WO2019146575A1 - 成形体 - Google Patents

成形体 Download PDF

Info

Publication number
WO2019146575A1
WO2019146575A1 PCT/JP2019/001807 JP2019001807W WO2019146575A1 WO 2019146575 A1 WO2019146575 A1 WO 2019146575A1 JP 2019001807 W JP2019001807 W JP 2019001807W WO 2019146575 A1 WO2019146575 A1 WO 2019146575A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
unit
bis
general formula
acid
Prior art date
Application number
PCT/JP2019/001807
Other languages
English (en)
French (fr)
Inventor
栄一 本多
康明 吉村
敬太 野口
雄一郎 佐竹
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to JP2019567077A priority Critical patent/JP7318534B2/ja
Priority to EP19744149.6A priority patent/EP3744790B1/en
Priority to CN201980009175.XA priority patent/CN111630107B/zh
Priority to US16/964,015 priority patent/US11236198B2/en
Priority to KR1020207022633A priority patent/KR102655030B1/ko
Publication of WO2019146575A1 publication Critical patent/WO2019146575A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/123Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds the acids or hydroxy compounds containing carbocyclic rings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/0001Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/46Means for plasticising or homogenising the moulding material or forcing it into the mould
    • B29C45/56Means for plasticising or homogenising the moulding material or forcing it into the mould using mould parts movable during or after injection, e.g. injection-compression moulding
    • B29C45/561Injection-compression moulding
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/60Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from the reaction of a mixture of hydroxy carboxylic acids, polycarboxylic acids and polyhydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0085Copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/007Hardness

Definitions

  • the present invention relates to a molded body.
  • Polycarbonate resin is a thermoplastic resin excellent in heat resistance, transparency, mechanical properties and the like, and has a wide range of applications such as automobile interior panels, headlamp lenses, casings of mobile phones and personal computers.
  • polycarbonate resin is lighter than inorganic glass and is excellent in productivity, and therefore, it is also used for automotive window applications and the like.
  • polycarbonate resins using 2,2-bis (4-hydroxyphenyl) propane hereinafter, also referred to as "bisphenol A" widely used at present are said to have low surface hardness represented by pencil hardness. There is a problem.
  • Patent Document 1 reports that a copolycarbonate of 1,1-bis (3-methyl-4-hydroxyphenyl) cyclohexane and bisphenol A can provide a surface hardness as high as 2H in pencil hardness.
  • Patent Document 2 a specific amount of a specific (meth) acrylic copolymer and a phosphorus-based stabilizer, and an ester of an aliphatic alcohol and an aliphatic carboxylic acid are contained in an aromatic polycarbonate resin, respectively. It is reported that a composition having a high surface hardness can be obtained while maintaining the pencil hardness H and the transparency.
  • the present invention is as follows. [1] And a copolymerized polyester resin having a unit (A) represented by the following general formula (1), a diol unit (B), and a dicarboxylic acid or an ester-forming derivative unit (C) thereof, The molded object whose content of the said unit (A) is 20-90 mol% in all the units which the said copolyester resin has.
  • R 1 is a hydrogen atom
  • R 2 and R 3 are each independently a hydrogen atom or CH 3
  • n is 0 or 1 .
  • Formula (1) in R 1, R 2, and R 3 is a hydrogen atom, molded article according to [1].
  • the pencil hardness of the molded body is HB or more.
  • the molded object which is excellent in the physical property balance of heat resistance, weather resistance, and surface hardness can be provided.
  • the present embodiment is an example for describing the present invention, and is not intended to limit the present invention to the following contents.
  • the present invention can be appropriately modified and implemented within the scope of the gist of the present invention.
  • the molded article of the present embodiment includes a copolyester resin having a unit (A) represented by the following general formula (1), a diol unit (B), and a dicarboxylic acid or an ester-forming derivative unit (C) thereof.
  • the content of the unit (A) is 20 to 90 mol% in the total units of the copolyester resin.
  • R 1 is a hydrogen atom
  • R 2 and R 3 are each independently a hydrogen atom or CH 3
  • n is 0 or 1 .
  • the molded object of this embodiment is excellent in the physical property balance of heat resistance, weather resistance, and surface hardness.
  • the copolymerized polyester resin in this embodiment has, as its constituent unit, a unit (A) (hereinafter also referred to as “unit (A)”) represented by the above general formula (1), a diol unit (B) (hereinafter referred to as , “A unit (B)”), and a dicarboxylic acid or an ester-forming derivative unit (C) thereof (hereinafter also referred to as “a unit (C)”).
  • the content of the unit (A) is set to 20 to 90 mol% with respect to all the units of the copolymerized polyester resin, in consideration of the balance between heat resistance and moldability. When the content is less than 20 mol%, sufficient heat resistance can not be obtained.
  • the content of the unit (A) is preferably 30 to 90 mol%, more preferably 40 to 85 mol%, and still more preferably 50 to 85 mol from the same viewpoint as above and the viewpoint of further improving the mechanical properties. %, Still more preferably 60 to 85 mol%.
  • R 1 in the general formula (1) is preferably a hydrogen atom or CH 3
  • R 2 and R 3 are preferably hydrogen atoms.
  • R 1 , R 2 and R 3 in the general formula (1) be a hydrogen atom.
  • n in the general formula (1) is preferably 1 from the viewpoint of further improving the heat resistance.
  • the structural unit (B) is not particularly limited as long as it is a unit derived from a diol, and specific examples thereof include ethylene glycol, trimethylene glycol, 1,4-butanediol, 1,5-pentanediol, 1,1 6-hexanediol, diethylene glycol, propylene glycol, neopentyl glycol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, 1,2-decahydronaphthalenedimethanol, 1,3-decahydronaphthalenedimethanol, 1,4-decahydronaphthalene dimethanol, 1,5-decahydronaphthalene dimethanol, 1,6-decahydronaphthalene dimethanol, 2,7-decahydronaphthalene dimethanol, tetralin dimethanol, norbornane dimethanol, tricyclodeca Dimethanol, pentacyclopentadecanedimethanol, norbornanediol, cyclohex
  • the structural unit (B) is preferably a unit derived from an aliphatic diol or a diol having a cardo structure, since good transparency can be obtained.
  • units derived from such aliphatic diols 1,4-cyclohexanedimethanol, ethylene glycol, tricyclodecanedimethanol, 3,9-bis (1,1-dimethyl-2-hydroxyethyl) -2, Derived from 4,8,10-tetraoxaspiro [5.5] undecane, 1,4: 3,6-dianhydro-D-sorbitol, 2,2,4,4-tetramethyl-1,3-cyclobutanediol Units are more preferred.
  • a unit derived from a diol having a cardo structure 9,9-bis [4- (2-hydroxyethoxy) phenyl] fluorene, 9,9-bis [4- (2-hydroxyethoxy) -3-methyl] More preferred are units derived from phenyl] fluorene and 9,9-bis [4- (2-hydroxyethoxy) -3-phenylphenyl] fluorene.
  • these optical isomers may be any of a cis body, a trans body, and a mixture thereof, and are not particularly limited.
  • the units described above may be contained singly or in combination of two or more.
  • the content of the unit (B) is preferably 5 to 35 mol%, more preferably 6 to 30 mol%, based on the total units of the copolyester resin.
  • the structural unit (C) is not particularly limited as long as it is a unit derived from dicarboxylic acid or an ester-forming derivative thereof, and specific examples thereof include terephthalic acid, isophthalic acid, phthalic acid and 1,3-naphthalenedicarboxylic acid Aromatics such as 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2-methylterephthalic acid, biphenyldicarboxylic acid, tetralindicarboxylic acid Structural units derived from dicarboxylic acids and / or derivatives thereof: succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, cyclohexanedicarboxylic acid
  • the structural unit (C) is preferably a unit derived from an aliphatic dicarboxylic acid or an ester-forming derivative thereof, or a dicarboxylic acid having a cardo structure or an ester-forming derivative thereof, from the viewpoint of obtaining good transparency.
  • a unit derived from an aliphatic dicarboxylic acid or an ester-forming derivative thereof a unit derived from dimethyl 1,4-cyclohexanedicarboxylate is more preferable from the viewpoint of balance of physical properties of transparency and heat resistance.
  • a unit derived from a dicarboxylic acid having a cardo structure or an ester-forming derivative thereof 9,9-bis (methoxycarbonylmethyl) fluorene, 9,9-bis, from the viewpoint of balance of physical properties of transparency and heat resistance.
  • a unit derived from (methoxycarbonylethyl) fluorene or 9,9-bis (methoxycarbonylpropyl) fluorene is more preferable.
  • these optical isomers may be any of a cis body, a trans body, and a mixture thereof, and are not particularly limited.
  • the units described above may be contained singly or in combination of two or more.
  • the content of the unit (C) to the total units of the copolyester resin is preferably 5 to 35 mol%, more preferably 6 to 30 mol%.
  • the copolymerized polyester resin may contain, in addition to the units (A) to (C), other units such as a hydroxyl group and a carboxylic acid or an ester-forming derivative unit (A1) thereof.
  • the unit (A1) is not particularly limited, and examples thereof include oxy acids such as glycolic acid, lactic acid, hydroxybutyric acid, 2-hydroxyisobutyric acid, hydroxybenzoic acid, 6-hydroxycaproic acid, 4-hydroxycyclohexanecarboxylic acid and the like And / or units derived from their derivatives.
  • the glass transition temperature (Tg) of the copolyester resin is not particularly limited as long as the effects of the present embodiment are obtained, but from the viewpoint of securing sufficient heat resistance, it is preferably 100 ° C. or higher.
  • the temperature is preferably 105 ° C. or higher, more preferably 110 ° C. or higher, still more preferably 115 ° C. or higher, still more preferably 120 ° C. or higher, and still more preferably 130 ° C. or higher.
  • the said Tg can be measured by the method as described in the Example mentioned later.
  • said Tg can be adjusted to the said range, for example by adjusting the copolymerization ratio of the raw material monomer of co-polyester resin suitably.
  • the molecular weight of the copolyester resin can be appropriately set in consideration of desired performance, handleability and the like, and is not particularly limited.
  • the weight average molecular weight (Mw) in terms of polystyrene is 5,000 to 200,000. Is preferably, and more preferably 10,000 to 100,000.
  • Mw is 5,000 or more, the heat resistance tends to be preferably secured, and when Mw is 200,000 or less, the melt viscosity becomes better, the resin after production is easily extracted, and the fluidization further occurs. There is a tendency for injection molding to be facilitated in the molten state from the viewpoint of the properties.
  • the copolyester resin in the present embodiment when forming the copolyester resin in the present embodiment into a molded article, an antioxidant, a mold release agent, an ultraviolet light absorber, a fluidity modifier, a crystal nucleating agent, a toughening agent, a dye, an antistatic agent or an antibacterial agent It is preferable to add known additives such as additives.
  • the content of the additive that may be contained in the molded body is not particularly limited, but for example, it is preferable to be 0.0001 to 5% by mass with respect to 100% by mass of the molded body, 0.0001 to 3 It is more preferable to use mass%.
  • the content of the additive that may be contained in the copolyester resin contained in the molded product is not particularly limited, and for example, 0.0001 to 1 mass% with respect to 100 mass% of the molded product. It is preferable that the content be in the range of 0.0001 to 0.8% by mass.
  • the copolyester resin in this embodiment can be obtained by copolymerizing the respective monomers corresponding to the units (A) to (C).
  • the manufacturing method of the monomer corresponding to a unit (A) is demonstrated.
  • Such a monomer is represented, for example, by the following general formula (2).
  • R 1 is a hydrogen atom, CH 3 or C 2 H 5 , R 2 and R 3 are each independently a hydrogen atom or CH 3 , and X is a hydrogen atom or carbon It is a hydrocarbon group which may contain several or less hydroxyl groups.
  • R 1 is preferably a hydrogen atom or CH 3 .
  • R 2 and R 3 are preferably hydrogen atoms. Examples of the above hydrocarbon group include, but are not limited to, methyl group, ethyl group, propyl group, butyl group, vinyl group, 2-hydroxyethyl group, 4-hydroxybutyl group and the like.
  • the compound represented by the general formula (2) in this embodiment can be synthesized, for example, by a route represented by the following formula (I), using dicyclopentadiene or cyclopentadiene and an olefin having a functional group as a raw material. .
  • R 1 is a hydrogen atom, CH 3 or C 2 H 5
  • R 2 and R 3 are each independently a hydrogen atom or CH 3
  • X is a hydrogen atom or 4 or less carbon atoms Or a hydrocarbon group which may contain a hydroxyl group of
  • the mono-olefin having 13 to 21 carbon atoms represented by the general formula (4) can be produced, for example, by performing Diels-Alder reaction of an olefin having a functional group with dicyclopentadiene.
  • olefin having a functional group used for the Diels-Alder reaction include, but are not limited to, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, vinyl methacrylate, methacrylic acid-2 -Hydroxyethyl, 4-hydroxybutyl methacrylate, acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, vinyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate And crotonic acid, methyl crotonate, ethyl crotonate, 3-methyl crotonic acid, methyl 3-methyl crotonate, ethyl 3-methyl crotonate and the like, and preferable olefins include methacrylic acid, methyl methacrylate, methacrylic acid Acid-2-hydroxyeth
  • examples of the olefin having a functional group used for the Diels-Alder reaction include acrylonitrile, methacrylonitrile, acrolein and methacrolein.
  • the monoolefin represented by General formula (4 ') can be manufactured through the route etc. which are shown to following formula (II), Formula (III).
  • R 1 is a hydrogen atom or CH 3 )
  • R 1 is a hydrogen atom or CH 3 )
  • the dicyclopentadiene used for the Diels-Alder reaction is preferably of high purity, and the content of butadiene, isoprene and the like is preferably reduced.
  • the purity of dicyclopentadiene is preferably 90% or more, more preferably 95% or more.
  • dicyclopentadiene tends to depolymerize under heating conditions to be cyclopentadiene (so-called monocyclopentadiene), it is also possible to use cyclopentadiene instead of dicyclopentadiene.
  • the monoolefin having 13 to 21 carbon atoms represented by the general formula (4) is a monoolefin having 8 to 16 carbon atoms substantially represented by the following general formula (7) (first stage Diels-Alder reaction formation) (Diene), which is believed to be produced via the compound (I), and the resulting monoolefin of the general formula (7) is present as a new parent compound (Dienophile) with the cyclopentadiene (Diene) It is considered that the C13 to C21 monoolefin represented by the general formula (4) is produced in the second stage Diels-Alder reaction).
  • the mono-olefin having 13 to 21 carbon atoms represented by the formula (4) by appropriately controlling the reaction conditions of the first stage Diels-Alder reaction
  • the monoolefin having 8 to 16 carbon atoms represented by the formula (7) can be selectively obtained.
  • R 1 represents a hydrogen atom
  • R 2 and R 3 each independently represent a hydrogen atom or CH 3
  • X represents a hydrogen atom or 4 or less carbon atoms
  • A represents a hydrocarbon group which may contain a hydroxyl group of
  • the cyclopentadiene is present in the reaction system from the viewpoint of efficiently obtaining the above two-stage Diels-Alder reaction, that is, selectively obtaining the mono-olefin having 13 to 21 carbon atoms represented by the formula (4).
  • the reaction temperature is preferably 100 ° C. or higher, more preferably 120 ° C. or higher, and still more preferably 130 ° C. or higher.
  • the reaction temperature is preferably less than 180 ° C. In any case, it is preferable to carry out the reaction at a temperature of 250 ° C. or less in order to suppress by-production of high boiling substances.
  • n 1 in the formula (1) by subjecting the monoolefin having 13 to 21 carbon atoms represented by the formula (4) obtained as described above to a hydroformylation reaction and a reduction reaction described later
  • the monomer corresponding to ie, the compound represented by Formula (2)
  • n 0 in the formula (1)
  • a corresponding monomer ie, a compound represented by formula (8)
  • hydrocarbons such as butanol and the like. It is also possible to use hydrocarbons, alcohols, esters and the like as the reaction solvent, and aliphatic hydrocarbons having 6 or more carbon atoms, cyclohexane, toluene, xylene, ethylbenzene, mesitylene, propanol, butanol and the like. preferable. If necessary, it may be added to AlCl 3 or the like known catalysts.
  • R 1 is a hydrogen atom
  • R 2 and R 3 are each independently a hydrogen atom or CH 3
  • X is a hydrogen atom or carbon It is a hydrocarbon group which may contain several or less hydroxyl groups.
  • reaction system of the Diels-Alder reaction a batch system using a tank reactor, a semi-batch system for supplying a substrate or a substrate solution to a tank reactor under reaction conditions, a substrate under reaction conditions using a tubular reactor It is possible to adopt various reaction systems such as continuous circulation system for circulating
  • reaction product obtained by the Diels-Alder reaction can be used as it is as a raw material for the next hydroformylation reaction, it may be subjected to the next step after purification by a method such as distillation, extraction, crystallization and the like.
  • Examples of the difunctional compound having 14 to 22 carbon atoms represented by the general formula (3) in the formula (I) include monoolefins having 13 to 21 carbon atoms represented by the general formula (4) and carbon monoxide And hydrogen gas can be produced by hydroformylation reaction in the presence of a rhodium compound and an organic phosphorus compound.
  • the rhodium compound used in the hydroformylation reaction may be a compound which forms a complex with the organic phosphorus compound and exhibits hydroformylation activity in the presence of carbon monoxide and hydrogen, and the form of its precursor is not particularly limited.
  • rhodium acetylacetonato dicarbonyl hereinafter referred to as Rh (acac) (CO) 2
  • Rh 2 O 3 Rh 4 (CO) 12
  • Rh 6 (CO) 16 Rh (NO 3 ) 3 etc.
  • the catalyst precursor may be introduced into the reaction mixture together with the organophosphorus compound to form a rhodium metal hydridocarbonyl phosphorus complex having catalytic activity in the reaction vessel, or a rhodium metal hydridocarbonyl phosphorus complex is prepared in advance It may be introduced into the reactor.
  • Rh (acac) (CO) 2 is reacted with an organophosphorus compound in the presence of a solvent and then introduced into a reactor together with an excess of an organophosphorus compound to react with a rhodium-organophosphorus complex having catalytic activity. Methods are included.
  • the two-stage Diels-Alder reaction product having a relatively high molecular weight internal olefin as represented by the general formula (4) is hydroformylated with a very small amount of a rhodium catalyst.
  • the amount of rhodium compound used in this hydroformylation reaction is preferably 0.1 to 60 micromoles per mole of the monoolefin having 13 to 21 carbon atoms represented by General Formula (4), which is a substrate for the hydroformylation reaction. 0.1 to 30 micromoles is more preferable, 0.2 to 20 micromoles is more preferable, and 0.5 to 10 micromoles is particularly preferable.
  • the amount of the rhodium compound used is less than 60 micromoles to 1 mole of the monoolefin having 13 to 21 carbon atoms, it can be evaluated that it is practically not necessary to provide a collection and recycling facility of the rhodium complex. As described above, according to the present embodiment, the economic burden on the recovery and recycling equipment can be reduced, and the cost of the rhodium catalyst can be reduced.
  • the organophosphorus compound which forms a catalyst for the hydroformylation reaction with the rhodium compound in the hydroformylation reaction in the present embodiment is not particularly limited, and, for example, the general formula P (-R a ) (-R b ) (-R c ) phosphine represented by or P (-OR a) (- oR b) (- include phosphites represented by oR c).
  • R a , R b and R c include, but are not limited to, an aryl group which may be substituted by an alkyl group having 1 to 4 carbon atoms or an alkoxy group, an alkyl group having 1 to 4 carbon atoms or an alkoxy group And a cycloaliphatic alkyl group etc. which may be substituted, and triphenyl phosphine and triphenyl phosphite are preferably used.
  • the amount of the organic phosphorus compound to be used is preferably 300 times to 10000 times mol, more preferably 500 times to 10000 times mol, still more preferably 700 times to 5000 times mol, particularly preferably 1000 times mol to the rhodium atom in the rhodium compound. Is 900 times mol to 2000 times mol.
  • the amount of the organophosphorus compound used is at least 300 times the molar amount of the rhodium atom, the stability of the rhodium metal hydridocarbonyl phosphorus complex which is the catalytic active material tends to be sufficiently secured, and as a result, good reactivity is secured.
  • the usage-amount of an organic phosphorus compound is 10000 times mol or less of a rhodium atom, it is preferable from a viewpoint of fully reducing the cost concerning an organic phosphorus compound.
  • the hydroformylation reaction can be carried out without using a solvent, but can be carried out more suitably by using a solvent inert to the reaction.
  • a solvent inert to the reaction.
  • the solvent which can be used for the hydroformylation reaction those which dissolve the monoolefin having 13 to 21 carbon atoms, dicyclopentadiene or cyclopentadiene represented by the general formula (4), the rhodium compound, and the organic phosphorus compound can be used. There is no particular limitation.
  • hydrocarbons such as aliphatic hydrocarbons, alicyclic hydrocarbons and aromatic hydrocarbons
  • esters such as aliphatic esters, alicyclic esters and aromatic esters
  • fats And alcohols such as aliphatic alcohols and alicyclic alcohols
  • solvents such as aromatic halides.
  • hydrocarbons are preferably used, and among them, alicyclic hydrocarbons and aromatic hydrocarbons are more preferably used.
  • the temperature for carrying out the hydroformylation reaction is preferably 40 ° C. to 160 ° C., and more preferably 80 ° C. to 140 ° C.
  • the reaction temperature is 40 ° C. or higher, a sufficient reaction rate tends to be obtained, and the residual monoolefin as a raw material tends to be further suppressed.
  • the reaction temperature is set to 160 ° C. or lower, the formation of the raw material mono-olefin and the by-product derived from the reaction product can be suppressed, and a decrease in the reaction result can be effectively prevented.
  • the reaction is performed under pressure by carbon monoxide (hereinafter sometimes referred to as "CO") and hydrogen (hereinafter sometimes referred to as “H2 " ) gas.
  • CO and H 2 gas can be introduced independently into the reaction system, or can be introduced into the reaction system as a previously prepared mixed gas.
  • the reaction activity of the hydroformylation reaction and the selectivity of the target aldehyde tend to be good. Since the CO and H 2 gas introduced into the reaction system decreases with the progress of the reaction, reaction control may be simplified by using a mixed gas of CO and H 2 prepared in advance.
  • the reaction pressure of the hydroformylation reaction is preferably 1 to 12 MPa, more preferably 1.2 to 9 MPa, and still more preferably 1.5 to 5 MPa.
  • the reaction pressure is 1 MPa or more, a sufficient reaction rate tends to be obtained, and the residual monoolefin as a raw material tends to be sufficiently suppressed.
  • by setting the reaction pressure to 12 MPa or less it is economically advantageous since expensive equipment excellent in pressure resistance performance is not required.
  • it is necessary to discharge and depressurize CO and H 2 gas after completion of the reaction it is necessary to discharge and depressurize CO and H 2 gas after completion of the reaction, and the loss of CO and H 2 gas decreases as the pressure decreases, which is economically advantageous. is there.
  • a batch reaction and a semi-batch reaction are preferable.
  • a rhodium compound, an organic phosphorus compound and the above solvent are added to a reactor, and pressurization and heating with CO / H 2 gas are carried out. It can be done by feeding the solution into the reactor.
  • the reaction product obtained by the hydroformylation reaction can be used as it is as a raw material for the next reduction reaction, but may be subjected to the next step after purification by, for example, distillation, extraction, crystallization or the like.
  • the compound having 14 to 22 carbon atoms represented by the general formula (2) in the formula (I) has a catalyst capable of hydrogenating the compound having 14 to 22 carbon atoms represented by the general formula (3), It can be produced by reduction in the presence of hydrogen.
  • a catalyst containing at least one element selected from the group consisting of copper, chromium, iron, zinc, aluminum, nickel, cobalt and palladium as a catalyst having a hydrogenation ability. More preferable catalysts include Cu-Cr catalysts, Cu-Zn catalysts, Cu-Zn-Al catalysts, etc., and Raney-Ni catalysts, Raney-Co catalysts, etc., and more preferable catalysts are Cu-Cr catalysts, Raney -Co catalyst.
  • the amount of the hydrogenation catalyst used is 1 to 100% by mass, preferably 2 to 50% by mass, more preferably 5 to 100% by mass, based on the compound having 14 to 22 carbon atoms represented by the general formula (3) as a substrate. It is 30% by mass.
  • the hydrogenation reaction can be suitably carried out by setting the amount of catalyst used within these ranges. When the amount of catalyst used is 1% by mass or more, the reaction proceeds sufficiently, and as a result, the yield of the desired product tends to be sufficiently ensured. When the amount of catalyst used is 100% by mass or less, the balance between the amount of catalyst used for the reaction and the improvement effect of the reaction rate tends to be good.
  • the reaction temperature of the reduction reaction is preferably 60 to 200 ° C., and more preferably 80 ° C. to 150 ° C.
  • the reaction temperature of the reduction reaction is preferably 60 to 200 ° C. or less, generation of side reactions and decomposition reaction is suppressed, and the target product tends to be obtained in a high yield. Further, by setting the reaction temperature to 60 ° C. or higher, the reaction can be completed in an appropriate time, and a decrease in productivity and a decrease in yield of the desired product tend to be avoided.
  • the reaction pressure for the reduction reaction is preferably 0.5 to 10 MPa as hydrogen partial pressure, and more preferably 1 to 5 MPa.
  • the hydrogen partial pressure for the reduction reaction is preferably 0.5 to 10 MPa or less, generation of side reactions and decomposition reaction is suppressed, and the target product tends to be obtained in high yield.
  • the hydrogen partial pressure is set to 0.5 MPa or more, the reaction can be completed in an appropriate time, and a decrease in productivity and a decrease in yield of the desired product tend to be avoided.
  • a gas for example, nitrogen or argon
  • a solvent can be used in the reduction reaction.
  • the solvent used for the reduction reaction include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, alcohols and the like, among which alicyclic hydrocarbons, aromatic hydrocarbons, alcohols Are preferred. Specific examples thereof include cyclohexane, toluene, xylene, methanol, ethanol, 1-propanol and the like.
  • the reaction system for the reduction reaction is a batch system using a tank reactor etc., a semi-batch system for supplying substrate and substrate solution to the tank reactor under reaction conditions, and a tube reactor packed with a molded catalyst It is possible to adopt various reaction methods such as continuous flow type in which the substrate and the substrate solution are flowed.
  • the reaction product obtained by the reduction reaction can be purified, for example, by distillation, extraction, crystallization or the like.
  • the compound represented by the general formula (2) or the compound represented by the formula (8) is a monomer corresponding to the unit (A), and each unit corresponding to the units (B) to (C) It does not specifically limit as method to copolymerize with a monomer,
  • the manufacturing method of conventionally well-known polyester can be applied.
  • melt polymerization such as transesterification, direct esterification, or solution polymerization can be mentioned.
  • a transesterification catalyst, an esterification catalyst, a polycondensation catalyst and the like used in production of a normal polyester resin can be used.
  • These catalysts are not particularly limited, and, for example, metals such as zinc, lead, cerium, cadmium, manganese, cobalt, lithium, sodium, potassium, calcium, nickel, magnesium, vanadium, aluminum, titanium, antimony, germanium, tin and the like
  • Compounds e.g., fatty acid salts, carbonates, phosphates, hydroxides, chlorides, oxides, alkoxides), metallic magnesium and the like. These can be used alone or in combination of two or more.
  • the catalysts mentioned above compounds of manganese, cobalt, zinc, titanium, calcium, antimony, germanium and tin are preferable, and compounds of manganese, titanium, antimony, germanium and tin are more preferable.
  • the amount of these catalysts used is not particularly limited, but the amount as the metal component is preferably 1 to 1000 ppm, more preferably 3 to 750 ppm, still more preferably 5 to 500 ppm, based on the raw material of the polyester resin.
  • the reaction temperature in the polymerization reaction depends on the kind of the catalyst, the amount thereof used, etc., and is usually selected in the range of 150 ° C. to 300 ° C., preferably 180 ° C. to 280 ° C. in consideration of the reaction rate and the coloring of the resin.
  • the pressure in the reaction layer is preferably adjusted to 1 kPa or less from the atmosphere, and more preferably 0.5 kPa or less.
  • a phosphorus compound may be added as desired.
  • a phosphorus compound although it is not limited to the following, for example, phosphoric acid, phosphorous acid, phosphoric ester, phosphorous ester, etc. can be mentioned.
  • the phosphate include, but are not limited to, methyl phosphate, ethyl phosphate, butyl phosphate, phenyl phosphate, dimethyl phosphate, diethyl phosphate, dibutyl phosphate, diphenyl phosphate, trimethyl phosphate, for example. Triethyl phosphate, tributyl phosphate, triphenyl phosphate and the like can be mentioned.
  • phosphite esters include, but are not limited to, methyl phosphite, ethyl phosphite, butyl phosphite, phenyl phosphite, dimethyl phosphite, diethyl phosphite, dibutyl phosphite, for example.
  • Diphenyl phosphite, trimethyl phosphite, triethyl phosphite, tributyl phosphite, triphenyl phosphite and the like can be mentioned. These can be used alone or in combination of two or more.
  • the concentration of phosphorus atoms in the copolyester resin of the present embodiment is preferably 1 to 500 ppm, more preferably 5 to 400 ppm, and still more preferably 10 to 200 ppm.
  • various stabilizers such as an etherification inhibitor, a heat stabilizer, a light stabilizer, a polymerization regulator and the like can be used.
  • the molded object of this embodiment can be used as an automobile component as one aspect. That is, the automobile part of the present embodiment includes the copolyester resin of the present embodiment, and can be applied as various automobile parts, and its specific application is not particularly limited.
  • the automobile part of this embodiment can be typically used as an interior and exterior part of a car, and is not limited to, for example, a fender, a bumper, a face, a door panel, a side garnish, a pillar, a radiator grille, a side protector, Side moldings, rear protectors, rear moldings, various spoilers, bonnets, roof panels, trunk lids, detachable lids, wind reflectors, mirror housings, mirror housings, exterior parts for automobiles such as outer door handles, instrument panels, center console panels, meter parts, various kinds
  • the present invention can be applied to switches, car navigation parts, car audio visual parts, auto mobile computer parts, head-up display parts and the like.
  • lamp lenses for automobiles two-wheeled vehicles
  • lamp lenses for automobiles two-wheeled vehicles
  • windows, housings, etc., and those with special shapes, etc. may be mentioned.
  • various known additives may be added to constitute various molded articles such as automobile parts without departing from the scope of the present embodiment.
  • the additive include, but are not limited to, other resins, colorants, light stabilizers, antioxidants, neutralizing agents, ultraviolet absorbers, release agents, antistatic agents, lubricants, lubricants, and the like.
  • the application of the lamp lens for automobiles is not limited to the following, but as a typical example, an impact resistance improver, a flame retardant, a flame retardant auxiliary, a hydrolysis inhibitor, an antistatic agent, a foaming agent, a dye and pigment Can be mentioned.
  • polymers kneaded with synthetic resins such as aromatic polycarbonates, aliphatic polycarbonates, aromatic polyesters, polyamides, polystyrenes, polyolefins, acrylics, and amorphous polyolefins, biodegradable resins such as polylactic acid and polybutylene succinate, etc. It can also be applied to automotive parts as an alloy.
  • the resin composition containing the copolyester resin of the present embodiment and another resin can be molded to obtain the molded article of the present embodiment.
  • other resins preferably used in the present embodiment include, but are not limited to, polycarbonate resins and the like.
  • the polycarbonate resin is not particularly limited, and various publicly known ones can be used. One of them can be used alone, or two or more of them can be used in combination in an arbitrary ratio.
  • the mass ratio of the polycarbonate resin to the total mass of the copolyester resin and the polycarbonate resin is not particularly limited, but is preferably 2 to 99.5 mass%, more preferably 10 to It is 98% by mass, more preferably 30 to 95% by mass, and still more preferably 50 to 90% by mass.
  • the mass ratio is 2 to 99.5% by mass, the transparency, heat resistance, surface hardness, chemical resistance, mechanical strength, and moldability of the molded article tend to be excellent.
  • the resin composition in this embodiment can express various characteristics according to the blend ratio of the copolyester resin and the polycarbonate resin. That is, the heat resistance and mechanical strength tend to be particularly excellent by increasing the proportion of the polycarbonate resin in the mass ratio range described above, and the surface hardness and the chemical resistance are increased by increasing the proportion of the copolyester resin. There is a tendency that the properties and the formability are particularly excellent.
  • the structure of the polycarbonate resin in the present embodiment is not particularly limited, but it has a branched structure which can be obtained by reacting an aromatic dihydroxy compound and optionally a small amount of polyhydroxy compound with phosgene or carbonic acid diester. It is preferable that it may be a polycarbonate polymer or copolymer. A termination agent may be present during the preparation of the polycarbonate resin.
  • the polycarbonate resin is a polycarbonate resin containing a repeating unit represented by the following general formula (9) and / or (10), or a repeating unit represented by the following general formula (9) and / or (10) Polycarbonate resin is mentioned. Further, the repeating units represented by the general formulas (9) and / or (10) include those branched by side reactions.
  • R 1 and R 2 each independently represent a hydrogen atom, a non-cyclic hydrocarbon group having 1 to 10 carbon atoms, an aryl group having 6 to 18 carbon atoms, and carbon
  • R 3 and R 4 each independently represent a halogen atom, an aliphatic hydrocarbon group having 1 to 10 carbon atoms, or an aryl group having 6 to 18 carbon atoms; It is selected from an oxyalkyl group having 1 to 10 carbon atoms and an oxyaryl group having 6 to 18 carbon atoms; m1 and m2 are each independently 0 to 4; k is 4 or 5)
  • R 1 and R 2 are preferably selected from a hydrogen atom, an acyclic hydrocarbon group having 1 to 4 carbon atoms, and an aryl group having 6 to 8 carbon atoms
  • R 3 and R 4 are preferably selected from a halogen atom, an acyclic hydrocarbon group having 1 to 4 carbon
  • the aromatic hydroxy compound which can be used as the raw material of the polycarbonate resin in the present embodiment is not particularly limited, and 2,2-bis (4-hydroxyphenyl) propane (also called bisphenol A), 2,2-bis (3, 5-Dibromo-4-hydroxyphenyl) propane (also known as tetrabromobisphenol A), bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) ethane, 2,2-bis (4-hydroxyphenyl) ) Butane, 2,2-bis (4-hydroxyphenyl) octane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 1,1-bis (3-tert-butyl-4-hydroxyphenyl) Propane, 2,2-bis (3-bromo-4-hydroxyphenyl) propane, 2,2- Bis (hydroxyaryl) alkanes exemplified by di (3,5-dichloro-4-hydroxyphenyl) propane and the like; 1,1-bis (4-hydroxyphenyl) cyclopentane,
  • bisphenol A tetrabromobisphenol A and bisphenol Z are more preferable, and bisphenol A is particularly preferable in terms of heat resistance, mechanical performance, economy and the like of a molded article, that is, polycarbonate resins are polycarbonate resins of bisphenol A Particularly preferred is an ester.
  • a polycarbonate resin (A) containing a structural unit represented by the following general formula (11) is also preferable.
  • R 1 is a methyl group
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group
  • X is an alkylene group or an alkylidene group.
  • R 1 is a methyl group
  • R 2 and R 3 are each independently a hydrogen atom or a methyl group, but it is preferable that R 2 and R 3 be a hydrogen atom in particular.
  • X is an alkylene group or an alkylidene group, and as the alkylene group, an alkylene group having 1 to 6 carbon atoms is preferable, and it may be linear or branched. Examples thereof include methylene, 1,2-ethylene, 1,3-propylene, 1,4-butylene, 1,6-hexylene and the like.
  • the alkylidene group is preferably an alkylidene group having 2 to 10 carbon atoms, and examples thereof include ethylidene, 2,2-propylidene, 2,2-butylidene, 3,3-hexylidene and the like.
  • X is preferably an alkylidene group, particularly preferably a 2,2-propylidene group (ie, an isopropylidene group).
  • polycarbonate resin (A) include the following polycarbonate resins of a) to d).
  • the polycarbonate resin of the above b) is particularly preferable.
  • polycarbonate resins are produced using 2,2-bis (3-methyl-4-hydroxyphenyl) propane and 2,2-bis (3,5-dimethyl-4-hydroxyphenyl) propane as dihydroxy compounds. be able to.
  • the polycarbonate resin (A) may have a carbonate structural unit other than the structural unit represented by the structural unit represented by the above general formula (11), and is represented by, for example, the following general formula (12) It may have a structural unit or a structural unit derived from another dihydroxy compound as described later.
  • the copolymerization amount of structural units other than the structural unit represented by the general formula (11) in this case is usually 60 mol% or less, preferably 50 mol% or less, more preferably 40 mol% or less, and further preferably It is preferable that it is mol% or less.
  • X has the same meaning as X in the above general formula (11).
  • polycarbonate structural unit represented by the above general formula (12) examples include 2,2-bis (4-hydroxyphenyl) propane, that is, derived from bisphenol A represented by a structural unit of the following chemical formula (13) Carbonate structural unit of
  • the following aromatic dihydroxy compounds can be mentioned, for example.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin (A) is preferably 16,000 to 28,000. When the viscosity average molecular weight is in this range, a molded article having good moldability, high mechanical strength and good scratch resistance is easily obtained, and if it is less than 16,000, the surface impact resistance is likely to be significantly reduced, If it exceeds 28,000, the melt viscosity is increased and injection molding tends to be difficult.
  • the lower limit of the molecular weight of the polycarbonate resin (A) is more preferably 17,000, still more preferably 18,000, particularly preferably 20,000, and the upper limit is more preferably 27,000.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin (A) refers to the viscosity average molecular weight (Mv) of the polycarbonate resin as a mixture when the above-mentioned polycarbonate resins are mixed and used, and the individual constituting the mixture
  • the polycarbonate resin itself does not exclude the fact that it is out of the above-mentioned viscosity average molecular weight (Mv).
  • the method for producing the resin composition is not particularly limited, and various known production methods can be widely adopted, and the polycarbonate resin (A), the copolyester resin in the present embodiment, and other components to be blended as necessary , For example, using various mixers such as tumblers and Henschel mixers, and then melt-kneaded with a mixer such as Banbury mixer, roll, Brabender, single-screw kneading extruder, twin-screw kneading extruder, kneader, etc. Can be mentioned.
  • the temperature for melt-kneading is not particularly limited, but is usually in the range of 240 to 320 ° C.
  • the pencil hardness of the molded body is not particularly limited as long as the effects of the present embodiment are obtained, but from the viewpoint of securing sufficient surface hardness, it is preferably HB or more, more preferably F or more.
  • the said pencil hardness can be measured by the method as described in the Example mentioned later.
  • the said pencil hardness can be adjusted to the said range, for example by adjusting the copolymerization ratio of the raw material monomer of co-polyester resin suitably.
  • pellets obtained by pelletizing the above-mentioned copolyester resin can be molded by various molding methods to obtain a molded body.
  • the resin melt-kneaded by the extruder can be directly molded to form a molded body without passing through the pellets.
  • the shape of the molded product is not particularly limited, and can be appropriately selected according to the use of the molded product and the purpose.
  • a plate, a plate, a rod, a sheet, a film, a cylinder, a ring, A circular shape, an elliptical shape, a polygonal shape, a deformed product, a hollow product, a frame shape, a box shape, a panel shape and the like can be mentioned.
  • the thing of various shapes such as a panel for car interiors, a car (two-wheeled vehicle) headlamp lens, a window, a housing, etc. and a special shape, is mentioned, for example.
  • the surface may have irregularities, or may have a three-dimensional shape having a three-dimensional curved surface.
  • stacked with the other resin sheet may be sufficient.
  • the method for molding the molded product is not particularly limited, and conventionally known molding methods can be adopted.
  • injection molding method, injection compression molding method, extrusion molding method, profile extrusion method, transfer molding method, hollow molding method, Gas-assisted hollow molding method, blow molding method, extrusion blow molding, IMC (in-mold coating molding) molding method, rotational molding method, multilayer molding method, two-color molding method, insert molding method, sandwich molding method, foam molding method, additive molding The compression molding method etc. are mentioned.
  • the manufacturing method of the molded object which concerns on this embodiment includes the process of injection-molding or injection compression molding the copolyester resin in this embodiment.
  • Resin Composition The proportions of the diol structural unit and the dicarboxylic acid structural unit in the copolyester resin were calculated by 1 H-NMR measurement.
  • the measurement apparatus was measured at 400 MHz using a nuclear magnetic resonance apparatus (manufactured by JEOL Ltd., trade name: JNM-AL400). Deuterated chloroform was used as the solvent.
  • the glass transition temperature of the copolyester resin was measured as follows. Using a differential scanning calorimeter (trade name: DSC / TA-60WS, manufactured by Shimadzu Corporation), about 10 mg of copolyester resin is placed in an aluminum non-sealed container, and in a stream of nitrogen gas (30 mL / min), The melted product was rapidly cooled to 280 ° C. at a temperature rising rate of 20 ° C./min to obtain a measurement sample. The sample was measured under the same conditions, and a temperature changed by 1/2 of the difference in baseline before and after the transition of the DSC curve was defined as the glass transition temperature.
  • the thickness of the polyester resin is greater than that of the copolymerized polyester resin under the conditions of a cylinder temperature of 240 ° C. to 290 ° C. and a mold temperature of 60 ° C.
  • a 3 mm injection molded piece was made and the total light transmittance was measured.
  • a haze meter (type: NDH-4000) manufactured by Nippon Denshoku Kogyo Co., Ltd. was used.
  • Pencil hardness In the same manner as in (4) above, an injection-molded piece having a thickness of 3 mm is produced, and injection molding is performed at an angle of 45 degrees and a load of 750 g with respect to the injection molded piece in accordance with JIS K 5600-5-4. Hardness was gradually increased on the surface of the piece and the pencil was pressed, and the hardness of the hardest pencil that did not form a scar was evaluated as pencil hardness.
  • reaction liquid conversion rate 98%, selectivity
  • conversion rate 98%, selectivity a reaction liquid (conversion rate 98%, selectivity) containing 76 g of the compound represented by the formula (3a) and 1.4 g of monoolefin represented by the formula (4a)
  • a portion was subjected to the following reaction.
  • a compound represented by the formula (3a) purified by distillation and purification 7 mL of a sponge cobalt catalyst (manufactured by Nikko Jamaica Co., Ltd .: R-400) and 109 g of toluene were added, and the system was pressurized with hydrogen gas.
  • the reaction was carried out at 100 ° C. for 9 hours at 3 MPa.
  • the catalyst was filtered from the obtained slurry with a membrane filter with a pore size of 0.2 ⁇ m. Thereafter, the solvent was distilled off using an evaporator, and analysis by gas chromatography and GC-MS revealed that it contained 51 g of the main product represented by the formula (2a) having a molecular weight of 250 (main product Product yield 93%). This was further purified by distillation to obtain a main product.
  • D-NHEs decahydro-1, 4: 5, 8-dimethanonaphthalene-2-methoxycarbonyl-6 (7) -methanol
  • EG Ethylene glycol
  • TBT Tetrabutyl titanate
  • Example 1 85.6 parts by weight of a compound represented by the formula (2a) obtained from the monomer synthesis example in a polyester production apparatus provided with a partial condenser, a total condenser, a cold trap, a stirrer, a heating device and a nitrogen introducing pipe 3.8 parts by weight of DMCD, 2.9 parts by weight of CHDM, and 0.04 parts by weight of TBT (70 atomic parts of titanium relative to the theoretical resin amount) are charged, heated to 230 ° C. in a nitrogen atmosphere, and maintained for 1 hour A fixed amount of methanol was distilled off.
  • Example 1 Evaluation was carried out in the same manner as in Example 1 except that the raw material composition ratio was changed as shown in Table 1.
  • Example 2 Evaluation was carried out in the same manner as Example 1 using a bisphenol A polycarbonate resin (manufactured by Mitsubishi Engineering Plastics Co., Ltd .; Iupilon S2000).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

下記一般式(1)で表される単位(A)、ジオール単位(B)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)を有する共重合ポリエステル樹脂を含み、 前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)の含有量が20~90mol%である、成形体。(前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)

Description

成形体
 本発明は、成形体に関する。
 ポリカーボネート樹脂は、耐熱性、透明性、機械物性等に優れた熱可塑性樹脂であり、自動車内装パネルやヘッドランプレンズ、携帯電話やパーソナルコンピューターの筐体等、幅広い用途がある。また、ポリカーボネート樹脂は、無機ガラスに比較して軽量で、生産性にも優れているので、自動車の窓用途等にも使用されている。しかしながら、現在広く用いられている、2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「ビスフェノールA」ともいう。)を用いたポリカーボネート樹脂は、鉛筆硬度に代表される表面硬度が低いという課題がある。
 ポリカーボネート樹脂の表面硬度を改善するために、これまでに多くのポリカーボネート樹脂、またはポリカーボネート樹脂組成物が提案されている。例えば、特許文献1では、1,1-ビス(3-メチル-4-ヒドロキシフェニル)シクロヘキサンとビスフェノールAとの共重合ポリカーボネートが、鉛筆硬度が2Hと高い表面硬度が得られることが報告されている。また、特許文献2では、芳香族ポリカーボネート樹脂に、特定の(メタ)アクリル共重合体とリン系安定剤、及び、脂肪族アルコールと脂肪族カルボン酸とのエステルを、それぞれ特定量含有させることにより、鉛筆硬度Hと透明性を維持しつつ、表面硬度の高い組成物が得られることが報告されている。
特表2009-500195号公報 特開2012-025790号公報
 特許文献1~2に記載の技術によれば、表面硬度は向上するものの、耐候性の観点からは依然として改善の余地を有する。すなわち、成形体として、耐熱性、耐候性及び表面硬度の物性バランスに優れるものは未だ得られていない。
 本発明は、以上の従来技術が有する問題点に鑑みなされたものであり、耐熱性、耐候性及び表面硬度の物性バランスに優れる成形体を提供することを目的とする。
 本発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、特定の脂環式構造を構成単位として含む共重合ポリエステル樹脂を用いることで、上記課題を解決できることを見出し、本発明を完成させるに至った。
 すなわち、本発明は、以下のとおりである。
[1]
 下記一般式(1)で表される単位(A)、ジオール単位(B)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)を有する共重合ポリエステル樹脂を含み、
 前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)の含有量が20~90mol%である、成形体。
Figure JPOXMLDOC01-appb-C000002
(前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)
[2]
 前記一般式(1)におけるR、R、及びRが水素原子である、[1]に記載の成形体。
[3]
 前記単位(B)が脂肪族ジオール又はカルド構造を有するジオールに由来する単位である、[1]又は[2]に記載の成形体。
[4]
 前記単位(C)が脂肪族ジカルボン酸若しくはそのエステル形成性誘導体、又はカルド構造を有するジカルボン酸若しくはそのエステル形成性誘導体に由来する単位である、[1]~[3]のいずれかに記載の成形体。
[5]
 前記共重合ポリエステル樹脂が下記(1)~(2)を満たす、[1]~[4]のいずれかに記載の成形体。
(1)前記共重合ポリエステル樹脂のガラス転移温度が100℃以上である。
(2)前記成形体の鉛筆硬度がHB以上である。
[6]
 [1]~[5]のいずれかに記載の成形体の製造方法であって、
 前記共重合ポリエステル樹脂を射出成形又は射出圧縮成形する工程を含む、成形体の製造方法。
 本発明によれば、耐熱性、耐候性及び表面硬度の物性バランスに優れる成形体を提供することができる。
モノマー合成例で得られた主反応生成物の1H-NMR測定の結果を示す。 モノマー合成例で得られた主反応生成物の13C-NMR測定の結果を示す。 モノマー合成例で得られた主反応生成物のCOSY-NMR測定の結果を示す。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
 本実施形態の成形体は、下記一般式(1)で表される単位(A)、ジオール単位(B)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)を有する共重合ポリエステル樹脂を含み、前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)の含有量が20~90mol%である。
Figure JPOXMLDOC01-appb-C000003
(前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)
 上記のように構成されているため、本実施形態の成形体は、耐熱性、耐候性及び表面硬度の物性バランスに優れる。
(共重合ポリエステル樹脂)
 本実施形態における共重合ポリエステル樹脂は、その構成単位として、上記一般式(1)で表される単位(A)(以下、「単位(A)」ともいう。)、ジオール単位(B)(以下、「単位(B)」ともいう。)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)(以下、「単位(C)」ともいう。)を有するものである。また、本実施形態において、耐熱性及び成形性のバランスを考慮し、共重合ポリエステル樹脂が有する全単位に対する単位(A)の含有量を20~90mol%とする。上記含有量が20mol%未満であると、十分な耐熱性が得られない。また、上記含有量が90mol%以下であると、良好な耐熱性を確保しつつも成形性を向上させることができる。上記と同様の観点及び機械物性をより向上させる観点から、単位(A)の含有量は、30~90mol%であることが好ましく、より好ましくは40~85mol%であり、さらに好ましくは50~85mol%であり、よりさらに好ましくは60~85mol%である。
 単位(A)において、一般式(1)中のR1は、好ましくは水素原子又はCHであり、R2及びR3は、好ましくは水素原子である。本実施形態において、耐熱性の観点から、一般式(1)におけるR、R、及びRが水素原子であることがより好ましい。
 また、上記一般式(1)中のnは、耐熱性をより向上させる観点から、1であることが好ましい。
 構成単位(B)としては、ジオールに由来する単位であれば特に限定されず、その具体例としては、エチレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジメタノール、トリシクロデカンジメタノール、ペンタシクロペンタデカンジメタノール、ノルボルナンジオール、シクロヘキサンジオール、2,2'-ビス(4-ヒドロキシシクロヘキシル)プロパン、アダマンタンジオール、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、9,9-ビス(2-ヒドロキシエチル)フルオレン、キシリレングリコール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等のジオールに由来する単位が挙げられる。
 構成単位(B)は、良好な透明性が得られることから、脂肪族ジオール又はカルド構造を有するジオールに由来する単位であることが好ましい。このような脂肪族ジオールに由来する単位としては、1,4-シクロヘキサンジメタノール、エチレングリコール、トリシクロデカンジメタノール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール、2,2,4,4-テトラメチル-1,3-シクロブタンジオールに由来する単位がより好ましい。また、カルド構造を有するジオールに由来する単位としては、9,9-ビス[4-(2-ヒドロキシエトキシ)フェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-メチルフェニル]フルオレン、9,9-ビス[4-(2-ヒドロキシエトキシ)-3-フェニルフェニル]フルオレン、に由来する単位がより好ましい。
 なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
 上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
 共重合ポリエステル樹脂が有する全単位に対する単位(B)の含有量は、5~35mol%であることが好ましく、より好ましくは6~30mol%である。
 構成単位(C)としては、ジカルボン酸又はそのエステル形成性誘導体に由来する単位であれば特に限定されず、その具体例としては、テレフタル酸、イソフタル酸、フタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2-メチルテレフタル酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等の芳香族ジカルボン酸及び/又はその誘導体に由来する構成単位;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸、3,9-ビス(1,1-ジメチル-2-カルボキシエチル)-2,4,8,10-テトラオキサスピロ[5.5]ウンデカン、5-カルボキシ-5-エチル-2-(1,1-ジメチル-2-カルボキシエチル)-1,3-ジオキサン、1,4:5,8-ジメタノデカヒドロナフタレンジカルボン酸、アダマンタンジカルボン酸、ダイマー酸等の脂肪族ジカルボン酸及び/又はその誘導体に由来する単位;9,9-ビス(カルボキシメチル)フルオレン、9,9-ビス(1-カルボキシエチル)フルオレン、9,9-ビス(2-カルボキシエチル)フルオレン、9,9-ビス(1-カルボキシプロピル)フルオレン、9,9-ビス(2-カルボキシプロピル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルエチル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルプロピル)フルオレン、9,9-ビス(2-カルボキシブチル)フルオレン、9,9-ビス(2-カルボキシ-1-メチルブチル)フルオレン、9,9-ビス(5-カルボキシペンチル)フルオレン、9,9-ビス(4-カルボキシフェニル)フルオレン等のカルド構造を有するジカルボン酸及び/又はその誘導体に由来する単位が挙げられる。
 構成単位(C)は、良好な透明性が得られることから、脂肪族ジカルボン酸又はそのエステル形成性誘導体、若しくはカルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位であることが好ましい。脂肪族ジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、透明性及び耐熱性の物性バランスの観点から、1,4-シクロヘキサンジカルボン酸ジメチルに由来する単位がより好ましい。また、カルド構造を有するジカルボン酸又はそのエステル形成性誘導体に由来する単位としては、透明性及び耐熱性の物性バランスの観点から、9,9-ビス(メトキシカルボニルメチル)フルオレン、9,9-ビス(メトキシカルボニルエチル)フルオレン、9,9-ビス(メトキシカルボニルプロピル)フルオレンに由来する単位がより好ましい。
 なお、これらの光学異性体は、シス体、トランス体、これらの混合物のいずれであってもよく、特に限定されない。
 上記した単位は、1種を単独で含まれていてもよく、2種以上を組み合わせて含まれていてもよい。
 共重合ポリエステル樹脂が有する全単位に対する単位(C)の含有量は、5~35mol%であることが好ましく、より好ましくは6~30mol%である。
 本実施形態において、共重合ポリエステル樹脂は、単位(A)~(C)以外に、ヒドロキシル基及びカルボン酸又はそのエステル形成性誘導体単位(A1)等の他の単位を含んでもよい。単位(A1)としては、特に限定はされないが、例えば、グリコール酸、乳酸、ヒドロキシ酪酸、2-ヒドロキシイソ酪酸、ヒドロキシ安息香酸、6-ヒドロキシカプロン酸、4-ヒドロキシシクロヘキサンカルボン酸等のオキシ酸及び/又はその誘導体に由来する単位等が挙げられる。
 本実施形態において、共重合ポリエステル樹脂のガラス転移温度(Tg)は、本実施形態の効果を有する限り特に限定されないが、十分な耐熱性を確保する観点から、好ましくは100℃以上であり、より好ましくは105℃以上であり、さらに好ましくは110℃以上であり、よりさらに好ましくは115℃以上であり、一層好ましくは120℃以上であり、より一層好ましくは130℃以上である。上記Tgは、後述する実施例に記載の方法により測定することができる。また、上記Tgは、例えば、共重合ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
 本実施形態において、共重合ポリエステル樹脂の分子量は、所望する性能や取扱性などを考慮して適宜設定することができ、特に限定されないが、ポリスチレン換算重量平均分子量(Mw)が5000~200,000であることが好ましく、より好ましくは10,000~100,000である。Mwが5,000以上である場合、耐熱性を好ましく確保できる傾向にあり、Mwが200,000以下である場合と、溶融粘度がより良好となり、製造後の樹脂の抜き取りしやすく、更には流動性の観点から溶融状態で射出成形がしやすくなる傾向にある。
 さらに本実施形態における共重合ポリエステル樹脂を成形体とする際には、酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等の公知の添加剤を添加することが好適に実施される。本実施形態において、成形体に含まれ得る添加剤の含有量は特に限定されないが、例えば、成形体100質量%に対し、0.0001~5質量%とすることが好ましく、0.0001~3質量%とすることがより好ましい。換言すると、本実施形態において、成形体に含まれる共重合ポリエステル樹脂に含まれ得る添加剤の含有量も特に限定されないが、例えば、成形体100質量%に対し、0.0001~1質量%とすることが好ましく、0.0001~0.8質量%とすることがより好ましい。
(共重合ポリエステル樹脂の製造方法)
 本実施形態における共重合ポリエステル樹脂は、単位(A)~(C)に対応する各単量体を共重合することにより、得ることができる。以下、単位(A)に対応する単量体の製造方法について説明する。かかる単量体は、例えば、下記一般式(2)で表される。
Figure JPOXMLDOC01-appb-C000004
 上記一般式(2)において、Rは、水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。
 式(2)において、Rは、好ましくは水素原子又はCHである。R及びRは、好ましくは水素原子である。上記炭化水素基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ビニル基、2-ヒドロキシエチル基、4-ヒドロキシブチル基等が挙げられる。
 本実施形態における一般式(2)で表される化合物は、ジシクロペンタジエン又はシクロペンタジエンと官能基を有するオレフィンを原料として、例えば、下記式(I)に示すルートで合成することが可能である。
Figure JPOXMLDOC01-appb-C000005
(式(I)中、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
〔式(I)中の一般式(4)で表される炭素数13~21のモノオレフィンの製造〕
 前記一般式(4)で表される炭素数13~21のモノオレフィンは、例えば、官能基を有するオレフィンとジシクロペンタジエンのディールスアルダー反応を行うこと等で製造することが可能である。
 前記ディールスアルダー反応に用いる官能基を有するオレフィンの具体例としては、以下に限定されないが、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ビニル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-4-ヒドロキシブチル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ビニル、アクリル酸-2-ヒドロキシエチル、アクリル酸-4-ヒドロキシブチル、クロトン酸、クロトン酸メチル、クロトン酸エチル、3-メチルクロトン酸、3-メチルクロトン酸メチル、3-メチルクロトン酸エチル等が挙げられ、好ましいオレフィンとして、メタクリル酸、メタクリル酸メチル、メタクリル酸-2-ヒドロキシエチル、アクリル酸、アクリル酸メチル、アクリル酸-2-ヒドロキシエチルが挙げられ、より好ましいオレフィンとしてメタクリル酸メチル、アクリル酸メチルが挙げられる。
 さらに、前記ディールスアルダー反応に用いる官能基を有するオレフィンの例として、アクリロニトリル、メタクリロニトリル、アクロレイン、メタクロレインを挙げられる。これらのオレフィンを原料とする場合、例えば、下記式(II)、式(III)に示すルート等を経て一般式(4’)で表されるモノオレフィンを製造することができる。
Figure JPOXMLDOC01-appb-C000006
(式(II)中、R1は水素原子又はCHである)
Figure JPOXMLDOC01-appb-C000007
(式(III)中、R1は水素原子又はCHである)
 前記ディールスアルダー反応に用いるジシクロペンタジエンは高純度のものが好ましく、ブタジエン、イソプレン等の含有量を低減することが好ましい。ジシクロペンタジエンの純度は、90%以上であることが好ましく、95%以上であることがより好ましい。また、ジシクロペンタジエンは加熱条件下で解重合しシクロペンタジエン(所謂モノシクロペンタジエン)になる傾向にあるため、ジシクロペンタジエンの代わりにシクロペンタジエンを使用することも可能である。尚、一般式(4)で表される炭素数13~21のモノオレフィンは、実質的に下記一般式(7)で表される炭素数8~16のモノオレフィン(1段目ディールスアルダー反応生成物)を経由して生成していると考えられ、生成した一般式(7)のモノオレフィンが新たな親ジエン化合物(Dienophile)として反応系内に存在するシクロペンタジエン(Diene)とディールスアルダー反応(2段目ディールスアルダー反応)に預かり、一般式(4)で表される炭素数13~21のモノオレフィンが生成するものと考えられる。
 以上の観点から、例えば、上記式(I)に示す反応ルートにおいて、1段目ディールスアルダー反応の反応条件を適宜制御することにより、式(4)で表される炭素数13~21のモノオレフィンあるいは式(7)で表される炭素数8~16のモノオレフィンを選択的に得ることができる。
Figure JPOXMLDOC01-appb-C000008
(式(7)中、R1は水素原子、CH又はCを示し、R2及びR3は、それぞれ独立に水素原子又はCHを示し、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基を示す。)
 前記2段階のディールスアルダー反応を効率的に進行させる、すなわち、式(4)で表される炭素数13~21のモノオレフィンを選択的に得る観点からは、反応系内にシクロペンタジエンが存在することが重要であるため、反応温度として100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。一方で、式(7)で表される炭素数8~16のモノオレフィンを選択的に得るためには、反応温度として180℃未満が好ましい。なお、いずれの場合においても、高沸物質の副生を抑えるためには250℃以下の温度で反応を行うことが好ましい。
 上記のようにして得られた式(4)で表される炭素数13~21のモノオレフィンを、後述するヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=1である場合に対応する単量体(すなわち、式(2)で表される化合物)を得ることができる。また、上記のようにして得られた式(7)で表される炭素数8~16のモノオレフィンを、同様のヒドロホルミル化反応及び還元反応に供することで、式(1)においてn=0である場合に対応する単量体(すなわち、式(8)で表される化合物)を得ることができる。
 なお、反応溶媒として炭化水素類やアルコール類、エステル類等を使用することも可能であり、炭素数6以上の脂肪族炭化水素類、シクロヘキサン、トルエン、キシレン、エチルベンゼン、メシチレン、プロパノール、ブタノール等が好ましい。また、必要に応じて、AlCl等公知の触媒を添加してもよい。
Figure JPOXMLDOC01-appb-C000009
(上記式(8)において、Rは、水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
 前記ディールスアルダー反応の反応方式としては、槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、管型反応器に反応条件下で基質類を流通させる連続流通式等、多様な反応方式を採ることが可能である。
 前記ディールスアルダー反応で得られた反応生成物は、そのまま次のヒドロホルミル化反応の原料として用いることもできるが、蒸留、抽出、晶析などの方法によって精製した後、次工程に供してもよい。
〔式(I)中の(3)で表される炭素数14~22の二官能性化合物の製造〕
 前記式(I)中の一般式(3)で表される炭素数14~22の二官能性化合物は、例えば、一般式(4)で表される炭素数13~21モノオレフィンと一酸化炭素及び水素ガスをロジウム化合物、有機リン化合物の存在下でヒドロホルミル化反応させること等で製造することができる。
 前記ヒドロホルミル化反応で使用されるロジウム化合物は、有機リン化合物と錯体を形成し、一酸化炭素と水素の存在下でヒドロホルミル化活性を示す化合物であればよく、その前駆体の形態は特に限定されない。例えば、ロジウムアセチルアセトナートジカルボニル(以下、Rh(acac)(CO)と記す)、Rh、Rh(CO)12、Rh(CO)16、Rh(NO等の触媒前駆物質を有機リン化合物と共に反応混合物中に導入し、反応容器内で触媒活性を持つロジウム金属ヒドリドカルボニルリン錯体を形成させてもよいし、予めロジウム金属ヒドリドカルボニルリン錯体を調製してそれを反応器内に導入してもよい。好ましい具体例としてはRh(acac)(CO)を溶媒の存在下で有機リン化合物と反応させた後、過剰の有機リン化合物と共に反応器に導入し、触媒活性を有するロジウム-有機リン錯体とする方法が挙げられる。
 本発明者らの検討により、一般式(4)で表されるような比較的分子量の大きな内部オレフィンを有する2段階ディールスアルダー反応生成物が極めて少量のロジウム触媒でヒドロホルミル化されることがわかっている。本ヒドロホルミル化反応におけるロジウム化合物の使用量は、ヒドロホルミル化反応の基質である一般式(4)で表される炭素数13~21のモノオレフィン1モルに対して0.1~60マイクロモルが好ましく、0.1~30マイクロモルがより好ましく、0.2~20マイクロモルが更に好ましく、0.5~10マイクロモルが特に好ましい。ロジウム化合物の使用量が炭素数13~21のモノオレフィン1モルに対して60マイクロモルより少ない場合、実用上、ロジウム錯体の回収リサイクル設備を設けなくてもよい水準と評価できる。このように、本実施形態によれば、回収リサイクル設備に関わる経済的負担を減らすことができ、ロジウム触媒にかかるコストを低減することが可能である。
 本実施形態におけるヒドロホルミル化反応において、ロジウム化合物とヒドロホルミル化反応の触媒を形成する有機リン化合物としては、特に限定されないが、例えば、一般式P(-R)(-R)(-R)で表されるホスフィン又はP(-OR)(-OR)(-OR)で表されるホスファイトが挙げられる。R、R、Rの具体例としては、以下に限定されないが、炭素数1~4のアルキル基又はアルコキシ基で置換され得るアリール基や、炭素数1~4のアルキル基又はアルコキシ基で置換され得る脂環式アルキル基等が挙げられ、トリフェニルホスフィン、トリフェニルホスファイトが好適に用いられる。有機リン化合物の使用量はロジウム化合物中のロジウム原子に対して300倍モル~10000倍モルが好ましく、500倍モル~10000倍モルがより好ましく、更に好ましくは700倍モル~5000倍モル、特に好ましくは900倍モル~2000倍モルである。有機リン化合物の使用量がロジウム原子の300倍モル以上である場合、触媒活物質であるロジウム金属ヒドリドカルボニルリン錯体の安定性が十分に確保できる傾向にあり、結果として良好な反応性が確保される傾向にある。また、有機リン化合物の使用量がロジウム原子の10000倍モル以下である場合、有機リン化合物に掛かるコストを十分に低減する観点から好ましい。
 前記ヒドロホルミル化反応は溶媒を使用せずに行うことも可能であるが、反応に不活性な溶媒を使用することにより、より好適に実施することができる。ヒドロホルミル化反応に使用できる溶媒としては、一般式(4)で表される炭素数13~21のモノオレフィン、ジシクロペンタジエン又はシクロペンタジエン、前記ロジウム化合物、及び前記有機リン化合物を溶解するものであれば特に限定されない。具体例としては、以下に限定されないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素類;脂肪族エステル、脂環式エステル、芳香族エステル等のエステル類;脂肪族アルコール、脂環式アルコール等のアルコール類;芳香族ハロゲン化物等の溶媒が挙げられる。これらのうち炭化水素類が好適に用いられ、中でも脂環式炭化水素、芳香族炭化水素がより好適に用いられる。
 前記ヒドロホルミル化反応を行う場合の温度としては40℃~160℃が好ましく、80℃~140℃がより好ましい。反応温度が40℃以上の場合には十分な反応速度が得られる傾向にある、原料であるモノオレフィンの残留がより抑えられる傾向にある。また、反応温度が160℃以下にすることで原料モノオレフィンや反応生成物由来の副生物の生成を抑え、反応成績の低下を効果的に防止できる傾向にある。
 本実施形態におけるヒドロホルミル化反応を行う場合、一酸化炭素(以下「CO」と記載することもある)及び水素(以下「H2」と記載することもある)ガスによる加圧下で反応を行うことが好ましい。その際、CO及びHガスは各々独立に反応系内に導入することも、また、予め調製された混合ガスとして反応系内に導入することも可能である。反応系内に導入されるCO及びHガスのモル比(=CO/H)は0.2~5が好ましく、0.5~2がより好ましく、0.8~1.2が更に好ましい。CO及びHガスのモル比が上記範囲に調整する場合、ヒドロホルミル化反応の反応活性や目的とするアルデヒドの選択率が良好となる傾向にある。反応系内に導入したCO及びHガスは反応の進行に伴い減少していくため、予め調製されたCOとHの混合ガスを利用すると反応制御が簡便な場合がある。
 前記ヒドロホルミル化反応の反応圧力としては、1~12MPaが好ましく、1.2~9MPaがより好ましく、1.5~5MPaが更に好ましい。反応圧力が1MPa以上とすることで十分な反応速度が得られる傾向にあり、原料であるモノオレフィンの残留を十分に抑制できる傾向にある。また、反応圧力が12MPa以下にすることで、耐圧性能に優れる高価な設備を必要としなくなるため経済的に有利である。特に、回分式や半回分式で反応を行う場合、反応終了後にCO及びHガスを排出・落圧する必要があり、低圧になるほどCO及びHガスの損失が少なくなるため経済的に有利である。
 前記ヒドロホルミル化反応を行う場合の反応方式としては、回分式反応や半回分式反応が好適である。半回分式反応はロジウム化合物、有機リン化合物、前記溶媒を反応器に加え、CO/Hガスによる加圧や加温等を行い、既述の反応条件とした後に原料であるモノオレフィン又はその溶液を反応器に供給することにより行うことが可能である。
 前記ヒドロホルミル化反応で得られた反応生成物は、そのまま次の還元反応の原料として用いることも出来るが、例えば蒸留や抽出、晶析等により精製した後、次工程に供してもよい。
〔式(2)で表される炭素数14~22の化合物の製造〕
 前記式(I)中の一般式(2)で表される炭素数14~22の化合物は、一般式(3)で表される炭素数14~22の化合物を、水素化能を有する触媒及び水素の存在下で還元することにより製造することが出来る。
 前記還元反応では、水素化能を有する触媒として、銅、クロム、鉄、亜鉛、アルミニウム、ニッケル、コバルト、及びパラジウムからなる群より選ばれる少なくとも一つの元素を含む触媒を用いることが好ましい。より好ましい触媒としては、Cu-Cr触媒、Cu-Zn触媒、Cu-Zn-Al触媒等の他、Raney-Ni触媒、Raney-Co触媒等が挙げられ、さらに好ましい触媒はCu-Cr触媒、Raney-Co触媒である。
 前記水素化触媒の使用量は、基質である一般式(3)で表される炭素数14~22の化合物に対して1~100質量%、好ましくは2~50質量%、より好ましくは5~30質量%である。触媒使用量をこれらの範囲とすることで好適に水素化反応を実施することが出来る。触媒使用量が1質量%以上である場合、十分に反応が進行し、結果として目的物の収率を十分に確保できる傾向にある。また、触媒使用量が100質量%以下である場合、反応に供した触媒量と反応速度の向上効果とのバランスが良好となる傾向にある。
 前記還元反応の反応温度は60~200℃が好ましく、80℃~150℃がより好ましい。反応温度を200℃以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、反応温度を60℃以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。
 前記還元反応の反応圧力は、水素分圧として0.5~10MPaが好ましく、1~5MPaがより好ましい。水素分圧を10MPa以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、水素分圧を0.5MPa以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。尚、還元反応に不活性なガス(例えば窒素又はアルゴン)を共存させることも可能である。
 前記還元反応においては溶媒を使用することが可能である。還元反応に用いられる溶媒としては、脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類、アルコール類等が挙げられ、中でも脂環式炭化水素類、芳香族炭化水素類、アルコール類が好ましい。その具体例としてはシクロヘキサン、トルエン、キシレン、メタノール、エタノール、1-プロパノール等が挙げられる。
 前記還元反応の反応方式としては槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、成型触媒を充填した管型反応器に反応条件下で基質や基質溶液を流通させる連続流通式等、多様な反応方式を採ることが可能である。
 前記還元反応で得られた反応生成物は、例えば蒸留や抽出、晶析等により精製することができる。
 本実施形態における一般式(2)で表される化合物又は式(8)で表される化合物を単位(A)に対応する単量体とし、単位(B)~(C)に対応する各単量体と共重合させる方法としては、特に限定されず、従来公知のポリエステルの製造方法を適用することができる。例えば、エステル交換法、直接エステル化法等の溶融重合法、又は溶液重合法等を挙げることができる。
 本実施形態の共重合ポリエステル樹脂の製造時には、通常のポリエステル樹脂の製造時に用いるエステル交換触媒、エステル化触媒、重縮合触媒等を使用することができる。これらの触媒としては特に限定されないが、例えば、亜鉛、鉛、セリウム、カドミウム、マンガン、コバルト、リチウム、ナトリウム、カリウム、カルシウム、ニッケル、マグネシウム、バナジウム、アルミニウム、チタン、アンチモン、ゲルマニウム、スズ等の金属の化合物(例えば、脂肪酸塩、炭酸塩、リン酸塩、水酸化物、塩化物、酸化物、アルコキシド)や金属マグネシウム等が挙げられる。これらは単独で又は二種以上を組み合わせて使用することができる。触媒としては、上記した中でマンガン、コバルト、亜鉛、チタン、カルシウム、アンチモン、ゲルマニウム、スズの化合物が好ましく、マンガン、チタン、アンチモン、ゲルマニウム、スズの化合物がより好ましい。これらの触媒の使用量は、特に限定されないが、ポリエステル樹脂の原料に対して金属成分としての量が、好ましくは1~1000ppm、より好ましくは3~750ppm、更に好ましくは5~500ppmである。
 前記重合反応における反応温度は触媒の種類、その使用量などによるが、通常150℃から300℃の範囲で選ばれ、反応速度及び樹脂の着色を考慮すると180℃~280℃が好ましい。反応層内の圧力は、大気雰囲気下から最終的には1kPa以下に調節することが好ましく、最終的には0.5kPa以下とするのがより好ましい。
 前記重合反応を行う際には、所望によりリン化合物を添加してもよい。リン化合物としては、以下に限定されないが、例えば、リン酸、亜リン酸、リン酸エステル、亜リン酸エステル等を挙げることができる。リン酸エステルとしては、以下に限定されないが、例えば、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジブチル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリフェニル等を挙げることができる。亜リン酸エステルとしては、以下に限定されないが、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸ブチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジブチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリブチル、亜リン酸トリフェニル等を挙げることができる。これらは単独で又は二種以上を組み合わせて使用することができる。本実施形態の共重合ポリエステル樹脂中のリン原子の濃度は1~500ppmが好ましく、5~400ppmがより好ましく、10~200ppmがさらに好ましい。
 また、本実施形態における共重合ポリエステル樹脂の製造時には、エーテル化防止剤、熱安定剤、光安定剤等の各種安定剤、重合調整剤等を使用することができる。
<自動車部品>
 本実施形態の成形体は、その一態様として、自動車部品とすることができる。すなわち、本実施形態の自動車部品は、本実施形態における共重合ポリエステル樹脂を含むものであり、種々の自動車部品として適用でき、その具体的な用途も特に限定されない。本実施形態の自動車部品は、典型的には、自動車内外装部品として用いることができ、以下に限定されないが、例えば、フェンダー、バンパー、フェーシャ、ドアパネル、サイドガーニッシュ、ピラー、ラジエータグリル、サイドプロテクター、サイドモール、リアプロテクター、リアモール、各種スポイラー、ボンネット、ルーフパネル、トランクリッド、デタッチャブルトップ、ウインドリフレクター、ミラーハウジング、アウタードアハンドル等の自動車用外装部品、インストルメントパネル、センターコンソールパネル、メーター部品、各種スイッチ類、カーナビケーション部品、カーオーディオビジュアル部品、オートモバイルコンピュータ部品、ヘッドアップディスプレイ部品等に適用できる。また、自動車(二輪車)用ランプレンズ(ヘッドライトランプレンズ、リアランプレンズ、方向指示ランプレンズ、ルームランプレンズ等)、窓、筺体等や特殊な形状のもの等も挙げられる。
 本実施形態においては、本実施形態における共重合ポリエステル樹脂の他、本実施形態の趣旨を逸脱しない範囲内で、種々公知の添加剤を加えて自動車部品等の種々の成形体を構成することができる。上記添加剤としては、以下に限定されないが、例えば、その他の樹脂、着色剤、光安定剤、酸化防止剤、中和剤、紫外線吸収剤、離型剤、帯電防止剤、滑剤、潤滑剤、可塑剤、相溶化剤、難燃剤、充填材、染顔料、防曇剤、アンチブロッキング剤、流動性改良剤、分散剤、抗菌剤等が挙げられる。
 なお、自動車用ランプレンズの用途としては、以下に限定されないが、典型例としては、耐衝撃性改良剤、難燃剤、難燃助剤、加水分解抑制剤、帯電防止剤、発泡剤、染顔料が挙げられる。また、例えば、芳香族ポリカーボネート、脂肪族ポリカーボネート、芳香族ポリエステル、ポリアミド、ポリスチレン、ポリオレフィン、アクリル、アモルファスポリオレフィンなどの合成樹脂、ポリ乳酸、ポリブチレンスクシネートなどの生分解性樹脂などと混練したポリマーアロイとして自動車部品に適用することもできる。
 上述したように、本実施形態における共重合ポリエステル樹脂と、他の樹脂とを含む樹脂組成物を成形して、本実施形態の成形体とすることができる。本実施形態において好ましく用いられる他の樹脂としては、以下に限定されないが、例えば、ポリカーボネート樹脂等が挙げられる。ポリカーボネート樹脂としては、特に限定されず、種々公知のものを用いることができ、1種を単独で用いることもできるし、2種以上を任意の比率で組み合わせて用いることもできる。
 本実施形態における樹脂組成物において、共重合ポリエステル樹脂と、ポリカーボネート樹脂の合計質量に対するポリカーボネート樹脂の質量比は特に限定されないが、2~99.5質量%であることが好ましく、より好ましくは10~98質量%、さらに好ましくは30~95質量%、よりさらに好ましくは50~90質量%である。上記質量比が2~99.5質量%である場合、成形体の透明性、耐熱性、表面硬度、耐薬品性、機械的強度、及び成形加工性が優れたものとなる傾向にある。本実施形態において、共重合ポリエステル樹脂とポリカーボネート樹脂の含有量がほぼ同じであるか、ポリカーボネート樹脂の含有量の方が比較的多いことが特に好ましい。
 本実施形態における樹脂組成物は、共重合ポリエステル樹脂と、ポリカーボネート樹脂との配合割合により、種々の特徴を発現させることができる。すなわち、上述した質量比の範囲においてポリカーボネート樹脂の割合を増やすことで、耐熱性、機械的強度が特に優れたものとなる傾向にあり、共重合ポリエステル樹脂の割合を増やすことで表面硬度、耐薬品性、成形加工性が特に優れたものとなる傾向にある。
 本実施形態におけるポリカーボネート樹脂の構造としては特に限定されないが、芳香族ジヒドロキシ化合物及び任意に少量のポリヒドロキシ化合物等を、ホスゲン又は炭酸ジエステルと反応させることによって得ることのできる、分岐構造を有していてもよいポリカーボネート重合体又は共重合体であることが好ましい。ポリカーボネート樹脂の製造時に、末端停止剤を存在させてもよい。
 ポリカーボネート樹脂としては、下記一般式(9)及び/又は(10)で表される繰り返し単位を含むポリカーボネート樹脂、または、下記一般式(9)及び/又は(10)で表される繰り返し単位からなるポリカーボネート樹脂が挙げられる。また、一般式(9)及び/又は(10)で表される繰返し単位には、副反応によって分岐したものも含まれる。
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
(上記一般式(9)及び(10)において、R及びRは、それぞれ独立に、水素原子、炭素数1~10の非環状炭化水素基、炭素数6~18のアリール基、及び炭素数5~10の脂環式炭化水素基から選ばれ;R及びRは、それぞれ独立に、ハロゲン原子、炭素数1~10の脂肪族炭化水素基、炭素数6~18のアリール基、炭素数1~10のオキシアルキル基、及び炭素数6~18のオキシアリール基から選ばれ;m1及びm2はそれぞれ独立に、0~4であり;kは4又は5である)
 上記一般式(9)及び(10)において、R及びRは、水素原子、炭素数1~4の非環状炭化水素基、及び炭素数6~8のアリール基から選ばれることが好ましく、R及びRは、ハロゲン原子、炭素数1~4の非環状炭化水素基、及び炭素数6~8のアリール基から選ばれることが好ましく、m1及びm2は、0~2であることが好ましく、kは4又は5であることが好ましい。
 本実施形態におけるポリカーボネート樹脂の原料として使用しうる芳香族ヒドロキシ化合物としては、特に限定されないが、2,2-ビス(4-ヒドロキシフェニル)プロパン(別名ビスフェノールA)、2,2-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)プロパン(別名テトラブロモビスフェノールA)、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)オクタン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、1,1-ビス(3-ターシャリーブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3-ブロモ-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)プロパン等で例示されるビス(ヒドロキシアリール)アルカン類;1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン(ビスフェノールZ)、1,1-ビス(3,5-ジブロモ-4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(3,5-ジクロロ-4-ヒドロキシフェニル)シクロヘキサン等で例示されるビス(ヒドロキシアリール)シクロアルカン類;1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)ジフェニルメタン等で例示されるビス(ヒドロキシアリール)アリールアルカン類;4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル等で例示されるジヒドロキシジアリールエーテル類;4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等で例示されるジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等で例示されるジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等で例示されるジヒドロキシジアリールスルホン類;ハイドロキノン、レゾルシン、4,4’-ジヒドロキシジフェニル等が挙げられる。これらの中でも、ビスフェノールA、テトラブロモビスフェノールA、ビスフェノールZがより好ましく、成形体の耐熱性、機械的性能、経済性等の面から、ビスフェノールAが特に好ましく、すなわちポリカーボネート樹脂がビスフェノールAのポリ炭酸エステルであることがとりわけ好ましい。
 上述した他、ポリカーボネート樹脂としては、下記一般式(11)で表される構造単位を含むポリカーボネート樹脂(A)も好ましい。
Figure JPOXMLDOC01-appb-C000012
(一般式(11)中、Rはメチル基、R及びRはそれぞれ独立して水素原子またはメチル基を、Xはアルキレン基又はアルキリデン基を示す。)
 上記一般式(11)において、Rはメチル基であり、R及びRはそれぞれ独立に水素原子またはメチル基であるが、R及びRは特には水素原子であることが好ましい。
 また、Xは、アルキレン基又はアルキリデン基であるが、アルキレン基としては炭素数1~6のアルキレン基が好ましく、直鎖状であっても分岐鎖状であってもよい。その例としては、メチレン、1,2-エチレン、1,3-プロピレン、1,4-ブチレン、1,6-へキシレン等を挙げることができる。
 アルキリデン基としては、炭素数2~10のアルキリデン基が好ましく、例えばエチリデン、2,2-プロピリデン、2,2-ブチリデン、3,3-ヘキシリデン等を挙げることができる。
 Xは、アルキリデン基であるのが好ましく、2,2-プロピリデン基(即ち、イソプロピリデン基)が特に好ましい。
 ポリカーボネート樹脂(A)としての好ましい具体例としては、以下のイ)~ニ)のポリカーボネート樹脂が挙げられる。
 イ)2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン構造単位を有するもの、即ち、Rがメチル基、RとRが水素原子、Xがイソプロピリデン基である構造単位を有するもの、
 ロ)2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパン構造単位、即ちRがメチル基、RとRがメチル基、Xがイソプロピリデン基である構造単位を有するもの、
 上記のうち、特に上記イ)のポリカーボネート樹脂が好ましい。
 これらポリカーボネート樹脂は、2,2-ビス(3-メチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(3,5-ジメチル-4-ヒドロキシフェニル)プロパンを、ジヒドロキシ化合物として使用して製造することができる。
 なお、ポリカーボネート樹脂(A)は、上記一般式(11)で表される構造単位で表される構造単位以外のカーボネート構造単位を有することもでき、例えば、下記一般式(12)で表される構造単位、あるいは後記するような他のジヒドロキシ化合物に由来する構造単位を有していてもよい。この際の一般式(11)で表される構造単位以外の構造単位の共重合量は、通常60モル%以下であり、50モル%以下が好ましく、より好ましくは40モル%以下、さらには30モル%以下であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
(上記一般式(12)中、Xは前記一般式(11)におけるXと同義である。)
 上記一般式(12)で表されるポリカーボネート構造単位の好ましい具体例としては、2,2-ビス(4-ヒドロキシフェニル)プロパン、即ち、下記の化学式(13)の構造単位で示されるビスフェノールA由来のカーボネート構造単位である。
Figure JPOXMLDOC01-appb-C000014
 他のジヒドロキシ化合物としては、例えば以下のような芳香族ジヒドロキシ化合物を挙げることができる。
 ビス(4-ヒドロキシフェニル)メタン、2,2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、2,2-ビス(4-ヒドロキシフェニル)-4-メチルペンタン、1,1-ビス(4-ヒドロキシフェニル)デカン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、ビス(4-ヒドロキシフェニル)フェニルメタン、1,1-ビス(4-ヒドロキシフェニル)シクロペンタン、1,1-ビス(4-ヒドロキシフェニル)シクロオクタン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、4,4’-ジヒドロキシベンゾフェノン、4,4’-ジヒドロキシフェニルエーテル等が挙げられる。
 ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、16,000~28,000であることが好ましい。粘度平均分子量がこの範囲であると、成形性が良く、機械的強度が大きく、耐擦傷性のよい成形体が得られやすく、16,000を下回ると、耐面衝撃性が著しく低下しやすく、28,000を超えると溶融粘度が増大し射出成形が困難となりやすい。ポリカーボネート樹脂(A)の分子量の下限は、より好ましくは17,000、さらに好ましくは18,000、特に好ましくは20,000であり、その上限はより好ましくは27,000である。
 ここで、ポリカーボネート樹脂(A)の粘度平均分子量(Mv)は、上記したポリカーボネート樹脂を混合して使用する場合は、混合物としてのポリカーボネート樹脂の粘度平均分子量(Mv)をいい、混合物を構成する個々のポリカーボネート樹脂自体は、上記した粘度平均分子量(Mv)を外れているものであることを排除するものではない。
 なお、本明細書において、ポリカーボネート樹脂の粘度平均分子量(Mv)は、溶媒としてジクロロメタンを使用し、ウベローデ粘度計を使用し、温度20℃での極限粘度([η])(単位dl/g)を求め、Schnellの粘度式:η=1.23×10-40.83の式から算出される値を意味する。
[樹脂組成物の製造方法]
 樹脂組成物の製造方法としては特に限定されず、種々公知の製造方法を広く採用でき、ポリカーボネート樹脂(A)及び本実施形態における共重合ポリエステル樹脂、並びに、必要に応じて配合されるその他の成分を、例えば、タンブラーやヘンシェルミキサーなどの各種混合機を用い予め混合した後、バンバリーミキサー、ロール、ブラベンダー、単軸混練押出機、二軸混練押出機、ニーダーなどの混合機で溶融混練する方法が挙げられる。
 なお、溶融混練の温度も特に限定されないが、通常240~320℃の範囲である。
 本実施形態において、成形体の鉛筆硬度は、本実施形態の効果を有する限り特に限定されないが、十分な表面硬度を確保する観点から、好ましくはHB以上であり、より好ましくはF以上である。上記鉛筆硬度は、後述する実施例に記載の方法により測定することができる。また、上記鉛筆硬度は、例えば、共重合ポリエステル樹脂の原料モノマーの共重合比率を適宜調整すること等により上記範囲に調整することができる。
<成形体の製造方法>
 本実施形態に係る成形体の製造方法としては、本実施形態における共重合ポリエステル樹脂を用いて製造する限り、特に限定されない。
 例えば、上記した共重合ポリエステル樹脂をペレタイズしたペレットを各種の成形法で成形して成形体とすることができる。また、ペレットを経由せずに、押出機で溶融混練された樹脂を直接、成形して成形体とすることもできる。
 成形体の形状としては、特に限定されず、成形体の用途、目的に応じて適宜選択することができ、例えば、板状、プレート状、ロッド状、シート状、フィルム状、円筒状、環状、円形状、楕円形状、多角形形状、異形品、中空品、枠状、箱状、パネル状のもの等が挙げられる。具体的なものとしては、自動車部品とする場合、例えば、自動車内装用パネル、自動車(二輪車)ヘッドランプレンズ、窓、筺体等や特殊な形状のもの等、各種形状のものが挙げられる。また、例えば表面に凹凸を有していたり、三次元曲面を有する立体的な形状のものであってもよい。また、シートやフィルム、板状等として使用する場合には、他の樹脂シートと積層した多層構造の積層体であってもよい。
 成形体を成形する方法としては、特に限定されず、従来公知の成形法を採用でき、例えば、射出成形法、射出圧縮成形法、押出成形法、異形押出法、トランスファー成形法、中空成形法、ガスアシスト中空成形法、ブロー成形法、押出ブロー成形、IMC(インモールドコーティング成形) 成形法、回転成形法、多層成形法、2色成形法、インサート成形法、サンドイッチ成形法、発泡成形法、加圧成形法等が挙げられる。
 本実施形態における成形方法としては、所望とする成形体の形状や寸法にもよるが、射出成形、射出圧縮成形が好適に用いられる。ランナーも通常のコールドランナー方式だけでなく、ホットランナー方式を用いることもできる。また、インサート成形、インモールドコーティング成形、二色成形、サンドイッチ成形等もできる。さらに、自動車部品とする場合に深みと清澄感のある漆黒性を得る観点からは、断熱金型成形、急速加熱冷却金型成形を用いることもできる。
 以上のとおり、本実施形態に係る成形体の製造方法は、本実施形態における共重合ポリエステル樹脂を射出成形又は射出圧縮成形する工程を含むことが好ましい。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。なお、共重合ポリエステル樹脂の評価方法は次のとおりである。
(1)樹脂組成
 共重合ポリエステル樹脂中のジオール構成単位及びジカルボン酸構成単位の割合は、H-NMR測定にて算出した。測定装置は、核磁気共鳴装置(日本電子(株)製、商品名:JNM-AL400)を用い、400MHzで測定した。溶媒には重クロロホルムを用いた。
(2)重量平均分子量(Mw)
 共重合ポリエステル樹脂濃度が0.2wt%になるようにテトラヒドロフランに溶解させ、ゲルパーミエイションクロマトグラフィー(GPC)で測定し、標準ポリスチレンで検量した。GPCは東ソー株式会社製カラムTSKgel SuperHM-Mを用い、カラム温度40℃で測定した。溶離液はテトラヒドロフランを0.6ml/minの流速で流し、RI検出器で測定した。
(3)ガラス転移温度(Tg)
 共重合ポリエステル樹脂のガラス転移温度は、次のように測定した。示差走査熱量計((株)島津製作所製、商品名:DSC/TA-60WS)を使用し、共重合ポリエステル樹脂約10mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/分)気流中、昇温速度20℃/分で280℃まで加熱、溶融したものを急冷して測定用試料とした。該試料を同条件で測定し、DSC曲線の転移前後における基線の差の1/2だけ変化した温度をガラス転移温度とした。
(4)全光線透過率
 住友重機械社製「SE130DU-HP型」射出成形機を使用して、シリンダー温度240℃~290℃、金型温度60℃の条件で、共重合ポリエステル樹脂より厚さ3mmの射出成形片を作製し、全光線透過率を測定した。測定には、日本電色工業(株)製ヘーズメーター(型式:NDH-4000)を用いた。
(5)耐候性(ΔYI)
 岩崎電気(株)製スーパーUVテスター(型式:SUV-W11、メタルハライドランプ光源)を用い、55℃、50%RHの条件下、上記(4)で得られた厚み3mmの射出成形片に48時間UV照射(68mW/cm)し、耐候性試験を行った。UV照射前及び照射後の射出成形片について、黄色度を日本電色工業(株)製ヘーズメーター(型式:NDH-4000)を用い、JIS K7136に準じて測定を行い、黄色度の増加割合(ΔYI)を評価した。
 ○:ΔYIが10よりも小さい、×:ΔYIが10以上
(6)鉛筆硬度
 上記(4)と同様にして厚さ3mmの射出成形片を作製し、JIS K 5600-5-4に準拠し、射出成形片に対して角度45度、荷重750gで射出成形片の表面に次第に硬度を増して鉛筆を押し付け、傷跡を生じなかった最も硬い鉛筆の硬度を鉛筆硬度として評価した。
(7)曲げ強度、曲げ弾性率
 住友重機械社製「SE130DU-HP型」射出成形機を使用して、シリンダー温度240℃~290℃、金型温度60℃の条件で厚さ4mm、長さ80mm、幅10mmの射出成形片を作製し、JIS K7171に準じて、東洋精機株式会社製ストログラフを使用し、測定温度を23℃、測定湿度を50%RHとして、曲げ強度(MPa)及び曲げ弾性率(GPa)を測定した。
<モノマー合成例>
 500mLステンレス製反応器にアクリル酸メチル173g(2.01mol)、ジシクロペンタジエン167g(1.26mol)を仕込み195℃で2時間反応を行った。上記反応により、下記式(4a)で表されるモノオレフィン96gを含有する反応液を取得し、これを蒸留精製した後、一部を以下の反応に供した。
 300mLステンレス製反応器を使用し、蒸留精製した式(4a)で表されるモノオレフィンのヒドロホルミル化反応をCO/H混合ガス(CO/Hモル比=1)を用いて行った。反応器に式(4a)で表されるモノオレフィン70g、トルエン140g、亜リン酸トリフェニル0.50g、別途調製したRh(acac)(CO)のトルエン溶液550μL(濃度0.003mol/L)を加えた。窒素およびCO/H混合ガスによる置換を各々3回行った後、CO/H混合ガスで系内を加圧し、100℃、2MPaにて5時間反応を行った。反応終了後、反応液のガスクロマトグラフィー分析を行い、式(3a)で表される化合物76g、式(4a)で表されるモノオレフィン1.4gを含む反応液(転化率98%、選択率97%)であることを確認すると共に、これを蒸留精製した後、一部を以下の反応に供した。
 300mLステンレス製反応器に蒸留精製した式(3a)で表される化合物54g、スポンジコバルト触媒(日興リカ株式会社製:R-400)7mL、トルエン109gを添加し、水素ガスで系内を加圧し、3MPa、100℃で9時間反応を行った。反応後、得られたスラリーから、孔径0.2μmのメンブレンフィルターで触媒をろ過した。その後、エバポレーターを使用して溶媒を留去し、ガスクロマトグラフィー及びGC-MSで分析し、分子量250の式(2a)で表される主生成物51gを含有することが確認された(主生成物収率93%)。これをさらに蒸留精製し、主生成物を取得した。
Figure JPOXMLDOC01-appb-C000015
<生成物の同定>
 モノマー合成例で取得した成分のNMR分析を行った。NMRスペクトルを図1~3に示す。以下に示すGC-MS分析、及び図1~3のNMR分析の結果から、モノマー合成例で得られた主生成物は、前記式(2a)で表される化合物であることが確認された。
<分析方法>
1)ガスクロマトグラフィー測定条件
 分析装置  :株式会社島津製作所製 キャピラリガスクロマトグラフGC-2010 Plus
 分析カラム :ジーエルサイエンス株式会社製、InertCap1(30m、0.32mmI.D.、膜厚0.25μm
 オーブン温度:60℃(0.5分間)-15℃/分-280℃(4分間)
 検出器   :FID、温度280℃
2)GC-MS測定条件
 分析装置  :株式会社島津製作所製、GCMS-QP2010 Plus
 イオン化電圧:70eV
 分析カラム :Agilent Technologies製、DB-1(30m、0.32mmI.D.、膜厚1.00μm)
 オーブン温度:60℃(0.5分間)-15℃/分-280℃(4分間)
3)NMR測定条件
 装置    :日本電子株式会社製,JNM-ECA500(500MHz)
 測定モード :1H-NMR、13C-NMR、COSY-NMR
 溶媒    :CDCl(重クロロホルム)
 内部標準物質:テトラメチルシラン
 以下、各種の化合物について次のとおり略記することとした。
  D-NHEs:デカヒドロ-1、4:5、8-ジメタノナフタレン-2-メトキシカルボニル-6(7)-メタノール
  DMCD:1,4-シクロヘキサンジカルボン酸ジメチル(シス/トランス=7/3)
  CHDM:1,4-シクロヘキサンジメタノール(シス/トランス=3/7)
  EG:エチレングリコール
  TBT:テトラブチルチタネート
(実施例1)
 分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えたポリエステル製造装置に、モノマー合成例より得られた式(2a)で表される化合物85.6重量部、DMCD3.8重量部、CHDM2.9重量部、TBT0.04重量部(理論樹脂量に対して、チタン原子量が70ppm)を仕込み、窒素雰囲気下で230℃まで昇温後、1時間保持し、所定量のメタノールを留出させた。その後、リン酸を0.003重量部(チタン原子量に対し、リン原子量が1/5)加え、昇温と減圧を徐々に行い、最終的に270℃、0.1kPa以下で重縮合を行った。所定のトルクになった時点で反応を終了し、生成した反応物を水中に押し出して、共重合ポリエステル樹脂のペレットを得た。得られた共重合ポリエステル樹脂について、その樹脂組成及びガラス転移温度を評価し、さらに、得られた成形体について、その全光線透過率、鉛筆硬度、耐候性、曲げ強度及び曲げ弾性率を評価した。各種評価結果を表1に示す。
(実施例2~6、及び比較例1)
 表1に示すように原料組成比を変更した以外は実施例1と同様にして評価した。
(比較例2)
 ビスフェノールA型ポリカーボネート樹脂(三菱エンジニアリングプラスチックス(株)製;ユーピロンS2000)を用い、実施例1と同様にして評価した。
Figure JPOXMLDOC01-appb-T000016
 本出願は、2018年1月23日に日本国特許庁へ出願された日本特許出願(特願2018-008902)に基づくものであり、その内容はここに参照として取り込まれる。

Claims (6)

  1.  下記一般式(1)で表される単位(A)、ジオール単位(B)、及びジカルボン酸又はそのエステル形成性誘導体単位(C)を有する共重合ポリエステル樹脂を含み、
     前記共重合ポリエステル樹脂が有する全単位中、前記単位(A)の含有量が20~90mol%である、成形体。
    Figure JPOXMLDOC01-appb-C000001
    (前記一般式(1)において、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、nは0又は1である。)
  2.  前記一般式(1)におけるR、R、及びRが水素原子である、請求項1に記載の成形体。
  3.  前記単位(B)が脂肪族ジオール又はカルド構造を有するジオールに由来する単位である、請求項1又は2に記載の成形体。
  4.  前記単位(C)が脂肪族ジカルボン酸若しくはそのエステル形成性誘導体、又はカルド構造を有するジカルボン酸若しくはそのエステル形成性誘導体に由来する単位である、請求項1~3のいずれか1項に記載の成形体。
  5.  前記共重合ポリエステル樹脂が下記(1)~(2)を満たす、請求項1~4のいずれか1項に記載の成形体。
    (1)前記共重合ポリエステル樹脂のガラス転移温度が100℃以上である。
    (2)前記成形体の鉛筆硬度がHB以上である。
  6.  請求項1~5のいずれか1項に記載の成形体の製造方法であって、
     前記共重合ポリエステル樹脂を射出成形又は射出圧縮成形する工程を含む、成形体の製造方法。
PCT/JP2019/001807 2018-01-23 2019-01-22 成形体 WO2019146575A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2019567077A JP7318534B2 (ja) 2018-01-23 2019-01-22 成形体
EP19744149.6A EP3744790B1 (en) 2018-01-23 2019-01-22 Molded article
CN201980009175.XA CN111630107B (zh) 2018-01-23 2019-01-22 成型体
US16/964,015 US11236198B2 (en) 2018-01-23 2019-01-22 Molded article
KR1020207022633A KR102655030B1 (ko) 2018-01-23 2019-01-22 성형체

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-008902 2018-01-23
JP2018008902 2018-01-23

Publications (1)

Publication Number Publication Date
WO2019146575A1 true WO2019146575A1 (ja) 2019-08-01

Family

ID=67395982

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001807 WO2019146575A1 (ja) 2018-01-23 2019-01-22 成形体

Country Status (7)

Country Link
US (1) US11236198B2 (ja)
EP (1) EP3744790B1 (ja)
JP (1) JP7318534B2 (ja)
KR (1) KR102655030B1 (ja)
CN (1) CN111630107B (ja)
TW (1) TW201936697A (ja)
WO (1) WO2019146575A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200613A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111936577A (zh) * 2018-04-04 2020-11-13 三菱瓦斯化学株式会社 聚酯树脂组合物

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097349A (ja) * 1983-11-01 1985-05-31 Dainippon Ink & Chem Inc 感光性樹脂組成物
JPH10306147A (ja) * 1997-05-06 1998-11-17 Teijin Ltd ポリエチレンナフタレート共重合体および写真フイルム用ベースフイルム
JP2004530165A (ja) * 2001-06-11 2004-09-30 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッター用の多層複屈折性フィルム
JP2007161917A (ja) * 2005-12-15 2007-06-28 Teijin Ltd ポリエチレンナフタレート樹脂
JP2009500195A (ja) 2005-07-07 2009-01-08 ゼネラル・エレクトリック・カンパニイ Dmbpcポリカーボネートホモポリマー及びコポリマー製の窓及び別の物品
JP2010284943A (ja) * 2009-06-15 2010-12-24 Teijin Dupont Films Japan Ltd 光学用ポリエステルフィルム
JP2012025790A (ja) 2010-07-20 2012-02-09 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物およびそれからなる成形品
WO2015118966A1 (ja) * 2014-02-07 2015-08-13 東レ株式会社 ポリエステル樹脂組成物およびその製造方法
WO2016190317A1 (ja) * 2015-05-27 2016-12-01 三菱瓦斯化学株式会社 ポリエステル樹脂及びその製造方法
JP2018008902A (ja) 2016-07-14 2018-01-18 四国化成工業株式会社 (メタ)アクリレート化合物、その合成方法および該(メタ)アクリレート化合物の利用
WO2018062325A1 (ja) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 共重合ポリエステル樹脂

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW458999B (en) 1997-05-06 2001-10-11 Teijin Ltd Biaxially oriented film made of polyethylene napthalate copolymer
JPWO2012035874A1 (ja) * 2010-09-14 2014-02-03 日立化成株式会社 ノルボルナン骨格を有するポリエステル及びその製造方法
KR102588043B1 (ko) * 2015-09-18 2023-10-11 미츠비시 가스 가가쿠 가부시키가이샤 폴리에스터 수지
KR102439383B1 (ko) * 2016-09-28 2022-09-01 미츠비시 가스 가가쿠 가부시키가이샤 광학 렌즈
US10981366B2 (en) * 2016-09-28 2021-04-20 Mitsubishi Gas Chemical Company, Inc. Optical polyester film and transparent conductive film
KR102439915B1 (ko) * 2016-09-28 2022-09-02 미츠비시 가스 가가쿠 가부시키가이샤 광학 필름, 위상차 필름 및 편광판

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6097349A (ja) * 1983-11-01 1985-05-31 Dainippon Ink & Chem Inc 感光性樹脂組成物
JPH10306147A (ja) * 1997-05-06 1998-11-17 Teijin Ltd ポリエチレンナフタレート共重合体および写真フイルム用ベースフイルム
JP2004530165A (ja) * 2001-06-11 2004-09-30 スリーエム イノベイティブ プロパティズ カンパニー 偏光ビームスプリッター用の多層複屈折性フィルム
JP2009500195A (ja) 2005-07-07 2009-01-08 ゼネラル・エレクトリック・カンパニイ Dmbpcポリカーボネートホモポリマー及びコポリマー製の窓及び別の物品
JP2007161917A (ja) * 2005-12-15 2007-06-28 Teijin Ltd ポリエチレンナフタレート樹脂
JP2010284943A (ja) * 2009-06-15 2010-12-24 Teijin Dupont Films Japan Ltd 光学用ポリエステルフィルム
JP2012025790A (ja) 2010-07-20 2012-02-09 Mitsubishi Engineering Plastics Corp 芳香族ポリカーボネート樹脂組成物およびそれからなる成形品
WO2015118966A1 (ja) * 2014-02-07 2015-08-13 東レ株式会社 ポリエステル樹脂組成物およびその製造方法
WO2016190317A1 (ja) * 2015-05-27 2016-12-01 三菱瓦斯化学株式会社 ポリエステル樹脂及びその製造方法
JP2018008902A (ja) 2016-07-14 2018-01-18 四国化成工業株式会社 (メタ)アクリレート化合物、その合成方法および該(メタ)アクリレート化合物の利用
WO2018062325A1 (ja) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 共重合ポリエステル樹脂

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3744790A4

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021200613A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム
CN115551942A (zh) * 2020-03-31 2022-12-30 三菱瓦斯化学株式会社 树脂组合物以及含有该树脂组合物的光学透镜和光学膜
CN115551942B (zh) * 2020-03-31 2023-11-10 三菱瓦斯化学株式会社 树脂组合物以及含有该树脂组合物的光学透镜和光学膜

Also Published As

Publication number Publication date
CN111630107B (zh) 2022-11-15
JPWO2019146575A1 (ja) 2021-01-07
EP3744790A1 (en) 2020-12-02
CN111630107A (zh) 2020-09-04
EP3744790B1 (en) 2021-07-21
US11236198B2 (en) 2022-02-01
KR102655030B1 (ko) 2024-04-04
US20200347181A1 (en) 2020-11-05
EP3744790A4 (en) 2020-12-02
JP7318534B2 (ja) 2023-08-01
TW201936697A (zh) 2019-09-16
KR20200110363A (ko) 2020-09-23

Similar Documents

Publication Publication Date Title
US7067186B2 (en) Thermoplastic resin composition
KR102048198B1 (ko) 폴리카르보네이트 수지 조성물 및 그 성형품
CN109791245B (zh) 光学膜、相位差膜、偏光板
WO2019146575A1 (ja) 成形体
JP6708210B2 (ja) ポリエステル樹脂及びその製造方法
KR102439383B1 (ko) 광학 렌즈
JP2011219667A (ja) 加飾用フィルム
TWI664234B (zh) 熱塑性樹脂組成物及使用此組成物之成形體
US10894859B2 (en) Copolymerized polyester resin
EP3957671B1 (en) Thermoplastic resin, molded object, and monomer for thermoplastic resin
JP2003246925A (ja) 熱可塑性樹脂組成物
CN110869415B (zh) 聚碳酸酯共聚物
JP2007176970A (ja) 芳香族ポリカーボネート樹脂組成物および樹脂成形品
JP2003113294A (ja) 自動車外・内装品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19744149

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019567077

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207022633

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019744149

Country of ref document: EP

Effective date: 20200824