WO2023216482A1 - 移动终端、均温板和均温板的制作方法 - Google Patents

移动终端、均温板和均温板的制作方法 Download PDF

Info

Publication number
WO2023216482A1
WO2023216482A1 PCT/CN2022/118199 CN2022118199W WO2023216482A1 WO 2023216482 A1 WO2023216482 A1 WO 2023216482A1 CN 2022118199 W CN2022118199 W CN 2022118199W WO 2023216482 A1 WO2023216482 A1 WO 2023216482A1
Authority
WO
WIPO (PCT)
Prior art keywords
cover plate
channel
material layer
vapor chamber
plate
Prior art date
Application number
PCT/CN2022/118199
Other languages
English (en)
French (fr)
Inventor
靳林芳
陈丘
金永福
刘用鹿
肖永旺
朱旭
陈琳
骆洋
胡锦炎
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023216482A1 publication Critical patent/WO2023216482A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0275Arrangements for coupling heat-pipes together or with other structures, e.g. with base blocks; Heat pipe cores
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/0283Means for filling or sealing heat pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • F28D15/02Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes
    • F28D15/04Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure
    • F28D15/046Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies in which the medium condenses and evaporates, e.g. heat pipes with tubes having a capillary structure characterised by the material or the construction of the capillary structure
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1613Constructional details or arrangements for portable computers
    • G06F1/1633Constructional details or arrangements of portable computers not specific to the type of enclosures covered by groups G06F1/1615 - G06F1/1626
    • G06F1/1637Details related to the display arrangement, including those related to the mounting of the display in the housing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/0249Details of the mechanical connection between the housing parts or relating to the method of assembly
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/0202Portable telephone sets, e.g. cordless phones, mobile phones or bar type handsets
    • H04M1/026Details of the structure or mounting of specific components
    • H04M1/0262Details of the structure or mounting of specific components for a battery compartment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04MTELEPHONIC COMMUNICATION
    • H04M1/00Substation equipment, e.g. for use by subscribers
    • H04M1/02Constructional features of telephone sets
    • H04M1/18Telephone sets specially adapted for use in ships, mines, or other places exposed to adverse environment
    • H04M1/185Improving the rigidity of the casing or resistance to shocks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of terminal technology, and in particular, to a mobile terminal, a temperature equalizing plate, and a method for making the temperature equalizing plate.
  • a vapor chamber is a cavity with an internal micro-nano liquid-absorbing wick structure and a fluid injected into it. It is widely used in electronic products for heat dissipation. Specifically, the fluid working medium in the vapor chamber can absorb heat at a small area heat source to form vapor, which can be quickly transferred to a large area of heat dissipation surface to achieve the purpose of efficient heat dissipation. After the vapor is condensed into a liquid, the liquid absorbing wick structure can be used The capillary force flows back to the heat source and evaporates and absorbs heat again.
  • the middle frame is used to assemble display screens, batteries and other devices. Due to the increased power consumption of many electronic devices (such as camera modules, antenna modules, wired/wireless fast charging modules), The required battery capacity should also increase accordingly, so that the battery can occupy more than 50% of the area in the mobile phone. The heat dissipation challenge in the limited space becomes more and more severe, taking into account the safety and reliability of the battery. How to rationally use the cold area of the battery to set up a uniform temperature plate and strive to achieve a thin design of mobile terminals has become a difficult problem for the industry.
  • ultra-thin VC If ultra-thin VC is used as a load-bearing part, it must have a hardness, stiffness and strength much higher than that of conventional copper alloy VC, so as to ensure that no dents, wrinkles, deformations, etc. will occur under the ultra-thin VC thin wall, internal vacuum and the force of falling during use. If The insufficient hardness, stiffness and strength of the vapor chamber not only loses the VC thermal performance, but may also affect screen reliability and battery safety.
  • Embodiments of the present application provide a mobile terminal, a temperature equalizing plate and a manufacturing method of the equalizing temperature plate, which can realize the thin design of the mobile terminal and at the same time ensure the strength of the equalizing temperature plate and ensure the uniform temperature plate and display. The safety and reliability of the cooperation between the screen, battery and other components.
  • a mobile terminal including a display screen, a middle frame, a temperature equalizing plate and a battery.
  • the middle frame includes a first surface, a second surface, and a window penetrating the first surface and the second surface; the temperature equalizing plate is fixed to the middle frame, and at least part of the temperature equalizing plate is located in the window, and the
  • the vapor chamber includes a first cover plate, a second cover plate and a connecting structure.
  • a working chamber is formed between the first cover plate and the second cover plate.
  • the connecting structure is located in the working chamber.
  • the connecting structure The structure is fixedly connected to the first cover plate, the connection structure is fixedly connected to the second cover plate, the flatness of the outer surface of the second cover plate has a positive orientation tolerance, the connection structure and the third cover plate are fixedly connected.
  • the connection position of the two cover plates is the peak area of the flatness of the outer surface of the second cover plate, and the orientation positive tolerance is: the temperature equalizing plate located in the window, from the From the outer edge to the connection structure, the outer surface of the second cover plate has a tendency to convexly deform as a whole; the display screen is located on the side of the first cover plate away from the second cover plate; the battery is located on The second cover is on a side away from the first cover.
  • the flatness of the outer surface of the first cover plate can be limited by the constraint of the flatness of the outer surface of the second cover plate.
  • This application requires the flatness of the surface of the vapor chamber facing the display screen to be set within a smaller flatness range. Specifically, the flatness of the surface of the vapor chamber facing the display screen is smaller than the flatness between the vapor chamber plate and the display screen. assembly clearance.
  • the assembly gap can be understood as: the first mounting surface on the middle frame is used to install the display screen, and the second mounting surface is used to install the vapor chamber.
  • the size of the vapor chamber board, the position of the first mounting surface and the position of the second mounting surface determines the assembly gap between the display and the vapor chamber.
  • the embodiment of the present application controls the flatness of the outer surface of the vapor chamber facing the display screen. From the perspective of the manufacturing process of the vapor chamber and the assembly process of the mobile terminal, it is easy to process and manufacture, and it is easy to achieve accurate assembly yield. It can also reasonably control the size of the gap between the display screen and the uniform temperature plate, which is beneficial to the thin design of the mobile terminal.
  • connection structure and the first cover are integrally formed, the connection structure surrounds and forms a connection groove, and the opening of the connection groove is located on the outer surface of the first cover.
  • the connecting structure and the first cover plate are provided as an integral structure, and a groove is formed on the outer surface of the first cover plate by arranging the connecting structure.
  • This groove can cooperate with the shaping jig during the process of shaping the uniform temperature plate.
  • the groove not only serves as a position mark for the connection structure on the outer surface of the vapor chamber, but can also cooperate with the shaping jig, making this solution simple in structure and cost-saving.
  • connection structure includes a bottom wall and a side wall, the side wall is connected between the bottom wall and the first cover plate, and the bottom wall is located at the end of the connection groove.
  • Bottom, the bottom of the connection groove and the opening position of the connection groove are arranged oppositely along a first direction, and the first direction is the direction in which the display screen, the temperature equalizing plate and the battery are stacked,
  • the bottom wall and the second cover plate are fixedly connected.
  • connection structure and the second cover plate are fixed by welding.
  • the welding structure between the bottom wall and the second cover plate is a large-area brazed connection.
  • the large area of the brazed connection can be understood as: compared with spot welding, the welding structure between the bottom wall and the second cover plate is The welding area is larger than that of spot welding. If the welding between the bottom wall and the second cover is spot welding, the positioning function of the spot welding is easily affected by external forces and deforms, the connection reliability is poor, and the force between the connection structure and the second cover cannot be better Combining, that is to say, the connecting structure cannot participate in the force supporting function of the second cover plate.
  • This application can make the connection between the connection structure and the second cover more reliable and stable through a larger area of brazing fixation.
  • the second cover plate includes a stacked first material layer and a second material layer, and the welding temperature of the first material layer is lower than the welding temperature of the second material layer, so The softening temperature of the second material layer is higher than the welding temperature of the first material layer, and the first material layer is used for sealing welding of the first cover plate and the second cover plate; and/or with the connection structure and The first cover plate is welded and fixed.
  • the second material layer is located on a side of the first material layer facing away from the first cover plate. Specifically, low-temperature welding is used for welding between the connecting structure and the second cover plate. Specifically, the welding temperature is less than or equal to 850 degrees Celsius.
  • the advantage of limiting the low-temperature welding method is that it can ensure the performance and strength of the vapor chamber. , after high-temperature processes such as welding of the vapor chamber plate, the material of the vapor chamber plate is not prone to the problem of strength reduction caused by high-temperature annealing. This solution can ensure the performance and strength of the vapor chamber.
  • the second material layer is a stainless steel material containing nitrogen; or, the second material layer is a titanium alloy material.
  • the second material layer has high strength and is mainly used to support load-bearing functions.
  • the content of nitrogen element is [0.03wt.%, 5wt.%]. This solution can obtain a higher strength vapor chamber by limiting the content of nitrogen elements, and can ensure the yield and cost of the manufacturing process.
  • the flatness of the outer surface of the first cover plate is: greater than or equal to -0.1 mm and less than or equal to 0.05 mm.
  • the flatness of the outer surface of the second cover plate is: greater than or equal to 0.1 mm and less than or equal to 0.3 mm.
  • the working chamber includes an evaporation area and a condensation area, a capillary channel and a vapor channel are provided in the working chamber, and both the capillary channel and the vapor channel extend from the evaporation area to the A condensation area, at least part of the connection structure is arranged in the condensation area, and the connection structure is located in the vapor channel.
  • This application defines the specific position of the connection structure in the vapor chamber. Setting the connection structure in the condensation area can improve the strength of the condensation area.
  • the condensation area is used to support the battery and can better match the temperature distribution plate in the mobile terminal. assembly environment.
  • the direction extending from the evaporation zone to the condensation zone is the length direction of the temperature equalizing plate
  • the width direction of the temperature equalizing plate is perpendicular to the length direction
  • the evaporation zone The ratio between the size in the width direction and the size of the condensation zone in the width direction is less than or equal to 0.5.
  • the capillary channel includes a plurality of first sub-sections arranged side by side and spaced apart.
  • the vapor channel includes a plurality of second sub-channels arranged side by side and spaced apart, and the plurality of second sub-channels are arranged in one-to-one correspondence between the adjacent first sub-channels, and the connection structure Set in the second sub-channel.
  • This solution can increase the liquid storage volume in the evaporation zone and also increase the contact area between the capillary channel and the steam channel, which helps improve the thermal performance of the vapor chamber operation.
  • the capillary channel in the condensation area adopts a willow leaf-shaped structural design.
  • the contact area between the capillary channel and the steam channel is increased, which facilitates the reflux of the condensate.
  • one end of the first sub-channel and the second sub-channel is connected to the main capillary channel, and the ends of the first sub-channel and the second sub-channel are the first sub-channel.
  • the end of the second sub-channel away from the main capillary channel faces the same liquid return flow direction in the first sub-channel and the vapor flow direction in the adjacent second sub-channel.
  • the thickness direction of the temperature equalizing plate is the direction in which the first cover plate and the second cover plate are stacked, and the horizontal section of the equalizing temperature plate is perpendicular to the direction of the stacking direction.
  • the extension direction of each first sub-channel is the length direction of the vapor chamber.
  • the cross-sectional shape of the connection structure Includes long strips. By limiting the specific shape of the connection structure, this solution can obtain a larger area connection structure, which helps to improve the strength of the vapor chamber.
  • the number of the connecting structure is one, and the connecting structure is located at the center of the working chamber in the width direction of the vapor chamber; or,
  • the number of the connecting structures is an even number, and the connecting structures are distributed on both sides of the center position of the working chamber in the width direction of the vapor chamber; or,
  • the number of the connecting structures is three or an odd number greater than three.
  • one of the connecting structures is located at the center of the working chamber, and the remaining connecting structures are distributed in on both sides of the central position of the working chamber.
  • the inner surface of the first cover corresponding to the vapor channel has a hydrophilic layer structure.
  • the inner surface of the second cover corresponding to the vapor channel has a hydrophilic layer structure.
  • this solution can solve the problem of ice bulging of the second cover.
  • the second cover is adjacent to the battery and is used to carry the battery. This solution can ensure the battery installation environment and improve the stability of battery performance.
  • the surface of the connection structure is a hydrophobic layer structure. This solution can make the working fluid in the steam channel enter the capillary channel faster and avoid freezing and bulging.
  • the inner surface of the first cover corresponding to the vapor channel has a hydrophobic layer structure
  • the surface of the connection structure has a hydrophobic layer structure
  • the temperature equalization plate includes a plurality of reinforcing columns, the reinforcing columns are provided in the working chamber, and the reinforcing columns are connected to the first cover plate and the second cover plate.
  • One of the connecting structures is fixedly connected as one body, the reinforcing column is in contact with or maintains a gap arrangement with the other one of the first cover plate and the second cover plate, the number of the connecting structures is at least one, and each of the connecting structures
  • the connection area between each reinforcing column and the first cover plate or the second cover plate is the first area
  • the connection area between each reinforcing column and the first cover plate or the second cover plate is the third area. Two areas, the first area is more than twice the second area.
  • the setting of the reinforcing column is used to ensure the size of the capillary channel and vapor channel of the working chamber in the vapor chamber, and can also improve the strength of the vapor chamber.
  • a high-strength vapor chamber can be obtained while ensuring the thermal performance of the vapor chamber.
  • all or most ( ⁇ 60%) of the battery is within the coverage of the vapor chamber plate. This solution limits the assembly relationship between the vapor chamber and the battery.
  • the vapor chamber has high enough strength and stiffness to bear the function of supporting the battery.
  • a temperature equalizing plate including a first cover plate, a second cover plate and a connecting structure, a working chamber is formed between the first cover plate and the second cover plate, and the The connection structure is located in the working chamber, the connection structure is fixedly connected to the first cover plate, the connection structure is fixedly connected to the second cover plate, and the flatness of the outer surface of the second cover plate is Orientation positive tolerance, the connection position of the connecting structure and the second cover plate is the peak area of flatness of the outer surface of the second cover plate; the orientation positive tolerance is from the outer surface of the second cover plate From the edge to the position of the connecting structure, the outer surface of the second cover plate has a tendency of convex deformation as a whole.
  • the vapor chamber provided by this application has the advantage of high strength, and by limiting the flatness of the second cover plate of the vapor chamber, it can meet the assembly environment of the vapor chamber in the mobile terminal. From the manufacturing process of the vapor chamber From the perspective of the assembly process of mobile terminals, they are easy to process and produce, easy to achieve accurate assembly yield, and can also reasonably control the gap size between the display screen and the vapor chamber, which is conducive to the thin design of mobile terminals.
  • connection structure and the first cover are integrally formed, the connection structure surrounds and forms a connection groove, and the opening of the connection groove is located on the outer surface of the first cover.
  • the connecting structure and the first cover plate are provided as an integral structure, and a groove is formed on the outer surface of the first cover plate by arranging the connecting structure.
  • This groove can cooperate with the shaping jig during the process of shaping the uniform temperature plate.
  • the groove not only serves as a position mark for the connection structure on the outer surface of the vapor chamber, but can also cooperate with the shaping jig, making this solution simple in structure and cost-saving.
  • connection structure includes a bottom wall and a side wall, the side wall is connected between the bottom wall and the first cover plate, and the bottom wall is located at the end of the connection groove.
  • Bottom, the bottom of the connection groove and the opening position of the connection groove are relatively arranged along a first direction, and the first direction is the direction in which the display screen, the temperature equalizing plate and the battery are stacked in the mobile terminal,
  • the bottom wall and the second cover plate are fixedly connected.
  • the bottom wall and the second cover plate are fixed by welding.
  • the welding structure between the bottom wall and the second cover plate is a large-area brazed connection.
  • the large area of the brazed connection can be understood as: compared with spot welding, the welding structure between the bottom wall and the second cover plate is The welding area is larger than that of spot welding. If the welding between the bottom wall and the second cover is spot welding, the positioning function of the spot welding is easily affected by external forces and deforms, the connection reliability is poor, and the force between the connection structure and the second cover cannot be better Combining, that is to say, the connecting structure cannot participate in the force supporting function of the second cover plate.
  • This application can make the connection between the connection structure and the second cover more reliable and stable through a larger area of brazing fixation.
  • the second cover plate includes a stacked first material layer and a second material layer, and the welding temperature of the first material layer is lower than the welding temperature of the second material layer, so The softening temperature of the second material layer is higher than the welding temperature of the first material layer.
  • the first material layer is used for welding and fixing with the connecting structure and the first cover plate.
  • the second material layer is located at The side of the first material layer facing away from the first cover plate.
  • low-temperature welding is used for the sealing welding of the first cover plate and the second cover plate, and the welding between the connection structure and the second cover plate.
  • the welding temperature is less than or equal to 850 degrees Celsius, and low-temperature welding is limited.
  • the advantage of this method is that it can ensure the performance and strength of the vapor chamber. After high-temperature processes such as welding and other vapor chamber processes, the material of the vapor chamber is not prone to strength reduction caused by high-temperature annealing. This solution can ensure the performance and strength of the vapor chamber.
  • the second material layer is a stainless steel material containing nitrogen; or, the second material layer is a titanium alloy material.
  • the second material layer has high strength and is mainly used for supporting.
  • the content of nitrogen element is [0.03wt.%, 5wt.%]. This solution can obtain a higher strength vapor chamber by limiting the content of nitrogen elements, and can ensure the yield and cost of the manufacturing process.
  • the flatness of the outer surface of the first cover plate is: greater than or equal to -0.01 mm and less than or equal to -0.1 mm.
  • the flatness of the outer surface of the second cover plate is: greater than or equal to 0.1 mm and less than or equal to 0.3 mm.
  • the working chamber includes an evaporation area and a condensation area, a capillary channel and a vapor channel are provided in the working chamber, and both the capillary channel and the vapor channel extend from the evaporation area to the A condensation area, at least part of the connection structure is arranged in the condensation area, and the connection structure is located in the vapor channel.
  • This application defines the specific position of the connection structure in the vapor chamber. Setting the connection structure in the condensation area can improve the strength of the condensation area.
  • the condensation area is used to support the battery and can better match the temperature distribution plate in the mobile terminal. assembly environment.
  • the direction extending from the evaporation zone to the condensation zone is the length direction of the temperature equalizing plate
  • the width direction of the temperature equalizing plate is perpendicular to the length direction
  • the evaporation zone The ratio between the size in the width direction and the size of the condensation zone in the width direction is less than or equal to 0.5.
  • the capillary channel includes a plurality of first sub-sections arranged side by side and spaced apart.
  • the vapor channel includes a plurality of second sub-channels arranged side by side and spaced apart, and the plurality of second sub-channels are arranged in one-to-one correspondence between the adjacent first sub-channels, and the connection structure Set in the second sub-channel.
  • This solution can increase the liquid storage volume in the evaporation zone and also increase the contact area between the capillary channel and the steam channel, which helps improve the thermal performance of the vapor chamber operation.
  • the capillary channel in the condensation area adopts a willow leaf-shaped structural design.
  • the contact area between the capillary channel and the steam channel is increased, which facilitates the reflux of the condensate.
  • the thickness direction of the temperature equalizing plate is the direction in which the first cover plate and the second cover plate are stacked, and the horizontal section of the equalizing temperature plate is perpendicular to the direction of the stacking direction.
  • the cross-section in the thickness direction of the vapor chamber, on the horizontal cross-section of the vapor chamber, the extension direction of each first sub-channel is the length direction of the vapor chamber, and the cross-section of the connection structure Shapes include long strips. By limiting the specific shape of the connection structure, this solution can obtain a larger area connection structure, which helps to improve the strength of the vapor chamber.
  • the number of the connection structures is one, and the connection structure is located at the center of the working chamber in the width direction of the vapor chamber; or, the number of the connection structures is An even number, in the width direction of the vapor chamber, the connecting structures are distributed on both sides of the central position of the working chamber; or, the number of the connecting structures is three or an odd number greater than three, in In the width direction of the vapor chamber, one of the connecting structures is located at the center of the working chamber, and the remaining connecting structures are distributed on both sides of the central position of the working chamber.
  • This application sets the number and specific positions of the connection structures according to the size of the vapor chamber and the requirements of the assembly environment. It can be seen that the vapor chamber can adapt to different usage environments and match different electronic devices.
  • the first cover plate corresponding to the vapor channel includes a first body layer and a first hydrophilic layer, and the first cover plate is formed by modifying the inner surface of the first cover plate. a first hydrophilic layer; and/or, in the condensation area, the second cover plate corresponding to the vapor channel includes a second main body layer and a second hydrophilic layer.
  • the inner surface modification treatment forms the second hydrophilic layer.
  • this solution can solve the problem of ice bulging of the second cover.
  • the second cover is adjacent to the battery and is used to carry the battery. This solution can ensure the battery installation environment and improve the stability of battery performance.
  • the surface of the connection structure is a hydrophobic layer structure. This solution can make the working fluid in the steam channel enter the capillary channel faster and avoid freezing and bulging.
  • the inner surface of the first cover corresponding to the vapor channel has a hydrophobic layer structure
  • the surface of the connection structure has a hydrophobic layer structure
  • the temperature equalization plate includes a plurality of reinforcing columns, the reinforcing columns are provided in the working chamber, and the reinforcing columns are connected to the first cover plate and the second cover plate.
  • One of the connecting structures is fixedly connected as one body, the reinforcing column is in contact with or maintains a gap arrangement with the other one of the first cover plate and the second cover plate, the number of the connecting structures is at least one, and each of the connecting structures
  • the connection area between each reinforcing column and the first cover plate or the second cover plate is the first area
  • the connection area between each reinforcing column and the first cover plate or the second cover plate is the third area. Two areas, the first area is more than twice the second area.
  • the setting of the reinforcing column is used to ensure the size of the capillary channel and vapor channel of the working chamber in the vapor chamber, and can also improve the strength of the vapor chamber.
  • a high-strength vapor chamber can be obtained while ensuring the thermal performance of the vapor chamber.
  • embodiments of the present application provide a method for manufacturing a vapor chamber, which includes the following steps:
  • a uniform temperature plate is provided.
  • the uniform temperature plate includes a first cover plate, a second cover plate and a connecting structure.
  • a working chamber is formed between the first cover plate and the second cover plate.
  • the connecting structure is located on the In the working chamber, the connection structure, the first cover plate and the second cover plate are all fixedly connected;
  • the vapor chamber is reshaped.
  • force is applied to the position of the connecting structure to deform the vapor chamber so that the flatness of the outer surface of the second cover plate has a positive orientation tolerance.
  • the connection position of the connecting structure and the second cover plate is the peak area of flatness of the outer surface of the second cover plate; the orientation positive tolerance is from the outer edge of the second cover plate to the Due to the position of the connecting structure, the outer surface of the second cover plate has a tendency to convexly deform as a whole.
  • This application is fixedly connected between the first cover plate and the second cover plate through a connecting structure, which can not only improve the strength of the uniform temperature plate, but also the connecting structure is used to shape the uniform temperature plate in cooperation with the shaping jig, which can improve the display screen and battery reliability.
  • the shaping jig applies force to the first cover plate. Since the first cover plate and the second cover plate are fixed through the connecting structure, both the first cover plate and the second cover plate are affected by the force of the shaping jig. The effect produces deformation. On the one hand, it can be ensured that the first cover plate and the second cover plate have the same deformation trend.
  • the flatness of the outer surface of the first cover plate after shaping can be controlled below 0.05mm, that is, less than or equal to 0.05mm.
  • This The outer surface of the first cover plate in this structural form has no large protruding portion, which meets the assembly gap requirements between the first cover plate and the display screen. Since the display screen is fixed on one side of the outer surface of the first cover, this solution is beneficial to the safety, stability and reliability of the display screen by controlling the flatness of the outer surface of the first cover when the mobile terminal is exposed to temperature.
  • the display screen Under changes (temperature changes will cause the display or middle frame to deform) or other external forces (for example, the mobile terminal is dropped or hit, or external forces during the assembly process will cause deformation of part of the mobile terminal structure), the display screen This is related to the fact that a reliable position can still be ensured between the first cover and the display screen will not be damaged by the holding force of the outer surface of the first cover.
  • the first cover plate and the second cover plate are fixedly connected through the connecting structure. The first cover plate and the second cover plate can be deformed synchronously during the shaping process, which can ensure that the working cavity of the uniform temperature plate can maintain a suitable size.
  • the thickness of the working cavity is designed within a qualified range to meet the normal working requirements of the vapor channel and capillary channel.
  • the thickness of the working cavity remains basically unchanged, or the thickness The change space is within the allowable range and can still meet the normal working requirements of the vapor channel and capillary channel.
  • connection structure and the first cover are an integral structure, the connection structure surrounds and forms a connection groove, and the opening of the connection groove is located on the first cover.
  • the steps of shaping the outer surface of the vapor chamber include:
  • a jig is provided, the jig includes a support base and a gland, the support base is used to carry the temperature equalizing plate, the second cover plate is fixed on the support base, the gland includes a shaping column, The shaping column extends into the connecting groove and presses against the bottom of the connecting groove, and the pressing force of the first cover plate is exerted through the pressing cover to deform the temperature equalizing plate.
  • the gland is in contact with the outer surface of the first cover plate. This solution can restrain the deformation of the first cover plate through the gland and prevent the first cover plate from bulging during the shaping process.
  • a mobile terminal including:
  • the middle frame includes a first surface, a second surface and a window penetrating the first surface and the second surface;
  • a vapor chamber is fixed to the middle frame, and at least part of the vapor chamber is located in the window.
  • the vapor chamber includes a first cover plate, a second cover plate and a connecting structure.
  • the first cover plate A working chamber is formed between the second cover plate and the second cover plate.
  • a capillary channel, a vapor channel and a working medium are provided in the working cavity. The capillary channel and the vapor channel are used to transport the evaporation zone and the condensation zone.
  • connection structure is located in the working chamber, the connection structure is fixedly connected to the first cover, the connection structure is fixedly connected to the second cover, the second cover includes a stacked A first material layer and a second material layer are provided, the welding temperature of the first material layer is lower than the welding temperature of the second material layer, and the softening temperature of the second material layer is higher than the first material layer Welding temperature, the first material layer is used to weld and fix the connection structure and the first cover plate, the second material layer is located on the side of the first material layer away from the first cover plate ;
  • a display screen located on the side of the first cover away from the second cover
  • the battery is located on the side of the second cover away from the first cover.
  • the vapor chamber board has higher strength.
  • the second material layer is a stainless steel material containing nitrogen; or, the second material layer is a titanium alloy material.
  • the content of the nitrogen element is [0.03t.%, 5t.%].
  • the thickness of the second material layer is greater than the thickness of the first material layer.
  • the second material layer is formed on the surface of the first material layer by electroplating.
  • an electroplating base layer M4 is provided between the second material layer and the first material layer.
  • the second cover plate further includes a third material layer, the welding temperature of the third material layer is lower than the welding temperature of the second material layer, and the third material layer is located on the The side of the second material layer facing away from the first material layer.
  • Figure 1 is a three-dimensional exploded schematic diagram of a mobile terminal provided by an embodiment of the present application.
  • Figure 2 is a plan exploded schematic diagram of a mobile terminal provided by an embodiment of the present application.
  • Figure 3 is a plan exploded schematic diagram of a mobile terminal provided by an embodiment of the present application.
  • Figure 4 is a cross-sectional view of a vapor chamber provided by an embodiment of the present application.
  • Figure 5 is a cross-sectional view of a vapor chamber provided by an embodiment of the present application.
  • Figure 6 is a cross-sectional view of a vapor chamber provided by an embodiment of the present application.
  • Figure 7 is a cross-sectional view of a vapor chamber provided by an embodiment of the present application.
  • Figure 8A is a schematic diagram of the deformation trend when the second cover plate of the vapor chamber provided by an embodiment of the present application is fixedly connected to a connection structure;
  • Figure 8B is a schematic diagram of the deformation trend when the second cover plate of the vapor chamber provided by an embodiment of the present application is fixedly connected to two connection structures;
  • Figure 8C is a schematic diagram of the deformation trend when the second cover plate of the vapor chamber provided by an embodiment of the present application is fixedly connected to three connection structures;
  • Figure 9 is a schematic diagram of the distribution and basic form of the connection structure and reinforcing columns in the vapor chamber provided by an embodiment of the present application.
  • Figure 10 is a schematic diagram of the distribution and basic form of the connection structure and reinforcing columns in the vapor chamber provided by an embodiment of the present application;
  • Figure 11 is a schematic diagram of the distribution and basic form of the connection structures in the vapor chamber provided by an embodiment of the present application.
  • Figure 12 is a schematic diagram of the distribution and basic form of the connection structures in the vapor chamber provided by an embodiment of the present application.
  • Figure 13 is a cross-sectional view of the second cover plate in the vapor chamber provided by an embodiment of the present application.
  • Figure 14 is a cross-sectional view of the second cover plate in the vapor chamber provided by an embodiment of the present application.
  • Figure 15 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 16A is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 16B is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 16C is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 17 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 18 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 19 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 20 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 21 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 22 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 23 is a schematic diagram of a vapor chamber provided by an embodiment of the present application.
  • Figure 24 is a schematic diagram of the state of the liquid on the fixed surface when the solid surface in the vapor chamber is a hydrophobic layer and a hydrophilic layer;
  • Figure 25 schematically expresses the change process of droplets in the working chamber when the surface of the connecting structure is a hydrophobic layer and the inner surfaces of the first cover plate and the second cover plate are hydrophilic layers;
  • Figure 26 is a schematic diagram of the shaping process in the manufacturing method of a vapor chamber provided by an embodiment of the present application.
  • connection should be understood in a broad sense.
  • it can be a fixed connection or a detachable connection.
  • it can also be a conflicting connection or an integral connection; for those of ordinary skill in the art, the specific meanings of the above terms in this application can be understood according to specific circumstances.
  • This application combines the temperature equalization plate with the middle frame of the mobile terminal to achieve dual functions of heat dissipation and load-bearing, thereby achieving a thin design of the mobile terminal.
  • the mobile terminal provided by this application can be, but is not limited to: mobile phones, tablet computers, notebook computers, and related modules, structural parts, functional parts, etc. with heat dissipation functions.
  • FIG. 1 is a three-dimensional exploded schematic diagram of a mobile terminal provided by an embodiment of the present application.
  • the mobile terminal includes a display screen 10, a middle frame 20, a temperature equalizing plate 30, a battery 40, a circuit board 50 and a rear case 60.
  • the middle frame 20 is used to assemble the display screen 10 , the temperature equalizing plate 30 , the battery 40 and the circuit board 50 .
  • the middle frame 20 includes a first surface S1 and a second surface S2 that are oppositely arranged and an outer side S3 connected between the first surface S1 and the second surface S2.
  • the display screen 10 is assembled to the middle frame from one side of the first surface S1 20.
  • Graphite heat sinks, graphene thermal conductive films, copper molds and other heat dissipation film materials 201 can be installed between the display screen 10 and the middle frame 20.
  • the middle frame 20 is also connected to the installation positioning structure 202, and the installation positioning structure 202 is used to assemble the vapor chamber. 30.
  • the battery 40 is assembled to the middle frame 20 from one side of the second surface S2.
  • the second surface S2 can also be used to install a motherboard or other electronic devices, such as a camera module, an antenna module, etc.
  • the outer side S3 can be used as the outer surface of the mobile terminal, and the outer side S3 is connected between the edge of the display screen 10 and the edge of the rear case 60 .
  • the outer side S3 may also be blocked by the rear case 60 , that is, the edge of the rear case 60 is connected to the edge of the display screen 10 .
  • the middle frame 20 is also provided with a window W penetrating the first surface S1 and the second surface S2.
  • the area of the window W may be larger than the area of the battery 40 .
  • This window W is used to install the uniform temperature plate 30.
  • the uniform temperature plate 30 can be completely accommodated inside the window W. In other embodiments, only part of the uniform temperature plate 30 can be accommodated in the window W, and some of the uniform temperature plate 30 can be accommodated in the window W.
  • the warm plate 30 is located outside the window W.
  • the temperature equalization plate 30 and the middle frame 20 can be connected through a glue structure 203, which can assist screws, rivets, laser spot welding and other connection and positioning methods.
  • the temperature equalizing plate 30 located within the window W can be arranged correspondingly with the battery 40 , and the temperature equalizing plate 30 located outside the window W can be arranged correspondingly with the heating device on the circuit board 50 .
  • the area of the temperature equalizing plate 30 located inside the window W is larger, and the area of the temperature equalizing plate 30 located outside the window W is smaller.
  • the area of the temperature equalizing plate 30 located inside the window W is equal to the area of the temperature equalizing plate 30 located outside the window W.
  • the area of the plate 30 is twice or more than twice.
  • the direction in which the display 10, the middle frame 20 and the battery 40 are stacked is the first direction.
  • the first direction can also be understood as the thickness direction of the mobile terminal.
  • the battery 40 is within the coverage of the temperature equalizing plate 30, that is, The battery 40 is assembled on the surface of the vapor chamber 30 , and the vertical projection of all or most ( ⁇ 60%) of the battery 40 on the vapor chamber 30 is located inside the vapor chamber 30 . This solution limits the assembly relationship between the vapor chamber and the battery.
  • the vapor chamber has high enough strength and stiffness to bear the function of supporting the battery.
  • FIG. 2 is an exploded schematic diagram of a cross-section of a mobile terminal provided by an embodiment of the present application.
  • the window W of the middle frame 20 is in the shape of a stepped hole, and the window W includes a connected first section. W1 and the second section W2.
  • the size of the first section W1 is larger than the size of the second section W2.
  • the first section W1 is located between the second section W2 and the first surface S1.
  • the second section W2 is located between the first section W1 and the second section W1. between surface S2.
  • the cross-sectional shape of the vapor chamber module is consistent with the cross-sectional shape of the window W, and the vapor chamber 30 is installed into the window W from one side of the first surface S1.
  • the fixing method between the vapor chamber 30 and the middle frame 20 can be any one or a combination of welding, bonding, riveting, screw fixing, and metal injection molding.
  • the temperature equalizing plate 30 is assembled from one side of the battery 40 to the window W of the middle frame 20 .
  • Figure 3 is an exploded schematic diagram of a cross-section of a mobile terminal provided by an embodiment of the present application.
  • the window W of the middle frame 20 is in the shape of a stepped hole, and the window W includes a connected first section. W1 and the second section W2.
  • the size of the first section W1 is smaller than the size of the second section W2.
  • the first section W1 is located between the second section W2 and the first surface S1.
  • the second section W2 is located between the first section W1 and the second section W1. between surface S2.
  • the cross-sectional shape of the temperature equalizing plate 30 is consistent with the cross-sectional shape of the window W, and the equalizing temperature plate 30 is installed into the window W from one side of the second surface S2.
  • the battery 40 is fixedly connected to the vapor chamber 30 through adhesive tape.
  • a thermal conductive film 70 is provided on the side of the battery 40 away from the vapor chamber 30 . It can be understood that the heating elements on the mobile terminal (such as the heating device 52 on the circuit board 50 and the battery 40) are located between the temperature equalizing plate 30 and the thermal conductive film 70, forming a sandwich heat dissipation method. This method has high heat dissipation efficiency and can Achieve rapid heat conduction and solve the problem of heating of mobile terminals.
  • the thermally conductive film 70 can be a graphene material (such as a graphene film) or a thin vapor chamber module structure (it can also be a film-like vapor chamber), because the thermally conductive film 70 does not need to have a load-bearing function. , there is no requirement for strength and stiffness, and for the thin design of the mobile terminal, it can be set as a film-like structure.
  • the thermally conductive film 70 may have an irregular shape, no fixed shape structure, or a flexible structure, so that it can match different devices in the mobile terminal, such as wireless charging devices, antennas, NFC, etc.
  • the heating device 52 on the circuit board 50 may be an AP application processor, a power management chip, a charging device and other main heating devices.
  • the number of circuit boards 50 in the mobile terminal may be one or more (including two). For example, two circuit boards 50 are distributed on both sides of the battery 40. One of the circuit boards 50 is disposed on the top of the mobile terminal, and the other is disposed on the top of the mobile terminal. at the bottom of the mobile terminal.
  • the number of batteries 40 in the mobile terminal may also be one or two.
  • the mobile terminal further includes a wireless charging coil 80 .
  • the wireless charging coil 80 is located on a side of the thermally conductive film 70 away from the battery 40 .
  • the wireless charging coil 80 can be fixed inside the rear case 60 . surface.
  • the vapor chamber 30 can have the function of carrying the battery 40 .
  • the vapor chamber uses internal vacuum two-phase heat dissipation, and its thermal conductivity can reach more than 5000W/m-K.
  • its thickness is ⁇ 0.5mm.
  • the thickness of the vapor chamber is ultra-thin. If the vapor chamber is Insufficient strength, stiffness, and hardness.
  • the vapor chamber During the use of mobile terminals, if dropped, the vapor chamber will undergo structural deformation, change in flatness, and damage to the steam channels or capillary structures inside the vapor chamber. In this way, the vapor chamber will It will not work properly, and the thermal conductivity will drop or even become 15W/m-K. The structure of the vapor chamber with changed flatness may hit other components, such as the screen, and even cause battery safety accidents. Therefore, the vapor chamber provided by this application needs to meet the high strength, high stiffness, and high flatness requirements required by the structural middle frame in order to maintain the ultra-thin and high heat dissipation performance of the mobile terminal. Therefore, this application has requirements for the strength, stiffness and other properties as well as the flatness of the vapor chamber 30 . The detailed description of the vapor chamber 30 is as follows.
  • Figures 4 and 5 show cross-sectional schematic diagrams of two serial architecture vapor chambers.
  • the thickness of the evaporation zone 301 of the vapor chamber in Figure 4 is larger than the thickness of the condensation zone 302, forming a 2.5D architecture.
  • Figure 5 The vapor chamber is flat.
  • Figures 6 and 7 show two parallel architectures of vapor chambers.
  • the uniform temperature plate 30 includes a first cover plate 31 and a second cover plate 32.
  • the first cover plate 31 and the second cover plate 32 are interconnected and form a working structure between them. Cavity 33.
  • the first cover plate 31 and the second cover plate 32 can be connected by sealing welding and form a working chamber 33 inside the vapor chamber.
  • Negative pressure is maintained through the working chamber 33 and cooling fluid is injected.
  • the connecting structure 34, the reinforcing column 36 and the capillary channel 35 also called capillary suction
  • the core that is, the capillary structure in the working chamber 33, is the main channel for the flow of cooling liquid).
  • the reinforcing pillar 36 and the connecting structure 34 are stamped.
  • the first cover 31 includes a first body 311 and a first edge 312.
  • the first edge 312 is located at the periphery of the first body 311.
  • the first body 311 is bent relative to the first edge 312. Folded and extended, the first body 311 surrounds and forms a receiving space.
  • the second cover plate 32 includes a second main body 321 and a second edge 322 .
  • the first edge 312 and the second edge 322 butt together to form a skirt of the vapor chamber 30 .
  • the first edge 312 and the second edge 322 are sealed and fixedly connected by welding.
  • the first body 311 and the second body 312 together form a working chamber 33 .
  • the second cover 32 has a flat structure, that is, the second main body 321 and the second edge 322 are coplanar.
  • the reinforcing pillars 36 and the connecting structure 34 are etched.
  • the vapor chamber 30 achieves efficient heat dissipation by quickly conducting heat from a small-area heat source to a large-area heat dissipation surface. Its working mechanism is to take advantage of the characteristics of boiling heat absorption and condensation heat release of the fluid working medium to achieve the effect of quickly transporting the heat from the hot end to the cold end through steam flow.
  • the working chamber 33 is a sealed chamber, and the working chamber 33 includes an evaporation area 301 and a condensation area 302 .
  • the working chamber 33 is provided with a capillary channel 35, a steam channel 37 and a working medium.
  • the working fluid can be pure water, methanol, ethanol, etc.
  • Both the capillary channel 35 and the vapor channel 37 extend from the evaporation zone 301 to the condensation zone 302.
  • the capillary channel 35 and the vapor channel 37 are used to transport the working medium between the evaporation zone 301 and the condensation zone 302.
  • the capillary channel 35 and the vapor channel 37 are physically in direct contact or connected to achieve gas-liquid two-phase conversion of the working medium.
  • the heat source in the mobile terminal is arranged corresponding to the evaporation area 301.
  • the heat source may be a power device on the circuit board in the mobile terminal or other heat-generating devices.
  • the heat generated by the heat source enters the vapor chamber 30 through thermal conduction.
  • the evaporation zone 301 absorbs the heat from the heat source.
  • the liquid phase of the working fluid in the capillary channel 35 in the evaporation zone 301 boils and changes into a gas phase vapor.
  • the vapor diffuses to the condensation area 302 through the vapor channel 37.
  • the condensation area 302 when the vapor contacts the inner wall of the working chamber 33 with a lower temperature, it will quickly condense into a liquid working medium and release heat.
  • the liquid working medium returns to the evaporation zone 301 through the capillary force of the capillary channel 35 .
  • the present application provides a connection structure 34 in the working chamber 33, and the connection structure 34 is in a fixed connection relationship with the first cover plate 31 and the second cover plate 32.
  • the arrangement of the connecting structure 34 can not only improve the strength of the vapor chamber, but also adjust the flatness of the vapor chamber 30 .
  • the connection structure 34 is used to cooperate with the shaping jig, and the flatness of the temperature equalizing plate 30 is adjusted through the shaping jig.
  • the outer surface of the second cover plate 32 of the vapor chamber 30 provided by the present application has a positive orientation tolerance, and the connection position between the connecting structure 34 and the second cover plate 32 is the second cover plate 32 The peak area R of the flatness of the outer surface.
  • the second cover plate 32 has an outwardly convex structure
  • the connecting structure 34 is located in the area of the second cover plate 32 with a larger protruding amount.
  • the protruding amount of the second cover plate 32 refers to the fact that with reference to the edge position of the second cover plate 32 , the middle area of the second cover plate 32 has a tendency of outward convex deformation.
  • the peak area R refers to the area where the outer surface of the second cover plate 32 has a larger protrusion.
  • the connecting structure 34 can also be located at a position where the second cover plate 32 has the largest protrusion.
  • the orientation positive tolerance is from the outer edge of the second cover plate 32 to the position of the connecting structure 34 , and the outer surface of the second cover plate 32 has a tendency to convexly deform as a whole.
  • Figure 8A schematically expresses the deformation trend when the second cover plate 32 is fixedly connected to a connection structure 34.
  • the peak area R is smaller, and the connection structure 34 and the second cover plate 32
  • the connection position is located at the position where the protrusion amount of the second cover 32 is the largest.
  • the part in the larger circle is an enlarged schematic diagram of the part in the smaller circle, which shows that in the local area, the uneven structure can be seen in the enlarged state of the surface of the second cover plate 32 .
  • Figure 8B schematically expresses the deformation trend when the second cover plate 32 is fixedly connected to the two connection structures 34.
  • the area of the peak region R is larger than the peak region R shown in Figure 8A.
  • the connection position of the first connection structure 34 and the second cover plate 32 is located in the peak area R, and the second cover plate 32 between the two connection structures 34 also has a larger protrusion (larger than the protrusion at the position of the connection structure 34 output).
  • Figure 8C schematically expresses the deformation trend when the second cover plate 32 is fixedly connected to three connection structures 34. In the case shown in Figure 8C, the area of the peak area R is larger than the peak area R shown in Figure 8B.
  • connection position of the first connection structure 34 and the second cover plate 32 is located in the peak area R.
  • the connection position of the middle connection structure 34 and the second cover plate 32 is the position with the largest protrusion.
  • the other two connection structures 34 and the second cover plate 32 are located in the peak area R.
  • the protruding amount outside the connection between the two cover plates 32 is slightly smaller (less than the protruding amount at the position of the connecting structure 34 located in the middle).
  • the outer surface of the second cover 32 has a tendency of convex deformation as a whole. It can be understood that from the outer edge to the position of the connecting structure 34, regardless of the uneven shape of a certain local position, the overall deformation trend is convex. of. In one embodiment, from the outer edge to the connecting structure 34, the outer surface of the second cover plate 32 may have a linear deformation trend, and the specific deformation curve may be linear or curved with an upward trend. In another embodiment, from the outer edge to the connecting structure 34 , with respect to the flatness of the outer surface of the second cover plate 32 , a small range of concave-convex changes are allowed, which can be understood as a linear deformation trend.
  • the specific deformation curve can be a wavy line or a zigzag line with an upward trend. That is, ignoring the uneven microstructure at local locations, the overall deformation trend of the outer surface of the second cover plate 32 of the vapor chamber provided by the present application is a gradual protrusion from the outer edge to the position of the connecting structure 34 the trend of.
  • the vapor chamber 30 is assembled in the window W of the middle frame 20 .
  • the vapor chamber 30 forms a part of the middle frame 20 .
  • the vapor chamber 30 not only has the function of dissipating heat, but is also used to carry the battery 40 . Therefore, this application has higher requirements on the strength of the vapor chamber 30 and needs to be able to carry the battery 40 .
  • the vapor chamber 30 is located between the display screen 10 and the battery 40 , in order to ensure the safety and reliability of the display screen 40 , there are also high requirements for the flatness of the vapor chamber 30 .
  • This application defines that the outer surface of the second cover plate 32 has a positive orientation tolerance, and the connection position between the connecting structure 34 and the second cover plate 32 is located in the peak area R of the outer surface of the second cover plate 32. Since the connecting structure 34 is fixedly connected to the first The cover plate 31 and the second cover plate 32 can define the flatness of the outer surface of the first cover plate 31 by being constrained by the flatness of the outer surface of the second cover plate 32 .
  • This application requires that the flatness of the surface of the vapor chamber 30 facing the display screen 10 be set within a smaller flatness range. Specifically, the flatness of the surface of the vapor chamber 30 facing the display screen 10 is smaller than that of the vapor chamber 30 and the assembly gap between the display screen 10.
  • the assembly gap may be understood as: the first mounting surface on the middle frame 20 is used to install the display screen 10, and the second mounting surface is used to install the temperature equalizing plate 30.
  • the size of the temperature equalizing plate 30, the position of the first mounting surface and the third The position of the two mounting surfaces can determine the assembly gap between the display screen 10 and the vapor chamber 30 .
  • the flatness of the outer surface of the vapor chamber 30 facing the display screen 10 is greater than or equal to -0.1 mm and less than or equal to 0.05 mm. The flatness of the outer surface of the vapor chamber 30 facing the display screen 10 is controlled.
  • the gap size between them is conducive to the thin design of mobile terminals.
  • the flatness of the outer surface of the first cover plate 31 is 0.05 mm.
  • the flatness of the outer surface of the second cover plate 32 is equal to or greater than 0.1 mm and equal to or less than 0.3 mm. In a specific implementation, the flatness of the outer surface of the second cover plate 32 is 0.25 mm.
  • the battery 40 and the temperature equalizing plate 30 are fixedly connected through adhesive tape.
  • the adhesive tape is used to fix the battery 40.
  • the thickness of the adhesive tape can adjust the assembly space of the battery. The battery needs to expand in its assembly environment. Space, this expansion space is used to absorb the deformation produced by the battery during the electrochemical reaction. The expansion space is usually between the back case and the battery.
  • This application is fixedly connected between the first cover plate 31 and the second cover plate 32 through the connection structure 34, which can not only improve the strength of the temperature equalizing plate 30, but also combine with the connecting structure 34 to cooperate with the shaping jig to adjust the temperature equalizing plate.
  • the shaping feature can improve the reliability of the display screen 10 and the battery 40 .
  • the shaping jig applies force to the first cover plate 31. Since the first cover plate 31 and the second cover plate 32 are fixed through the connecting structure 34, the Both the first cover plate 31 and the second cover plate 32 are deformed by the force of the shaping jig. On the one hand, it can be ensured that the first cover plate 31 and the second cover plate 32 have the same deformation tendency.
  • the flatness of the outer surface of the shaped first cover plate 31 can be controlled below 0.05 mm, that is, less than or equal to 0.05 mm. mm, the outer surface of the first cover 31 in this structural form does not have a large protruding part, which meets the assembly gap requirements between the first cover 31 and the display screen 10 . Since the display screen 10 is fixed on one side of the outer surface of the first cover plate 31, this solution is beneficial to the safety, stability and reliability of the display screen 10 by controlling the flatness of the outer surface of the first cover plate 31.
  • the mobile terminal is subject to temperature changes (temperature changes will cause the display or middle frame to deform) or other external forces (for example, the mobile terminal is dropped or hit, or external forces during the assembly process will cause deformation of part of the mobile terminal structure) , the display screen 10 and the first cover 31 can still ensure a reliable positional relationship, and the display screen 10 will not be damaged by the holding force of the outer surface of the first cover 31 .
  • the first cover plate 31 and the second cover plate 32 are fixedly connected through the connection structure 34.
  • the first cover plate 31 and the second cover plate 32 can be deformed synchronously during the shaping process, which can ensure the working cavity of the uniform temperature plate. 33 can maintain appropriate dimensions.
  • the thickness of the working cavity 33 is designed within a qualified range to meet the normal working requirements of the vapor channel 37 and the capillary channel 35.
  • the working cavity 33 basically remains unchanged, or the thickness variation space is within the allowable range, the normal working requirements of the vapor channel 37 and the capillary channel 35 can still be met.
  • the direction extending from the evaporation zone 301 of the vapor chamber 30 to the condensation zone 302 is the length direction of the vapor chamber 30 , and the width direction of the vapor chamber 30 is perpendicular to the length direction.
  • the direction from the top to the bottom of the mobile terminal is consistent with the length direction of the temperature equalizing plate.
  • the ratio between the size of the evaporation zone 301 in the width direction and the size of the condensation zone 302 in the width direction is less than or equal to 0.5. This application can be based on the vapor chamber.
  • the specific size configures the number of connecting structures 34. For a larger-sized vapor chamber 30, multiple connecting structures 34 can be provided.
  • connection structure 34 In one embodiment, referring to Figures 9 and 10, the number of connection structures 34 provided in the vapor chamber 30 is one. In the width direction of the vapor chamber, the connection structure 34 is located in the working chamber 33. central location. 9 and 10 schematically express the specific position and basic form of the connection structure 34 and the distribution of the reinforcing columns 36.
  • the connecting structure 34 In the embodiment shown in FIG. 9 , the connecting structure 34 is in the shape of a strip. It can also be understood that the cross-sectional shape of the connecting structure 34 includes a strip shape.
  • the connecting structure can be rectangular or racetrack-shaped. In the embodiment shown in FIG.
  • the cross-sectional shape of the reinforcing column 36 is square, and the cross-sectional area of the reinforcing column 36 is significantly smaller than the cross-sectional area of the connecting structure 34 .
  • the cross-section of the connecting structure 34 is circular, and the cross-sectional shape of the reinforcing column 36 can also be (but is not limited to) circular.
  • the cross-sectional area of the reinforcing column 36 is significantly smaller than the connecting structure 34 the cross-sectional area.
  • the reinforcing column 36 in the vapor chamber 30 is disposed in the working chamber 33 , and the reinforcing column 36 is connected with the first cover plate 31 and the second cover plate 32 One of them is fixedly connected as a whole, the reinforcing column 36 is in contact with or maintains a gap arrangement with the other one of the first cover plate 31 and the second cover plate 32, and the number of the connection structure 34 is at least one,
  • the connection area between each connection structure 34 and the first cover 31 or the second cover 32 is a first area
  • the connection area between each reinforcing column 36 and the first cover 31 or the second cover 32 is a first area.
  • connection area between the two cover plates 32 is a second area, and the first area is more than twice the second area.
  • the setting of the reinforcing column is used to ensure the size of the capillary channel and vapor channel of the working chamber in the vapor chamber, and can also improve the strength of the vapor chamber.
  • the number of connection structures 34 provided in the vapor chamber 30 is an even number (the case of two connection structures 34 is schematically expressed in Figure 11).
  • the number of connection structures 34 provided in the vapor chamber 30 is three or an odd number greater than three (the case of three connection structures 34 is schematically expressed in Figure 12).
  • one of the connection structures 34 is located at the center position C of the working chamber 33, and the remaining connection structures 34 are symmetrically distributed on both sides of the center position C of the working chamber 33. side.
  • the position indicated by the dotted line in FIG. 12 is the center position C of the working chamber 33 in the width direction of the vapor chamber 30 .
  • This application sets the number and specific positions of the connection structures according to the size of the vapor chamber and the requirements of the assembly environment. It can be seen that the vapor chamber can adapt to different usage environments and match different electronic devices.
  • connection structure 34 described in Figures 11 and 12 being symmetrically distributed on both sides of the center position C can be understood as that the connection structure 34 is in a basically symmetrical state on both sides of the center position C, and is not limited to absolute complete symmetry.
  • the shapes of the connecting structures 34 on both sides of the central position C may be different, and the distances between the connecting structures 34 on both sides of the central position C and the central position C may not be equal.
  • the connecting structure 34 and the first cover plate 31 are integrally formed.
  • the connecting structure 34 can be formed by performing a stamping process on the first cover plate 31.
  • the connecting structure 34 can also be formed. It is formed by performing an etching process on the first cover plate 31 .
  • connection structure 34 is surrounded by a connection groove 341 , and the opening of the connection groove 341 is located on the outer surface of the first cover 31 .
  • the outline of the opening position of the connecting groove 341 is circular, rectangular or racetrack-shaped.
  • the second cover plate 32 includes a flat structure. In the cross-section of the vapor chamber in a direction perpendicular to the second cover plate 32, the connecting structure 34 is trapezoidal, and the opening position of the connecting groove 341 is The size is larger than the size of the bottom of the connection groove 341.
  • connection groove 341 and the opening position of the connection groove 341 are relatively arranged along a first direction, and the first direction is the display screen 10, the uniform The direction in which the warm plate 30 and the battery 40 are stacked.
  • This solution provides a specific connection structure design solution, which can be integrally formed with the first cover plate through a stamping process and is easy to manufacture.
  • the connecting structure and the first cover plate are provided as an integral structure, and a groove is formed on the outer surface of the first cover plate by arranging the connecting structure. This groove can cooperate with the shaping jig during the process of shaping the uniform temperature plate.
  • connection structure 34 includes a bottom wall 342 and a side wall 343.
  • the side wall 343 is connected between the bottom wall 342 and the first cover 31.
  • the bottom wall 342 is located between the connection groove 341. At the bottom, the bottom wall 342 and the second cover 32 are fixedly connected.
  • the bottom wall 342 and the second cover 32 are fixed by welding.
  • the welding structure between the bottom wall 342 and the second cover 32 is a large-area brazing connection.
  • the large area of the brazing connection can be understood as: compared with spot welding, the bottom wall 342 and the second cover are The welding area between the plates 32 is larger than that of spot welding. If the welding between the bottom wall 342 and the second cover 32 is spot welding, the positioning function of the spot welding is easily affected by external forces and causes deformation, and the connection reliability is poor.
  • the force between the connection structure 34 and the second cover 32 It cannot be better combined, that is to say, the connecting structure 34 cannot participate in the force supporting function of the second cover plate 32 .
  • connection structure 34 can make the connection between the connection structure 34 and the second cover 32 more reliable and stable through a larger area of brazing fixation.
  • the connection structure 34 connects the first cover plate 31 and the second cover plate 32 into one body to enhance the rigidity of the temperature equalizing plate.
  • the first cover plate 31 and the connection structure 34 can share the supporting role with the second cover plate 32 .
  • Low-temperature welding is used for welding between the connecting structure 34 and the second cover plate 32.
  • the welding temperature is less than or equal to 850 degrees Celsius.
  • the advantage of limiting the low-temperature welding method is that it can ensure the performance and strength of the vapor chamber. After high-temperature processes such as welding and other high-temperature processes for the vapor chamber, the material of the vapor chamber is not prone to strength reduction caused by high-temperature annealing.
  • the temperature equalizing plate 30 is made of composite materials, and one or both of the first cover plate 31 and the second cover plate 32 can be made of composite materials.
  • Composite materials can include easily weldable materials and high-strength materials.
  • the sealing welding between the first cover plate 31 and the second cover plate 32 is completed by easy-welding materials.
  • the temperature of the easy-welding materials is lower than the welding temperature of high-strength materials such as stainless steel and titanium alloys. That is, the welding process of low-temperature welding can be used.
  • the high-strength material After welding and other temperature equalization After the high-temperature process of the board, the high-strength material does not suffer from the problem of strength reduction caused by high-temperature annealing, which can ensure the performance and strength of the unitemperature board.
  • the easy-to-weld material can be pure copper/copper alloy material
  • the high-strength material can be stainless steel material, which has anti-annealing softening properties.
  • the second cover plate 32 is made of composite material.
  • the second cover plate 32 includes a first material layer M1 and a second material layer M2 arranged in a stack.
  • the first material layer The welding temperature of M1 is lower than the welding temperature of the second material layer M2, and the softening temperature of the second material layer M2 is higher than the welding temperature of the first material layer M1.
  • Materials with high softening temperatures are resistant to annealing softening.
  • the second material layer M2 may be made of stainless steel material that is resistant to high-temperature annealing and softening, such as high-nitrogen steel.
  • the second material layer M2 is a stainless steel material containing nitrogen element, and the mass percentage content of the nitrogen element is [0.03wt.%, 5wt.%].
  • the second material layer M2 may also be made of titanium alloy material, and titanium alloy material also has a high softening temperature.
  • the first material layer M1 is used for welding and fixing with the connection structure 34 and the first cover 31 (low-temperature welding process can be used).
  • the first material layer M1 is made of working fluids such as water (located in the working chamber 33 Within) materials with good compatibility and low welding temperature, such as pure copper or copper alloy.
  • the second material layer M2 is located on the side of the first material layer M1 away from the first cover 31 .
  • the second material layer M2 has high strength and is mainly used for supporting.
  • the temperature equalizing plate provided in one embodiment of the present application can realize the connection structure 34 fixedly connected between the first cover plate 31 and the second cover plate 32 by defining the second cover plate 32 as the aforementioned composite material.
  • the first material layer M1 reduces the welding temperature and solves the problem of working fluid compatibility between the second material layer M2 and the working chamber 33 of the vapor chamber 30.
  • the second material layer M2 high nitrogen steel
  • the vapor chamber is improved
  • the strength of 30% solves the problem of strength reduction of the vapor chamber 30 in the conventional solution with high welding temperature. This solution does not emphasize the flatness of the second cover plate 32.
  • the thickness of the second material layer M2 is greater than the thickness of the first material layer M1. Since the main function of the first material layer M1 is welding, the support of the main function of the second material layer M2 can be obtained in a limited space by limiting the thickness of the second material layer M2 to be greater than the thickness of the first material layer M1 Higher strength vapor chamber30.
  • the first material layer M1 and the second material layer M2 can be combined into one body through electroplating or composite methods, that is, a laminated material is prepared through electroplating or composite methods to form the second cover plate 32 .
  • the second material layer M2 undergoes surface cleaning treatment and then is electroplated to form the first material layer M1 on the surface of the second material layer M2.
  • the second material layer M2 is formed on the surface of the first material layer M1 by electroplating.
  • An electroplating base layer M4 is provided between the second material layer M2 and the first material layer M1.
  • the electroplating base layer M4 may be electroplated nickel.
  • the electroplating base layer M4 is an optional material layer. Whether to set the electroplating base layer M4 depends on the needs of the processing technology.
  • the oxide layer is removed from the surfaces of the first material layer M1 and the second material layer M2 (for example, by mechanical or plasma cleaning), and then vacuum hot rolling, vacuum cold rolling or vacuum diffusion welding is performed. In this way, the first material layer M1 and the second material layer M2 are combined into an integrated composite material.
  • the second cover plate 32 further includes a third material layer M3, and the welding temperature of the third material layer M3 is lower than the welding temperature of the second material layer M2, so The third material layer M3 is located on the side of the second material layer M2 away from the first material layer M1.
  • the third material layer M3 may be the same as the first material layer M1, and both have the same strength or stiffness.
  • the third material layer M3 may function to reinforce the strength of the second cover 32 or eliminate internal stress.
  • the third material layer M3 may also be a functional layer set for electrical connection or corrosion protection.
  • the second cover 32 has a three-layer structure and two materials.
  • the second material layer M2 and the third material layer are both pure copper (such as T1, T2, T3, T4), oxygen-free copper ( TU1, TU2) or pure copper with other elements added (such as TP1 and TP2).
  • the first material layer M1 is high nitrogen steel.
  • the second cover plate 32 includes a three-layer structure, the second material layer M2 and the third material layer M3 are both TU2 copper, and the second material layer M2 is made of high nitrogen content of 0.2 to 0.3wt.%. Nitrogen steel, the first material layer M1, the second material layer M2 and the third material layer M3 undergo a composite process to form a 0.015mm thick second material layer M2, a 0.15mm thick first material layer M1, and a 0.015mm thick The total thickness of the third material layer and the second cover plate 32 is 0.18 mm, and the thickness ratio of the three-layer structure is 1:10:1.
  • the components and properties of various materials are as follows (Table 1, Table 2 and Table 3).
  • each layer of the second cover plate 32 can be adjusted according to the target required performance.
  • This application is based on the design that the first material layer M1 is made of copper material, which reduces the welding temperature and solves the problem of compatibility between stainless steel and working fluid.
  • the second material layer M2 is made of high-nitrogen steel, it solves the problem of reduced strength of the vapor chamber. .
  • the ECR (Ratio of Evaporate and Condense Width) of the vapor chamber 30 represents the ratio of the width of the evaporation zone 301 and the condensation zone 302, which reflects the specific shape of the vapor chamber 30.
  • ECR Reatio of Evaporate and Condense Width
  • the embodiments of this application provide two solutions: the first solution is: the combined use of multiple vapor chambers or heat pipes; the second solution is: a parallel architecture bionic architecture vapor chamber.
  • the first option includes two combination methods.
  • the first combination of the first solution is: multiple vapor chambers 30A, 30B or heat pipes share a heat source, all extending from the evaporation area 301 to the condensation area 302.
  • multiple The individual temperature equalizing plates 30A, 30B or heat pipes are realized by sharing a cover plate, that is, a plurality of parallel temperature equalizing plates 30A, 30B or heat pipe structures are formed between the first cover plate 31 and the second cover plate 32.
  • the large vapor chamber 30 with ECR ⁇ 0.5 has several independent vapor chambers 30A, 30B or heat pipes with a common main heat source and ECR > 0.5 to share the total heat load.
  • the warm plates 30A, 30B or the heat pipe share the first cover plate 31 and the second cover plate 32, but their capillary channels and steam channels are independent and isolated from each other.
  • Each individual vapor chamber 30A, 30B or heat pipe can be understood as a heat transfer highway (main heat transfer road), two-phase heat exchange, equivalent thermal conductivity ⁇ 5000W/m-K; each vapor chamber 30A, 30B or heat pipe interacts with each other. Relying on metal materials for heat conduction, there is no two-phase heat exchange, and the thermal conductivity is ⁇ 2500W/m-K.
  • the thermal conductivity of graphene plates can reach 1000 ⁇ 2500W/m-K, which is 2 ⁇ 100 times more than that of copper, stainless steel or titanium alloys, and its density is about ⁇ 2g/ml, which is >50 ⁇ 70% lower than copper, stainless steel or titanium alloys. It is an enhanced To dissipate heat or reduce weight, graphene plates can be embedded between independent vapor chambers 30A, 30B or heat pipes, and the graphene plates can be connected to each vapor chamber plate or heat pipe using low thermal resistance methods such as welding or bonding.
  • the position and number of the connecting structures 34 can be set according to the specific use environment of the temperature equalizing plate 30 , for example, they can be located in the middle of the first cover plate 31 and the second cover plate 32
  • the connection structure 34 can be provided in the temperature equalizing plate 30 at the position, or between the first cover plate 31 and the second cover plate 32, and between the adjacent temperature equalizing plates 30A, 30B or heat pipes.
  • the connection structure 34 is used to enhance the strength of the overall vapor chamber 30 and constrain the flatness of the vapor chamber 30, so that the flatness of the surface of the second cover plate 32 away from the first cover plate 31 has a positive orientation tolerance.
  • the second combination of the first solution is: the overall uniform temperature plate 30 (which has a larger area) with ECR ⁇ 0.5 has several independent sub-average temperatures with ECR > 0.5.
  • the plates 30A and 30B are respectively the first uniform temperature plate 30A and the second uniform temperature plate 30B. They share the first cover plate and the second cover plate, but the vapor channels and capillary channels inside them are isolated from each other;
  • the temperature plate 30A and the second temperature plate 30B do not share a main heat source.
  • the first temperature plate 30A and the second temperature plate 30B transfer heat in series between the evaporation zone 301 and the condensation zone 302.
  • the evaporation area 30B1 of the second equalization plate 30B is adjacent to the condensation area 30A2 of the first equalization plate 30A.
  • the arrangement scheme between the evaporation area 30B1 of the second equalization plate 30B and the condensation area 30B2 of the first equalization plate 30A may include There are many, examples are given below.
  • the first specific solution is: as shown in Fig. 16A, the evaporation area 30A1 and the condensation area 30A2 of the first unitemperature plate 30A are arranged in the first direction A1, and the evaporation area 30B1 and the condensation area 30B2 of the second unitemperature plate 30B are arranged in the first direction A1.
  • the second direction A2 is perpendicular to the first direction A1, and in the second direction A2, the evaporation area 30B1 of the second uniform temperature plate 30B and the condensation area 30A2 of the first uniform temperature plate 30A are arranged side by side.
  • the second specific solution is: as shown in Figure 16B, the evaporation zone 30A1 and the condensation zone 30A2 of the first vapor chamber 30A are arranged in the first direction A1, but compared with the first solution, the second specific solution
  • the size of the first equalizing plate 30A is smaller, and the evaporation area 30B1 of the second equalizing plate 30B is L-shaped surrounding the condensing area 30A2 of the first equalizing plate 30A.
  • the second equalizing plate 30B The partial evaporation area 30B1 is located on one side of the condensation area 30A2 of the first equalization plate 30A. In the second direction A2, there is still a partial evaporation area 30B1 of the second equalization plate 30B distributed in the condensation area of the first equalization plate 30A. One side of area 30A2.
  • the third specific solution is: the evaporation area 30B1 of the second equal temperature plate 30B is located on three sides of the condensation area 30A2 of the first equal temperature plate 30A. That is, the evaporation area 30B1 of the second equal temperature plate 30B includes three parts.
  • the first part is located on one side of the condensation area 30A2 of the first vapor chamber 30A.
  • the second part and the third part are respectively located on the opposite side of the condensation area 30A2 of the first vapor chamber 30A. both sides.
  • the first direction may be the length direction
  • the second direction may be the width direction.
  • the second combination method of the first solution can be understood as follows: the overall vapor chamber 30 is made up of multiple sub-uniform plates 30A and 30B. From the evaporation zone 301 to the condensation zone 302 of the overall vapor chamber 30, each sub-plate is spliced. The temperature plates 30A and 30B realize relay-type two-phase heat transfer through relay distribution, which can be equivalent to a series connection of multiple equal temperature plates 30A and 30B.
  • the second combination method can also use the combination of the overall vapor chamber and the graphene plate to improve the thermal conductivity efficiency. For example, part of the cover plate (the first cover plate or the second cover plate) of the overall vapor chamber is embedded in the graphene material. .
  • the position and number of the connecting structures 34 can be set according to the specific use environment of the vapor chamber, for example, they can be located at the middle position between the first cover plate 31 and the second cover plate 32
  • a connection structure 34 is provided in the sub-uniform temperature plate 30B.
  • the connection structure 34 can also be provided between adjacent sub-uniform temperature plates 30A and 30B.
  • the connection structure 34 can enhance the strength of the overall temperature equalization plate and constrain the temperature uniformity.
  • the flatness of the plate enables the flatness of the surface of the second cover plate 32 facing away from the first cover plate 31 to have an orientation positive tolerance.
  • the second solution is summarized as a parallel architecture bionic architecture vapor chamber, which can be understood as designing the capillary channels and vapor channels in the vapor chamber to resemble a willow tree, with roots in the evaporation zone and branches and leaves in the condensation zone.
  • the vapor chamber obtained by the second solution adopts a parallel architecture, which can meet the ultra-thin design requirements of the two-phase area of the vapor chamber. It can also solve: for the vapor chamber with ECR ⁇ 0.5 (that is, the width and area of the evaporation zone are smaller than the condensation zone). When the difference is too large), there will be a serious thermal performance problem that the working fluid cannot quickly return and replenish fluid.
  • the capillary channel 35 and the vapor channel 37 are in the shape of a tree root in the narrower area (evaporation zone 301) of the vapor chamber, and the condensation in the wider area in the vapor chamber 30 Area 302 is dendritic.
  • the vapor channel 37 and the capillary channel 35 of the condensation zone 302 are designed as an elongated reflux groove structure, which is beneficial to absorbing condensed liquid droplets and prevents the vapor from traveling along the vapor channel 37 The area is stagnant and blocked, unable to participate in circulation.
  • the direction extending from the evaporation zone 301 to the condensation zone 302 is the first direction A1 of the vapor chamber 30
  • the second direction A2 of the vapor chamber 30 is vertical.
  • the ratio between the size of the evaporation area 301 in the second direction A2 and the size of the condensation area 302 in the second direction A2 is less than or equal to 0.5
  • the capillary channel 35 includes a plurality of first sub-channels 351 arranged side by side and spaced apart.
  • the vapor channel 37 includes a plurality of second sub-channels 371 arranged side by side and spaced apart.
  • the plurality of first sub-channels 371 are arranged side by side and spaced apart.
  • connection structure 34 in the temperature equalizing plate 30 is arranged in the second sub-channel 371 .
  • This solution can increase the liquid storage volume in the evaporation zone and also increase the contact area between the capillary channel and the steam channel, which helps improve the thermal performance of the vapor chamber operation.
  • the capillary channel in the condensation area adopts a willow leaf-shaped structural design. For the capillary of the parallel structure, the contact area between the capillary channel and the steam channel is increased, which facilitates the reflux of the condensate.
  • the thickness direction of the temperature equalizing plate 30 is the stacking direction between the first cover plate 31 and the second cover plate 32 , and the horizontal section of the equalizing temperature plate 30 is perpendicular to the temperature equalizing plate. 30 in the thickness direction, in the horizontal section, the extension direction of each first sub-channel 351 is the first direction A1 of the vapor chamber, and the cross-sectional shape of the connection structure 34 includes a long strip shape.
  • the second solution includes but is not limited to the following six types of solutions.
  • the first type of solution Referring to Figure 17, the evaporation zone 301 of the vapor chamber 30 is located at the top, and the condensation zone 302 is at the bottom.
  • the size of the condensation zone 302 is larger than the size of the evaporation zone 301, and ECR ⁇ 0.5.
  • the capillary channels 35 in the evaporation zone 301 have a parallel structure, that is, the evaporation zone 301 includes a plurality of capillary roots 353 arranged in parallel and connected to the main capillary channel 352.
  • the capillary roots 353 can be symmetrically distributed on both sides of the main capillary channel 352.
  • the advantage of the arrangement of multiple parallel capillary roots 353 is that: on the one hand, it increases the liquid storage capacity of the evaporation zone 301; on the other hand, it increases the contact area between the capillary channel 35 and the vapor channel 37, which helps to improve the operation efficiency of the vapor chamber 30. Thermal performance.
  • the main capillary channel 352 extends from the evaporation zone 301 to the condensation zone 302, and is used for liquid return.
  • the condensation zone 302 includes a plurality of capillary branches arranged side by side (the capillary branches can be understood as the first sub-channel 351, and the vapor channel 37 between adjacent capillary branches or next to the capillary branches can be understood as the second sub-channel 371).
  • Each capillary branch can be understood as a second sub-channel 371.
  • One end of the capillary branches is connected to the main capillary channel 352.
  • the advantage of the structural design of the capillary branches is that it increases the contact area between the capillary channel 35 and the vapor channel 37, which facilitates the reflux of the condensate.
  • the cover plate of the evaporation zone 301 can be partially lifted to increase the channel thickness of the evaporation zone 301. This solution provides uniform
  • the temperature plate can be a 2.5D uniform temperature plate.
  • the difference between this solution and the first type of solution is that in the evaporation zone 301, the capillary roots can be set to a serial architecture (not shown).
  • the condensation zone 302 includes multiple capillary branches (first sub-channels 351) arranged in parallel.
  • the multiple capillary branches can be connected to the evaporation zone 301 through multiple main capillary channels 352.
  • the capillary channels 35 in this solution adopt a parallel architecture and a serial structure. In a row architecture combination, the evaporation zone 301 and the condensation zone 302 are connected by multiple main capillary channels 352.
  • the third type of scheme Refer to Figure 19.
  • the difference between this scheme and the second type of scheme is that the capillary roots in the evaporation zone 301 are designed with a bamboo root structure, that is, multiple capillary roots are connected to multiple main capillary channels 352, and there are multiple capillary roots.
  • the capillary roots merge into a bamboo root shape. This solution is beneficial to increasing the contact area between the capillary channel 35 and the steam channel 37.
  • the fourth type of scheme Refer to Figure 20.
  • the difference between this scheme and the third type of scheme is that the capillary roots in the evaporation zone 301 are designed as a plug-type independent capillary root structure. That is, the plurality of capillary roots are respectively connected to the plurality of main capillary channels 352 and are independent of each other without converging connections.
  • the vapor channels 37 are open to each other, making the gas circulation inside the vapor chamber 30 smoother.
  • the fifth type of scheme Referring to Figure 21, the setting scheme of the capillary roots of the evaporation zone 301 is similar to the first type of scheme.
  • the evaporation zone 301 adopts a natural root bifurcated capillary root structure.
  • the number of main capillary channels 352 is multiple (including two), and the lengths are different.
  • the condensation zone 302 includes a plurality of capillary branches (first sub-channels 351 ) arranged side by side, and the plurality of capillary branches can be connected to the evaporation zone 301 through a plurality of main capillary channels 352 .
  • One of the main capillary channels 352 has a longer size, which is beneficial to reducing the flow pressure drop of the gas in the vapor channel 37 .
  • the end of the capillary branch (first sub-channel 351) connected to one of the main capillary channels 352 faces the evaporation area 301 (it can be understood that the main capillary channel 352 is inverted, which expands the transmission path and can reduce the pressure drop), and the other main capillary channel 352 is inverted.
  • the end of the capillary branch (first sub-channel 351 ) connected to the capillary channel 352 is away from the evaporation area 301 .
  • connection structure 34 in the working chamber 33 of the vapor chamber 30 can be disposed in the condensation area 302, and Located between adjacent capillary branches (first sub-channel 351), that is, located in the vapor channel 37 (second sub-channel 371).
  • first sub-channel 351 Located between adjacent capillary branches
  • second sub-channel 371 Located between adjacent capillary branches
  • This application defines the specific position of the connection structure in the vapor chamber. Setting the connection structure in the condensation area can improve the strength of the condensation area.
  • the condensation area is used to support the battery and can better match the temperature distribution plate in the mobile terminal. assembly environment.
  • the sixth type of solution Refer to Figure 22.
  • a serial capillary root architecture (not shown) is used in the evaporation zone 301, and a serial capillary branch architecture is used in the condensation zone 302. That is, both the evaporation zone 301 and the condensation zone 302 use a serial architecture.
  • the capillary channel 35 and the main capillary channel 352 connecting the evaporation zone 301 and the condensation zone 302 have a parallel architecture.
  • the connection structure 34 in the working chamber 33 of the vapor chamber can be disposed in the condensation area 302 and located between the main capillary channels 352 .
  • the capillary channel 35 can be set as a capillary channel with a similar LHP (Loop Heat Pipe, loop heat pipe) structure: using the design concept of the loop heat pipe, by using the capillary channel design and support
  • LHP Loop Heat Pipe, loop heat pipe
  • the structural design divides the evaporation zone 301 and the condensation zone 302 so that the internal gas and liquid form a circulation route for loop flow. After the vapor generated in the evaporation zone 301 enters the cavity, it condenses into liquid in the condensation zone 302 and is absorbed by the capillary.
  • connection structure 34 in the working chamber 33 of the vapor chamber can be disposed in the vapor channel 37 between the capillary channels 35 of the condensation zone 302 .
  • the first sub-channel 351 is a capillary channel (also called a capillary branch, a structure similar to a branch continuous to the trunk, with a structure far away from the The end of the trunk),
  • the second sub-channel 371 is a steam channel.
  • One end of the first sub-channel 351 and the second sub-channel 371 is connected to the main capillary channel 352, and the ends (suspended free ends) of the first sub-channel 351 and the second sub-channel 371 are the The first sub-channel 351 and the second sub-channel 371 are away from one end of the main capillary channel 352 .
  • the portion of the vapor channel between adjacent first sub-channels 351 is the second sub-channel 371.
  • the liquid return direction in the first sub-channel 351 with the end facing the same direction is consistent with the vapor flow direction in the adjacent second sub-channel 371 .
  • straight lines with arrows in the first sub-channel 351 and the second sub-channel 371 schematically represent the liquid return direction and the vapor flow direction.
  • This application can reduce impedance and improve heat dissipation efficiency by designing the liquid return direction in the first sub-channel 351 with the end facing the same direction and the vapor flow direction in the adjacent second sub-channel 371 .
  • Figure 24 is a schematic diagram of the state of the liquid on the fixed surface when the solid surface in the vapor chamber 30 is a hydrophobic layer and a hydrophilic layer.
  • the solid surface can be understood as the inner surface of the first cover plate 31 and/or the second cover plate 32, the surface of the connecting structure, the surface of the reinforcing pillar, and the surface of the capillary channel.
  • the liquid gathers into the form of droplets on the solid surface, and the contact area between the liquid and the solid surface is small.
  • the solid surface is a hydrophilic layer, the liquid is adsorbed on the solid surface, and the contact area between the liquid and the solid surface is larger.
  • the present application modifies the inner surface of the first cover plate 31 and/or the second cover plate 32 and designs the inner wall of the vapor channel 37 into a hydrophilic layer structure, which can avoid condensation zone 302
  • the phenomenon of agglomeration of droplets appears in some evaporation channels. The agglomeration of droplets will freeze and bulge when exposed to hot and cold shocks.
  • the first cover 31 corresponding to the vapor channel 37 includes a first body layer and a first hydrophilic layer, and the first hydrophilic layer and The first main body layer has an integrated structure, and the first hydrophilic layer is formed by modifying the inner surface of the first cover plate 31.
  • the second cover 32 corresponding to the vapor channel 37 includes a second body layer and a second hydrophilic layer, and the second hydrophilic layer and The second main body layer has an integrated structure, and the second hydrophilic layer is formed by modifying the inner surface of the second cover plate 32.
  • This solution can solve the problem of ice bulging of the second cover plate 32.
  • the problem is that the second cover 32 is adjacent to the battery and is used to carry the battery. This solution can ensure the battery installation environment and improve the stability of battery performance.
  • the surface of the connecting structure is designed to have a hydrophobic layer structure, which can better prevent icing and swelling.
  • Figure 25 schematically expresses the change process of droplets in the working chamber when the surface of the connecting structure is a hydrophobic layer and the inner surfaces of the first cover plate and the second cover plate are hydrophilic layers.
  • the top illustration in Figure 25 illustrates: In the condensation area of the vapor chamber, the droplets produced by condensation condense on the surface of the connecting structure and gradually grow larger.
  • the diagram in the middle position in Figure 25 illustrates: after the droplets condense to a large enough size on the surface of the connecting structure, they contact the hydrophilic first cover plate or the second cover plate.
  • the bottom diagram in Figure 25 illustrates: the capillary absorbent wick, that is, the capillary channel in this application, has a hydrophilic layer structure on its surface, which has hydrophilic and water-absorbing properties, and can suck in liquid droplets to achieve a liquid return effect.
  • Surface modification treatment can be, but is not limited to: hydrophilic, roughening, passivation and other treatment methods.
  • the first hydrophilic layer or the second hydrophilic layer by providing the first hydrophilic layer or the second hydrophilic layer, the phenomenon of the liquid in the vapor channel 37 being agglomerated into droplets can be avoided, and the liquid in the vapor channel 37 can be quickly absorbed by the capillary channel 35 .
  • the capillary channel 35 of the condensation zone 302 is a structure of multiple capillary branches arranged side by side, the first hydrophilic layer or the second hydrophilic layer is particularly useful in solving the problems of liquid agglomeration into droplets and ice bulging. obvious.
  • the inner walls of the evaporation zone 301 of the vapor chamber and the vapor channel 37 of the reflux zone are configured as a hydrophobic layer structure, which can achieve a smooth surface of the vapor channel 37 and reduce the steam flow resistance, so that the steam can quickly escape from the evaporation zone 301 Flows to condensation zone 302.
  • the inner wall of the vapor channel 37 is designed as a hydrophilic layer structure, so that the vapor in the condensation area 302 can be quickly absorbed by the capillary channel 35, improving the working efficiency and temperature equalization effect of the temperature equalizing plate.
  • the inner surface of the first cover 31 corresponding to the vapor channel 37 has a hydrophobic layer structure
  • the surface of the connection structure 34 has a hydrophobic layer structure
  • This application also provides a method for making a uniform temperature plate, which includes the following steps:
  • the uniform temperature plate 30 includes a first cover plate 31, a second cover plate 32 and a connection structure 34.
  • the first cover plate 31 and the third cover plate 32 are connected to each other.
  • a working chamber 33 is formed between the two cover plates 32.
  • the connecting structure 34 is located in the working chamber 33.
  • the connecting structure 34 is fixedly connected to the first cover plate 31, and the connecting structure 34 and the second cover are fixedly connected.
  • the plates 32 are fixedly connected (such as welded and fixed);
  • the temperature equalizing plate 30 is reshaped. During the shaping process, force is applied to the position of the connecting structure 34 to deform the temperature equalizing plate 30 so that the flatness of the outer surface of the second cover plate 32 has a Orientation positive tolerance.
  • the connection position of the connecting structure 34 and the second cover plate 32 is the peak area of flatness of the outer surface of the second cover plate 32 ; the orientation positive tolerance is from the outer surface of the second cover plate 32 From the edge to the connection structure 34 , the outer surface of the second cover plate 32 has a tendency to convexly deform as a whole.
  • this application uses a shaping jig 90 to shape the vapor chamber 30 to determine that the flatness of the outer surface of the second cover plate 32 is a positive orientation tolerance.
  • the connection structure 34 and the first cover 31 are an integrally formed structure.
  • the connection structure 34 surrounds a connection groove 341 , and the opening of the connection groove 341 is located outside the first cover 31 .
  • the step of shaping the vapor chamber 30 includes: providing a shaping jig 90 .
  • the shaping jig 90 includes a support base 91 and a gland 92.
  • the support base 91 is used to carry the temperature equalizing plate 30.
  • the second cover plate 32 is fixed on the support base 91.
  • the gland 92 includes The shaping post 921 extends into the connection groove 341 and presses against the bottom of the connection groove 341.
  • the pressing force F of the first cover plate 31 is exerted through the pressure cover 92, so that The vapor chamber 30 is deformed.
  • the arc-shaped curve S in FIG. 26 is used to represent the deformation trend of the vapor chamber 30 .
  • the gland 92 is in contact with the outer surface of the first cover plate 31. This solution can restrain the deformation of the first cover plate 31 through the gland 92 and avoid the first The cover plate 31 is convex during the shaping process.
  • the AP application processor (including CPU and GPU) is the main heat source; in taking pictures, the main heat source is the AP and camera module; when playing QQ music and high-definition videos, AP application processor and Speaker are the main heat sources; during video chat, the main heat sources are AP, front camera module and communication module (can be 3G/4G/5G communication module or WiFi communication module).
  • the battery is in a relatively cool area due to low internal resistance and low current ( ⁇ 2A).
  • ⁇ 2A low internal resistance and low current
  • the condensation area is relatively large, which is the main application scenario of the vapor chamber 30 provided in one embodiment of the present application.
  • the wired charging chip ( ⁇ 60W) or wireless charging chip ( ⁇ 30W) and the battery have become the main heat sources of the mobile terminal, and the AP application processor and other areas are relatively cool areas.
  • the vapor chamber dissipates heat
  • the area close to the main heat source (such as the battery area, charging chip area) is the evaporation area
  • the area close to the AP application processor is the condensation area
  • the condensation area is relatively small.
  • the vapor chamber provided in the specific implementation mode of this application can be directly applied to this scenario without redesigning the hardware.
  • the condensation zone and the evaporation zone are relative scenarios with no absolute boundaries.
  • the thermal performance design challenge of the vapor chamber is mainly when the evaporation zone is much smaller than the condensation zone and the width of the evaporation zone is much smaller than the width of the condensation zone (ECR ⁇ 0.5).

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Signal Processing (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Human Computer Interaction (AREA)
  • General Physics & Mathematics (AREA)
  • Battery Mounting, Suspending (AREA)

Abstract

一种移动终端,包括中框(20)和均温板(30);所述的均温板(30)固定至所述中框(20),所述均温板(30)包括第一盖板(31)、第二盖板(32)和连接结构(34),所述第一盖板(31)和所述第二盖板(32)之间形成工作腔(33),所述连接结构(34)位于所述工作腔(33)内,所述连接结构(34)和所述第一盖板(31)固定连接,所述连接结构(34)和所述第二盖板(32)固定连接,所述第二盖板(32)的外表面的平面度具有定向正公差,所述连接结构(34)和所述第二盖板(32)的连接位置为所述第二盖板(32)的外表面的平面度的峰值区域(R),所述定向正公差为:位于所述窗口(W)内的所述均温板(30),从所述第二盖板(32)的外边缘到所述连接结构(34)的位置,所述第二盖板(32)的外表面整体上具有外凸变形的趋势;所述的第二盖板(32)的外表面的平面度为定向正公差,实现高可靠性超薄均温板和移动终端的薄型化散热设计,保障移动终端的电池(40)的安全性和显示屏(10)的可靠性。

Description

移动终端、均温板和均温板的制作方法 技术领域
本申请涉及终端技术领域,尤其涉及一种移动终端、均温板和均温板的制作方法。
背景技术
在终端设备如手机、平板、笔记本、PC、大屏等等中,电子器件发热功率随着产品迭代逐渐提升,然而设备的整体尺寸、厚度却向着紧凑、小巧的方向发展,导致热量积聚在设备内部无法及时散去,使之温度上升,不仅影响了用户体验,而且有可能导致器件高温损坏。因此业界亟需各种高效的散热方案以解决终端设备散热的问题。
均温板(vapor chamber,VC)是一种内部带有微纳吸液芯结构且注入有流体工质的腔体,被广泛用于电子产品进行散热。具体地,均温板内的流体工质在小面积发热源处可吸收热量形成蒸气,从而快速传导至大面积的散热面,达到高效散热的目的,蒸气冷凝为液体后可利用吸液芯结构的毛细力回流至发热源,再次进行蒸发吸热。
以手机为例的移动终端内,中框用于组装显示屏、电池等器件,由于很多的电子器件(例如:摄像头模组、天线模组、有线/无线快充模组)功耗增大,所需要的电池容量也应随之增大,这样电池的在手机内所占的面积可达50%以上,在有限的空间内散热挑战也越来越严峻,兼顾电池的案全和可靠性,如何合理利用电池冷区设置均温板,并努力实现移动终端的薄型化设计成为行业的难题。如果超薄VC作为承重件,必须有远高于常规铜合金VC的硬度、刚度和强度,才能保证超薄VC薄壁下,内真空和使用跌落受力中不发生凹陷、褶皱变形等,若均温板的硬度、刚度和强度不足,不仅丧失VC热性能,还可能影响屏可靠性和电池安全。
发明内容
本申请实施例提供一种移动终端、均温板和均温板的制作方法,能够实现移动终端的薄型化的设计的同时,即能保证均温板的强度,又能保证均温板和显示屏、电池及其它器件之间的配合的安全可靠性。
为此,本申请的实施例采用如下技术方案:
第一方面,本申请实施例提供一种移动终端,包括显示屏、中框、均温板和电池。中框包括第一表面、第二表面和贯通所述第一表面和第二表面的窗口;均温板固定至所述中框,且至少部分所述均温板位于所述窗口中,所述均温板包括第一盖板、第二盖板和连接结构,所述第一盖板和所述第二盖板之间形成工作腔,所述连接结构位于所述工作腔内,所述连接结构和所述第一盖板固定连接,所述连接结构和所述第二盖板固定连接,所述第二盖板的外表面的平面度具有定向正公差,所述连接结构和所述第二盖板的连接位置为所述第二盖板的外表面的平面度的峰值区域,所述定向正公差为:位于所述窗口内的所述均温板,从所述第二盖板的外边缘到所述连接结构的位置,所述第二盖板的外表面整体上具有外凸变形的趋势;显示屏位于所述第一盖板远离所述第二盖板的一侧;电池位于所述第二盖板远离所述第一盖板的一侧。
由于连接结构固定连接第一盖板和第二盖板,通过第二盖板外表面的平面度的约束,可以限定第一盖板的外表面的平面度。本申请需要将均温板朝向显示屏的表面的平面度设定在 较小的平面度范围内,具体而言,均温板朝向显示屏的表面的平面度小于均温板和显示屏之间的组装间隙。组装间隙或以理解为:中框上的第一安装面用于安装显示屏,第二安装面用于安装均温板,通过均温板尺寸、第一安装面的位置及第二安装面的位置可以确定显示屏和均温板之间的组装间隙。本申请实施方式通过控制均温板朝向显示屏的外表面的平面度,从均温板的制作工艺、移动终端的组装工艺角度来看,均具有易于加工制作,容易实现精确的组装良率,还能合理控制显示屏和均温板之间的间隙尺寸,利于移动终端的薄型化设计。
一种可能的实施方式中,所述连接结构和所述第一盖板一体成型,所述连接结构包围形成连接凹槽,所述连接凹槽的开口位置位于所述第一盖板的外表面。本方案通过将连接结构和第一盖板设置为一体成型架构,且通过设置连接结构在第一盖板外表面形成凹槽,此凹槽可以在均温板整形的过程中与整形治具配合,凹槽不但作为连接结构在均温板外表面的位置标示,还可以与整形治具配合,使得本方案具有结构简单,节约成本的优势。
一种可能的实施方式中,所述连接结构包括底壁和侧壁,所述侧壁连接在所述底壁和所述第一盖板之间,所述底壁位于所述连接凹槽的底部,所述连接凹槽的底部和所述连接凹槽的开口位置沿第一方向相对设置,所述第一方向为所述显示屏、所述均温板和所述电池层叠设置的方向,所述底壁和所述第二盖板固定连接。本方案提供一种具体的连接结构的设计方案,可以通过压铸工艺与第一盖板一体成型,易于制作。
一种可能的实施方式中,所述连接结构和所述第二盖板之间通过焊接的方式固定。具体而言,底壁和第二盖板之间的焊接结构为较大面积的钎焊连接,钎焊连接的大面积可以理解为:相对点焊而言,底壁和第二盖板之间的焊接面积大于点焊方式的焊接面积。如果底壁和第二盖板之间的焊接为点焊,点焊的定位作用容易受外力影响产生变形,连接可靠性较差,连接结构和第二盖板之间的受力不能更好的结合,也就是说,连接结构不能参与第二盖板的受力支撑作用。本申请通过较大面积的钎焊固定,可以使得连接结构和第二盖板之间连接更可靠、更稳定。
一种可能的实施方式中,所述第二盖板包括层叠设置的第一材料层和第二材料层,所述第一材料层的焊接温度低于所述第二材料层的焊接温度,所述第二材料层的软化温度高于所述第一材料层的焊接温度,所述第一材料层用于第一盖板与第二盖板的密封焊接;和/或与所述连接结构和所述第一盖板焊接固定。所述第二材料层位于所述第一材料层背离所述第一盖板的一侧。具体而言,连接结构和第二盖板之间的焊接采用低温焊的方式,具体而言,焊接温度小于等于850摄氏度,限定低温焊的方式的好处在于:可以保证均温板的性能和强度,经焊接等均温板高温制程后,均温板的材料不容易出现高温退火导致的强度降低问题。本方案可以保证均温板的性能和强度。
一种可能的实施方式中,所述第二材料层为具有氮元素的不锈钢材料;或者,所述第二材料层为钛合金材料。第二材料层具有强度高的性能,主要用于支撑承重的作用。
一种可能的实施方式中,所述氮元素的含量∈[0.03wt.%,5wt.%]。本方案通过限制氮元素的含量能够获得强度较高的均温板,且能够保证制作工艺的良率和制作成本。
一种可能的实施方式中,所述第一盖板的外表面的平面度为:大于等于-0.1mm且小于等于0.05mm。本方案通过限定第一盖板的外表面的平度面,可以获得可靠性更好的移动终端,有利于保证显示屏的可靠性和安全性。
一种可能的实施方式中,所述第二盖板的外表面的平面度为:大于等于0.1mm且小于等于0.3mm。本方案通过限定第二盖板的平面度,可以获得均温板整体的形态,对于整形工艺而言,具有易于实现的优势。
一种可能的实施方式中,所述工作腔包括蒸发区和冷凝区,所述工作腔内设毛细通道和蒸气通道,所述毛细通道和所述蒸气通道均从所述蒸发区延伸至所述冷凝区,至少部分所述连接结构设置在所述冷凝区,所述连接结构位于所述蒸气通道中。本申请限定了连接结构在均温板内的具体的位置,将连接结构设置在冷凝区,可以提升冷凝区的强度,冷凝区用于支撑电池,能够更好地匹配均温板在移动终端内的组装环境。
一种可能的实施方式中,从所述蒸发区向所述冷凝区延伸的方向为所述均温板的长度方向,所述均温板的宽度方向垂直于所述长度方向,所述蒸发区在所述宽度方向上的尺寸和所述冷凝区在所述宽度方向上的尺寸之间的比值小于等于0.5,在所述冷凝区,所述毛细通道包括多根并排且间隔设置的第一子通道,所述蒸气通道包括多根并排且间隔设置的第二子通道,多根所述第二子通道一一对应地设置在相邻的所述第一子通道的之间,所述连接结构设置在所述第二子通道内。本方案可以增加蒸发区的储液量,也可以增加毛细通道与蒸汽通道的接触面积,有助于提升均温板运行的热性能。冷凝区的毛细通道使用了柳树枝叶型的结构设计,针对并行架构的毛细,增加了毛细通道与蒸汽通道的接触面积,有助于冷凝液的回流。
一种可能的实施方式中,所述第一子通道和所述第二子通道的一端连接主毛细通道,所述第一子通道和所述第二子通道的末端为所述第一子通道和所述第二子通道远离所述主毛细通道的一端,末端朝向相同的所述第一子通道中的液体回流方向和相邻的第二子通道中的蒸气流动方向一致。本申请通过末端朝向相同的第一子通道的液体回流方向和相邻的第二子通道中的蒸气流动方向一致的设计,可以降低阻抗,提升散热效率。
一种可能的实施方式中,所述均温板的厚度方向为所述第一盖板和所述第二盖板之间的层叠设置的方向,所述均温板的水平截面为垂直于所述均温板的厚度方向的截面,在所述均温板的水平截面上,每根所述第一子通道的延伸方向均为所述均温板的长度方向,所述连接结构的截面形状包括长条形。本方案通过限定连接结构的具体的形态,可以获得较大面积的连接结构,有助于提升均温板的强度。
一种可能的实施方式中,所述连接结构的数量为一个,在所述均温板的宽度方向上,所述连接结构位于所述工作腔的中心位置;或者,
所述连接结构的数量为偶数个,在所述均温板的宽度方向上,所述连接结构分布在所述工作腔的中心位置的两侧;或者,
所述连接结构的数量为三个或大于三个的奇数,在所述均温板的宽度方向上,其中一个所述连接结构位于所述工作腔的中心位置,其余的所述连接结构分布在所述工作腔的中心位置的两侧。本申请根据不同的均温板的尺寸及组装环境的需求设置连接结构的数量和具体的位置,可见均温板可以适应不同的使用环境,可以匹配不同的电子设备。
一种可能的实施方式中,在所述冷凝区,所述蒸气通道所对应的所述第一盖板的内表面为亲水层结构。通过对所述第一盖板的内表面改性处理形成所述第一亲水层,本方案可以解决第一盖板的结冰鼓胀的问题,由于第一盖板邻近显示屏,本方案可以提升显示屏的安全可靠性。
一种可能的实施方式中,在所述冷凝区,所述蒸气通道所对应的所述第二盖板的内表面为亲水层结构。通过对所述第二盖板的内表面改性处理形成所述第二亲水层,本方案可以解决第二盖板的结冰鼓胀的问题,第二盖板邻近电池且用于承载电池,本方案能够保证电池安装环境,提升电池性能的稳定性。
一种可能的实施方式中,在所述工作腔内,所述连接结构的表面为疏水层结构。本方案可以使蒸气通道内的工质更快地进入毛细通道,能避免结冰鼓胀。
一种可能的实施方式中,在所述冷凝区,所述蒸气通道所对应的所述第一盖板的内表面为疏水层结构,所述连接结构的表面为疏水层结构。
一种可能的实施方式中,所述均温板包括多个加强柱,所述加强柱设于所述工作腔内,所述加强柱与所述第一盖板和所述第二盖板中的一个固定连接为一体,所述加强柱与所述第一盖板和所述第二盖板中的另外一个接触或保持间隙设置,所述连接结构的数量为至少一个,各所述连接结构与所述第一盖板或所述第二盖板之间的连接面积为第一面积,各所述加强柱与所述第一盖板或所述第二盖板之间的连接面积为第二面积,所述第一面积为所述第二面积的二倍以上。加强柱的设置用于保证均温板内的工作腔的毛细通道和蒸气通道的尺寸,也可以提升均温板的强度。通过将加强柱和连接结构结合设置在一个均温板内部,可以获得高强度的均温板的同时保证均温板的热性能。
一种可能的实施方式中,所述电池的全部或大部(≥60%),在所述均温板的覆盖范围内。本方案限定了均温板和电池之间的组装关系,均温板具有足够高的强度和刚度,能够承担支撑电池功能。
第二方面,本申请实施例提供一种均温板,包括第一盖板、第二盖板和连接结构,所述第一盖板和所述第二盖板之间形成工作腔,所述连接结构位于所述工作腔内,所述连接结构和所述第一盖板固定连接,所述连接结构和所述第二盖板固定连接,所述第二盖板的外表面的平面度具有定向正公差,所述连接结构和所述第二盖板的连接位置为所述第二盖板的外表面的平面度的峰值区域;所述定向正公差为从所述第二盖板的外边缘到所述连接结构的位置,所述第二盖板的外表面整体上具有外凸变形的趋势。
本申请提供的均温板具有高强度的优势,而且通过对均温板的第二盖板的平面度的限制,可以满足均温板在移动终端内的组装环境,从均温板的制作工艺、移动终端的组装工艺角度来看,均具有易于加工制作,容易实现精确的组装良率,还能合理控制显示屏和均温板之间的间隙尺寸,利于移动终端的薄型化设计。
一种可能的实施方式中,所述连接结构和所述第一盖板一体成型,所述连接结构包围形成连接凹槽,所述连接凹槽的开口位置位于所述第一盖板的外表面。本方案通过将连接结构和第一盖板设置为一体成型架构,且通过设置连接结构在第一盖板外表面形成凹槽,此凹槽可以在均温板整形的过程中与整形治具配合,凹槽不但作为连接结构在均温板外表面的位置标示,还可以与整形治具配合,使得本方案具有结构简单,节约成本的优势。
一种可能的实施方式中,所述连接结构包括底壁和侧壁,所述侧壁连接在所述底壁和所述第一盖板之间,所述底壁位于所述连接凹槽的底部,所述连接凹槽的底部和所述连接凹槽的开口位置沿第一方向相对设置,所述第一方向为移动终端内的显示屏、所述均温板和电池层叠设置的方向,所述底壁和所述第二盖板固定连接。本方案提供一种具体的连接结构的设计方案,可以通过压铸工艺与第一盖板一体成型,易于制作。
一种可能的实施方式中,所述底壁和所述第二盖板之间通过焊接的方式固定。具体而言,底壁和第二盖板之间的焊接结构为较大面积的钎焊连接,钎焊连接的大面积可以理解为:相对点焊而言,底壁和第二盖板之间的焊接面积大于点焊方式的焊接面积。如果底壁和第二盖板之间的焊接为点焊,点焊的定位作用容易受外力影响产生变形,连接可靠性较差,连接结构和第二盖板之间的受力不能更好的结合,也就是说,连接结构不能参与第二盖板的受力支撑作用。本申请通过较大面积的钎焊固定,可以使得连接结构和第二盖板之间连接更可靠、更稳定。
一种可能的实施方式中,所述第二盖板包括层叠设置的第一材料层和第二材料层,所述 第一材料层的焊接温度低于所述第二材料层的焊接温度,所述第二材料层的软化温度高于所述第一材料层的焊接温度,所述第一材料层用于与所述连接结构和所述第一盖板焊接固定,所述第二材料层位于所述第一材料层背离所述第一盖板的一侧。具体而言,第一盖板和第二盖板的密封焊接,及连接结构和第二盖板之间的焊接采用低温焊的方式,具体而言,焊接温度小于等于850摄氏度,限定低温焊的方式的好处在于:可以保证均温板的性能和强度,经焊接等均温板高温制程后,均温板的材料不容易出现高温退火导致的强度降低问题。本方案可以保证均温板的性能和强度。
一种可能的实施方式中,所述第二材料层为具有氮元素的不锈钢材料;或者,所述第二材料层为钛合金材料。第二材料层具有强度高的性能,主要用于支撑的作用。
一种可能的实施方式中,所述氮元素的含量∈[0.03wt.%,5wt.%]。本方案通过限制氮元素的含量能够获得强度较高的均温板,且能够保证制作工艺的良率和制作成本。
一种可能的实施方式中,所述第一盖板的外表面的平面度为:大于等于-0.01mm且小于等于-0.1mm。本方案通过限定第一盖板的外表面的平度面,可以获得可靠性更好的移动终端,有利于保证显示屏的可靠性和安全性。
一种可能的实施方式中,所述第二盖板的外表面的平面度为:大于等于0.1mm且小于等于0.3mm。本方案通过限定第二盖板的平面度,可以获得均温板整体的形态,对于整形工艺而言,具有易于实现的优势。
一种可能的实施方式中,所述工作腔包括蒸发区和冷凝区,所述工作腔内设毛细通道和蒸气通道,所述毛细通道和所述蒸气通道均从所述蒸发区延伸至所述冷凝区,至少部分所述连接结构设置在所述冷凝区,所述连接结构位于所述蒸气通道中。本申请限定了连接结构在均温板内的具体的位置,将连接结构设置在冷凝区,可以提升冷凝区的强度,冷凝区用于支撑电池,能够更好地匹配均温板在移动终端内的组装环境。
一种可能的实施方式中,从所述蒸发区向所述冷凝区延伸的方向为所述均温板的长度方向,所述均温板的宽度方向垂直于所述长度方向,所述蒸发区在所述宽度方向上的尺寸和所述冷凝区在所述宽度方向上的尺寸之间的比值小于等于0.5,在所述冷凝区,所述毛细通道包括多根并排且间隔设置的第一子通道,所述蒸气通道包括多根并排且间隔设置的第二子通道,多根所述第二子通道一一对应地设置在相邻的所述第一子通道的之间,所述连接结构设置在所述第二子通道内。本方案可以增加蒸发区的储液量,也可以增加毛细通道与蒸汽通道的接触面积,有助于提升均温板运行的热性能。冷凝区的毛细通道使用了柳树枝叶型的结构设计,针对并行架构的毛细,增加了毛细通道与蒸汽通道的接触面积,有助于冷凝液的回流。
一种可能的实施方式中,所述均温板的厚度方向为所述第一盖板和所述第二盖板之间的层叠设置的方向,所述均温板的水平截面为垂直于所述均温板的厚度方向的截面,在所述均温板的水平截面上,每根所述第一子通道的延伸方向均为所述均温板的长度方向,且所述连接结构的截面形状包括长条形。本方案通过限定连接结构的具体的形态,可以获得较大面积的连接结构,有助于提升均温板的强度。
一种可能的实施方式中,所述连接结构的数量为一个,在所述均温板的宽度方向上,所述连接结构位于所述工作腔的中心位置;或者,所述连接结构的数量为偶数个,在所述均温板的宽度方向上,所述连接结构分布在所述工作腔的中心位置的两侧;或者,所述连接结构的数量为三个或大于三个的奇数,在所述均温板的宽度方向上,其中一个所述连接结构位于所述工作腔的中心位置,其余的所述连接结构分布在所述工作腔的中心位置的两侧。本申请根据不同的均温板的尺寸及组装环境的需求设置连接结构的数量和具体的位置,可见均温板 可以适应不同的使用环境,可以匹配不同的电子设备。
一种可能的实施方式中,所述蒸气通道所对应的所述第一盖板包括第一主体层和第一亲水层,通过对所述第一盖板的内表面改性处理形成所述第一亲水层;和/或,在所述冷凝区,所述蒸气通道所对应的所述第二盖板包括第二主体层和第二亲水层,通过对所述第二盖板的内表面改性处理形成所述第二亲水层。通过对所述第一盖板的内表面改性处理形成所述第一亲水层,本方案可以解决第一盖板的结冰鼓胀的问题,由于第一盖板邻近显示屏,本方案可以提升显示屏的安全可靠性。通过对所述第二盖板的内表面改性处理形成所述第二亲水层,本方案可以解决第二盖板的结冰鼓胀的问题,第二盖板邻近电池且用于承载电池,本方案能够保证电池安装环境,提升电池性能的稳定性。
一种可能的实施方式中,在所述工作腔内,所述连接结构的表面为疏水层结构。本方案可以使蒸气通道内的工质更快地进入毛细通道,能避免结冰鼓胀。
一种可能的实施方式中,在所述冷凝区,所述蒸气通道所对应的所述第一盖板的内表面为疏水层结构,所述连接结构的表面为疏水层结构。
一种可能的实施方式中,所述均温板包括多个加强柱,所述加强柱设于所述工作腔内,所述加强柱与所述第一盖板和所述第二盖板中的一个固定连接为一体,所述加强柱与所述第一盖板和所述第二盖板中的另外一个接触或保持间隙设置,所述连接结构的数量为至少一个,各所述连接结构与所述第一盖板或所述第二盖板之间的连接面积为第一面积,各所述加强柱与所述第一盖板或所述第二盖板之间的连接面积为第二面积,所述第一面积为所述第二面积的二倍以上。加强柱的设置用于保证均温板内的工作腔的毛细通道和蒸气通道的尺寸,也可以提升均温板的强度。通过将加强柱和连接结构结合设置在一个均温板内部,可以获得高强度的均温板的同时保证均温板的热性能。
第三方面,本申请实施例提供一种均温板的制作方法,包括如下步骤:
提供均温板,所述均温板包括第一盖板、第二盖板和连接结构,所述第一盖板和所述第二盖板之间形成工作腔,所述连接结构位于所述工作腔内,所述连接结构和所述第一盖板及所述第二盖板之间均固定连接;
对所述均温板进行整形,整形的过程中,对所述连接结构的位置施力,使得所述均温板变形,使得,所述第二盖板的外表面的平面度具有定向正公差,所述连接结构和所述第二盖板的连接位置为所述第二盖板的外表面的平面度的峰值区域;所述定向正公差为从所述第二盖板的外边缘到所述连接结构的位置,所述第二盖板的外表面整体上具有外凸变形的趋势。
本申请通过连接结构固定连接在第一盖板和第二盖板之间,不但可以提高均温板的强度,且连接结构用于与整形治具配合对均温板进行整形,能提升显示屏和电池的可靠性。在整形的过程中,整形治具施力至第一盖板上,由于第一盖板和第二盖板通过连接结构固定,第一盖板和第二盖板均受整形治具的力的作用产生变形。一方面,可以保证第一盖板和第二盖板具有相同的变形趋势,例如:经过整形后的第一盖板的外表面的平面度可以控制在0.05mm以下,即小于等于0.05mm,这种结构形态下的第一盖板的外表面没有较大的突出部分,符合第一盖板和显示屏之间组装间隙的要求。由于显示屏固定在第一盖板的外表面的一侧,本方案通过对第一盖板的外表面的平面度的控制,有利于显示屏的安全性和稳定可靠性,在移动终端受到温度变化(温度变化会导致显示屏或中框产生变形)或其它外力作用的情况(例如移动终端在跌落或受撞击、或组装过程中出现的外力会导致移动终端部分结构产生变形)下,显示屏和第一盖板之间仍然可以保证可靠的位置有关系,显示屏不会受到第一盖板的外表面的顶持力而导致显示屏受损。另一方面,通过连接结构固定连接第一盖板和第二盖板,第一 盖板和第二盖板在整形的过程中可以同步变形,可以保证均温板的工作腔能够保持合适的尺寸,例如将工作腔的厚度设计在合格的范围内,以满足蒸气通道和毛细通道的正常工作要求,本申请在针对均温板整形的过程中,工作腔的厚度的基本保持不变,或者厚度的变化空间在允许范围内,仍然可以满足蒸气通道和毛细通道的正常工作要求。
一种可能的实施方式中,所述连接结构和所述第一盖板为一体成型的结构,所述连接结构包围形成连接凹槽,所述连接凹槽的开口位置位于所述第一盖板的外表面,对所述均温板进行整形的步骤包括:
提供治具,所述治具包括支撑座和压盖,所述支撑座用于承载所述均温板,所述第二盖板固定在所述支撑座上,所述压盖包括整形柱,所述整形柱伸入所述连接凹槽内,并抵压所述连接凹槽的底部,通过所述压盖施加所述第一盖板抵压力,使得所述均温板变形。
一种可能的实施方式中,对所述均温板进行整形的过程中,所述压盖和所述第一盖板的外表面接触。本方案可以通过压盖约束第一盖板的变形,避免第一盖板在整形过程下外凸。
第四方面,本申请实施例提供一种移动终端,包括:
中框,包括第一表面、第二表面和贯通所述第一表面和第二表面的窗口;
均温板,固定至所述中框,且至少部分所述均温板位于所述窗口中,所述均温板包括第一盖板、第二盖板和连接结构,所述第一盖板和所述第二盖板之间形成工作腔,所述工作腔内设毛细通道、蒸气通道和工质,所述毛细通道和所述蒸气通道用于在蒸发区和冷凝区之间输送所述工质,所述连接结构位于所述工作腔内,所述连接结构和所述第一盖板固定连接,所述连接结构和所述第二盖板固定连接,所述第二盖板包括层叠设置的第一材料层和第二材料层,所述第一材料层的焊接温度低于所述第二材料层的焊接温度,所述第二材料层的软化温度高于所述第一材料层的焊接温度,所述第一材料层用于与所述连接结构和所述第一盖板焊接固定,所述第二材料层位于所述第一材料层背离所述第一盖板的一侧;
显示屏,位于所述第一盖板远离所述第二盖板的一侧;
电池,位于所述第二盖板远离所述第一盖板的一侧。
本方案通过连接结构的设置,以及第二盖板为复合材料的设置,使得均温板具有较高的强度。
一种可能的实现方式中,所述第二材料层为具有氮元素的不锈钢材料;或者,所述第二材料层为钛合金材料。
一种可能的实现方式中,所述氮元素的含量∈[0.03t.%,5t.%]。
一种可能的实现方式中,所述第二材料层的厚度大于所述第一材料层的厚度。
一种可能的实现方式中,所述第二材料层通过电镀的方式形成在所述第一材料层的表面。
一种可能的实现方式中,所述第二材料层和所述第一材料层之间设有电镀打底层M4。
一种可能的实现方式中,所述第二盖板还包括第三材料层,所述第三材料层的焊接温度低于所述第二材料层的焊接温度,所述第三材料层位于所述第二材料层背离所述第一材料层的一侧。
第四方面的各种可能的实现方式所具有的有益效果及细节分析可以参见第一方面的相应的具体的可能的实现方式部分的描述。
本申请的其他具体的实施方式和有益效果将在随后的具体实施例部分予以详细说明。
附图说明
下面对实施例或现有技术描述中所需使用的附图作简单地介绍。
图1是本申请一种实施方式提供的移动终端的立体分解示意图;
图2是本申请一种实施方式提供的移动终端的平面分解示意图;
图3是本申请一种实施方式提供的移动终端的平面分解示意图;
图4是本申请一种实施方式提供的均温板的剖面图;
图5是本申请一种实施方式提供的均温板的剖面图;
图6是本申请一种实施方式提供的均温板的剖面图;
图7是本申请一种实施方式提供的均温板的剖面图;
图8A是本申请一种实施方式提供的均温板的第二盖板固定连接一个连接结构的情况下的变形趋势示意图;
图8B是本申请一种实施方式提供的均温板的第二盖板固定连接两个连接结构的情况下的变形趋势示意图;
图8C是本申请一种实施方式提供的均温板的第二盖板固定连接三个连接结构的情况下的变形趋势示意图;
图9是本申请一种实施方式提供的均温板中的连接结构和加强柱的分布和基本形态的示意图;
图10是本申请一种实施方式提供的均温板中的连接结构和加强柱的分布和基本形态的示意图;
图11是本申请一种实施方式提供的均温板中的连接结构的分布和基本形态的示意图;
图12是本申请一种实施方式提供的均温板中的连接结构的分布和基本形态的示意图;
图13是本申请一种实施方式提供的均温板中的第二盖板的剖面图;
图14是本申请一种实施方式提供的均温板中的第二盖板的剖面图;
图15是本申请一种实施方式提供的均温板的示意图;
图16A是本申请一种实施方式提供的均温板的示意图;
图16B是本申请一种实施方式提供的均温板的示意图;
图16C是本申请一种实施方式提供的均温板的示意图;
图17是本申请一种实施方式提供的均温板的示意图;
图18是本申请一种实施方式提供的均温板的示意图;
图19是本申请一种实施方式提供的均温板的示意图;
图20是本申请一种实施方式提供的均温板的示意图;
图21是本申请一种实施方式提供的均温板的示意图;
图22是本申请一种实施方式提供的均温板的示意图;
图23是本申请一种实施方式提供的均温板的示意图;
图24是均温板内固体表面为疏水层及亲水层的情况下,液体在固定体面的状态示意图;
图25示意性地表达了在连接结构的表面为疏水层、第一盖板和第二盖板内表面为亲水层的情况下,液滴在工作腔内的变化过程;
图26是本申请一种实施方式提供的均温板的制作方法中的整形过程的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。
在本申请的描述中,术语“中心”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示的方位或位置关系为基于附图所示的方位或位置关系, 仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如可以是固定连接,也可以是可拆卸连接,还可以是抵触连接或一体的连接;对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以适合的方式结合。
本申请通过将均温板和移动终端的中框结合,实现散热及承载双功能,实现移动终端的薄型化设计。本申请提供的移动终端可以为但不限于:手机、平板电脑、笔记本电脑,及相关的具备散热功能的模块、结构件、功能件等等。
图1是本申请一种实施方式提供的移动终端的立体分解示意图,移动终端包括显示屏10、中框20、均温板30、电池40、电路板50和后壳60。中框20用于组装显示屏10、均温板30、电池40及电路板50。中框20包括相对设置的第一表面S1和第二表面S2和连接在第一表面S1和第二表面S2之间的外侧面S3,显示屏10从第一表面S1的一侧组装至中框20,显示屏10和中框20之间可以设置石墨散热片、石墨烯导热膜、铜模等散热膜材201,中框20还连接安装定位结构202,安装定位结构202用于组装均温板30。电池40从第二表面S2的一侧组装至中框20,第二表面S2也可以用于安装主板或其它电子器件,例如摄像头模组、天线模组等等。一种实施方式中,外侧面S3可以作为移动终端的外表面,外侧面S3连接在显示屏10的边缘和后壳60的边缘之间。一种实施方式中,外侧面S3也可以被后壳60遮挡,即后壳60的边缘与显示屏10的边缘对接。中框20还设有贯通所述第一表面S1和第二表面S2的窗口W。窗口W的面积可以大于电池40的面积。此窗口W用于安装均温板30,具体而言,均温板30可以完全收容在窗口W内部,其它实施方式中,也可以只有部分均温板30收容在窗口W中,还有部分均温板30位于窗口W之外。均温板30和中框20之间可以通过胶结构203连接,可以辅助螺钉、铆钉、激光点焊等其他连接定位方式。位于窗口W内的均温板30和电池40对应设置,对于窗口W之外的均温板30可以和电路板50上的发热器件对应设置。位于窗口W内的均温板30的面积较大,位于窗口W外的均温板30的面积较小,例如,位于窗口W内的均温板30的面积是位于窗口W之外的均温板30面积的二倍或大于二倍。显示屏10、中框20和电池40层叠的方向为第一方向,第一方向也可以理解为移动终端的厚度方向,在第一方向上,电池40在均温板30的覆盖范围内,即电池40组装在均温板30的表面,电池40的全部或大部(≥60%),在均温板30上的垂直投影位于均温板30的内部。本方案限定了均温板和电池之间的组装关系,均温板具有足够高的强度和刚度,能够承担支撑电池功能。
本申请通过将均温板30和中框20固定连接,二者结合共同承担移动终端的承载功能。一种实施方式中,均温板30从显示屏10的一侧组装至中框20的窗口W处。参阅图2,图2为本申请一种实施方式提供的移动终端的一个截面上的分解示意图,在此截面上,中框20的窗口W呈台阶孔状,窗口W包括相连通的第一段W1和第二段W2,第一段W1的尺寸大于第二段W2的尺寸,第一段W1位于第二段W2和第一表面S1之间,第二段W2位于第一段W1和第二表面S2之间。本实施方式中,均温板模组的截面形状与窗口W的截面形状一致,均温板30从第一表面S1的一侧安装至窗口W中。均温板30和中框20之间的固定方式可以为焊接、粘接、铆接、螺丝固定、金属包胶注塑中的任意一种或多种的组合。另一种实施方式中,均温板30从电池40的一侧组装至中框20的窗口W处。参阅图3,图3为本申请一种实施方式提供的移动终端的一个截面上的分解示 意图,在此截面上,中框20的窗口W呈台阶孔状,窗口W包括相连通的第一段W1和第二段W2,第一段W1的尺寸小于第二段W2的尺寸,第一段W1位于第二段W2和第一表面S1之间,第二段W2位于第一段W1和第二表面S2之间。本实施方式中,均温板30的截面形状与窗口W的截面形状一致,均温板30从第二表面S2的一侧安装至窗口W中。
参阅图2和图3,一种实施方式中,所述电池40通过背胶固定连接至所述均温板30。电池40背离均温板30的一侧设有导热膜70。可以理解为:移动终端上的发热元件(例如电路板50上的发热器件52、电池40)位于均温板30和导热膜70之间,构成夹心散热的方式,这种方式散热效率高,可以实现快速导热,解决了移动终端发热的问题。具体而言,导热膜70可以为石墨烯材料(例如石墨烯膜)或较薄的均温板模组的结构(也可以为薄膜状的均温板),由于导热膜70不需要具有承重功能,无需强度及刚度的要求,为了移动终端的薄型化的设计,可以将其设置为薄膜状架构。
导热膜70可以为不规则形状,或无固定外形结构,或柔性结构,这样可以匹配移动终端内不同的器件,例如无线充电器件、天线、NFC等。
一种实施方式中,电路板50上的发热器件52可以为AP应用处理器、电源管理芯片、充电器件等主要发热器件。移动终端内的电路板50的数量可以为一个或多个(包括两个),例如两个电路板50分布在电池40的两侧,其中一个电路板50设置在移动终端的顶部,另一个设置在移动终端的底部。移动终端内的电池40的数量也可以为一个或两个。
一种实施方式中,所述移动终端还包括无线充电线圈80,所述无线充电线圈80位于所述导热膜70背离所述电池40的一侧,无线充电线圈80可以固定在后壳60的内表面。
不管从哪个方向将均温板30组装于中框20(可以理解为伸入电池仓的承重均温板),均温板30都可以具有承载电池40的功能。均温板利用内真空两相散热,其导热系数可达5000W/m-K以上,但对伸入电池仓的承重均温板,其厚度≤0.5mm,均温板的厚度超薄,若均温板的强度、刚度、硬度不足,在移动终端的使用过程中,如遇跌落情况,均温板会产生结构变形,平面度改变,均温板内部的蒸汽通道或毛细结构受损,这样均温板就无法正常工作,导热系数会下降甚至成为不锈钢导热系数15W/m-K。平面度改变后的均温板,其结构上可能会顶到其他部件,如屏幕,甚至引起电池安全事故。所以,本申请提供的均温板需要满足结构上中框所需要的高强度、高刚度、高平面度要求,才能保持移动终端的超薄高散热性能。因此本申请对均温板30的强度、刚度等性能及平面度均有要求。均温板30的具体描述如下。
图4和图5所示为两种串行架构均温板的剖面示意图,图4中的均温板的蒸发区301的厚度比冷凝区302域的厚度大,构成2.5D架构,图5的均温板为平板状。图6和图7所示为两种并行架构的均温板。参阅图4、图5、图6和图7,均温板30包括第一盖板31和第二盖板32,第一盖板31和第二盖板32互连且二者之间构成工作腔33。具体而言,第一盖板31和第二盖板32可以通过密封焊接的方式连接,且围成均温板内部的工作腔33,对工作腔33抽穿越保持负压,注入冷却工质。制作第一盖板31和第二盖板32的过程中,就在第一盖板31和第二盖板32的表面形成连接结构34、加强柱36及毛细通道35(又称为毛细吸液芯,即工作腔33内的毛细结构,是冷却液体流动的主要通道)。图4、图5所示的实施方式中的加强柱36、连接结构34为冲压而成。
参阅图4,一种具体的实施方式中,第一盖板31包括第一主体311和第一边缘312,第一边缘312位于第一主体311的外围,第一主体311相对第一边缘312弯折延伸,第一主体311包围形成收容空间。第二盖板32包括第二主体321和第二边缘322,第一边缘312和第二边缘322对接共同构成均温板30的裙边。具体而言,第一边缘312和第二边缘322之间通过焊接方式密封固 定连接。第一主体311和第二主体312共同包围形成工作腔33。
如图6和图7所示,第二盖板32呈平板状结构,即第二主体321和第二边缘322共面。图6、图7所示的实施方式中的加强柱36、连接结构34为蚀刻而成。
均温板30通过将小面积发热源的热量快速传导至大面积的散热面,从而达到高效散热的目的。其工作机理在于利用了流体工质沸腾吸热、冷凝放热的特点,实现了将热端的热量,通过蒸气流动,快速输送至冷端的效果。具体而言,参阅图4,工作腔33为密封腔体,工作腔33包括蒸发区301和冷凝区302。工作腔33内设毛细通道35、蒸气通道37和工质。工质可以为纯水、甲醇、乙醇等。毛细通道35和蒸气通道37均从蒸发区301延伸至冷凝区302。毛细通道35和蒸气通道37用于在蒸发区301和冷凝区302之间输送所述工质。毛细通道35和蒸气通道37在物理上直接接触或连接,以实现工质的气液两相转化。移动终端内的热源和蒸发区301对应设置,具体而言,热源可以为移动终端内电路板上的功率器件、或其它发热器件。热源产生的热量通过热传导的方式进入均温板30,蒸发区301吸收热源的热量,蒸发区301内毛细通道35中的工质液相沸腾相变为气相蒸气。蒸气通过蒸气通道37扩散至冷凝区302,在冷凝区302,蒸气接触至温度较低的工作腔33的内壁时,会迅速凝结成液态工质并释放热量。液态工质通过毛细通道35的毛细力作用返回至蒸发区301。
一种实施方式中,本申请通过在工作腔33内设连接结构34,连接结构34和第一盖板31及第二盖板32之间均为固定连接的关系。连接结构34的设置不但可以提升均温板的强度,还可以调节均温板30的平面度。连接结构34用于与整形治具配合,通过整形治具来调节均温板30的平面度。参阅图8A、图8B和图8C,本申请提供的均温板30的第二盖板32的外表面具有定向正公差,连接结构34和第二盖板32的连接位置为第二盖板32的外表面的平面度的峰值区域R。也就是说,第二盖板32呈外凸的结构,连接结构34位于第二盖板32的凸出量较大的区域。第二盖板32的凸出量:指的是参照第二盖板32的边缘位置,第二盖板32中间区域呈外凸变形趋势。可以理解为,峰值区域R指的是第二盖板32的外表面凸出量较大的区域,当然,连接结构34也可以位于第二盖板32的凸出量最大的位置。所述定向正公差为从所述第二盖板32的外边缘到所述连接结构34的位置,所述第二盖板32的外表面整体上具有外凸变形的趋势。图8A示意性地表达了第二盖板32固定连接一个连接结构34的情况下的变形趋势,图8A所示的情况下,峰值区域R面积较小,连接结构34和第二盖板32的连接位置位于第二盖板32的凸出量最大的位置。图8A中,较大的圆内的部分为较小的圆内的部分的放大示意图,表示在局部的区域,第二盖板32的表面放大状态下,可以看到凹凸不平的结构。图8B示意性地表达了第二盖板32固定连接两个连接结构34的情况下的变形趋势,图8B所示的情况下,峰值区域R的面积大于图8A所示的峰值区域R,两个连接结构34和第二盖板32的连接位置位于峰值区域R内,且两个连接结构34之间的第二盖板32还存在更大的凸出量(大于连接结构34所在位置的凸出量)。图8C示意性地表达了第二盖板32固定连接三个连接结构34的情况下的变形趋势,图8C所示的情况下,峰值区域R的面积大于图8B所示的峰值区域R,三个连接结构34和第二盖板32的连接位置位于峰值区域R内,位于中间的连接结构34与第二盖板32的连接位置为凸出量最大的位置,另两个连接结构34和第二盖板32连接外的凸出量稍小(小于位于中间的连接结构34所在位置的凸出量)。
所述第二盖板32的外表面整体上具有外凸变形的趋势,可以理解为,从外边缘至连接结构34的位置,不考虑某个局部位置的凹凸形态,整体变形的趋势是外凸的。一种实施方式中,从外边缘至连接结构34之间,第二盖板32的外表面可以呈线性变形的趋势,具体的变形曲线可以为具有上升趋势直线状或曲线状。另一种实施方式中,从外边缘至连接结构34之间,针 对第二盖板32的外表面的平面度,允许小范围内的小幅度的凹凸变化,可以理解为,在线性变形趋势的基础上,允许小幅度的震荡,具体的变形曲线可以为具有上升趋势的波浪线或锯齿状线。即,忽略局部位置的凹凸不平的微结构的情况下,本申请提供的均温板的第二盖板32的外表面的整体变形趋势为从外边缘至连接结构34的位置,为逐渐凸出的趋势。
本申请通过至少部分均温板30组装在中框20的窗口W内,均温板30构成中框20的一部分,均温板30不但具有散热的功能,还用于承载电池40。因此,本申请对均温板30的强度具有较高的要求,需要可以承载电池40。而且,由于均温板30位于显示屏10和电池40之间,为了保证显示屏40的安全性和可靠性,对均温板30的平面度亦具有较高的要求。本申请通过限定第二盖板32的外表面具有定向正公差,且连接结构34和第二盖板32连接位置位于第二盖板32外表面的峰值区域R,由于连接结构34固定连接第一盖板31和第二盖板32,通过第二盖板32外表面的平面度的约束,可以限定第一盖板31的外表面的平面度。本申请需要将均温板30朝向显示屏10的表面的平面度设定在较小的平面度范围内,具体而言,均温板30朝向显示屏10的表面的平面度小于均温板30和显示屏10之间的组装间隙。组装间隙或以理解为:中框20上的第一安装面用于安装显示屏10,第二安装面用于安装均温板30,通过均温板30尺寸、第一安装面的位置及第二安装面的位置可以确定显示屏10和均温板30之间的组装间隙。一种具体的实施方式中,均温板30朝向显示屏10的外表面的平面度为大于等于-0.1mm且小于等于0.05mm,将均温板30朝向显示屏10的外表面的平面度控制在此范围内,从均温板30的制作工艺、移动终端的组装工艺角度来看,均具有易于加工制作,容易实现精确的组装良率,还能合理控制显示屏10和均温板30之间的间隙尺寸,利于移动终端的薄型化设计。一种具体的实施方式中,第一盖板31的外表面的平面度为0.05mm。
第二盖板32的外表面的平面度为:大于等于0.1mm且小于等于0.3mm。一种具体的实施方式中,第二盖板32的外表面的平面度为0.25mm。电池40和均温板30之间通过背胶固定连接,背胶一方面用于固定电池40,另一方面,背胶的厚度可以调节电池的组装空间,电池在其组装环境中,需要具备膨胀空间,此膨胀空间用于吸收电池在发生电化学反应的过程中产生的变形。膨胀空间通常位于后壳和电池之间。
本申请通过连接结构34固定连接在第一盖板31和第二盖板32之间,不但可以提高均温板30的强度,且结合连接结构34用于与整形治具配合对均温板进行整形的特征,能提升显示屏10和电池40的可靠性。参阅图24,一种具体的实施方式中,在整形的过程中,整形治具施力至第一盖板31上,由于第一盖板31和第二盖板32通过连接结构34固定,第一盖板31和第二盖板32均受整形治具的力的作用产生变形。一方面,可以保证第一盖板31和第二盖板32具有相同的变形趋势,例如:经过整形后的第一盖板31的外表面的平面度可以控制在0.05mm以下,即小于等于0.05mm,这种结构形态下的第一盖板31的外表面没有较大的突出部分,符合第一盖板31和显示屏10之间组装间隙的要求。由于显示屏10固定在第一盖板31的外表面的一侧,本方案通过对第一盖板31的外表面的平面度的控制,有利于显示屏10的安全性和稳定可靠性,在移动终端受到温度变化(温度变化会导致显示屏或中框产生变形)或其它外力作用的情况(例如移动终端在跌落或受撞击、或组装过程中出现的外力会导致移动终端部分结构产生变形)下,显示屏10和第一盖板31之间仍然可以保证可靠的位置有关系,显示屏10不会受到第一盖板31的外表面的顶持力而导致显示屏10受损。另一方面,通过连接结构34固定连接第一盖板31和第二盖板32,第一盖板31和第二盖板32在整形的过程中可以同步变形,可以保证均温板的工作腔33能够保持合适的尺寸,例如将工作腔33的厚度设计在合格的范围内,以满足蒸气通道37和毛细通道35的正常工作要求,本申请在针对均温板30整形的过程中,工作腔33 的厚度的基本保持不变,或者厚度的变化空间在允许范围内,仍然可以满足蒸气通道37和毛细通道35的正常工作要求。
从均温板30的蒸发区301向所述冷凝区302延伸的方向为所述均温板30的长度方向,所述均温板的宽度方向垂直于所述长度方向。一种实施方式中,在移动终端内,移动终端的顶部至底部的方向与均温板的长度方向一致。一种具体的实施方式中,所述蒸发区301在所述宽度方向上的尺寸和所述冷凝区302在所述宽度方向上的尺寸之间的比值小于等于0.5,本申请可以根据均温板30具体的尺寸配置连接结构34的数量,对于尺寸较大的均温板30,可以设置多个连接结构34。
一种实施方式中,参阅图9和图10,均温板30中设置的连接结构34的数量为一个,在所述均温板的宽度方向上,所述连接结构34位于所述工作腔33的中心位置。图9和图10示意性地表达了连接结构34的具体的位置和基本形态,及加强柱36的分布情况。图9所示的实施方式中,连接结构34呈长条形,也可以理解为,连接结构34的横截面形状包括长条形,例如连接结构可以为长方形、跑道形。图9所示的实施方式中,加强柱36的横截面形状为方形,加强柱36的横截面的面积明显小于连接结构34的横截面的面积。图10所示的实施方式中,连接结构34的横截面呈圆形,加强柱36的横截面形状也可以为(但不限于)圆形,加强柱36的横截面的面积明显小于连接结构34的横截面的面积。本方案通过限定连接结构的具体的形态,可以获得较大面积的连接结构,有助于提升均温板的强度。
结合参阅图5,一种实施方式中,均温板30中的加强柱36设于所述工作腔33内,所述加强柱36与所述第一盖板31和所述第二盖板32中的一个固定连接为一体,所述加强柱36与所述第一盖板31和所述第二盖板32中的另外一个接触或保持间隙设置,所述连接结构34的数量为至少一个,各所述连接结构34与所述第一盖板31或所述第二盖板32之间的连接面积为第一面积,各所述加强柱36与所述第一盖板31或所述第二盖板32之间的连接面积为第二面积,所述第一面积为所述第二面积的二倍以上。加强柱的设置用于保证均温板内的工作腔的毛细通道和蒸气通道的尺寸,也可以提升均温板的强度。通过将加强柱和连接结构结合设置在一个均温板内部,可以获得高强度的均温板的同时保证均温板的热性能。
参阅图11,一种实施方式中,均温板30中设置的连接结构34的数量为偶数个(图11中示意性地表达了两个连接结构34的情况),在所述均温板30的宽度方向上,所述连接结构34分布在所述工作腔33的中心位置C的两侧(可以为对称分布,也可以为非对称的分布架构),图11中虚线表示的位置为工作腔33在均温板30的宽度方向上的中心位置C。
参阅图12,一种实施方式中,均温板30中设置的连接结构34的数量为三个或大于三个的奇数(图12中示意性地表达了三个连接结构34的情况),在所述均温板30的宽度方向上,其中一个所述连接结构34位于所述工作腔33的中心位置C,其余的所述连接结构34对称分布在所述工作腔33的中心位置C的两侧。图12中虚线表示的位置为工作腔33在均温板30的宽度方向上的中心位置C。本申请根据不同的均温板的尺寸及组装环境的需求设置连接结构的数量和具体的位置,可见均温板可以适应不同的使用环境,可以匹配不同的电子设备。
图11和图12所述的连接结构34对称分布在中心位置C的两侧的描述,可以理解为,连接结构34在中心位置C的两侧呈基本对称的状态,不限于绝对的完全对称,例如,中心位置C两侧的连结结构34的形状可以不同,中心位置C两侧的连结结构34距离中心位置C的距离可以不相等。
所述连接结构34和所述第一盖板31一体成型,一种具体的实施方式中,连接结构34可以通过对第一盖板31进行冲压工艺形成,其它实施方式中,连接结构34也可以通过对第一盖板 31进行蚀刻工艺形成。
参阅图4,所述连接结构34包围形成连接凹槽341,所述连接凹槽341的开口位置位于所述第一盖板31的外表面。所述连接凹槽341的开口位置的轮廓呈圆形、长方形或跑道形。一种实施方式中,第二盖板32包括平板状结构,在垂直于第二盖板32的方向上的所述均温板横截面中,连接结构34呈梯形,连接凹槽341开口位置的尺寸大于连接凹槽341底部的尺寸,所述连接凹槽341的底部和所述连接凹槽341的开口位置沿第一方向相对设置,所述第一方向为所述显示屏10、所述均温板30和所述电池40层叠设置的方向。本方案提供一种具体的连接结构的设计方案,可以通过冲压工艺与第一盖板一体成型,易于制作。本方案通过将连接结构和第一盖板设置为一体成型架构,且通过设置连接结构在第一盖板外表面形成凹槽,此凹槽可以在均温板整形的过程中与整形治具配合,凹槽不但作为连接结构在均温板外表面的位置标示,还可以与整形治具配合,使得本方案具有结构简单,节约成本的优势。所述连接结构34包括底壁342和侧壁343,所述侧壁343连接在所述底壁342和所述第一盖板31之间,所述底壁342位于所述连接凹槽341的底部,所述底壁342和所述第二盖板32固定连接。
所述底壁342和所述第二盖板32之间通过焊接的方式固定。具体而言,底壁342和第二盖板32之间的焊接结构为较大面积的钎焊连接,钎焊连接的大面积可以理解为:相对点焊而言,底壁342和第二盖板32之间的焊接面积大于点焊方式的焊接面积。如果底壁342和第二盖板32之间的焊接为点焊,点焊的定位作用容易受外力影响产生变形,连接可靠性较差,连接结构34和第二盖板32之间的受力不能更好的结合,也就是说,连接结构34不能参与第二盖板32的受力支撑作用。本申请通过较大面积的钎焊固定,可以使得连接结构34和第二盖板32之间连接更可靠、更稳定。连接结构34将第一盖板31和第二盖板32连接为一体,增强均温板的刚性,第一盖板31和连接结构34可以与第二盖板32共同承担支撑作用。
连接结构34和第二盖板32之间的焊接采用低温焊的方式,具体而言,焊接温度小于等于850摄氏度,限定低温焊的方式的好处在于:可以保证均温板的性能和强度,经焊接等均温板高温制程后,均温板的材料不容易出现高温退火导致的强度降低问题。
一种具体的实施方式中,均温板30采用复合材料制作,第一盖板31、第二盖板32的其中一个或两个都可以采用复合材料。复合材料可以包括易焊材料和高强材料。第一盖板31和第二盖板32间密封焊接由易焊材料完成,易焊材料温度低于不锈钢、钛合金等高强材料焊接温度,即可以采用低温焊的焊接工艺,经焊接等均温板高温制程后,高强材料不出现高温退火导致的强度降低问题,可以保证均温板的性能和强度。一种实施例子中,易焊材料可以为纯铜/铜合金材料,高强材料可以为不锈钢材料,不锈钢材料具有抗退火软化性能。
参阅图13,一种具体的实施方式中,所述第二盖板32为复合材料,第二盖板32包括层叠设置的第一材料层M1和第二材料层M2,所述第一材料层M1的焊接温度低于所述第二材料层M2的焊接温度,所述第二材料层M2的软化温度高于所述第一材料层M1的焊接温度。软化温度高的材料具有抗退火软化性能。第二材料层M2可选用抗高温退火软化不锈钢材料,例如高氮钢。具体为:所述第二材料层M2为具有氮元素的不锈钢材料,所述氮元素的质量百分比的含量∈[0.03wt.%,5wt.%]。另一种实施方式中,所述第二材料层M2也可以为钛合金材料,钛合金材料亦具有高软化温度。所述第一材料层M1用于与所述连接结构34和所述第一盖板31焊接固定(可以采用低温焊的工艺),第一材料层M1选用与水等工质(位于工作腔33内)相容性较好且焊接温度较低的材料,如纯铜或铜合金。所述第二材料层M2位于所述第一材料层M1背离所述第一盖板31的一侧,第二材料层M2具有强度高的性能,主要用于支撑的作用。
本申请一种实施方式提供的均温板通过固定连接在第一盖板31和第二盖板32之间的连接 结构34,结合将第二盖板32限定为前述复合材料,可以实现基于第一材料层M1降低了焊接温度,并解决了第二材料层M2与均温板30的工作腔33内的工质相容性问题,基于第二材料层M2(高氮钢)提升均温板30的强度,解决了常规焊接温度高的方案中的均温板30的强度下降问题,此方案不强调第二盖板32的平面度。
一种具体的实施方式中,所述第二材料层M2的厚度大于所述第一材料层M1的厚度。由于第一材料层M1的主要功能为焊接,第二材料层M2的主要功能的支撑,通过对第二材料层M2的厚度大于第一材料层M1的厚度的限定,可以在有限的空间内得到更高强度的均温板30。
第一材料层M1和第二材料层M2之间可以通过电镀或复合方式结合为一体,即通过电镀或复合方式制备叠层材料形成第二盖板32。
一种实施方式中,第二材料层M2经过表面清洗处理后进行电镀,以在第二材料层M2的表面形成第一材料层M1。所述第二材料层M2通过电镀的方式形成在所述第一材料层M1的表面。所述第二材料层M2和所述第一材料层M1之间设有电镀打底层M4,电镀打底层M4可以为电镀镍。电镀打底层M4非必须的材料层,根据加工工艺的需要而定是否设置电镀打底层M4。
另一实施方式中,通过分别将第一材料层M1和第二材料层M2的表面去除氧化层(例如通过机械或者等离子清洗的方式)后,进行真空热轧、真空冷轧或者真空扩散焊接的方式,将第一材料层M1和第二材料层M2结合为一体式复合材料。
参阅图14,一种具体的实施方式中,所述第二盖板32还包括第三材料层M3,所述第三材料层M3焊接温度低于所述第二材料层M2的焊接温度,所述第三材料层M3位于所述第二材料层M2背离所述第一材料层M1的一侧。第三材料层M3可以与第一材料层M1相同,二者具有相同的强度或刚度。第三材料层M3的作用可以为:用于补强第二盖板32的强度或者消除内应力。第三材料层M3也可以为用于电连接或防腐蚀而设定的功能层。
一种实施方式中,第二盖板32为三层结构两种材料的架构,第二材料层M2和第三材料层均为纯铜(如T1、T2、T3、T4)、无氧铜(TU1、TU2)或添加其他元素的纯铜(如TP1和TP2)。第一材料层M1为高氮钢。
一种具体的实施方式中,第二盖板32包括三层结构,第二材料层M2和第三材料层M3均为TU2铜,第二材料层M2为氮含量0.2~0.3wt.%的高氮钢,第一材料层M1、第二材料层M2和第三材料层M3经过复合制程,形成0.015mm厚度的第二材料层M2、0.15mm厚度的第一材料层M1、和0.015mm厚度的第三材料层,第二盖板32的总厚度0.18mm,三层结构的厚度比1:10:1。本实施方式中,各种材料的成分和性能如下表(表一、表二和表三)。
表一
Figure PCTCN2022118199-appb-000001
表二
Figure PCTCN2022118199-appb-000002
表三
Figure PCTCN2022118199-appb-000003
具体应用中,可根据目标需求性能调控第二盖板32的各层的材质和厚度比例。本申请基于第一材料层M1为铜材料,降低了焊接温度,并解决了不锈钢与工质相容性问题,基于第二材料层M2为高氮钢的设计,解决了均热板强度下降问题。
均温板30的ECR(Ratio of Evaporate and Condense Width)代表蒸发区301与冷凝区302宽度之比,体现了均温板30的具体的形态。针对不等宽的均温板,例如ECR≤0.5且两相通道的厚度≤0.2mm时,往往存在毛细通道35回液困难的问题,这是因为狭小的蒸气通道导致了较大的蒸气压降,使温差变大,同时毛细通道35过于窄小不利于对蒸发区301的回流补液。本申请实施例给出两种解决方案:第一种方案为:多个均温板或热管组合使用;第二种方案为:并行架构仿生架构的均温板。
第一种方案包括两种组合方式。参阅图15,第一种方案的第一种组合方式为:多个均温板30A、30B或热管共同一个发热源,均从蒸发区301延伸至冷凝区302,具体实施方式中,可以将多个的均温板30A、30B或热管采取共用盖板的方式实现,即在第一盖板31和第二盖板32之间形成多个并联设置的均温板30A、30B或热管结构,具体而言:如图15所示,ECR≤0.5的大均温板30内存在几个独立的、共主热源的、ECR>0.5的均温板30A、30B或热管,分担总热负荷,这些均温板30A、30B或热管共用第一盖板31和第二盖板32,但其毛细通道和蒸气通道相互独立相互隔离。每个单独的均温板30A、30B或热管可以理解为传热高速公路(传热主干道),两相换热,等效导热系数≥5000W/m-K;各均温板30A、30B或热管相互间依靠金属材料导热,无两相换热,导热系数≤2500W/m-K。石墨烯板导热系数可达1000~2500W/m-K,为铜或不锈钢或钛合金2~100倍以上,且密度约~2g/ml,比铜或不锈钢或钛合金低>50~70%,为增强散热或减重,因此,可以在独立的均温板30A、30B或热管间嵌石墨烯板,用焊接或粘接等低热阻方式连接将石墨烯板连接至各均温板或热管。
第一种方案的第一种组合方式中,可以根据具体的均温板30的使用环境,设置连接结构34的位置和数量,例如可以在位于第一盖板31和第二盖板32的中间位置的均温板30内设置连 接结构34,也可以在第一盖板31和第二盖板32之间,且在相邻的均温板30A、30B或热管之间的位置设置连接结构34,通过连接结构34来提升整体均温板30的强度,并约束均温板30的平面度,实现第二盖板32背离第一盖板31的表面的平面度具有定向正公差。
参阅图16A、图16B和图16C,第一种方案的第二种组合方式为:ECR≤0.5的整体均温板30(其面积较大)内存在几个独立的ECR>0.5的子均温板30A、30B,分别为第一均温板30A和第二均温板30B,二者共用第一盖板和第二盖板,但二者内部的蒸气通道和毛细通道相互隔离;第一均温板30A和第二均温板30B不共主热源,第一均温板30A和第二均温板30B在蒸发区301和冷凝区302之间串联的方式传递热量。第二均温板30B的蒸发区30B1邻近第一均温板30A的冷凝区30A2,第二均温板30B的蒸发区30B1和第一均温板30A的冷凝区30B2之间的设置方案可以包括多种,举例说明如下。第一种具体方案为:如图16A所示,第一均温板30A的蒸发区30A1和冷凝区30A2在第一方向A1上排列,第二均温板30B的蒸发区30B1和冷凝区30B2在第二方向A2上排列,第二方向A2垂直于第一方向A1,且在第二方向A2上,第二均温板30B的蒸发区30B1和第一均温板30A的冷凝区30A2并排排列。第二种具体的方案为:如图16B所示,第一均温板30A的蒸发区30A1和冷凝区30A2在第一方向A1上排列,但相较第一种方案,第二种具体的方案中的第一均温板30A的尺寸较小,第二均温板30B的蒸发区30B1呈L形包围第一均温板30A的冷凝区30A2,沿第一方向A1,第二均温板30B的部分蒸发区30B1位于第一均温板30A的冷凝区30A2的一侧,在第二方向A2上,仍然有第二均温板30B的部分蒸发区30B1分布在第一均温板30A的冷凝区30A2的一侧。第三种具体的方案为:第二均温板30B的蒸发区30B1位于第一均温板30A的冷凝区30A2的三个侧边,即第二均温板30B的蒸发区30B1包括三部分,沿第一方向A1,第一部分位于第一均温板30A的冷凝区30A2的一侧,沿第二方向A2,第二部分和第三部分分别位于第一均温板30A的冷凝区30A2的相对的两侧。第一方向可以为长度方向,第二方向可以为宽度方向。
第一种方案的第二种组合方式可以理解为:整体均温板30由多个子均温板30A、30B拼接而成,从整体均温板30的蒸发区301至冷凝区302,各子均温板30A、30B通过接力式的分布方式,实现接力式两相传热,可以等效为多个均温板30A、30B串联的方式。第二种组合方式也可以采用整体均温板和石墨烯板结合的方式实现提升导热效率,例如,将整体均温板的部分盖板(第一盖板或第二盖板)嵌入石墨烯材料。
第一种方案的第二种组合中,可以根据具体的均温板的使用环境,设置连接结构34的位置和数量,例如可以在位于第一盖板31和第二盖板32的中间位置的子均温板30B内设置连接结构34,也可以在相邻的子均温板30A、30B之间的位置设置连接结构34,通过连接结构34来提升整体均温板的强度,并约束均温板的平面度,实现第二盖板32背离第一盖板31的表面的平面度具有定向正公差。
第二种方案的具体描述如下。
第二种方案概括为并行架构仿生架构的均温板,可以理解为将均温板内的毛细通道和蒸气通道设计为类似柳树状,根在蒸发区,枝叶在冷凝区。第二种方案得到的均温板,采用并行架构,可满足均温板两相区极致超薄设计需求,也能解决:针对ECR≤0.5的均温板(即蒸发区宽度和面积小于冷凝区且差别过大)时,存在工质无法快速回流补液的严重热性能问题。如图17所示,在均温板30的内部,毛细通道35和蒸气通道37在均温板较窄区域(蒸发区301)中呈树根状,在均温板30内较宽区域的冷凝区302呈树枝状。通过将冷凝区302的蒸气通道37和毛细通道35设计为交替间隔设置的树枝状,即将蒸气通道37设计为细长的回流槽结构,有利于吸收冷凝液滴,避免蒸气沿蒸气通道37行至此区静滞堵塞,无法参与循环。
概括而言,一种实施方式中,从所述蒸发区301向所述冷凝区302延伸的方向为所述均温板30的第一方向A1,所述均温板30的第二方向A2垂直于所述第一方向A1,所述蒸发区301在所述第二方向A2上的尺寸和所述冷凝区302在所述第二方向A2上的尺寸之间的比值小于等于0.5,在所述冷凝区302,所述毛细通道35包括多根并排且间隔设置的第一子通道351,所述蒸气通道37包括多根并排且间隔设置的第二子通道371,多根所述第一子通道351一一对应地设置在相邻的所述第二子通道371的之间,均温板30内的连接结构34设置在所述第二子通道371内。本方案可以增加蒸发区的储液量,也可以增加毛细通道与蒸汽通道的接触面积,有助于提升均温板运行的热性能。冷凝区的毛细通道使用了柳树枝叶型的结构设计,针对并行架构的毛细,增加了毛细通道与蒸汽通道的接触面积,有助于冷凝液的回流。所述均温板30的厚度方向为所述第一盖板31和所述第二盖板32之间的层叠设置的方向,所述均温板30的水平截面为垂直于所述均温板30的厚度方向的截面,在所述水平截面上,每根所述第一子通道351的延伸方向均为所述均温板的第一方向A1,所述连接结构34的截面形状包括长条形。
举例说明,第二种方案包括但不限于以下六类方案。
第一类方案:参阅图17,均温板30的蒸发区301位于顶部,冷凝区302位于底部,冷凝区302的尺寸大于蒸发区301的尺寸,ECR≤0.5。蒸发区301内的毛细通道35为并行架构,即蒸发区301内包括多个并列设置且连接至主毛细通道352的毛细根353,毛细根353可以对称分布在主毛细通道352的两侧。多个并列毛细根353的设置的好处在于:一方面增加了蒸发区301的储液量,另一方面增加了毛细通道35与蒸气通道37的接触面积,有助于提升均温板30运行的热性能。主毛细通道352从蒸发区301延伸至冷凝区302,主毛细通道352用于回液。冷凝区302包括多个并列设置的毛细枝(毛细枝可以理解为第一子通道351,相邻的毛细枝之间或毛细枝旁边的蒸气通道37可以理解为第二子通道371),各毛细枝的一端均连接至主毛细通道352,毛细枝的架构设计的好处在于:增加了毛细通道35与蒸气通道37的接触面积,有助于冷凝液的回流。此外,由于蒸发区301的毛细根也使用了并行架构,为了提升蒸发区301的毛细热性能,可以对蒸发区301的盖板进行局部抬升,增加蒸发区301的通道厚度,本方案提供的均温板可以为2.5D的均温板。
第二类方案:参阅图18,本方案与第一类方案的区别在于:在蒸发区301内,可以将毛细根设置为串行架构(未图示)。在冷凝区302内包括多个并列设置的毛细枝(第一子通道351),多个毛细枝可以通过多个主毛细通道352连接至蒸发区301,本方案的毛细通道35采用并行架构和串行架构组合的方式,蒸发区301和冷凝区302之间使用多条主毛细通道352连接。
第三类方案:参阅图19,本方案与第二类方案的区别在于:蒸发区301中的毛细根设计为竹根型架构,即多个毛细根分别连接至多个主毛细通道352,且多个毛细根汇合呈竹根形,本方案有利于增加毛细通道35与蒸气通道37的接触面积。
第四类方案:参阅图20,本方案与第三类方案的区别在于:蒸发区301的毛细根设计为插枝式独立毛细根架构。即多个毛细根分别连接至多个主毛细通道352,且相互独立没有汇合连接,蒸气通道37之间相互开放,使得均温板30内部气体循环更顺畅。
第五类方案:参阅图21,蒸发区301的毛细根的设置方案与第一类方案相似,本方案中蒸发区301采用自然根分叉毛细根架构。本方案中,主毛细通道352的数量为多个(包括两个),且长度不同。在冷凝区302内包括多个并列设置的毛细枝(第一子通道351),多个毛细枝可以通过多个主毛细通道352连接至蒸发区301。其中一个主毛细通道352的尺寸较长,有利于减少蒸气通道37中气体的流动压降。其中一个主毛细通道352所连接的毛细枝(第一子通道351)的末端朝向蒸发区301(可以理解为此主毛细通道352倒转,扩长了传送路径,可以减少压降), 另一个主毛细通道352所连接的毛细枝(第一子通道351)的末端远离蒸发区301。
第一类方案、第二类方案、第三类方案、第四类方案和第五类方案中,均温板30的工作腔33内的连接结构34的至少部分可以设置在冷凝区302,且位于相邻的毛细枝(第一子通道351)之间,即位于蒸气通道37(第二子通道371)内。本申请限定了连接结构在均温板内的具体的位置,将连接结构设置在冷凝区,可以提升冷凝区的强度,冷凝区用于支撑电池,能够更好地匹配均温板在移动终端内的组装环境。
第六类方案:参阅图22,在蒸发区301采用串行毛细根架构(未图示),在冷凝区302采用串行毛细枝的架构,即蒸发区301和冷凝区302均使用串行架构毛细通道35,连接蒸发区301和冷凝区302的主毛细通道352为并行架构。第六类方案中,均温板的工作腔33内的连接结构34可以设置在冷凝区302,且位于主毛细通道352之间。
参阅图23,本申请一种实施方式中,可以将毛细通道35设置为类LHP(Loop Heat Pipe,环路热管)架构的毛细通道:运用环路热管的设计理念,通过使用毛细通道设计和支撑结构设计,划分蒸发区301和冷凝区302,使内部气体和液体形成环路流动的循环路线。蒸发区301产生的蒸气进入空腔后,于冷凝区302凝结为液体被毛细吸收。液体在毛细通道35内渗流,经过冷凝液回流区进入蒸发区301进行补液,形成类LHP环路热管的循环流动。本方案中,可以在将均温板的工作腔33内的连接结构34设置在冷凝区302的毛细通道35之间的蒸气通道37内。
图17、图18、图19、图20、图21和图23所示的实施方式中,第一子通道351为毛细通道(也称为毛细枝,类似连续至树干的树枝的结构,具有远离树干的末端),第二子通道371为蒸气通道。所述第一子通道351和所述第二子通道371的一端连接主毛细通道352,所述第一子通道351和所述第二子通道371的末端(悬空状的自由端)为所述第一子通道351和所述第二子通道371远离所述主毛细通道352的一端。可以理解为,相邻的第一子通道351之间的蒸气通道的部分为第二子通道371。末端朝向相同的第一子通道351中的液体回流方向和相邻的第二子通道371中的蒸气流动方向一致。图17、图18、图19、图20、图21和图23中,在第一子通道351和第二子通道371中的带箭头的直线示意性地表示液体回流方向和蒸气流动方向。本申请通过末端朝向相同的第一子通道351中的液体回流方向和相邻的第二子通道371中的蒸气流动方向一致的设计,可以降低阻抗,提升散热效率。
参阅图24,图24为均温板30内固体表面为疏水层及亲水层的情况下,液体在固定体面的状态示意图。固体表面可以理解为第一盖板31和/或第二盖板32的内表面、连接结构的表面、加强柱的表面、毛细通道的表面。当固体表面为疏水层的情况下,液体在固体表面汇聚成液滴的形态,液体和固体表面接触的面积较小。当固体表面为亲水层的情况下,液体被吸附在固体表面,液体和固体表面接触的面积较大。
一种实施方式中,本申请通过对第一盖板31和/或第二盖板32的内表面做改性处理,将蒸气通道37的内壁设计为亲水层结构,可以避免冷凝区302内的部分蒸发通道内出现团聚液滴现象,团聚的液滴在冷热冲击时,会出现结冰鼓胀。一种具体的实施方式中,在所述冷凝区302,所述蒸气通道37所对应的所述第一盖板31包括第一主体层和第一亲水层,所述第一亲水层和所述第一主体层为一体式的结构,通过对所述第一盖板31的内表面改性处理形成所述第一亲水层,本方案可以解决第一盖板31的结冰鼓胀的问题,由于第一盖板31邻近显示屏,本方案可以提升显示屏的安全可靠性。一种具体的实施方式中,在所述冷凝区302,所述蒸气通道37所对应的所述第二盖板32包括第二主体层和第二亲水层,所述第二亲水层和所述第二主体层为一体式的结构,通过对所述第二盖板32的内表面改性处理形成所述第二亲水层,本方案可 以解决第二盖板32的结冰鼓胀的问题,第二盖板32邻近电池且用于承载电池,本方案能够保证电池安装环境,提升电池性能的稳定性。
一种实施方式中,连接结构的表面设计为疏水层的结构,这样可以更好的避免结冰鼓胀。参阅图25,图25示意性地表达了在连接结构的表面为疏水层、第一盖板和第二盖板内表面为亲水层的情况下,液滴在工作腔内的变化过程。图25中最上面的图示说明:均温板冷凝区内,冷凝产生的液滴在连接结构表面凝聚,逐渐生长变大。图25中位于中间位置的图说明:液滴在连接结构表面凝聚至足够大后接触到亲水第一盖板或第二盖板,由于第一盖板和第二盖板的内表面为亲水层结构,液滴被拉扯吸附。液滴从疏水的连接结构表面被拉扯至亲水的第二盖板内表面。图25中最下面的图示说明:毛细吸液芯,即本申请中的毛细通道,的表面为亲水层结构,具备亲水、吸水的特性,将液滴吸入,实现回液效果。
表面改性处理,可以为但不限于:亲水、粗造化、钝化等处理方式。本申请通过第一亲水层或第二亲水层的设置,可以避免蒸气通道37内液体团聚成液滴的现象,能使得蒸气通道37内的液体迅速被毛细通道35吸收。特别是基于冷凝区302的毛细通道35为多个并列设置的毛细枝的架构的情况下,第一亲水层或第二亲水层对解决液体团聚成液滴现象及结冰鼓胀的问题尤为明显。
一种实施方式中,均温板的蒸发区301及回流区的蒸气通道37的内壁设置为疏水层架构,可以实现蒸气通道37的表面光滑,减少蒸气流动阻力,使得蒸气可以快速从蒸发区301流向冷凝区302。而在冷凝区302,将蒸气通道37的内壁设计为亲水层架构,可以实现冷凝区302内的蒸气可以快速被毛细通道35吸收,提升均温板的工作效率及均温效果。
一种实施方式中,在所述冷凝区302,所述蒸气通道37所对应的所述第一盖板31的内表面为疏水层结构,所述连接结构34的表面为疏水层结构。
本申请还提供一种均温板的制作方法,包括如下步骤:
提供均温板,参阅图4、图5、图6和图7,均温板30包括第一盖板31、第二盖板32和连接结构34,所述第一盖板31和所述第二盖板32之间形成工作腔33,所述连接结构34位于所述工作腔33内,所述连接结构34和所述第一盖板31固定连接,且连接结构34和所述第二盖板32之间固定连接(例如焊接固定);
对所述均温板30进行整形,整形的过程中,对所述连接结构34的位置施力,使得所述均温板30变形,使得所述第二盖板32的外表面的平面度具有定向正公差。所述连接结构34和所述第二盖板32的连接位置为所述第二盖板32的外表面的平面度的峰值区域;所述定向正公差为从所述第二盖板32的外边缘到所述连接结构34的位置处,所述第二盖板32的外表面整体上具有外凸变形的趋势。
参阅图26,本申请使用整形治具90对均温板30进行整形,以确定第二盖板32的外表面的平面度为定向正公差。所述连接结构34和所述第一盖板31为一体成型的结构,所述连接结构34包围形成连接凹槽341,所述连接凹槽341的开口位置位于所述第一盖板31的外表面,对所述均温板30进行整形的步骤包括:提供整形治具90。整形治具90包括支撑座91和压盖92,所述支撑座91用于承载所述均温板30,所述第二盖板32固定在所述支撑座91上,所述压盖92包括整形柱921,所述整形柱921伸入所述连接凹槽341内,并抵压所述连接凹槽341的底部,通过所述压盖92施加所述第一盖板31抵压力F,使得所述均温板30变形。图26中弧形曲线S用于表示均温板30的变形趋势。
对所述均温板30进行整形的过程中,所述压盖92和所述第一盖板31的外表面接触,本方 案可以通过压盖92约束第一盖板31的变形,避免第一盖板31在整形过程下外凸。
实际使用中,移动终端的应用场景千变万化,例如:3D游戏下AP应用处理器(含CPU和GPU)为主热源;拍照下主热源为AP和摄像模组;QQ音乐播放、高清视频播放时,AP应用处理器、Speaker为主热源;视频聊天时主热源为AP、前置摄像模组和通讯模块(可为3G/4G/5G通讯模块或WiFi通讯模块)。在这些场景下电池由于低内阻和低电流(≤2A),为相对凉区。在VC均热板散热时,主热源相近区为蒸发区,电池等相近区为冷凝区,冷凝区面积相对较大,为本申请一种实施方式提供的均温板30的主要应用场景。但对待机有线、待机无线快充等场景,有线充电芯片(≥60W)、或无线充电芯片(≥30W),和电池成为移动终端主发热源,AP应用处理器等区域为相对凉区,在均温板散热时,主热源相近区(如电池区、充电芯片区)为蒸发区,AP应用处理器相近区为冷凝区,冷凝区面积相对较小。但这种应用场景下,均温板设计难度不大,本申请具体实施方式提供的均温板可直接应用于此场景,不需重新硬件设计。冷凝区和蒸发区都是相对场景而言,无绝对界限,均温板热性能设计挑战主要在蒸发区远小于冷凝区,蒸发区宽度远小于冷凝区宽度下(ECR≤0.5)。
最后说明的是:以上实施例仅用以说明本申请的技术方案,而对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (48)

  1. 一种移动终端,其特征在于,包括:
    中框(20),包括第一表面(S1)、第二表面(S2)和贯通所述第一表面(S1)和第二表面(S2)的窗口(W);
    均温板(30),固定至所述中框(20),且至少部分所述均温板(30)位于所述窗口(W)中,所述均温板(30)包括第一盖板(31)、第二盖板(32)和连接结构(34),所述第一盖板(31)和所述第二盖板(32)之间形成工作腔(33),所述连接结构(34)位于所述工作腔(33)内,所述连接结构(34)和所述第一盖板(31)固定连接,所述连接结构(34)和所述第二盖板(32)固定连接,所述第二盖板(32)的外表面的平面度具有定向正公差,所述连接结构(34)和所述第二盖板(32)的连接位置为所述第二盖板(32)的外表面的平面度的峰值区域(R),所述定向正公差为:位于所述窗口(W)内的所述均温板,从所述第二盖板(32)的外边缘到所述连接结构(34)的位置,所述第二盖板(32)的外表面整体上具有外凸变形的趋势;
    显示屏(10),位于所述第一盖板(31)远离所述第二盖板(32)的一侧;
    电池(40),位于所述第二盖板(32)远离所述第一盖板(31)的一侧。
  2. 根据权利要求1所述的移动终端,其特征在于,所述连接结构(34)和所述第一盖板(31)一体成型,所述连接结构(34)包围形成连接凹槽(341),所述连接凹槽(341)的开口位置位于所述第一盖板(31)的外表面。
  3. 根据权利要求2所述的移动终端,其特征在于,所述连接结构(34)包括底壁(342)和侧壁(343),所述侧壁(343)连接在所述底壁(342)和所述第一盖板(31)之间,所述底壁位于所述连接凹槽(341)的底部,所述连接凹槽(341)的底部和所述连接凹槽(341)的开口位置沿第一方向相对设置,所述第一方向为所述显示屏、所述均温板和所述电池层叠设置的方向,所述底壁(342)和所述第二盖板(32)固定连接。
  4. 根据权利要求1所述的移动终端,其特征在于,所述连接结构(34)和所述第二盖板(32)之间通过焊接的方式固定。
  5. 根据权利要求4所述的移动终端,其特征在于,所述第二盖板(32)包括层叠设置的第一材料层(M1)和第二材料层(M2),所述第一材料层(M1)的焊接温度低于所述第二材料层(M2)的焊接温度,所述第二材料层(M2)的软化温度高于所述第一材料层(M1)的焊接温度,所述第一材料层(M1)用于与所述连接结构(34)和所述第一盖板(31)焊接固定,所述第二材料层(M2)位于所述第一材料层(M1)背离所述第一盖板(31)的一侧。
  6. 根据权利要求5所述的移动终端,其特征在于,所述第二材料层(M2)为具有氮元素的不锈钢材料;或者,所述第二材料层(M2)为钛合金材料。
  7. 根据权利要求6所述的移动终端,其特征在于,所述第二材料层(M2)为具有氮元素的不锈钢材料的情况下,所述氮元素的含量∈[0.03wt.%,5wt.%]。
  8. 根据权利要求1所述的移动终端,其特征在于,所述第一盖板(31)的外表面的平面度为:大于等于-0.1mm且小于等于0.05mm。
  9. 根据权利要求1所述的移动终端,其特征在于,所述第二盖板(32)的外表面的平面度为:大于等于0.1mm且小于等于0.3mm。
  10. 根据权利要求1所述的移动终端,其特征在于,所述工作腔(33)包括蒸发区(301)和冷凝区(302),所述工作腔(33)内设毛细通道(35)和蒸气通道(37),所述毛细通道(35)和所述蒸气通道(37)均从所述蒸发区(301)延伸至所述冷凝区(302),至少部分所述连接 结构(34)设置在所述冷凝区(302),所述连接结构(34)位于所述蒸气通道(37)中。
  11. 根据权利要求10所述的移动终端,其特征在于,从所述蒸发区(301)向所述冷凝区(302)延伸的方向为所述均温板(30)的长度方向,所述均温板的宽度方向垂直于所述长度方向,所述蒸发区(301)在所述宽度方向上的尺寸和所述冷凝区(302)在所述宽度方向上的尺寸之间的比值小于等于0.5,在所述冷凝区(302),所述毛细通道(35)包括多根并排且间隔设置的第一子通道(351),所述蒸气通道(37)包括多根并排且间隔设置的第二子通道(371),多根所述第二子通道(371)一一对应地设置在相邻的所述第一子通道(351)的之间,所述连接结构(34)设置在所述第二子通道(371)内。
  12. 根据权利要求11所述的移动终端,其特征在于,所述第一子通道(351)和所述第二子通道(371)的一端连接主毛细通道(352),所述第一子通道(351)和所述第二子通道(371)的末端为所述第一子通道(351)和所述第二子通道(371)远离所述主毛细通道(352)的一端,末端朝向相同的所述第一子通道(351)中的液体回流方向和相邻的第二子通道(371)中的蒸气流动方向一致。
  13. 根据权利要求11所述的移动终端,其特征在于,所述均温板(30)的厚度方向为所述第一盖板(31)和所述第二盖板(32)之间的层叠设置的方向,所述均温板(30)的水平截面为垂直于所述均温板(30)的厚度方向的截面,在所述均温板(30)的水平截面上,每根所述第一子通道(351)的延伸方向均为所述均温板(30)的长度方向,所述连接结构(34)的截面形状包括长条形。
  14. 根据权利要求11所述的移动发终端,其特征在于,所述连接结构(34)的数量为一个,在所述均温板(30)的宽度方向上,所述连接结构(34)位于所述工作腔(33)的中心位置;或者,
    所述连接结构(34)的数量为偶数个,在所述均温板(30)的宽度方向上,所述连接结构(34)分布在所述工作腔(33)的中心位置的两侧;或者,
    所述连接结构(34)的数量为三个或大于三个的奇数,在所述均温板(30)的宽度方向上,其中一个所述连接结构(34)位于所述工作腔(33)的中心位置,其余的所述连接结构(34)分布在所述工作腔(33)的中心位置的两侧。
  15. 根据权利要求10所述的移动终端,其特征在于,在所述冷凝区(302),所述蒸气通道(37)所对应的所述第一盖板(31)的内表面为亲水层结构。
  16. 根据权利要求10-15任一项所述的移动终端,其特征在于,在所述冷凝区(302),所述蒸气通道(37)所对应的所述第二盖板(32)的内表面为亲水层结构。
  17. 根据权利要求15所述的移动终端,其特征在于,在所述工作腔(33)内,所述连接结构(34)的表面为疏水层结构。
  18. 根据权利要求10所述的移动终端,其特征在于,在所述冷凝区(302),所述蒸气通道(37)所对应的所述第一盖板(31)的内表面为疏水层结构,所述连接结构(34)的表面为疏水层结构。
  19. 根据权利要求1所述的移动终端,其特征在于,所述均温板包括多个加强柱(36),所述加强柱(36)设于所述工作腔(33)内,所述加强柱(36)与所述第一盖板(31)和所述第二盖板(32)中的一个固定连接为一体,所述加强柱(36)与所述第一盖板(31)和所述第二盖板(32)中的另外一个接触或保持间隙设置,所述连接结构(34)的数量为至少一个,各所述连接结构(34)与所述第一盖板(31)或所述第二盖板(32)之间的连接面积为第一面积,各所述加强柱(36)与所述第一盖板(31)或所述第二盖板(32)之间的连接面积为第 二面积,所述第一面积为所述第二面积的二倍以上。
  20. 根据权利要求1所述的移动终端,其特征在于,所述电池(40)在所述均温板(30)的覆盖范围内。
  21. 一种均温板,其特征在于,包括第一盖板(31)、第二盖板(32)和连接结构(34),所述第一盖板(31)和所述第二盖板(32)之间形成工作腔(33),所述连接结构(34)位于所述工作腔(33)内,所述连接结构(34)和所述第一盖板(31)固定连接,所述连接结构(34)和所述第二盖板(32)固定连接,所述第二盖板(32)的外表面的平面度具有定向正公差,所述连接结构(34)和所述第二盖板(32)的连接位置为所述第二盖板(32)的外表面的平面度的峰值区域(R);所述定向正公差为从所述第二盖板(32)的外边缘到所述连接结构(34)的位置,所述第二盖板(32)的外表面整体上具有外凸变形的趋势。
  22. 根据权利要求21所述的均温板,其特征在于,所述连接结构(34)和所述第一盖板(31)一体成型,所述连接结构(34)包围形成连接凹槽(341),所述连接凹槽(341)的开口位置位于所述第一盖板(31)的外表面。
  23. 根据权利要求22所述的均温板,其特征在于,所述连接结构(34)包括底壁(342)和侧壁(343),所述侧壁(343)连接在所述底壁(342)和所述第一盖板(31)之间,所述底壁(342)位于所述连接凹槽(341)的底部,所述连接凹槽(341)的底部和所述连接凹槽(341)的开口位置沿第一方向相对设置,所述第一方向为移动终端内的显示屏(10)、所述均温板(30)和电池(40)层叠设置的方向,所述底壁(342)和所述第二盖板(32)固定连接。
  24. 根据权利要求21所述的均温板,其特征在于,所述底壁(342)和所述第二盖板(32)之间通过焊接的方式固定。
  25. 根据权利要求24所述的均温板,其特征在于,所述第二盖板(32)包括层叠设置的第一材料层(M1)和第二材料层(M2),所述第一材料层(M1)的焊接温度低于所述第二材料层(M2)的焊接温度,所述第二材料层(M2)的软化温度高于所述第一材料层(M1)的焊接温度,所述第一材料层(M1)用于与所述连接结构(34)和所述第一盖板(31)焊接固定,所述第二材料层(M2)位于所述第一材料层(M1)背离所述第一盖板(31)的一侧。
  26. 根据权利要求25所述的移动终端,其特征在于,所述第二材料层(M2)为具有氮元素的不锈钢材料;或者,所述第二材料层(M2)为钛合金材料。
  27. 根据权利要求26所述的均温板,其特征在于,所述氮元素的含量∈[0.03wt.%,5wt.%]。
  28. 根据权利要求21所述的均温板,其特征在于,所述第一盖板(31)的外表面的平面度为:大于等于-0.01mm且小于等于-0.1mm。
  29. 根据权利要求21-28任一项所述的均温板,其特征在于,所述第二盖板(32)的外表面的平面度为:大于等于0.1mm且小于等于0.3mm。
  30. 根据权利要求21所述的均温板,其特征在于,所述工作腔(33)包括蒸发区(301)和冷凝区(302),所述工作腔(33)内设毛细通道(35)和蒸气通道(37),所述毛细通道(35)和所述蒸气通道(37)均从所述蒸发区(301)延伸至所述冷凝区(302),至少部分所述连接结构(34)设置在所述冷凝区(302),所述连接结构(34)位于所述蒸气通道(37)中。
  31. 根据权利要求30所述的均温板,其特征在于,从所述蒸发区(301)向所述冷凝区(302)延伸的方向为所述均温板(30)的长度方向,所述均温板(30)的宽度方向垂直于所述长度方向,所述蒸发区(301)在所述宽度方向上的尺寸和所述冷凝区(302)在所述宽度方向上的尺寸之间的比值小于等于0.5,在所述冷凝区(302),所述毛细通道(35)包括多根并排且间隔设置的第一子通道(351),所述蒸气通道(37)包括多根并排且间隔设置的第二子通道 (371),多根所述第二子通道(371)一一对应地设置在相邻的所述第一子通道(351)的之间,所述连接结构(34)设置在所述第二子通道(371)内。
  32. 根据权利要求31所述的均温板,其特征在于,所述第一子通道(351)和所述第二子通道(371)的一端连接主毛细通道(352),所述第一子通道(351)和所述第二子通道(371)的末端为所述第一子通道(351)和所述第二子通道(371)远离所述主毛细通道(352)的一端,末端朝向相同的所述第一子通道(351)中的液体回流方向和相邻的第二子通道(371)中的蒸气流动方向一致。
  33. 根据权利要求31所述的均温板,其特征在于,所述均温板(30)的厚度方向为所述第一盖板(31)和所述第二盖板(32)之间的层叠设置的方向,所述均温板(30)的水平截面为垂直于所述均温板(30)的厚度方向的截面,在所述均温板(30)的水平截面上,每根所述第一子通道(351)的延伸方向均为所述均温板(30)的长度方向,且所述连接结构(34)的截面形状包括长条形。
  34. 根据权利要求31所述的均温板,其特征在于,所述连接结构(34)的数量为一个,在所述均温板(30)的宽度方向上,所述连接结构(34)位于所述工作腔(33)的中心位置;或者,所述连接结构(34)的数量为偶数个,在所述均温板(30)的宽度方向上,所述连接结构(34)分布在所述工作腔(33)的中心位置的两侧;或者,所述连接结构(34)的数量为三个或大于三个的奇数,在所述均温板(30)的宽度方向上,其中一个所述连接结构(34)位于所述工作腔(33)的中心位置,其余的所述连接结构(34)分布在所述工作腔(33)的中心位置的两侧。
  35. 根据权利要求30所述的均温板,其特征在于,所述蒸气通道(37)所对应的所述第一盖板(31)包括第一主体层和第一亲水层,通过对所述第一盖板(31)的内表面改性处理形成所述第一亲水层;和/或,在所述冷凝区(302),所述蒸气通道(37)所对应的所述第二盖板(32)包括第二主体层和第二亲水层,通过对所述第二盖板32的内表面改性处理形成所述第二亲水层。
  36. 根据权利要求35所述的均温板,其特征在于,在所述工作腔(33)内,所述连接结构(34)的表面为疏水层结构。
  37. 根据权利要求30所述的均温板,其特征在于,在所述冷凝区(302),所述蒸气通道(37)所对应的所述第一盖板(31)的内表面为疏水层结构,所述连接结构(34)的表面为疏水层结构。
  38. 根据权利要求21所述的均温板,其特征在于,所述均温板(30)包括多个加强柱(36),所述加强柱(36)设于所述工作腔(33)内,所述加强柱(36)与所述第一盖板(31)和所述第二盖板(32)中的一个固定连接为一体,所述加强柱(36)与所述第一盖板(31)和所述第二盖板(32)中的另外一个接触或保持间隙设置,所述连接结构(34)的数量为至少一个,各所述连接结构(34)与所述第一盖板(31)或所述第二盖板(32)之间的连接面积为第一面积,各所述加强柱(36)与所述第一盖板(31)或所述第二盖板(32)之间的连接面积为第二面积,所述第一面积为所述第二面积的二倍以上。
  39. 一种均温板的制作方法,其特征在于,包括:
    提供均温板,所述均温板包括第一盖板、第二盖板和连接结构,所述第一盖板和所述第二盖板之间形成工作腔,所述连接结构位于所述工作腔内,所述连接结构和所述第一盖板及所述第二盖板之间均固定连接;
    对所述均温板进行整形,整形的过程中,对所述连接结构的位置施力,使得所述均温板变形, 使得,所述第二盖板的外表面的平面度具有定向正公差,所述连接结构和所述第二盖板的连接位置为所述第二盖板的外表面的平面度的峰值区域;所述定向正公差为从所述第二盖板的外边缘到所述连接结构的位置,所述第二盖板的外表面整体上具有外凸变形的趋势。
  40. 据权利要求39所述的均温板的制作方法,其特征在于,所述连接结构和所述第一盖板为一体成型的结构,所述连接结构包围形成连接凹槽,所述连接凹槽的开口位置位于所述第一盖板的外表面,对所述均温板进行整形的步骤包括:
    提供治具,所述治具包括支撑座和压盖,所述支撑座用于承载所述均温板,所述第二盖板固定在所述支撑座上,所述压盖包括整形柱,所述整形柱伸入所述连接凹槽内,并抵压所述连接凹槽的底部,通过所述压盖施加所述第一盖板抵压力,使得所述均温板变形。
  41. 根据权利要求40所述的均温板的制作方法,其特征在于,对所述均温板进行整形的过程中,所述压盖和所述第一盖板的外表面接触。
  42. 一种移动终端,其特征在于,包括:
    中框(20),包括第一表面(S1)、第二表面(S2)和贯通所述第一表面(S1)和第二表面(S2)的窗口(W);
    均温板(30),固定至所述中框(20),且至少部分所述均温板(30)位于所述窗口(W)中,所述均温板(30)包括第一盖板(31)、第二盖板(32)和连接结构(34),所述第一盖板(31)和所述第二盖板(32)之间形成工作腔(33),所述工作腔(33)内设毛细通道(35)、蒸气通道(37)和工质,所述毛细通道(35)和所述蒸气通道(37)用于在蒸发区(301)和冷凝区(302)之间输送所述工质,所述连接结构(34)位于所述工作腔(33)内,所述连接结构(34)和所述第一盖板(31)固定连接,所述连接结构(34)和所述第二盖板(32)固定连接,所述第二盖板(32)包括层叠设置的第一材料层(M1)和第二材料层(M2),所述第一材料层(M1)的焊接温度低于所述第二材料层(M2)的焊接温度,所述第二材料层(M2)的软化温度高于所述第一材料层(M1)的焊接温度,所述第一材料层(M1)用于与所述连接结构(34)和所述第一盖板(31)焊接固定,所述第二材料层(M2)位于所述第一材料层(M1)背离所述第一盖板(31)的一侧;
    显示屏(10),位于所述第一盖板(31)远离所述第二盖板(32)的一侧;
    电池(40),位于所述第二盖板(32)远离所述第一盖板(31)的一侧。
  43. 根据权利要求42所述的移动终端,其特征在于,所述第二材料层(M2)为具有氮元素的不锈钢材料;或者,所述第二材料层(M2)为钛合金材料。
  44. 根据权利要求43所述的移动终端,其特征在于,所述氮元素的含量∈[0.03wt.%,5wt.%]。
  45. 根据权利要求42所述的移动终端,其特征在于,所述第二材料层(M2)的厚度大于所述第一材料层(M1)的厚度。
  46. 根据权利要求45所述的移动终端,其特征在于,所述第二材料层(M2)通过电镀的方式形成在所述第一材料层(M1)的表面。
  47. 根据权利要求46所述的移动终端,其特征在于,所述第二材料层(M2)和所述第一材料层(M1)之间设有电镀打底层(M4)。
  48. 根据权利要求42所述的移动终端,其特征在于,所述第二盖板(32)还包括第三材料层(M3),所述第三材料层(M3)的焊接温度低于所述第二材料层(M2)的焊接温度,所述第三材料层(M3)位于所述第二材料层(M2)背离所述第一材料层(M1)的一侧。
PCT/CN2022/118199 2022-05-13 2022-09-09 移动终端、均温板和均温板的制作方法 WO2023216482A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210517695.5 2022-05-13
CN202210517695.5A CN114705071B (zh) 2022-05-13 2022-05-13 移动终端、均温板和均温板的制作方法

Publications (1)

Publication Number Publication Date
WO2023216482A1 true WO2023216482A1 (zh) 2023-11-16

Family

ID=82176983

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/118199 WO2023216482A1 (zh) 2022-05-13 2022-09-09 移动终端、均温板和均温板的制作方法

Country Status (2)

Country Link
CN (1) CN114705071B (zh)
WO (1) WO2023216482A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114705071B (zh) * 2022-05-13 2022-09-09 华为技术有限公司 移动终端、均温板和均温板的制作方法
CN219738448U (zh) * 2023-02-20 2023-09-22 华为技术有限公司 一种显示组件和电子设备
CN117268146B (zh) * 2023-11-15 2024-01-26 中国核动力研究设计院 一种扩散焊换热器及其设计方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567304A (zh) * 2019-10-15 2019-12-13 联德精密材料(中国)股份有限公司 薄型毛细结构支撑均温板
CN111163621A (zh) * 2020-01-14 2020-05-15 华为技术有限公司 高强度均热板及其制备方法、电子设备
CN111220013A (zh) * 2020-03-12 2020-06-02 深圳威铂驰热技术有限公司 一种超薄均温板及其制造工艺
CN215261347U (zh) * 2021-07-13 2021-12-21 爱美达(深圳)热能系统有限公司 一种均温板
CN114340305A (zh) * 2021-08-02 2022-04-12 华为技术有限公司 驱动泵、冷板组件、移动终端设备和电子系统
US20220132697A1 (en) * 2020-01-31 2022-04-28 Furukawa Electric Co., Ltd. Vapor chamber
CN114705071A (zh) * 2022-05-13 2022-07-05 华为技术有限公司 移动终端、均温板和均温板的制作方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUB20152826A1 (it) * 2015-07-21 2017-01-21 Ernst Gruber Spalmatore di calore
CN215864819U (zh) * 2019-11-06 2022-02-18 古河电气工业株式会社 均热板
CN113498295B (zh) * 2020-03-19 2022-12-13 华为技术有限公司 超薄均热板及其制备方法、电子设备
CN213343091U (zh) * 2020-06-01 2021-06-01 华为技术有限公司 均温板和电子设备
CN112648870A (zh) * 2020-12-28 2021-04-13 爱美达(深圳)热能系统有限公司 一种轻量化的均温板的制造工艺及均温板
CN113465431B (zh) * 2021-07-02 2023-08-25 青岛海信移动通信技术有限公司 均温板以及终端设备

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110567304A (zh) * 2019-10-15 2019-12-13 联德精密材料(中国)股份有限公司 薄型毛细结构支撑均温板
CN111163621A (zh) * 2020-01-14 2020-05-15 华为技术有限公司 高强度均热板及其制备方法、电子设备
CN112996346A (zh) * 2020-01-14 2021-06-18 荣耀终端有限公司 高强度均热板及其制备方法、电子设备
US20220132697A1 (en) * 2020-01-31 2022-04-28 Furukawa Electric Co., Ltd. Vapor chamber
CN111220013A (zh) * 2020-03-12 2020-06-02 深圳威铂驰热技术有限公司 一种超薄均温板及其制造工艺
CN215261347U (zh) * 2021-07-13 2021-12-21 爱美达(深圳)热能系统有限公司 一种均温板
CN114340305A (zh) * 2021-08-02 2022-04-12 华为技术有限公司 驱动泵、冷板组件、移动终端设备和电子系统
CN114705071A (zh) * 2022-05-13 2022-07-05 华为技术有限公司 移动终端、均温板和均温板的制作方法

Also Published As

Publication number Publication date
CN114705071B (zh) 2022-09-09
CN114705071A (zh) 2022-07-05

Similar Documents

Publication Publication Date Title
WO2023216482A1 (zh) 移动终端、均温板和均温板的制作方法
WO2021143674A1 (zh) 移动终端、均热板及其制备方法、电子设备
JP2013157111A (ja) 組電池の冷却兼加熱構造
TW200936024A (en) Heat dissipation module and supporting element thereof
WO2022135262A1 (zh) 电子设备
JP2001035981A (ja) 半導体素子用冷却器及びこれを用いた電力変換装置
WO2014115839A1 (ja) ヒートパイプ
WO2022007721A1 (zh) 一种散热器及通信设备
TW201910712A (zh) 芯構造體及容納芯構造體的熱管
US20240318921A1 (en) Vapor chamber with microstructure layer
CN113242672A (zh) 均热板及电子设备
CN215725361U (zh) 一种高导热型散热器
CN220274163U (zh) 一种陶瓷基均热板结构
CN213244730U (zh) 均热板及电子设备
JP2010216676A (ja) 冷却基板
CN212463856U (zh) 热超导散热板、散热器及5g基站设备
CN210200705U (zh) 高效散热模组
CN111212550B (zh) 一种散热装置及通信产品
CN219329253U (zh) 一种散热盖及半导体封装器件
CN217933975U (zh) 液冷板及电池模组
CN210573485U (zh) 便携式平板笔记本
CN210534623U (zh) 高效散热功能的平板笔记本
CN115297674A (zh) 散热器、散热器的制作方法及电子设备
WO2021190552A1 (zh) 移动终端及中框组件
CN211578734U (zh) 用于电子器件的导热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22941423

Country of ref document: EP

Kind code of ref document: A1