WO2016190317A1 - ポリエステル樹脂及びその製造方法 - Google Patents

ポリエステル樹脂及びその製造方法 Download PDF

Info

Publication number
WO2016190317A1
WO2016190317A1 PCT/JP2016/065337 JP2016065337W WO2016190317A1 WO 2016190317 A1 WO2016190317 A1 WO 2016190317A1 JP 2016065337 W JP2016065337 W JP 2016065337W WO 2016190317 A1 WO2016190317 A1 WO 2016190317A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction
polyester resin
acid
general formula
hydrogen atom
Prior art date
Application number
PCT/JP2016/065337
Other languages
English (en)
French (fr)
Inventor
栄一 本多
康明 吉村
雄一郎 佐竹
隆司 元井
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to EP16800022.2A priority Critical patent/EP3305827B1/en
Priority to US15/575,150 priority patent/US10287391B2/en
Priority to CN201680030834.4A priority patent/CN107614569B/zh
Priority to KR1020177036059A priority patent/KR102569041B1/ko
Priority to JP2017520723A priority patent/JP6708210B2/ja
Publication of WO2016190317A1 publication Critical patent/WO2016190317A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/74Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring
    • C07C69/757Esters of carboxylic acids having an esterified carboxyl group bound to a carbon atom of a ring other than a six-membered aromatic ring having any of the groups OH, O—metal, —CHO, keto, ether, acyloxy, groups, groups, or in the acid moiety
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/56Ring systems containing bridged rings
    • C07C2603/86Ring systems containing bridged rings containing four rings

Definitions

  • the present invention relates to a polyester resin and a method for producing the same.
  • PET Polyethylene terephthalate
  • PET has excellent transparency, mechanical strength, melt stability, solvent resistance, fragrance retention, and recyclability.
  • Film, sheet, hollow container It is a polyester resin that is widely used for various applications.
  • PET does not necessarily have a sufficiently high glass transition temperature, and when a thick molded body is obtained, transparency may be impaired due to its crystallinity. It has been broken.
  • a polyester resin using 1,4-cyclohexanedimethanol, tricyclodecane dimethanol or pentacyclopentadecane dimethanol as a polyester copolymerization component has been proposed. Since tricyclodecane dimethanol and pentacyclopentadecane dimethanol are bulky and have a rigid skeleton, the polyester resin using them has a high glass transition temperature, crystallinity is suppressed, and the transparency of the molded product is reduced. Can be improved (for example, see Patent Documents 1 and 2).
  • Patent Document 3 discloses an aliphatic polyester composed of 1,4-cyclohexanedimethanol and 1,4-cyclohexanedicarboxylic acid.
  • polyesters having a norbornane skeleton have been proposed (see, for example, Patent Documents 4 and 5).
  • the polyester resins described in Patent Documents 1 and 2 are inferior not only in UV resistance but also in light transmittance because the dicarboxylic acid component is aromatic. Moreover, although the aliphatic polyester of patent document 3 has favorable transparency, its heat resistance is not so high.
  • the polyester resin having a norbornane skeleton disclosed in Patent Documents 4 and 5 exhibits better heat resistance than a polyester resin using 1,4-cyclohexanedimethanol and 1,4-cyclohexanedicarboxylic acid as monomers. However, further improvement is required.
  • This invention is made
  • the present inventors have found that the above problems can be solved by having a structural unit having a specific alicyclic structure in the main skeleton.
  • the present invention is as follows.
  • ⁇ 1> The polyester resin containing the structural unit represented by General formula (1).
  • R 1 is a hydrogen atom, CH 3 or C 2 H 5
  • R 2 and R 3 are each independently a hydrogen atom or CH 3
  • ⁇ 2> The manufacturing method of a polyester resin which has the process of polymerizing the compound represented by General formula (2).
  • R 1 is a hydrogen atom, CH 3 or C 2 H 5
  • R 2 and R 3 are each independently a hydrogen atom or CH 3
  • X is a hydrogen atom or carbon number.
  • It is a hydrocarbon group that may contain 4 or less hydroxyl groups.
  • the polyester resin of the present invention is excellent in heat resistance and transparency.
  • the result of 1H-NMR measurement of the main reaction product obtained in the monomer synthesis example is shown.
  • the result of 13C-NMR measurement of the main reaction product obtained in the monomer synthesis example is shown.
  • the result of the COSY-NMR measurement of the main reaction product obtained in the monomer synthesis example is shown.
  • the present embodiment a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail.
  • the following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents.
  • the present invention can be implemented with appropriate modifications within the scope of the gist thereof.
  • polyester resin of this embodiment contains the structural unit (henceforth "structural unit (1)") represented by following General formula (1).
  • R 1 is a hydrogen atom, CH 3 or C 2 H 5
  • R 2 and R 3 are each independently a hydrogen atom or CH 3 .
  • the polyester resin of this embodiment is excellent in heat resistance and transparency. Since it is excellent in heat resistance (high glass transition temperature), transparency, etc., the polyester resin of this embodiment is suitable as an optical material, an electronic component, or a medical material.
  • R 1 is preferably a hydrogen atom or CH 3
  • R 2 and R 3 are preferably a hydrogen atom.
  • the polyester resin of this embodiment may contain other structural units in addition to the structural unit (1) as long as the performance is not impaired.
  • the other structural units are not particularly limited, but terephthalic acid, isophthalic acid, phthalic acid, 1,3-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6
  • a structural unit derived from an aromatic dicarboxylic acid such as naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, 2-methylterephthalic acid, biphenyldicarboxylic acid, tetralindicarboxylic acid and / or its derivatives; succinic acid, glutaric acid, adipine Acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, decanedicarboxylic acid, dodecanedicarboxylic acid, cyclohexanedicarboxylic acid, decalindicarboxylic acid, norbornanedicarboxylic acid, tricyclodecanedicarbox
  • the molecular weight of the polyester resin of the present embodiment can be appropriately set in consideration of desired performance and handling properties, and is not particularly limited, but the polystyrene equivalent weight average molecular weight (Mw) is 5000 to 300,000. And more preferably 10,000 to 250,000.
  • Mw polystyrene equivalent weight average molecular weight
  • Mw polystyrene equivalent weight average molecular weight
  • Mw is 5,000 or more, better heat resistance tends to be secured, and when Mw is 300,000 or less, excessive increase in melt viscosity is prevented, and the resin after production is easily extracted. Furthermore, since good fluidity can be secured, injection molding in a molten state tends to be facilitated.
  • the intrinsic viscosity of the polyester resin of this embodiment is not particularly limited. From the viewpoint of moldability of the polyester resin of the embodiment, it is preferably 0.1 to 2.0 dL / g, more preferably 0.2 to 1.5 dL / g.
  • the intrinsic viscosity is 0.1 dL / g or more, there is a tendency that sufficient mechanical strength can be ensured when melt-molding the polyester resin of the present embodiment as a raw material to obtain a molded product such as a film.
  • it is 0.5 dL / g or less, good fluidity and moldability at the time of melting can be secured, and a molded product having excellent dimensional stability tends to be obtained.
  • an antioxidant when using the polyester resin of this embodiment, an antioxidant, a release agent, an ultraviolet absorber, a fluidity modifier, a crystal nucleating agent, a reinforcing agent, a dye, an antistatic agent, an antibacterial agent, etc. are added. Is preferably carried out.
  • R 1 is a hydrogen atom
  • R 2 and R 3 are each independently a hydrogen atom or CH 3
  • X is a hydrogen atom or carbon It is a hydrocarbon group which may contain a hydroxyl group of several 4 or less.
  • R 1 is preferably a hydrogen atom or CH 3
  • R 2 and R 3 are preferably a hydrogen atom.
  • the hydrocarbon group include, but are not limited to, a methyl group, an ethyl group, a propyl group, a butyl group, a vinyl group, a 2-hydroxyethyl group, and a 4-hydroxybutyl group.
  • the compound represented by the general formula (2) in this embodiment can be synthesized by using, for example, the route represented by the following formula (I) using dicyclopentadiene or cyclopentadiene and an olefin having a functional group as a raw material. .
  • R 1 is a hydrogen atom, CH 3 or C 2 H 5 , R 2 and R 3 are each independently a hydrogen atom or CH 3 , and X is a hydrogen atom or a carbon number of 4 or less. Which may contain a hydroxyl group of
  • the monoolefin having 13 to 21 carbon atoms represented by the general formula (4) can be produced, for example, by performing a Diels-Alder reaction between an olefin having a functional group and dicyclopentadiene.
  • olefin having a functional group used in the Diels-Alder reaction include, but are not limited to, methacrylic acid, methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, vinyl methacrylate, methacrylic acid-2 -Hydroxyethyl, 4-hydroxybutyl methacrylate, acrylic acid, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, vinyl acrylate, 2-hydroxyethyl acrylate, 4-hydroxybutyl acrylate , Crotonic acid, methyl crotonate, ethyl crotonate, 3-methyl crotonic acid, methyl 3-methyl crotonate, ethyl 3-methyl crotonate and the like.
  • Preferred olefins include methacrylic acid, methyl methacrylate, methacrylate.
  • Acid-2-hydroxyethyl, acrylic acid, methyl acrylate, include 2-hydroxyethyl acrylate, methyl methacrylate, methyl acrylate may be mentioned as preferred olefin.
  • examples of the olefin having a functional group used for the Diels-Alder reaction include acrylonitrile, methacrylonitrile, acrolein, and methacrolein.
  • monoolefins represented by the general formula (4 ′) can be produced via the routes shown in the following formulas (II) and (III).
  • R 1 is a hydrogen atom or CH 3.
  • R 1 is a hydrogen atom or CH 3.
  • the dicyclopentadiene used in the Diels-Alder reaction preferably has a high purity, and it is preferable to reduce the content of butadiene, isoprene and the like.
  • the purity of dicyclopentadiene is preferably 90% or more, and more preferably 95% or more. Further, since dicyclopentadiene tends to depolymerize under heating conditions to form cyclopentadiene (so-called monocyclopentadiene), it is also possible to use cyclopentadiene instead of dicyclopentadiene.
  • the monoolefin having 13 to 21 carbon atoms represented by the general formula (4) is substantially a monoolefin having 8 to 16 carbon atoms represented by the following general formula (7) (the first stage Diels-Alder reaction product).
  • Dienophile Dienophile
  • the second stage Diels-Alder reaction is considered to produce a monoolefin having 13 to 21 carbon atoms represented by the general formula (4).
  • R 1 represents a hydrogen atom, CH 3 or C 2 H 5
  • R 2 and R 3 each independently represent a hydrogen atom or CH 3
  • X represents a hydrogen atom or a carbon number of 4 or less.
  • the reaction temperature is preferably 100 ° C or higher, more preferably 120 ° C or higher, and 130 ° C. The above is more preferable. On the other hand, it is preferable to perform the reaction at a temperature of 250 ° C. or lower in order to suppress by-product of high boiling substances.
  • hydrocarbons, alcohols, esters and the like can be used as reaction solvents, such as aliphatic hydrocarbons having 6 or more carbon atoms, cyclohexane, toluene, xylene, ethylbenzene, mesitylene, propanol, butanol and the like. preferable. If necessary, it may be added to AlCl 3 or the like known catalysts.
  • the reaction method of the Diels-Alder reaction is a batch system using a tank reactor, a semi-batch system in which a substrate or a substrate solution is supplied to a tank reactor under reaction conditions, and a substrate type under a reaction condition in a tube reactor. It is possible to adopt various reaction methods such as a continuous flow method for distributing the gas.
  • the reaction product obtained by the Diels-Alder reaction can be used as a raw material for the next hydroformylation reaction as it is, but may be used for the next step after being purified by a method such as distillation, extraction or crystallization.
  • bifunctional compound having 14 to 22 carbon atoms represented by (3) in formula (I) is, for example, a monoolefin having 13 to 21 carbon atoms represented by the general formula (4) and carbon monoxide.
  • hydrogen gas can be produced by a hydroformylation reaction in the presence of a rhodium compound or an organophosphorus compound.
  • the rhodium compound used in the hydroformylation reaction may be a compound that forms a complex with an organic phosphorus compound and exhibits hydroformylation activity in the presence of carbon monoxide and hydrogen, and the form of the precursor is not particularly limited. .
  • rhodium acetylacetonate dicarbonyl hereinafter referred to as Rh (acac) (CO) 2
  • Rh 2 O 3 Rh 4 (CO) 12
  • Rh 6 (CO) 16 Rh (NO 3 ) 3, etc.
  • the catalyst precursor may be introduced into the reaction mixture together with the organophosphorus compound to form a rhodium metal hydridocarbonyl phosphorus complex having catalytic activity in the reaction vessel.
  • a rhodium metal hydridocarbonyl phosphorus complex may be prepared in advance. It may be introduced into the reactor.
  • Rh (acac) (CO) 2 is reacted with an organophosphorus compound in the presence of a solvent, and then introduced into a reactor together with an excess of organophosphorus compound, and a rhodium-organophosphorus complex having catalytic activity and The method of doing is mentioned.
  • the amount of rhodium compound used in the hydroformylation reaction is preferably 0.1 to 60 micromoles per 1 mol of a monoolefin having 13 to 21 carbon atoms represented by the general formula (4) which is a substrate for the hydroformylation reaction. 0.1 to 30 ⁇ mol is more preferable, 0.2 to 20 ⁇ mol is further preferable, and 0.5 to 10 ⁇ mol is particularly preferable.
  • the amount of the rhodium compound used is less than 60 micromoles per 1 mol of the monoolefin having 13 to 21 carbon atoms, it can be evaluated that it is practically not necessary to provide a collection and recycling facility for the rhodium complex. Thus, according to this embodiment, it is possible to reduce the economic burden related to the recovery and recycling equipment, and to reduce the cost for the rhodium catalyst.
  • the organophosphorus compound that forms a catalyst for the hydroformylation reaction with the rhodium compound is not particularly limited.
  • R a , R b , and R c include, but are not limited to, an aryl group that can be substituted with an alkyl group having 1 to 4 carbon atoms or an alkoxy group, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group.
  • alicyclic alkyl groups that can be substituted with triphenylphosphine and triphenylphosphite are preferably used.
  • the amount of the organophosphorus compound used is preferably 300-fold to 10,000-fold mol, more preferably 500-fold to 10,000-fold mol, still more preferably 700-fold to 5000-fold mol, particularly preferably relative to the rhodium atom in the rhodium compound. Is 900 times to 2000 times mol.
  • the amount of the organic phosphorus compound used is 300 times mol or more of the rhodium atom, the stability of the rhodium metal hydridocarbonyl phosphorus complex as the catalyst active material tends to be sufficiently secured, and as a result, good reactivity is ensured. It tends to be.
  • the usage-amount of an organic phosphorus compound is 10000 times mole or less of a rhodium atom, it is preferable from a viewpoint of fully reducing the cost concerning an organic phosphorus compound.
  • the hydroformylation reaction can be carried out without using a solvent, but can be carried out more suitably by using a solvent inert to the reaction.
  • Solvents that can be used in the hydroformylation reaction include those that dissolve the monoolefin having 13 to 21 carbon atoms, dicyclopentadiene or cyclopentadiene represented by the general formula (4), the rhodium compound, and the organophosphorus compound. If it does not specifically limit.
  • hydrocarbons such as aliphatic hydrocarbons, alicyclic hydrocarbons, and aromatic hydrocarbons
  • esters such as aliphatic esters, alicyclic esters, and aromatic esters
  • Alcohols such as aromatic alcohols and alicyclic alcohols
  • solvents such as aromatic halides.
  • hydrocarbons are preferably used, and alicyclic hydrocarbons and aromatic hydrocarbons are more preferably used.
  • the temperature for the hydroformylation reaction is preferably 40 ° C. to 160 ° C., more preferably 80 ° C. to 140 ° C.
  • the reaction temperature is 40 ° C. or higher, a sufficient reaction rate tends to be obtained, and the residual monoolefin as a raw material tends to be further suppressed.
  • the reaction is performed under pressure with carbon monoxide (hereinafter also referred to as “CO”) and hydrogen (hereinafter also referred to as “H 2” ) gas.
  • CO carbon monoxide
  • H 2 hydrogen
  • the CO and H 2 gases can be independently introduced into the reaction system, or can be introduced into the reaction system as a mixed gas prepared in advance.
  • the molar ratio of CO and H 2 gas introduced into the reaction system is preferably 0.2 to 5, more preferably 0.5 to 2, and still more preferably 0.8 to 1.2. .
  • the reaction activity of the hydroformylation reaction and the selectivity of the target aldehyde tend to be good. Since CO and H 2 gas introduced into the reaction system decrease with the progress of the reaction, the reaction control may be simple when a previously prepared mixed gas of CO and H 2 is used.
  • the reaction pressure of the hydroformylation reaction is preferably 1 to 12 MPa, more preferably 1.2 to 9 MPa, and further preferably 1.5 to 5 MPa.
  • the reaction pressure is 1 MPa or more, a sufficient reaction rate tends to be obtained, and the residual monoolefin as a raw material tends to be sufficiently suppressed.
  • the reaction pressure is set to 12 MPa or less, it is economically advantageous because expensive equipment excellent in pressure resistance is not required.
  • a batch reaction or a semi-batch reaction is suitable as a reaction system in the case of performing the hydroformylation reaction.
  • the semi-batch reaction is performed by adding a rhodium compound, an organic phosphorus compound, and the above solvent to the reactor, pressurizing or heating with CO / H 2 gas, etc. This can be done by feeding the solution to the reactor.
  • the reaction product obtained by the hydroformylation reaction can be used as a raw material for the next reduction reaction as it is, but may be subjected to the next step after purification by distillation, extraction, crystallization, or the like.
  • the compound having 14 to 22 carbon atoms represented by the general formula (2) in the formula (I) is obtained by converting a compound having 14 to 22 carbon atoms represented by the general formula (3) into a catalyst having hydrogenation ability and It can be produced by reduction in the presence of hydrogen.
  • a catalyst containing at least one element selected from the group consisting of copper, chromium, iron, zinc, aluminum, nickel, cobalt, and palladium as a catalyst having hydrogenation ability. More preferred catalysts include a Cu—Cr catalyst, a Cu—Zn catalyst, a Cu—Zn—Al catalyst, and the like, as well as a Raney-Ni catalyst, a Raney-Co catalyst, and the like. Further preferred catalysts include a Cu—Cr catalyst and a Raney catalyst. -Co catalyst.
  • the amount of the hydrogenation catalyst used is 1 to 100% by mass, preferably 2 to 50% by mass, more preferably 5 to 5% by mass with respect to the compound having 14 to 22 carbon atoms represented by the general formula (3) as a substrate. 30% by mass.
  • the amount of catalyst used is 1% by mass or more, the reaction proceeds sufficiently, and as a result, the yield of the target product tends to be sufficiently secured. Further, when the amount of catalyst used is 100% by mass or less, the balance between the amount of catalyst used for the reaction and the effect of improving the reaction rate tends to be good.
  • the reaction temperature for the reduction reaction is preferably 60 to 200 ° C, more preferably 80 to 150 ° C.
  • the reaction temperature for the reduction reaction is preferably 60 to 200 ° C, more preferably 80 to 150 ° C.
  • the reaction temperature By setting the reaction temperature to 200 ° C. or lower, the occurrence of side reactions and decomposition reactions is suppressed, and the target product tends to be obtained with a high yield.
  • the reaction temperature by setting the reaction temperature to 60 ° C. or higher, the reaction can be completed in an appropriate time, and there is a tendency that a decrease in productivity and a decrease in the yield of the target product can be avoided.
  • the reaction pressure of the reduction reaction is preferably 0.5 to 10 MPa, more preferably 1 to 5 MPa as a hydrogen partial pressure.
  • the hydrogen partial pressure is preferably 0.5 to 10 MPa or less, the occurrence of side reactions and decomposition reactions is suppressed, and the target product tends to be obtained in a high yield.
  • the hydrogen partial pressure is set to 0.5 MPa or more, the reaction can be completed in an appropriate time, and a decrease in productivity and a decrease in the yield of the target product tend to be avoided.
  • a gas inert to the reduction reaction for example, nitrogen or argon
  • a solvent can be used.
  • the solvent used for the reduction reaction include aliphatic hydrocarbons, alicyclic hydrocarbons, aromatic hydrocarbons, alcohols, and the like. Among them, alicyclic hydrocarbons, aromatic hydrocarbons, alcohols, etc. Are preferred. Specific examples thereof include cyclohexane, toluene, xylene, methanol, ethanol, 1-propanol and the like.
  • the reaction method of the reduction reaction is a batch type using a tank reactor, a semi-batch type for supplying a substrate or a substrate solution to a tank reactor under the reaction conditions, a reaction condition in a tube type reactor filled with a molded catalyst. It is possible to adopt various reaction methods such as a continuous flow method in which a substrate and a substrate solution are circulated.
  • the reaction product obtained by the reduction reaction can be purified by, for example, distillation, extraction, crystallization, or the like.
  • (C) Manufacturing method of polyester resin It does not specifically limit as a method of polymerizing the compound represented by General formula (2) in this embodiment, and setting it as the polyester which has a structural unit represented by General formula (1).
  • Conventionally known polyester production methods can be applied. Examples thereof include a melt polymerization method such as a transesterification method and a direct esterification method, or a solution polymerization method.
  • a transesterification catalyst, an esterification catalyst, a polycondensation catalyst, or the like used in the production of a normal polyester resin can be used.
  • These catalysts are not particularly limited.
  • metals such as zinc, lead, cerium, cadmium, manganese, cobalt, lithium, sodium, potassium, calcium, nickel, magnesium, vanadium, aluminum, titanium, antimony, germanium, tin, etc.
  • fatty acid salts, carbonates, phosphates, hydroxides, chlorides, oxides, alkoxides can be used alone or in combination of two or more.
  • the catalyst compounds of manganese, cobalt, zinc, titanium, calcium, antimony, germanium, and tin are preferable, and compounds of manganese, titanium, antimony, germanium, and tin are more preferable.
  • the amount of these catalysts to be used is not particularly limited, but the amount as a metal component with respect to the raw material of the polyester resin is preferably 1 to 1000 ppm, more preferably 3 to 750 ppm, and still more preferably 5 to 500 ppm.
  • the reaction temperature in the polymerization reaction depends on the type of catalyst and the amount of the catalyst used, but is usually selected within the range of 150 ° C. to 300 ° C., preferably 180 ° C. to 280 ° C. in consideration of the reaction rate and resin coloring.
  • the pressure in the reaction layer is preferably adjusted to 1 kPa or less finally from the atmospheric atmosphere, and more preferably 0.5 kPa or less.
  • a phosphorus compound When performing the polymerization reaction, a phosphorus compound may be added if desired.
  • the phosphorus compound include, but are not limited to, phosphoric acid, phosphorous acid, phosphoric acid ester, phosphorous acid ester, and the like.
  • phosphate esters include, but are not limited to, methyl phosphate, ethyl phosphate, butyl phosphate, phenyl phosphate, dimethyl phosphate, diethyl phosphate, dibutyl phosphate, diphenyl phosphate, trimethyl phosphate, Examples thereof include triethyl phosphate, tributyl phosphate, and triphenyl phosphate.
  • phosphites include, but are not limited to, methyl phosphite, ethyl phosphite, butyl phosphite, phenyl phosphite, dimethyl phosphite, diethyl phosphite, dibutyl phosphite, Examples thereof include diphenyl phosphite, trimethyl phosphite, triethyl phosphite, tributyl phosphite, and triphenyl phosphite. These can be used alone or in combination of two or more.
  • the concentration of phosphorus atoms in the polyester resin of this embodiment is preferably 1 to 500 ppm, more preferably 5 to 400 ppm, and even more preferably 10 to 200 ppm.
  • the polyester resin of the present embodiment may contain other structural units other than the structural unit (1) as long as the performance is not impaired, and a structural unit derived from dicarboxylic acid and / or a derivative thereof, a diol structural unit.
  • Polymerization can be carried out by appropriately selecting from units derived from oxyacids and applying a conventionally known polyester production method together with the compound represented by formula (2).
  • Examples of conventionally known polyester production methods include, but are not limited to, melt polymerization methods such as transesterification methods and direct esterification methods, and solution polymerization methods.
  • polyester resin of the present embodiment when the polyester resin of the present embodiment is produced, various stabilizers such as an etherification inhibitor, a heat stabilizer and a light stabilizer, a polymerization regulator and the like can be used.
  • various stabilizers such as an etherification inhibitor, a heat stabilizer and a light stabilizer, a polymerization regulator and the like can be used.
  • the polyester resin of the present embodiment includes an antioxidant, a light stabilizer, an ultraviolet absorber, a plasticizer, an extender, a matting agent, a drying regulator, an antistatic agent, as long as the purpose of the present embodiment is not impaired.
  • Various additives such as anti-settling agent, surfactant, flow improver, drying oil, wax, filler, colorant, reinforcing agent, surface smoothing agent, leveling agent, curing reaction accelerator, thickener, molding aid Can be added.
  • the glass transition temperature of the polyester resin was measured as follows. Using a differential scanning calorimeter (manufactured by Shimadzu Corporation, trade name: DSC / TA-60WS), about 10 mg of polyester resin is placed in an aluminum non-sealed container and heated in a nitrogen gas (30 mL / min) stream. A sample heated and melted to 280 ° C. at a rate of 20 ° C./min was rapidly cooled to obtain a measurement sample. The sample was measured under the same conditions, and the temperature at which the difference between the baselines before and after the transition of the DSC curve changed by 1/2 was taken as the glass transition temperature.
  • Photoelastic coefficient (m 2 / N) It calculated from the birefringence measurement with respect to the load change in wavelength 633nm using the optical film produced by the casting method using the ellipsometer (JASCO Corporation M220).
  • reaction solution was subjected to gas chromatography analysis, and a reaction solution containing 76 g of the compound represented by the formula (3a) and 1.4 g of the monoolefin represented by the formula (4a) (conversion rate 98%, selectivity) 97%), and after purification by distillation, a part was subjected to the following reaction.
  • a reaction solution containing 76 g of the compound represented by the formula (3a) and 1.4 g of the monoolefin represented by the formula (4a) (conversion rate 98%, selectivity) 97%) was subjected to the following reaction.
  • To a 300 mL stainless steel reactor 54 g of the compound represented by the formula (3a) purified by distillation, 7 mL of sponge cobalt catalyst (manufactured by Nikko Rika Co., Ltd .: R-400) and 109 g of toluene were added, and the inside of the system was pressurized with hydrogen gas.
  • the reaction was performed at 3 MPa and 100 ° C. for 9 hours.
  • the catalyst was filtered from the obtained slurry with a membrane filter having a pore size of 0.2 ⁇ m. Thereafter, the solvent was distilled off using an evaporator, and analysis by gas chromatography and GC-MS confirmed that it contained 51 g of the main product represented by the formula (2a) having a molecular weight of 250 (main production). (Product yield 93%). This was further purified by distillation to obtain the main product.
  • Example 1 45 g of the compound represented by the formula (2a) obtained from the monomer synthesis example, tetrabutyl, in a 200 mL polyester manufacturing apparatus equipped with a partial condenser, a total condenser, a cold trap, a stirrer, a heating device, and a nitrogen introduction tube 0.007 g of titanate was charged, heated to 230 ° C. under a nitrogen atmosphere, and held for 1 hour. Thereafter, the temperature was increased and the pressure was gradually reduced, and finally polycondensation was performed at 270 ° C. and 0.1 kPa or less. The reaction was terminated when a suitable melt viscosity was reached, and a polyester resin was obtained.
  • the obtained polyester resin had a weight average molecular weight of 26000, a glass transition temperature of 167 ° C., and a total light transmittance of 91%.
  • Example 2 11.5 g of the compound represented by the formula (2a) obtained from the monomer synthesis example, in a 30 mL polyester production apparatus equipped with a partial condenser, a full condenser, a cold trap, a stirrer, a heating apparatus and a nitrogen introduction tube, After adding 0.005 g of tetrabutyl titanate, the temperature was raised to 230 ° C. under a nitrogen atmosphere, and the temperature was maintained for 1 hour. Thereafter, the temperature was increased and the pressure was gradually reduced, and finally polycondensation was performed at 270 ° C. and 0.1 kPa or less. The reaction was terminated when a suitable melt viscosity was reached, and a polyester resin was obtained.
  • the obtained polyester resin had a weight average molecular weight of 46800, a glass transition temperature of 171 ° C., and a total light transmittance of 91%.
  • 20 parts by mass of the obtained polyester resin and 80 parts by mass of tetrahydrofuran were mixed to obtain a coating solution having a solid concentration of 20% by mass.
  • a stretched polyethylene terephthalate film having a thickness of 50 ⁇ m (Ester film E5100 manufactured by Toyobo Co., Ltd.) was used as the base material.
  • a coating film was obtained by applying a coating solution to a substrate using No. 20 and drying at 100 ° C. for 60 minutes. About the obtained coat film, the water vapor transmission rate was evaluated.
  • the coat layer thickness was 5.7 ⁇ m, and the water vapor transmission coefficient calculated from the water vapor transmission rate was 1.14 g ⁇ mm / m 2 ⁇ day (40 ° C., 90% RH).
  • an optical film was produced by the casting method shown below. That is, the polyester resin was dissolved in dichloromethane so as to have a concentration of 5 wt%, casted on a cast plate whose level was confirmed, and then volatilized while adjusting the evaporation amount of the solvent from the cast solution. An optical film was obtained.
  • the resulting optical film was sufficiently dried at a temperature not higher than the glass transition temperature using a dryer, and then a 5 cm ⁇ 1 cm sample was cut out and the photoelastic coefficient was evaluated using an ellipsometer. 4 ⁇ 10 ⁇ 12 (m 2 / N).
  • 100 g of monoolefin represented by formula (8) in the reactor 200 g of toluene, 0.614 g of triphenyl phosphite, 200 ⁇ L of a separately prepared toluene solution of Rh (acac) (CO) 2 (concentration 0.0097 mol / L) was added.
  • the polyester resin of the present invention is excellent in transparency and heat resistance, and can be suitably used for materials that require transparency and heat resistance.
  • the industrial significance of the present invention is great.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本発明に係るポリエステル樹脂は、一般式(1)で表される構成単位を含む。 【化1】 (上記一般式(1)において、R1は水素原子、CH又はCであり、R2及びR3は、それぞれ独立に水素原子又はCHである。)

Description

ポリエステル樹脂及びその製造方法
 本発明は、ポリエステル樹脂及びその製造方法に関する。
 ポリエチレンテレフタレート(以下「PET」ということがある。)は、透明性、機械的強度、溶融安定性、耐溶剤性、保香性、リサイクル性に優れるという特長を有し、フィルム、シート、中空容器等に広く利用されているポリエステル樹脂である。しかしながら、PETはガラス転移温度が必ずしも十分に高いとはいえず、また、厚肉成形体を得る場合にはその結晶性により透明性が損なわれることがあるため、共重合による改質が広く行われている。
 例えば、ポリエステルの共重合成分として、1,4-シクロヘキサンジメタノール、トリシクロデカンジメタノールやペンタシクロペンタデカンジメタノールを用いたポリエステル樹脂が提案されている。トリシクロデカンジメタノールやペンタシクロペンタデカンジメタノールは嵩高く、剛直な骨格を有しているため、これらを用いたポリエステル樹脂はガラス転移温度が高くなり、結晶性が抑制されて成形体の透明性が向上させることが可能である(例えば、特許文献1及び2参照)。
 一方、芳香族成分を全く使用しない脂肪族ポリエステルにおいて、脂環式構造を有するポリエステルは、透明性、耐水性に優れており、1,4-シクロヘキサンジメタノールに代表される脂環式モノマーを使用する方法が数多く提案されている。例えば、特許文献3には、1,4-シクロヘキサンジメタノールと1,4-シクロヘキサンジカルボン酸等からなる脂肪族ポリエステルが示されている。また、脂肪族ポリエステルの耐熱性向上を目的として、ノルボルナン骨格を有するポリエステルが提案されている(例えば、特許文献4及び5参照)。
特開昭58-174419号公報 特開2003-119259号公報 特表2007-517926号公報 特開2001-64372公報 特開2001-64374号公報
 特許文献1及び2に記載のポリエステル樹脂は、ジカルボン酸成分が芳香族性であるため、耐紫外線性のみならず光線透過率等にも劣るものである。また、特許文献3の脂肪族ポリエステルは、透明性は良好であるものの、耐熱性はそれほど高いものではない。特許文献4及び5に示されるノルボルナン骨格を有するポリエステル樹脂は、モノマーとして1,4-シクロヘキサンジメタノールと1,4-シクロヘキサンジカルボン酸とを用いたポリエステル樹脂に比べると良好な耐熱性が発現しているものの、さらなる改善が求められる。
 本発明は、以上の従来技術が有する問題点に鑑みなされたものであり、耐熱性及び透明性に優れたポリエステル樹脂を提供することを目的とする。
 本発明者らは、上記課題を解決するべく鋭意検討を重ねた結果、特定の脂環式構造を持つ構成単位を主骨格に有することで、上記課題が解決できることを見出した。
 すなわち、本発明は、以下のとおりである。
<1>
 一般式(1)で表される構成単位を含む、ポリエステル樹脂。
Figure JPOXMLDOC01-appb-C000003
(上記一般式(1)において、R1は水素原子、CH又はCであり、R2及びR3は、それぞれ独立に水素原子又はCHである。)
<2>
 一般式(2)で表される化合物を重合させる工程を有する、ポリエステル樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000004
(上記一般式(2)において、R1は水素原子、CH又はCであり、R2及びR3は、それぞれ独立に水素原子又はCHであり、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
 本発明のポリエステル樹脂は、耐熱性及び透明性に優れる。
モノマー合成例で得られた主反応生成物の1H-NMR測定の結果を示す。 モノマー合成例で得られた主反応生成物の13C-NMR測定の結果を示す。 モノマー合成例で得られた主反応生成物のCOSY-NMR測定の結果を示す。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。
(A)ポリエステル樹脂
 本実施形態のポリエステル樹脂は、下記一般式(1)で表される構成単位(以下、「構成単位(1)」という)を含む。
Figure JPOXMLDOC01-appb-C000005
 構成単位(1)において、R1は水素原子、CH又はCであり、R2及びR3は、それぞれ独立に水素原子又はCHである。
 上記のように構成されているため、本実施形態のポリエステル樹脂は、耐熱性及び透明性に優れる。耐熱性(高ガラス転移温度)や透明性などに優れることから、本実施形態のポリエステル樹脂は、光学材料や電子部品、医療用材料として好適である。
 R1は、好ましくは水素原子又はCHであり、R2及びR3は、好ましくは水素原子である。
 本実施形態のポリエステル樹脂は、構成単位(1)の他に、性能を損なわない範囲で、他の構成単位を含んでもよい。
 前記他の構成単位とは、特に限定はされないが、テレフタル酸、イソフタル酸、フタル酸、1,3-ナフタレンジカルボン酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸、2-メチルテレフタル酸、ビフェニルジカルボン酸、テトラリンジカルボン酸等の芳香族ジカルボン酸及び/又はその誘導体に由来する構成単位;コハク酸、グルタル酸、アジピン酸、ピメリン酸、スベリン酸、アゼライン酸、セバシン酸、デカンジカルボン酸、ドデカンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、ノルボルナンジカルボン酸、トリシクロデカンジカルボン酸、ペンタシクロドデカンジカルボン酸、3,9-ビス(1,1-ジメチル-2-カルボキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、5-カルボキシ-5-エチル-2-(1,1-ジメチル-2-カルボキシエチル)-1,3-ジオキサン、ダイマー酸等の脂肪族ジカルボン酸及び/又はその誘導体に由来する構成単位;エチレングリコール、トリメチレングリコール、1,4-ブタンジオール、1,5-ペンタンジオール、1,6-ヘキサンジオール、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、1,3-シクロヘキサンジメタノール、1,4-シクロヘキサンジメタノール、1,2-デカヒドロナフタレンジメタノール、1,3-デカヒドロナフタレンジメタノール、1,4-デカヒドロナフタレンジメタノール、1,5-デカヒドロナフタレンジメタノール、1,6-デカヒドロナフタレンジメタノール、2,7-デカヒドロナフタレンジメタノール、テトラリンジメタノール、ノルボルナンジオール、キシリレングリコール、3,9-ビス(1,1-ジメチル-2-ヒドロキシエチル)-2,4,8,10-テトラオキサスピロ〔5.5〕ウンデカン、1,4:3,6-ジアンヒドロ-D-ソルビトール、2,2,4,4-テトラメチル-1,3-シクロブタンジオール等のジオールに由来する構成単位;グリコール酸、乳酸、ヒドロキシ酪酸、2-ヒドロキシイソ酪酸、ヒドロキシ安息香酸等のオキシ酸及び/又はその誘導体に由来する構成単位等が例示される。耐熱性及び透明性の観点より、芳香環又は脂環構造を有する構成単位が好ましい。
 本実施形態のポリエステル樹脂の分子量は、所望する性能や取扱性などを考慮して適宜設定することができ、特に限定されないが、ポリスチレン換算重量平均分子量(Mw)が5000~300,000であることが好ましく、より好ましくは10,000~250,000である。Mwが5,000以上である場合、より良好な耐熱性を確保できる傾向にあり、Mwが300,000以下である場合、溶融粘度の過度な増加が防止され、製造後の樹脂の抜き取りが容易になる傾向にあり、更には良好な流動性が確保できるため溶融状態で射出成形しやすくなる傾向にある。
 本実施形態のポリエステル樹脂の極限粘度(フェノールと1,1,2,2-テトラクロロエタンとの質量比6:4の混合溶媒を用いた25℃での測定値)は、特に限定されないが、本実施形態のポリエステル樹脂の成形性の観点から、0.1~2.0dL/gであることが好ましく、より好ましくは0.2~1.5dL/gである。固有粘度が0.1dL/g以上である場合は、本実施形態のポリエステル樹脂を原料として溶融成形してフィルムなどの成形品とする際に、十分な機械的強度を確保できる傾向にあり、1.5dL/g以下である場合は、溶融時の良好な流動性及び成形性を確保でき、寸法安定性に優れる成形品が得られる傾向にある。
 さらに本実施形態のポリエステル樹脂を使用する際には、酸化防止剤、離型剤、紫外線吸収剤、流動性改質剤、結晶核剤、強化剤、染料、帯電防止剤あるいは抗菌剤等を添加することが好適に実施される。
(B)一般式(2)で表される化合物の製造方法
 本実施形態のポリエステル樹脂は、例えば、下記一般式(2)で表される化合物を重合することで得られる。
Figure JPOXMLDOC01-appb-C000006
 上記一般式(2)において、Rは、水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは、水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。
 式(2)において、Rは、好ましくは水素原子又はCHである。R及びRは、好ましくは水素原子である。上記炭化水素基としては、以下に限定されないが、例えば、メチル基、エチル基、プロピル基、ブチル基、ビニル基、2-ヒドロキシエチル基、4-ヒドロキシブチル基等が挙げられる。
 本実施形態における一般式(2)で表される化合物は、ジシクロペンタジエン又はシクロペンタジエンと官能基を有するオレフィンを原料として、例えば、下記式(I)に示すルートで合成することが可能である。
Figure JPOXMLDOC01-appb-C000007
(式(I)中、Rは水素原子、CH又はCであり、R及びRは、それぞれ独立に水素原子又はCHであり、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
〔式(I)中の一般式(4)で表される炭素数13~21のモノオレフィンの製造〕
 前記一般式(4)で表される炭素数13~21のモノオレフィンは、例えば、官能基を有するオレフィンとジシクロペンタジエンのディールスアルダー反応を行うこと等で製造することが可能である。
 前記ディールスアルダー反応に用いる官能基を有するオレフィンの具体例としては、以下に限定されないが、メタクリル酸、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸プロピル、メタクリル酸ブチル、メタクリル酸ビニル、メタクリル酸-2-ヒドロキシエチル、メタクリル酸-4-ヒドロキシブチル、アクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸プロピル、アクリル酸ブチル、アクリル酸ビニル、アクリル酸-2-ヒドロキシエチル、アクリル酸-4-ヒドロキシブチル、クロトン酸、クロトン酸メチル、クロトン酸エチル、3-メチルクロトン酸、3-メチルクロトン酸メチル、3-メチルクロトン酸エチル等が挙げられ、好ましいオレフィンとして、メタクリル酸、メタクリル酸メチル、メタクリル酸-2-ヒドロキシエチル、アクリル酸、アクリル酸メチル、アクリル酸-2-ヒドロキシエチルが挙げられ、より好ましいオレフィンとしてメタクリル酸メチル、アクリル酸メチルが挙げられる。
 さらに、前記ディールスアルダー反応に用いる官能基を有するオレフィンの例として、アクリロニトリル、メタクリロニトリル、アクロレイン、メタクロレインを挙げられる。これらのオレフィンを原料とする場合、例えば、下記式(II)、式(III)に示すルート等を経て一般式(4')で表されるモノオレフィンを製造することができる。
Figure JPOXMLDOC01-appb-C000008
(式(II)中、R1は水素原子又はCHである。)
Figure JPOXMLDOC01-appb-C000009
(式(III)中、R1は水素原子又はCHである。)
 前記ディールスアルダー反応に用いるジシクロペンタジエンは高純度のものが好ましく、ブタジエン、イソプレン等の含有量を低減することが好ましい。ジシクロペンタジエンの純度は、90%以上であることが好ましく、95%以上であることがより好ましい。また、ジシクロペンタジエンは加熱条件下で解重合しシクロペンタジエン(所謂モノシクロペンタジエン)になる傾向にあるため、ジシクロペンタジエンの代わりにシクロペンタジエンを使用することも可能である。尚、一般式(4)で表される炭素数13~21のモノオレフィンは、実質的に下記一般式(7)で表される炭素数8~16のモノオレフィン(1段目ディールスアルダー反応生成物)を経由して生成していると考えられ、生成した一般式(7)のモノオレフィンが新たな親ジエン化合物(Dienophile)として反応系内に存在するシクロペンタジエン(Diene)とディールスアルダー反応(2段目ディールスアルダー反応)に預かり、一般式(4)で表される炭素数13~21のモノオレフィンが生成するものと考えられる。
Figure JPOXMLDOC01-appb-C000010
(式(7)中、R1は水素原子、CH又はCを示し、R2及びR3は、それぞれ独立に水素原子又はCHを示し、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基を示す。)
 前記2段階のディールスアルダー反応を効率的に進行させるためには反応系内にシクロペンタジエンが存在することが重要であるため、反応温度として100℃以上が好ましく、120℃以上がより好ましく、130℃以上がさらに好ましい。一方で、高沸物質の副生を抑えるためには250℃以下の温度で反応を行うことが好ましい。また、反応溶媒として炭化水素類やアルコール類、エステル類等を使用することも可能であり、炭素数6以上の脂肪族炭化水素類、シクロヘキサン、トルエン、キシレン、エチルベンゼン、メシチレン、プロパノール、ブタノール等が好ましい。また、必要に応じて、AlCl等公知の触媒を添加してもよい。
 前記ディールスアルダー反応の反応方式としては、槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、管型反応器に反応条件下で基質類を流通させる連続流通式等、多様な反応方式を採ることが可能である。
 前記ディールスアルダー反応で得られた反応生成物は、そのまま次のヒドロホルミル化反応の原料として用いることもできるが、蒸留、抽出、晶析などの方法によって精製した後、次工程に供してもよい。
〔式(I)中の(3)で表される炭素数14~22の二官能性化合物の製造〕
 前記式(I)中の一般式(3)で表される炭素数14~22の二官能性化合物は、例えば、一般式(4)で表される炭素数13~21モノオレフィンと一酸化炭素及び水素ガスをロジウム化合物、有機リン化合物の存在下でヒドロホルミル化反応させること等で製造することができる。
 前記ヒドロホルミル化反応で使用されるロジウム化合物は、有機リン化合物と錯体を形成し、一酸化炭素と水素の存在下でヒドロホルミル化活性を示す化合物であればよく、その前駆体の形態は特に限定されない。例えば、ロジウムアセチルアセトナートジカルボニル(以下、Rh(acac)(CO)と記す)、Rh、Rh(CO)12、Rh(CO)16、Rh(NO)等の触媒前駆物質を有機リン化合物と共に反応混合物中に導入し、反応容器内で触媒活性を持つロジウム金属ヒドリドカルボニルリン錯体を形成させてもよいし、予めロジウム金属ヒドリドカルボニルリン錯体を調製してそれを反応器内に導入してもよい。好ましい具体例としてはRh(acac)(CO)を溶媒の存在下で有機リン化合物と反応させた後、過剰の有機リン化合物と共に反応器に導入し、触媒活性を有するロジウム-有機リン錯体とする方法が挙げられる。
 本発明者らにとって意外だったのは、一般式(4)で表されるような比較的分子量の大きな内部オレフィンを有する2段階ディールスアルダー反応生成物が極めて少量のロジウム触媒でヒドロホルミル化されたことである。本ヒドロホルミル化反応におけるロジウム化合物の使用量は、ヒドロホルミル化反応の基質である一般式(4)で表される炭素数13~21のモノオレフィン1モルに対して0.1~60マイクロモルが好ましく、0.1~30マイクロモルがより好ましく、0.2~20マイクロモルが更に好ましく、0.5~10マイクロモルが特に好ましい。ロジウム化合物の使用量が炭素数13~21のモノオレフィン1モルに対して60マイクロモルより少ない場合、実用上、ロジウム錯体の回収リサイクル設備を設けなくてもよい水準と評価できる。このように、本実施形態によれば、回収リサイクル設備に関わる経済的負担を減らすことができ、ロジウム触媒にかかるコストを低減することが可能である。
 本実施形態におけるヒドロホルミル化反応において、ロジウム化合物とヒドロホルミル化反応の触媒を形成する有機リン化合物としては、特に限定されないが、例えば、一般式P(-R)(-R)(-R)で表されるホスフィン又はP(-OR)(-OR)(-OR)で表されるホスファイトが挙げられる。R、R、Rの具体例としては、以下に限定されないが、炭素数1~4のアルキル基又はアルコキシ基で置換され得るアリール基や、炭素数1~4のアルキル基又はアルコキシ基で置換され得る脂環式アルキル基等が挙げられ、トリフェニルホスフィン、トリフェニルホスファイトが好適に用いられる。有機リン化合物の使用量はロジウム化合物中のロジウム原子に対して300倍モル~10000倍モルが好ましく、500倍モル~10000倍モルがより好ましく、更に好ましくは700倍モル~5000倍モル、特に好ましくは900倍モル~2000倍モルである。有機リン化合物の使用量がロジウム原子の300倍モル以上である場合、触媒活物質であるロジウム金属ヒドリドカルボニルリン錯体の安定性が十分に確保できる傾向にあり、結果として良好な反応性が確保される傾向にある。また、有機リン化合物の使用量がロジウム原子の10000倍モル以下である場合、有機リン化合物に掛かるコストを十分に低減する観点から好ましい。
 前記ヒドロホルミル化反応は溶媒を使用せずに行うことも可能であるが、反応に不活性な溶媒を使用することにより、より好適に実施することができる。ヒドロホルミル化反応に使用できる溶媒としては、一般式(4)で表される炭素数13~21のモノオレフィン、ジシクロペンタジエン又はシクロペンタジエン、前記ロジウム化合物、及び前記有機リン化合物を溶解するものであれば特に限定されない。具体例としては、以下に限定されないが、脂肪族炭化水素、脂環式炭化水素、芳香族炭化水素等の炭化水素類;脂肪族エステル、脂環式エステル、芳香族エステル等のエステル類;脂肪族アルコール、脂環式アルコール等のアルコール類;芳香族ハロゲン化物等の溶媒が挙げられる。これらのうち炭化水素類が好適に用いられ、中でも脂環式炭化水素、芳香族炭化水素がより好適に用いられる。
 前記ヒドロホルミル化反応を行う場合の温度としては40℃~160℃が好ましく、80℃~140℃がより好ましい。反応温度が40℃以上の場合には十分な反応速度が得られる傾向にある、原料であるモノオレフィンの残留がより抑えられる傾向にある。また、反応温度が160℃以下にすることで原料モノオレフィンや反応生成物由来の副生物の生成を抑え、反応成績の低下を効果的に防止できる傾向にある。
 本実施形態におけるヒドロホルミル化反応を行う場合、一酸化炭素(以下「CO」と記載することもある)及び水素(以下「H2」と記載することもある)ガスによる加圧下で反応を行うことが好ましい。その際、CO及びHガスは各々独立に反応系内に導入することも、また、予め調製された混合ガスとして反応系内に導入することも可能である。反応系内に導入されるCO及びHガスのモル比(=CO/H)は0.2~5が好ましく、0.5~2がより好ましく、0.8~1.2が更に好ましい。CO及びHガスのモル比が上記範囲に調整する場合、ヒドロホルミル化反応の反応活性や目的とするアルデヒドの選択率が良好となる傾向にある。反応系内に導入したCO及びHガスは反応の進行に伴い減少していくため、予め調製されたCOとHの混合ガスを利用すると反応制御が簡便な場合がある。
 前記ヒドロホルミル化反応の反応圧力としては、1~12MPaが好ましく、1.2~9MPaがより好ましく、1.5~5MPaが更に好ましい。反応圧力が1MPa以上とすることで十分な反応速度が得られる傾向にあり、原料であるモノオレフィンの残留を十分に抑制できる傾向にある。また、反応圧力が12MPa以下にすることで、耐圧性能に優れる高価な設備を必要としなくなるため経済的に有利である。特に、回分式や半回分式で反応を行う場合、反応終了後にCO及びHガスを排出・落圧する必要があり、低圧になるほどCO及びHガスの損失が少なくなるため経済的に有利である。
 前記ヒドロホルミル化反応を行う場合の反応方式としては、回分式反応や半回分式反応が好適である。半回分式反応はロジウム化合物、有機リン化合物、前記溶媒を反応器に加え、CO/Hガスによる加圧や加温等を行い、既述の反応条件とした後に原料であるモノオレフィン又はその溶液を反応器に供給することにより行うことが可能である。
 前記ヒドロホルミル化反応で得られた反応生成物は、そのまま次の還元反応の原料として用いることも出来るが、例えば蒸留や抽出、晶析等により精製した後、次工程に供してもよい。
〔式(2)で表される炭素数14~22の化合物の製造〕
 前記式(I)中の一般式(2)で表される炭素数14~22の化合物は、一般式(3)で表される炭素数14~22の化合物を、水素化能を有する触媒及び水素の存在下で還元することにより製造することが出来る。
 前記還元反応では、水素化能を有する触媒として、銅、クロム、鉄、亜鉛、アルミニウム、ニッケル、コバルト、及びパラジウムからなる群より選ばれる少なくとも一つの元素を含む触媒を用いることが好ましい。より好ましい触媒としては、Cu-Cr触媒、Cu-Zn触媒、Cu-Zn-Al触媒等の他、Raney-Ni触媒、Raney-Co触媒等が挙げられ、さらに好ましい触媒はCu-Cr触媒、Raney-Co触媒である。
 前記水素化触媒の使用量は、基質である一般式(3)で表される炭素数14~22の化合物に対して1~100質量%、好ましくは2~50質量%、より好ましくは5~30質量%である。触媒使用量をこれらの範囲とすることで好適に水素化反応を実施することが出来る。触媒使用量が1質量%以上である場合、十分に反応が進行し、結果として目的物の収率を十分に確保できる傾向にある。また、触媒使用量が100質量%以下である場合、反応に供した触媒量と反応速度の向上効果とのバランスが良好となる傾向にある。
 前記還元反応の反応温度は60~200℃が好ましく、80℃~150℃がより好ましい。反応温度を200℃以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、反応温度を60℃以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。
 前記還元反応の反応圧力は、水素分圧として0.5~10MPaが好ましく、1~5MPaがより好ましい。水素分圧を10MPa以下にすることで、副反応や分解反応の発生を抑制し高い収率で目的物が得られる傾向にある。また、水素分圧を0.5MPa以上にすることで、適度な時間で反応を完結させることができ、生産性の低下や目的物収率の低下を回避できる傾向にある。尚、還元反応に不活性なガス(例えば窒素又はアルゴン)を共存させることも可能である。
 前記還元反応においては溶媒を使用することが可能である。還元反応に用いられる溶媒としては、脂肪族炭化水素類、脂環式炭化水素類、芳香族炭化水素類、アルコール類等が挙げられ、中でも脂環式炭化水素類、芳香族炭化水素類、アルコール類が好ましい。その具体例としてはシクロヘキサン、トルエン、キシレン、メタノール、エタノール、1-プロパノール等が挙げられる。
 前記還元反応の反応方式としては槽型反応器等による回分式、反応条件下の槽型反応器に基質や基質溶液を供給する半回分式、成型触媒を充填した管型反応器に反応条件下で基質や基質溶液を流通させる連続流通式等、多様な反応方式を採ることが可能である。
 前記還元反応で得られた反応生成物は、例えば蒸留や抽出、晶析等により精製することができる。
(C)ポリエステル樹脂の製造方法
 本実施形態における一般式(2)で表される化合物を重合させて一般式(1)で表される構成単位を有するポリエステルとする方法としては、特に限定されず、従来公知のポリエステルの製造方法を適用することができる。例えば、エステル交換法、直接エステル化法等の溶融重合法、又は溶液重合法等を挙げることができる。
 本実施形態のポリエステル樹脂の製造時には、通常のポリエステル樹脂の製造時に用いるエステル交換触媒、エステル化触媒、重縮合触媒等を使用することができる。これらの触媒としては特に限定されないが、例えば、亜鉛、鉛、セリウム、カドミウム、マンガン、コバルト、リチウム、ナトリウム、カリウム、カルシウム、ニッケル、マグネシウム、バナジウム、アルミニウム、チタン、アンチモン、ゲルマニウム、スズ等の金属の化合物(例えば、脂肪酸塩、炭酸塩、リン酸塩、水酸化物、塩化物、酸化物、アルコキシド)や金属マグネシウム等が挙げられる。これらは単独で又は二種以上を組み合わせて使用することができる。触媒としては、上記した中でマンガン、コバルト、亜鉛、チタン、カルシウム、アンチモン、ゲルマニウム、スズの化合物が好ましく、マンガン、チタン、アンチモン、ゲルマニウム、スズの化合物がより好ましい。これらの触媒の使用量は、特に限定されないが、ポリエステル樹脂の原料に対して金属成分としての量が、好ましくは1~1000ppm、より好ましくは3~750ppm、更に好ましくは5~500ppmである。
 前記重合反応における反応温度は触媒の種類、その使用量などによるが、通常150℃から300℃の範囲で選ばれ、反応速度及び樹脂の着色を考慮すると180℃~280℃が好ましい。反応層内の圧力は、大気雰囲気下から最終的には1kPa以下に調節することが好ましく、最終的には0.5kPa以下とするのがより好ましい。
 前記重合反応を行う際には、所望によりリン化合物を添加してもよい。リン化合物としては、以下に限定されないが、例えば、リン酸、亜リン酸、リン酸エステル、亜リン酸エステル等を挙げることができる。リン酸エステルとしては、以下に限定されないが、例えば、リン酸メチル、リン酸エチル、リン酸ブチル、リン酸フェニル、リン酸ジメチル、リン酸ジエチル、リン酸ジブチル、リン酸ジフェニル、リン酸トリメチル、リン酸トリエチル、リン酸トリブチル、リン酸トリフェニル等を挙げることができる。亜リン酸エステルとしては、以下に限定されないが、例えば、亜リン酸メチル、亜リン酸エチル、亜リン酸ブチル、亜リン酸フェニル、亜リン酸ジメチル、亜リン酸ジエチル、亜リン酸ジブチル、亜リン酸ジフェニル、亜リン酸トリメチル、亜リン酸トリエチル、亜リン酸トリブチル、亜リン酸トリフェニル等を挙げることができる。これらは単独で又は二種以上を組み合わせて使用することができる。本実施形態のポリエステル樹脂中のリン原子の濃度は1~500ppmが好ましく、5~400ppmがより好ましく、10~200ppmがさらに好ましい。
 本実施形態のポリエステル樹脂は、前述したように構成単位(1)以外に性能を損なわない範囲で他の構成単位を含んでもよく、ジカルボン酸及び/又はその誘導体に由来する構成単位、ジオール構成単位、モノアルコールに由来する単位、3価以上の多価アルコールに由来する単位、モノカルボン酸に由来する単位、多価カルボン酸に由来する単位、及び一般式(2)で表される化合物以外のオキシ酸に由来する単位から適宜選択し、一般式(2)で表される化合物と共に従来公知のポリエステルの製造方法を適用して重合することができる。従来公知のポリエステルの製造方法として、以下に限定されないが、例えば、エステル交換法、直接エステル化法等の溶融重合法、又は溶液重合法等を挙げることができる。
 また、本実施形態のポリエステル樹脂の製造時には、エーテル化防止剤、熱安定剤、光安定剤等の各種安定剤、重合調整剤等を使用することができる。
 本実施形態のポリエステル樹脂には、本実施形態の目的を損なわない範囲で、酸化防止剤、光安定剤、紫外線吸収剤、可塑剤、増量剤、艶消し剤、乾燥調節剤、帯電防止剤、沈降防止剤、界面活性剤、流れ改良剤、乾燥油、ワックス類、フィラー、着色剤、補強剤、表面平滑剤、レベリング剤、硬化反応促進剤、増粘剤等の各種添加剤、成形助剤を添加することができる。
 以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明はこれらの実施例によりその範囲を限定されるものではない。なお、ポリエステル樹脂の評価方法は次のとおりである。
(1)重量平均分子量(Mw)
 ポリエステル樹脂濃度が0.2質量%になるようにテトラヒドロフランに溶解させ、ゲルパーミエイションクロマトグラフィー(GPC)で測定し、標準ポリスチレンで検量した。GPCは東ソー株式会社製カラムTSKgel SuperHM-Mを用い、カラム温度40℃で測定した。溶離液はテトラヒドロフランを0.6mL/minの流速で流し、RI検出器で測定した。
(2)ガラス転移温度(Tg)
 ポリエステル樹脂のガラス転移温度は、次のように測定した。示差走査熱量計((株)島津製作所製、商品名:DSC/TA-60WS)を使用し、ポリエステル樹脂約10mgをアルミニウム製非密封容器に入れ、窒素ガス(30mL/分)気流中、昇温速度20℃/分で280℃まで加熱、溶融したものを急冷して測定用試料とした。該試料を同条件で測定し、DSC曲線の転移前後における基線の差の1/2だけ変化した温度をガラス転移温度とした。
(3)透明性
 ポリエステル樹脂をプレス成形した円板(厚み3mm)をサンプルとし、全光線透過率を測定した。測定には、色差/濁度測定機(日本電色工業(株)製、商品名:COH-400)を用いた。
(4)水蒸気透過係数 (g・mm/m・day)
 水蒸気透過率測定装置(MOCON社製、商品名:PERMATRAN―W Model 1/50G)を使用して、コーティングを施した基材の水蒸気透過率を40℃、相対湿度90%の条件下で測定し、塗膜の水蒸気透過係数を以下の式を用いて計算した:
  1/R = 1/R + DFT/P
ここで、
 R = コーティングを施した基材の水蒸気透過率(g/m・day)
 R = 基材の水蒸気透過率(g/m・day)
 DFT = 塗膜の厚み(mm)
 P = 塗膜の水蒸気透過係数(g・mm/m・day)
とした。
(5)光弾性係数 (m/N)
 エリプソメーター(日本分光(株)製、M220)を使用し、流延法により作製した光学フィルムを用い、波長633nmにおける荷重変化に対する複屈折測定から算出した。
<モノマー合成例>
 500mLステンレス製反応器にアクリル酸メチル173g(2.01mol)、ジシクロペンタジエン167g(1.26mol)を仕込み195℃で2時間反応を行った。上記反応により、下記式(4a)で表されるモノオレフィン96gを含有する反応液を取得し、これを蒸留精製した後、一部を以下の反応に供した。
 300mLステンレス製反応器を使用し、蒸留精製した式(4a)で表されるモノオレフィンのヒドロホルミル化反応をCO/H混合ガス(CO/Hモル比=1)を用いて行った。反応器に式(4a)で表されるモノオレフィン70g、トルエン140g、亜リン酸トリフェニル0.50g、別途調製したRh(acac)(CO)のトルエン溶液550μL(濃度0.003mol/L)を加えた。窒素およびCO/H混合ガスによる置換を各々3回行った後、CO/H混合ガスで系内を加圧し、100℃、2MPaにて5時間反応を行った。反応終了後、反応液のガスクロマトグラフィー分析を行い、式(3a)で表される化合物76g、式(4a)で表されるモノオレフィン1.4gを含む反応液(転化率98%、選択率97%)であることを確認すると共に、これを蒸留精製した後、一部を以下の反応に供した。
 300mLステンレス製反応器に蒸留精製した式(3a)で表される化合物54g、スポンジコバルト触媒(日興リカ株式会社製:R-400)7mL、トルエン109gを添加し、水素ガスで系内を加圧し、3MPa、100℃で9時間反応を行った。反応後、得られたスラリーから、孔径0.2μmのメンブレンフィルターで触媒をろ過した。その後、エバポレーターを使用して溶媒を留去し、ガスクロマトグラフィー及びGC-MSで分析し、分子量250の式(2a)で表される主生成物51gを含有することが確認された(主生成物収率93%)。これをさらに蒸留精製し、主生成物を取得した。
Figure JPOXMLDOC01-appb-C000011
<生成物の同定>
 モノマー合成例で取得した成分のNMR分析を行った。NMRスペクトルを図1~3に示す。以下に示すGC-MS分析、及び図1~3のNMR分析の結果から、モノマー合成例で得られた主生成物は、前記式(2a)で表される化合物であることが確認された。
<分析方法>
1)ガスクロマトグラフィー測定条件
・分析装置  :株式会社島津製作所製 キャピラリガスクロマトグラフGC-2010 Plus
・分析カラム :ジーエルサイエンス株式会社製、InertCap1(30m、0.32mmI.D.、膜厚0.25μm
・オーブン温度:60℃(0.5分間)-15℃/分-280℃(4分間)
・検出器   :FID、温度280℃
2)GC-MS測定条件
・分析装置  :株式会社島津製作所製、GCMS-QP2010 Plus
・イオン化電圧:70eV
・分析カラム :Agilent Technologies製、DB-1(30m、0.32mmI.D.、膜厚1.00μm)
・オーブン温度:60℃(0.5分間)-15℃/分-280℃(4分間)
3)NMR測定条件
・装置    :日本電子株式会社製,JNM-ECA500(500MHz)
・測定モード :1H-NMR、13C-NMR、COSY-NMR
・溶媒    :CDCl(重クロロホルム)
・内部標準物質:テトラメチルシラン
<実施例1>
 分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えた200mLのポリエステル製造装置に、モノマー合成例より得られた式(2a)で表される化合物45g、テトラブチルチタネート0.007gを仕込み、窒素雰囲気下で230℃まで昇温後、1時間保持した。その後、昇温と減圧を徐々に行い、最終的に270℃、0.1kPa以下で重縮合を行った。適度な溶融粘度になった時点で反応を終了し、ポリエステル樹脂を得た。得られたポリエステル樹脂の重量平均分子量は26000、ガラス転移温度は167℃、全光線透過率は91%であった。
<実施例2>
 分縮器、全縮器、コールドトラップ、撹拌機、加熱装置及び窒素導入管を備えた30mLのポリエステル製造装置に、モノマー合成例より得られた式(2a)で表される化合物11.5g、テトラブチルチタネート0.005gを仕込み、窒素雰囲気下で230℃まで昇温後、1時間保持した。その後、昇温と減圧を徐々に行い、最終的に270℃、0.1kPa以下で重縮合を行った。適度な溶融粘度になった時点で反応を終了し、ポリエステル樹脂を得た。得られたポリエステル樹脂の重量平均分子量は46800、ガラス転移温度は171℃、全光線透過率は91%であった。
 得られたポリエステル樹脂を20質量部、テトラヒドロフランを80質量部混合し、固形分濃度20質量%の塗布液を得た。基材として厚み50μmの延伸ポリエチレンテレフタレートフィルム(東洋紡(株)製エステルフィルムE5100)を用い、バーコーターNo.20を使用して基材に塗布液を塗布し、100℃で60分乾燥させることでコートフィルムを得た。得られたコートフィルムについて、その水蒸気透過率を評価した。また、コート層厚みは5.7μmであり、水蒸気透過率から計算される水蒸気透過係数は1.14g・mm/m・day(40℃90%RH)であった。
 上記で得られたポリエステル樹脂を用い、以下に示す流延法にて光学フィルムを作製した。すなわち、上記ポリエステル樹脂をジクロロメタンに5wt%濃度になるように溶解させ、水平を確認したキャスト板に流延後、キャスト溶液からの溶媒の蒸発量を調整しながら揮発させ、厚さ50μmの透明な光学フィルムを得た。乾燥機を使用し、得られた光学フィルムをガラス転移温度以下の温度で十分に乾燥させた後、5cm×1cmのサンプルを切り出し、エリプソメーターを使用して光弾性係数を評価したところ、-0.4×10-12(m/N)であった。
<比較モノマー合成例>
 500mLステンレス製反応器にアクリル酸メチル95g(1.10mol)、ジシクロペンタジエン105g(0.79mol)を仕込み195℃で2時間反応を行った。下記式(8)で表されるモノオレフィン127g及び式(2a)で表されるモノオレフィン55gを含有する反応液を取得した。これを蒸留精製することによって、式(8)で表されるモノオレフィンを得、一部を以下の反応に供した。
 500mLステンレス製反応器を使用し、蒸留精製した式(8)で表されるモノオレフィンのヒドロホルミル化反応をCO/H混合ガス(CO/Hモル比=1)を用いて行った。反応器に式(8)で表されるモノオレフィン100g、トルエン200g、亜リン酸トリフェニル0.614g、別途調製したRh(acac)(CO)のトルエン溶液200μL(濃度0.0097mol/L)を加えた。窒素及びCO/H混合ガスによる置換を各々3回行った後、CO/H混合ガスで系内を加圧し、100℃、2MPaにて4.5時間反応を行った。反応終了後、反応液のガスクロマトグラフィー分析を行い、式(9)で表される二官能性化合物113gを含む反応液(転化率100%、選択率94%)であることを確認すると共に、これを蒸留精製した後、一部を以下の反応に供した。
 500mLステンレス製反応器に蒸留精製した式(9)で表される二官能性化合物70g、スポンジコバルト触媒(日興リカ株式会社製:R-400)14mL、トルエン210gを添加し、水素ガスで系内を加圧し、3MPa、100℃で3.5時間反応を行った。反応後、得られたスラリーを孔径0.2μmのメンブレンフィルターで触媒をろ過した。その後、エバポレーターを使用して溶媒を留去し、GC-MSで分析し、分子量184の主生成物69gを含有することが確認された(主生成物収率98%)。これをさらに蒸留精製し、主生成物(10)を取得した。
Figure JPOXMLDOC01-appb-C000012
<比較例1>
 原料モノマーとして比較モノマー合成例で得られた式(10)で表される化合物を用い、重縮合の最終温度を265℃とした以外は、実施例2と同じ方法で反応を行い、ポリエステル樹脂を得、さらに得られた樹脂を用いて実施例2と同じ手順でコートフィルムを作成し水蒸気透過率を測定し、水蒸気透過係数を算出した。得られた樹脂の重量平均分子量、ガラス転移温度、及び水蒸気透過係数を表1に示す。なお、得られたポリエステル樹脂の全光線透過率は91%であった。
Figure JPOXMLDOC01-appb-T000013
 実施例2の水蒸気透過率は、基材のみの場合の水蒸気透過率13.8g/m・dayに対して、12.9g/m・dayに低減されている。また、水蒸気透過係数で評価すると、実施例2の樹脂の水蒸気透過係数は比較例1の樹脂の約1/3である。
 本出願は、2015年5月27日出願の日本国特許出願(特願2015-107183号)及び2016年3月25日出願の日本国特許出願(特願2016-061737号)に基づくものであり、その全内容はここに参照として取り込まれる。
 本発明のポリエステル樹脂は透明性、耐熱性に優れており、透明性や耐熱性が要求される材料等に好適に用いることができ、本発明の工業的意義は大きい。

Claims (2)

  1.  一般式(1)で表される構成単位を含む、ポリエステル樹脂。
    Figure JPOXMLDOC01-appb-C000001
    (上記一般式(1)において、R1は水素原子、CH又はCであり、R2及びR3は、それぞれ独立に水素原子又はCHである。)
  2.  一般式(2)で表される化合物を重合させる工程を有する、ポリエステル樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000002
    (上記一般式(2)において、R1は水素原子、CH又はCであり、R2及びR3は、それぞれ独立に水素原子又はCHであり、Xは水素原子又は炭素数4以下のヒドロキシル基を含有してもよい炭化水素基である。)
PCT/JP2016/065337 2015-05-27 2016-05-24 ポリエステル樹脂及びその製造方法 WO2016190317A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16800022.2A EP3305827B1 (en) 2015-05-27 2016-05-24 Polyester resin and production method therefor
US15/575,150 US10287391B2 (en) 2015-05-27 2016-05-24 Polyester resin and production method therefor
CN201680030834.4A CN107614569B (zh) 2015-05-27 2016-05-24 聚酯树脂及其制造方法
KR1020177036059A KR102569041B1 (ko) 2015-05-27 2016-05-24 폴리에스터 수지 및 그의 제조 방법
JP2017520723A JP6708210B2 (ja) 2015-05-27 2016-05-24 ポリエステル樹脂及びその製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2015-107183 2015-05-27
JP2015107183 2015-05-27
JP2016-061737 2016-03-25
JP2016061737 2016-03-25

Publications (1)

Publication Number Publication Date
WO2016190317A1 true WO2016190317A1 (ja) 2016-12-01

Family

ID=57392923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/065337 WO2016190317A1 (ja) 2015-05-27 2016-05-24 ポリエステル樹脂及びその製造方法

Country Status (7)

Country Link
US (1) US10287391B2 (ja)
EP (1) EP3305827B1 (ja)
JP (1) JP6708210B2 (ja)
KR (1) KR102569041B1 (ja)
CN (1) CN107614569B (ja)
TW (1) TWI687451B (ja)
WO (1) WO2016190317A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062325A1 (ja) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 共重合ポリエステル樹脂
WO2019146575A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 成形体
WO2019194117A1 (ja) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 ポリエステル樹脂組成物
US20200239492A1 (en) * 2017-10-03 2020-07-30 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Continuous Process for Cycloaddition Reactions
WO2021200613A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109791245B (zh) * 2016-09-28 2021-06-15 三菱瓦斯化学株式会社 光学膜、相位差膜、偏光板
JP7240090B2 (ja) * 2017-10-03 2023-03-15 日東電工株式会社 偏光板、画像表示装置、および偏光板の製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115096B2 (ja) * 1978-06-23 1986-04-22 Toyo Ink Mfg Co
JP2000281613A (ja) * 1999-03-31 2000-10-10 Arakawa Chem Ind Co Ltd 脂環式ジオール及びその製造方法
WO2011048851A1 (ja) * 2009-10-22 2011-04-28 日立化成工業株式会社 トリシクロデカンモノメタノールモノカルボン酸誘導体の製造方法
WO2012035874A1 (ja) * 2010-09-14 2012-03-22 日立化成工業株式会社 ノルボルナン骨格を有するポリエステル及びその製造方法
WO2015147242A1 (ja) * 2014-03-28 2015-10-01 三菱瓦斯化学株式会社 ノルボルナン骨格を有する二官能性化合物およびその製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58174419A (ja) 1982-04-08 1983-10-13 Japan Synthetic Rubber Co Ltd 新規なポリエステル共重合体
JP2001064374A (ja) 1999-06-23 2001-03-13 Daicel Chem Ind Ltd 新規なポリエステル重合体とその製造法
JP2001064372A (ja) 1999-06-23 2001-03-13 Daicel Chem Ind Ltd 機能性ポリエステル重合体とその製造法
JP2003119259A (ja) 2001-10-12 2003-04-23 Nippon Ester Co Ltd ポリエステル樹脂
KR100948708B1 (ko) * 2002-04-08 2010-03-22 니폰 제온 가부시키가이샤 노보넨계 개환중합체, 노보넨계 개환중합체 수소화물 및이들의 제조방법
US7169880B2 (en) 2003-12-04 2007-01-30 Eastman Chemical Company Shaped articles from cycloaliphatic polyester compositions
JP2007161917A (ja) * 2005-12-15 2007-06-28 Teijin Ltd ポリエチレンナフタレート樹脂
JP2008133223A (ja) 2006-11-29 2008-06-12 Honshu Chem Ind Co Ltd エキソ型ヒドロキシテトラシクロドデカンカルボン酸類及びその製造方法
KR20130101008A (ko) * 2010-09-07 2013-09-12 니폰 제온 가부시키가이샤 수지 조성물 및 그 성형체
TWI576336B (zh) 2015-03-25 2017-04-01 三菱瓦斯化學股份有限公司 含有降莰烷骨架之二官能性化合物及其製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6115096B2 (ja) * 1978-06-23 1986-04-22 Toyo Ink Mfg Co
JP2000281613A (ja) * 1999-03-31 2000-10-10 Arakawa Chem Ind Co Ltd 脂環式ジオール及びその製造方法
WO2011048851A1 (ja) * 2009-10-22 2011-04-28 日立化成工業株式会社 トリシクロデカンモノメタノールモノカルボン酸誘導体の製造方法
WO2012035874A1 (ja) * 2010-09-14 2012-03-22 日立化成工業株式会社 ノルボルナン骨格を有するポリエステル及びその製造方法
WO2015147242A1 (ja) * 2014-03-28 2015-10-01 三菱瓦斯化学株式会社 ノルボルナン骨格を有する二官能性化合物およびその製造方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
T.SUGIMOTO: "Syn Selectivity in Diels-Alder Reactions of Isodicyclopentadiene", J. ORG. CHEM., vol. 41, no. 8, 1976, pages 1457 - 1459, XP055333001 *
TORU KIKUCHI ET AL.: "Stereostructure and Composition of Products from Hydroformylation of Dicyclopentadiene using Carbon Dioxide as a Reactant", HITACHI KASEI TECHNICAL REPORT, July 2008 (2008-07-01), pages 7 - 12, XP009507624 *

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018062325A1 (ja) * 2016-09-28 2018-04-05 三菱瓦斯化学株式会社 共重合ポリエステル樹脂
JPWO2018062325A1 (ja) * 2016-09-28 2019-07-11 三菱瓦斯化学株式会社 共重合ポリエステル樹脂
US10894859B2 (en) 2016-09-28 2021-01-19 Mitsubishi Gas Chemical Company, Inc. Copolymerized polyester resin
US20200239492A1 (en) * 2017-10-03 2020-07-30 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Continuous Process for Cycloaddition Reactions
US11725014B2 (en) * 2017-10-03 2023-08-15 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Continuous process for cycloaddition reactions
US11236198B2 (en) 2018-01-23 2022-02-01 Mitsubishi Gas Chemical Company, Inc. Molded article
JP7318534B2 (ja) 2018-01-23 2023-08-01 三菱瓦斯化学株式会社 成形体
JPWO2019146575A1 (ja) * 2018-01-23 2021-01-07 三菱瓦斯化学株式会社 成形体
WO2019146575A1 (ja) * 2018-01-23 2019-08-01 三菱瓦斯化学株式会社 成形体
EP3744790A4 (en) * 2018-01-23 2020-12-02 Mitsubishi Gas Chemical Company, Inc. MOLDED ARTICLE
KR102655030B1 (ko) * 2018-01-23 2024-04-04 미츠비시 가스 가가쿠 가부시키가이샤 성형체
KR20200110363A (ko) * 2018-01-23 2020-09-23 미츠비시 가스 가가쿠 가부시키가이샤 성형체
EP3778772A4 (en) * 2018-04-04 2021-02-17 Mitsubishi Gas Chemical Company, Inc. POLYESTER RESIN COMPOSITION
WO2019194117A1 (ja) * 2018-04-04 2019-10-10 三菱瓦斯化学株式会社 ポリエステル樹脂組成物
JP7307405B2 (ja) 2018-04-04 2023-07-12 三菱瓦斯化学株式会社 ポリエステル樹脂組成物
US20210147619A1 (en) * 2018-04-04 2021-05-20 Mitsubishi Gas Chemical Company, Inc. Polyester resin composition
JPWO2019194117A1 (ja) * 2018-04-04 2021-04-08 三菱瓦斯化学株式会社 ポリエステル樹脂組成物
WO2021200613A1 (ja) * 2020-03-31 2021-10-07 三菱瓦斯化学株式会社 樹脂組成物並びにそれを含む光学レンズ及び光学フィルム
EP4130096A4 (en) * 2020-03-31 2023-08-30 Mitsubishi Gas Chemical Company, Inc. COMPOSITION OF RESIN, OPTICAL LENS CONTAINING IT, AND OPTICAL FILM

Also Published As

Publication number Publication date
CN107614569B (zh) 2021-01-15
EP3305827B1 (en) 2020-01-15
KR20180012781A (ko) 2018-02-06
TW201704288A (zh) 2017-02-01
US20180142059A1 (en) 2018-05-24
JPWO2016190317A1 (ja) 2018-03-15
JP6708210B2 (ja) 2020-06-10
EP3305827A4 (en) 2018-12-26
KR102569041B1 (ko) 2023-08-21
CN107614569A (zh) 2018-01-19
US10287391B2 (en) 2019-05-14
EP3305827A1 (en) 2018-04-11
TWI687451B (zh) 2020-03-11

Similar Documents

Publication Publication Date Title
WO2016190317A1 (ja) ポリエステル樹脂及びその製造方法
CN109791245B (zh) 光学膜、相位差膜、偏光板
JP2019026738A (ja) ポリエステル樹脂、及びそれを用いたポリエステル樹脂溶液、塗料、コーティング剤
JP6965888B2 (ja) 共重合ポリエステル樹脂
JP6041180B1 (ja) ノルボルナン骨格を有する二官能性化合物、及びその製造方法
JP2019026752A (ja) 樹脂組成物及び成形体
CN113677734B (zh) 热塑性树脂、成型体和热塑性树脂用单体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16800022

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017520723

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15575150

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20177036059

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2016800022

Country of ref document: EP