WO2018061405A1 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
WO2018061405A1
WO2018061405A1 PCT/JP2017/025405 JP2017025405W WO2018061405A1 WO 2018061405 A1 WO2018061405 A1 WO 2018061405A1 JP 2017025405 W JP2017025405 W JP 2017025405W WO 2018061405 A1 WO2018061405 A1 WO 2018061405A1
Authority
WO
WIPO (PCT)
Prior art keywords
flow rate
water vapor
inert gas
supplied
mixed gas
Prior art date
Application number
PCT/JP2017/025405
Other languages
English (en)
French (fr)
Inventor
則政 松井
Original Assignee
株式会社Screenホールディングス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Screenホールディングス filed Critical 株式会社Screenホールディングス
Priority to KR1020197005335A priority Critical patent/KR102129219B1/ko
Priority to CN201780053402.XA priority patent/CN109690743B/zh
Publication of WO2018061405A1 publication Critical patent/WO2018061405A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67017Apparatus for fluid treatment
    • H01L21/67063Apparatus for fluid treatment for etching
    • H01L21/67075Apparatus for fluid treatment for etching for wet etching
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/84Processes or apparatus specially adapted for manufacturing record carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30604Chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31105Etching inorganic layers
    • H01L21/31111Etching inorganic layers by chemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67098Apparatus for thermal treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/6715Apparatus for applying a liquid, a resin, an ink or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Definitions

  • the present invention relates to a substrate processing technique for processing a substrate with a processing solution that is aerated and stirred.
  • Substrates to be processed include semiconductor wafers, glass substrates for liquid crystal display devices, FED (Field Emission Display) substrates, glass substrates for plasma display panels, optical disk substrates, magnetic disk substrates, magneto-optical disk substrates, and photomasks.
  • Various types of substrates such as industrial substrates are included.
  • a diffuser is disposed in an etching tank that holds an etching solution, a moist gas is supplied to a gas supply pipe inside the diffuser, and the etching solution is wetted from a large number of small holes communicating with the gas supply pipe.
  • a substrate processing apparatus in which bubbles are generated in an etching solution by blowing gas to perform aeration and stirring of the etching solution.
  • the said apparatus produces
  • Patent Document 1 discloses a technique using a humidified gas generated by adding mist-like water to an unhumidified gas and a technique using water vapor generated by a steam generator. Has been. According to the apparatus, when the damp gas passes through the small hole of the diffuser, drying of the inner wall of the small hole is prevented. Thereby, blockage of the small holes due to the adhesion of the scale is prevented.
  • an apparatus for performing an etching process by immersing a substrate in a phosphoric acid aqueous solution heated to a temperature near the boiling point (for example, 160 ° C.), when bubbles are generated by blowing a dry gas into the phosphoric acid aqueous solution, As the temperature rises and the water vapor evaporated from the phosphoric acid aqueous solution enters the bubbles, the bubble diameter increases and the substrate is damaged by the bubbles.
  • a temperature near the boiling point for example, 160 ° C.
  • the bubble diameter when the generated bubbles pass through the substrate the damage of the substrate is maintained while maintaining the stirring performance. It is necessary to control to a size that can be suppressed. For this purpose, it is necessary to control the humidity of the moist gas to an appropriate range that satisfies this condition.
  • the present invention has been made to solve these problems, and in the technology for treating a substrate with an aqueous solution of phosphoric acid that has been aerated and stirred, it is possible to suppress the damage to the substrate and provide a technology that can improve the processing efficiency of the substrate.
  • the purpose is to do.
  • a substrate processing apparatus includes a treatment tank that contains a phosphoric acid aqueous solution and performs an etching treatment on a substrate immersed in the phosphoric acid aqueous solution, and a water vapor that supplies water vapor.
  • the substrate processing apparatus which concerns on a 2nd aspect is a substrate processing apparatus which concerns on a 1st aspect, Comprising:
  • the flow rate of the water vapor supplied by the water vapor supply mechanism and the flow rate of the inert gas supplied by the inert gas supply mechanism are adjusted so as to obtain a flow rate.
  • the substrate processing apparatus which concerns on a 3rd aspect is a substrate processing apparatus which concerns on a 2nd aspect, Comprising: While the humidity of the said mixed gas becomes the said target humidity, the flow volume of the said mixed gas becomes the said target flow rate
  • a flow rate acquisition unit that acquires a flow rate of the water vapor supplied by the water vapor supply mechanism and a flow rate of the inert gas supplied by the inert gas supply mechanism; a flow rate of the water vapor acquired by the flow rate acquisition unit;
  • an adjustment mechanism control unit that controls the flow rate adjustment mechanism based on the flow rate of the active gas.
  • the substrate processing apparatus which concerns on a 4th aspect is a substrate processing apparatus which concerns on a 3rd aspect, Comprising:
  • the flow rate of the water vapor supplied by the water vapor supply mechanism and the flow rate of the inert gas supplied by the inert gas supply mechanism at the target flow rate are acquired by performing a predetermined calculation.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to fourth aspects, wherein the water vapor supplied by the water vapor supply mechanism is supplied to the mixing mechanism.
  • a substrate processing apparatus is the substrate processing apparatus according to any one of the first to fifth aspects, wherein the mixed gas is heated before being supplied to the bubble generator.
  • a heater is further provided.
  • the substrate processing method which concerns on a 7th aspect is a substrate processing method which etches the board
  • the mixing mechanism mixes water vapor and an inert gas to generate a mixed gas
  • the bubble generator blows the mixed gas into the phosphoric acid aqueous solution to generate bubbles of the mixed gas. Is generated.
  • the flow rate adjusting mechanism adjusts the flow rate of the water vapor supplied by the water vapor supply mechanism and the flow rate of the inert gas supplied by the inert gas supply mechanism so that the humidity of the mixed gas becomes the target humidity. Therefore, the target humidity is the humidity corresponding to the bubble diameter when the index value expressing the damage the substrate receives from the bubbles satisfies the predetermined condition and the index value expressing the processing efficiency of the substrate satisfies the predetermined condition. If set to, damage to the substrate can be suppressed and the processing efficiency of the substrate can be improved.
  • the flow rate adjusting mechanism adjusts the flow rate of the mixed gas by adjusting the flow rate of the water vapor supplied by the water vapor supply mechanism and the flow rate of the inert gas supplied by the inert gas supply mechanism. While making the target flow rate, the humidity of the mixed gas can be set as the target humidity. Therefore, it is possible to suppress the damage to the substrate and improve the processing efficiency of the substrate while stabilizing the range in which the phosphoric acid aqueous solution in the treatment tank is stirred by the bubbles.
  • the flow rate acquisition unit acquires the flow rate of water vapor and the flow rate of the inert gas when the humidity of the mixed gas becomes the target humidity and the flow rate of the mixed gas becomes the target flow rate.
  • the adjustment mechanism control unit controls the flow rate adjustment mechanism based on the water vapor flow rate and the inert gas flow rate acquired by the flow rate acquisition unit. Therefore, even when the target humidity and the target flow rate vary, the flow rate of the mixed gas can be set as the target flow rate, and the humidity of the mixed gas can be set as the target humidity.
  • the flow rate acquisition unit determines whether the flow rate of the water vapor supplied by the water vapor supply mechanism when the humidity of the mixed gas becomes the target humidity and the flow rate of the mixed gas becomes the target flow rate.
  • the flow rate of the inert gas supplied by the active gas supply mechanism is acquired by performing a predetermined calculation. Therefore, even when the target humidity and the target flow rate fluctuate, the flow rate of water vapor and the flow rate of the inert gas corresponding to the target humidity and the target flow rate can be acquired.
  • the steam heater heats the steam supplied by the steam supply mechanism before being supplied to the mixing mechanism, and the inert gas heater is supplied by the inert gas supply mechanism.
  • the inert gas to be heated is heated before being supplied to the mixing mechanism. Therefore, when the water vapor supplied to the mixing mechanism and the inert gas are mixed and a mixed gas is generated, it is possible to suppress the temperature of the mixed gas from decreasing and causing dew condensation.
  • the mixed gas heater heats the mixed gas before being supplied to the bubble generator. Therefore, it can suppress that the temperature of mixed gas falls before supplying to a bubble generator.
  • the mixing step mixes water vapor and an inert gas to generate a mixed gas
  • the bubble generation step blows the mixed gas into the phosphoric acid aqueous solution to bubble the mixed gas. Is generated.
  • the flow rate adjustment step the flow rate of the water vapor supplied in the water vapor supply step and the flow rate of the inert gas supplied in the inert gas supply step are adjusted so that the humidity of the mixed gas becomes the target humidity. Therefore, the target humidity is the humidity corresponding to the bubble diameter when the index value expressing the damage the substrate receives from the bubbles satisfies the predetermined condition and the index value expressing the processing efficiency of the substrate satisfies the predetermined condition. If set to, damage to the substrate can be suppressed and the processing efficiency of the substrate can be improved.
  • FIG. 2 is a perspective view schematically showing a schematic configuration of a substrate processing mechanism in FIG. 1.
  • FIG. 3 is a perspective view schematically showing a schematic configuration of the substrate processing mechanism of FIG. 2.
  • FIG. 1 is a schematic side view schematically illustrating a schematic configuration of a substrate processing apparatus 1 according to an embodiment.
  • the substrate processing apparatus 1 is a batch type substrate processing apparatus that collectively performs etching using a phosphoric acid aqueous solution on a plurality of batch-assembled substrates W (substrate group W1).
  • the substrate processing apparatus 1 includes a processing tank 61, a water vapor supply mechanism 2 that supplies water vapor 82, and an inert gas supply mechanism 3 that supplies an inert gas 83.
  • the treatment tank 61 accommodates the phosphoric acid aqueous solution 87 and performs an etching process on the substrate W (substrate group W1) immersed in the phosphoric acid aqueous solution 87.
  • the substrate processing apparatus 1 includes a flow rate adjusting mechanism 4 that adjusts the flow rate Q0 of the water vapor 82 supplied by the water vapor supply mechanism 2 and the flow rate Q1 of the inert gas 83 supplied by the inert gas supply mechanism 3, a mixing mechanism 5, A bubble generator 64 accommodated in the processing tank 61 is further provided.
  • the mixing mechanism 5 is supplied with the water vapor 82 from the water vapor supply mechanism 2 and the inert gas 83 from the inert gas supply mechanism 3, and mixes the supplied water vapor 82 and the inert gas 83 to provide a mixed gas.
  • 84 is generated.
  • the bubble generator 64 is supplied with the mixed gas 84 from the mixing mechanism 5 and blows the supplied mixed gas 84 into the phosphoric acid aqueous solution 87 to generate bubbles 85 of the mixed gas 84.
  • the water vapor supply mechanism 2 supplies the water vapor 82 to the pipe 51 of the mixing mechanism 5.
  • the steam supply mechanism 2 heats a sealed steam generation tank 22 for generating steam 82, a pure water supply source 21 for supplying pure water 81, and pure water 81 accommodated in the steam generation tank 22. And a heater 25 that generates water vapor 82 by boiling.
  • the water vapor generation tank 22 includes a bottom wall, a peripheral wall that stands up from the periphery of the bottom wall and surrounds the bottom wall, and an upper wall that abuts the front end of the peripheral wall and closes the front end of the peripheral wall.
  • the pure water supply source 21 communicates with one end of the pipe 23.
  • the pure water supply source 21 supplies pure water to the pipe 23 by a pump or the like from a storage tank (not shown) that stores pure water.
  • the pipe 23 penetrates the upper wall of the water vapor generation tank 22 and is disposed in the water vapor generation tank 22, and the other end of the pipe 23 opens in the water vapor generation tank 22.
  • the pure water supply source 21 includes an on-off valve (not shown) that switches supply / stop of the pure water 81 to the pipe 23, and the operation of the on-off valve is controlled by the control unit 130.
  • the pure water supply source 21 supplies the pure water 81 to the water vapor generation tank 22 so that the water level of the pure water 81 accommodated in the water vapor generation tank 22 becomes the reference water level.
  • the steam supply mechanism 2 includes a pipe 24 that penetrates the upper wall of the steam generation tank 22. One end of the pipe 24 is open in the space 29. The other end of the pipe 24 communicates with the pipe 51 of the mixing mechanism 5.
  • a flow rate control device 41 of the flow rate adjustment mechanism 4 is provided in the middle of the route of the pipe 24.
  • the water vapor supply mechanism 2 further includes a water level sensor 27 that can detect that the water level of the pure water 81 is lower than the reference water level.
  • the output signal of the water level sensor 27 is supplied to the control unit 130. Based on the output signal of the water level sensor 27, the control unit 130 controls the opening / closing operation of the opening / closing valve of the pure water supply source 21 so that the water level of the pure water 81 in the water vapor generation tank 22 is maintained at the reference water level. .
  • the water vapor supply mechanism 2 further includes a pipe that communicates the outside with the inside of the water vapor generation tank 22 and a pressure adjustment valve 26 provided in the middle of the pipe.
  • the pressure adjustment valve 26 keeps the humidity of the water vapor generation tank 22 constant, and suppresses a rapid fluctuation of the pressure in the water vapor generation tank 22 in order to protect the water vapor generation tank 22.
  • the pressure adjustment valve 26 includes, for example, an electric actuator that is controlled by the control unit 130.
  • the control unit 130 controls the electric actuator to freely set the set pressure P0 in the pressure adjustment valve 26.
  • the pressure regulating valve 26 When the pressure of the water vapor 82 in the space 29 becomes higher than the set pressure P0, the pressure regulating valve 26 is opened to lower the pressure of the water vapor 82, and closes if the pressure of the water vapor 82 is equal to or lower than the set pressure P0.
  • the heater 25 heats the pure water 81 to boil, water vapor 82 is generated and fills the space 29.
  • the water vapor 82 filled in the space 29 is supplied to the pipe 51 through the pipe 24.
  • the flow rate of the water vapor 82 supplied to the pipe 51 is adjusted by the flow rate control device 41.
  • the water vapor supply mechanism 2 further includes a heater (“water vapor heater”) 28.
  • the heater 28 is provided so as to cover the periphery of the pipe 24.
  • the heater 28 heats the pipe 24 according to the control of the control unit 130, thereby heating the steam 82 supplied by the steam supply mechanism 2 through the pipe 24 before being supplied to the pipe 51 of the mixing mechanism 5. Adjust the temperature.
  • the water vapor supply mechanism 2 includes a temperature sensor 91 that measures the temperature of the pure water 81, a humidity sensor 92 that measures the humidity of the generated water vapor 82, a temperature sensor 93 that measures the temperature of the pipe 24, and the pipe 24. And a flow meter 94 for measuring the flow rate of the water vapor 82 flowing through the water.
  • the measured values of the temperature sensor 91, the humidity sensor 92, the temperature sensor 93, and the flow meter 94 are supplied to the control unit 130.
  • the inert gas supply mechanism 3 supplies a dry inert gas (in the illustrated example, a dry N 2 gas) 83 to the pipe 51 of the mixing mechanism 5.
  • the inert gas supply mechanism 3 includes an inert gas supply source 31, a pipe 34, a regulator 32 provided in the middle of the pipe 34, and a heater (“inert gas heater”) 33.
  • One end of the pipe 34 communicates with the inert gas supply source 31 and the other end communicates with the pipe 51.
  • the inert gas supply source 31 stores an inert gas 83 that is compressed and dried.
  • the inert gas supply source 31 supplies the stored inert gas 83 to the pipe 34.
  • the regulator 32 adjusts the pressure of the inert gas 83 supplied from the inert gas supply source 31 to a predetermined value.
  • the heater 33 adjusts the temperature of the inert gas 83 by heating the inert gas 83 before the inert gas 83 is supplied to the mixing mechanism 5 under the control of the control unit 130.
  • the pipe 34 is further provided with a flow rate control device 42 of the flow rate adjustment mechanism 4.
  • the flow control device 42 adjusts the flow rate of the inert gas 83 supplied from the inert gas supply source 31 to the pipe 51.
  • the inert gas supply mechanism 3 further includes a temperature sensor 95 and a flow meter 96 for measuring the temperature and flow rate of the inert gas 83 flowing through the pipe 34, respectively.
  • the measured values of the temperature sensor 95 and the flow meter 96 are supplied to the control unit 130.
  • the flow rate adjustment mechanism 4 adjusts the flow rate of the water vapor 82 supplied by the water vapor supply mechanism 2 and the flow rate of the inert gas 83 supplied by the inert gas supply mechanism 3.
  • the flow rate adjusting mechanism 4 includes a flow rate control device 41 provided in the middle of the route of the pipe 24 and a flow rate control device 42 provided in the middle of the route of the pipe 34.
  • the flow rate control device 41 controls the supply amount per unit time of the water vapor 82 flowing through the pipe 24, that is, the flow rate Q0 of the water vapor 82.
  • the flow rate control device 42 controls the supply amount of the inert gas 83 flowing through the pipe 34 per unit time, that is, the flow rate Q1 of the inert gas 83.
  • the flow control devices 41 and 42 are configured to include, for example, a mass flow controller (MFC).
  • MFC mass flow controller
  • the control unit 130 sets the supply amount of the water vapor 82 (inert gas 83) per unit time in the flow control device 41 (42). Thereby, the supply amount per unit time of the water vapor 82 (inert gas 83) is adjusted to the set supply amount.
  • an electric valve that can adjust the opening degree of the valve by the control from the control unit 130 may be employed.
  • the mixing mechanism 5 is supplied with the water vapor 82 from the water vapor supply mechanism 2 through the pipe 24 and is supplied with the inert gas 83 from the inert gas supply mechanism 3 through the pipe 34.
  • the mixing mechanism 5 mixes the supplied water vapor 82 and the inert gas 83 to generate a mixed gas 84.
  • the mixing mechanism 5 includes a pipe (“mixing pipe”) 51 and a heater (“mixed gas heater”) 52.
  • the heater 52 is provided so as to cover the periphery of the pipe 51.
  • One end of the pipe 51 is connected to the other end of the pipe 24 and the other end of the pipe 34.
  • the other end of the pipe 51 communicates with the bubble generator 64 of the substrate processing mechanism 6.
  • the water vapor 82 generated in the water vapor generation tank 22 of the water vapor supply mechanism 2 is supplied to the pipe 51 after the flow rate Q0 is adjusted by the flow control device 41.
  • the dried inert gas 83 supplied from the inert gas supply source 31 of the inert gas supply mechanism 3 is supplied to the pipe 51 after the flow rate Q1 is adjusted by the flow rate control device 42.
  • the water vapor 82 and the inert gas 83 supplied to the pipe 51 are mixed with each other in the pipe 51. Thereby, the mixed gas 84 is produced
  • the heater 52 heats the mixed gas 84 before the mixed gas 84 is supplied to the bubble generator 64 by adjusting the temperature of the mixed gas 84 by heating the pipe 51 according to the control of the control unit 130.
  • the mixing mechanism 5 further includes a temperature sensor 97, a humidity sensor 98, and a flow meter 99 that measure the temperature, humidity, and flow rate of the mixed gas 84 that flows through the pipe 51, respectively.
  • the measured values of the temperature sensor 97, the humidity sensor 98, and the flow meter 99 are supplied to the control unit 130.
  • FIG. 1 is a side cross-sectional view schematically showing the bubble generator 64 of the substrate processing mechanism 6.
  • the substrate processing mechanism 6 performs an etching process using the phosphoric acid aqueous solution 87 on a plurality of batch-assembled substrates W (substrate group W1).
  • the substrate processing mechanism 6 includes a processing tank 61, a bubble generator 64 accommodated in the processing tank 61, and a lifter 68 that can move up and down while supporting the substrate group W1.
  • the treatment tank 61 contains the phosphoric acid aqueous solution 87 and performs an etching process on the substrate W (substrate group W1) immersed in the phosphoric acid aqueous solution 87.
  • the processing tank 61 includes a bottom wall and a peripheral wall that surrounds the bottom wall and is erected from the periphery of the bottom wall. An opening is formed in the upper portion of the processing tank 61. The opening is formed so as to be surrounded by the tip of the peripheral wall of the processing tank 61.
  • a pipe (“phosphoric acid aqueous solution supply pipe”) 62 is provided in the treatment tank 61.
  • the pipe 62 communicates with a phosphoric acid aqueous solution supply source (not shown) provided outside the processing tank 61.
  • the phosphoric acid aqueous solution supply source supplies the phosphoric acid aqueous solution 87, which has been previously heated to a temperature near the boiling point (for example, 160 ° C.) to the pipe 62 by a heater.
  • a large number of discharge ports (not shown) are formed in the peripheral wall of the pipe 62.
  • the phosphoric acid aqueous solution 87 supplied to the pipe 62 is discharged from the discharge port into the processing tank 61 and accommodated in the processing tank 61.
  • a flat holding plate 67 is provided on the bottom wall of the treatment tank 61 in parallel with the bottom plate. At least one (two in the illustrated example) cylindrical bubble generator 64 is attached to the upper surface of the holding plate 67.
  • the bubble generator 64 is supplied with the mixed gas 84 from the mixing mechanism 5 and blows the supplied mixed gas 84 into the phosphoric acid aqueous solution 87 in the treatment tank 61 to generate bubbles 85 of the mixed gas 84. Since the bubble generator 64 is exposed to the high-temperature phosphoric acid aqueous solution 87, it is preferable that the bubble generator 64 is formed, for example, in a cylindrical shape from quartz, for example.
  • the other end of the pipe 51 is connected to one end of the bubble generator 64.
  • the inner peripheral surface of the bubble generator 64 forms a flow path 65 through which the mixed gas 84 supplied from the pipe 51 flows.
  • the tip (other end) of the bubble generator 64 is closed by a wall portion.
  • a large number of discharge ports 66 are formed in the upper portion of the peripheral wall of the bubble generator 64.
  • Each discharge port 66 communicates with the flow path 65 in the bubble generator 64 and opens on the outer peripheral surface of the bubble generator 64.
  • the diameter D1 of each discharge port 66 is set to 0.1 mm to 0.5 mm, for example.
  • the bubble generator 64 is preferably extended along the arrangement direction of the plurality of substrates W supported by the lifter 68.
  • the bubble generator 64 blows out the mixed gas 84 supplied from the pipe 51 from each discharge port 66 into the phosphoric acid aqueous solution 87 through the flow path 65, thereby causing the bubbles 85 of the mixed gas 84 to enter the phosphoric acid aqueous solution 87. generate.
  • the water vapor evaporated from the phosphoric acid aqueous solution 87 tends to enter the bubbles 85.
  • the mixed gas 84 that forms the bubbles 85 is not dried and the volumetric absolute humidity is set to the target humidity, entry of water vapor into the bubbles 85 is suppressed. Thereby, the expansion of the bubbles 85 due to the entry of water vapor is suppressed. Therefore, the damage which the board
  • the lifter 68 includes a plate-like lifter head 68a standing in the vertical direction and a substrate support member 68b.
  • the lifter head 68a is moved up and down by a lifting mechanism (not shown) provided outside the processing tank 61.
  • the substrate support member 68b is provided so as to be able to support a plurality of substrates W (substrate group W1) arranged in a horizontal direction in a vertically standing posture from below.
  • the substrate support member 68b includes a plurality of (three in the illustrated example) long members.
  • the plurality of long members extend from the lower end portion of one main surface of the lifter head 68a to the same side with respect to the lifter head 68a along the same direction (normal direction of the one main surface).
  • a gap is provided between the adjacent long members.
  • Each substrate W is supported by the substrate support member 68b so that its main surface is parallel to one main surface of the lifter head 68a.
  • a plurality of grooves are formed in a plurality of portions that support the plurality of substrates W among the upper end portions of the long members of the substrate support member 68b.
  • Each groove has a width slightly wider than the thickness of the substrate W and is formed along the main surface of the substrate W (one main surface of the lifter head 68a).
  • the depth of each groove is set to be approximately equal to the width of the peripheral edge of the substrate W.
  • the lifter 68 receives the substrate group W1 assembled in batch from a transfer robot (not shown) at the delivery position above the processing tank 61. After receiving the substrate group W 1, the lifter 68 descends into the processing tank 61 from the opening of the processing tank 61, so that the substrate group W 1 is collectively contained in the processing tank 61 and immersed in the phosphoric acid aqueous solution 87. To do. When the processing on the substrate group W1 is completed, the lifter 68 moves up to the delivery position above the processing tank 61 and delivers the processed substrate group W1 to the transport robot.
  • the substrate processing apparatus 1 includes a control unit 130 for controlling each unit.
  • the hardware configuration of the control unit 130 can be the same as that of a general computer. That is, the control unit 130 includes, for example, a CPU 11 that performs various arithmetic processes, a ROM (not shown) that is a read-only memory that stores basic programs, a RAM (not shown) that is a readable / writable memory that stores various information, An input unit (not shown) that receives an input from an operator and a storage device 14 that stores a program PG, data, and the like corresponding to various processes are connected to a bus line (not shown).
  • the storage device 14 also stores a target temperature T2, a target flow rate Q2, a target humidity H2, and the like of the mixed gas 84 set via an input unit or the like.
  • control unit 130 various functional units that control each unit of the substrate processing apparatus 1 are realized by the CPU 11 as the main control unit performing arithmetic processing according to the procedure described in the program PG. Specifically, the CPU 11 operates as each functional unit such as, for example, the flow rate acquisition unit 15 and the adjustment mechanism control unit 16.
  • the flow rate acquisition unit 15 supplies the flow rate Q0 of the water vapor 82 supplied by the water vapor supply mechanism 2 and the inert gas supply when the humidity of the mixed gas 84 becomes the target humidity H2 and the flow rate of the mixed gas 84 becomes the target flow rate Q2.
  • the flow rate Q1 of the inert gas 83 supplied by the mechanism 3 is acquired by performing a predetermined calculation.
  • the flow rate acquisition unit 15 is configured such that the flow rate Q0 of the water vapor 82 supplied by the water vapor supply mechanism 2 and the inert gas supply mechanism when the flow rate of the mixed gas 84 becomes the target flow rate Q2 while the humidity of the mixed gas 84 becomes the target humidity H2. It is also possible to obtain the flow rate Q1 of the inert gas 83 supplied by 3.
  • the adjustment mechanism control unit 16 controls the flow rate adjustment mechanism 4 based on the flow rate Q0 of the water vapor 82 and the flow rate Q1 of the inert gas 83 acquired by the flow rate acquisition unit 15.
  • Each part of the substrate processing apparatus 1 such as the water vapor supply mechanism 2, the inert gas supply mechanism 3, the flow rate adjustment mechanism 4, and the substrate processing mechanism 6 operates according to the control of the control unit 130.
  • FIG. 5 illustrates a theoretical relationship between the volumetric absolute humidity of the mixed gas 84 blown into the phosphoric acid aqueous solution 87 and the volume expansion rate of the bubbles 85 of the mixed gas 84 generated in the phosphoric acid aqueous solution 87. It is the figure shown in the graph format.
  • the expansion ratio of the bubbles 85 is the ratio of the volume of the expanded bubbles 85 to the volume of the bubbles 85 before expansion (immediately after being discharged from the discharge port 66 of the bubble generator 64).
  • the expansion rate of the bubble volume decreases. Specifically, for example, when the absolute volume humidity increases from 100 g / m 3 to 500 g / m 3 , the expansion rate of the volume of the bubbles 85 decreases from about 14 times to about 4 times.
  • FIG. 6 is a flowchart showing an example of the operation of the substrate processing apparatus 1. An example of the operation of the substrate processing apparatus 1 will be described below based on FIG.
  • the operator Prior to the start of the operation illustrated in FIG. 6 by the substrate processing apparatus 1, the operator operates the input unit of the control unit 130 to target the target flow rate Q2 [m 3 / m 3 of the mixed gas 84 supplied to the processing tank 61. s], target humidity H2 [kg / m 3 ], target temperature T2 [° C.], and set pressure P0 of the pressure regulating valve 26 of the steam generation tank 22 are set. These set values are stored in the storage device 14, read by the CPU 11, and used for control by the control unit 130. In order to prevent condensation, the target temperature T2 is preferably set higher than a temperature T0 described later.
  • the substrate processing apparatus 1 starts supplying the water vapor 82 (step S10 in FIG. 6). More specifically, when the set pressure P0 of the pressure regulating valve 26, that is, the pressure P0 of the water vapor 82 is set, the control unit 130 calculates the temperature T0 of the water vapor 82 from the vapor pressure curve using the saturated vapor pressure as the pressure P0. .
  • the control unit 130 controls the heater 25 to heat the pure water 81 so that the temperature of the pure water 81 measured by the temperature sensor 91 becomes the calculated temperature T0. Thereby, the water vapor
  • the flow rate acquisition unit 15 of the control unit 130 inputs the set target flow rate Q2 and the target humidity H2 of the mixed gas 84 and the humidity H0 of the water vapor 82 measured by the humidity sensor 92 into the equation (1) to generate water vapor.
  • a flow rate Q0 of the water vapor 82 supplied from the tank 22 to the pipe 24 is calculated.
  • the flow rate acquisition unit 15 calculates the flow rate Q1 so that the sum of the flow rate Q0 of the water vapor 82 and the flow rate Q1 of the inert gas 83 becomes the target flow rate Q2 of the mixed gas 84.
  • the adjustment mechanism control unit 16 of the control unit 130 supplies the water vapor 82 by controlling the flow rate control device 41 so that the flow rate of the water vapor 82 becomes the calculated flow rate Q0.
  • the controller 130 feeds back the humidity of the mixed gas 84 measured by the humidity sensor 98 in the pipe 51.
  • the control unit 130 finely adjusts the flow rate Q0 of the water vapor 82 so that the humidity of the mixed gas 84 becomes the target humidity H2.
  • the flow rate Q0 of the water vapor 82 is measured by the flow meter 94.
  • volume absolute humidity H0 of the water vapor 82 generated in the water vapor generation tank 22 is approximated by the equation (2) assuming that the water vapor 82 is an ideal gas.
  • the substrate processing apparatus 1 starts supplying the inert gas 83 (step S20). More specifically, the control unit 130 controls the heater 33 based on the temperature of the inert gas (dried N 2 gas) 83 measured by the temperature sensor 95 so that the inert gas 83 becomes the temperature T1. The inert gas 83 is heated.
  • the adjustment mechanism control unit 16 of the control unit 130 supplies the inert gas 83 by controlling the flow rate control device 42 so that the flow rate of the inert gas 83 becomes the calculated flow rate Q1. Thereby, the inert gas supply mechanism 3 starts supply of the inert gas 83 heated to the temperature T1 to the pipe 51.
  • the water vapor 82 supplied by the water vapor supply mechanism 2 via the pipe 24 and the inert gas 83 supplied by the inert gas supply mechanism 3 via the pipe 34 are supplied to the pipe 51 of the mixing mechanism 5.
  • the mixed gas 84 is generated by mixing (step S30).
  • the substrate processing apparatus 1 adjusts the flow rate of the water vapor 82 and the flow rate of the inert gas 83 (step S40). More specifically, the flow rate adjusting mechanism 4 has a flow rate of the water vapor 82 supplied by the water vapor supply mechanism 2 so that the humidity of the mixed gas 84 becomes the target humidity H2 and the flow rate of the mixed gas 84 becomes the target flow rate Q2. Q0 and the flow rate Q1 of the inert gas 83 supplied by the inert gas supply mechanism 3 are adjusted.
  • the flow rate adjustment mechanism 4 is configured so that the flow rate Q0 of the water vapor 82 supplied by the water vapor supply mechanism 2 and the inert gas supply mechanism 3 are controlled so that the humidity of the mixed gas 84 becomes the target humidity H2 under the control of the adjustment mechanism control unit 16.
  • the flow rate Q1 of the inert gas 83 to be supplied can also be adjusted.
  • the flow rate of the mixed gas 84 flowing through the pipe 51 is measured by the flow meter 99.
  • the measured flow rate is fed back to the control unit 130.
  • the adjustment mechanism control unit 16 of the control unit 130 adjusts the flow rate Q1 of the inert gas 83 by controlling the flow rate control device 42 so that the flow rate of the mixed gas 84 becomes the target flow rate Q2.
  • the flow rate Q1 of the inert gas 83 is measured by the flow meter 96.
  • the control unit 130 heats the pipe 51 by the heater 52 based on the temperature of the mixed gas 84 measured by the temperature sensor 97, and adjusts the temperature of the mixed gas 84 flowing through the pipe 51 to the target temperature T2.
  • the mixed gas 84 adjusted to the target temperature T ⁇ b> 2 is supplied to the processing tank 61 through the pipe 51.
  • the humidity of the mixed gas 84 flowing through the pipe 51 is measured by a humidity sensor 98.
  • the measured humidity is fed back to the control unit 130.
  • the adjustment mechanism control unit 16 controls the flow rate control device 41 to adjust the flow rate Q0 of the water vapor 82 supplied from the water vapor generation tank 22 to the pipe 24 so that the humidity of the mixed gas 84 becomes the target humidity H2.
  • the flow rate of the mixed gas 84 flowing through the pipe 51 is measured by the flow meter 99.
  • the measured flow rate is fed back to the control unit 130.
  • the control unit 130 adjusts the flow rate Q0 of the water vapor 82 supplied from the water vapor generation tank 22 to the pipe 24 by controlling the set value of the flow rate control device 41 so that the flow rate of the mixed gas 84 becomes the target flow rate Q2.
  • the substrate processing mechanism 6 blows out the mixed gas 84 supplied through the pipe 51 from the discharge port 66 of the bubble generator 64 into the phosphoric acid aqueous solution 87 and generates the bubbles 85 of the mixed gas 84 in the phosphoric acid aqueous solution 87. (Step S50).
  • the substrate processing apparatus 1 may not include the adjustment mechanism control unit 16 that controls the flow rate adjustment mechanism 4.
  • each adjustment valve capable of manually adjusting the opening degree is provided, and the operator manually adjusts the opening degree of each adjustment valve, whereby the flow rate of the steam 82 is adjusted.
  • Q0 and the flow rate Q1 of the inert gas 83 are adjusted.
  • the mixing mechanism 5 may be provided outside the processing tank 61 or may be provided inside the processing tank 61.
  • a steam supply facility in a factory where the substrate processing apparatus 1 is installed may be used as the water vapor supply mechanism 2.
  • the mixing mechanism 5 mixes the water vapor 82 and the inert gas 83 to generate the mixed gas 84, and the bubble generator 64
  • the gas 84 is blown into the phosphoric acid aqueous solution 87 to generate bubbles 85 of the mixed gas 84.
  • the flow rate adjustment mechanism 4 sets the flow rate of the water vapor 82 supplied by the water vapor supply mechanism 2 and the flow rate of the inert gas 83 supplied by the inert gas supply mechanism 3 so that the humidity of the mixed gas 84 becomes the target humidity. adjust.
  • the index value expressing the damage that the substrate W receives from the bubbles 85 satisfies a predetermined condition, and the index value expressing the processing efficiency of the substrate W corresponds to the bubble diameter of the bubbles 85 when the predetermined condition is satisfied. If the humidity is set to the target humidity, the damage of the substrate W can be suppressed and the processing efficiency of the substrate W can be improved.
  • the flow rate adjusting mechanism 4 includes the flow rate of the water vapor 82 supplied by the water vapor supply mechanism 2 and the inert gas supplied by the inert gas supply mechanism 3.
  • the humidity of the mixed gas 84 can be set to the target humidity while adjusting the flow rate of the gas 83 to set the flow rate of the mixed gas 84 to the target flow rate. Therefore, it is possible to suppress damage to the substrate W and improve the processing efficiency of the substrate W while stabilizing the range in which the phosphoric acid aqueous solution 87 in the processing tank 61 is stirred by the bubbles 85.
  • the flow rate acquisition unit 15 is configured such that the humidity of the mixed gas 84 becomes the target humidity and the flow rate of the mixed gas 84 becomes the target flow rate.
  • the flow rate of the water vapor 82 and the flow rate of the inert gas 83 are acquired.
  • the adjustment mechanism control unit 16 controls the flow rate adjustment mechanism 4 based on the flow rate of the water vapor 82 and the flow rate of the inert gas 83 acquired by the flow rate acquisition unit 15. Therefore, even when the target humidity and the target flow rate vary, the flow rate of the mixed gas 84 can be set as the target flow rate, and the humidity of the mixed gas 84 can be set as the target humidity.
  • the flow rate acquisition unit 15 is configured such that the humidity of the mixed gas 84 becomes the target humidity and the flow rate of the mixed gas 84 becomes the target flow rate.
  • the flow rate of the water vapor 82 supplied by the water vapor supply mechanism 2 and the flow rate of the inert gas 83 supplied by the inert gas supply mechanism 3 are obtained by performing a predetermined calculation. Therefore, even when the target humidity and the target flow rate vary, the flow rate of the water vapor 82 and the flow rate of the inert gas 83 according to the target humidity and the target flow rate can be acquired.
  • the heater 28 heats the water vapor 82 supplied by the water vapor supply mechanism 2 before being supplied to the mixing mechanism 5, and the heater 33.
  • the inert gas 83 supplied by the inert gas supply mechanism 3 is heated before being supplied to the mixing mechanism 5. Therefore, when the water vapor 82 and the inert gas 83 supplied to the mixing mechanism 5 are mixed and the mixed gas 84 is generated, it is possible to suppress the temperature of the mixed gas 84 from being lowered and causing dew condensation.
  • the heater 52 heats the mixed gas 84 before being supplied to the bubble generator 64. Therefore, the temperature of the mixed gas 84 can be prevented from decreasing before being supplied to the bubble generator 64.
  • the mixing step mixes the water vapor 82 and the inert gas 83 to generate the mixed gas 84
  • the bubble generation step generates the mixed gas 84.
  • Bubbles 85 of the mixed gas 84 are generated by blowing into the phosphoric acid aqueous solution 87.
  • the flow rate adjustment step adjusts the flow rate of the water vapor 82 supplied in the water vapor supply step and the flow rate of the inert gas 83 supplied in the inert gas supply step so that the humidity of the mixed gas 84 becomes the target humidity. To do.
  • the index value expressing the damage that the substrate W receives from the bubbles 85 satisfies a predetermined condition, and the index value expressing the processing efficiency of the substrate W corresponds to the bubble diameter of the bubbles 85 when the predetermined condition is satisfied. If the humidity is set to the target humidity, the damage of the substrate W can be suppressed and the processing efficiency of the substrate W can be improved.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nonlinear Science (AREA)
  • Inorganic Chemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Liquid Crystal (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)
  • Weting (AREA)

Abstract

基板のダメージを抑制するとともに、基板の処理効率を向上させることを目的とする。当該目的を達成するために、基板処理装置は、リン酸水溶液を収容し、当該リン酸水溶液に浸漬された基板にエッチング処理を施す処理槽と、水蒸気を供給する水蒸気供給機構と、不活性ガスを供給する不活性ガス供給機構と、水蒸気供給機構から水蒸気を供給されるとともに、不活性ガス供給機構から不活性ガスを供給され、供給された水蒸気と不活性ガスとを混合して混合気体を生成する混合機構と、混合機構から混合気体を供給されるとともに、供給された混合気体をリン酸水溶液中に吹き出して混合気体の気泡を発生させる気泡発生器と、混合気体の湿度が目標湿度になるように、水蒸気供給機構が供給する水蒸気の流量と不活性ガス供給機構が供給する不活性ガスの流量とを調整する流量調整機構と、を備える。

Description

基板処理装置および基板処理方法
 本発明は、曝気攪拌されている処理液によって基板を処理する基板処理技術に関する。処理対象の基板には、半導体ウエハ、液晶表示装置用ガラス基板、FED(Field Emission Display)用基板、プラズマディスプレイパネル用ガラス基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板およびフォトマスク用基板などの各種の基板が含まれる。
 特許文献1には、エッチング液を保持するエッチング槽にディフューザを配置し、湿った気体をディフューザ内部の気体供給管に供給し、気体供給管と連通する多数の小孔からエッチング液中に湿った気体を吹き出させることによってエッチング液中に気泡を発生させてエッチング液の曝気撹拌を行う基板処理装置が示されている。当該装置は、コンプレッサにより圧縮され除湿された空気を、加湿槽内の水中を通過させて湿らせることによって湿った空気を生成し、ディフューザに供給する。特許文献1には、湿った気体として、他に、未加湿の気体に霧状の水を加えることによって生成される加湿気体を用いる手法と、蒸気発生器によって発生させた水蒸気を用いる手法が示されている。当該装置によれば、ディフューザの小孔を湿った気体が通ることによって、小孔の内壁の乾燥が防止される。これにより、スケールの付着による小孔の閉塞が防止される。
特開2008-147637号公報
 沸点近傍の温度(例えば、160℃)に加熱されたリン酸水溶液に基板を浸漬してエッチング処理を行う装置において、乾燥した気体をリン酸水溶液中に吹き出させて気泡を発生させると、気泡の温度上昇と、リン酸水溶液から蒸発した水蒸気が気泡に入り込むこととによって、気泡径が拡大し、気泡によって基板がダメージを受ける。
 湿った気体を、リン酸水溶液中に吹き出させて気泡を発生させれば、リン酸水溶液から蒸発した水蒸気が気泡内へ入り込むことが抑制されて気泡の拡大が抑制され、基板が受けるダメージを軽減できると考えられる一方、気泡が小さすぎると、リン酸水溶液の撹拌性能が低下してエッチングの効率が低下すると考えられる。
 このため、撹拌性能の低下を抑制しつつ、基板が気泡から受けるダメージを抑制するためには、発生した気泡が基板を通過するときの気泡径を、撹拌性能を維持しつつ、基板のダメージを抑制できる大きさに制御する必要が有る。このためには、湿った気体の湿度を、この条件を満たす適切な範囲に制御する必要が有る。
 特許文献1に示される各手法によって生成される湿った気体を、リン酸水溶液中に供給する場合、当該湿った気体の湿度を所望の範囲に制御することは容易ではない。このため、基板のダメージを抑制しつつ基板の処理効率を向上することが困難であるといった問題がある。
 本発明は、こうした問題を解決するためになされたもので、曝気撹拌されているリン酸水溶液によって基板を処理する技術において、基板のダメージを抑制できるとともに、基板の処理効率を向上できる技術を提供することを目的とする。
 上記の課題を解決するために、第1の態様に係る基板処理装置は、リン酸水溶液を収容し、当該リン酸水溶液に浸漬された基板にエッチング処理を施す処理槽と、水蒸気を供給する水蒸気供給機構と、不活性ガスを供給する不活性ガス供給機構と、前記水蒸気供給機構から前記水蒸気を供給されるとともに、前記不活性ガス供給機構から前記不活性ガスを供給され、供給された前記水蒸気と前記不活性ガスとを混合して混合気体を生成する混合機構と、前記混合機構から前記混合気体を供給されるとともに、供給された前記混合気体を前記リン酸水溶液中に吹き出して前記混合気体の気泡を発生させる気泡発生器と、前記混合気体の湿度が目標湿度になるように、前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを調整する流量調整機構と、を備える。
 第2の態様に係る基板処理装置は、第1の態様に係る基板処理装置であって、前記流量調整機構は、前記混合気体の湿度が前記目標湿度になるとともに、前記混合気体の流量が目標流量になるように、前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを調整する。
 第3の態様に係る基板処理装置は、第2の態様に係る基板処理装置であって、前記混合気体の湿度が前記目標湿度になるとともに、前記混合気体の流量が前記目標流量になるときの前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを取得する流量取得部と、前記流量取得部が取得した前記水蒸気の流量と前記不活性ガスの流量とに基づいて前記流量調整機構を制御する調整機構制御部と、をさらに備える。
 第4の態様に係る基板処理装置は、第3の態様に係る基板処理装置であって、前記流量取得部は、前記混合気体の湿度が前記目標湿度になるとともに、前記混合気体の流量が前記目標流量になるときの、前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを、定められた演算を行うことによって取得する。
 第5の態様に係る基板処理装置は、第1から第4の何れか1つの態様に係る基板処理装置であって、前記水蒸気供給機構が供給する前記水蒸気を、前記混合機構に供給される前に加熱する水蒸気加熱ヒーターと、前記不活性ガス供給機構が供給する前記不活性ガスを、前記混合機構に供給される前に加熱する不活性ガス加熱ヒーターを備える。
 第6の態様に係る基板処理装置は、第1から第5の何れか1つの態様に係る基板処理装置であって、前記混合気体を、前記気泡発生器に供給される前に加熱する混合気体加熱ヒーターをさらに備える。
 第7の態様に係る基板処理方法は、リン酸水溶液に浸漬された基板にエッチング処理を施す基板処理方法であって、水蒸気を供給する水蒸気供給ステップと、不活性ガスを供給する不活性ガス供給ステップと、前記水蒸気供給ステップにおいて供給される前記水蒸気と、前記不活性ガス供給ステップにおいて供給される前記不活性ガスとを混合して混合気体を生成する混合ステップと、前記混合気体を前記リン酸水溶液中に吹き出して前記混合気体の気泡を発生させる気泡発生ステップと、前記混合気体の湿度が目標湿度になるように、前記水蒸気供給ステップにおいて供給される前記水蒸気の流量と前記不活性ガス供給ステップにおいて供給される前記不活性ガスの流量とを調整する流量調整ステップと、を備える。
 第1の態様に係る発明によれば、混合機構は、水蒸気と不活性ガスとを混合して混合気体を生成し、気泡発生器は、混合気体をリン酸水溶液中に吹き出して混合気体の気泡を発生させる。そして、流量調整機構は、混合気体の湿度が目標湿度になるように、水蒸気供給機構が供給する水蒸気の流量と不活性ガス供給機構が供給する不活性ガスの流量とを調整する。従って、基板が気泡から受けるダメージを表現する指標値が所定の条件を満たし、かつ、基板の処理効率を表現する指標値が所定の条件を満たすときの気泡の気泡径に対応した湿度を目標湿度に設定すれば、基板のダメージを抑制できるとともに、基板の処理効率を向上できる。
 第2の態様に係る発明によれば、流量調整機構は、水蒸気供給機構が供給する水蒸気の流量と不活性ガス供給機構が供給する不活性ガスの流量とを調整して、混合気体の流量を目標流量にしつつ、混合気体の湿度を目標湿度とすることができる。従って、処理槽中のリン酸水溶液が気泡によって撹拌される範囲を安定させつつ、基板のダメージの抑制と、基板の処理効率の向上とを図ることができる。
 第3の態様に係る発明によれば、流量取得部は、混合気体の湿度が目標湿度になるとともに、混合気体の流量が目標流量になるときの水蒸気の流量と不活性ガスの流量とを取得する。調整機構制御部は、流量取得部が取得した水蒸気の流量と不活性ガスの流量とに基づいて流量調整機構を制御する。従って、目標湿度と目標流量が変動する場合でも、混合気体の流量を目標流量とし、混合気体の湿度を目標湿度とすることができる。
 第4の態様に係る発明によれば、流量取得部は、混合気体の湿度が目標湿度になるとともに、混合気体の流量が目標流量になるときの、水蒸気供給機構が供給する水蒸気の流量と不活性ガス供給機構が供給する不活性ガスの流量とを、定められた演算を行うことによって取得する。従って、目標湿度と目標流量が変動する場合でも目標湿度と目標流量に応じた水蒸気の流量と不活性ガスの流量とを取得することができる。
 第5の態様に係る発明によれば、水蒸気加熱ヒーターは、水蒸気供給機構が供給する水蒸気を、混合機構に供給される前に加熱し、不活性ガス加熱ヒーターは、不活性ガス供給機構が供給する不活性ガスを、混合機構に供給される前に加熱する。従って、混合機構に供給された水蒸気と不活性ガスとが混合されて混合気体が生成される際に、混合気体の温度が低下して結露が生ずることを抑制できる。
 第6の態様に係る発明によれば、混合気体加熱ヒーターは、混合気体を、気泡発生器に供給される前に加熱する。従って、気泡発生器に供給される前に、混合気体の温度が低下することを抑制できる。
 第7の態様に係る発明によれば、混合ステップは、水蒸気と不活性ガスとを混合して混合気体を生成し、気泡発生ステップは、混合気体をリン酸水溶液中に吹き出して混合気体の気泡を発生させる。そして、流量調整ステップは、混合気体の湿度が目標湿度になるように、水蒸気供給ステップにおいて供給される水蒸気の流量と不活性ガス供給ステップにおいて供給される不活性ガスの流量とを調整する。従って、基板が気泡から受けるダメージを表現する指標値が所定の条件を満たし、かつ、基板の処理効率を表現する指標値が所定の条件を満たすときの気泡の気泡径に対応した湿度を目標湿度に設定すれば、基板のダメージを抑制できるとともに、基板の処理効率を向上できる。
実施形態に係る基板処理装置の概略構成を模式的に示す側面模式図である。 図1の基板処理機構の概略構成を模式的に示す斜視図である。 図2の基板処理機構の概略構成を模式的に示す斜視図である。 図2の基板処理機構の気泡発生器を模式的に示す側面断面図である。 容積絶対湿度と気泡体積の拡大率との関係をグラフ形式で示す図である。 実施形態に係る基板処理装置の動作を示すフローチャートである。
 以下、図面を参照しながら、実施の形態について説明する。以下の実施の形態は、本発明を具体化した一例であり、本発明の技術的範囲を限定する事例ではない。また、以下に参照する各図では、理解容易のため、各部の寸法や数が誇張または簡略化して図示されている場合がある。また、各図では、同様な構成および機能を有する部分に同じ符号が付され、下記説明では重複説明が省略される。上下方向は鉛直方向であり、処理槽内の気泡発生器に対してリフタが上である。
 <1.基板処理装置の構成>
 図1は、実施形態に係る基板処理装置1の概略構成を模式的に示す側面模式図である。基板処理装置1は、バッチ組みされた複数枚の基板W(基板群W1)に対して一括してリン酸水溶液を用いたエッチング処理を施すバッチ式の基板処理装置である。
 基板処理装置1は、処理槽61と、水蒸気82を供給する水蒸気供給機構2と、不活性ガス83を供給する不活性ガス供給機構3とを備える。処理槽61は、リン酸水溶液87を収容し、リン酸水溶液87に浸漬された基板W(基板群W1)にエッチング処理を施す。
 基板処理装置1は、水蒸気供給機構2が供給する水蒸気82の流量Q0と不活性ガス供給機構3が供給する不活性ガス83の流量Q1とを調整する流量調整機構4と、混合機構5と、処理槽61内に収容された気泡発生器64とを、さらに備えている。混合機構5は、水蒸気供給機構2から水蒸気82が供給されるとともに、不活性ガス供給機構3から不活性ガス83が供給され、供給された水蒸気82と不活性ガス83とを混合して混合気体84を生成する。気泡発生器64は、混合機構5から混合気体84を供給されるとともに、供給された混合気体84をリン酸水溶液87中に吹き出して混合気体84の気泡85を発生させる。
 <水蒸気供給機構2>
 水蒸気供給機構2は、混合機構5の配管51に水蒸気82を供給する。水蒸気供給機構2は、水蒸気82を生成するための密閉された水蒸気生成槽22と、純水81を供給する純水供給源21と、水蒸気生成槽22に収容された純水81を加熱して沸騰させ、水蒸気82を生成するヒーター25とを備えている。
 水蒸気生成槽22は、底壁と、底壁を取り囲んで底壁の周縁から立設された周壁と、周壁の先端に当接して周壁の先端を閉鎖する上壁とを含んでいる。
 純水供給源21は、配管23の一端に連通している。純水供給源21は、純水を貯留する不図示の貯留槽からポンプ等によって純水を配管23に供給する。配管23は、水蒸気生成槽22の上壁を貫通して水蒸気生成槽22内に配設されており、配管23の他端は、水蒸気生成槽22内で開口している。純水供給源21は、配管23への純水81の供給/停止を切り替える不図示の開閉弁を備えており、当該開閉弁の動作は制御部130によって制御される。純水供給源21は、水蒸気生成槽22内に収容された純水81の水位が基準水位となるように水蒸気生成槽22に純水81を供給する。
 純水81が基準水位に達した状態では、純水81の水面と、水蒸気生成槽22の上壁との間に空間29が形成される。水蒸気供給機構2は、水蒸気生成槽22の上壁を貫通する配管24を備えている。配管24の一端は、空間29において開口している。配管24の他端は、混合機構5の配管51に連通している。配管24の経路の途中には流量調整機構4の流量制御機器41が設けられている。
 ヒーター25が水蒸気生成槽22内の純水81を加熱して水蒸気82を生成すると、水蒸気生成槽22内の純水81の水位が低下する。このため、水蒸気供給機構2は、純水81の水位が基準水位よりも低下したことを検出可能な水位センサー27をさらに備えている。水位センサー27の出力信号は、制御部130に供給される。制御部130は、水位センサー27の出力信号に基づいて、水蒸気生成槽22内の純水81の水位が基準水位に保たれるように純水供給源21の当該開閉弁の開閉動作を制御する。
 水蒸気供給機構2は、外部と水蒸気生成槽22内とを連通する配管と、当該配管の途中に設けられた圧力調整弁26とをさらに備えている。圧力調整弁26は、水蒸気生成槽22の湿度を一定にし、また、水蒸気生成槽22を保護するために、水蒸気生成槽22内の圧力の急激な変動を抑制する。圧力調整弁26は、例えば、制御部130によって制御される電動アクチュエーターを備えている。制御部130は、電動アクチュエーターを制御して、圧力調整弁26に設定圧力P0を自在に設定する。圧力調整弁26は、空間29における水蒸気82の圧力が設定圧力P0よりも高くなると、開放されて水蒸気82の圧力を下げ、水蒸気82の圧力が設定圧力P0以下であれば、閉じる。ヒーター25が純水81を加熱して沸騰させると、水蒸気82が生成されて空間29に充満する。空間29に充満した水蒸気82は、配管24を介して配管51へと供給される。配管51へ供給される水蒸気82の流量は、流量制御機器41によって調整される。
 また、水蒸気供給機構2は、ヒーター(「水蒸気加熱ヒーター」)28をさらに備えている。ヒーター28は、配管24の周囲を覆うように設けられている。ヒーター28は、制御部130の制御に従って配管24を加熱することによって、水蒸気供給機構2が配管24によって供給する水蒸気82を、混合機構5の配管51に供給される前に加熱して水蒸気82の温度を調整する。
 また、水蒸気供給機構2は、純水81の温度を測定する温度センサー91と、生成される水蒸気82の湿度を測定する湿度センサー92と、配管24の温度を測定する温度センサー93と、配管24を流れる水蒸気82の流量を測定する流量計94とをさらに備えている。温度センサー91、湿度センサー92、温度センサー93、流量計94の測定値は、制御部130に供給される。
 <不活性ガス供給機構3>
 不活性ガス供給機構3は、混合機構5の配管51に乾燥した不活性ガス(図示の例では、乾燥したNガス)83を供給する。不活性ガス供給機構3は、不活性ガス供給源31と、配管34と、配管34の途中に設けられたレギュレーター32、ヒーター(「不活性ガス加熱ヒーター」)33とを備えている。配管34は、一端が不活性ガス供給源31に連通しており、他端が配管51に連通している。
 不活性ガス供給源31は、圧縮されているとともに、乾燥している不活性ガス83を貯留している。不活性ガス供給源31は、貯留している不活性ガス83を配管34に供給する。レギュレーター32は、不活性ガス供給源31から供給される不活性ガス83の圧力を定められた値に調整する。ヒーター33は、制御部130の制御に従って、不活性ガス83が混合機構5に供給される前に不活性ガス83を加熱することによって、不活性ガス83の温度を調整する。
 配管34には、流量調整機構4の流量制御機器42がさらに設けられている。流量制御機器42は、不活性ガス供給源31から配管51に供給される不活性ガス83の流量を調整する。
 また、不活性ガス供給機構3は、配管34を流れる不活性ガス83の温度と流量とをそれぞれ測定する温度センサー95と流量計96とをさらに備えている。温度センサー95、流量計96の測定値は、制御部130に供給される。
 <流量調整機構4>
 流量調整機構4は、水蒸気供給機構2が供給する水蒸気82の流量と不活性ガス供給機構3が供給する不活性ガス83の流量とを調整する。流量調整機構4は、配管24の経路途中に設けられた流量制御機器41と、配管34の経路途中に設けられた流量制御機器42とを備えている。
 流量制御機器41は、配管24を流れる水蒸気82の単位時間当りの供給量、すなわち水蒸気82の流量Q0を制御する。流量制御機器42は、配管34を流れる不活性ガス83の単位時間当りの供給量、すなわち不活性ガス83の流量Q1を制御する。流量制御機器41、42は、例えば、マスフローコントローラー(MFC)を備えて構成される。制御部130は、水蒸気82(不活性ガス83)の単位時間当りの供給量を、流量制御機器41(42)に設定する。これにより、水蒸気82(不活性ガス83)の単位時間当りの供給量は、設定された供給量に調整される。流量制御機器41、42として、例えば、制御部130からの制御により弁の開度が調節可能な電動弁などが採用されてもよい。
 <混合機構5>
 混合機構5は、水蒸気供給機構2から配管24を介して水蒸気82を供給されるとともに、不活性ガス供給機構3から配管34を介して不活性ガス83を供給される。混合機構5は、供給された水蒸気82と不活性ガス83とを混合して混合気体84を生成する。
 混合機構5は、配管(「混合配管」)51と、ヒーター(「混合気体加熱ヒーター」)52とを備えている。ヒーター52は、配管51の周囲を覆うように設けられている。配管51の一端には、配管24の他端と、配管34の他端とが接続されている。配管51の他端は、基板処理機構6の気泡発生器64に連通している。
 水蒸気供給機構2の水蒸気生成槽22において生成された水蒸気82は、その流量Q0を流量制御機器41によって調整された後、配管51に供給される。不活性ガス供給機構3の不活性ガス供給源31から供給される乾燥した不活性ガス83は、その流量Q1を流量制御機器42によって調整された後、配管51に供給される。配管51に供給された水蒸気82と不活性ガス83とは配管51において互いに混合される。これにより、混合気体84が生成される。ヒーター52は、制御部130の制御に従って配管51を加熱することによって、混合気体84が気泡発生器64に供給される前に混合気体84を加熱して混合気体84の温度を調整する。
 混合機構5は、配管51を流れる混合気体84の温度、湿度、および流量をそれぞれ測定する温度センサー97、湿度センサー98、および流量計99をさらに備えている。温度センサー97、湿度センサー98、流量計99の測定値は、制御部130に供給される。
 <基板処理機構6>
 図2、図3は、基板処理装置1の基板処理機構6の概略構成を模式的に示す斜視図である。図2、図3は、基板処理機構6の処理槽61に収容された気泡発生器64、リフタ68等を透視した図として示されている。図3では、図2に示されるリフタ68の記載が省略されている。図4は、基板処理機構6の気泡発生器64を模式的に示す側面断面図である。
 基板処理機構6は、バッチ組みされた複数枚の基板W(基板群W1)に対して一括してリン酸水溶液87を用いたエッチング処理を施す。基板処理機構6は、処理槽61と、処理槽61に収容された気泡発生器64と、基板群W1を支持して昇降可能なリフタ68とを備えている。
 処理槽61は、リン酸水溶液87を収容し、リン酸水溶液87に浸漬された基板W(基板群W1)にエッチング処理を施す。処理槽61は、底壁と、底壁を取り囲んで底壁の周縁から立設された周壁とを含んでいる。処理槽61の上部には開口部が形成されている。当該開口部は、処理槽61の周壁の先端によって囲まれて形成されている。
 処理槽61内には、配管(「リン酸水溶液供給配管」)62が設けられている。配管62には、処理槽61の外部に設けられた不図示のリン酸水溶液供給源が連通している。リン酸水溶液供給源は、ヒーターによって、予め、沸点近傍の温度(例えば、160℃)に加熱したリン酸水溶液87を配管62に供給する。配管62の周壁には、多数の吐出口(不図示)が形成されている。配管62に供給されたリン酸水溶液87は、当該吐出口から処理槽61内に吐出されて、処理槽61に収容される。
 処理槽61の底壁には、平板状の保持板67が底板と平行に設けられている。保持板67の上面には、少なくとも1つ(図示の例では2つ)の筒状の気泡発生器64が取り付けられている。
 気泡発生器64は、混合機構5から混合気体84を供給されるとともに、供給された混合気体84を、処理槽61内のリン酸水溶液87中に吹き出して混合気体84の気泡85を発生させる。気泡発生器64は、高温のリン酸水溶液87に曝されるため、例えば、石英によって、例えば、円筒状に形成されることが好ましい。
 気泡発生器64の一端には、配管51の他端が接続されている。気泡発生器64の内周面は、配管51から供給される混合気体84が流れる流路65を成している。気泡発生器64の先端(他端)は、壁部によって閉塞されている。気泡発生器64の周壁のうち上側部分には、多数の吐出口66が形成されている。各吐出口66は、気泡発生器64内の流路65に連通し、気泡発生器64の外周面に開口している。各吐出口66の口径D1は、例えば、0.1mm~0.5mmに設定される。気泡発生器64は、好ましくは、リフタ68によって支持される複数の基板Wの配列方向に沿って延設されている。
 気泡発生器64は、配管51から供給された混合気体84を、流路65を経て各吐出口66からリン酸水溶液87中に吹き出すことによって、混合気体84の気泡85をリン酸水溶液87中に発生させる。気泡85がリン酸水溶液87内で上昇する過程で、気泡85内には、リン酸水溶液87から蒸発した水蒸気が入り込もうとする。しかし、気泡85を形成する混合気体84は、乾燥しておらず、その容積絶対湿度が目標湿度に設定されているため、気泡85内への水蒸気の入り込みが抑制される。これにより、水蒸気の入り込みによる気泡85の拡大が抑制される。従って、リン酸水溶液87に浸漬される基板Wが気泡85から受けるダメージを抑制できる。
 リフタ68は、鉛直方向に立った姿勢の板状のリフタヘッド68aと、基板支持部材68bとを備えている。リフタヘッド68aは、処理槽61の外部に設けられた不図示の昇降機構によって昇降される。
 基板支持部材68bは、鉛直方向に立った姿勢で水平方向に配列された複数の基板W(基板群W1)を下方から支持可能に設けられている。基板支持部材68bは、複数(図示の例では3個)の長尺部材を含んでいる。当該複数の長尺部材は、リフタヘッド68aの一主面の下端部分から互いに同じ方向(当該一主面の法線方向)に沿って、リフタヘッド68aに対してそれぞれ同じ側に延設されている。互いに隣り合う長尺部材の間には、隙間が設けられている。これにより、リフタ68に支持された各基板Wの下端側の周縁は、リフタ68の下方に設けられている気泡発生器64に対向する。
 各基板Wは、その主面がリフタヘッド68aの一主面と平行になるように、基板支持部材68bによって支持される。基板支持部材68bの各長尺部材の上端部分のうち複数の基板Wを支持する複数の部分には、不図示の複数の溝部が形成されている。各溝部は、基板Wの厚みよりも若干広い幅で、基板Wの主面(リフタヘッド68aの一主面)に沿って形成されている。各溝部の深さは、基板Wの周縁部の幅に略等しくなるように設定されている。これにより、基板Wは、その周縁部を各長尺部材のうち対応する各溝部によって挟まれた状態で、基板支持部材68bによって下方から支持される。
 リフタ68は、処理槽61の上方の受渡し位置において、予めバッチ組みされた基板群W1を不図示の搬送ロボットから受け取る。リフタ68は、基板群W1を受け取った後に、処理槽61の開口部から処理槽61内に降下することによって、基板群W1を一括して処理槽61内に収容し、リン酸水溶液87に浸漬する。基板群W1に対する処理が終了すると、リフタ68は、処理槽61の上方の受渡し位置まで上昇して、処理済みの基板群W1を搬送ロボットに引き渡す。
 <制御部130>
 基板処理装置1は、その各部の制御のために制御部130を備えている。制御部130のハードウエアとしての構成は、例えば、一般的なコンピュータと同様のものを採用できる。すなわち、制御部130は、例えば、各種演算処理を行うCPU11、基本プログラムを記憶する読み出し専用のメモリであるROM(不図示)、各種情報を記憶する読み書き自在のメモリであるRAM(不図示)、操作者の入力を受け付ける入力部(不図示)、および各種処理に対応したプログラムPGやデータなどを記憶しておく記憶装置14を不図示のバスラインに接続して構成されている。記憶装置14には、入力部等を介して設定される混合気体84の目標温度T2、目標流量Q2、目標湿度H2なども記憶されている。
 制御部130において、プログラムPGに記述された手順に従って主制御部としてのCPU11が演算処理を行うことにより、基板処理装置1の各部を制御する各種の機能部が実現される。具体的には、CPU11は、例えば、流量取得部15、および調整機構制御部16などの各機能部として動作する。
 流量取得部15は、混合気体84の湿度が目標湿度H2になるとともに、混合気体84の流量が目標流量Q2になるときの、水蒸気供給機構2が供給する水蒸気82の流量Q0と不活性ガス供給機構3が供給する不活性ガス83の流量Q1とを、定められた演算を行うことによって取得する。流量取得部15は、混合気体84の湿度が目標湿度H2になるとともに、混合気体84の流量が目標流量Q2になるときの水蒸気供給機構2が供給する水蒸気82の流量Q0と不活性ガス供給機構3が供給する不活性ガス83の流量Q1とを取得することもできる。調整機構制御部16は、流量取得部15が取得した水蒸気82の流量Q0と不活性ガス83の流量Q1とに基づいて流量調整機構4を制御する。
 水蒸気供給機構2、不活性ガス供給機構3、流量調整機構4、および基板処理機構6などの基板処理装置1の各部は、制御部130の制御に従って動作を行う。
 <2.容積絶対湿度と気泡体積の拡大率との関係について>
 図5は、リン酸水溶液87中に吹き出される混合気体84の容積絶対湿度と、リン酸水溶液87中に生ずる混合気体84の気泡85の体積拡大率との関係を理論式より算出して、グラフ形式で示した図である。気泡85の拡大率は、拡大前(気泡発生器64の吐出口66から吐出された直後)の気泡85の体積に対する、拡大後の気泡85の体積の比率である。図5に示されるように、混合気体84の容積絶対湿度が増加すると、気泡の体積の拡大率は減少している。具体的には、例えば、容積絶対湿度が100g/mから500g/mに増加すると、気泡85の体積の拡大率は、約14倍から約4倍に減少している。
 <3.基板処理装置の動作>
 図6は、基板処理装置1の動作の一例を示すフローチャートである。図6に基づいて基板処理装置1の動作の一例について以下に説明する。
 基板処理装置1による図6に記載の動作の開始に先立って、作業者は、制御部130の入力部を操作して、処理槽61に供給される混合気体84の目標流量Q2[m/s]、目標湿度H2[kg/m]、目標温度T2[℃]および水蒸気生成槽22の圧力調整弁26の設定圧力P0を設定する。これらの設定値は、記憶装置14に記憶されてCPU11によって読み出され、制御部130による制御に使用される。結露予防のために目標温度T2は、好ましくは、後述する温度T0よりも高く設定される。
 基板処理装置1は、水蒸気82の供給を開始する(図6のステップS10)。より詳細には、圧力調整弁26の設定圧力P0、すなわち水蒸気82の圧力P0が設定されると、制御部130は、飽和蒸気圧を圧力P0として蒸気圧曲線より水蒸気82の温度T0を算出する。
 制御部130は、温度センサー91によって測定される純水81の温度が算出された温度T0となるように、ヒーター25を制御して純水81の加熱を行う。これにより、水蒸気82が生成され、その供給が開始される。また、制御部130は、温度センサー93が測定する配管24の温度に基づいてヒーター28を制御して配管24の温度が温度T0となるように、すなわち配管24を流れる水蒸気82の温度が温度T0となるように配管24を加熱する。これにより、配管24の結露が抑制される。
 制御部130の流量取得部15は、混合気体84の設定された目標流量Q2、目標湿度H2と、湿度センサー92によって測定された水蒸気82の湿度H0を式(1)に入力して、水蒸気生成槽22から配管24に供給される水蒸気82の流量Q0を算出する。また、流量取得部15は、水蒸気82の流量Q0と、不活性ガス83の流量Q1との和が混合気体84の目標流量Q2となるように、流量Q1を算出する。
Figure JPOXMLDOC01-appb-M000001
 制御部130の調整機構制御部16は、水蒸気82の流量が、算出した流量Q0となるように、流量制御機器41を制御して水蒸気82を供給する。
 制御部130は、配管51で湿度センサー98により測定される混合気体84の湿度をフィードバックされる。制御部130は、混合気体84の湿度が目標湿度H2となるように、水蒸気82の流量Q0の微調整を行う。水蒸気82の流量Q0は、流量計94によって測定される。
 なお、水蒸気生成槽22で生成される水蒸気82の容積絶対湿度H0は、水蒸気82を理想気体と仮定すると、式(2)によって概算される。
Figure JPOXMLDOC01-appb-M000002
 基板処理装置1は、不活性ガス83の供給を開始する(ステップS20)。より詳細には、制御部130は、温度センサー95が測定する不活性ガス(乾燥したNガス)83の温度に基づいて、不活性ガス83が温度T1となるようにヒーター33を制御して不活性ガス83を加熱する。制御部130の調整機構制御部16は、不活性ガス83の流量が、算出した流量Q1となるように、流量制御機器42を制御して不活性ガス83を供給する。これにより、不活性ガス供給機構3は、温度T1に加熱された不活性ガス83の配管51への供給を開始する。
 基板処理装置1は、水蒸気供給機構2が配管24を介して供給する水蒸気82と、不活性ガス供給機構3が配管34を介して供給する不活性ガス83とを、混合機構5の配管51において混合して混合気体84を生成する(ステップS30)。
 基板処理装置1は、水蒸気82の流量と、不活性ガス83の流量とを調整する(ステップS40)。より具体的には、流量調整機構4は、混合気体84の湿度が目標湿度H2になるとともに、混合気体84の流量が目標流量Q2になるように、水蒸気供給機構2が供給する水蒸気82の流量Q0と不活性ガス供給機構3が供給する不活性ガス83の流量Q1とを調整する。流量調整機構4は、調整機構制御部16の制御下で、混合気体84の湿度が目標湿度H2になるように、水蒸気供給機構2が供給する水蒸気82の流量Q0と不活性ガス供給機構3が供給する不活性ガス83の流量Q1とを調整することもできる。
 より詳細には、配管51を流れる混合気体84の流量は、流量計99によって測定される。測定された流量は、制御部130にフィードバックされる。制御部130の調整機構制御部16は、混合気体84の流量が目標流量Q2となるように、流量制御機器42を制御して不活性ガス83の流量Q1を調整する。不活性ガス83の流量Q1は、流量計96によって測定される。
 制御部130は、温度センサー97が測定する混合気体84の温度に基づいて、ヒーター52によって配管51を加熱し、配管51を流れる混合気体84の温度を目標温度T2に調整する。目標温度T2に調整された混合気体84は、配管51を経て処理槽61に供給される。
 配管51を流れる混合気体84の湿度は、湿度センサー98によって測定される。測定された湿度は、制御部130にフィードバックされる。調整機構制御部16は、流量制御機器41を制御して、混合気体84の湿度が目標湿度H2になるように水蒸気生成槽22から配管24に供給される水蒸気82の流量Q0を調整する。
 配管51を流れる混合気体84の流量は、流量計99によって測定される。測定された流量は、制御部130にフィードバックされる。制御部130は、混合気体84の流量が目標流量Q2になるように流量制御機器41の設定値を制御して水蒸気生成槽22から配管24に供給される水蒸気82の流量Q0を調整する。
 基板処理機構6は、配管51を介して供給される混合気体84を気泡発生器64の吐出口66からリン酸水溶液87中に吹き出して、リン酸水溶液87中に混合気体84の気泡85を発生させる(ステップS50)。
 基板処理装置1が、流量調整機構4を制御する調整機構制御部16を備えていなくてもよい。この場合には、例えば、流量制御機器41、42として手動で開度を調整可能な各調整弁を設けて、各調整弁の開度を作業者が手動で調整することによって、水蒸気82の流量Q0と、不活性ガス83の流量Q1とが調整される。
 混合機構5は、処理槽61の外部に設けられてもよいし、処理槽61の内部に設けられてもよい。水蒸気供給機構2として基板処理装置1が設置される工場の蒸気供給設備が用いられてもよい。
 以上のように構成された本実施形態に係る基板処理装置によれば、混合機構5は、水蒸気82と不活性ガス83とを混合して混合気体84を生成し、気泡発生器64は、混合気体84をリン酸水溶液87中に吹き出して混合気体84の気泡85を発生させる。そして、流量調整機構4は、混合気体84の湿度が目標湿度になるように、水蒸気供給機構2が供給する水蒸気82の流量と不活性ガス供給機構3が供給する不活性ガス83の流量とを調整する。従って、基板Wが気泡85から受けるダメージを表現する指標値が所定の条件を満たし、かつ、基板Wの処理効率を表現する指標値が所定の条件を満たすときの気泡85の気泡径に対応した湿度を目標湿度に設定すれば、基板Wのダメージを抑制できるとともに、基板Wの処理効率を向上できる。
 また、以上のように構成された本実施形態に係る基板処理装置によれば、流量調整機構4は、水蒸気供給機構2が供給する水蒸気82の流量と不活性ガス供給機構3が供給する不活性ガス83の流量とを調整して、混合気体84の流量を目標流量にしつつ、混合気体84の湿度を目標湿度とすることができる。従って、処理槽61中のリン酸水溶液87が気泡85によって撹拌される範囲を安定させつつ、基板Wのダメージの抑制と、基板Wの処理効率の向上とを図ることができる。
 また、以上のように構成された本実施形態に係る基板処理装置によれば、流量取得部15は、混合気体84の湿度が目標湿度になるとともに、混合気体84の流量が目標流量になるときの水蒸気82の流量と不活性ガス83の流量とを取得する。調整機構制御部16は、流量取得部15が取得した水蒸気82の流量と不活性ガス83の流量とに基づいて流量調整機構4を制御する。従って、目標湿度と目標流量が変動する場合でも、混合気体84の流量を目標流量とし、混合気体84の湿度を目標湿度とすることができる。
 また、以上のように構成された本実施形態に係る基板処理装置によれば、流量取得部15は、混合気体84の湿度が目標湿度になるとともに、混合気体84の流量が目標流量になるときの、水蒸気供給機構2が供給する水蒸気82の流量と不活性ガス供給機構3が供給する不活性ガス83の流量とを、定められた演算を行うことによって取得する。従って、目標湿度と目標流量が変動する場合でも目標湿度と目標流量に応じた水蒸気82の流量と不活性ガス83の流量とを取得することができる。
 また、以上のように構成された本実施形態に係る基板処理装置によれば、ヒーター28は、水蒸気供給機構2が供給する水蒸気82を、混合機構5に供給される前に加熱し、ヒーター33は、不活性ガス供給機構3が供給する不活性ガス83を、混合機構5に供給される前に加熱する。従って、混合機構5に供給された水蒸気82と不活性ガス83とが混合されて混合気体84が生成される際に、混合気体84の温度が低下して結露が生ずることを抑制できる。
 また、以上のように構成された本実施形態に係る基板処理装置によれば、ヒーター52は、混合気体84を、気泡発生器64に供給される前に加熱する。従って、気泡発生器64に供給される前に、混合気体84の温度が低下することを抑制できる。
 また、以上のような本実施形態に係る基板処理方法によれば、混合ステップは、水蒸気82と不活性ガス83とを混合して混合気体84を生成し、気泡発生ステップは、混合気体84をリン酸水溶液87中に吹き出して混合気体84の気泡85を発生させる。そして、流量調整ステップは、混合気体84の湿度が目標湿度になるように、水蒸気供給ステップにおいて供給される水蒸気82の流量と不活性ガス供給ステップにおいて供給される不活性ガス83の流量とを調整する。従って、基板Wが気泡85から受けるダメージを表現する指標値が所定の条件を満たし、かつ、基板Wの処理効率を表現する指標値が所定の条件を満たすときの気泡85の気泡径に対応した湿度を目標湿度に設定すれば、基板Wのダメージを抑制できるとともに、基板Wの処理効率を向上できる。
 本発明は詳細に示され記述されたが、上記の記述は全ての態様において例示であって限定的ではない。したがって、本発明は、その発明の範囲内において、実施の形態を適宜、変形、省略することが可能である。
 1 基板処理装置
 2 水蒸気供給機構
 21 純水供給源
 22 水蒸気生成槽
 24 配管(水蒸気供給配管)
 25 ヒーター(純水加熱ヒーター)
 28 ヒーター(水蒸気加熱ヒーター)
 3 不活性ガス供給機構
 31 不活性ガス供給源
 33 ヒーター(不活性ガス加熱ヒーター)
 4 流量調整機構
 41,42 流量制御機器
 5 混合機構
 51 配管(混合配管)
 52 ヒーター(混合気体加熱ヒーター)
 6 基板処理機構
 61 処理槽
 62 配管(リン酸供給配管)
 64 気泡発生器(ディフューザー)
 65 流路
 66 吐出口
 67 保持板
 68 リフタ
 68a リフタヘッド
 68b 基板支持部材
 81 純水
 82 水蒸気
 83 不活性ガス
 84 混合気体
 85 気泡
 87 リン酸水溶液
 W 基板
 W1 基板群

Claims (7)

  1.  リン酸水溶液を収容し、当該リン酸水溶液に浸漬された基板にエッチング処理を施す処理槽と、
     水蒸気を供給する水蒸気供給機構と、
     不活性ガスを供給する不活性ガス供給機構と、
     前記水蒸気供給機構から前記水蒸気を供給されるとともに、前記不活性ガス供給機構から前記不活性ガスを供給され、供給された前記水蒸気と前記不活性ガスとを混合して混合気体を生成する混合機構と、
     前記混合機構から前記混合気体を供給されるとともに、供給された前記混合気体を前記リン酸水溶液中に吹き出して前記混合気体の気泡を発生させる気泡発生器と、
     前記混合気体の湿度が目標湿度になるように、前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを調整する流量調整機構と、
    を備える、基板処理装置。
  2.  請求項1に記載の基板処理装置であって、
     前記流量調整機構は、
     前記混合気体の湿度が前記目標湿度になるとともに、前記混合気体の流量が目標流量になるように、前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを調整する、基板処理装置。
  3.  請求項2に記載の基板処理装置であって、
     前記混合気体の湿度が前記目標湿度になるとともに、前記混合気体の流量が前記目標流量になるときの前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを取得する流量取得部と、
     前記流量取得部が取得した前記水蒸気の流量と前記不活性ガスの流量とに基づいて前記流量調整機構を制御する調整機構制御部と、
    をさらに備える、基板処理装置。
  4.  請求項3に記載の基板処理装置であって、
     前記流量取得部は、
     前記混合気体の湿度が前記目標湿度になるとともに、前記混合気体の流量が前記目標流量になるときの、前記水蒸気供給機構が供給する前記水蒸気の流量と前記不活性ガス供給機構が供給する前記不活性ガスの流量とを、定められた演算を行うことによって取得する、基板処理装置。
  5.  請求項1から請求項4の何れか1つの請求項に記載の基板処理装置であって、
     前記水蒸気供給機構が供給する前記水蒸気を、前記混合機構に供給される前に加熱する水蒸気加熱ヒーターと、
     前記不活性ガス供給機構が供給する前記不活性ガスを、前記混合機構に供給される前に加熱する不活性ガス加熱ヒーターを備える、基板処理装置。
  6.  請求項1から請求項5の何れか1つの請求項に記載の基板処理装置であって、
     前記混合気体を、前記気泡発生器に供給される前に加熱する混合気体加熱ヒーターをさらに備える、基板処理装置。
  7.  リン酸水溶液に浸漬された基板にエッチング処理を施す基板処理方法であって、
     水蒸気を供給する水蒸気供給ステップと、
     不活性ガスを供給する不活性ガス供給ステップと、
     前記水蒸気供給ステップにおいて供給される前記水蒸気と、前記不活性ガス供給ステップにおいて供給される前記不活性ガスとを混合して混合気体を生成する混合ステップと、
     前記混合気体を前記リン酸水溶液中に吹き出して前記混合気体の気泡を発生させる気泡発生ステップと、
     前記混合気体の湿度が目標湿度になるように、前記水蒸気供給ステップにおいて供給される前記水蒸気の流量と前記不活性ガス供給ステップにおいて供給される前記不活性ガスの流量とを調整する流量調整ステップと、
    を備える、基板処理方法。
PCT/JP2017/025405 2016-09-28 2017-07-12 基板処理装置および基板処理方法 WO2018061405A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020197005335A KR102129219B1 (ko) 2016-09-28 2017-07-12 기판 처리 장치 및 기판 처리 방법
CN201780053402.XA CN109690743B (zh) 2016-09-28 2017-07-12 基板处理装置及基板处理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016189206A JP6693846B2 (ja) 2016-09-28 2016-09-28 基板処理装置および基板処理方法
JP2016-189206 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018061405A1 true WO2018061405A1 (ja) 2018-04-05

Family

ID=61760394

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/025405 WO2018061405A1 (ja) 2016-09-28 2017-07-12 基板処理装置および基板処理方法

Country Status (5)

Country Link
JP (1) JP6693846B2 (ja)
KR (1) KR102129219B1 (ja)
CN (1) CN109690743B (ja)
TW (1) TWI647007B (ja)
WO (1) WO2018061405A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7031413B2 (ja) * 2018-03-23 2022-03-08 株式会社三洋物産 遊技機
JP7131033B2 (ja) * 2018-03-30 2022-09-06 株式会社三洋物産 遊技機
JP2019177124A (ja) * 2018-03-30 2019-10-17 株式会社三洋物産 遊技機
JP7198595B2 (ja) * 2018-05-31 2023-01-04 東京エレクトロン株式会社 基板液処理方法、基板液処理装置及び記憶媒体
JP7176904B2 (ja) 2018-09-21 2022-11-22 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP7190912B2 (ja) * 2019-01-10 2022-12-16 東京エレクトロン株式会社 基板処理装置
TWI750592B (zh) * 2019-02-20 2021-12-21 日商斯庫林集團股份有限公司 基板處理裝置及基板處理方法
JP7368264B2 (ja) 2019-02-20 2023-10-24 株式会社Screenホールディングス 基板処理装置、及び基板処理方法
JP7408445B2 (ja) * 2020-03-17 2024-01-05 キオクシア株式会社 半導体製造装置および半導体装置の製造方法
JP2022026660A (ja) 2020-07-31 2022-02-10 株式会社Screenホールディングス 基板処理装置及び基板処理方法
JP7476024B2 (ja) 2020-08-03 2024-04-30 株式会社Screenホールディングス 基板処理方法及び基板処理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216826A (ja) * 1989-02-17 1990-08-29 Nec Yamagata Ltd 半導体装置の製造装置
JPH0350724A (ja) * 1989-07-19 1991-03-05 Hitachi Ltd ウエットエッチング装置
JPH06140380A (ja) * 1992-10-28 1994-05-20 Sanyo Electric Co Ltd エッチング装置
US20020092614A1 (en) * 2001-01-16 2002-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Wet chemical process tank with improved fluid circulation
JP2008147637A (ja) * 2006-11-16 2008-06-26 Kurita Water Ind Ltd エッチング方法およびエッチング装置

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10214813A (ja) * 1997-01-31 1998-08-11 Matsushita Electron Corp 半導体ウェーハの洗浄方法および洗浄装置
US7378355B2 (en) * 1997-05-09 2008-05-27 Semitool, Inc. System and methods for polishing a wafer
JP4318011B2 (ja) * 2000-06-02 2009-08-19 株式会社日立ハイテクノロジーズ 基板処理装置及び処理方法
JP2002219429A (ja) * 2001-01-23 2002-08-06 Hitachi Electronics Eng Co Ltd 基板処理装置及び処理方法
US7374696B2 (en) * 2003-02-14 2008-05-20 Applied Materials, Inc. Method and apparatus for removing a halogen-containing residue
JP2005038647A (ja) * 2003-07-16 2005-02-10 Nittetsu Elex Co Ltd 加湿ガス供給システム
WO2009013797A1 (ja) * 2007-07-20 2009-01-29 Aqua Science Corporation 対象物処理方法及び対象物処理システム
JP2009266561A (ja) * 2008-04-24 2009-11-12 Espec Corp ガス供給装置、燃料電池評価試験装置、並びに、燃料電池システム
US20140231012A1 (en) * 2013-02-15 2014-08-21 Dainippon Screen Mfg, Co., Ltd. Substrate processing apparatus
JP6426927B2 (ja) * 2013-09-30 2018-11-21 芝浦メカトロニクス株式会社 基板処理装置及び基板処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02216826A (ja) * 1989-02-17 1990-08-29 Nec Yamagata Ltd 半導体装置の製造装置
JPH0350724A (ja) * 1989-07-19 1991-03-05 Hitachi Ltd ウエットエッチング装置
JPH06140380A (ja) * 1992-10-28 1994-05-20 Sanyo Electric Co Ltd エッチング装置
US20020092614A1 (en) * 2001-01-16 2002-07-18 Taiwan Semiconductor Manufacturing Co., Ltd. Wet chemical process tank with improved fluid circulation
JP2008147637A (ja) * 2006-11-16 2008-06-26 Kurita Water Ind Ltd エッチング方法およびエッチング装置

Also Published As

Publication number Publication date
JP2018056258A (ja) 2018-04-05
TW201813710A (zh) 2018-04-16
CN109690743A (zh) 2019-04-26
KR102129219B1 (ko) 2020-07-01
JP6693846B2 (ja) 2020-05-13
KR20190034254A (ko) 2019-04-01
TWI647007B (zh) 2019-01-11
CN109690743B (zh) 2023-10-20

Similar Documents

Publication Publication Date Title
WO2018061405A1 (ja) 基板処理装置および基板処理方法
CN105374712B (zh) 基板液体处理装置和基板液体处理方法
JP5788355B2 (ja) 熱処理システム、熱処理方法、及び、プログラム
US20110087378A1 (en) Control method and processor of exhaust gas flow rate of processing chamber
US20080308530A1 (en) Substrate treating apparatus
JP5049303B2 (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
JP6326365B2 (ja) 基板液処理装置及び基板液処理方法並びに基板液処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体
JP2013207109A (ja) 熱処理システム、熱処理方法、及び、プログラム
JP2017219370A (ja) 環境試験装置及び環境試験方法
JP2016157771A (ja) 熱処理システム、熱処理方法、及び、プログラム
JP4920726B2 (ja) ガス腐食試験装置
JP5108365B2 (ja) 加湿ガス供給方法及び装置
CN103367223B (zh) 基板处理装置以及基板处理方法
JP2013207255A (ja) 熱処理システム、熱処理方法、及び、プログラム
JP6596316B2 (ja) 熱処理システム、熱処理方法、及び、プログラム
JP2009260261A (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
US20120211907A1 (en) Humidity generator
TWI747286B (zh) 基板處理裝置及基板處理方法
JP3719918B2 (ja) 基板処理装置
JP2022045866A (ja) 基板処理方法、及び基板処理装置
JP4950545B2 (ja) 背圧制御装置
JP2010098038A (ja) 基板乾燥装置及びその温調方法
KR20220033429A (ko) 기판 처리 방법, 및 기판 처리 장치
JP2003042487A (ja) 水蒸気の発生量調整方法および水蒸気の発生装置
JP2018538536A (ja) 反応負荷のための方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17855363

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197005335

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17855363

Country of ref document: EP

Kind code of ref document: A1