一凹陷部相对于所述主体部凹陷;
所述支撑结构包括泡沫金属层和支撑柱,所述支撑柱用于支撑所述主体部与所述第二盖板;
所述泡沫金属层用于支撑所述第一凸起部与所述第二盖板,和/或,所述泡沫金属层用于支撑所述第一凹陷部与所述第二盖板;
所述泡沫金属层设置有通孔,所述通孔沿厚度方向贯通所述泡沫金属层。
通过设置泡沫金属层对第一凸起部和/或第一凹陷部进行支撑,降低第一凸起部和/或第一凹陷部产生变形,导致均温部件散热效果下降的可能,泡沫金属层上可以设置有通孔,相变后的导热介质可以沿通孔远离发热元件,降低热量积累的可能,提高均温部件的散热效果。
在一种可能的实现方式中,所述均温部件包括避让孔,所述避让孔沿所述均温部件的厚度方向贯穿所述均温部件。
通过在均温部件设置避让孔,避让高度较高,发热量较低的发热元件,减小均温部件的厚度,同时使电子设备的整体厚度更加轻薄。
本申请的第二方面提供了一种电子设备,所述电子设备包括发热元件、安装支架和均温部件,所述均温部件与所述安装支架连接,所述安装支架包括连通孔,发热元件通过所述连通孔与所述第一凸起部和/或第一凹陷部抵接;
其中,所述均温部件为以上任一实施例所述的均温部件。
均温部件通过安装支架设置在电子设备内部,并通过连通孔与发热元件进行接触,提高均温部件的热传递效率,降低电子设备出现发热、卡顿的可能。
在一种可能的实现方式中,所述壳体包括第一盖板,所述第一盖板包括主体部,所述第一凸起部和/或所述第一凹陷部设置于所述第一盖板;
所述连通孔包括第一孔段和第二孔段,所述第一孔段和所述第二孔段相互连通,所述第一孔段的截面积小于所述第二孔段的截面积,所述第一孔段与所述第二孔段之间形成台阶面;
所述主体部位于所述第二孔段,并与所述台阶面抵接;
所述第一凸起部、所述第一凹陷部和所述发热元件中至少一者的至少部分位于所述第一孔段。
通过设置建面积不同的第一孔段和第二孔段,使均温部件的主体部安装于第二孔段,发热元件通过第一孔段与均温部件进行接触能够减小电子设备的整体厚度,同时便于在安装时与发热元件以及均温部件进行定位。
本申请实施例提供的均温部件可以包括壳体和毛细结构,其中壳体设置有第一凸起部和/或第一凹陷部,通过第一凸起部和/或第一凹陷部实现均温部件直接与发热元件进行接触,省去二者之间用于传递热量的铜块,减少影响热量传递效率的因素,直接通过接触导热的方式进行热传递,提高了热量的传递效率,提升均温部件的散热效果。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性的,并不能限制本申请。
附图说明
图1为本申请实施例所述提供的均温部件应用于电子设备的结构示意图;
图2为图1的侧视图;
图3为本申请实施例所提供的均温部件另一实施例应用于电子设备的结构示意图;
图4为本申请实施例所提供的均温部件第一实施例的结构示意图;
图5为图4沿A-A方向的剖视图;
图6为本申请实施例所提供的均温部件第二实施例的结构示意图;
图7为图6沿B-B方向的剖视图;
图8为本申请实施例所提供的均温部件第三实施例的结构示意图;
图9为图8沿C-C方向的剖视图;
图10为本申请实施例所提供的均温部件第四实施例的结构示意图;
图11为图10沿D-D方向的剖视图;
图12为图10另一种实施例沿D-D方向的剖视图;
图13为本申请实施例所提供的均温部件第五实施例的结构示意图;
图14为图13沿E-E方向的剖视图;
图15为本申请实施例所提供的均温部件第六实施例的爆炸图。
附图标记:
1-均温部件;
11-壳体;
111-腔体;
112-第一凸起部;
112a-第二接触面;
113-第一凹陷部;
113a-第一接触面;
114-第一盖板;
114a-主体部;
115-第二盖板;
115a-第二凹陷部;
116-避让孔;
12-毛细结构;
121-第一毛细结构;
122-第二毛细结构;
123-第二凸起部;
124-第三凹陷部;
13-支撑结构;
131-支撑柱;
132-泡沫金属层;
132a-通孔;
2-发热元件;
3-安装支架;
31-连通孔;
311-第一孔段;
312-第二孔段;
313-台阶面;
4-外壳;
5-电路板;
6-粘性物质;
7-导热界面材料;
8-屏幕。
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本申请的实施例,并与说明书一起用于解释本申请的原理。
具体实施方式
为了更好的理解本申请的技术方案,下面结合附图对本申请实施例进行详细描述。
应当明确,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本申请保护的范围。
在本申请实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本申请。在本申请实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
需要注意的是,本申请实施例所描述的“上”、“下”、“左”、“右”等方位词是以附图所示的角度来进行描述的,不应理解为对本申请实施例的限定。此外,在上下文中,还需要理解的是,当提到一个元件连接在另一个元件“上”或者“下”时,其不仅能够直接连接在另一个元件“上”或者“下”,也可以通过中间元件间接连接在另一个元件“上”或者“下”。
电子设备例如手机、平板电脑等,内部采用均温部件1作为散热部件,用于吸收电子设备内部发热元件2产生的热量,均温部件1的壳体11可以选用导热性良好的金属材料,例如铜,均温部件1内部设置有毛细结构12,通过毛细结构12内的导热介质吸收发热元件2产生的热量,使发热元件2处于良好的工作状态,通常情况下,均温部件1为平板式结构,即沿均温部件1的长度方向X或宽度方向Y,均温部件1的厚度不变,或厚度变化较小,然而电子设备内部各发热元件2的高度并不一致,因此平板式的均温部件1无法直接与发热元件2接触,需通过在均温部件1和发热元件2之间设置铜块使发热元件2产生的热量经铜块传导至均温部件1,被均温部件1吸收,由于均温部件1无法直接与发热元件2接触并吸收热量,这样的方式会使均温部件1的散热效率降低,导致热量积累在发热元件2周围,使发热元件2及其所处的环境温度升高,导致发热元件2无法正常工作,进而使电子设备出现发烫、卡顿的情况,影响电子设备的使用。
为解决该技术问题,本申请实施例提供了一种均温部件1及电子设备,均温部件1可以为均温板(Vapor Chamber,VC),该均温部件1能够与发热元件2直接接触,发热元件2产生的热量能够直接传递至均温部件1,降低发热元件2的温度,从而使发热元件2保持良好的工作状态,进而使电子设备处于正常工作状态,并提升使用者的使用体验。
具体地,如图4~15所示,均温部件1可以包括壳体11和毛细结构12,壳体11内部形成腔体111,毛细结构12位于腔体111内部。通常情况下,导热介质处于液态,储存于毛细结构12中,均温部件1的腔体111可以为真空状态,在真空状态下,导热介质受热后能够迅速蒸发,产生相变,从液态导热介质转变为气态导热介质,并吸收大量热量,提高均温部件1整体的工作效率。毛细结构12不仅能够储存液态的导热介质,同时还能够通过毛细作用使液态的导热介质在毛细结构12中定向流动,即朝向发热元件2的方向流动,减小导热介质与发热元件2之间的热传导距离,提高均温部件1的散热效率。毛细结构12设置在壳体11朝向发热元件2的一侧,毛细结构12内部设置有导热介质,导热介质可以采用纯水。发热元件2为电子设备内部能够产生热量的发热元件2,例如芯片等。
如图4~图9所示,壳体11设置有第一凸起部112和/或第一凹陷部113,使均温部件1沿其长度方向X或宽度方向Y形成不等厚的结构,便于均温部件1与发热元件2进行接触,该壳体11、第一凸起部112和/或第一凹陷部113均为能够散热的材质,且该第一凸起部112和/或第一凹陷部113的设置能够减小均温部件1与发热元件2之间的距离, 且该第一凸起部112和/或第一凹陷部113的结构和尺寸可根据与其接触的发热元件2的位置确定,从而使得均温部件1通过第一凸起部112和/或第一凹陷部113与发热元件2进行接触。
均温部件1可以通过第一凸起部112和/或第一凹陷部113直接与发热元件2接触,即均温部件1与发热元件2进行接触导热,该方式具有传递热量速度快、效率高的优点,这样的设计能够提高发热元件2与均温部件1之间的传热效率,从而使发热元件2产生的热量迅速被均温部件1内的导热介质吸收,降低发热元件2以及其工作环境的温度,使发热元件2处于良好的工作状态,进而使电子设备整体处于良好的工作状态。
在此需要说明的是,本申请实施例提供的均温部件1可以包括多个第一凸起部112和/或多个第一凹陷部113,第一凸起部112和第一凹陷部113的数量可以根据实际情况进行设置,例如当本申请实施例提供的均温部件1应用于电子设备时,该电子设备内部可以包括多个发热元件2,各发热元件2的高度不一致时,可根据各发热元件2实际的高度调整第一凸起部112和/或第一凹陷部113的数量以及高度,使均温部件1能够与各个发热元件2均直接接触,提升均温部件1整体的工作效率。
具体地,均温部件1的壳体11可以包括第一盖板114,第一盖板114设置在壳体11靠近发热元件2的一侧,用于与发热元件2接触的第一凸起部112和/或第一凹陷部113可以设置在第一盖板114,第一盖板114可以包括主体部114a,第一凸起部112相对于主体部114a凸起,和/或第一凹陷部113相对于主体部114a凹陷,即第一凸起部112朝向腔体111的外侧凸起,第一凹陷部113朝向腔体111内部的凹陷。毛细结构12可以设置在第一盖板114,并覆盖主体部114a以及设置在主体部114a的第一凸起部112和/或第一凹陷部113,减小毛细结构12与发热元件2之间的距离,提高热量的传递效率,进而提高均温部件1的工作效率。
如图4~图11所示,本申请提供的实施例中可以仅在壳体11的一侧设置毛细结构12,在壳体11远离发热元件2的一侧无需设置毛细结构12,这样的设计不仅能够满足均温部件1的散热需求,同时还能减小均温部件1的厚度,顺应电子设备轻薄化的趋势。
在一种具体实施例中,设置在第一盖板114的毛细结构12可以为连续型结构,即毛细结构12覆盖主体部114a及第一凸起部112和/或第一凹陷部113的各个壁面,连续型的毛细结构12有利于导热介质回流至热源处,并且能够增加毛细结构12与第一盖板114的接触面积,提高位于毛细结构12内的导热介质吸收热量的效率,进而提升均温部件1的散热效率。
如图4和图5所示,本申请提供了一种实施例,该实施例中,第一盖板114可以仅设置第一凹陷部113,且该第一凹陷部113可以为一个或多个,第一凹陷部113朝向腔体111的内部凹陷,毛细结构12为连续型结构,设置在第一盖板114朝向腔体111的一侧,并覆盖主体部114a和第一凹陷部113的各个壁面,该结构的均温部件1能够适用于高度较大(与均温部件1之间的距离较小)的发热元件2,通过设置该第一凹陷部113,不仅能够实现均温部件1与发热元件2直接接触,还能够减小电子设备的整体厚度。
其中,第一凹陷部113可以包括第一接触面113a,第一接触面113a用于与发热元件2接触,为提高均温部件1的散热效率,第一接触面113a的面积通常大于发热元件2的面积,使发热元件2能够与均温部件1进行充分接触,提高二者之间的热传递效率,加快 热量从发热元件2传递到均温部件1的速度,降低发热元件2产生的热量在发热元件2的内部或周围积累,导致发热元件2无法正常工作的可能。
如图6和图7所示,本申请实施例提供了一种均温部件1,其中壳体11可以包括相对设置的第一盖板114和第二盖板115,第二盖板115设置在壳体11远离发热元件2的一侧,第一盖板114设置有第一凹陷部113,第一凹陷部113用于与发热元件2进行接触,当发热元件2的高度较高时,第一凹陷部113的凹陷深度加深,当第一凹陷部113的凹陷深度达到一定限度时,会与第二盖板115相抵,第二盖板115会阻碍第一凹陷部113的凹陷,进而影响均温部件1与发热元件2接触。
为了解决该技术问题,本实施例中的第二盖板115设置有第二凹陷部115a,第二凹陷部115a与第一凹陷部113的凹陷方向相同,即第二凹陷部115a朝向腔体111的外侧凹陷,第一凹陷部113至少部分可以伸入第二凹陷部115a,第二凹陷部115a可以用于避让第一凹陷部113,使得第一凹陷部113具有足够的凹陷深度,使均温部件1能够与发热元件2进行充分接触,提高均温部件1的散热效率。
如图8和图9所示,本申请提供了一种实施例,其中第一盖板114可以仅设置有第一凸起部112,且该第一凸起部112可以为一个或多个,第一凸起部112朝向腔体111的外侧凸起,毛细结构12为连续型结构,设置在第一盖板114朝向腔体111的一侧,并覆盖主体部114a和第一凸起部112朝向腔体111的各个壁面,该结构的均温部件1能够适用于高度较低(与均温部件1之间的距离较大)的发热元件2,通过设置该第一凸起部112,能够使均温部件1与发热元件2进行接触,提高热量传递的效率,降低热量积累的可能,提升均温部件1的散热效果。
如图10~图12所示,本申请提供了一种实施例,其中,第一盖板114同时设置有第一凸起部112和第一凹陷部113,第一凸起部112朝向腔体111的外侧凸起,第一凹陷部113朝向腔体111的内部凹陷,毛细结构12为连续型结构,设置在第一盖板114朝向腔体111的一侧,覆盖主体部114a、第一凸起部112和第一凹陷部113朝向腔体111的各个壁面,第一凸起部112用于与高度较低的发热元件2接触,第一凹陷部113用于与高度较高的发热元件2接触。
本申请提供的实施例通过同时设置第一凸起部112和第一凹陷部113,使均温部件1能够同时与多个高度不同的发热元件2接触,这样的设计无需在电子设备内部设置多个均温部件1进行散热,可以仅通过一个均温部件1同时对多个发热元件2进行散热,提高均温部件1的散热效率以及使用效率,节约了电子设备的成本,并降低电子设备的复杂性。
具体地,上述各实施例中的第一凸起部112可以包括第二接触面112a,第一凹陷部113可以包括第一接触面113a,第一接触面113a和第二接触面112a分别用于与不同的发热元件2进行接触,且第一接触面113a的面积大于与其接触的发热元件2的面积;第二接触面112a的面积大于与其接触的发热元件2的面积,这样的设计能够使发热元件2与均温部件1进行充分接触提高二者间的导热效率,使发热元件2产生的热量迅速被均温部件1吸收,降低热量在发热元件2周围积累的可能,从而使发热元件2能够正常工作。
更具体地,第一凸起部112、第一凹陷部113和第二凹陷部115a可以在加工第一盖板114和第二盖板115时通过冲压的方式一体成型。
如图15所示,本申请提供了一种实施例,其中,毛细结构12可以包括第一毛细结构121和第二毛细结构122,且第二毛细结构122的毛细率大于第一毛细结构121的毛细率。毛细率为毛细结构12上用于储存导热介质的孔的体积占总体积的百分比,增大毛细结构12的毛细率能够使毛细结构12储存更多的导热介质,提升均温部件1的导热效率,本申请提供的实施例通过设置毛细率更大的第二毛细结构122以提升整体毛细结构12的毛细率,提高均温部件1的导热效率。同时,当储存于毛细结构12的导热介质吸热产生相变时,例如储存于毛细结构12的液态导热介质吸热气化,转变为气态的导热介质从毛细结构12中流出,当气态导热介质远离发热元件2,或与壳体11的第二盖板115接触后,会重新冷凝成液态导热介质,通过毛细结构12的毛细作用将液态导热介质重新收集起来,并使液态导热介质沿毛细结构12的孔朝向靠近发热元件2的方向流动,继续吸收发热元件2产生的热量,使均温部件1能够持续工作。
同时,由于第二毛细结构122具有更高的毛细率,因此第二毛细结构122的毛细作用效果更好,能够将冷凝后的液态导热介质重新收集起来,降低气态导热介质在冷凝为液态导热介质之后无法被毛细结构12重新收集的可能,提高导热介质的利用率,从而提高均温部件1的导热效率。
在一种可能的实施例中,第一毛细结构121可以为网状毛细结构12,第二毛细结构122可以为纤维毛细结构12,纤维毛细结构12相比于网状毛细结构12具有更高的毛细率,能储存更多的导热介质,同时易于收集冷却之后的导热介质。
另外,均温部件1可以包括高温区和低温区,其中,高温区为均温部件1靠近发热的发热元件2的区域,低温区为均温部件1远离发热的发热元件2的区域,导热介质在高温区吸热产生相变后流动至低温区,在低温区冷却,将吸收的热量释放从而恢复到初始状态,完成散热过程。
具体地,第二毛细结构122与第一毛细结构121沿均温部件1的厚度方向Z设置,且二者抵接,以减小毛细结构12占用的空间,第二毛细结构122的面积可以小于第一毛细结构121的面积,这样的设计能够在未设置第二毛细结构122的区域形成通道,该通道能够用于相变后的导热介质流出,并远离发热的发热元件2,导热介质能够通过通道到达低温区,使导热介质能够将热量带离发热元件2,降低因均温部件1内部空间不足,相变后的导热介质无法流动至低温区,热量仍然积累在高温区的可能,进一步提高散热效率。
如图12所示,本申请实施例提供了一种均温部件1,毛细结构12可以通过金属粉末烧结形成,通常情况下选用铜粉进行烧结,可以在第一盖板114或第二盖板115设置铜粉,通过高温进行烧结,使其能够形成毛细结构12,通过这样的方式加工的毛细结构12具有良好的刚度和强度,该毛细结构12可以直接与壳体11抵接,用于支撑壳体11,从而提高均温部件1的强度和刚度。该毛细结构12也可以采用网状毛细结构,通过设置多层网状毛细结构,使其能够与第一盖板114和第二盖板115抵接,并对壳体11进行支撑
具体地,可以根据第一凸起部112和/或第一凹陷部113的位置,在相应位置增加或减小毛细结构12的厚度,从而在毛细结构12上形成第二凸起部123和/或第三凹陷部124,其中,第二凸起部123可以与第一凸起部112以及第二盖板115抵接,第三凹陷部124可以与第一凹陷部113和第二盖板115抵接,使该毛细结构12可以为第一凸起部112和/或第一凹陷部113提供支撑,进而提高均温部件1整体的结构强度。
在烧结毛细结构12的时候,可以提前预留出部分空间,仅在第一盖板114或第二盖板115的部分位置烧结毛细结构12,未设置毛细结构12的位置形成通道,使相变后的导热介质能够从高温区流向低温区。
如图5、图7、图9、图11所示,本申请提供的均温部件1的壳体11可以包括第一盖板114和第二盖板115,第一盖板114和第二盖板115围成腔体111,均温部件1还可以包括支撑结构13,支撑结构13位于腔体111,用于支撑第一盖板114和第二盖板115。这样的设计能够提高均温部件1的整体强度,同时,降低均温部件1受到外力挤压出现变形的可能,进而降低均温部件1出现断裂破损的风险,延长均温部件1的使用寿命。
具体地,在一种具体实施例中,如图5、图7、图9、图11所示,支撑结构13可以包括支撑柱131,支撑柱131可以与第一盖板114或第二盖板115一体成型,在加工的时候,通过冲压的方式,在第一盖板114和/或第二盖板115加工出不等高的支撑柱131,使得主体部114a与第二盖板115之间通过支撑柱131支撑,第一凸起部112与第二盖板115之间通过该支撑柱131支撑,和/或,第一凹陷部113与第二盖板115之间通过支撑柱131支撑,降低第一凸起部112和/或第一凹陷部113受力产生形变的可能,同时降低第一接触面113a和/或第二接触面112a变形的风险,使第一接触面113a和/或第二接触面112a能够更好的和发热的发热元件2接触,提高均温部件1的散热效率。
在另一种具体实施例中,支撑柱131也可以单独进行加工,在组装均温部件1时,将支撑柱131安装于腔体111内,支撑柱131的两端分别与第一盖板114和第二盖板115抵接,以对壳体11提供支撑,这种方式在加工的时候可以预先加工出不同长度的支撑柱131,在组装时根据实际需要选择长度合适的支撑柱131进行使用,无需根据支撑柱131的长度不同单独设计冲压模具,减少开发成本。
如图15所示,本申请提供了一种实施例,支撑结构13可以包括支撑柱131和泡沫金属层132,支撑柱131用于支撑主体部114a和第二盖板115,泡沫金属层132用于支撑第一凸起部112与第二盖板115,和/或第一凹陷部113与第二盖板115,从而对均温部件1进行加强,提高均温部件1的结构强度。
具体地,如图15所示,泡沫金属层132上可以设置有通孔132a,通孔132a沿厚度方向Z贯穿泡沫金属层132,该通孔132a可以作为导热介质流通的通道,相变后的导热介质通过通道远离高温区,到达低温区,将吸收的热量释放。
在不影响毛细结构12工作效率的情况下,可以在毛细结构12设置通道,这样的设计能够更加便于相变后的导热介质流向低温区。
如图13和图14所示,本申请提供了一种实施例,其中,均温部件1可以包括避让孔116,避让孔116沿均温部件1的厚度方向贯穿均温部件1,该避让孔116用于避让高度较高的电子元件,该电子元件可以是产生热量较低,不需要均温部件1进行散热的电子元件,通过设置避让孔116能够减小电子设备的厚度,顺应电子设备轻薄化的趋势。
基于上述各实施例的均温部件1,如图1~图3所示,本申请实施例还提供了一种电子设备,该电子设备可以包括屏幕8、发热元件2、安装支架3和均温部件1,均温部件1与安装支架3连接,连接方式可以是粘接,可以通过在均温部件1和安装支架3之间设置粘性物质6,使均温部件1与安装支架3连接。
安装支架3还可以设置有用于安装电池的电池仓,以及其他零部件的安装部,安装支架3上设置有连通孔31,发热元件2通过电路板5安装于外壳4,发热元件2通过连通孔31与第一凸起部112和/或第一凹陷部113接触,在一种可能的实施例中,发热元件2与第一凸起部112和/或第一凹陷部113之间设置有导热界面材料7,该导热界面材料7可以选用硅胶,通过导热界面材料7使发热元件2与均温部件1连接的更加牢固,提高连接的稳定性,同时提高二者之间的热传导效率。
均温部件1和安装支架3之间的连接方式也可以为:在安装支架3和/或均温部件1的壳体设置金属,加热使金属熔化,待金属熔化后将二者连接,进行冷却,待金属凝固后,均温部件1和安装支架3连接。均温部件1和安装支架3之间的连接还可以包括其他任意满足强度需求的连接方式。
具体地,本申请提供了一种实施例,其中均温部件1可以包括第一盖板114,第一盖板114可以包括主体部114a、第一凸起部112和/或第一凹陷部113,连通孔31可以包括第一孔段311和第二孔段312,第一孔段311和第二孔段312相互连通,且第一孔段311的截面积小于第二孔段312的截面积,使第一孔段311和第二孔段312之间形成台阶面313,在将均温部件1安装于安装支架3时,主体部114a位于第二孔段312,主体部114a可以通过粘性物质6与台阶面313进行连接,使均温板1能够与安装支架3固定连接,第一凸起部112和发热元件2中至少一者的部分伸入第一孔段311,以实第一凸起部112和发热元件2能够接触,或,主体部114a位于第二孔段312,发热元件2伸入第一孔段311,并穿过第一孔段311与第一凹陷部113进行接触,发热元件2和均温部件1之间可以设置有导热界面材料7,这样的设计方式便于在安装时对均温部件1和/或发热元件2进行定位,同时能够减小电子设备整体的厚度,顺应电子设备轻薄化的需求。
综上所述,本申请实施例提供了一种均温部件1,包括腔体111和毛细结构12,毛细结构12位于腔体111,且毛细结构12设置在壳体11朝向发热元件2的一侧,该均温部件1为不等厚结构,壳体11设置有第一凸起部112和/或第一凹陷部113,通过第一凸起部112和/或第一凹陷部113与产生热量的发热元件2直接进行接触,无需通过其他部件传热,提高了热传导效率,使均温部件1的散热效率得到提升,减小热量积累的可能,降低发热元件2及其所处的环境的温度,使发热元件2处于良好的工作状态,进而使电子设备运转得更加流畅,降低发热、卡顿等情况出现的可能,提高使用者的使用体验。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (16)

  1. 一种均温部件,其特征在于,包括壳体和毛细结构,所述壳体包括腔体,所述毛细结构位于所述腔体;
    所述壳体设置有第一凸起部和/或第一凹陷部,所述第一凸起部和/或所述第一凹陷部用于与发热元件接触;
    所述毛细结构设置在靠近发热元件一侧的壳体。
  2. 根据权利要求1所述的均温部件,其特征在于,所述壳体包括第一盖板,所述第一盖板靠近发热元件;
    所述第一盖板包括主体部,所述第一凸起部和/或所述第一凹陷部设置于所述第一盖板,且所述第一凸起部相对于所述主体部凸起,和/或,所述第一凹陷部相对于所述主体部凹陷;
    所述毛细结构覆盖所述主体部、所述第一凸起部和/或所述第一凹陷部。
  3. 根据权利要求2所述的均温部件,其特征在于,所述第一凹陷部朝向所述腔体的内部凹陷;
    所述第一凹陷部包括第一接触面,所述第一接触面用于与发热元件接触,所述第一接触面的面积大于与其接触的发热元件的面积。
  4. 根据权利要求3所述的均温部件,其特征在于,所述壳体还包括与所述第一盖板相对设置的第二盖板,所述第二盖板远离发热元件的一侧设置有第二凹陷部,所述第二凹陷部与所述第一凹陷部的凹陷方向相同;
    所述第一凹陷部的至少部分伸入所述第二凹陷部。
  5. 根据权利要求2所述的均温部件,其特征在于,所述第一盖板设置有所述第一凸起部和所述第一凹陷部,所述第一凸起部朝向所述腔体的外侧凸起,所述第一凹陷部朝向所述腔体的内部凹陷;
    所述第一凸起部用于与部分发热元件接触,所述第一凹陷部用于与另一部分发热元件接触。
  6. 根据权利要求5所述的均温部件,其特征在于,所述第一凸起部包括第二接触面,所述第二接触面用于与发热元件接触,所述第二接触面的面积大于与其接触的发热元件的面积;
    所述第一凹陷部包括第一接触面,所述第一接触面用于与发热元件接触,所述第一接触面的面积大于与其接触的发热元件的面积。
  7. 根据权利要求1~6中任一项所述的均温部件,其特征在于,所述毛细结构包括第一毛细结构和第二毛细结构,所述第二毛细结构的毛细率大于所述第一毛细结构的毛细率。
  8. 根据权利要求7所述的均温部件,其特征在于,所述第一毛细结构与所述第二毛细结构沿所述均温部件的厚度方向抵接;
    所述第二毛细结构的面积小于所述第一毛细结构的面积。
  9. 根据权利要求1~6中任一项所述的均温部件,其特征在于,所述毛细结构与所述壳体抵接,用于支撑所述壳体。
  10. 根据权利要求9所述的均温部件,其特征在于,所述毛细结构设置有第二凸起部和/或第三凹陷部,所述第二凸起部与所述第一凸起部对应设置,所述第三凹陷部与所述第一凹陷部对应设置;
    所述第二凸起部与所述第一凸起部和所述壳体的第二盖板抵接,和/或,所述第三凹陷部与所述第一凹陷部和所述第二盖板抵接。
  11. 根据权利要求1~6中任一项所述的均温部件,其特征在于,所述壳体包括相对设置的第一盖板和第二盖板;
    所述均温部件包括支撑结构,所述支撑结构位于所述腔体,所述支撑结构用于支撑所述第一盖板和所述第二盖板。
  12. 根据权利要求11所述的均温部件,其特征在于,所述支撑结构包括支撑柱;
    所述支撑柱与所述壳体一体成型,或者;
    所述支撑柱与所述壳体为分体式结构,且所述支撑柱的两端分别与所述壳体和所述毛细结构抵接。
  13. 根据权利要求11所述的均温部件,其特征在于,所述第一盖板包括主体部,所述第一凸起部和/或所述第一凹陷部设置于所述第一盖板,且所述第一凸起部相对于所述主体部凸起,和/或,所述第一凹陷部相对于所述主体部凹陷;
    所述支撑结构包括泡沫金属层和支撑柱,所述支撑柱用于支撑所述主体部与所述第二盖板;
    所述泡沫金属层用于支撑所述第一凸起部与所述第二盖板,和/或,所述泡沫金属层用于支撑所述第一凹陷部与所述第二盖板;
    所述泡沫金属层设置有通孔,所述通孔沿厚度方向贯通所述泡沫金属层。
  14. 根据权利要求1~6中任一项所述的均温部件,其特征在于,所述均温部件包括避让孔,所述避让孔沿所述均温部件的厚度方向贯穿所述均温部件。
  15. 一种电子设备,其特征在于,所述电子设备包括发热元件、安装支架和均温部件,所述均温部件与所述安装支架连接,所述安装支架包括连通孔,发热元件通过所述连通孔与所述第一凸起部和/或第一凹陷部抵接;
    其中,所述均温部件为权利要求1~14中任一项所述的均温部件。
  16. 根据权利要求15所述的电子设备,其特征在于,所述壳体包括第一盖板,所述第一盖板包括主体部,所述第一凸起部和/或所述第一凹陷部设置于所述第一盖板;
    所述连通孔包括第一孔段和第二孔段,所述第一孔段和所述第二孔段相互连通,所述第一孔段的截面积小于所述第二孔段的截面积,所述第一孔段与所述第二孔段之间形成台阶面;
    所述主体部位于所述第二孔段,并与所述台阶面抵接;
    所述第一凸起部、所述第一凹陷部和发热元件中至少一者的至少部分位于所述第一孔段。
PCT/CN2020/092146 2019-10-31 2020-05-25 一种均温部件及电子设备 WO2021082414A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20880755.2A EP4037444A4 (en) 2019-10-31 2020-05-25 TEMPERATURE COMPENSATION COMPONENT AND ELECTRONIC DEVICE
US17/732,684 US20220256740A1 (en) 2019-10-31 2022-04-29 Temperature equalization component and electronic device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911056497.8A CN110708934A (zh) 2019-10-31 2019-10-31 一种均温部件及电子设备
CN201911056497.8 2019-10-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/732,684 Continuation US20220256740A1 (en) 2019-10-31 2022-04-29 Temperature equalization component and electronic device

Publications (1)

Publication Number Publication Date
WO2021082414A1 true WO2021082414A1 (zh) 2021-05-06

Family

ID=69203217

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092146 WO2021082414A1 (zh) 2019-10-31 2020-05-25 一种均温部件及电子设备

Country Status (4)

Country Link
US (1) US20220256740A1 (zh)
EP (1) EP4037444A4 (zh)
CN (1) CN110708934A (zh)
WO (1) WO2021082414A1 (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110708934A (zh) * 2019-10-31 2020-01-17 华为技术有限公司 一种均温部件及电子设备
CN113225971B (zh) * 2020-01-21 2022-07-22 华为技术有限公司 一种终端设备
CN111432598B (zh) * 2020-03-04 2022-05-24 Oppo广东移动通信有限公司 电子设备的壳体组件及电子设备
CN113497907B (zh) * 2020-04-08 2023-03-10 华为技术有限公司 一种散热部件及电视
CN112272487A (zh) * 2020-09-09 2021-01-26 华为机器有限公司 均热板、均热板的制造方法及电子设备
US20210112679A1 (en) * 2020-12-22 2021-04-15 Intel Corporation System and method to help mitigate heat in an electronic device
CN113329596B (zh) * 2021-05-31 2023-12-12 Oppo广东移动通信有限公司 电子设备
CN113891617A (zh) * 2021-09-14 2022-01-04 Oppo广东移动通信有限公司 散热组件、电子设备壳体、电子设备及其保护壳体
CN113891620B (zh) * 2021-09-27 2023-05-23 联想(北京)有限公司 一种散热装置及电子设备
CN114260376B (zh) * 2021-12-23 2024-03-08 哈尔滨工业大学 一种差厚板接触加热温度均匀性控制方法
CN117395941A (zh) * 2022-07-05 2024-01-12 华为技术有限公司 散热器及设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076622A (ja) * 2007-09-20 2009-04-09 Yaskawa Electric Corp ヒートシンクおよびそれを用いた電子装置
CN202182665U (zh) * 2011-07-04 2012-04-04 昆山巨仲电子有限公司 具有受热凸部的均温板结构
TW201300718A (zh) * 2011-06-22 2013-01-01 Chaun Choung Technology Corp 具有受熱凸部的均溫板結構
CN103209570A (zh) * 2012-01-16 2013-07-17 奇鋐科技股份有限公司 散热结构及其制造方法
CN204046918U (zh) * 2014-07-08 2014-12-24 昆山立茂国际贸易有限公司 一体散热式电路板
CN110708934A (zh) * 2019-10-31 2020-01-17 华为技术有限公司 一种均温部件及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101639331A (zh) * 2008-07-31 2010-02-03 富准精密工业(深圳)有限公司 平板式热管的制造方法
US9247034B2 (en) * 2013-08-22 2016-01-26 Asia Vital Components Co., Ltd. Heat dissipation structure and handheld electronic device with the heat dissipation structure
US20160135336A1 (en) * 2014-11-12 2016-05-12 Asia Vital Components Co., Ltd. Emi shielding structure for electronic components
CN109121354A (zh) * 2017-06-23 2019-01-01 泽鸿(广州)电子科技有限公司 均温板
CN110430736B (zh) * 2019-08-13 2023-11-10 常州恒创热管理有限公司 一种吹胀成型相变均温板及加工方法、电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009076622A (ja) * 2007-09-20 2009-04-09 Yaskawa Electric Corp ヒートシンクおよびそれを用いた電子装置
TW201300718A (zh) * 2011-06-22 2013-01-01 Chaun Choung Technology Corp 具有受熱凸部的均溫板結構
CN202182665U (zh) * 2011-07-04 2012-04-04 昆山巨仲电子有限公司 具有受热凸部的均温板结构
CN103209570A (zh) * 2012-01-16 2013-07-17 奇鋐科技股份有限公司 散热结构及其制造方法
CN204046918U (zh) * 2014-07-08 2014-12-24 昆山立茂国际贸易有限公司 一体散热式电路板
CN110708934A (zh) * 2019-10-31 2020-01-17 华为技术有限公司 一种均温部件及电子设备

Also Published As

Publication number Publication date
US20220256740A1 (en) 2022-08-11
EP4037444A1 (en) 2022-08-03
CN110708934A (zh) 2020-01-17
EP4037444A4 (en) 2022-11-23

Similar Documents

Publication Publication Date Title
WO2021082414A1 (zh) 一种均温部件及电子设备
EP3507676B1 (en) Additive manufactured passive thermal enclosure
EP3141094B1 (en) Heat dissipating apparatus and electronic device having the same
JP5665948B1 (ja) 携帯型電子機器の冷却構造
WO2021043309A1 (zh) 均温板及终端设备
CN106550583B (zh) 散热模块
US7701717B2 (en) Notebook computer having heat pipe
WO2019200882A1 (zh) 一种散热构件及智能终端
CN112804851A (zh) 一种电子设备
TW201537336A (zh) 具熱阻絕效果的電子裝置
CN110621144A (zh) 散热组件及电子设备
CN212164015U (zh) 移动终端、中框组件及散热组件
CN110012643B (zh) 散热组件、其制备方法以及电子设备
CN106852082A (zh) 一种散热装置及电子设备
EP3518072B1 (en) Heat transferring module
CN210671094U (zh) 电子设备
WO2021190552A1 (zh) 移动终端及中框组件
TWI761541B (zh) 電子設備的主機板散熱系統
CN108601286B (zh) 电子设备
JP6135363B2 (ja) ヒートパイプ
WO2018157545A1 (zh) 导热部件和移动终端
WO2019056506A1 (zh) 由冲压工艺形成的薄型均热板
CN114466557A (zh) 电子设备的壳体、电子设备以及电子设备的壳体制造方法
CN110891398B (zh) 具有隔热真空腔的微热导管结构
CN112911028A (zh) 均温板、终端设备及均温板的制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20880755

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020880755

Country of ref document: EP

Effective date: 20220427

NENP Non-entry into the national phase

Ref country code: DE