WO2018072289A1 - 一种木质素选择性催化氧化制备马来酸酯的方法 - Google Patents

一种木质素选择性催化氧化制备马来酸酯的方法 Download PDF

Info

Publication number
WO2018072289A1
WO2018072289A1 PCT/CN2016/109908 CN2016109908W WO2018072289A1 WO 2018072289 A1 WO2018072289 A1 WO 2018072289A1 CN 2016109908 W CN2016109908 W CN 2016109908W WO 2018072289 A1 WO2018072289 A1 WO 2018072289A1
Authority
WO
WIPO (PCT)
Prior art keywords
lignin
reaction
maleate
ionic liquid
selective catalytic
Prior art date
Application number
PCT/CN2016/109908
Other languages
English (en)
French (fr)
Inventor
李雪辉
蔡镇平
黎英文
龙金星
王乐夫
Original Assignee
华南理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华南理工大学 filed Critical 华南理工大学
Priority to US16/343,830 priority Critical patent/US10807938B2/en
Priority to JP2019521106A priority patent/JP6771247B2/ja
Publication of WO2018072289A1 publication Critical patent/WO2018072289A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C57/00Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms
    • C07C57/02Unsaturated compounds having carboxyl groups bound to acyclic carbon atoms with only carbon-to-carbon double bonds as unsaturation
    • C07C57/13Dicarboxylic acids
    • C07C57/145Maleic acid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/186Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J27/188Phosphorus; Compounds thereof with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with chromium, molybdenum, tungsten or polonium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0234Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
    • B01J31/0235Nitrogen containing compounds
    • B01J31/0244Nitrogen containing compounds with nitrogen contained as ring member in aromatic compounds or moieties, e.g. pyridine
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0298Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature the ionic liquids being characterised by the counter-anions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C51/00Preparation of carboxylic acids or their salts, halides or anhydrides
    • C07C51/16Preparation of carboxylic acids or their salts, halides or anhydrides by oxidation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C67/00Preparation of carboxylic acid esters
    • C07C67/39Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester
    • C07C67/42Preparation of carboxylic acid esters by oxidation of groups which are precursors for the acid moiety of the ester by oxidation of secondary alcohols or ketones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/001General concepts, e.g. reviews, relating to catalyst systems and methods of making them, the concept being defined by a common material or method/theory
    • B01J2531/002Materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0277Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
    • B01J31/0278Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
    • B01J31/0285Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre also containing elements or functional groups covered by B01J31/0201 - B01J31/0274
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the invention relates to a maleic acid ester, in particular to a method for preparing a maleic acid ester by selectively oxidizing ring-opening of lignin by a heteropoly acid type functionalized ionic liquid; and belongs to the technical field of high value utilization of biomass.
  • Biomass is the only carbon-containing renewable resource currently discovered. Compared with fossil energy, biomass has the advantages of low sulfur content and zero CO 2 emissions.
  • the main components of biomass include cellulose, hemicellulose, and lignin.
  • lignin molecules contain various functional groups such as a hydroxyl group, an aldehyde group, a carboxyl group, a ketone group, and a carbon-carbon double bond.
  • lignin molecules contain various functional groups such as a hydroxyl group, an aldehyde group, a carboxyl group, a ketone group, and a carbon-carbon double bond.
  • Xu et al. utilize formic acid as a hydrogen source and Pt/C as a catalyst to degrade switchgrass organic dissolved lignin in an ethanol solution. It is found that the system can promote the conversion of polymer compounds into small molecule liquid products. The reaction time has a great influence on the distribution of products and the properties of liquid products. After 4 hours, 21% of lignin is converted into 7 kinds.
  • lignin is a polymer having a spatial network structure which is crosslinked by petroleum alkylphenol units
  • the solid catalyst is used to degrade lignin.
  • the catalyst is difficult to contact with the substrate, the reaction is difficult to carry out and the depolymerization product has poor selectivity. Therefore, how to improve the conversion rate of lignin and the selectivity of the product is still the main challenge of the current high utilization of lignin.
  • Maleic acid and its esters are important bulk chemical products. They are mainly derived from petrochemical industry. The production methods include benzene oxidation and butane oxidation. The former is gradually replaced by the latter because of the toxicity of the raw materials used. . However, whether it is benzene oxidation or butane oxidation, its raw materials need to rely on fossil resources, and the reaction conditions are harsh (for example, the butane method usually requires high temperature and high pressure). With the deepening of the concept of sustainable development, it is particularly important to prepare maleic acid (ester) by catalytic conversion of renewable resources such as lignin under mild conditions.
  • the object of the present invention is to provide a lignin selective catalytic oxidation open loop which is environmentally friendly, can realize high-efficiency conversion of lignin, can be repeatedly used as a catalyst, and has high recovery rate.
  • a method of preparing a maleate is to provide a lignin selective catalytic oxidation open loop which is environmentally friendly, can realize high-efficiency conversion of lignin, can be repeatedly used as a catalyst, and has high recovery rate.
  • the heteropoly acid type functionalized ionic liquid catalyst used in the method overcomes the disadvantages of conventional ionic liquids, such as difficulty in recycling, and takes into account the advantages of homogeneous and heterogeneous catalysts, has good catalytic effect, and has simple preparation method and recovery rate. High, no pollution to the environment, can achieve efficient conversion of lignin and separation of ionic liquid catalyst and product.
  • a method for preparing maleate by selective catalytic oxidation of lignin comprising the steps of: adding lignin, a heteropoly acid functionalized ionic liquid, an aqueous alcohol solution to a reaction kettle, and operating at a pressure of 0.5 to 1.0 MPa under oxygen; The reaction is carried out at -160 ° C for 1 to 5 hours; after the reaction, the reaction solution is centrifuged and liquid-separated to obtain a maleate and an ionic liquid catalyst;
  • the heteropolyacid functionalized ionic liquid consists of a cation and an anion; an ionic liquid of an alkyl or alkanesulfonate imidazole or a pyridine cation, a phosphotungstate, a phosphomolybdate, a silicotungstate and a silicomolybate anion; .
  • the cation has an alkyl chain length of from C1 to C6.
  • the heteropolyacid functionalized ionic liquid is prepared by the following steps:
  • the reaction is carried out for 12 to 24 hours; after the reaction, it is washed with diethyl ether and dried in vacuo to obtain an internal salt of a white solid; the N-alkylimidazole has a carbon chain length of C1-C6;
  • the vacuum drying temperature of the steps (1) and (2) is 40 to 60 ° C; the solid solid drying of the step (4) is performed by drying the obtained solid in a vacuum drying oven at 60 to 80 ° C. ⁇ 48.
  • the lignin is obtained by sufficiently drying the lignin raw material, pulverizing it to 40 to 60 mesh, and washing the soluble component and the ash with deionized water and sufficiently drying it for use; 1 part by mass of H 2 ; SO 4 and 10-20 parts by mass of the treated lignin raw material are thoroughly mixed, and 50 to 200 parts by mass of a 75% by volume aqueous solution of ethanol is added, and an inert atmosphere is introduced, and the reaction temperature is 100-120 ° C. After the reaction, the reaction is passed. Separation and vacuum drying; said bagasse, tapioca, corn cob and corn stover.
  • the room temperature stirring time is 12 to 24 hours.
  • the alcohol of the aqueous alcohol solution is methanol, ethanol, n-propanol or isopropanol, and the volume concentration of the aqueous alcohol solution is from 10 to 100%.
  • the aqueous alcohol solution is used in an amount of 10 to 80 mL per gram of lignin, and the heteropoly acid functionalized ionic liquid is used in an amount of 0.5 to 3 mmol.
  • the resulting ionic liquid catalyst is used after recovery.
  • 201510778418X discloses a method for preparing vanillin by catalytic oxidative degradation of lignin, wherein the solid acid catalyst is a heteropoly acid and a salt thereof or a hydrate thereof, and the main product of the application is an aromatic compound, and vanillin is used.
  • the solid acid catalyst is a heteropoly acid and a salt thereof or a hydrate thereof, and the main product of the application is an aromatic compound, and vanillin is used.
  • Lord no different from traditional lignin oxidation.
  • the catalyst of the invention is a functionalized ionic liquid, the cationic moiety has a sulfonic acid functional group, and the anionic moiety is a heteropolyacid;
  • the catalyst of 201510778418X is completely different;
  • the target product of the invention is that the product is mainly maleate (aliphatic diester); the effect of the catalyst is completely different in the two; and the reaction conditions of the invention are milder and the oxygen pressure is lower The yield of the product is higher.
  • the present invention has the following advantages and beneficial effects:
  • the catalyst used in the invention has good catalytic activity, and the conversion rate of lignin and the selectivity of the maleic acid product are 92% and 73.21%, respectively;
  • the preparation method of the catalyst is simple: the preparation of the catalyst can be obtained by a simple ion exchange method at normal temperature;
  • the catalyst used in the present invention can directly recover the catalyst by temperature adjustment, so the process is simple and the catalyst is easily separated from the product.
  • reaction conditions are mild, the process is green and safe, the operation is simple, and intermittent and continuous production can be realized.
  • Figure 1 is a graph showing the recycling performance of a 1-(4-sulfonylbutyl)-3-methylimidazolium phosphotungstate copper salt ionic liquid catalyst in Example 1.
  • Example 2 is a gas chromatography-mass diagram of the lignin catalytic oxidation product of Example 1.
  • Figure 3 is a mass spectrum of the main product of the lignin catalytic oxidation of diethyl methoxide of Example 1.
  • lignin conversion is calculated by the ratio between the difference in mass between the added lignin raw material and unreacted lignin and the mass of the lignin raw material.
  • the lignin-catalyzed oxidation products were qualitatively analyzed by gas chromatography-mass spectrometry (Fig. 2 and Fig. 3) and quantitatively analyzed by gas chromatography.
  • the selectivity of diethyl maleate selectivity is obtained from the ratio between the mass obtained by gas chromatography and the mass of all products. Tested: lignin conversion was 90.7%, and the yield and selectivity of diethyl maleate were 153.60 mg/g and 59.32%, respectively.
  • the method of the invention first reports the technology of obtaining maleate directly from the catalytic oxidation of lignin. Compared with the current lignin treatment process, it has mild reaction conditions, green and safe reaction process, and conversion of raw materials. High rate, high product yield and high selectivity (current lignin catalytic depolymerization products are mainly phenolic compounds, the highest yield is 23%, single compound selectivity is less than 30%), the catalyst is easy to recycle, and has high recovery rate. , good reusability, can achieve significant advantages such as discontinuous and continuous production.
  • the solution was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 77.9%.
  • Another 10 ml constant volume clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of dimethyl maleate were determined to be 71.61 mg/g and 58.84%, respectively.
  • the solution was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 80.9%.
  • Another 10 ml of the volumetric clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of diethyl maleate were determined to be 87.65 mg/g and 67.36%, respectively.
  • the solution was made up to 25 ml, 10 ml, and 25 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 81.3%.
  • Another 10 ml of the volumetric clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of diethyl maleate were determined to be 53.62 mg/g and 77.50%, respectively.
  • the selective catalytic oxidation process of lignin is:
  • the supernatant was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 83.2%.
  • Another 10 ml of the volumetric clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of diethyl maleate were determined to be 38.38 mg/g and 48.33%, respectively.
  • the selective catalytic oxidation process of lignin is:
  • the supernatant was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 88.3%.
  • Another 10 ml of the volumetric clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of diethyl maleate were determined to be 133.41 mg/g and 60.18%, respectively.
  • the selective catalytic oxidation process of lignin is:
  • the solution was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 93.1%.
  • Another 10 ml of the volumetric clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of diethyl maleate were determined to be 142.31 mg/g and 61.25%, respectively.
  • the selective catalytic oxidation process of lignin is:
  • the solution was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 82.3%.
  • Another 10 ml of the volumetric clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of diethyl maleate were determined to be 95.71 mg/g and 47.83%, respectively.
  • the selective catalytic oxidation process of lignin is:
  • the solution was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 92.3%.
  • Another 10 ml constant volume clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of diethyl maleate were determined to be 162.22 mg/g and 73.21%, respectively.
  • the selective catalytic oxidation process of lignin is:
  • the supernatant was made up to 25 ml, and 10 ml of deionized water was added to precipitate unreacted lignin, and the conversion was calculated to be 86.5%.
  • Another 10 ml of the volumetric clear solution was used for component analysis in the same manner as in Example 1.
  • the yield and selectivity of the diethyl maleate product were determined to be 147.33 mg/g and 57.15%, respectively.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明公开了一种木质素选择性催化氧化制备马来酸酯的方法。该方法以杂多酸功能化离子液体为催化剂,醇水溶液为反应介质,在反应温度为110~160℃,反应时间为1~6h,氧气压力为0.5~1.0MPa的条件下,实现了生物质木质素的高效选择性催化转化与开环氧化,获得了47.83%以上的马来酸酯选择性。本发明源于木质素解聚的单一化学品收率和选择性远高于当前技术,且具有离子液体催化剂可通过简单的温度调节实现回收和循环使用等显著优点;本发明反应条件温和,工艺绿色安全,操作简单、可实现间断与连续式生产。本发明为从木质素等可再生原料制备马来酸酯等大宗化学品提供了一条新的绿色途径。

Description

一种木质素选择性催化氧化制备马来酸酯的方法 技术领域
本发明涉及马来酸酯,具体涉及一种杂多酸型功能化离子液体催化木质素选择性氧化开环制备马来酸酯的方法;属于生物质高值化利用技术领域。
背景技术
生物质是目前所发现的唯一含碳可再生资源。与化石能源相比,生物质具有含硫量低以及CO2零排放等优点。生物质的主要组分包括纤维素、半纤维素及木质素。近年来,通过化学或生物等方法高效转化纤维素和半纤维素制备生物燃料和平台化合物得到了较好的发展。作为生物质的第二大组分,木质素分子含有羟基、醛基,羧基、酮基和碳碳双键等多种官能团。然而,也正是因为其结构的复杂性和不确定性,如何将木质素高选择性转化成为了木质素开发利用的主要技术难点。
近年来,氢解、液化、醇解和热解的技术广泛应用于转化木质素。例如,Xu等利用甲酸为氢源,Pt/C为催化剂在乙醇溶液中降解柳枝稷有机溶木质素。研究发现,该体系下可以促进高分子化合物转变成小分子液相产物,反应时间对产物的分布和液相产物的性质具有较大的影响,反应4h后,21%的木质素转变成7种主要产物,20h后,76%的木质素的相对分子质量减小,通过元素分析发现液相产物中O/C比降低50%,而H/C比增加10%。然而,这些转化过程往往需要较高的温度或压力的苛刻反应条件。相比之下,木质素催化氧化的条件较为温和。Partenheimer等以Co/Mn/Zr/Br为催化剂在空气,醋酸水溶液体系中催化氧化木质素得到对羟基苯甲醛、对羟基苯甲酸、香草醛、香草酸、丁香醛和丁香酸等18种芳香化合物。然而,因为木质素是一种由石油烷基酚单元交联而成的具有空间网状结构的高聚物,所以使用固体催化剂降解木质素 时催化剂难以与底物接触,反应较难进行且解聚产物选择性差,因此,如何提高木质素的转化率与产物的选择性仍是当前木质素高值化利用过程的主要挑战。
马来酸及其酯是重要的大宗化工产品,其目前主要来源于石油化工,生产方式包括苯氧化和丁烷氧化两种方式,前者由于所采用的原料具有一定的毒性,逐渐被后者取代。但不管是苯氧化还是丁烷氧化,其原料均需要依赖化石资源,且反应条件较苛刻(例如丁烷法通常需要高温高压)。随着可持续发展理念的深入,温和条件下木质素等可再生资源的催化转化制备马来酸(酯)显得尤为重要。
发明内容
为了解决现有技术的缺点和不足之处,本发明的目的在于提供一种对环境无污染,可实现木质素的高效转化,催化剂可重复使用,回收率高的木质素选择性催化氧化开环制备马来酸酯的方法。
该方法采用的杂多酸型功能化离子液体催化剂克服了常规离子液体难以回收利用等缺点,并兼顾均相和多相催化剂的优点,具有很好的催化效果,且催化剂制备方法简单,回收率高,对环境无污染,可实现木质素的高效转化以及离子液体催化剂与产物分离。
本发明目的通过以下技术方案实现:
一种木质素选择性催化氧化制备马来酸酯的方法,包括以下步骤:将木质素、杂多酸功能化离子液体、醇水溶液加入到反应釜后,在0.5~1.0MPa氧气条件下于110~160℃反应1~5h;反应后,将反应液离心,分液,得马来酸酯和离子液体催化剂;
所述杂多酸功能化离子液体由阳离子和阴离子组成;以烷基或烷磺酸基咪唑类或吡啶类阳离子,以磷钨酸根、磷钼酸根、硅钨酸根和硅钼酸根阴离子的离子液体。
为进一步实现本发明目的,优选地,所述阳离子的烷基链长度为C1-C6。
所述杂多酸功能化离子液体通过如下步骤制得:
优选地,(1)称取等摩尔量的N-烷基咪唑与丁烷磺内酯在30~50℃条件下 反应12~24h;反应后用乙醚洗涤,真空干燥,得到白色固体的内盐;所述N-烷基咪唑的碳链长度为C1-C6;
(2)将磷钨酸溶于去离子水中,搅拌至完全溶解;按碳酸盐与磷钨酸的摩尔质量为1:2的比例称取相应的碳酸盐,缓慢加入至磷钨酸溶液中,室温搅拌,得到均相溶液,除去溶剂,真空干燥12~48h,得到杂多酸盐;
(3)称取等摩尔量的杂多酸盐和所述内盐,分别用去离子水完全溶解后制得溶液,将内盐溶液边搅拌边滴加到杂多酸盐溶液中,室温下继续搅拌12~48h;
(4)反应后旋蒸除去溶剂,所得固体真空干燥,即得杂多酸型功能化离子液体。
优选地,步骤(1)和(2)所述真空干燥的温度为40~60℃;步骤(4)所述所得固体真空干燥是将所得固体置于60~80℃的真空干燥箱中干燥12~48。
优选地,所述木质素通过如下方法制得:将木质素原料充分干燥后粉碎至40~60目,并用去离子水将可溶性组分和灰分洗涤后充分干燥备用;将1质量份的H2SO4和10-20质量份的处理后的木质素原料充分混合,加入50~200质量份的体积浓度为75%乙醇水溶液,通入惰性气氛,反应温度为100-120℃,反应后,通过分离和真空干燥;所述包括蔗渣、木薯、玉米芯和玉米秸秆。
优选地,所述室温搅拌的时间为12~24h。
优选地,所述醇水溶液的醇为甲醇、乙醇、正丙醇或异丙醇,醇水溶液的体积浓度为10~100%。
优选地,以每克木质素计,所述醇水溶液用量为10~80mL,所述杂多酸功能化离子液体的用量为0.5~3毫摩尔。
优选地,得到的离子液体催化剂回收后继续使用。
201510778418X公开了一种木质素催化氧化降解制备香兰素的方法,其中的固体酸催化剂为杂多酸及其盐或其水合物,该申请的主要产物为芳香族化合物,且以香兰素为主,与传统木质素氧化并无二致。本发明催化剂为是功能化离子液体,阳离子部分带有磺酸官能团,阴离子部分为杂多酸根;与 201510778418X的催化剂完全不同;本发明目标产物是产物主要是马来酸酯(脂肪族二酸酯);催化剂所起的作用在两者中完全不同;且本发明反应条件更加温和,氧气压力更低,产物的收率更高。
本发明与现有技术相比,具有如下的优点及有益效果:
(1)首次直接从木质素出发高选择性获得单一化学品;
(2)木质素转化率和产物选择性高:本发明所用的催化剂具有很好的催化活性,木质素的转化率和马来酸(酯)产物的选择性分别为92%和73.21%;
(3)催化剂制备方法简单:催化剂的制备可利用简单的离子交换法在常温下即可制得;
(4)催化剂易回收:本发明所用的催化剂可直接通过温度调节实现催化剂的回收,因此过程简单,且催化剂极易与产品分离。
(5)反应条件温和,工艺绿色安全,操作简单、可实现间断与连续式生产。
附图说明
图1为实施例1中1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体催化剂循环使用性能情况图。
图2为实施例1木质素催化氧化产物气质联用图。
图3为实施例1木质素催化氧化主要产物马来酸二乙酯质谱图。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明作进一步描述,但本发明的实施方式不限于此。
实施例1
1、离子液体BSmimCuPW12O40的制备:
(1)称取等摩尔量的N-甲基咪唑与1,4-丁烷磺内酯在50℃条件下反应24h;反应后用乙醚洗涤,60℃下真空干燥,得到白色固体内盐;
(2)将磷钨酸溶于去离子水中,搅拌至磷钨酸完全溶解;按碱式碳酸铜:磷钨酸的摩尔质量为1:2的比例称取相应摩尔量的碱式碳酸铜,缓慢加入至磷钨酸溶液中,在室温下搅拌24h,得到浅蓝色溶液,在80℃下用旋转蒸发仪除 去溶剂,60℃下真空干燥12h,得到杂多酸CuHPW12O40
(3)称取等摩尔量的杂多酸CuHPW12O40和步骤(1)所制备的内盐,将杂多酸CuHPW12O40和内盐分别用去离子水溶解后,将内盐溶液边搅拌边滴加到杂多酸CuHPW12O40溶液中,室温下反应48h;
(4)反应后旋蒸除去溶剂后得到蓝色固体,60℃下真空干燥48h,即得杂多酸型功能化离子液体,即1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)。
2、蔗渣木质素的制备:
(1)农业废弃物的预处理:将蔗渣充分干燥后采用机械粉碎的方法将其粉碎至60目以下,并用去离子水将其可溶性组分和灰分洗涤后充分干燥备用;
(2)有机溶木质素的提取:将1质量份的H2SO4和15质量份的蔗渣充分混合,通入惰性气氛,反应温度为120℃,反应后,通过分离和真空干燥,即得到高纯度的蔗渣木质素。
3、用于木质素选择性催化氧化的方法:
准确称取0.25g蔗渣木质素,20mL 80%(体积浓度)乙醇水,0.9mmol 1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8MPa,160℃下反应5h。反应后,冷却,将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于催化剂循环性能测试,催化剂循环使用5次后,活性未见明显降低(附图1)。清液定容至25ml,取10ml加入25ml去离子水析出未反应的木质素。木质素转化率通过加入的木质素原料与未反应的木质素之间的质量差与木质素原料质量之间的比值计算获得。木质素催化氧化产物通过气质联用进行定性分析(图2和图3),采用气相色谱进行定量分析。马来酸二乙酯选择性由气相色谱所得质量与所有产物质量之间的比值获得。经测试:木质素转化率为90.7%,马来酸二乙酯的产率和选择性分别为153.60mg/g和59.32%。
本发明方法首次报道了直接从木质素催化氧化获得马来酸酯的技术,相对于当前木质素处理过程,其具有反应条件温和,反应工艺绿色安全,原料转化 率高、产物收率与选择性高(目前木质素催化解聚产物主要是酚类化合物,最高收率为23%,单一化合物选择性低于30%),催化剂易于回收,且具有高回收率,重复利用性好,可实现间断式和连续式生产等显著优势。
实施例2
本实施例2与实施例1的不同之处在于:
1、离子液体1-(4-磺酸丁基)-3-乙基咪唑磷钨酸镍盐(BSeimNiPW12O40)的制备
(1)称取等摩尔量的N-乙基咪唑与1,4-丁烷磺内酯在30℃条件下反应18h;反应后用乙醚洗涤,50℃下真空干燥,得到白色固体内盐;
(2)将磷钨酸溶于去离子水中,搅拌至磷钨酸完全溶解;按碳酸镍:磷钨酸的摩尔质量为1:2的比例称取相应摩尔量的碳酸镍,缓慢加入至磷钨酸溶液中,室温下搅拌18h后在70℃下用旋转蒸发仪除去溶剂,50℃下真空干燥48h,得到杂多酸NiHPW12O40
(3)称取等摩尔量的杂多酸NiHPW12O40和步骤(1)所制备的内盐,将杂多酸NiHPW12O40和内盐分别用去离子水溶解后,将内盐溶液边搅拌边滴加到杂多酸NiHPW12O40溶液中,室温下反应48h;
(4)反应后旋蒸除去溶剂后所得固体70℃下真空干燥36h,即得杂多酸型功能化离子液体BSmeimNiPW12O40
(2)木质素选择性催化氧化
准确称取0.5g蔗渣木质素,50mL70%(体积浓度)甲醇水,1.8mmol 1-(4-磺酸丁基)-3-乙基咪唑磷钨酸镍盐离子液体(BSeimNiPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8MPa,160℃下反应5h。反应后,冷却,将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为77.9%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二甲酯的产率和选择性分别为71.61mg/g和58.84%。
实施例3
本实施例与实施例1的不同之处在于:
1、离子液体1-(4-磺酸丁基)-3-甲基咪唑磷钨酸锰盐(BSmimMnPW12O40)的制备
(1)称取等摩尔量的N-甲基咪唑与1,4-丁烷磺内酯在50℃条件下反应24h;反应后用乙醚洗涤,60℃下真空干燥,得到白色固体内盐;
(2)将磷钨酸溶于去离子水中,搅拌至磷钨酸完全溶解;按碳酸锰:磷钨酸的摩尔质量为1:2的比例称取相应摩尔量的碳酸锰,缓慢加入至磷钨酸溶液中,室温下搅拌24h后用旋转蒸发仪除去溶剂,80℃下真空干燥30h,得到杂多酸MnHPW12O40
(3)称取等摩尔量的杂多酸MnHPW12O40和上述所制备的内盐,将杂多酸MnHPW12O40和内盐分别用去离子水溶解后,将内盐溶液边搅拌边滴加到杂多酸MnHPW12O40溶液中,室温下反应48h;
(4)反应后旋蒸除去溶剂后所得固体60℃下真空干燥12h,即得杂多酸型功能化离子液体BSmimMnPW12O40
2、木质素的选择性催化氧化
准确称取0.25g玉米秸秆木质素,20mL 30%(体积浓度)乙醇水,0.9mmol1-(4-磺酸丁基)-3-甲基咪唑磷钨酸锰盐离子液体(BSmimMnPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至1.0MPa,140℃下反应5h。反应后,冷却,将将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为80.9%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯的产率和选择性分别为87.65mg/g和67.36%。
实施例4
本实施例与实施例1的不同之处在于:
1、离子液体1-(4-磺酸丁基)-3-甲基咪唑磷钨酸钠盐(BSbimNa2PW12O40)的制备
(1)称取等摩尔量的N-丁基咪唑与1,4-丁烷磺内酯在40℃条件下反应 24h;反应后用乙醚洗涤,60℃下真空干燥,得到白色固体内盐;
(2)将磷钨酸溶于去离子水中,搅拌至磷钨酸完全溶解;按碳酸钠:磷钨酸的摩尔质量为1:2的比例称取相应摩尔量的碳酸钠,缓慢加入至磷钨酸溶液中,室温下搅拌24h后用旋转蒸发仪除去溶剂,60℃下真空干燥36h,得到杂多酸Na2HPW12O40
(3)称取等摩尔量的杂多酸Na2HPW12O40和上述所制备的内盐,将杂多酸Na2HPW12O40和内盐分别用去离子水溶解后,将内盐溶液边搅拌边滴加到杂多酸Na2HPW12O40溶液中,室温下反应48h;
(4)反应后旋蒸除去溶剂后所得固体80℃下真空干燥14h,即得杂多酸型功能化离子液体BSbimMnPW12O40
2、木质素的选择性催化氧化
准确称取0.25g高纯度的蔗渣木质素,20mL 70%(体积浓度)乙醇水溶液,0.9mmol 1-(4-磺酸丁基)-3-丁基咪唑磷钨酸钠盐离子液体(BSbimNa2PW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8Mpa,加热至160℃下反应5h。反应后,冷却,将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml,加入25ml去离子水使未反应的木质素析出,计算得到转化率为81.3%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯的产率和选择性分别为53.62mg/g和77.50%。
实施例5
本实施例与实施例1的不同之处在于:
木质素的选择性催化氧化过程为:
准确称取1.0g蔗渣木质素,20mL 80%(体积浓度)乙醇水,0.9mmol 1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.5MPa,150℃下反应5h。反应后,冷却,将将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为83.2%。另取10ml定容 清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯的产率和选择性分别为38.38mg/g和48.33%。
实施例6
本实施例与实施例1的不同之处在于:
木质素的选择性催化氧化过程为:
准确称取0.25g蔗渣木质素,20mL 80%(体积浓度)乙醇水,0.9mmol 1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8MPa,160℃下反应4h。反应后,冷却,将将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为88.3%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯的产率和选择性分别为133.41mg/g和60.18%。
实施例7
本实施例与实施例1的不同之处在于:
木质素的选择性催化氧化过程为:
准确称取0.25g蔗渣木质素,20mL 80%(体积浓度)乙醇水,1.5mmol 1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8MPa,160℃下反应6h。反应后,冷却,将将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为93.1%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯的产率和选择性分别为142.31mg/g和61.25%。
实施例8
本实施例与实施例1的不同之处在于:
木质素的选择性催化氧化过程为:
准确称取0.25g木薯木质素,20mL100%(体积浓度)乙醇,0.9mmol 1-(4- 磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8MPa,160℃下反应5h。反应后,冷却,将将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为82.3%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯的产率和选择性分别为95.71mg/g和47.83%。
实施例9
本实施例与实施例1的不同之处在于:
木质素的选择性催化氧化过程为:
准确称取0.25g脱碱木质素,20mL100%(体积浓度)乙醇,0.9mmol 1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8MPa,160℃下反应5h。反应后,冷却,将将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为92.3%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯的产率和选择性分别为162.22mg/g和73.21%。
实施例10
本实施例与实施例1的不同之处在于:
木质素的选择性催化氧化过程为:
准确称取0.25g玉米秸秆木质素,20mL 100%(体积浓度)乙醇,0.9mmol1-(4-磺酸丁基)-3-甲基咪唑磷钨酸铜盐离子液体(BSmimCuPW12O40)加入到100mL高压反应釜中,密封,用高纯氧气置换5次后,加压至0.8MPa,160℃下反应5h。反应后,冷却,将将反应液离心分离,得到析出的离子液体催化剂,60℃真空干燥24h,用于下一次使用。清液定容至25ml,取10ml加入25ml去离子水使未反应的木质素析出,计算得到转化率为86.5%。另取10ml定容清液进行成分分析,计算方式与实施例1相同,测定马来酸二乙酯产物的 产率和选择性分别为147.33mg/g和57.15%。
本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (9)

  1. 一种木质素选择性催化氧化制备马来酸酯的方法,其特征在于包括以下步骤:将木质素、杂多酸功能化离子液体、醇水溶液加入到反应釜后,在0.5~1.0MPa氧气条件下于110~160℃反应1~5h;反应后,将反应液离心,分液,得马来酸酯和离子液体催化剂;
    所述杂多酸功能化离子液体由阳离子和阴离子组成;以烷基或烷磺酸基咪唑类或吡啶类阳离子,以磷钨酸根、磷钼酸根、硅钨酸根和硅钼酸根阴离子的离子液体。
  2. 根据权利要求1所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,所述阳离子烷基链长度为C1-C6。
  3. 根据权利要求1或2所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,所述杂多酸功能化离子液体通过如下步骤制得:
    (1)称取等摩尔量的N-烷基咪唑与丁烷磺内酯在30~50℃条件下反应12~24h;反应后用乙醚洗涤,真空干燥,得到白色固体的内盐;所述N-烷基咪唑的碳链长度为C1-C6;
    (2)将磷钨酸溶于去离子水中,搅拌至完全溶解;按碳酸盐与磷钨酸的摩尔质量为1:2的比例称取相应的碳酸盐,缓慢加入至磷钨酸溶液中,室温搅拌,得到均相溶液,除去溶剂,真空干燥12~48h,得到杂多酸盐;
    (3)称取等摩尔量的杂多酸盐和所述内盐,分别用去离子水完全溶解后制得溶液,将内盐溶液边搅拌边滴加到杂多酸盐溶液中,室温下继续搅拌12~48h;
    (4)反应后旋蒸除去溶剂,所得固体真空干燥,即得杂多酸型功能化离子液体。
  4. 根据权利要求4所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,步骤(1)和(2)所述真空干燥的温度为40~60℃;步骤(4)所述所得固体真空干燥是将所得固体置于60~80℃的真空干燥箱中干燥12~48。
  5. 根据权利要求4所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,所述木质素通过如下方法制得:将木质素原料充分干燥后粉碎至40~60目,并用去离子水将可溶性组分和灰分洗涤后充分干燥备用;将1质量份的H2SO4和10-20质量份的处理后的木质素原料充分混合,加入50~200质量份的体积浓度为75%乙醇水溶液,通入惰性气氛,反应温度为100-120℃,反应后,通过分离和真空干燥;所述包括蔗渣、木薯、玉米芯和玉米秸秆。
  6. 根据权利要求4所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,所述室温搅拌的时间为12~24h。
  7. 根据权利要求1所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,所述醇水溶液的醇为甲醇、乙醇、正丙醇或异丙醇,醇水溶液的体积浓度为10~100%。
  8. 根据权利要求1所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,以每克木质素计,所述醇水溶液用量为10~80mL,所述杂多酸功能化离子液体的用量为0.5~3毫摩尔。
  9. 根据权利要求1所述的木质素选择性催化氧化制备马来酸酯的方法,其特征在于,得到的离子液体催化剂回收后继续使用。
PCT/CN2016/109908 2016-10-21 2016-12-14 一种木质素选择性催化氧化制备马来酸酯的方法 WO2018072289A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/343,830 US10807938B2 (en) 2016-10-21 2016-12-14 Method for preparing maleate by selective catalytic oxidation of lignin
JP2019521106A JP6771247B2 (ja) 2016-10-21 2016-12-14 リグニンの触媒選択的酸化によるマレイン酸エステルの製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610920732.1 2016-10-21
CN201610920732.1A CN106565488B (zh) 2016-10-21 2016-10-21 一种木质素选择性催化氧化制备马来酸酯的方法

Publications (1)

Publication Number Publication Date
WO2018072289A1 true WO2018072289A1 (zh) 2018-04-26

Family

ID=60414269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/109908 WO2018072289A1 (zh) 2016-10-21 2016-12-14 一种木质素选择性催化氧化制备马来酸酯的方法

Country Status (4)

Country Link
US (1) US10807938B2 (zh)
JP (1) JP6771247B2 (zh)
CN (1) CN106565488B (zh)
WO (1) WO2018072289A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037065A (ja) * 2018-09-03 2020-03-12 国立大学法人東京農工大学 リグニンの分解方法及び芳香族化合物の製造方法
CN114985007A (zh) * 2022-06-13 2022-09-02 福州大学 一种过渡金属掺杂的杂多酸离子液体及其制备方法与应用

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108863776B (zh) * 2017-05-16 2021-06-15 昌吉学院 一种定向催化氧化木质素制备芳香酸酯、脂肪酸酯的方法
CN107602383B (zh) * 2017-08-31 2020-11-24 华南理工大学 一种利用离子液体催化木质素制备对羟基肉桂酸酯的方法
CN108516920B (zh) * 2018-05-24 2021-02-19 中国石油大学(华东) 一种快速催化氧化降解木屑制备芳香族化合物的方法
CN109824912B (zh) * 2019-01-16 2020-12-18 中国科学院广州能源研究所 一种木质纤维生物质水解联产丁烯二酸和木质素的方法
CN110201712B (zh) * 2019-05-10 2021-12-07 东北师范大学 一种离子液体型多金属氧酸盐催化剂及其制备方法和应用
CN111732615A (zh) * 2020-03-27 2020-10-02 东北林业大学 一种降解麦草碱木质素的方法
CN113457687B (zh) * 2020-03-31 2023-08-08 中国石油化工股份有限公司 一种纳米材料及其制备方法和环烷烃的催化氧化方法
CN114436809B (zh) * 2021-11-11 2023-01-06 华南理工大学 Usy分子筛负载的氧化铁催化木质素解聚制备马来酸二乙酯的方法
CN115304650B (zh) * 2022-08-12 2023-11-24 中南林业科技大学 一种木质素源选择性催化氧化解聚成酯的方法
CN115739180B (zh) * 2022-10-31 2024-04-26 华南理工大学 一种tmb改性聚苯并噁嗪负载单金属催化剂及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089293A (zh) * 2008-07-18 2011-06-08 阿克马法国公司 由可再生材料制造马来酸酐、所得到的马来酸酐及其用途
CN103910699A (zh) * 2014-03-20 2014-07-09 华中科技大学 一种从糠醛选择氧化制备马来酸酐的方法
US20140273104A1 (en) * 2013-03-15 2014-09-18 Suganit Systems, Inc. Pretreatment and fractionation of lignocellulosic biomass
CN105618139A (zh) * 2016-03-23 2016-06-01 辽宁石油化工大学 一种基于钼多金属氧酸盐的木质纤维素降解方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2530675B2 (ja) * 1987-12-23 1996-09-04 三菱化学株式会社 カルボン酸類の製造方法
BE1011230A6 (fr) * 1997-06-24 1999-06-01 Eurodiol S A Procede pour la production de dimethylesters d'acides ou d'anhydrides dicarboxyliques.
US6914029B2 (en) * 2001-11-02 2005-07-05 California Institute Of Technology Polyoxometallate catalysts and catalytic processes
CN1852898B (zh) * 2003-09-18 2010-04-28 住友化学株式会社 离子性液体及使用离子性液体的反应方法
WO2014200509A1 (en) * 2013-06-14 2014-12-18 Washington State University Research Foundation Conversion of lignin to phenolic and carboxylate compounds
JP6447078B2 (ja) * 2014-12-12 2019-01-09 王子ホールディングス株式会社 リグニン組成物の製造方法
CN105237371B (zh) * 2015-11-13 2017-03-22 南京工业大学 一种木质素催化氧化降解制备香兰素的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102089293A (zh) * 2008-07-18 2011-06-08 阿克马法国公司 由可再生材料制造马来酸酐、所得到的马来酸酐及其用途
US20140273104A1 (en) * 2013-03-15 2014-09-18 Suganit Systems, Inc. Pretreatment and fractionation of lignocellulosic biomass
CN103910699A (zh) * 2014-03-20 2014-07-09 华中科技大学 一种从糠醛选择氧化制备马来酸酐的方法
CN105618139A (zh) * 2016-03-23 2016-06-01 辽宁石油化工大学 一种基于钼多金属氧酸盐的木质纤维素降解方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020037065A (ja) * 2018-09-03 2020-03-12 国立大学法人東京農工大学 リグニンの分解方法及び芳香族化合物の製造方法
CN114985007A (zh) * 2022-06-13 2022-09-02 福州大学 一种过渡金属掺杂的杂多酸离子液体及其制备方法与应用

Also Published As

Publication number Publication date
CN106565488A (zh) 2017-04-19
JP6771247B2 (ja) 2020-10-21
JP2019534278A (ja) 2019-11-28
US20190322611A1 (en) 2019-10-24
US10807938B2 (en) 2020-10-20
CN106565488B (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
WO2018072289A1 (zh) 一种木质素选择性催化氧化制备马来酸酯的方法
Zhu et al. Alcoholysis: a promising technology for conversion of lignocellulose and platform chemicals
Zhang et al. Catalytic conversion of xylose and corn stalk into furfural over carbon solid acid catalyst in γ-valerolactone
CN104557801B (zh) 一种金属/固体酸催化剂上由糠醛制备γ-戊内酯的方法
CN111054392B (zh) 一种金属-固体酸双中心催化剂及其在催化木糖脱水-加氢制备糠醇中的应用
CN108218673B (zh) 一种非贵金属催化木质素选择解聚的方法
CN113117688A (zh) 一种mof前驱体钼镍催化剂、其制备方法以及其在木质素降解中的应用
CN110257097B (zh) 一种微波辅助木质素氢解制备生物油的方法
CN108164407B (zh) 一种水相氧化生物质制备单酚、小分子有机酸和高纯度纤维素的方法
WO2018152870A1 (zh) 一种生物质催化热解制备左旋葡萄糖酮的方法
WO2019114527A1 (zh) 一种生产高活性木质素和副产糠醛的方法及应用
Wang et al. Selective hydrothermal degradation of cellulose to formic acid in alkaline solutions
CN111072601B (zh) 一种5-羟甲基糠醛制备2,5-呋喃二甲醛的方法
Liu et al. Recyclable Zr/Hf-containing acid-base bifunctional catalysts for hydrogen transfer upgrading of biofuranics: A review
Park et al. Biomass-formic acid-hydrogen conversion process with improved sustainability and formic acid yield: Combination of citric acid and mechanocatalytic depolymerization
WO2019041583A1 (zh) 一种利用离子液体催化木质素制备对羟基肉桂酸酯的方法
CN112844379B (zh) 金属有机骨架材料衍生物负载钌催化木质素解聚制备单酚类化学品的方法
WO2016066071A1 (zh) 一种碳水化合物制备乙醇酸酯的方法
CN106946660B (zh) 一种利用氨络合物催化木质素降解制备单酚化合物的方法
CN104971772A (zh) 一种磺酸和硫醚协同杂化石墨烯催化剂的制备方法
Quereshi et al. Catalytic conversion of lignocellulosic biomass into fuels and value-added chemicals
CN113908856A (zh) 利用mof为载体制备硫掺杂双金属催化剂的方法及应用
CN109879750B (zh) 一种利用杂多酸离子液体制备纤维素基二元有机酸酯的方法
CN109675638B (zh) 一种复合催化材料、制备方法及在原位脱氢加氢反应介导制备2,5-二甲基呋喃中的应用
Zhang et al. A bifunctional carbon catalyst with Cl and SO3H groups for hydrolyzing furfural residue to levulinic acid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16919316

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019521106

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 12/08/2019)

122 Ep: pct application non-entry in european phase

Ref document number: 16919316

Country of ref document: EP

Kind code of ref document: A1