WO2018062325A1 - 共重合ポリエステル樹脂 - Google Patents

共重合ポリエステル樹脂 Download PDF

Info

Publication number
WO2018062325A1
WO2018062325A1 PCT/JP2017/035072 JP2017035072W WO2018062325A1 WO 2018062325 A1 WO2018062325 A1 WO 2018062325A1 JP 2017035072 W JP2017035072 W JP 2017035072W WO 2018062325 A1 WO2018062325 A1 WO 2018062325A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
unit
resin
copolyester resin
acid
Prior art date
Application number
PCT/JP2017/035072
Other languages
English (en)
French (fr)
Inventor
栄一 本多
康明 吉村
敬太 野口
雄一郎 佐竹
隆司 元井
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN201780060009.3A priority Critical patent/CN109790283B/zh
Priority to KR1020197009752A priority patent/KR102357461B1/ko
Priority to EP17856274.0A priority patent/EP3521334B1/en
Priority to US16/336,508 priority patent/US10894859B2/en
Priority to JP2018542810A priority patent/JP6965888B2/ja
Priority to ES17856274T priority patent/ES2821142T3/es
Publication of WO2018062325A1 publication Critical patent/WO2018062325A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • C08G63/18Dicarboxylic acids and dihydroxy compounds the acids or hydroxy compounds containing carbocyclic rings

Abstract

下記一般式(1)で表される単位(A)、ジオール単位(B)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)を有する共重合ポリエステル樹脂であって、 前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)が10~95mol%であり、 下記(1)~(3)を満たす、共重合ポリエステル樹脂。 (1)前記共重合ポリエステル樹脂のガラス転移温度が90℃以上である。 (2)前記共重合ポリエステル樹脂の降温時結晶化発熱量が5J/g以下である。 (3)前記共重合ポリエステル樹脂の光弾性係数の絶対値が40×10-12Pa-1以下である。 (前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)

Description

共重合ポリエステル樹脂
 本発明は、共重合ポリエステル樹脂に関する。
 ポリエチレンテレフタレート(以下「PET」ということがある。)は、透明性、機械的強度、溶融安定性、耐溶剤性、保香性、リサイクル性に優れるという特長を有し、フィルム、シート、中空容器等に広く利用されているポリエステル樹脂である。しかしながら、PETはガラス転移温度が必ずしも十分に高いとはいえず、また、厚肉成形体を得る場合にはその結晶性により透明性が損なわれることがあるため、共重合による改質が広く行われている。
 例えば、ポリエステルの共重合成分として、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノールやペンタシクロペンタデカンジメタノールを用いたポリエステル樹脂が提案されている。トリシクロデカンジメタノールやペンタシクロペンタデカンジメタノールは嵩高く、剛直な骨格を有しているため、これらを用いたポリエステル樹脂はガラス転移温度が高くなり、結晶性が抑制されて成形体の透明性が向上させることが可能である(例えば、特許文献1及び2参照)。
 一方、芳香族成分を全く使用しない脂肪族ポリエステルにおいて、脂環式構造を有するポリエステルは、透明性、耐水性に優れており、1,4-シクロヘキサンジメタノールに代表される脂環式モノマーを使用する方法が数多く提案されている。例えば、特許文献3には、1,4-シクロヘキサンジメタノールと1,4-シクロヘキサンジカルボン酸等からなる脂肪族ポリエステルが示されている。また、脂肪族ポリエステルの耐熱性向上を目的として、ノルボルナン骨格を有するポリエステルが提案されている(例えば、特許文献4及び5参照)。
特開昭58-174419号公報 特開2003-119259号公報 特表2007-517926号公報 特開2001-64372公報 特開2001-64374号公報
 特許文献1及び2に記載のポリエステル樹脂は、ジカルボン酸成分が芳香族性であるため、光弾性係数の観点から光学特性に劣るものである。また、特許文献3の脂肪族ポリエステルは、透明性は良好であるものの、耐熱性が十分でない。特許文献4及び5に示されるノルボルナン骨格を有するポリエステル樹脂は、耐熱性及び光学特性のバランスの観点から、さらなる改善が求められる。
 以上のとおり、特許文献1~5に記載のポリエステル樹脂は、耐熱性及び光学特性の観点から十分な物性を発揮するものとはいえず、これらの物性バランスに優れるポリエステル樹脂は得られていない。
 本発明は、以上の従来技術が有する問題点に鑑みなされたものであり、耐熱性及び光学特性に優れたポリエステル樹脂を提供することを目的とする。
 本発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、特定の脂環式構造を持つ構成単位を特定量有する共重合ポリエステル樹脂とすることで、上記課題が解決できることを見出した。
 すなわち、本発明は、以下のとおりである。
[1]
 下記一般式(1)で表される単位(A)、ジオール単位(B)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)を有する共重合ポリエステル樹脂であって、
 前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)が10~95mol%であり、
 下記(1)~(3)を満たす、共重合ポリエステル樹脂。
(1)前記共重合ポリエステル樹脂のガラス転移温度が90℃以上である。
(2)前記共重合ポリエステル樹脂の降温時結晶化発熱量が5J/g以下である。
(3)前記共重合ポリエステル樹脂の光弾性係数の絶対値が40×10-12Pa-1以下である。
Figure JPOXMLDOC01-appb-C000002
(前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)
[2]
 前記一般式(1)におけるnが1である、[1]に記載の共重合ポリエステル樹脂。
[3]
 前記一般式(1)におけるR、R、及びRが水素原子である、[1]又は[2]に記載の共重合ポリエステル樹脂。
[4]
 前記単位(B)が脂肪族ジオール又はカルド構造を有するジオールに由来する単位である、[1]~[3]のいずれかに記載の共重合ポリエステル樹脂。
[5]
 前記単位(C)が脂肪族ジカルボン酸又はそのエステル形成性誘導体、若しくはカルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位である、[1]~[4]のいずれかに記載の共重合ポリエステル樹脂。
 本発明の共重合ポリエステル樹脂は、耐熱性及び光学特性に優れる。
図1は、モノマー合成例で得られた主反応生成物の1H-NMR測定の結果を示す。 図2は、モノマー合成例で得られた主反応生成物の13C-NMR測定の結果を示す。 図3は、モノマー合成例で得られた主反応生成物のCOSY-NMR測定の結果を示す。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
[共重合ポリエステル樹脂]
 本実施形態の共重合ポリエステル樹脂は、下記一般式(1)で表される単位(A)(以下、「単位(A)」ともいう。)、ジオール単位(B)(以下、「単位(B)」ともいう。)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)(以下、「単位(C)」ともいう。)を有する共重合ポリエステル樹脂であって、前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)が10~95mol%であり、下記(1)~(3)を満たす。
(1)前記共重合ポリエステル樹脂のガラス転移温度が90℃以上である。
(2)前記共重合ポリエステル樹脂の降温時結晶化発熱量が5J/g以下である。
(3)前記共重合ポリエステル樹脂の光弾性係数の絶対値が40×10-12Pa-1以下である。
Figure JPOXMLDOC01-appb-C000003
(前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)
 上記のように構成されているため、本実施形態の共重合ポリエステル樹脂は、耐熱性及び光学特性に優れる。なお、本実施形態において、「耐熱性に優れる」とは、後述する実施例に記載の方法により測定されるガラス転移温度(Tg)が十分に高いことを指し、「光学特性に優れる」とは、後述する実施例に記載の方法により測定される光弾性係数が十分に低いことを指す。
 一般式(1)において、R1は、好ましくは水素原子又はCHであり、R2及びR3は、好ましくは水素原子である。本実施形態において、耐熱性の観点から、一般式(1)におけるR、R、及びRが水素原子であることがより好ましい。
 上記一般式(1)において、耐熱性をより向上させる観点から、nは1であることが好ましい。
 本実施形態において、耐熱性及び光学特性のバランスを考慮し、共重合ポリエステル樹脂が有する全単位に対する単位(A)の含有量を10~95mol%とする。上記含有量が10mol%未満であると、十分な耐熱性及び光学特性が得られない。また、上記含有量が95mol%以下であると、良好な耐熱性及び光学特性を確保しつつも成形性を向上させることができる。上記と同様の観点から、単位(A)の含有量は、15~95mol%であることが好ましく、より好ましくは20~95mol%である。
 本実施形態における単位(B)は、ジオールに由来する単位であれば特に限定されず、その具体例としては、エチレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、デカヒドロ-1、4:5、8-ジメタノナフタレンジメタノール、ノルボルナンジオール、シクロヘキサンジオール、2,2'-ビス(4-ヒドロキシシクロヘキシル)プロパン、アダマンタンジオール、デカヒドロ-1、4:5、8-ジメタノナフタレンジオール、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス(2-ヒドロキシエチル)フルオレン、キシリレングリコール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等のジオールに由来する単位が挙げられる。
 本実施形態において、単位(B)が脂肪族ジオール又はカルド構造を有するジオールに由来する単位であることが好ましい。脂肪族ジオールに由来する単位としては、耐熱性と光学特性との物性バランスの観点から、1,4-シクロヘキサンジメタノール、エチレングリコール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール、デカヒドロ-1、4:5、8-ジメタノナフタレンジメタノール、に由来する単位がより好ましい。また、カルド構造を有するジオールに由来する単位としては、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレンに由来する単位がより好ましい。なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
 上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
 本実施形態の共重合ポリエステル樹脂における単位(B)の含有量は、2~60mol%であることが好ましく、より好ましくは3~50mol%である。
 本実施形態における単位(C)は、ジカルボン酸又はそのエステル形成性誘導体に由来する単位であれば特に限定されず、その具体例としては、テレフタル酸、イソフタル酸、フタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2-メチルテレフタル酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等の芳香族ジカルボン酸及び/又はその誘導体に由来する構成単位;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸、3,9-ビス(1,1-ジメチル-2-カルボキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、5-カルボキシ-5-エチル-2-(1,1-ジメチル-2-カルボキシエチル)-1,3-ジオキサン、1,4:5,8-ジメタノデカヒドロナフタレンジカルボン酸、アダマンタンジカルボン酸、ダイマー酸等の脂肪族ジカルボン酸及び/又はその誘導体に由来する単位が挙げられる。
 本実施形態において、単位(C)は、脂肪族ジカルボン酸又はそのエステル形成性誘導体、若しくはカルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位であることが好ましい。脂肪族ジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、耐熱性と光学特性との物性バランスの観点から、1,4-シクロヘキサンジカルボン酸ジメチルに由来する単位がより好ましい。また、カルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、透明性、耐熱性と光学特性との物性バランスの観点から、9,9-ビス(メトキシカルボニルメチル)フルオレン、9,9-ビス(メトキシカルボニルエチル)フルオレン、9,9-ビス(メトキシカルボニルプロピル)フルオレンに由来する単位がより好ましい。なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
 上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
 本実施形態の共重合ポリエステル樹脂における単位(C)の含有量は、2~60mol%であることが好ましく、より好ましくは3~50mol%である。
 本実施形態において、共重合ポリエステル樹脂は、単位(A)~(C)以外に、ヒドロキシル基及びカルボン酸又はそのエステル形成性誘導体単位(A1)等の他の単位を含んでもよい。単位(A1)としては、特に限定はされないが、例えば、グリコール酸、乳酸、ヒドロキシ酪酸、2-ヒドロキシイソ酪酸、ヒドロキシ安息香酸、6-ヒドロキシカプロン酸、4-ヒドロキシシクロヘキサンカルボン酸等のオキシ酸及び/又はその誘導体に由来する単位等が挙げられる。
 本実施形態において、十分な耐熱性を確保する観点から、共重合ポリエステル樹脂のガラス転移温度(Tg)は90℃以上であり、好ましくは95℃以上であり、より好ましくは100℃以上である。上記Tgは、後述する実施例に記載の方法により測定することができる。また、上記Tgは、例えば、共重合ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
 本実施形態において、十分な透明性を確保する観点から、共重合ポリエステル樹脂の降温時結晶化発熱量は5J/g以下であり、好ましくは1J/g以下であり、より好ましくは0.3J/g以下である。上記降温時結晶化発熱量は、後述する実施例に記載の方法により測定することができる。また、上記降温時結晶化発熱量は、例えば、共重合ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
 本実施形態において、共重合ポリエステル樹脂の成形性は、後述する実施例に記載の方法により測定される溶融粘度が十分に低いことから確認することができる。すなわち、十分な成形性を確保する観点から、共重合ポリエステル樹脂のせん断速度60sec-1、測定温度280℃における溶融粘度は1000Pa・s以下であることが好ましく、より好ましくは950Pa・s以下であり、さらに好ましくは900Pa・s以下である。上記溶融粘度は、後述する実施例に記載の方法により測定することができる。また、上記溶融粘度は、例えば、共重合ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
 本実施形態において、十分な光学特性を確保する観点から、共重合ポリエステル樹脂の光弾性係数の絶対値は40×10-12Pa-1以下であり、好ましくは30×10-12Pa-1以下であり、より好ましくは28×10-12Pa-1以下であり、さらに好ましくは25×10-12Pa-1以下である。上記光弾性係数の絶対値は、後述する実施例に記載の方法により測定することができる。また、上記光弾性係の絶対値は、例えば、共重合ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
 さらに本実施形態の共重合ポリエステル樹脂を使用する際には、酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等を添加することが好適に実施される。
[共重合ポリエステル樹脂の製造方法]
 本実施形態の共重合ポリエステル樹脂は、単位(A)~(C)に対応する各単量体を共重合することにより、得ることができる。以下、単位(A)に対応する単量体の製造方法について説明する。かかる単量体は、例えば、下記一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)において、Rは、水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。
 式(2)において、Rは、好ましくは水素原子又はCHである。R及びRは、好ましくは水素原子である。上記炭化水素基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ビニル基、2-ヒドロキシエチル基、4-ヒドロキシブチル基等が挙げられる。
 本実施形態における一般式(2)で表される化合物は、ジシクロペンタジエン又はシクロペンタジエンと官能基を有するオレフィンを原料として、例えば、下記式(I)に示すルートで合成することが可能である。
Figure JPOXMLDOC01-appb-C000005
(式(I)中、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
〔式(I)中の一般式(4)で表される炭素数13~21のモノオレフィンの製造〕
 前記一般式(4)で表される炭素数13~21のモノオレフィンは、例えば、官能基を有するオレフィンとジシクロペンタジエンのディールスアルダー反応を行うこと等で製造することが可能である。
 前記ディールスアルダー反応に用いる官能基を有するオレフィンの具体例としては、以下に限定されないが、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ビニル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-4-ヒドロキシブチル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ビニル、アクリル酸-2-ヒドロキシエチル、アクリル酸-4-ヒドロキシブチル、クロトン酸、クロトン酸メチル、クロトン酸エチル、3-メチルクロトン酸、3-メチルクロトン酸メチル、3-メチルクロトン酸エチル等が挙げられ、好ましいオレフィンとして、メタクリル酸、メタクリル酸メチル、メタクリル酸-2-ヒドロキシエチル、アクリル酸、アクリル酸メチル、アクリル酸-2-ヒドロキシエチルが挙げられ、より好ましいオレフィンとしてメタクリル酸メチル、アクリル酸メチルが挙げられる。
 さらに、前記ディールスアルダー反応に用いる官能基を有するオレフィンの例として、アクリロニトリル、メタクリロニトリル、アクロレイン、メタクロレインを挙げられる。これらのオレフィンを原料とする場合、例えば、下記式(II)、式(III)に示すルート等を経て一般式(4’)で表されるモノオレフィンを製造することができる。
Figure JPOXMLDOC01-appb-C000006
(式(II)中、R1は水素原子又はCHである)
Figure JPOXMLDOC01-appb-C000007
(式(III)中、R1は水素原子又はCHである)
 前記ディールスアルダー反応に用いるジシクロペンタジエンは高純度のものが好ましく、ブタジエン、イソプレン等の含有量を低減することが好ましい。ジシクロペンタジエンの純度は、90%以上であることが好ましく、95%以上であることがより好ましい。また、ジシクロペンタジエンは加熱条件下で解重合しシクロペンタジエン(所謂モノシクロペンタジエン)になる傾向にあるため、ジシクロペンタジエンの代わりにシクロペンタジエンを使用することも可能である。尚、一般式(4)で表される炭素数13~21のモノオレフィンは、実質的に下記一般式(7)で表される炭素数8~16のモノオレフィン(1段目ディールスアルダー反応生成物)を経由して生成していると考えられ、生成した一般式(7)のモノオレフィンが新たな親ジエン化合物(Dienophile)として反応系内に存在するシクロペンタジエン(Diene)とディールスアルダー反応(2段目ディールスアルダー反応)に預かり、一般式(4)で表される炭素数13~21のモノオレフィンが生成するものと考えられる。
 以上の観点から、例えば、上記式(I)に示す反応ルートにおいて、1段目ディールスアルダー反応の反応条件を適宜制御することにより、式(4)で表される炭素数13~21のモノオレフィンあるいは式(7)で表される炭素数8~16のモノオレフィンを選択的に得ることができる。
Figure JPOXMLDOC01-appb-C000008
(式(7)中、R1は水素原子、CH又はCを示し、R2及びR3は、それぞれ独立に水素原子又はCHを示し、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基を示す。)
 前記2段階のディールスアルダー反応を効率的に進行させる、すなわち、式(4)で表される炭素数13~21のモノオレフィンを選択的に得る観点からは、反応系内にシクロペンタジエンが存在することが重要であるため、反応温度として100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。一方で、式(7)で表される炭素数8~16のモノオレフィンを選択的に得るためには、反応温度として180℃未満が好ましい。なお、いずれの場合においても、高沸物質の副生を抑えるためには250℃以下の温度で反応を行うことが好ましい。
 上記のようにして得られた式(4)で表される炭素数13~21のモノオレフィンを、後述するヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=1である場合に対応する単量体(すなわち、式(2)で表される化合物)を得ることができる。また、上記のようにして得られた式(7)で表される炭素数8~16のモノオレフィンを、同様のヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=0である場合に対応する単量体(すなわち、式(8)で表される化合物)を得ることができる。
 なお、反応溶媒として炭化水素類やアルコール類、エステル類等を使用することも可能であり、炭素数6以上の脂肪族炭化水素類、シクロヘキサン、トルエン、キシレン、エチルベンゼン、メシチレン、プロパノール、ブタノール等が好ましい。また、必要に応じて、AlCl等公知の触媒を添加してもよい。
Figure JPOXMLDOC01-appb-C000009
(上記式(8)において、Rは、水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
 前記ディールスアルダー反応の反応方式としては、槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、管型反応器に反応条件下で基質類を流通させる連続流通式等、多様な反応方式を採ることが可能である。
 前記ディールスアルダー反応で得られた反応生成物は、そのまま次のヒドロホルミル化反応の原料として用いることもできるが、蒸留、抽出、晶析などの方法によって精製した後、次工程に供してもよい。
〔式(I)中の(3)で表される炭素数14~22の二官能性化合物の製造〕
 前記式(I)中の一般式(3)で表される炭素数14~22の二官能性化合物は、例えば、一般式(4)で表される炭素数13~21モノオレフィンと一酸化炭素及び水素ガスをロジウム化合物、有機リン化合物の存在下でヒドロホルミル化反応させること等で製造することができる。
 前記ヒドロホルミル化反応で使用されるロジウム化合物は、有機リン化合物と錯体を形成し、一酸化炭素と水素の存在下でヒドロホルミル化活性を示す化合物であればよく、その前駆体の形態は特に限定されない。例えば、ロジウムアセチルアセトナートジカルボニル(以下、Rh(acac)(CO)と記す)、Rh、Rh(CO)12、Rh(CO)16、Rh(NO)等の触媒前駆物質を有機リン化合物と共に反応混合物中に導入し、反応容器内で触媒活性を持つロジウム金属ヒドリドカルボニルリン錯体を形成させてもよいし、予めロジウム金属ヒドリドカルボニルリン錯体を調製してそれを反応器内に導入してもよい。好ましい具体例としてはRh(acac)(CO)を溶媒の存在下で有機リン化合物と反応させた後、過剰の有機リン化合物と共に反応器に導入し、触媒活性を有するロジウム-有機リン錯体とする方法が挙げられる。
 本発明者らの検討により、一般式(4)で表されるような比較的分子量の大きな内部オレフィンを有する2段階ディールスアルダー反応生成物が極めて少量のロジウム触媒でヒドロホルミル化されることがわかっている。本ヒドロホルミル化反応におけるロジウム化合物の使用量は、ヒドロホルミル化反応の基質である一般式(4)で表される炭素数13~21のモノオレフィン1モルに対して0.1~60マイクロモルが好ましく、0.1~30マイクロモルがより好ましく、0.2~20マイクロモルが更に好ましく、0.5~10マイクロモルが特に好ましい。ロジウム化合物の使用量が炭素数13~21のモノオレフィン1モルに対して60マイクロモルより少ない場合、実用上、ロジウム錯体の回収リサイクル設備を設けなくてもよい水準と評価できる。このように、本実施形態によれば、回収リサイクル設備に関わる経済的負担を減らすことができ、ロジウム触媒にかかるコストを低減することが可能である。
 本実施形態におけるヒドロホルミル化反応において、ロジウム化合物とヒドロホルミル化反応の触媒を形成する有機リン化合物としては、特に限定されないが、例えば、一般式P(-R)(-R)(-R)で表されるホスフィン又はP(-OR)(-OR)(-OR)で表されるホスファイトが挙げられる。R、R、Rの具体例としては、以下に限定されないが、炭素数1~4のアルキル基又はアルコキシ基で置換され得るアリール基や、炭素数1~4のアルキル基又はアルコキシ基で置換され得る脂環式アルキル基等が挙げられ、トリフェニルホスフィン、トリフェニルホスファイトが好適に用いられる。有機リン化合物の使用量はロジウム化合物中のロジウム原子に対して300倍モル~10000倍モルが好ましく、500倍モル~10000倍モルがより好ましく、更に好ましくは700倍モル~5000倍モル、特に好ましくは900倍モル~2000倍モルである。有機リン化合物の使用量がロジウム原子の300倍モル以上である場合、触媒活物質であるロジウム金属ヒドリドカルボニルリン錯体の安定性が十分に確保できる傾向にあり、結果として良好な反応性が確保される傾向にある。また、有機リン化合物の使用量がロジウム原子の10000倍モル以下である場合、有機リン化合物に掛かるコストを十分に低減する観点から好ましい。
 前記ヒドロホルミル化反応は溶媒を使用せずに行うことも可能であるが、反応に不活性な溶媒を使用することにより、より好適に実施することができる。ヒドロホルミル化反応に使用できる溶媒としては、一般式(4)で表される炭素数13~21のモノオレフィン、ジシクロペンタジエン又はシクロペンタジエン、前記ロジウム化合物、及び前記有機リン化合物を溶解するものであれば特に限定されない。具体例としては、以下に限定されないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素類;脂肪族エステル、脂環式エステル、芳香族エステル等のエステル類;脂肪族アルコール、脂環式アルコール等のアルコール類;芳香族ハロゲン化物等の溶媒が挙げられる。これらのうち炭化水素類が好適に用いられ、中でも脂環式炭化水素、芳香族炭化水素がより好適に用いられる。
 前記ヒドロホルミル化反応を行う場合の温度としては40℃~160℃が好ましく、80℃~140℃がより好ましい。反応温度が40℃以上の場合には十分な反応速度が得られる傾向にある、原料であるモノオレフィンの残留がより抑えられる傾向にある。また、反応温度が160℃以下にすることで原料モノオレフィンや反応生成物由来の副生物の生成を抑え、反応成績の低下を効果的に防止できる傾向にある。
 本実施形態におけるヒドロホルミル化反応を行う場合、一酸化炭素(以下「CO」と記載することもある)及び水素(以下「H2」と記載することもある)ガスによる加圧下で反応を行うことが好ましい。その際、CO及びHガスは各々独立に反応系内に導入することも、また、予め調製された混合ガスとして反応系内に導入することも可能である。反応系内に導入されるCO及びHガスのモル比(=CO/H)は0.2~5が好ましく、0.5~2がより好ましく、0.8~1.2が更に好ましい。CO及びHガスのモル比が上記範囲に調整する場合、ヒドロホルミル化反応の反応活性や目的とするアルデヒドの選択率が良好となる傾向にある。反応系内に導入したCO及びHガスは反応の進行に伴い減少していくため、予め調製されたCOとHの混合ガスを利用すると反応制御が簡便な場合がある。
 前記ヒドロホルミル化反応の反応圧力としては、1~12MPaが好ましく、1.2~9MPaがより好ましく、1.5~5MPaが更に好ましい。反応圧力が1MPa以上とすることで十分な反応速度が得られる傾向にあり、原料であるモノオレフィンの残留を十分に抑制できる傾向にある。また、反応圧力が12MPa以下にすることで、耐圧性能に優れる高価な設備を必要としなくなるため経済的に有利である。特に、回分式や半回分式で反応を行う場合、反応終了後にCO及びHガスを排出・落圧する必要があり、低圧になるほどCO及びHガスの損失が少なくなるため経済的に有利である。
 前記ヒドロホルミル化反応を行う場合の反応方式としては、回分式反応や半回分式反応が好適である。半回分式反応はロジウム化合物、有機リン化合物、前記溶媒を反応器に加え、CO/Hガスによる加圧や加温等を行い、既述の反応条件とした後に原料であるモノオレフィン又はその溶液を反応器に供給することにより行うことが可能である。
 前記ヒドロホルミル化反応で得られた反応生成物は、そのまま次の還元反応の原料として用いることも出来るが、例えば蒸留や抽出、晶析等により精製した後、次工程に供してもよい。
〔式(2)で表される炭素数14~22の化合物の製造〕
 前記式(I)中の一般式(2)で表される炭素数14~22の化合物は、一般式(3)で表される炭素数14~22の化合物を、水素化能を有する触媒及び水素の存在下で還元することにより製造することが出来る。
 前記還元反応では、水素化能を有する触媒として、銅、クロム、鉄、亜鉛、アルミニウム、ニッケル、コバルト、及びパラジウムからなる群より選ばれる少なくとも一つの元素を含む触媒を用いることが好ましい。より好ましい触媒としては、Cu-Cr触媒、Cu-Zn触媒、Cu-Zn-Al触媒等の他、Raney-Ni触媒、Raney-Co触媒等が挙げられ、さらに好ましい触媒はCu-Cr触媒、Raney-Co触媒である。
 前記水素化触媒の使用量は、基質である一般式(3)で表される炭素数14~22の化合物に対して1~100質量%、好ましくは2~50質量%、より好ましくは5~30質量%である。触媒使用量をこれらの範囲とすることで好適に水素化反応を実施することが出来る。触媒使用量が1質量%以上である場合、十分に反応が進行し、結果として目的物の収率を十分に確保できる傾向にある。また、触媒使用量が100質量%以下である場合、反応に供した触媒量と反応速度の向上効果とのバランスが良好となる傾向にある。
 前記還元反応の反応温度は60~200℃が好ましく、80℃~150℃がより好ましい。反応温度を200℃以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、反応温度を60℃以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。
 前記還元反応の反応圧力は、水素分圧として0.5~10MPaが好ましく、1~5MPaがより好ましい。水素分圧を10MPa以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、水素分圧を0.5MPa以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。尚、還元反応に不活性なガス(例えば窒素又はアルゴン)を共存させることも可能である。
 前記還元反応においては溶媒を使用することが可能である。還元反応に用いられる溶媒としては、脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類、アルコール類等が挙げられ、中でも脂環式炭化水素類、芳香族炭化水素類、アルコール類が好ましい。その具体例としてはシクロヘキサン、トルエン、キシレン、メタノール、エタノール、1-プロパノール等が挙げられる。
 前記還元反応の反応方式としては槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、成型触媒を充填した管型反応器に反応条件下で基質や基質溶液を流通させる連続流通式等、多様な反応方式を採ることが可能である。
 前記還元反応で得られた反応生成物は、例えば蒸留や抽出、晶析等により精製することができる。
 本実施形態における一般式(2)で表される化合物又は式(8)で表される化合物を単位(A)に対応する単量体とし、単位(B)~(C)に対応する各単量体と共重合させる方法としては、特に限定されず、従来公知のポリエステルの製造方法を適用することができる。例えば、エステル交換法、直接エステル化法等の溶融重合法、又は溶液重合法等を挙げることができる。
 本実施形態の共重合ポリエステル樹脂の製造時には、通常のポリエステル樹脂の製造時に用いるエステル交換触媒、エステル化触媒、重縮合触媒等を使用することができる。これらの触媒としては特に限定されないが、例えば、亜鉛、鉛、セリウム、カドミウム、マンガン、コバルト、リチウム、ナトリウム、カリウム、カルシウム、ニッケル、マグネシウム、バナジウム、アルミニウム、チタン、アンチモン、ゲルマニウム、スズ等の金属の化合物(例えば、脂肪酸塩、炭酸塩、リン酸塩、水酸化物、塩化物、酸化物、アルコキシド)や金属マグネシウム等が挙げられる。これらは単独で又は二種以上を組み合わせて使用することができる。触媒としては、上記した中でマンガン、コバルト、亜鉛、チタン、カルシウム、アンチモン、ゲルマニウム、スズの化合物が好ましく、マンガン、チタン、アンチモン、ゲルマニウム、スズの化合物がより好ましい。これらの触媒の使用量は、特に限定されないが、ポリエステル樹脂の原料に対して金属成分としての量が、好ましくは1~1000ppm、より好ましくは3~750ppm、更に好ましくは5~500ppmである。
 前記重合反応における反応温度は触媒の種類、その使用量などによるが、通常150℃から300℃の範囲で選ばれ、反応速度及び樹脂の着色を考慮すると180℃~280℃が好ましい。反応層内の圧力は、大気雰囲気下から最終的には1kPa以下に調節することが好ましく、最終的には0.5kPa以下とするのがより好ましい。
 前記重合反応を行う際には、所望によりリン化合物を添加してもよい。リン化合物としては、以下に限定されないが、例えば、リン酸、亜リン酸、リン酸エステル、亜リン酸エステル等を挙げることができる。リン酸エステルとしては、以下に限定されないが、例えば、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジブチル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリフェニル等を挙げることができる。亜リン酸エステルとしては、以下に限定されないが、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸ブチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジブチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリブチル、亜リン酸トリフェニル等を挙げることができる。これらは単独で又は二種以上を組み合わせて使用することができる。本実施形態の共重合ポリエステル樹脂中のリン原子の濃度は1~500ppmが好ましく、5~400ppmがより好ましく、10~200ppmがさらに好ましい。
 また、本実施形態の共重合ポリエステル樹脂の製造時には、エーテル化防止剤、熱安定剤、光安定剤等の各種安定剤、重合調整剤等を使用することができる。
 本実施形態の共重合ポリエステル樹脂には、本実施形態の目的を損なわない範囲で、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、増量剤、艶消し剤、乾燥調節剤、帯電防止剤、沈降防止剤、界面活性剤、流れ改良剤、乾燥油、ワックス類、フィラー、着色剤、補強剤、表面平滑剤、レベリング剤、硬化反応促進剤、増粘剤等の各種添加剤、成形助剤を添加することができる。
 本実施形態の共重合ポリエステル樹脂は、本実施形態の所望とする効果を損なわない範囲で、本実施形態における共重合ポリエステル樹脂以外の樹脂を併用した樹脂組成物とすることができる。そのような樹脂としては、特に限定されないが、例えば、本実施形態におけるポリエステル樹脂以外のポリエステル樹脂、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアミド樹脂、ポリスチレン樹脂、シクロオレフィン樹脂、アクリロニトリル-ブタジエン-スチレン共重合樹脂、塩化ビニル樹脂、ポリフェニレンエーテル樹脂、ポリスルホン樹脂、ポリアセタール樹脂及びメチルメタクリレート-スチレン共重合樹脂からなる群より選択される少なくとも1つの樹脂が挙げられる。これらは種々公知のものを用いることができ、1種を単独で又は2種以上を併用して樹脂組成物に加えることができる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。なお、ポリエステル樹脂の評価方法は次のとおりである。
(1)樹脂組成
 ポリエステル樹脂中のジオール構成単位及びジカルボン酸構成単位の割合は、1H-NMR測定にて算出した。測定装置は、核磁気共鳴装置(日本電子(株)製、商品名:JNM-AL400)を用い、400MHzで測定した。溶媒には重クロロホルムを用いた。
(2)ガラス転移温度(Tg)
 ポリエステル樹脂のガラス転移温度は、次のように測定した。示差走査熱量計((株)島津製作所製、商品名:DSC/TA-60WS)を使用し、ポリエステル樹脂約10mgをアルミニウム製非密封容器に入れ、窒素ガス(50mL/分)気流中、昇温速度20℃/分で280℃まで加熱、溶融したものを急冷して測定用試料とした。該試料を同条件で測定し、DSC曲線の転移前後における基線の差の1/2だけ変化した温度をガラス転移温度とした。
(3)降温時結晶化発熱量(ΔHc)
 ポリエステル樹脂の降温時結晶化発熱量は、上記Tgを測定後280℃で1分間保持した後、5℃/分の降温速度で降温した際に現れる発熱ピークの面積から算出した。
(4)溶融粘度
 ポリエステル樹脂の溶融粘度は、東洋精機製  Capirograph 1C(キャピログラフ)を用い、温度:280℃、予熱時間:6min、ノズル径:1mm、ノズル長:10mm、剪断速度:60(1/sec)で測定を行った。
(5)光弾性係数 (Pa-1
 エリプソメーター(日本分光(株)製、M220)を使用し、流延法により作製した光学フィルムを用い、波長633nmにおける荷重変化に対する複屈折測定から算出した。
<モノマー合成例>
 500mLステンレス製反応器にアクリル酸メチル173g(2.01mol)、ジシクロペンタジエン167g(1.26mol)を仕込み195℃で2時間反応を行った。上記反応により、下記式(4a)で表されるモノオレフィン96gを含有する反応液を取得し、これを蒸留精製した後、一部を以下の反応に供した。
 300mLステンレス製反応器を使用し、蒸留精製した式(4a)で表されるモノオレフィンのヒドロホルミル化反応をCO/H混合ガス(CO/Hモル比=1)を用いて行った。反応器に式(4a)で表されるモノオレフィン70g、トルエン140g、亜リン酸トリフェニル0.50g、別途調製したRh(acac)(CO)のトルエン溶液550μL(濃度0.003mol/L)を加えた。窒素およびCO/H混合ガスによる置換を各々3回行った後、CO/H混合ガスで系内を加圧し、100℃、2MPaにて5時間反応を行った。反応終了後、反応液のガスクロマトグラフィー分析を行い、式(3a)で表される化合物76g、式(4a)で表されるモノオレフィン1.4gを含む反応液(転化率98%、選択率97%)であることを確認すると共に、これを蒸留精製した後、一部を以下の反応に供した。
 300mLステンレス製反応器に蒸留精製した式(3a)で表される化合物54g、スポンジコバルト触媒(日興リカ株式会社製:R-400)7mL、トルエン109gを添加し、水素ガスで系内を加圧し、3MPa、100℃で9時間反応を行った。反応後、得られたスラリーから、孔径0.2μmのメンブレンフィルターで触媒をろ過した。その後、エバポレーターを使用して溶媒を留去し、ガスクロマトグラフィー及びGC-MSで分析し、分子量250の式(2a)で表される主生成物51gを含有することが確認された(主生成物収率93%)。これをさらに蒸留精製し、主生成物を取得した。
Figure JPOXMLDOC01-appb-C000010
<生成物の同定>
 モノマー合成例で取得した成分のNMR分析を行った。NMRスペクトルを図1~3に示す。以下に示すGC-MS分析、及び図1~3のNMR分析の結果から、モノマー合成例で得られた主生成物は、前記式(2a)で表される化合物であることが確認された。
<分析方法>
1)ガスクロマトグラフィー測定条件
・分析装置  :株式会社島津製作所製 キャピラリガスクロマトグラフGC-2010 Plus
・分析カラム :ジーエルサイエンス株式会社製、InertCap1(30m、0.32mmI.D.、膜厚0.25μm
・オーブン温度:60℃(0.5分間)-15℃/分-280℃(4分間)
・検出器   :FID、温度280℃
2)GC-MS測定条件
・分析装置  :株式会社島津製作所製、GCMS-QP2010 Plus
・イオン化電圧:70eV
・分析カラム :Agilent Technologies製、DB-1(30m、0.32mmI.D.、膜厚1.00μm)
・オーブン温度:60℃(0.5分間)-15℃/分-280℃(4分間)
3)NMR測定条件
・装置    :日本電子株式会社製,JNM-ECA500(500MHz)
・測定モード :1H-NMR、13C-NMR、COSY-NMR
・溶媒    :CDCl(重クロロホルム)
・内部標準物質:テトラメチルシラン
<実施例1>
 分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えた200mLのポリエステル製造装置に、モノマー合成例より得られた式(2a)で表される化合物85.6g、1,4-シクロヘキサンジカルボン酸ジメチル3.8g、1,4-シクロヘキサンジメタノール2.9g、テトラブチルチタネート0.04gを仕込み、窒素雰囲気下で230℃まで昇温後、1時間保持し、所定量のメタノールを留出させた。その後、リン酸を0.003g加え、昇温と減圧を徐々に行い、最終的に270℃、0.1kPa以下で重縮合を行った。適度な溶融粘度になった時点で反応を終了し、共重合ポリエステル樹脂を得た。
 光弾性係数を測定する光学フィルムは流延法にて作製した。具体的には、得られた共重合ポリエステル樹脂をジクロロメタンに5wt%濃度になるように溶解させ、水平を確認したキャスト板に流延後、キャスト溶液からの溶媒の蒸発量を調整しながら揮発させ、厚さ100μmの透明な光学フィルムを得た。得られた光学フィルムは乾燥機を使用し、ガラス転移温度以下の温度で十分に乾燥を行った後、5cm×1cmのサンプルを切り出し、エリプソメーターを使用して光弾性係数を評価した。各種評価結果を表1に示す。
 実施例2~13は、表1に示す原料組成比を変えた以外は実施例1と同様にして評価した。
<比較例1>
 分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えた200mLのポリエステル製造装置に、テレフタル酸ジメチル60.6g、エチレングリコール31.0g、テレフタル酸ジメチルに対して0.03モル%の酢酸マンガン四水和物仕込み、窒素雰囲気下で215℃まで昇温して所定量のメタノールを留出させた後、テレフタル酸ジメチルに対して0.02モル%の酸化アンチモン(III)とリン酸トリエチル0.06モル%を加え、昇温と減圧を徐々に行い、最終的に280℃、0.1kPa以下で重縮合を行った。適度な溶融粘度になった時点で反応を終了し、ポリエステル樹脂を得た。得られた樹脂を用いた物性評価については、実施例1と同様に評価した。
<比較例2>
 テレフタル酸ジメチル55.3g、エチレングリコール23.0g、1,4-シクロヘキサンジメタノール12.3g仕込んだ以外は、比較例1と同様に実施した。
<比較例3>
 モノマー合成例より得られた式(2a)で表される化合物8.9g、テレフタル酸ジメチル53.9g、エチレングリコール21.8g仕込んだ以外は、比較例1と同様に実施した。
Figure JPOXMLDOC01-appb-T000011
 なお、表1中の略記に対応する物質名は下記のとおりである。
 D-NHEs:デカヒドロ-1、4:5、8-ジメタノナフタレン-2-メトキシカルボニル-6(7)-メタノール
 DMCD:1,4-シクロヘキサンジカルボン酸ジメチル(シス/トランス=7/3)
 DDCM:2,6-デカリンジカルボン酸ジメチル
 FDPM:9,9-ビス(メトキシカルボニルエチル)フルオレン
 DMT:テレフタル酸ジメチル
 CHDM:1,4-シクロヘキサンジメタノール(シス/トランス=3/7)
 EG:エチレングリコール
 SPG:3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5,5〕ウンデカン
 BPEF:9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン
 本出願は、2016年9月28日出願の日本国特許出願(特願2016-190344号)に基づくものであり、その全内容はここに参照として取り込まれる。
 本発明の共重合ポリエステル樹脂は、耐熱性、成形性及び光学特性に優れており、とりわけこれらの物性が要求される用途に好適に用いることができる。すなわち、本発明の工業的意義は大きい。

Claims (5)

  1.  下記一般式(1)で表される単位(A)、ジオール単位(B)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)を有する共重合ポリエステル樹脂であって、
     前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)が10~95mol%であり、
     下記(1)~(3)を満たす、共重合ポリエステル樹脂。
    (1)前記共重合ポリエステル樹脂のガラス転移温度が90℃以上である。
    (2)前記共重合ポリエステル樹脂の降温時結晶化発熱量が5J/g以下である。
    (3)前記共重合ポリエステル樹脂の光弾性係数の絶対値が40×10-12Pa-1以下である。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)
  2.  前記一般式(1)におけるnが1である、請求項1に記載の共重合ポリエステル樹脂。
  3.  前記一般式(1)におけるR、R、及びRが水素原子である、請求項1又は2に記載の共重合ポリエステル樹脂。
  4.  前記単位(B)が脂肪族ジオール又はカルド構造を有するジオールに由来する単位である、請求項1~3のいずれか1項に記載の共重合ポリエステル樹脂。
  5.  前記単位(C)が脂肪族ジカルボン酸又はそのエステル形成性誘導体、若しくはカルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位である、請求項1~4のいずれか1項に記載の共重合ポリエステル樹脂。
PCT/JP2017/035072 2016-09-28 2017-09-27 共重合ポリエステル樹脂 WO2018062325A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780060009.3A CN109790283B (zh) 2016-09-28 2017-09-27 共聚聚酯树脂
KR1020197009752A KR102357461B1 (ko) 2016-09-28 2017-09-27 공중합 폴리에스터 수지
EP17856274.0A EP3521334B1 (en) 2016-09-28 2017-09-27 Copolyester resin
US16/336,508 US10894859B2 (en) 2016-09-28 2017-09-27 Copolymerized polyester resin
JP2018542810A JP6965888B2 (ja) 2016-09-28 2017-09-27 共重合ポリエステル樹脂
ES17856274T ES2821142T3 (es) 2016-09-28 2017-09-27 Resina de poliéster copolimerizada

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-190344 2016-09-28
JP2016190344 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018062325A1 true WO2018062325A1 (ja) 2018-04-05

Family

ID=61762603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035072 WO2018062325A1 (ja) 2016-09-28 2017-09-27 共重合ポリエステル樹脂

Country Status (8)

Country Link
US (1) US10894859B2 (ja)
EP (1) EP3521334B1 (ja)
JP (1) JP6965888B2 (ja)
KR (1) KR102357461B1 (ja)
CN (1) CN109790283B (ja)
ES (1) ES2821142T3 (ja)
TW (1) TWI739914B (ja)
WO (1) WO2018062325A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146575A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 成形体
WO2019194117A1 (ja) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 ポリエステル樹脂組成物
WO2021200613A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174419A (ja) 1982-04-08 1983-10-13 Japan Synthetic Rubber Co Ltd 新規なポリエステル共重合体
JPH10306147A (ja) * 1997-05-06 1998-11-17 Teijin Ltd ポリエチレンナフタレート共重合体および写真フイルム用ベースフイルム
JP2001064372A (ja) 1999-06-23 2001-03-13 Daicel Chem Ind Ltd 機能性ポリエステル重合体とその製造法
JP2001064374A (ja) 1999-06-23 2001-03-13 Daicel Chem Ind Ltd 新規なポリエステル重合体とその製造法
JP2003119259A (ja) 2001-10-12 2003-04-23 Nippon Ester Co Ltd ポリエステル樹脂
JP2004530165A (ja) * 2001-06-11 2004-09-30 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッター用の多層複屈折性フィルム
JP2007161917A (ja) * 2005-12-15 2007-06-28 Teijin Ltd ポリエチレンナフタレート樹脂
JP2007517926A (ja) 2003-12-04 2007-07-05 イーストマン ケミカル カンパニー 脂環式ポリエステル組成物からの造形品
JP2007314717A (ja) * 2006-05-29 2007-12-06 Teijin Dupont Films Japan Ltd 電気絶縁用二軸配向ポリエステルフィルム
JP2010284943A (ja) * 2009-06-15 2010-12-24 Teijin Dupont Films Japan Ltd 光学用ポリエステルフィルム
WO2012035874A1 (ja) * 2010-09-14 2012-03-22 日立化成工業株式会社 ノルボルナン骨格を有するポリエステル及びその製造方法
WO2015118966A1 (ja) * 2014-02-07 2015-08-13 東レ株式会社 ポリエステル樹脂組成物およびその製造方法
JP2016190344A (ja) 2015-03-31 2016-11-10 富士フイルム株式会社 ダイ、溶液製膜方法及び溶融製膜方法
WO2016190317A1 (ja) * 2015-05-27 2016-12-01 三菱瓦斯化学株式会社 ポリエステル樹脂及びその製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5902858B1 (ja) 2015-08-12 2016-04-13 小橋工業株式会社 作業機

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174419A (ja) 1982-04-08 1983-10-13 Japan Synthetic Rubber Co Ltd 新規なポリエステル共重合体
JPH10306147A (ja) * 1997-05-06 1998-11-17 Teijin Ltd ポリエチレンナフタレート共重合体および写真フイルム用ベースフイルム
JP2001064372A (ja) 1999-06-23 2001-03-13 Daicel Chem Ind Ltd 機能性ポリエステル重合体とその製造法
JP2001064374A (ja) 1999-06-23 2001-03-13 Daicel Chem Ind Ltd 新規なポリエステル重合体とその製造法
JP2004530165A (ja) * 2001-06-11 2004-09-30 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッター用の多層複屈折性フィルム
JP2003119259A (ja) 2001-10-12 2003-04-23 Nippon Ester Co Ltd ポリエステル樹脂
JP2007517926A (ja) 2003-12-04 2007-07-05 イーストマン ケミカル カンパニー 脂環式ポリエステル組成物からの造形品
JP2007161917A (ja) * 2005-12-15 2007-06-28 Teijin Ltd ポリエチレンナフタレート樹脂
JP2007314717A (ja) * 2006-05-29 2007-12-06 Teijin Dupont Films Japan Ltd 電気絶縁用二軸配向ポリエステルフィルム
JP2010284943A (ja) * 2009-06-15 2010-12-24 Teijin Dupont Films Japan Ltd 光学用ポリエステルフィルム
WO2012035874A1 (ja) * 2010-09-14 2012-03-22 日立化成工業株式会社 ノルボルナン骨格を有するポリエステル及びその製造方法
WO2015118966A1 (ja) * 2014-02-07 2015-08-13 東レ株式会社 ポリエステル樹脂組成物およびその製造方法
JP2016190344A (ja) 2015-03-31 2016-11-10 富士フイルム株式会社 ダイ、溶液製膜方法及び溶融製膜方法
WO2016190317A1 (ja) * 2015-05-27 2016-12-01 三菱瓦斯化学株式会社 ポリエステル樹脂及びその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3521334A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019146575A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 成形体
US11236198B2 (en) 2018-01-23 2022-02-01 Mitsubishi Gas Chemical Company, Inc. Molded article
WO2019194117A1 (ja) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 ポリエステル樹脂組成物
WO2021200613A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム
EP4130096A4 (en) * 2020-03-31 2023-08-30 Mitsubishi Gas Chemical Company, Inc. COMPOSITION OF RESIN, OPTICAL LENS CONTAINING IT, AND OPTICAL FILM

Also Published As

Publication number Publication date
EP3521334B1 (en) 2020-08-26
KR102357461B1 (ko) 2022-01-28
EP3521334A1 (en) 2019-08-07
KR20190055120A (ko) 2019-05-22
US10894859B2 (en) 2021-01-19
TW201817766A (zh) 2018-05-16
ES2821142T3 (es) 2021-04-23
CN109790283A (zh) 2019-05-21
US20200247944A1 (en) 2020-08-06
TWI739914B (zh) 2021-09-21
EP3521334A4 (en) 2019-09-11
JP6965888B2 (ja) 2021-11-10
CN109790283B (zh) 2022-07-19
JPWO2018062325A1 (ja) 2019-07-11

Similar Documents

Publication Publication Date Title
JP6708210B2 (ja) ポリエステル樹脂及びその製造方法
CN109791245B (zh) 光学膜、相位差膜、偏光板
WO2018062325A1 (ja) 共重合ポリエステル樹脂
KR102439383B1 (ko) 광학 렌즈
JP2019026738A (ja) ポリエステル樹脂、及びそれを用いたポリエステル樹脂溶液、塗料、コーティング剤
TWI576336B (zh) 含有降莰烷骨架之二官能性化合物及其製造方法
JP2019026752A (ja) 樹脂組成物及び成形体
TW202104350A (zh) 熱塑性樹脂、成形體、以及熱塑性樹脂用單體

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17856274

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018542810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197009752

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017856274

Country of ref document: EP

Effective date: 20190429