WO2018045987A1 - 丁基橡胶及制备方法以及橡胶制品和组合物及应用以及车用轮胎气密层、内胎和硫化胶囊 - Google Patents

丁基橡胶及制备方法以及橡胶制品和组合物及应用以及车用轮胎气密层、内胎和硫化胶囊 Download PDF

Info

Publication number
WO2018045987A1
WO2018045987A1 PCT/CN2017/100940 CN2017100940W WO2018045987A1 WO 2018045987 A1 WO2018045987 A1 WO 2018045987A1 CN 2017100940 W CN2017100940 W CN 2017100940W WO 2018045987 A1 WO2018045987 A1 WO 2018045987A1
Authority
WO
WIPO (PCT)
Prior art keywords
butyl rubber
structural unit
mol
weight
rubber
Prior art date
Application number
PCT/CN2017/100940
Other languages
English (en)
French (fr)
Inventor
邱迎昕
龚惠勤
张雷
孟伟娟
周新钦
王镭
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司北京化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司北京化工研究院 filed Critical 中国石油化工股份有限公司
Priority to US16/331,470 priority Critical patent/US10894881B2/en
Priority to MYPI2019000581A priority patent/MY192249A/en
Priority to DE112017004476.6T priority patent/DE112017004476T5/de
Priority to RU2019108241A priority patent/RU2718909C1/ru
Priority to KR1020197009927A priority patent/KR102190223B1/ko
Priority to JP2019512753A priority patent/JP6820128B2/ja
Priority to BR112019004474-4A priority patent/BR112019004474B1/pt
Publication of WO2018045987A1 publication Critical patent/WO2018045987A1/zh
Priority to SA519401245A priority patent/SA519401245B1/ar
Priority to PH12019500503A priority patent/PH12019500503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/08Isoprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F279/00Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00
    • C08F279/02Macromolecular compounds obtained by polymerising monomers on to polymers of monomers having two or more carbon-to-carbon double bonds as defined in group C08F36/00 on to polymers of conjugated dienes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0008Compositions of the inner liner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C5/00Inflatable pneumatic tyres or inner tubes
    • B60C5/02Inflatable pneumatic tyres or inner tubes having separate inflatable inserts, e.g. with inner tubes; Means for lubricating, venting, preventing relative movement between tyre and inner tube
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/08Butenes
    • C08F210/10Isobutene
    • C08F210/12Isobutene with conjugated diolefins, e.g. butyl rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F236/00Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds
    • C08F236/02Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds
    • C08F236/04Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated
    • C08F236/10Copolymers of compounds having one or more unsaturated aliphatic radicals, at least one having two or more carbon-to-carbon double bonds the radical having only two carbon-to-carbon double bonds conjugated with vinyl-aromatic monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F255/00Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
    • C08F255/08Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms
    • C08F255/10Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00 on to polymers of olefins having four or more carbon atoms on to butene polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F287/00Macromolecular compounds obtained by polymerising monomers on to block polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F4/00Polymerisation catalysts
    • C08F4/42Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
    • C08F4/44Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
    • C08F4/52Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides selected from boron, aluminium, gallium, indium, thallium or rare earths
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • C08F8/18Introducing halogen atoms or halogen-containing groups
    • C08F8/20Halogenation
    • C08F8/22Halogenation by reaction with free halogens
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0025Crosslinking or vulcanising agents; including accelerators
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • C08L23/20Homopolymers or copolymers of hydrocarbons having four or more carbon atoms having four to nine carbon atoms
    • C08L23/22Copolymers of isobutene; Butyl rubber ; Homo- or copolymers of other iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/26Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment
    • C08L23/28Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers modified by chemical after-treatment by reaction with halogens or compounds containing halogen
    • C08L23/283Halogenated homo- or copolymers of iso-olefins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/04Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to rubbers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/06Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to homopolymers or copolymers of aliphatic hydrocarbons containing only one carbon-to-carbon double bond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C2001/0066Compositions of the belt layers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/05Bimodal or multimodal molecular weight distribution
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2500/00Characteristics or properties of obtained polyolefins; Use thereof
    • C08F2500/21Rubbery or elastomeric properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2296Oxides; Hydroxides of metals of zinc
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/03Polymer mixtures characterised by other features containing three or more polymers in a blend
    • C08L2205/035Polymer mixtures characterised by other features containing three or more polymers in a blend containing four or more polymers in a blend

Definitions

  • the present invention relates to a butyl rubber, a preparation method and application thereof, and a halogenated butyl rubber and use thereof, and to a composition and a rubber product based on the butyl rubber and/or halobutyl rubber.
  • the present invention further relates to a vehicle tire inner liner, a tire inner tube and a vulcanized capsule formed of the butyl rubber and/or halobutyl rubber.
  • Butyl rubber has been around for more than 60 years since its inception. Due to its excellent air tightness, damping, heat aging resistance, ozone resistance and weather resistance, it has become the most important synthetic rubber. One of the varieties. Due to the different process conditions used by various manufacturers to produce butyl rubber, the quality of commercial butyl rubber products varies, especially for processing applications. The product differences between different manufacturers are obvious.
  • the method for improving the processing properties of butyl rubber is mainly to improve the molecular weight and molecular weight distribution of butyl rubber.
  • US3780002 proposes to use a metal halide of Group II or Group III of the Periodic Table of the Elements and a tetrahalide of a Group IV metal of the Periodic Table of the Elements to form a composite initiator, such as a combination of AlCl 3 and TiCl 4 , or AlCl 3
  • a composite initiator such as a combination of AlCl 3 and TiCl 4 , or AlCl 3
  • each of the initiators can independently initiate cationic polymerization, and a butyl rubber having a molecular weight distribution index M w /M n of 5.0 or more is synthesized under conventional butyl rubber polymerization conditions.
  • US20030166809 proposes to activate and modify the initiation system by adding a small amount of activator aluminoxane in a mixed system of dialkylaluminum chloride and monoalkylaluminum chloride. By changing the amount of aluminoxane, different molecular weight distributions can be obtained. Butyl rubber.
  • CN1966537A discloses adding some additives, such as alcohols, phenols, amines or pyridines, amides, carboxylates or ketones, to a slurry polymerization system using H 2 O/AlCl 3 as an initiation system. after formation of a complex with AlCl 3 was subjected to aging reaction initiator system, by adjusting the ratio of the amount of the additive with AlCl 3, the molecular weight of the butyl rubber may be adjusted within a certain range, and the molecular weight distribution.
  • additives such as alcohols, phenols, amines or pyridines, amides, carboxylates or ketones
  • butyl rubber is widely used in the manufacture of inner tubes, airtight layers and vulcanized capsules for automobile tires.
  • the performance requirements for butyl rubber are also different for different applications.
  • butyl rubber for inner tube it should have good heat resistance, elasticity and less permanent deformation while having good airtightness.
  • the main function of the inner liner is to prevent gas leakage, so the inner liner must have good air tightness and a low gas permeability coefficient.
  • the vulcanized capsule is used to separate the vulcanization medium from the inner surface of the green tire when vulcanizing the tire of the vehicle tire, and transmits heat and pressure on the inner surface of the embryo.
  • the quality of the vulcanized capsule is related to the quality of the tire and the production cost of the tire.
  • the main indicator for evaluating the quality of vulcanized capsules is the service life of the vulcanized capsules, that is, the number of times of safely ensuring the quality of the tires, one cycle per vulcanization (ie, each Vulcanize a tire) for use once.
  • the service life of the vulcanized capsules that is, the number of times of safely ensuring the quality of the tires, one cycle per vulcanization (ie, each Vulcanize a tire) for use once.
  • butyl rubber of the corresponding brand name has been developed for different applications of butyl rubber, but it is still necessary to develop a new type of butyl rubber to obtain more excellent Processability and more comprehensive application performance.
  • a butyl rubber comprising a structural unit derived from isobutylene, a structural unit derived from a conjugated diene, and optionally derived from an aryl olefin a structural unit, wherein at least a portion of the conjugated diene is isoprene, and the aryl olefin is selected from the group consisting of compounds of formula I,
  • R 1 is a C 6 -C 20 aryl group
  • a structural unit derived from a conjugated diene is used as a grafting site such that a part of the molecular chain of the butyl rubber is a graft chain, and a remaining part of the molecular chain of the butyl rubber is a linear chain;
  • the butyl rubber has a peak molecular weight of 900,000 to 2.6 million and a Log (MW) ⁇ 6 butyl rubber content of 30 to 80% by weight.
  • a process for the preparation of a butyl rubber which comprises, under cationic polymerization conditions, in the presence of at least one Lewis acid and at least one compound capable of providing a proton,
  • the isobutylene and isoprene are contacted with at least one grafting agent in at least one diluent, the amount of the grafting agent being from 0.01 to 3% by weight of the isobutylene,
  • the Lewis acid is selected from the group consisting of compounds of formula II,
  • the compound capable of providing a proton is selected from the group consisting of protic acids.
  • a butyl rubber prepared by the process of the second aspect of the invention.
  • a halogenated butyl rubber comprising a rubber matrix and a halogen element bonded to a rubber matrix, wherein the rubber matrix is the present invention
  • a composition comprising a butyl rubber and/or a halogenated butyl rubber, a vulcanizing agent and optionally at least one additive selected from the group consisting of a vulcanization accelerator and a carbon black, the butyl rubber according to the first aspect or the third aspect of the invention, wherein the halogenated butyl rubber is the halogenated one of the fourth aspect of the invention Butyl rubber.
  • a rubber article formed by vulcanizing the composition of the fifth aspect of the invention.
  • the invention provides the butyl rubber of the first or third aspect of the invention, the fourth The halogenated butyl rubber according to the aspect, the composition according to the fifth aspect, or the rubber article according to the sixth aspect, for use in the production of a vehicle tire inner liner, a vehicle tire inner tube, and a vulcanized capsule.
  • the invention provides a tire inner liner for a vehicle, the tire inner liner of the vehicle according to the fourth aspect of the invention, the fifth aspect, The composition, or the rubber article of the sixth aspect, is formed.
  • the invention provides a tire inner tube for a vehicle, the tire inner tube according to the first aspect or the third aspect of the invention,
  • the halobutyl rubber, the composition of the fifth aspect, or the rubber article of the sixth aspect is formed.
  • the present invention provides a vulcanized capsule comprising the butyl rubber according to the first or third aspect of the present invention, the composition of the fifth aspect, or The rubber article of the sixth aspect is formed.
  • the butyl rubber according to the present invention has better processing and kneading performance, can effectively reduce the energy consumption during the processing and kneading process, and make the filler dispersion more uniform;
  • the butyl rubber according to the present invention has a lower shear viscosity and an extrusion swell ratio, can obtain better processing fluidity and higher dimensional stability of the product, and is more suitable for an injection molding process, and is prepared.
  • the product has more excellent dimensional stability;
  • the butyl rubber according to the present invention has better overall mechanical properties, particularly higher tear strength.
  • the butyl rubber according to the present invention has good airtightness.
  • the butyl rubber according to the present invention has comprehensive application properties and is suitable for producing an inner liner for a vehicle tire, a tire inner tube for a vehicle, and a vulcanized capsule, and is particularly suitable for producing a vulcanized capsule.
  • Example 1 is a gel permeation chromatogram of the butyl rubber prepared in Example 2.
  • Example 3 is a gel permeation chromatogram of the butyl rubber prepared in Example 6.
  • Figure 5 is a graph showing the relationship between the extrusion swell ratio and the shear rate at 100 ° C for the butyl rubbers prepared in Examples 15 and 16 and Comparative Example 5.
  • a butyl rubber comprising a structural unit derived from isobutylene, a structural unit derived from a conjugated diene, and optionally derived from an aryl olefin
  • the structural unit, at least a portion of the conjugated diene is isoprene.
  • the "structural unit derived from isobutylene” means that the structural unit is formed of isobutylene, and the structural unit is identical to the isobutylene except that the electronic structure is changed, and the number of atoms and the number of atoms are the same;
  • "Structural unit derived from a conjugated diene” means that the structural unit is formed of a conjugated diene, and the number of atoms and the number of each atom are changed in addition to the electronic structure, compared with the conjugated diene.
  • a structural unit derived from an aryl olefin means that the structural unit is formed of an aryl olefin, and the structural unit is different from the aryl olefin, in addition to the electronic structure, the atom type and the number of each atom All the same.
  • the conjugated diene refers to a compound having a conjugated double bond in its molecular structure.
  • the conjugated diene is selected from the group consisting of compounds of formula II,
  • R 2 , R 3 and R 4 are the same or different and are each selected from the group consisting of hydrogen and a C 1 -C 5 linear or branched alkyl group.
  • conjugated diene may include, but are not limited to, butadiene and/or isoprene.
  • the aryl olefin means a substance in which at least one hydrogen atom in the olefin is substituted with an aryl group.
  • the aryl olefin may be a compound of formula I:
  • R 1 is a C 6 -C 20 aryl group, specifically selected from the group consisting of phenyl, o-tolyl, m-tolyl, p-tolyl, o-ethylphenyl, m-ethylphenyl, p-ethylphenyl, O-tert-butylphenyl, m-tert-butylphenyl, p-tert-butylphenyl, p-dodecylphenyl, 2,4-di-n-butylphenyl, p-propylphenyl and 2,4 - diethylphenyl.
  • aryl olefin may include, but are not limited to, styrene, 2-methylstyrene, 4-methylstyrene, 4-tert-butylstyrene, 4-ethylstyrene, 3,5-di One or more of ethyl styrene, 3,5-di-n-butyl styrene, 4-n-propyl styrene, and 4-dodecyl styrene.
  • the aryl olefin is styrene.
  • the butyl rubber according to the first aspect of the invention which comprises a structural unit derived from a conjugated diene, and at least a part of the conjugated diene is isoprene.
  • the structural unit is a structural unit containing a carbon-carbon double bond, and the butyl rubber can be modified by a carbon-carbon double bond in the structural unit, thereby improving the properties of the butyl rubber and/or imparting new properties to the butyl rubber. Performance.
  • a halogen atom can be introduced into the butyl rubber using the carbon-carbon double bond to form a halogenated butyl rubber.
  • the content of the structural unit derived from the conjugated diene may be based on the butyl rubber Choose the specific use occasion.
  • the content of the structural unit derived from the conjugated diene in the butyl rubber may be 0.5 to 2.5 mol%, for example, 0.5 mol%, 0.6 mol%, 0.7 mol%, 0.8 mol%, 0.9 mol%, 1.0 mol%, 1.1 mol%, 1.2 mol%, 1.3 mol%, 1.4 mol%, 1.5 mol%, 1.6 mol%, 1.7 mol%, 1.8 mol%, 1.9 mol%, 2.0 mol%, 2.1 mol %, 2.2 mol%, 2.3 mol%, 2.4 mol%, or 2.5 mol%.
  • the content of the structural unit derived from the conjugated diene is from 0.8 to 2 mol%. More preferably, in the butyl rubber, the content of the structural unit derived from the conjugated diene is from 1 to 1.8 mol%.
  • the structural unit derived from the conjugated diene may be a structural unit derived from an isoprene, or may be a structural unit derived from isoprene and derived from isoprene. A combination of structural units of other conjugated dienes such as butadiene.
  • the content of the structural unit derived from isoprene may be from 0.5 to 2.5 mol%, for example, 0.5 mol%, 0.6 mol%, 0.7 mol%. 0.8 mol%, 0.9 mol%, 1 mol%, 1.1 mol%, 1.2 mol%, 1.3 mol%, 1.4 mol%, 1.5 mol%, 1.6 mol%, 1.7 mol%, 1.8 mol%, 1.9 mol%, 2 Molar %, 2.1 mol%, 2.2 mol%, 2.3 mol%, 2.4 mol%, or 2.5 mol%.
  • the content of the structural unit derived from isoprene is from 0.8 to 2 mol%. More preferably, in the butyl rubber according to the first aspect of the invention, the content of the structural unit derived from isoprene is from 1 to 1.8 mol%.
  • the butyl rubber according to this embodiment is particularly suitable for the preparation of a tire inner tube and/or a vulcanized capsule for a vehicle.
  • the content of the structural unit derived from the conjugated diene in the butyl rubber and the content of the structural unit derived from isoprene are measured by nuclear magnetic resonance spectroscopy.
  • the butyl rubber according to the first aspect of the present invention may contain a structural unit derived from an aryl olefin or may not contain a structural unit derived from an aryl olefin.
  • the butyl rubber contains structural units derived from an aryl olefin.
  • the content of the structural unit derived from the aryl olefin may be from 0.01 to 3 mol%, for example, 0.01 mol%, 0.02 mol%, 0.03 mol%, based on the total amount of the butyl rubber.
  • the content of the structural unit derived from the aryl olefin is from 0.05 to 2.8 mol% based on the total amount of the butyl rubber.
  • the content of the structural unit derived from the aryl olefin is from 0.01 to 1 mol%, preferably from 0.05 to 0.6 mol%, more preferably 0.1, based on the total amount of the butyl rubber. - 0.5 mol%.
  • the content of the structural unit derived from the aryl olefin in the butyl rubber is determined by nuclear magnetic resonance spectroscopy.
  • the structural unit derived partially from the conjugated diene serves as a grafting site such that a part of the molecular chain of the butyl rubber is a graft chain.
  • the graft chain contains a backbone and a branch that is bonded to a graft site on the backbone.
  • the backbone of the graft chain contains structural units derived from a conjugated diene and, optionally, structural units derived from an aryl olefin.
  • the grafting site in the graft chain for bonding the backbone to the branch is typically a carbon-carbon double bond derived from a structural unit derived from a conjugated diene, such as a conjugated diene to 1,2- A carbon-carbon double bond in a structural unit formed by a polymerization mode and/or a 3,4-polymerization method.
  • the conjugated diene may be a conjugated diene as described above.
  • the conjugated diene is preferably butadiene and/or isoprene.
  • the main chain of the graft chain contains structural units derived from a conjugated diene and is derived from an arylene. a structural unit of a hydrocarbon.
  • the backbone of the graft chain contains structural units derived from a conjugated diene and structural units derived from styrene.
  • the structural unit derived from the conjugated diene and the structural unit derived from the aryl olefin may be
  • the random distribution may be in the form of a block, and is not particularly limited.
  • the backbone of the graft chain is derived from a styrene-butadiene copolymer and a pentylbenzene copolymer.
  • a styrene-butadiene copolymer and a pentylbenzene copolymer may be a random copolymer or a block copolymer, and may also be a mixture of a random copolymer and a block copolymer, and is not particularly limited.
  • the branches of the graft chain generally contain structural units derived from isobutylene and structural units derived from isoprene.
  • the remaining molecular chain is generally a linear chain.
  • the linear chain contains structural units derived from isobutylene and structural units derived from isoprene.
  • the butyl rubber according to the first aspect of the invention has a higher content of high molecular weight components than the commercial butyl rubber.
  • the polymer content of Log (MW) ⁇ 6 is 30 to 80% by weight, for example, 30% by weight, 31% by weight, 32% by weight, 33 % by weight, 34% by weight, 35% by weight, 36% by weight, 37% by weight, 38% by weight, 39% by weight, 40% by weight, 41% by weight, 42% by weight, 43% by weight, 44% by weight, and 45% by weight 46%, 47%, 48%, 49%, 50%, 51%, 52%, 53%, 54%, 55%, 56%, 57%, 58 % by weight, 59% by weight, 60% by weight, 61% by weight, 62% by weight, 63% by weight, 64% by weight, 65% by weight, 66% by weight, 67% by weight, 68% by weight, 69% by weight, 70% by weight 71% by
  • the butyl rubber according to the first aspect of the invention has a significantly increased molecular weight compared to the commercial butyl rubber.
  • the butyl rubber according to the first aspect of the present invention has a peak molecular weight of 900,000 to 2.6 million, for example, 900,000, 950,000, 1,000,000, 1.05 million, 1.1 million, 1.15 million, and 1.2 million.
  • the butyl rubber according to the first aspect of the invention has a peak molecular weight of from 950,000 to 2.3 million. More preferably, the butyl rubber according to the first aspect of the invention has a peak molecular weight of from 1,000,000 to 2.1 million. Further preferably, the butyl rubber according to the first aspect of the invention has a peak molecular weight of from 1.1 million to 1.9 million.
  • the butyl rubber has a Z average molecular weight (M z ) of 3 million to 7,000,000, for example, 3 million, 3.5 million, 4 million, 4.5 million, 5 million, 550. 10,000, 6 million, 6.5 million, or 7 million.
  • M z Z average molecular weight
  • the butyl rubber has a Z average molecular weight of from 3.5 million to 6.5 million. More preferably, the butyl rubber has a Z average molecular weight of 390,000 to 6,000,000.
  • the butyl rubber has a M z /M w (M w is a weight average molecular weight) of from 1.8 to 5, for example, 1.8, 1.9, 2, 2.1, 2.2, 2.3 , 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.8 , 4.9, or 5.
  • the butyl rubber has a M z /M w of from 2 to 4.5.
  • the butyl rubber has a M z /M w of from 2.2-4. Further preferably, the butyl rubber has a M z /M w of from 2.2 to 3.5.
  • the butyl rubber has a M w /M n of 3-8, for example: 3, 3.1, 3.2, 3.3, 3.4, 3.5, 3.6, 3.7, 3.8, 3.9, 4, 4.1, 4.2, 4.3, 4.4, 4.5, 4.6 4.7, 4.8, 4.9, 5, 5.1, 5.2, 5.3, 5.4, 5.5, 5.6, 5.7, 5.8, 5.9, 6, 6.1, 6.2, 6.3, 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1 , 7.2, 7.3, 7.4, 7.5, 7.6, 7.7, 7.8, 7.9, or 8.
  • the butyl rubber has a M w /M n of from 3.3 to 7.5. More preferably, the butyl rubber has a M w /M n of 3.5-7. Further preferably, the butyl rubber has a M w /M n of 3.5-6.
  • the molecular weight of the butyl rubber has a bimodal distribution, and in the gel permeation chromatogram, the elution peak has a shoulder on the high molecular weight side, and the present invention This shoulder is called the "high molecular weight shoulder.”
  • the Log (MW) value of the high molecular weight shoulder is between 6 and 7.5, for example, the Log (MW) of the high molecular weight shoulder is located at 6, 6.1, 6.2, 6.3. Between 6.4, 6.5, 6.6, 6.7, 6.8, 6.9, 7, 7.1, 7.2, 7.3, 7.4, or 7.5.
  • the high molecular weight component is mainly derived from the graft chain described above.
  • the molecular weight and distribution of the butyl rubber are determined by a multi-detection gel permeation chromatography method, which is determined by using a TDA302 liquid phase gel permeation chromatograph manufactured by Viscotek, USA.
  • the chromatograph is equipped with a differential detector, a light scattering detector, and a viscosity detector.
  • the column is a combination of TOSOH's TSKgel GMH HR- L and TSKgel GMH HR- H.
  • the mobile phase was tetrahydrofuran at a flow rate of 1.0 mL/min; the sample solution concentration was 0.8 mg/mL; and the test temperature was 30 °C.
  • the Log (MW) value of the high molecular weight shoulder and the polymer content of Log (MW) ⁇ 6 are obtained by the difference detector with log (MW) as the abscissa and dWf/dLog (MW) as the ordinate.
  • the differential distribution curve determines that MW refers to the molecular mass, measured in Dalton (Da).
  • the peak position molecular weight (M p ) means a molecular weight value corresponding to the maximum concentration of the polymer in the spectrum of the concentration of the polymer measured by gel permeation chromatography versus the elution time.
  • the butyl rubber i.e., the raw rubber of butyl rubber
  • the butyl rubber ie, the green rubber of butyl rubber
  • the Mooney viscosity of the butyl rubber is a GT-7080-S2 Mooney viscosity meter commercially available from Taiwan High Speed Rail Co., Ltd., and is referred to the method specified in GB/T1232.1-2000 at 125 ° C (1). Measured under conditions of +8).
  • the butyl rubber according to the first aspect of the present invention has more excellent kneading performance than the conventional butyl rubber, and can effectively reduce the kneading under the condition that the Mooney viscosity is substantially the same. Energy consumption and more uniform dispersion of additives.
  • the butyl rubber according to the first aspect of the present invention exhibits a lower shear viscosity and an extrusion swell ratio than the conventional butyl rubber, thereby achieving better processing fluidity and more. Suitable for the injection process, the prepared articles also have better dimensional stability.
  • a process for the preparation of a butyl rubber which comprises, under cationic polymerization conditions, in the presence of at least one Lewis acid and at least one compound capable of providing a proton,
  • the isobutylene and isoprene are contacted with at least one grafting agent in at least one diluent.
  • the amount of isobutylene and isoprene can be selected depending on the composition of the desired butyl rubber.
  • the isobutylene content may be from 85 to 99% by weight, preferably from 90 to 98, based on the total amount of isobutylene and isoprene.
  • the weight % more preferably 93 to 97.5% by weight; the isoprene content may be 1 to 15% by weight, preferably 2 to 10% by weight, more preferably 2.5 to 7% by weight.
  • the grafting agent contains a polymerizable structural unit derived from a cationically polymerizable group and an optional aryl olefin structural unit.
  • the "cationic polymerizable group” means a group having a cationic polymerization activity, that is, a group capable of reacting with isobutylene and/or a conjugated diene by a cationic polymerization reaction mechanism under cationic polymerization conditions, for example.
  • the polymerizable structural unit may be a structural unit in which a conjugated diene is formed in a 1,2-polymerization mode and/or a 3,4-polymerization mode, wherein the carbon-carbon double bond is a cationically polymerizable group.
  • the grafting agent contains a polymerizable structural unit derived from a cationically polymerizable group and an aryl olefin structural unit.
  • the content of the polymerizable structural unit may be from 1 to 15 mol%, preferably from 2 to 14 mol%, more preferably from 2.5 to 12 mol%, based on the total amount of the grafting agent.
  • the aryl olefin structural unit may be included in an amount of 20 to 98% by mole, preferably 30 to 97% by mole, more preferably 40%, based on the total amount of the grafting agent. 97 mol%, further preferably 50-97 mol%, still more preferably 55-97 mol%.
  • the content of the aryl olefin structural unit in the grafting agent is determined by nuclear magnetic resonance spectroscopy.
  • the content of the structural unit formed by the 1,2-polymerization method and the 3,4-polymerization method of the conjugated diene is measured by nuclear magnetic resonance spectroscopy.
  • the polymerizable structural unit having a cationic polymerizable group may be derived from a conjugated diene.
  • the conjugated diene may specifically be a compound of the formula II,
  • R 2 , R 3 and R 4 are the same or different and are each selected from the group consisting of hydrogen and a C 1 -C 5 linear or branched alkyl group.
  • the polymerizable structural unit having a cationically polymerizable group is derived from butadiene and/or isoprene.
  • the aryl olefin structural unit refers to a structural unit derived from an aryl olefin.
  • the aryl olefin refers to a substance in which at least one hydrogen atom in an olefin is substituted with an aryl group.
  • the aryl olefin may be a compound of formula I:
  • R 1 is a C 6 -C 20 aryl group, specifically selected from the group consisting of phenyl, o-tolyl, m-tolyl, p-tolyl, o-ethylphenyl, m-ethylphenyl, p-ethylphenyl, O-tert-butylphenyl, m-tert-butylphenyl, p-tert-butylphenyl, p-dodecylphenyl, 2,4-di-n-butylphenyl, p-propylphenyl and 2,4 - diethylphenyl.
  • aryl olefin may include, but are not limited to, styrene, 2-methylstyrene, 4-methylstyrene, 4-tert-butylstyrene, 4-ethylstyrene, 3,5-di One or more of ethyl styrene, 3,5-di-n-butyl styrene, 4-n-propyl styrene, and 4-dodecyl styrene.
  • the aryl olefin structural unit is preferably a styrene structural unit derived from styrene.
  • the grafting agent comprises a polymerizable structural unit derived from a conjugated diene and a styrene structural unit derived from styrene, preferably a butadiene and/or Or isoprene.
  • the grafting agent may have a weight average molecular weight of 10,000 to 300,000, preferably 20,000 to 200,000, more preferably 50,000 to 180,000; and a molecular weight distribution index M w /M n of 1 to 2.5, preferably 1.1-2, more preferably 1.1-1.8.
  • the weight average molecular weight of the grafting agent is determined by gel permeation chromatography, and is specifically determined by LC-20A liquid phase gel permeation chromatography instrument manufactured by Shimadzu Corporation of Japan, and the column is TSKgel G2000H XL and TSKgel G3000H XL. Used in conjunction with the TSKgel G4000H XL three-column with a differential detector.
  • the mobile phase was tetrahydrofuran at a flow rate of 1 mL/min; the sample solution concentration was 1 mg/mL, the injection volume was 200 ⁇ L; the test temperature was 40 ° C; and the single-distributed polystyrene was used as the standard sample.
  • the grafting agent may specifically be one or a combination of two or more selected from the group consisting of a styrene-butadiene copolymer and a pentylbenzene copolymer, preferably a styrene-butadiene copolymer.
  • a styrene-butadiene copolymer and a pentylbenzene copolymer preferably a styrene-butadiene copolymer.
  • Each of the styrene-butadiene copolymer and the pentylbenzene copolymer may be a random copolymer or a block copolymer, or may be a mixture of a random copolymer and a block copolymer, and is not particularly limited.
  • the grafting agent may be added in an amount of from 0.01 to 3% by weight of isobutylene, preferably from 0.1 to 2% by weight of isobutylene, more preferably from 0.15 to 1% by weight of isobutylene. Further, it is preferably 0.2 to 0.8% by weight of isobutylene.
  • the grafting agent is added to the polymerization reaction system together with the polymerized monomers isobutylene and isoprene.
  • the grafting agent is dissolved in isoprene, it is mixed with isobutylene and a diluent, and the obtained mixture is added to the polymerization reaction system; the grafting agent may be mixed with a diluent and then mixed with isobutylene and isoprene. The resulting mixture was added to the polymerization system.
  • the Lewis acid is selected from the group consisting of a compound of formula III,
  • n R 5 are the same or different and each is a C 1 -C 8 alkyl group (including a C 1 -C 8 linear alkyl group and a C 3 -C 8 branched alkyl group).
  • each of n R 5 may be selected from the group consisting of methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, n-pentyl, 2-methylbutyl , 3-methylbutyl, 2,2-dimethylpropyl, n-hexyl, 2-methylpentyl, 3-methylpentyl, 4-methylpentyl, 2,3-dimethyl Butyl, 2,2-dimethylbutyl, 3,3-dimethylbutyl, 2-ethylbutyl, n-heptyl, 2-methylhexyl, 3-methylhexyl, 4-methyl Hexyl, 5-methyl, methyl,
  • 3-n X 1 are the same or different and each is one of the halogen groups (such as -F, -Cl, -Br or -I), preferably -Cl.
  • n 1, 2 or 3.
  • specific examples of the Lewis acid may include, but are not limited to, dichloromethylaluminum, dichloroethylaluminum, dichloro-n-propylaluminum, dichloroisopropylaluminum, Dichloro-n-butylaluminum, dichloroisobutylaluminum, dimethylaluminum chloride, diethylaluminum chloride, di-n-propylaluminum chloride, diisopropylaluminum chloride, di-n-butyl chloride Aluminum, diisobutylaluminum chloride, trimethylaluminum and triethylaluminum.
  • the Lewis acid is ethylaluminum dichloride and/or diethylaluminum chloride.
  • the Lewis acid is ethylaluminum dichloride.
  • the amount of the Lewis acid can be selected depending on the molecular weight of the desired butyl rubber. Generally, the molar ratio of Lewis acid to isobutylene may range from 1:500 to 5,000, preferably from 1:1000 to 4,000, more preferably from 1:100 to 3,500.
  • the proton-donating compound is preferably a protic acid, and specific examples of the protonic acid may include, but are not limited to, HCl, HF, HBr, H 2 SO 4 , H 2 CO 3 , H 3 PO 4 , and HNO 3 .
  • the proton donating compound is HCl.
  • the molar ratio of the proton-providing compound to the Lewis acid may be from 0.01 to 1:1, preferably from 0.04 to 0.8:1, more preferably from 0.08 to 0.2:1, still more preferably from 0.08 to 0.15:1.
  • the initiator system contains a Lewis acid represented by Formula III and a protonic acid as a compound capable of providing a proton, and is the second of the present invention as compared with the direct use of AlCl 3 as an initiator.
  • the butyl rubber prepared by the method described in the above has a higher molecular weight and a higher content of high molecular weight components, does not produce a distinct gel, and the prepared butyl rubber has more comprehensive application properties.
  • the diluent may be selected from a halogenated alkane.
  • the halogen atom in the halogenated alkane may be chlorine, bromine or fluorine, preferably chlorine or fluorine.
  • the halogenated alkane is preferably a C 1 - C 10 halogenated alkane, more preferably a C 1 - C 4 halogenated alkane.
  • diluent may include, but are not limited to, monofluoromethane, difluoromethane, trifluoromethane, carbon tetrafluoride, monochloromethane, dichloromethane, chloroform, carbon tetrachloride, monofluoroethane.
  • difluoroethane trifluoroethane, tetrafluoroethane, pentafluoroethane, hexafluorocarbon, monochloroethane, dichloroethane, trichloroethane, tetrachloroethane, pentachloroethane , carbon hexachloride, monofluoropropane, difluoropropane, trifluoropropane, tetrafluoropropane, pentafluoropropane, hexafluoropropane, heptafluoropropane, octafluoropropane, monochloropropane, dichloropropane, trichloropropane, tetrachloro Propane, pentachloropropane, hexachloropropane, heptachloropropane, octachloropropane,
  • the amount of the diluent can be conventionally selected. Generally, the diluent is used in an amount such that the total monomer (i.e., monoolefin and conjugated diene) concentration is from 1 to 50% by weight, preferably from 5 to 45% by weight, more preferably from 10 to 40% by weight, further It is preferably 20 to 35% by weight.
  • the cationic polymerization conditions can be a conventional choice in the art.
  • the polymerization can be carried out at a temperature ranging from -120 ° C to -50 ° C, preferably at a temperature ranging from -110 ° C to -80 ° C, more preferably at a temperature ranging from -100 ° C to -90 ° C. .
  • the butyl rubber prepared by the method of the second aspect of the invention has better mixing performance than the existing butyl rubber under the same Mooney viscosity, and can effectively reduce the mixing energy. It has a low shear viscosity and an extrusion swell ratio, so that the rubber compound of the butyl rubber according to the present invention is easy to flow, is more suitable for an injection molding process, and the prepared article also has better dimensional stability. .
  • a halogenated butyl rubber comprising a rubber matrix and a halogen element bonded to a rubber matrix, wherein the rubber matrix is the present invention
  • the halogen element can be selected depending on the specific use of the halogenated butyl rubber.
  • the halogen element is a chlorine element and/or a bromine element.
  • the halogenated butyl rubber according to this embodiment is particularly suitable for the preparation of a vehicle tire inner tube and/or a vehicle tire inner liner.
  • the content of the halogen element may be a conventional selection.
  • the content of halogen atoms in the halobutyl rubber may be in the range of 0.2 to 2 mol%, for example, 0.2 mol%, 0.3 mol%, 0.4 mol%, 0.5 mol%, 0.6 mol%, 0.7 mol. %, 0.8 mol%, 0.9 mol%, 1 mol%, 1.1 mol%, 1.2 mol%, 1.3 mol%, 1.4 mol%, 1.5 mol%, 1.6 mol%, 1.7 mol%, 1.8 mol%, 1.9 mol%, or 2 mol%.
  • the halogen atom in the halogenated butyl rubber is contained in an amount of from 0.4 to 1.5 mol%.
  • the halobutyl rubber can be produced by a conventional method.
  • the butyl rubber according to the present invention may be contacted with a halogen or a halogen-containing compound such that the halogen or halogen-containing compound reacts with an unsaturated group in the butyl rubber to form a halogenated butyl rubber.
  • the contact of the butyl rubber with a halogen or a halogen-containing compound can be carried out under ordinary conditions as long as the butyl rubber can be halogenated.
  • a composition comprising a butyl rubber and/or a halobutyl rubber, a vulcanizing agent and optionally at least one additive, said butyl rubber
  • a vulcanizing agent optionally at least one additive
  • the butyl rubber according to the first aspect or the third aspect of the invention, wherein the halogenated butyl rubber is the halogenated butyl rubber according to the fourth aspect of the invention.
  • the vulcanizing agent may be a conventional choice in the field of rubber preparation, and is not particularly limited. Specifically, the vulcanizing agent may be selected from the group consisting of sulfur, selenium, tellurium, benzoyl peroxide, ethyl carbamate, 2,5-dimethyl-2,5-di(tert-butylperoxy)hexane. And vulcanized resin.
  • the amount of the vulcanizing agent can be appropriately selected according to the conventional knowledge in the art.
  • the vulcanizing agent may be used in an amount of 0.1 to 10 parts by weight, preferably 0.2 to 8 parts by weight, per 100 parts by weight of the butyl rubber and the halogenated butyl rubber.
  • composition according to the fifth aspect of the invention may further comprise at least one additive selected from the group consisting of a vulcanization accelerator and carbon black.
  • the vulcanization accelerator may be selected from the group consisting of zinc oxide, magnesium oxide, stearic acid, diphenylguanidine, tetramethylthiuram disulfide, bis(thiocarbonyldimethylamine) disulfide, N-(1,3-di) Methylbutyl)-N'-phenyl-p-phenylenediamine, N,N'-tetramethyldithiobisthiocarbonylamine, 2-thiolbenzothiazole, ethylenethiourea and N-ring Base-2-benzothiazole sulfenamide.
  • the vulcanization accelerator can be a conventional choice in the art. Generally, the vulcanization accelerator may be used in an amount of 2 to 10 parts by weight based on 100 parts by weight of the butyl rubber and the halogenated butyl rubber.
  • the carbon black may be carbon black of various sources and types commonly used.
  • the carbon black may be included in an amount of 20 to 70 parts by weight, preferably 30 to 60 parts by weight, more preferably 40 to 60 parts by weight, per 100 parts by weight of the butyl rubber and the halogenated butyl rubber.
  • a rubber article formed by vulcanizing the composition of the fifth aspect of the invention.
  • the vulcanization can be carried out under ordinary conditions in the art, and is not particularly limited.
  • the vulcanization can be carried out in a vulcanization apparatus which is commonly used in the art, and is not particularly limited.
  • the rubber article according to the sixth aspect of the present invention has good comprehensive properties, for example, has a low dimensional shrinkage, a high tear strength and a fatigue resistance, and is suitable as a tire inner liner for a vehicle.
  • Tire inner tubes and vulcanized capsules are particularly suitable as vulcanized capsules.
  • the present invention provides the butyl rubber according to the first or third aspect of the present invention, the halogenated butyl rubber according to the fourth aspect of the present invention, and the present invention
  • the present invention provides a tire inner liner for a vehicle, the tire inner liner according to the first aspect or the third aspect of the invention, the invention
  • the invention provides a tire inner tube for a vehicle, the tire inner tube according to the first aspect or the third aspect of the invention, the fourth aspect of the invention.
  • the halogenated butyl rubber, the composition of the fifth aspect of the invention or the rubber article of the sixth aspect of the invention is formed.
  • the present invention provides a vulcanized capsule comprising the butyl rubber according to the first aspect or the third aspect of the invention, the composition of the fifth aspect of the invention Or the rubber article of the sixth aspect of the invention is formed.
  • the vulcanized capsules according to the present invention exhibit superior performance and longer service life than existing vulcanized capsules.
  • the present invention also provides a butyl rubber comprising a structural unit derived from isobutylene, a structural unit derived from a conjugated diene, and a structural unit derived from an aryl olefin, at least a portion of the conjugated diene being Isoprene, said aryl olefin being selected from the group consisting of compounds of formula I,
  • R 1 is a C 6 -C 20 aryl group
  • the content of the structural unit derived from the conjugated diene is from 0.5 to 2.5 mol%, and the content of the structural unit derived from the aryl olefin is from 0.01 to 1 mol based on the total amount of the butyl rubber. %, preferably 0.05-0.6 mol%, more preferably 0.1-0.5 mol%;
  • a structural unit derived from a conjugated diene is used as a grafting site such that a part of the molecular chain of the butyl rubber is a graft chain, and a remaining part of the molecular chain of the butyl rubber is a linear chain;
  • the molecular weight of the butyl rubber is bimodal, the Log (MW) value of the high molecular weight shoulder is between 6-7.5, and the butyl rubber content of Log (MW) ⁇ 6 is 30-80% by weight, preferably 30- 70% by weight, more preferably 30-60% by weight;
  • the butyl rubber has a Z-average molecular weight of 2,000,000 to 7,000,000, preferably 3,000,000 to 6.5 million, more preferably 4,000,000 to 6,000,000, M z /M w is 1.8-5,2-4.5, preferably 2.2-4, more preferably 2.2-3.5, M w / M n is 3-8, preferably to 3.3-7.5, preferably 3.5-7, more preferably 3.5 6.
  • the butyl rubber has a Mooney viscosity ML (1+8) of 125 to 30 at 30 ° C, preferably 40 to 60.
  • the main chain of the graft chain contains structural units derived from a conjugated diene and a structural unit derived from an aryl olefin, the main chain of the graft chain preferably containing structural units derived from a conjugated diene and derived from a structural unit of styrene, preferably a main chain of the graft chain derived from a styrene-butadiene polymer and a pentylbenzene polymer;
  • the branches of the graft chain contain structural units derived from isobutylene and structural units derived from isoprene.
  • the linear chain contains structural units derived from isobutylene and structural units derived from isoprene.
  • the molecular weight and molecular weight distribution information of the butyl rubber was measured by a TDA302 liquid phase gel permeation chromatograph manufactured by Viscotek, USA, which is equipped with a differential detector, a light scattering detector, and the like.
  • the viscosity detector is a combination of TOSOH's TSKgel GMH HR- L and TSKgel GMH HR- H.
  • the mobile phase was tetrahydrofuran at a flow rate of 1.0 mL/min; the sample solution concentration was 0.8 mg/mL; and the test temperature was 30 °C.
  • the weight average molecular weight of the grafting agent was determined by gel permeation chromatography, specifically by LC-20A liquid phase gel permeation chromatography instrument manufactured by Shimadzu Corporation, Japan, and the column was TSKgel G2000H XL.
  • TSKgel G3000H XL and TSKgel G4000H XL are combined with a three-column and equipped with a differential detector.
  • the mobile phase was tetrahydrofuran at a flow rate of 1 mL/min; the sample solution concentration was 1 mg/mL, the injection volume was 200 ⁇ L; the test temperature was 40 ° C; and the single-distributed polystyrene was used as the standard sample.
  • an AVANCE 400 nuclear magnetic resonance instrument commercially available from Bruker, Switzerland, using a magnetic field strength of 9.40 tesla, using CDC1 3 as a solvent and TMS as an internal standard, and grafting at room temperature (25 ° C) were used.
  • the microstructure parameters of the agent, and the microstructure parameters of the prepared butyl rubber, the microstructure parameters of the prepared butyl rubber include total unsaturation (ie, the structural unit formed from the conjugated diene in the prepared butyl rubber) Content), the content of structural units derived from isoprene, and the content of structural units derived from styrene.
  • the Mooney viscosity and stress relaxation test were carried out using a GT-7080-S2 Mooney Viscometer commercially available from Taiwan High Speed Rail Co., Ltd., referring to the method of GB/T1232.1-2000 at 125 ° C (1). +8) Under the condition of large rotor measurement, the Mooney relaxation time is 120s.
  • the extrusion swell of the rubber mixture was higher than that of the RH2000 capillary rheometer manufactured by Malvern, UK at a temperature of 100 ° C, an aspect ratio of 16:1 and a shear rate of 10 - Measured within the interval of 1000 s -1 .
  • the rubber compound formula refers to the SH/T1717-2008 standard formula: butyl rubber 100g, 8# carbon black 50g, stearic acid 1g, zinc oxide 3g, sulfur 1.75g, dithiotetra Kiryulam TMTD 1.0g, totaling 156.75g.
  • the mixing process is as follows:
  • the vulcanization characteristics of the rubber compound are determined by the GT-M2000A type non-rotor vulcanizer manufactured by Taiwan High Speed Rail Co., Ltd., and the vulcanization characteristics of the rubber compound are determined according to the method specified in GB/T16584-1996.
  • the physical and mechanical properties of the rubber compound after vulcanization are GT-AT-3000 universal tensile machine produced by Taiwan High Speed Rail.
  • the tensile stress and strain properties of the rubber compound are tested according to GB/T 528-2009.
  • the rubber compound is tested according to GB/T 529-2008. Tear strength, test Shore A hardness according to GB/T531.1-2008.
  • the airtightness of the rubber compound after vulcanization is determined by an automatic airtightness tester.
  • the air permeability coefficient of the vulcanizate is determined according to ISO 2782:1995.
  • the test gas is N 2
  • the test temperature is 23 ° C
  • the test piece is a circular slice of 8 cm diameter. It is 1mm.
  • Examples 1-15 are used to illustrate the butyl rubber of the present invention and a process for the preparation thereof.
  • feed 1 is a monomer solution feed, which is obtained by mixing isoprene in which styrene-butadiene resin is dissolved, and monochloromethane and isobutylene; feed 2 is an initiator solution feed.
  • the top of the polymerization vessel is a slurry discharge, and no obvious gel formation occurs during the polymerization, and the polymer slurry is subjected to degassing coagulation and post-treatment drying to obtain a according to the present invention.
  • Butyl rubber, its structure and The performance parameters are listed in Table 7.
  • a butyl rubber was prepared in the same manner as in Example 1, except that, according to the conditions of Table 2, no significant gel formation occurred during the polymerization.
  • the butyl rubber according to the present invention was prepared, and its structure and performance parameters are listed in Table 7.
  • a butyl rubber was prepared in the same manner as in Example 1 except that the conditions of Table 3 were fed, and no significant gel formation occurred during the polymerization.
  • the butyl rubber according to the present invention was prepared, and its structure and performance parameters are listed in Table 7.
  • a butyl rubber was prepared in the same manner as in Example 1, except that, according to the conditions of Table 4, no significant gel formation occurred during the polymerization.
  • the butyl rubber according to the present invention was prepared, and its structure and performance parameters are listed in Table 7.
  • feed 1 is a monomer solution feed, which is obtained by mixing isoprene in which styrene-butadiene resin is dissolved, and monochloromethane and isobutylene; feed 2 is an initiator solution feed.
  • the top of the polymerization vessel was discharged as a slurry, and no gel formation occurred during the polymerization.
  • the polymer slurry was subjected to agglomeration and post-treatment drying to obtain a butyl group according to the present invention. Rubber, its structure and performance parameters are listed in Table 7.
  • feed 1 is a monomer solution feed, which is obtained by mixing isoprene in which styrene-butadiene resin is dissolved, and monochloromethane and isobutylene; feed 2 is an initiator solution feed.
  • the top of the polymerization vessel was discharged as a slurry, and no gel formation occurred during the polymerization.
  • the polymer slurry was subjected to degassing agglomeration and post-treatment drying to obtain a butyl group according to the present invention. Rubber, its structure and performance parameters are listed in Table 7.
  • Figures 1-3 are GPC plots of the butyl rubbers prepared in Examples 2, 4 and 6, respectively.
  • the butyl rubber according to the present invention has a higher molecular weight.
  • the butyl rubber prepared in Examples 1-6 and the butyl rubber of Comparative Example 1 and Comparative Example 2 were made into a rubber compound, and subjected to stress relaxation test.
  • the Mooney viscosity and stress relaxation test results of the rubber compound were shown in Table 8. Listed.
  • the area under the stress relaxation curve can characterize the processing energy consumption of the rubber compound, wherein the smaller the area under the stress relaxation curve, the lower the processing energy consumption.
  • the butyl rubber according to the present invention has good kneading performance and lower processing energy consumption.
  • the area under the stress relaxation curve corresponding to the rubber compounds of Examples 1-3 and 6 is significantly lower than that of Comparative Examples 1 and 2 under the conditions that the raw rubber or the rubber Mooney viscosity is substantially the same.
  • the vulcanization properties of the butyl rubber according to the present invention are substantially equivalent to those of commercially available products.
  • the vulcanization properties of Examples 1-3 and 6 are substantially equivalent to those of Comparative Examples 1 and 2 under conditions in which the raw rubber or the rubber Mooney viscosity is substantially the same.
  • the shear viscosity and extrusion swell ratio of the rubber compound made of the butyl rubber according to the present invention are significantly lower than the extrusion swell ratio of the butyl rubber according to Comparative Examples 1 and 2. It shows that the butyl rubber according to the present invention has better fluidity, better dimensional stability and lower shrinkage.
  • Test Example 4 Physical and mechanical properties of vulcanizate
  • the butyl rubber prepared in Examples 1-6 and the butyl rubbers of Comparative Examples 1 and 2 were made into a rubber compound for vulcanization (vulcanization temperature 150 ° C, vulcanization time 30 min), and physical and mechanical properties were tested. Listed in Table 10.
  • the samples prepared from the butyl rubber according to the present invention have good overall mechanical properties, particularly exhibiting higher elongation at break and tear strength.
  • 100 parts by weight of butyl rubber, 5 parts by weight of ethylene propylene rubber, 5 parts by weight of zinc oxide, 1 part by weight of stearic acid, 58 parts by weight of carbon black, 16 parts by weight of paraffin oil, 0.5 parts by weight of accelerator DM, and accelerator DMTD 1 part by weight and 1.75 parts by weight of sulfur are prepared into a tire inner tube by a process step of kneading, mastication, injection molding, vulcanization, trimming, and the like.
  • the performance parameters of the prepared inner tube are listed in Table 12.
  • vulcanized resin 100 parts by weight of butyl rubber, 5 parts by weight of chloroprene rubber, 60 parts by weight of carbon black, 1 part by weight of stearic acid, 5 parts by weight of castor oil, 3 parts by weight of magnesium oxide, 5 parts by weight of zinc oxide, and 6 parts by weight of vulcanized resin
  • the parts are prepared into vulcanized capsules through processes such as mixing, opening, injection molding, vulcanization and polishing.
  • the performance parameters of the prepared vulcanized capsules are listed in Table 13.
  • Examples 7-10 were prepared by the following method. The difference between Examples 7-10 was that the amount of the grafting agent was different, and the specific amounts are listed in Table 14.
  • Mw is 114,000
  • the content of butadiene in the K resin is 39.5 mol%
  • the content of the structural unit formed by the 1,2-polymerization of butadiene in the K resin is 4.6 mol%
  • 101 g Isobutylene cooled to -85 ° C, and 6 mL of isoprene precooled to -20 ° C were mixed well, and the temperature of the cold bath was lowered to be in the range of -90 ° C to -100 ° C.
  • 70 mL of an initiator solution was added to the reactor to initiate polymerization, and the temperature of the cold bath was controlled to be in the range of -90 ° C to -100 ° C during the reaction.
  • a butyl rubber was prepared in the same manner as in Example 7-10 except that a grafting agent was not used.
  • a butyl rubber was prepared in the same manner as in Example 11 except that the grafting agent was dissolved in monochloromethane.
  • the experimental results are listed in Tables 17 to 19.
  • a butyl rubber was prepared in the same manner as in Example 11 except that the grafting agent was a styrene-isoprene-styrene triblock copolymer, which was prepared by the following method.
  • a 250 mL volumetric flask was used, heat-baked and repeatedly replaced with anhydrous and anaerobic by nitrogen and vacuum. Then, 40 mL of a cyclohexane solution containing 7.4 mL of styrene was added, and the mixture was placed in a constant temperature water bath at 30 ° C. After the impregnation, the initiator n-butyllithium solution was added, timed and shaken, and after reacting for 90 min, 0.6 mL of the doped isoprene was added and the reaction was carried out for 120 min. then.
  • the prepared styrene-isoprene-styrene triblock copolymer had a weight average molecular weight of 45,300, a molecular weight distribution index of 1.45, and a content of structural units derived from isoprene of 3.62 mol%, isoprene.
  • the content of the structural unit formed by the 1,2-polymerization method was 0 mol%, and the content of the structural unit formed by the 3,4-polymerization method was 2.67 mol%.
  • a butyl rubber was prepared in the same manner as in Example 11 except that the grafting agent was a styrene-isoprene-styrene triblock copolymer, which was prepared by the following method.
  • the prepared styrene-isoprene-styrene triblock copolymer had a weight average molecular weight of 25,000, a molecular weight distribution index of 1.14, and a content of structural units derived from isoprene of 16.98 mol%, isoprene.
  • the content of the structural unit formed by the 1,2-polymerization method was 0.80 mol%, and the content of the structural unit formed by the 3,4-polymerization method was 10.73 mol%.
  • a butyl rubber was prepared in the same manner as in Example 11 except that a grafting agent was not used.
  • a butyl rubber and a bromobutyl rubber were prepared in the same manner as in Example 15 except that a grafting agent was not used.
  • a butyl rubber and a bromobutyl rubber prepared in the same manner as in Example 15 were used, except that an initiator solution was prepared by placing 390 mg of the weighed AlCl 3 powder in an inert gas glove box.
  • an initiator solution was prepared by placing 390 mg of the weighed AlCl 3 powder in an inert gas glove box.
  • 120 mL of a purified CH 2 Cl 2 solution water content of 10 ppm in a CH 2 Cl 2 solution
  • Examples 15-16 demonstrate that the butyl rubber prepared by the method of the present invention and the halogenated butyl rubber prepared from the butyl rubber have a larger area under the stress relaxation curve in the case where the Mooney viscosity is similar. , thus having better cold flow resistance, more effectively resisting deformation during transportation and storage; and butyl rubber prepared by the method of the invention and halogenated butyl rubber prepared from the butyl rubber With a lower extrusion swell effect (i.e., a low die swell rate), the prepared article has better dimensional stability.
  • Figure 5 is a graph showing the relationship between the extrusion swell ratio and the shear rate of the butyl rubbers prepared in Examples 15 and 16 and Comparative Example 5, wherein the test was carried out at a temperature of 100 ° C using an L/D of 16 The /1 die was measured over a shear rate range of 10-1000 s -1 .
  • the butyl rubber prepared by the method of the present invention shows lower conditions under substantially the same Mooney viscosity.
  • the extrusion swell ratio i.e., the butyl rubber according to the present invention has a lower rate of die swell), thus having a lower shrinkage ratio, and the article has better dimensional stability.
  • the butyl rubber and the halogenated butyl rubber prepared in Examples 15-16 and Comparative Examples 5-6 were respectively prepared into a rubber compound for vulcanization (vulcanization temperature 150 ° C, vulcanization time 30 nin), and physical and mechanical properties were tested, and vulcanized rubber was tested.
  • the mechanical property test results are listed in Table 24, and the air tightness test results are listed in Table 25.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Tires In General (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

丁基橡胶及其制备方法和应用以及含有该丁基橡胶的组合物和橡胶制品,该丁基橡胶含有衍生自异丁烯的结构单元、衍生自共轭二烯烃的结构单元、以及可选的衍生自式I所示芳基烯烃的结构单元,至少部分共轭二烯烃为异戊二烯。以及由所述丁基橡胶制成的车用轮胎气密层、内胎和硫化胶囊。该丁基橡胶具有良好的加工混炼性能、挤出胀大比以及综合力学性能,特别是具有更高的撕裂强度。能有效地降低加工混炼过程中的能耗,制备的制品具有优异的尺寸稳定性和应用性能。

Description

丁基橡胶及制备方法以及橡胶制品和组合物及应用以及车用轮胎气密层、内胎和硫化胶囊 技术领域
本发明涉及一种丁基橡胶及其制备方法和应用以及一种卤代丁基橡胶及其应用,本发明还涉及基于所述丁基橡胶和/或卤代丁基橡胶的组合物和橡胶制品,本发明进一步涉及由所述丁基橡胶和/或卤代丁基橡胶形成的车用轮胎气密层、轮胎内胎和硫化胶囊。
背景技术
丁基橡胶作为商品问世距今已有六十多年的历史,由于其具有优异的气密性、阻尼性、耐热老化性、耐臭氧和耐气候性等特性,因而成为最重要的合成橡胶品种之一。由于各生产厂商生产丁基橡胶所采用的工艺条件不同,因此商品化的丁基橡胶产品的质量也各有差异,尤其是加工应用性能,不同生产厂商的产品差异比较明显。
长期以来,研究人员一直致力于改善丁基橡胶的加工应用性能。研究结果表明,丁基橡胶的加工应用性能实际上与分子量和分子量分布有很重要的关系。在生产丁基橡胶时,除了要保证足够的重均分子量,还需要保持一个合适的高低分子量部分的平衡,高分子量部分用以获得足够的生胶强度,而低分子量部分则可以保证一定的应力松弛速率。
关于改善丁基橡胶加工性能的方法,主要体现在改善丁基橡胶的分子量和分子量分布上。
US3780002提出采用元素周期表中第II族或第III族的金属卤化物与元素周期表中第IV族金属的四卤化物组成复合引发剂,如将AlCl3与TiCl4复合使用,或将AlCl3与SnCl4复合使用,使其中每一种引发剂都可以独立地引发阳离子聚合,在常规的丁基橡胶聚合条件下合成得到分子量分布指数Mw/Mn在5.0以上的丁基橡胶。
US5194538公开了采用官能团数不同的引发剂进行复合使用,即在传统丁基橡胶H2O/AlCl3引发体系中再另外加入一种含有2-4个羟基的化合物,结果得到呈现双峰分子量分布的丁基聚合物。
US20030166809提出在二烷基氯化铝与单烷基二氯化铝的混合体系中加入少量活化剂铝氧烷对引发体系进行活化改性,通过改变铝氧烷的用量可以得到具有不同分子量分布的丁基橡胶。
CN1966537A公开了在以H2O/AlCl3为引发体系的淤浆聚合体系中加入一些添加剂,如醇类、酚类、胺类或吡啶类、酰胺类、羧酸酯类或酮类等化合物,与AlCl3进行陈化反应后形成复合引发剂体系,通过调节该添加剂与AlCl3的用量比例,可以在一定范围内调节丁基橡胶的分子量及分子量分布。
丁基橡胶广泛应用于制造车用轮胎的内胎、气密层和硫化胶囊等。不同的应用场合对丁基橡胶的性能要求也不同。对于内胎用丁基橡胶,在具有良好的气密性的同时,还应当具有良好的耐热性、弹性和较小的永久变形。气密层的主要功能是防止气体泄漏,因此气密层胶料需要具有良好的气密性,较低的气体透过系数。硫化胶囊用于车用轮胎外胎硫化时将硫化介质与胎胚内表面隔离开,同时传递热量和压力于胎胚内表面上,硫化胶囊质量的优劣关系到外胎质量和轮胎的生产成本,其中,评价硫化胶囊质量优劣的主要指标是硫化胶囊的使用寿命,即安全地保证外胎质量的使用次数,每硫化一个周期(即,每 硫化一条轮胎)为使用一次。目前,针对内胎、气密层和硫化胶囊有不同商品牌号的丁基橡胶。
尽管在改善丁基橡胶的加工性能方面取得了一定的进展,针对丁基橡胶的不同应用场合也开发了相应商品牌号的丁基橡胶,但是仍然需要开发新型丁基橡胶,以获得更为优异的加工性能和更全面的应用性能。
发明内容
本发明的目的在于提供一种丁基橡胶,该丁基橡胶不仅具有改进的加工性能,而且制品具有更为优异的尺寸稳定性和更全面的应用性能。
根据本发明的第一个方面,本发明提供了一种丁基橡胶,该丁基橡胶含有衍生自异丁烯的结构单元、衍生自共轭二烯烃的结构单元、以及可选的衍生自芳基烯烃的结构单元,至少部分共轭二烯烃为异戊二烯,所述芳基烯烃选自式I所示的化合物,
Figure PCTCN2017100940-appb-000001
式I中,R1为C6-C20的芳基;
该丁基橡胶中,部分衍生自共轭二烯烃的结构单元作为接枝位点使得该丁基橡胶的部分分子链为接枝链,该丁基橡胶的剩余部分分子链为线形链;
该丁基橡胶的峰位分子量为90万至260万,Log(MW)≥6的丁基橡胶含量为30-80重量%。
根据本发明的第二个方面,本发明提供了一种丁基橡胶的制备方法,该方法包括在阳离子聚合条件下,在至少一种路易斯酸和至少一种能够提供质子的化合物的存在下,将异丁烯和异戊二烯在至少一种稀释剂中与至少一种接枝剂接触,所述接枝剂的量为异丁烯的0.01-3重量%,
所述路易斯酸选自式II所示的化合物,
AlR2 nX1 (3-n)        (式II)
式II中,n个R2相同或不同,各自为C1-C8的烷基;3-n个X1相同或不同,各自为卤素基团中的一种;n为1、2或3;
所述能够提供质子的化合物选自质子酸。
根据本发明的第三个方面,本发明提供了一种由本发明第二个方面所述的方法制备的丁基橡胶。
根据本发明的第四个方面,本发明提供了一种卤代丁基橡胶,该卤代丁基橡胶含有橡胶基体以及与橡胶基体键合的卤素元素,其中,所述橡胶基体为本发明第一个方面或者第三个方面所述的丁基橡胶。
根据本发明的第五个方面,本发明提供了一种组合物,该组合物含有丁基橡胶和/或卤代丁基橡胶、硫化剂以及可选的至少一种添加剂,所述添加剂选自硫化促进剂和炭黑,所述丁基橡胶为本发明第一个方面或者第三个方面所述的丁基橡胶,所述卤代丁基橡胶为本发明第四个方面所述的卤代丁基橡胶。
根据本发明的第六个方面,本发明提供了一种橡胶制品,该橡胶制品是将本发明第五个方面所述的组合物进行硫化而形成的。
根据本发明的第七个方面,本发明提供了本发明第一个方面或第三个方面所述的丁基橡胶、第四个 方面所述的卤代丁基橡胶、第五个方面所述的组合物、或者第六个方面所述的橡胶制品在制备车用轮胎气密层、车用轮胎内胎以及硫化胶囊中的应用。
根据本发明的第八个方面,本发明提供了一种车用轮胎气密层,该车用轮胎气密层由本发明第四个方面所述的卤代丁基橡胶、第五个方面所述的组合物、或者第六个方面所述的橡胶制品形成。
根据本发明的第九个方面,本发明提供了一种车用轮胎内胎,该车用轮胎内胎由本发明第一个方面或第三个方面所述的丁基橡胶、第四个方面所述的卤代丁基橡胶、第五个方面所述的组合物、或者第六个方面所述的橡胶制品形成。
根据本发明的第十个方面,本发明提供了一种硫化胶囊,该硫化胶囊由本发明第一个方面或第三个方面所述的丁基橡胶、第五个方面所述的组合物、或者第六个方面所述的橡胶制品形成。
与现有的丁基橡胶相比,根据本发明的丁基橡胶具有如下优点:
(1)与商品化的丁基橡胶相比,根据本发明的丁基橡胶具有更好的加工混炼性能,能有效地降低加工混炼过程中的能耗,使填充剂分散更均匀;
(2)根据本发明的丁基橡胶具有更低的剪切粘度和挤出胀大比,能获得更好的加工流动性和更高的制品尺寸稳定性,更适用于注射成型工艺,制备的制品具有更为优异的尺寸稳定性;
(3)根据本发明的丁基橡胶具有更良好的综合力学性能,特别是具有更高的撕裂强度。
(4)根据本发明的丁基橡胶具有良好的气密性。
根据本发明的丁基橡胶具有全面的应用性能,适于制作车用轮胎气密层、车用轮胎内胎和硫化胶囊,特别是适于制作硫化胶囊。
附图说明
附图是用来提供对本发明的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明,但并不构成对本发明的限制。
图1是实施例2制备的丁基橡胶的凝胶渗透色谱图。
图2是实施例4制备的丁基橡胶的凝胶渗透色谱图。
图3是实施例6制备的丁基橡胶的凝胶渗透色谱图。
图4是由实施例2和6以及对比例1-2的丁基橡胶制备的混炼胶在100℃时的挤出胀大比与剪切速率的关系图。
图5是实施例15和16以及对比例5制备的丁基橡胶在100℃时的挤出胀大比与剪切速率的关系图。
具体实施方式
以下对本发明的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明,并不用于限制本发明。
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值 之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。本发明中,“至少一种”是指一种或两种以上。本发明中,“可选的”表示“含或不含”、“包括或不包括”。
根据本发明的第一个方面,本发明提供了一种丁基橡胶,该丁基橡胶含有衍生自异丁烯的结构单元、衍生自共轭二烯烃的结构单元、以及可选的衍生自芳基烯烃的结构单元,至少部分共轭二烯烃为异戊二烯。
本发明中,“衍生自异丁烯的结构单元”是指该结构单元由异丁烯形成,且该结构单元与异丁烯相比,除电子结构有所改变外,原子种类以及各原子的个数均相同;“衍生自共轭二烯烃的结构单元”是指该结构单元由共轭二烯烃形成,且该结构单元与共轭二烯烃相比,除电子结构有所改变外,原子种类以及各原子的个数均相同;“衍生自芳基烯烃的结构单元”是指该结构单元由芳基烯烃形成,且该结构单元与芳基烯烃相比,除电子结构有所改变外,原子种类以及各原子的个数均相同。
根据本发明第一个方面所述的丁基橡胶,所述共轭二烯烃是指分子结构中含有共轭双键的化合物。优选地,所述共轭二烯烃选自式II所示的化合物,
Figure PCTCN2017100940-appb-000002
式II中,R2、R3和R4相同或不同,各自选自氢和C1-C5的直链或支链烷基。
所述共轭二烯烃的具体实例可以包括但不限于丁二烯和/或异戊二烯。
根据本发明第一个方面所述的丁基橡胶,所述芳基烯烃是指烯烃中的至少一个氢原子被芳基取代形成的物质。具体地,所述芳基烯烃可以为式I所示的化合物:
Figure PCTCN2017100940-appb-000003
式I中,R1为C6-C20的芳基,具体可以选自苯基、邻甲苯基、间甲苯基、对甲苯基、邻乙苯基、间乙苯基、对乙苯基、邻叔丁基苯基、间叔丁基苯基、对叔丁基苯基、对十二烷基苯基、2,4-二正丁基苯基、对正丙基苯基和2,4-二乙基苯基。
所述芳基烯烃的具体实例可以包括但不限于苯乙烯、2-甲基苯乙烯、4-甲基苯乙烯、4-叔丁基苯乙烯、4-乙基苯乙烯、3,5-二乙基苯乙烯、3,5-二正丁基苯乙烯、4-正丙基苯乙烯和4-十二烷基苯乙烯中的一种或两种以上。
优选地,所述芳基烯烃为苯乙烯。
根据本发明第一个方面所述的丁基橡胶,含有衍生自共轭二烯烃的结构单元,且至少部分共轭二烯烃为异戊二烯。该结构单元为含有碳碳双键的结构单元,可以通过该结构单元中的碳碳双键对丁基橡胶进行改性,从而改善该丁基橡胶的性能和/或赋予该丁基橡胶以新的性能。例如,可以利用该碳碳双键在丁基橡胶中引入卤素原子,形成卤代丁基橡胶。
根据本发明第一个方面所述的丁基橡胶,衍生自共轭二烯烃的结构单元的含量可以根据该丁基橡胶 的具体使用场合进行选择。在一种实施方式中,该丁基橡胶中,衍生自共轭二烯烃的结构单元的含量可以为0.5-2.5摩尔%,例如:0.5摩尔%、0.6摩尔%、0.7摩尔%、0.8摩尔%、0.9摩尔%、1.0摩尔%、1.1摩尔%、1.2摩尔%、1.3摩尔%、1.4摩尔%、1.5摩尔%、1.6摩尔%、1.7摩尔%、1.8摩尔%、1.9摩尔%、2.0摩尔%、2.1摩尔%、2.2摩尔%、2.3摩尔%、2.4摩尔%、或者2.5摩尔%。优选地,该丁基橡胶中,衍生自共轭二烯烃的结构单元的含量为0.8-2摩尔%。更优选地,该丁基橡胶中,衍生自共轭二烯烃的结构单元的含量为1-1.8摩尔%。在该实施方式中,衍生自共轭二烯烃的结构单元可以为衍生自异戊二烯烃的结构单元,也可以为衍生自异戊二烯的结构单元与衍生自除异戊二烯之外的其它共轭二烯烃(如丁二烯)的结构单元的组合。一般地,根据本发明第一个方面所述的丁基橡胶中,衍生自异戊二烯的结构单元的含量可以为0.5-2.5摩尔%,例如:0.5摩尔%、0.6摩尔%、0.7摩尔%、0.8摩尔%、0.9摩尔%、1摩尔%、1.1摩尔%、1.2摩尔%、1.3摩尔%、1.4摩尔%、1.5摩尔%、1.6摩尔%、1.7摩尔%、1.8摩尔%、1.9摩尔%、2摩尔%、2.1摩尔%、2.2摩尔%、2.3摩尔%、2.4摩尔%、或者2.5摩尔%。优选地,根据本发明第一个方面所述的丁基橡胶中,衍生自异戊二烯的结构单元的含量为0.8-2摩尔%。更优选地,根据本发明第一个方面所述的丁基橡胶中,衍生自异戊二烯的结构单元的含量为1-1.8摩尔%。根据该实施方式的丁基橡胶特别适用于制备车用轮胎内胎和/或硫化胶囊。本发明中,丁基橡胶中衍生自共轭二烯烃的结构单元的含量以及衍生自异戊二烯的结构单元的含量采用核磁共振氢谱测定。
根据本发明第一个方面所述的丁基橡胶,可以含有衍生自芳基烯烃的结构单元,也可以不含有衍生自芳基烯烃的结构单元。在一种优选的实施方式中,所述丁基橡胶含有衍生自芳基烯烃的结构单元。在该优选的实施方式中,以丁基橡胶的总量为基准,衍生自芳基烯烃的结构单元的含量可以为0.01-3摩尔%,例如:0.01摩尔%、0.02摩尔%、0.03摩尔%、0.04摩尔%、0.05摩尔%、0.06摩尔%、0.07摩尔%、0.08摩尔%、0.09摩尔%、0.1摩尔%、0.2摩尔%、0.3摩尔%、0.4摩尔%、0.5摩尔%、0.6摩尔%、0.7摩尔%、0.8摩尔%、0.9摩尔%、1摩尔%、1.1摩尔%、1.2摩尔%、1.3摩尔%、1.4摩尔%、1.5摩尔%、1.6摩尔%、1.7摩尔%、1.8摩尔%、1.9摩尔%、2摩尔%、2.1摩尔%、2.2摩尔%、2.3摩尔%、2.4摩尔%、2.5摩尔%、2.6摩尔%、2.7摩尔%、2.8摩尔%、2.9摩尔%、或者3摩尔%。优选地,以丁基橡胶的总量为基准,衍生自芳基烯烃的结构单元的含量为0.05-2.8摩尔%。在一种更为优选的实施方式中,以丁基橡胶的总量为基准,衍生自芳基烯烃的结构单元的含量为0.01-1摩尔%,优选为0.05-0.6摩尔%,更优选为0.1-0.5摩尔%。本发明中,丁基橡胶中衍生自芳基烯烃的结构单元的含量采用核磁共振氢谱测定。
根据本发明第一个方面所述的丁基橡胶,部分衍生自共轭二烯烃的结构单元作为接枝位点使得该丁基橡胶的部分分子链为接枝链。所述接枝链含有主链以及与主链上的接枝位点相键合的支链。
所述接枝链的主链含有衍生自共轭二烯烃的结构单元以及可选的衍生自芳基烯烃的结构单元。所述接枝链中的用于将主链与支链键合的接枝位点通常为衍生自共轭二烯烃的结构单元中的碳碳双键,如共轭二烯烃以1,2-聚合方式和/或3,4-聚合方式形成的结构单元中的碳碳双键。所述接枝链的主链中,共轭二烯烃可以为前文所述的共轭二烯烃。优选地,所述接枝链的主链中,共轭二烯烃优选为丁二烯和/或异戊二烯。
在一种优选的实施方式中,所述接枝链的主链含有衍生自共轭二烯烃的结构单元以及衍生自芳基烯 烃的结构单元。在一种更为优选的实施方式中,所述接枝链的主链含有衍生自共轭二烯烃的结构单元以及衍生自苯乙烯的结构单元。
在所述接枝链的主链含有衍生自共轭二烯烃的结构单元以及衍生自芳基烯烃的结构单元时,衍生自共轭二烯烃的结构单元以及衍生自芳基烯烃的结构单元可以为无规分布,也可以以嵌段的形式存在,没有特别限定。
在一个优选的实例中,所述接枝链的主链衍生自丁苯共聚物和戊苯共聚物。所述丁苯共聚物和所述戊苯共聚物各自可以为无规共聚物,也可为嵌段共聚物,还可以为无规共聚物和嵌段共聚物的混合物,没有特别限定。
所述接枝链的支链一般含有衍生自异丁烯的结构单元以及衍生自异戊二烯的结构单元。
根据本发明第一个方面所述的丁基橡胶,剩余分子链一般为线形链。所述线形链含有衍生自异丁烯的结构单元以及衍生自异戊二烯的结构单元。
与商品化的丁基橡胶相比,根据本发明第一个方面所述的丁基橡胶具有更高的高分子量组分含量。一般地,根据本发明第一个方面所述的丁基橡胶中,Log(MW)≥6的聚合物含量为30-80重量%,例如:30重量%、31重量%、32重量%、33重量%、34重量%、35重量%、36重量%、37重量%、38重量%、39重量%、40重量%、41重量%、42重量%、43重量%、44重量%、45重量%、46重量%、47重量%、48重量%、49重量%、50重量%、51重量%、52重量%、53重量%、54重量%、55重量%、56重量%、57重量%、58重量%、59重量%、60重量%、61重量%、62重量%、63重量%、64重量%、65重量%、66重量%、67重量%、68重量%、69重量%、70重量%、71重量%、72重量%、73重量%、74重量%、75重量%、76重量%、77重量%、78重量%、79重量%、或者80重量%。优选地,该丁基橡胶中,Log(MW)≥6的聚合物含量为35-75重量%。更优选地,该丁基橡胶中,Log(MW)≥6的聚合物含量为40-70重量%。
与商品化的丁基橡胶相比,根据本发明第一个方面所述的丁基橡胶具有明显提高的分子量。一般地,根据本发明第一个方面所述的丁基橡胶的峰位分子量为90万至260万,例如:90万、95万、100万、105万、110万、115万、120万、125万、130万、135万、140万、145万、150万、155万、160万、165万、170万、175万、180万、185万、190万、195万、200万、205万、210万、215万、220万、225万、230万、235万、240万、245万、250万、255万、或者260万。优选地,根据本发明第一个方面所述的丁基橡胶的峰位分子量为95万至230万。更优选地,根据本发明第一个方面所述的丁基橡胶的峰位分子量为100万至210万。进一步优选地,根据本发明第一个方面所述的丁基橡胶的峰位分子量为110万至190万。
根据本发明第一个方面所述的丁基橡胶,该丁基橡胶的Z均分子量(Mz)为300万至700万,例如300万、350万、400万、450万、500万、550万、600万、650万、或者700万。优选地,该丁基橡胶的Z均分子量为350万至650万。更优选地,该丁基橡胶的Z均分子量为390万至600万。
根据本发明第一个方面所述的丁基橡胶,该丁基橡胶的Mz/Mw(Mw为重均分子量)为1.8-5,例如:1.8、1.9、2、2.1、2.2、2.3、2.4、2.5、2.6、2.7、2.8、2.9、3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、 3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、或者5。优选地,该丁基橡胶的Mz/Mw为2-4.5。更优选地,该丁基橡胶的Mz/Mw为2.2-4。进一步优选地,该丁基橡胶的Mz/Mw为2.2-3.5。该丁基橡胶的Mw/Mn为3-8,例如:3、3.1、3.2、3.3、3.4、3.5、3.6、3.7、3.8、3.9、4、4.1、4.2、4.3、4.4、4.5、4.6、4.7、4.8、4.9、5、5.1、5.2、5.3、5.4、5.5、5.6、5.7、5.8、5.9、6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、7.5、7.6、7.7、7.8、7.9、或者8。优选地,该丁基橡胶的Mw/Mn为3.3-7.5。更优选地,该丁基橡胶的Mw/Mn为3.5-7。进一步优选地,该丁基橡胶的Mw/Mn为3.5-6。
根据本发明第一个方面所述的丁基橡胶,该丁基橡胶的分子量呈双峰分布,在凝胶渗透色谱谱图中,淋洗峰在高分子量一侧存在肩峰,本发明中将该肩峰称为“高分子量肩峰”。根据本发明第一个方面所述的丁基橡胶,高分子量肩峰的Log(MW)值位于6-7.5之间,例如:高分子量肩峰的Log(MW)位于6、6.1、6.2、6.3、6.4、6.5、6.6、6.7、6.8、6.9、7、7.1、7.2、7.3、7.4、或者7.5之间。根据本发明第一个方面所述的丁基橡胶,高分子量组分主要来自于前文所述的接枝链。
本发明中,丁基橡胶的分子量及其分布采用多检测联用凝胶渗透色谱分析方法测定,具体方法为:采用美国Viscotek公司生产的TDA302型液相凝胶渗透色谱仪测定,该凝胶渗透色谱仪配备示差检测器、光散射检测器以及粘度检测器,色谱柱为TOSOH公司的TSKgel GMHHR-L和TSKgel GMHHR-H两柱联用。流动相为四氢呋喃,流速为1.0mL/min;样品溶液浓度为0.8mg/mL;测试温度为30℃。高分子量肩峰的Log(MW)值以及Log(MW)≥6的聚合物含量由示差检测器得到的以log(MW)为横坐标,以dWf/dLog(MW)为纵坐标的曲线图中的微分分布曲线确定,MW是指分子质量,以Dalton(Da)计。本发明中,峰位分子量(Mp)是指由凝胶渗透色谱法测定的聚合物浓度对淋出时间的谱图中,与聚合物最大浓度相对应的分子量值。
根据本发明第一个方面所述的丁基橡胶,该丁基橡胶(即,丁基橡胶的生胶)的门尼粘度ML(1+8)125℃为30-70,例如:30、31、32、33、34、35、36、37、38、39、40、41、42、43、44、45、46、47、48、49、50、51、52、53、54、55、56、57、58、59、60、61、62、63、64、65、66、67、68、69、或者70。优选地,该丁基橡胶(即,丁基橡胶的生胶)的门尼粘度ML(1+8)125℃为40-60。
本发明中,丁基橡胶的门尼粘度采用商购自台湾高铁公司生产的GT-7080-S2型门尼粘度仪,参照GB/T1232.1-2000中的规定的方法,在125℃(1+8)条件下测定。
根据本发明第一个方面所述的丁基橡胶,与现有的丁基橡胶相比,具有更为优异的混炼性能,在门尼粘度基本相同的条件下,能有效地降低混炼的能耗,且添加剂分散更均匀。根据本发明第一个方面所述的丁基橡胶,与现有的丁基橡胶相比,显示出更低的剪切粘度和挤出胀大比,因而能获得更好的加工流动性,更适合注射工艺,制备的制品也具有更好的尺寸稳定性。
根据本发明的第二个方面,本发明提供了一种丁基橡胶的制备方法,该方法包括在阳离子聚合条件下,在至少一种路易斯酸和至少一种能够提供质子的化合物的存在下,将异丁烯和异戊二烯在至少一种稀释剂中与至少一种接枝剂接触。
根据本发明第二个方面所述的方法,异丁烯和异戊二烯的用量可以根据预期的丁基橡胶的组成进行选择。一般地,以异丁烯和异戊二烯的总量为基准,异丁烯的含量可以为85-99重量%,优选为90-98 重量%,更优选为93-97.5重量%;异戊二烯的含量可以为1-15重量%,优选为2-10重量%,更优选为2.5-7重量%。
根据本发明第二个方面所述的方法,所述接枝剂含有衍生自具有阳离子可聚合基团的可聚合结构单元以及可选的芳基烯烃结构单元。本发明中,“阳离子可聚合基团”是指具有阳离子聚合活性的基团,即在阳离子聚合反应条件下能通过阳离子聚合反应机理与异丁烯和/或共轭二烯烃发生反应的基团,例如:所述可聚合结构单元可以为共轭二烯烃以1,2-聚合方式和/或3,4-聚合方式形成的结构单元,其中的碳碳双键为阳离子可聚合基团。在一种优选的实施方式中,所述接枝剂含有衍生自具有阳离子可聚合基团的可聚合结构单元以及芳基烯烃结构单元。在该优选的实施方式中,以接枝剂的总量为基准,可聚合结构单元的含量可以为1-15摩尔%,优选为2-14摩尔%,更优选为2.5-12摩尔%。在该优选的实施方式中,以所述接枝剂的总量为基准,所述芳基烯烃结构单元的含量可以为20-98摩尔%,优选为30-97摩尔%,更优选为40-97摩尔%,进一步优选为50-97摩尔%,更进一步优选为55-97摩尔%。本发明中,接枝剂中芳基烯烃结构单元的含量采用核磁共振氢谱法测定。
本发明中,共轭二烯烃以1,2-聚合方式和3,4-聚合方式形成的结构单元的含量采用核磁共振氢谱测定。
所述具有阳离子可聚合基团的可聚合结构单元可以衍生自共轭二烯烃。所述共轭二烯烃具体可以为式II所示的化合物,
Figure PCTCN2017100940-appb-000004
式II中,R2、R3和R4相同或不同,各自选自氢和C1-C5的直链或支链烷基。
优选地,所述具有阳离子可聚合基团的可聚合结构单元衍生自丁二烯和/或异戊二烯。
所述芳基烯烃结构单元是指衍生自芳基烯烃的结构单元。所述芳基烯烃是指烯烃中的至少一个氢原子被芳基取代形成的物质。具体地,所述芳基烯烃可以为式I所示的化合物:
Figure PCTCN2017100940-appb-000005
式I中,R1为C6-C20的芳基,具体可以选自苯基、邻甲苯基、间甲苯基、对甲苯基、邻乙苯基、间乙苯基、对乙苯基、邻叔丁基苯基、间叔丁基苯基、对叔丁基苯基、对十二烷基苯基、2,4-二正丁基苯基、对正丙基苯基和2,4-二乙基苯基。
所述芳基烯烃的具体实例可以包括但不限于苯乙烯、2-甲基苯乙烯、4-甲基苯乙烯、4-叔丁基苯乙烯、4-乙基苯乙烯、3,5-二乙基苯乙烯、3,5-二正丁基苯乙烯、4-正丙基苯乙烯和4-十二烷基苯乙烯中的一种或两种以上。
所述接枝剂中,所述芳基烯烃结构单元优选为衍生自苯乙烯的苯乙烯结构单元。
在一种优选的实施方式中,所述接枝剂含有衍生自共轭二烯烃的可聚合结构单元以及衍生自苯乙烯的苯乙烯结构单元,所述共轭二烯烃优选为丁二烯和/或异戊二烯。
所述接枝剂的重均分子量可以为1万至30万,优选为2万至20万,更优选为5万至18万;分子量分布指数Mw/Mn可以为1-2.5,优选为1.1-2,更优选为1.1-1.8。本发明中,接枝剂的重均分子量采用凝胶渗透色谱法测定,具体采用日本岛津公司生产的LC-20A型液相凝胶渗透色谱仪测定,色谱柱采用TSKgel G2000HXL、TSKgel G3000HXL和TSKgel G4000HXL三柱联用,配备示差检测器。流动相为四氢呋喃,流速为1mL/min;样品溶液浓度为1mg/mL,进样量为200μL;测试温度为40℃;以单分布聚苯乙烯作为标准样品。
根据本发明第二个方面所述的方法,所述接枝剂具体可以为选自丁苯共聚物和戊苯共聚物中的一种或两种以上的组合,优选为丁苯共聚物。所述丁苯共聚物和戊苯共聚物各自可以为无规共聚物,也可以为嵌段共聚物,还可以为无规共聚物和嵌段共聚物的混合物,没有特别限定。
根据本发明第二个方面所述的方法,所述接枝剂的添加量可以为异丁烯的0.01-3重量%,优选为异丁烯的0.1-2重量%,更优选为异丁烯的0.15-1重量%,进一步优选为异丁烯的0.2-0.8重量%。
根据本发明第二个方面所述的方法,所述接枝剂与聚合单体异丁烯和异戊二烯一同加入聚合反应体系中。可以将接枝剂溶解于异戊二烯后,与异丁烯和稀释剂混合,将得到的混合物加入聚合反应体系中;也可以将接枝剂与稀释剂混合,然后与异丁烯和异戊二烯混合,将得到的混合物加入聚合反应体系中。
根据本发明第二个方面所述的方法,所述路易斯酸选自式III所示的化合物,
AlR5 nX1 (3-n)      (式III)。
式III中,n个R5相同或不同,各自为C1-C8的烷基(包括C1-C8的直链烷基和C3-C8的支链烷基)。具体地,n个R5各自可以选自甲基、乙基、正丙基、异丙基、正丁基、仲丁基、异丁基、叔丁基、正戊基、2-甲基丁基、3-甲基丁基、2,2-二甲基丙基、正己基、2-甲基戊基、3-甲基戊基、4-甲基戊基、2,3-二甲基丁基、2,2-二甲基丁基、3,3-二甲基丁基、2-乙基丁基、正庚基、2-甲基己基、3-甲基己基、4-甲基己基、5-甲基己基、2,2-二甲基戊基、2,3-二甲基戊基、2,4-二甲基戊基、3,3-二甲基戊基、3,4-二甲基戊基、4,4-二甲基戊基、2-乙基戊基、3-乙基戊基、正辛基、2-甲基庚基、3-甲基庚基、4-甲基庚基、5-甲基庚基、6-甲基庚基、2,2-二甲基己基、2,3-二甲基己基、2,4-二甲基己基、2,5-二甲基己基、3,3-二甲基己基、3,4-二甲基己基、3,5-二甲基己基、4,4-二甲基己基、4,5-二甲基己基、5,5-二甲基己基、2-乙基己基、3-乙基己基、4-乙基己基、2-正丙基戊基和2-异丙基戊基。
式III中,3-n个X1相同或不同,各自为卤素基团中的一种(如-F、-Cl、-Br或-I),优选为-Cl。
式III中,n为1、2或3。
根据本发明第二个方面所述的方法,所述路易斯酸的具体实例可以包括但不限于二氯甲基铝、二氯乙基铝、二氯正丙基铝、二氯异丙基铝、二氯正丁基铝、二氯异丁基铝、二甲基氯化铝、二乙基氯化铝、二正丙基氯化铝、二异丙基氯化铝、二正丁基氯化铝、二异丁基氯化铝、三甲基铝和三乙基铝。
优选地,所述路易斯酸为二氯乙基铝和/或二乙基氯化铝。优选地,所述路易斯酸为二氯乙基铝。
所述路易斯酸的用量可以根据预期的丁基橡胶的分子量进行选择。一般地,所述路易斯酸与异丁烯的摩尔比可以为1:500-5000,优选为1:1000-4000,更优选为1:1500-3500。
所述能够提供质子的化合物优选为质子酸,质子酸的具体实例可以包括但不限于:HCl、HF、HBr、 H2SO4、H2CO3、H3PO4和HNO3。优选地,所述能够提供质子的化合物为HCl。
能够提供质子的化合物与路易斯酸的摩尔比可以为0.01-1:1,优选为0.04-0.8:1,更优选为0.08-0.2:1,进一步优选为0.08-0.15:1。
根据本发明第二个方面所述的方法,引发剂体系含有式III所示的路易斯酸以及作为能够提供质子的化合物的质子酸,与直接采用AlCl3作为引发剂相比,由本发明第二个方面所述的方法制备的丁基橡胶具有更高的分子量以及更高的高分子量组分含量,也不会生成明显的凝胶,并且制备的丁基橡胶具有更为全面的应用性能。
根据本发明第二个方面所述的方法,所述稀释剂可以选自卤代烷烃。所述卤代烷烃中的卤素原子可以为氯、溴或氟,优选为氯或氟。所述卤代烷烃优选为C1-C10的卤代烷烃,更优选为C1-C4的卤代烷烃。
所述稀释剂的具体实例可以包括但不限于一氟甲烷、二氟甲烷、三氟甲烷、四氟化碳、一氯甲烷、二氯甲烷,三氯甲烷、四氯化碳、一氟乙烷、二氟乙烷、三氟乙烷、四氟乙烷、五氟乙烷、六氟化碳、一氯乙烷、二氯乙烷、三氯乙烷、四氯乙烷、五氯乙烷、六氯化碳、一氟丙烷、二氟丙烷、三氟丙烷、四氟丙烷、五氟丙烷、六氟丙烷、七氟丙烷、八氟丙烷、一氯丙烷、二氯丙烷、三氯丙烷、四氯丙烷、五氯丙烷、六氯丙烷、七氯丙烷、八氯丙烷、一氟丁烷、二氟丁烷、三氟丁烷、四氟丁烷、五氟丁烷、六氟丁烷、七氟丁烷、八氟丁烷、九氟丁烷、十氟丁烷、一氯丁烷、二氯丁烷、三氯丁烷、四氯丁烷、五氯丁烷、六氯丁烷、七氯丁烷、八氯丁烷、九氯丁烷和十氯丁烷。
所述稀释剂的用量可以为常规选择。一般地,所述稀释剂的用量使得总单体(即,单烯烃和共轭二烯烃)浓度为1-50重量%,优选为5-45重量%,更优选为10-40重量%,进一步优选为20-35重量%。
根据本发明第二个方面所述的方法,所述阳离子聚合条件可以为本领域的常规选择。一般地,聚合反应可以在-120℃至-50℃的温度范围内进行,优选在-110℃至-80℃的温度范围内进行,更优选在-100℃至-90℃的温度范围内进行。
由本发明第二个方面所述的方法制备的丁基橡胶,在相同的门尼粘度下,与现有的丁基橡胶相比,具有更为优异的混炼性能,能有效地降低混炼能耗;并且具有较低的剪切粘度和挤出胀大比,因而由根据本发明的丁基橡胶的混炼胶易于流动,更适合注射成型工艺,制备的制品也具有更好的尺寸稳定性。
由此,根据本发明的第三个方面,本发明提供了一种由本发明第二个方面所述的方法制备的丁基橡胶。
根据本发明的第四个方面,本发明提供了一种卤代丁基橡胶,该卤代丁基橡胶含有橡胶基体以及与橡胶基体键合的卤素元素,其中,所述橡胶基体为本发明第一个方面或者第三个方面所述的丁基橡胶。
所述卤素元素可以根据该卤代丁基橡胶的具体使用场合进行选择。在一种实施方式中,所述卤素元素为氯元素和/或溴元素。根据该实施方式的卤代丁基橡胶特别适用于制备车用轮胎内胎和/或车用轮胎气密层。
所述卤素元素的含量可以为常规选择。一般地,所述卤代丁基橡胶中卤素原子的含量可以在0.2-2摩尔%的范围内,例如:0.2摩尔%、0.3摩尔%、0.4摩尔%、0.5摩尔%、0.6摩尔%、0.7摩尔%、0.8摩尔%、0.9摩尔%、1摩尔%、1.1摩尔%、1.2摩尔%、1.3摩尔%、1.4摩尔%、1.5摩尔%、1.6摩尔%、 1.7摩尔%、1.8摩尔%、1.9摩尔%、或者2摩尔%。优选地,所述卤代丁基橡胶中卤素原子的含量在0.4-1.5摩尔%的范围内。
所述卤代丁基橡胶可以采用常规方法制备。在一个实例中,可以将根据本发明的丁基橡胶与卤素或含卤素的化合物的接触,从而使得卤素或含卤素化合物与丁基橡胶中的不饱和基团发生反应,形成卤代丁基橡胶。丁基橡胶与卤素或含卤素的化合物的接触可以在常规条件下进行,只要能使丁基橡胶发生卤化反应即可。
根据本发明的第五个方面,本发明提供了一种组合物,该组合物含有丁基橡胶和/或卤代丁基橡胶、硫化剂以及可选的至少一种添加剂,所述丁基橡胶为本发明第一个方面或者第三个方面所述的丁基橡胶,所述卤代丁基橡胶为本发明第四个方面所述的卤代丁基橡胶。
所述硫化剂可以为橡胶制备领域的常规选择,没有特别限定。具体地,所述硫化剂可以选自硫磺、硒、碲、过氧化苯甲酰、氨基甲酸乙酯、2,5-二甲基-2,5-二(叔丁基过氧基)己烷和硫化树脂。
所述硫化剂的用量可以根据本领域的常规知识进行适当的选择。一般地,相对于100重量份丁基橡胶和卤代丁基橡胶,所述硫化剂的用量可以为0.1-10重量份,优选为0.2-8重量份。
根据本发明第五个方面所述的组合物,还可以含有至少一种添加剂,所述添加剂选自硫化促进剂和炭黑。
所述硫化促进剂可以选自氧化锌、氧化镁、硬脂酸、二苯胍、二硫化四甲基秋兰姆、二硫化双(硫羰基二甲胺)、N-(1,3-二甲基丁基)-N’-苯基对苯二胺、N,N’-四甲基二硫双硫羰胺、2-硫醇基苯并噻唑、亚乙基硫脲和N-环已基-2-苯并噻唑次磺酰胺。所述硫化促进剂可以为本领域的常规选择。一般地,相对于100重量份丁基橡胶和卤代丁基橡胶,所述硫化促进剂的用量可以为2-10重量份。
所述炭黑可以为常用的各种来源和型号的炭黑。相对于100重量份丁基橡胶和卤代丁基橡胶,所述炭黑的含量可以为20-70重量份,优选为30-60重量份,更优选为40-60重量份。
根据本发明的第六个方面,本发明提供了一种橡胶制品,该橡胶制品是将本发明第五个方面所述的组合物进行硫化而形成的。
所述硫化可以在本领域的常规条件下进行,没有特别限定。
所述硫化可以在本领域常用的硫化设备中进行,没有特别限定。
根据本发明第六个方面所述的橡胶制品具有良好的综合性能,例如:具有较低的尺寸收缩率、较高的抗撕裂强度和耐疲劳性能,适合作为车用轮胎气密层、车用轮胎内胎和硫化胶囊,特别是适合作为硫化胶囊。
由此,根据本发明的第七个方面,本发明提供了本发明第一个方面或第三个方面所述的丁基橡胶、本发明第四个方面所述的卤代丁基橡胶、本发明第五个方面所述的组合物以及本发明第六个方面所述的橡胶制品在制备车用轮胎气密层、车用轮胎内胎和硫化胶囊中的应用。
根据本发明的第八个方面,本发明提供了一种车用轮胎气密层,该车用轮胎气密层由本发明第一个方面或第三个方面所述的丁基橡胶、本发明第四个方面所述的卤代丁基橡胶、本发明第五个方面所述的组合物或者本发明第六个方面所述的橡胶制品形成。
根据本发明的第九个方面,本发明提供了一种车用轮胎内胎,该车用轮胎内胎由本发明第一个方面或第三个方面所述的丁基橡胶、本发明第四个方面所述的卤代丁基橡胶、本发明第五个方面所述的组合物或者本发明第六个方面所述的橡胶制品形成。
根据本发明的第十个方面,本发明提供了一种硫化胶囊,该硫化胶囊由本发明第一个方面或第三个方面所述的丁基橡胶、本发明第五个方面所述的组合物或者本发明第六个方面所述的橡胶制品形成。
根据本发明的硫化胶囊显示出较现有的硫化胶囊更优的使用性能和更长的使用寿命。
本发明还提供了一种丁基橡胶,该丁基橡胶含有衍生自异丁烯的结构单元、衍生自共轭二烯烃的结构单元、以及衍生自芳基烯烃的结构单元,至少部分共轭二烯烃为异戊二烯,所述芳基烯烃选自式I所示的化合物,
Figure PCTCN2017100940-appb-000006
式I中,R1为C6-C20的芳基;
该丁基橡胶中,衍生自共轭二烯烃的结构单元的含量为0.5-2.5摩尔%,以该丁基橡胶的总量为基准,衍生自芳基烯烃的结构单元的含量为0.01-1摩尔%,优选为0.05-0.6摩尔%,更优选为0.1-0.5摩尔%;
该丁基橡胶中,部分衍生自共轭二烯烃的结构单元作为接枝位点使得该丁基橡胶的部分分子链为接枝链,该丁基橡胶的剩余部分分子链为线形链;
该丁基橡胶的分子量呈双峰分布,高分子量肩峰的Log(MW)值位于6-7.5之间,Log(MW)≥6的丁基橡胶含量为30-80重量%,优选为30-70重量%,更优选为30-60重量%;该丁基橡胶的Z均分子量为200万至700万,优选为300万至650万,更优选为400万至600万,Mz/Mw为1.8-5,2-4.5,优选为2.2-4,更优选为2.2-3.5,Mw/Mn为3-8,优选为为3.3-7.5,优选为3.5-7,更优选为3.5-6。该丁基橡胶的门尼粘度ML(1+8)125℃为30-70,优选为40-60。
所述接枝链的主链含有衍生自共轭二烯烃的结构单元以及衍生自芳基烯烃的结构单元,所述接枝链的主链优选含有衍生自共轭二烯烃的结构单元以及衍生自苯乙烯的结构单元,所述接枝链的主链优选衍生自丁苯聚合物和戊苯聚合物;
所述接枝链的支链含有衍生自异丁烯的结构单元以及衍生自异戊二烯的结构单元。
所述线形链含有衍生自异丁烯的结构单元以及衍生自异戊二烯的结构单元。
以下结合实施例详细说明本发明,但并不因此限制本发明的范围。
以下实施例和对比例中,丁基橡胶的分子量及分子量分布信息采用美国Viscotek公司生产的TDA302型液相凝胶渗透色谱仪测定,该凝胶渗透色谱仪配备示差检测器、光散射检测器以及粘度检测器,色谱柱为TOSOH公司的TSKgel GMHHR-L和TSKgel GMHHR-H两柱联用。流动相为四氢呋喃,流速为1.0mL/min;样品溶液浓度为0.8mg/mL;测试温度为30℃。
以下实施例和对比例中,接枝剂的重均分子量采用凝胶渗透色谱法测定,具体采用日本岛津公司生 产的LC-20A型液相凝胶渗透色谱仪测定,色谱柱采用TSKgel G2000HXL、TSKgel G3000HXL和TSKgel G4000HXL三柱联用,配备示差检测器。流动相为四氢呋喃,流速为1mL/min;样品溶液浓度为1mg/mL,进样量为200μL;测试温度为40℃;以单分布聚苯乙烯作为标准样品。
以下实施例和对比例中,采用商购自瑞士Bruker公司的AVANCE400核磁共振仪,磁场强度为9.40特斯拉,以CDC13作溶剂,TMS为内标,在室温(25℃)下测定接枝剂的微观结构参数、以及制备的丁基橡胶的微观结构参数,制备的丁基橡胶的微观结构参数包括总不饱和度(即,制备的丁基橡胶中由共轭二烯烃形成的结构单元的含量)、衍生自异戊二烯的结构单元的含量、以及衍生自苯乙烯的结构单元的含量。
以下实施例和对比例中,门尼粘度和应力松弛试验采用商购自台湾高铁公司生产的GT-7080-S2型门尼粘度仪,参照GB/T1232.1-2000的方法在125℃(1+8)条件下采用大转子测定,门尼松弛时间为120s。
以下实施例和对比例中,混炼胶的挤出胀大比采用英国马尔文公司生产的RH2000型毛细管流变仪在温度为100℃、长径比为16:1且剪切速率为10-1000s-1的区间内测定。
以下实施例和对比例中,混炼胶配方参照SH/T1717-2008标准配方:丁基橡胶100g,8#炭黑50g,硬脂酸1g,氧化锌3g,硫磺1.75g,二硫代四甲基秋兰姆TMTD 1.0g,总计156.75g。混炼工艺如下:
(1)一段(BR1600密炼机,50℃,77转/min)投料,所有丁基橡胶,塑炼0.5min升起上顶栓,加入硬脂酸、氧化锌、8#炭黑,混炼0.5min后放下上顶栓,混炼4.0min排胶,控制温度低于150℃;
(2)二段(BR1600密炼机,40±5℃,77转/min)投料,1/2母胶+S+TMTD+1/2母胶,0.5min放下上顶栓,密炼2.5min排胶,控制温度低于110℃,开炼机薄通6次,辊距0.8mm,温度40℃,2min下片,薄通4次,辊距6mm,常温,1min。
混炼胶的硫化特性采用台湾高铁公司生产的GT-M2000A型无转子硫化仪,按照GB/T16584-1996中规定的方法测定混炼胶的硫化特性。
混炼胶硫化后的物理机械性能采用台湾高铁生产的GT-AT-3000型万能拉力机,按照GB/T 528-2009测试胶料拉伸应力应变性能,按照GB/T 529-2008测试胶料撕裂强度,按照GB/T531.1-2008测试邵尔A硬度。
混炼胶硫化后的气密性采用自动化气密性测试仪,依据ISO 2782:1995测定硫化胶透气系数,测试气体为N2,测试温度为23℃,测试样片为8cm直径圆形薄片,厚度为1mm。
实施例1-15用于说明本发明的丁基橡胶及其制备方法。
实施例1
在产能为2t/h的连续聚合釜上满釜操作,其中,采用-110℃液态乙烯通过聚合釜内管束制冷,控制釜内聚合反应温度为-95℃至-100℃,聚合釜底部有两股进料,两股进料同时进入釜内,进料温度为-95℃。其中,进料1为单体溶液进料,是将溶解有丁苯树脂的异戊二烯与一氯甲烷和异丁烯混合而得到的;进料2为引发剂溶液进料。按照表1中切换2的进料条件进料,聚合釜顶部为淤浆出料,聚合过程中没有明显的凝胶生成,聚合物淤浆经过脱气釜凝聚和后处理干燥得到根据本发明的丁基橡胶,其结构以及 性能参数在表7中列出。
对比例1
采用与实施例1相同的方法进行聚合,不同的是,按照表1中的切换1进料,得到丁基橡胶(即,市售牌号为IIR1751的丁基橡胶),其结构以及性能参数在表7中列出。
表1
Figure PCTCN2017100940-appb-000007
1:购自菲利普斯,牌号为KR01,重均分子量为114000,分子量分布指数(Mw/Mz)为1.35,丁苯树脂中衍生自丁二烯的结构单元的含量为39.5摩尔%,丁二烯以1,2-聚合方式形成的结构单元的含量为4.6摩尔%。
实施例2
采用与实施例1相同的方法制备丁基橡胶,不同的是,按照表2的条件进料,聚合过程中没有明显的凝胶生成。制备得到根据本发明的丁基橡胶,其结构以及性能参数在表7中列出。
表2
Figure PCTCN2017100940-appb-000008
1:购自菲利普斯,牌号为KR01,重均分子量为114000,分子量分布指数为1.35,丁苯树脂中衍生自丁二烯的结构单元的含量为39.5摩尔%,丁二烯以1,2-聚合方式形成的结构单元的含量为4.6摩尔%。
实施例3
采用与实施例1相同的方法制备丁基橡胶,不同的是,按照表3的条件进料,聚合过程中没有明显的凝胶生成。制备得到根据本发明的丁基橡胶,其结构以及性能参数在表7中列出。
表3
Figure PCTCN2017100940-appb-000009
1:购自茂名众和,牌号为SL-803,重均分子量为124700,分子量分布指数为1.38,丁苯树脂中衍生自丁二烯的结构单元的含量为36.2摩尔%,丁二烯以1,2-聚合的方式形成的结构单元的含量为4.8摩尔%。
实施例4
采用与实施例1相同的方法制备丁基橡胶,不同的是,按照表4的条件进料,聚合过程中没有明显的凝胶生成。制备得到根据本发明的丁基橡胶,其结构以及性能参数在表7中列出。
表4
Figure PCTCN2017100940-appb-000010
1:购自菲利普斯,牌号为KR03,重均分子量为159400,分子量分布指数为1.68,丁苯树脂中衍生自丁二烯的结构单元的含量为38.2摩尔%,丁二烯以1,2-聚合方式形成的结构单元的含量为4.6摩尔%。
实施例5
在产能为2t/h的连续聚合釜上满釜操作,其中,采用-110℃液态乙烯通过聚合釜内管束制冷,控制釜内聚合反应温度为-95℃至-100℃,聚合釜底部有两股进料,两股进料同时进入釜内,进料温度为-95℃。其中,进料1为单体溶液进料,是将溶解有丁苯树脂的异戊二烯与一氯甲烷和异丁烯混合而得到的;进料2为引发剂溶液进料。
按照表5中的进料条件进料,聚合釜顶部为淤浆出料,聚合过程中没有明显的凝胶生成,聚合物淤浆经过脱气釜凝聚和后处理干燥得到根据本发明的丁基橡胶,其结构以及性能参数在表7中列出。
表5
Figure PCTCN2017100940-appb-000011
1:购自巴斯夫,牌号为GH62,重均分子量为155800,分子量分布指数为1.54,丁苯树脂中衍生自丁二烯的结构单元的含量为42.4摩尔%,丁二烯以1,2-聚合方式形成的结构单元的含量为5.1摩尔%。
实施例6
在产能为2t/h的连续聚合釜上满釜操作,其中,采用-110℃液态乙烯通过聚合釜内管束制冷,控制釜内聚合反应温度为-95℃至-100℃,聚合釜底部有两股进料,两股进料同时进入釜内,进料温度为-98℃。其中,进料1为单体溶液进料,是将溶解有丁苯树脂的异戊二烯与一氯甲烷和异丁烯混合而得到的;进料2为引发剂溶液进料。
按照表6中的进料条件进料,聚合釜顶部为淤浆出料,聚合过程中没有明显的凝胶生成,聚合物淤浆经过脱气釜凝聚和后处理干燥得到根据本发明的丁基橡胶,其结构以及性能参数在表7中列出。
表6
Figure PCTCN2017100940-appb-000012
1:购自菲利普斯,牌号为KR01,重均分子量为114000,分子量分布指数为1.35,丁苯树脂中衍生自丁二烯的结构单元的含量为39.5摩尔%,丁二烯以1,2-聚合方式形成的结构单元的含量为4.6摩尔%。
对比例2
市售埃克森美孚生产的牌号为IIR268的丁基橡胶。
图1-3分别为实施例2、4和6制备的丁基橡胶的GPC曲线图。
从表7以及图1至图3可以看出,根据本发明的丁基橡胶具有更高的分子量。
表7
Figure PCTCN2017100940-appb-000013
1:Log(MW)≥6的丁基橡胶含量,为质量百分含量
2:制备的丁基橡胶中,衍生自共轭二烯烃的结构单元的含量
3:制备的丁基橡胶中,衍生自苯乙烯的结构单元的含量
4:高分子量肩峰Log(MW)值的位置
5:制备的丁基橡胶中,衍生自异戊二烯的结构单元的含量
测试例1:应力松弛试验
将实施例1-6制备的丁基橡胶以及对比例1和对比例2的丁基橡胶制成混炼胶,进行应力松弛试验,混炼胶的门尼粘度以及应力松弛实验结果在表8中列出。
表8
Figure PCTCN2017100940-appb-000014
表8中,应力松弛曲线下的面积可以表征混炼胶的加工能耗,其中,应力松弛曲线下的面积越小,则加工能耗就越低。从表8的结果可以看出,根据本发明的丁基橡胶具有良好的混炼性能,加工能耗更低。例如,在生胶或混炼胶门尼粘度基本相同的条件下,实施例1-3和6的混炼胶所对应的应力松弛曲线下的面积较对比例1和2明显降低。
测试例2:混炼胶的硫化特性
将实施例1-6制备的丁基橡胶以及对比例1和对比例2的丁基橡胶制成混炼胶,进行硫化特性测试,实验结果在表9中列出。
表9
Figure PCTCN2017100940-appb-000015
从表9的结果可以看出,根据本发明的丁基橡胶的硫化性能与市售产品基本相当。例如,在生胶或混炼胶门尼粘度基本相同的条件下,实施例1-3和6的硫化性能与对比例1和2的硫化性能基本相当。
测试例3:挤出加工性能
将实施例2和实施例6制备的丁基橡胶以及对比例1和2的丁基橡胶制成混炼胶,进行挤出加工性能测试,实验结果如图4所示。
从图4可以看出,由根据本发明的丁基橡胶制成的混炼胶的剪切粘度和挤出胀大比明显低于根据对比例1和2的丁基橡胶的挤出胀大比,表明根据本发明的丁基橡胶加工流动性更好,制品的尺寸稳定性更好,收缩率更低。
测试例4:硫化胶的物理机械性能
将实施例1-6制备的丁基橡胶以及对比例1和对比例2的丁基橡胶制成混炼胶进行硫化(硫化温度为150℃,硫化时间为30min)后测试物理机械性能,实验结果在表10中列出。
表10
Figure PCTCN2017100940-appb-000016
从表10的结果可以看出,由根据本发明的丁基橡胶制备的样品具有良好的综合力学性能,特别是显示出更高的拉断伸长率和撕裂强度。
测试例5:硫化胶气密性测试
将实施例1-6制备的丁基橡胶以及对比例1和对比例2的丁基橡胶制成混炼胶进行硫化(硫化温度为150℃,硫化时间为30min)后测试气密性能,实验结果在表11中列出。
表11
Figure PCTCN2017100940-appb-000017
表11的结果表明,根据本发明的丁基橡胶制备的硫化胶气密性与市售商品基本相当。
应用例1:轮胎内胎
将实施例1、2和实施例6制备的丁基橡胶以及对比例1和2的丁基橡胶,采用以下工艺制备车用轮胎内胎。
将丁基橡胶100重量份、乙丙橡胶5重量份、氧化锌5重量份、硬脂酸1重量份、炭黑58重量份、石蜡油16重量份、促进剂DM 0.5重量份、促进剂DMTD 1重量份和硫磺1.75重量份经过混炼、塑炼、注塑成型、硫化、修边等工艺步骤制备成轮胎内胎。制备的内胎的性能参数在表12中列出。
表12
项目 实施例1 实施例2 实施例6 对比例1 对比例2
邵氏硬度/A 51 52 54 54 52
拉伸强度/MPa 10.5 10.5 11.6 10.4 10.5
拉断伸长率/% 635 638 642 631 633
比重 1.12 1.12 1.12 1.13 1.12
胎身与胶垫的粘着强度/MPa 3.56 3.47 3.62 3.27 3.32
胶垫与气门嘴的粘着强度/MPa 3.7 3.7 3.8 3.3 3.4
制品尺寸收缩量/cm ~1.2 ~1.2 ~1.2 ~2.5 ~1.8
表12的结果表明,根据本发明的丁基橡胶制备的轮胎内胎物理机械性能与市售商品基本相当,但制品的尺寸收缩量明显降低。
应用例2:硫化胶囊
将实施例2和实施例6制备的丁基橡胶以及对比例1和2的丁基橡胶,采用以下工艺制备硫化胶囊。
将丁基橡胶100重量份、氯丁橡胶5重量份、炭黑60重量份、硬脂酸1重量份、蓖麻油5重量份、氧化镁3重量份、氧化锌5重量份和硫化树脂6重量份经过密炼、开炼、注射成型、硫化、抛光等工艺制备成硫化胶囊。制备的硫化胶囊的性能参数在表13中列出。
表13
项目 实施例2 实施例6 对比例1 对比例2
邵氏硬度/A 57 62 56 56
扯断强度/MPa 13.2 13.5 12.8 13.0
300%定伸应力/MPa 5.0 5.2 5.8 6.0
扯断伸长率/% 668 695 652 671
撕裂强度/kN/m 35.7 38.5 33.4 34.2
使用寿命/次 600-750 550-750 350-550 500-650
表13的结果表明,根据本发明的丁基橡胶制备的硫化胶囊物理机械性能与市售商品基本相当,但硫化胶囊使用寿命明显提高。
实施例7-10
实施例7-10采用以下方法制备丁基橡胶,实施例7-10的区别在于接枝剂的用量不同,具体用量在表14中列出。
在-80℃的温度下,在200mL羊角瓶中加入预冷至-80℃的120mL含有HCl(浓度为0.0044mol/L)的二氯甲烷溶液,然后向该羊角瓶中顺序加入0.8mL浓度为0.9mol/L的二氯乙基铝(EADC)的正己烷溶液和6.4mL浓度为1.0mol/L的二乙基氯化铝(DEAC)的正庚烷溶液(EADC与DEAC的摩尔比例为1/9),混合均匀后,将得到的混合液置于-85℃的冷浴中陈化60min。
在装配有高速搅拌器的2000mL玻璃反应器中依次加入1100g冷却至-85℃的一氯甲烷混合溶液(其中,将作为接枝剂的K树脂溶解于一氯甲烷中,K树脂为菲利普公司产品,Mw为11.4万,K树脂中丁二烯的含量为39.5摩尔%,K树脂中丁二烯以1,2-聚合的方式形成的结构单元的含量为4.6摩尔%,下同)、101g冷却至-85℃的异丁烯、以及6mL预冷至-20℃的异戊二烯,混合均匀,将冷浴温度降低至处于-90℃至-100℃的范围内。然后,向反应器中加入70mL引发剂溶液引发聚合,反应过程中控制冷浴温度为处于-90℃至-100℃的范围之内。反应30min后,向反应器中加入10mL含有0.5重量%NaOH的甲醇溶液,以终止聚合反应。将得到的混合液置于热水浴中脱除溶剂,同时加入抗氧剂1010进行稳定,得到的产物经水洗后,在真空烘箱中于60℃干燥至恒重,从而得到根据本发明的丁基橡胶。实验结果在表14至表16中列出。
对比例3
采用与实施例7-10相同的方法制备丁基橡胶,不同的是,不使用接枝剂。
表14
Figure PCTCN2017100940-appb-000018
表15
Figure PCTCN2017100940-appb-000019
1:高分子量肩峰Log(MW)峰值的位置
表16
Figure PCTCN2017100940-appb-000020
实施例11
在-80℃的温度下,在200mL羊角瓶中加入预冷至-80℃的120mL含有HCl(浓度为0.0028mol/L)的二氯甲烷溶液,然后向该羊角瓶中顺序加入8mL浓度为0.9mol/L的二氯乙基铝(EADC)的正己烷溶液,混合均匀后,将得到的混合液置于-85℃的冷浴中陈化120min。
在装配有高速搅拌器的2000mL玻璃反应器中依次加入1100g冷却至-85℃的一氯甲烷溶液、101g冷却至-85℃的异丁烯、以及4.8mL预冷至-20℃的异戊二烯(将作为接枝剂的K树脂溶解于异戊二烯中),混合均匀,将冷浴温度降低至处于-90℃至-100℃的范围内。然后,向反应器中加入72mL引发剂溶液引发聚合,反应过程中控制冷浴温度为处于-90℃至-100℃的范围之内。反应30min后,向反应器中加入10mL含有0.5重量%NaOH的甲醇溶液,以终止聚合反应。将得到的混合液置于热水浴中脱除溶剂,同时加入抗氧剂1010进行稳定,得到的产物经水洗后,在真空烘箱中于60℃干燥至恒重,从而得到根据本发明的丁基橡胶。实验结果在表17至表19中列出。
实施例12
采用与实施例11相同的方法制备丁基橡胶,不同的是,将接枝剂溶解在一氯甲烷中。实验结果在表17至表19中列出。
实施例13
采用与实施例11相同的方法制备丁基橡胶,不同的是,接枝剂为苯乙烯-异戊二烯-苯乙烯三嵌段共聚物,采用以下方法制备。
采用容积为250mL聚合瓶,经加热烘烤并用氮气和抽真空的方式反复置换至无水和无氧,然后加入含有7.4mL苯乙烯的环己烷溶液40mL,放置于30℃的恒温水浴中,破杂后,加入引发剂正丁基锂溶液,计时并摇匀,反应90min后,加入0.6mL已杀杂的异戊二烯,反应120min。然后。加入7.4mL已杀杂的苯乙烯,反应120min后,加入10mL无水甲醇终止反应。将聚合瓶中的胶液倒入干净的托盘中,在35℃真空干燥箱中干燥24h,得到苯乙烯-异戊二烯-苯乙烯三嵌段共聚物。
制备的苯乙烯-异戊二烯-苯乙烯三嵌段共聚物的重均分子量为45300,分子量分布指数为1.45,衍生自异戊二烯的结构单元的含量为3.62摩尔%,异戊二烯以1,2-聚合方式形成的结构单元的含量为0摩尔%,以3,4-聚合方式形成的结构单元的含量为2.67摩尔%。
实施例14
采用与实施例11相同的方法制备丁基橡胶,不同的是,接枝剂为苯乙烯-异戊二烯-苯乙烯三嵌段共聚物,采用以下方法制备。
采用容积为250mL聚合瓶,经加热烘烤并用氮气和抽真空的方式反复置换至无水和无氧,然后加入4.6mL苯乙烯以及含有1mL极性调节剂四氢呋喃的环己烷溶液40mL,放置于30℃的恒温水浴中,破杂后,加入引发剂正丁基锂溶液,计时并摇匀,反应90min后,加入1.5mL已杀杂的异戊二烯,反应120min。然后。加入4.6mL已杀杂的苯乙烯,反应120min后,加入10mL无水甲醇终止反应。将聚合瓶中的胶液倒入干净的托盘中,在35℃真空干燥箱中干燥24h,得到苯乙烯-异戊二烯-苯乙烯三嵌段共聚物。
制备的苯乙烯-异戊二烯-苯乙烯三嵌段共聚物的重均分子量为25000,分子量分布指数为1.14,衍生自异戊二烯的结构单元的含量为16.98摩尔%,异戊二烯以1,2-聚合方式形成的结构单元的含量为0.80摩尔%,以3,4-聚合方式形成的结构单元的含量为10.73摩尔%。
对比例4
采用与实施例11相同的方法制备丁基橡胶,不同的是,不使用接枝剂。
表17
Figure PCTCN2017100940-appb-000021
表18
Figure PCTCN2017100940-appb-000022
1:高分子量肩峰Log(MW)峰值的位置
表19
Figure PCTCN2017100940-appb-000023
实施例15-16
(1)在-80℃的温度下,在200mL羊角瓶中顺序加入预冷至-80℃的120mL含有HCl(浓度为0.009mol/L)的二氯甲烷溶液、以及6.7mL含有EADC(浓度为0.9mol/L)的正己烷溶液,混合均匀后,将得到的混合液置于-80℃的冷浴中陈化60min,从而得到引发剂溶液。
在装配有高速搅拌器的2000mL玻璃反应器中依次加入1100g冷却至-60℃的一氯甲烷(其中,作为接枝剂的K树脂溶解于一氯甲烷中,接枝剂的用量在表7中列出)、132g预冷至-60℃的异丁烯和6mL预冷至-20℃的异戊二烯,混合均匀,将冷浴温度降低至处于-90℃至-100℃的范围内。然后,向反应器中加入135mL引发剂溶液引发聚合,反应过程中控制冷浴温度为处于-90℃至-100℃的范围之内。反应30min后,向反应器中加入10mL含有0.5重量%NaOH的甲醇溶液,以终止聚合反应。将得到的部分混合液置于热水浴中脱除溶剂,得到的产物经水洗后,在真空烘箱中于60℃干燥至恒重,从而得到根据本发明的丁基橡胶。实验结果在表20至表22中列出。
(2)将步骤(1)得到的剩余部分混合液用氮气压入已经抽真空的卤化反应器中,然后向卤化反应器中加入3.8g液溴,在40℃的温度下反应5min。然后,加入含有7mL含有2重量%NaOH的水溶液进行5min的中和。将中和得到的混合物用水蒸汽脱除溶剂并进行凝聚,得到的含水溴化胶在开炼机上于110℃干燥7min,从而得到溴化丁基橡胶,测定溴化丁基橡胶的溴含量并进行松弛试验和挤出胀大比测试,结果在表23中列出。
对比例5
采用与实施例15相同的方法制备丁基橡胶和溴化丁基橡胶,不同的是,不使用接枝剂。
对比例6
采用与实施例15相同的方法制备的丁基橡胶和溴化丁基橡胶,不同的是,采用以下方法制备引发剂溶液:在惰性气体手套箱中,将称量好的AlCl3粉末390mg放入200mL聚合瓶中,然后加入精制的CH2Cl2溶液120mL(CH2Cl2溶液中水含量10ppm),混合均匀,直至AlCl3完全溶解后,将其在-80℃的冷浴中陈化60min,从而得到引发剂溶液。
表20
Figure PCTCN2017100940-appb-000024
表21
Figure PCTCN2017100940-appb-000025
1:高分子量肩峰Log(MW)峰值的位置
表22
Figure PCTCN2017100940-appb-000026
表23
Figure PCTCN2017100940-appb-000027
实施例15-16的结果证实,采用本发明的方法制备的丁基橡胶以及由该丁基橡胶制备的卤代丁基橡胶,在门尼粘度相近的情况下,应力松弛曲线下的面积较大,因而具有更好的抗冷流性能,能更为有效地抵抗运输和贮存过程中的变形;并且,采用本发明的方法制备的丁基橡胶以及由该丁基橡胶制备的卤代丁基橡胶具有更低的挤出胀大效应(即,离模膨胀率低),制备的制品具有更好的尺寸稳定性。
图5示出了实施例15和16以及对比例5制备的丁基橡胶的挤出胀大比与剪切速率的关系图,其中,测试是在100℃的温度下,采用L/D为16/1的模头,在10-1000s-1的剪切速率范围内测定的。
从图5可以看出,在门尼粘度基本相同的条件下,采用本发明的方法制备的丁基橡胶显示出更低 的挤出胀大比(即,根据本发明的丁基橡胶具有更低的离模膨胀率),因而具有更低的收缩率,制品具有更好的尺寸稳定性。
测试例6
将实施例15-16和对比例5-6制备的丁基橡胶和卤代丁基橡胶分别制备混炼胶进行硫化(硫化温度150℃,硫化时间30nin),并测试物理机械性能,硫化胶的力学性能实验结果在表24中列出,气密性实验结果在表25中列出。
表24
Figure PCTCN2017100940-appb-000028
表24的结果证实,根据本发明的丁基橡胶和卤代丁基橡胶具有良好的综合力学性能,特别是显示出更高的拉断伸长率和更高的撕裂强度,适于作为车用轮胎的内胎和硫化胶囊。
表25
Figure PCTCN2017100940-appb-000029
表25的结果证实,根据本发明的丁基橡胶和卤代丁基橡胶具有良好的气密性,适于作为车用轮胎的气密层。
以上详细描述了本发明的优选实施方式,但是,本发明并不限于上述实施方式中的具体细节,在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,这些简单变型均属于本发明的保护范围。另外需要说明的是,在上述具体实施方式中所描述的各个具体技术特征,在不矛盾的情况下,可以通过任何合适的方式进行组合,为了避免不必要的重复,本发明对各种可能的组合方式不 再另行说明。此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (29)

  1. 一种丁基橡胶,该丁基橡胶含有衍生自异丁烯的结构单元、衍生自共轭二烯烃的结构单元、以及可选的衍生自芳基烯烃的结构单元,至少部分共轭二烯烃为异戊二烯,所述芳基烯烃选自式I所示的化合物,
    Figure PCTCN2017100940-appb-100001
    式I中,R1为C6-C20的芳基;
    该丁基橡胶中,部分衍生自共轭二烯烃的结构单元作为接枝位点使得该丁基橡胶的部分分子链为接枝链,该丁基橡胶的剩余部分分子链为线形链;
    该丁基橡胶的峰位分子量为90万至260万,Log(MW)≥6的丁基橡胶含量为30-80重量%。
  2. 根据权利要求1所述的丁基橡胶,其中,所述接枝链的主链含有衍生自共轭二烯烃的结构单元以及衍生自芳基烯烃的结构单元,所述接枝链的主链优选含有衍生自共轭二烯烃的结构单元以及衍生自苯乙烯的结构单元,所述接枝链的主链优选衍生自丁苯聚合物和戊苯聚合物;
    所述接枝链的支链含有衍生自异丁烯的结构单元以及衍生自异戊二烯的结构单元。
  3. 根据权利要求1或2所述的丁基橡胶,其中,所述线形链含有衍生自异丁烯的结构单元以及衍生自异戊二烯的结构单元。
  4. 根据权利要求1-3中任意一项所述的丁基橡胶,其中,该丁基橡胶中,衍生自共轭二烯烃的结构单元的含量为0.5-2.5摩尔%,以该丁基橡胶的总量为基准,衍生自芳基烯烃的结构单元的含量为0.01-3摩尔%,优选为0.05-0.6摩尔%,更优选为0.1-0.5摩尔%。
  5. 根据权利要求1-4中任意一项所述的丁基橡胶,其中,该丁基橡胶的门尼粘度ML(1+8)125℃为30-70,优选为40-60。
  6. 根据权利要求1-5中任意一项所述的丁基橡胶,其中,Log(MW)≥6的丁基橡胶含量为35-75重量%,优选为40-70重量%。
  7. 根据权利要求1-6中任意一项所述的丁基橡胶,其中,该丁基橡胶的峰位分子量为95 万至230万,优选为100万至210万,更优选为110万至190万。
  8. 根据权利要求1-7中任意一项所述的丁基橡胶,其中,该丁基橡胶的分子量呈双峰分布,高分子量肩峰的Log(MW)值位于6-7.5之间。
  9. 一种丁基橡胶的制备方法,该方法包括在阳离子聚合条件下,在至少一种路易斯酸和至少一种能够提供质子的化合物的存在下,将异丁烯和异戊二烯在至少一种稀释剂中与至少一种接枝剂接触,
    所述路易斯酸选自式II所示的化合物,
    AlR2 nX1 (3-n)  (式II)
    式II中,n个R2相同或不同,各自为C1-C8的烷基;3-n个X1相同或不同,各自为卤素基团中的一种,优选为-Cl;n为1、2或3;
    所述能够提供质子的化合物选自质子酸。
  10. 根据权利要求9所述的方法,其中,以异丁烯和异戊二烯的总量为基准,异丁烯的含量为85-99重量%,优选为90-98重量%,更优选为93-97.5重量%;异戊二烯的含量为1-15重量%,优选为2-10重量%,更优选为2.5-7重量%。
  11. 根据权利要求9或10所述的方法,其中,所述接枝剂的添加量为异丁烯的0.01-3重量%,优选为异丁烯的0.1-2重量%,更优选为异丁烯的0.15-1重量%,进一步优选为异丁烯的0.2-0.8重量%。
  12. 根据权利要求9-11中任意一项所述的方法,其中,所述接枝剂含有衍生自具有阳离子可聚合基团的可聚合结构单元以及可选的衍生自式I所示化合物的芳基烯烃结构单元,
    Figure PCTCN2017100940-appb-100002
    式I中,R1为C6-C20的芳基;
    优选地,所述接枝剂含有衍生自共轭二烯烃的可聚合结构单元以及衍生自苯乙烯的苯乙烯结构单元,所述共轭二烯烃优选为丁二烯和/或异戊二烯;
    更优选地,所述接枝剂选自丁苯共聚物和戊苯共聚物,优选为丁苯共聚物。
  13. 根据权利要求12所述的方法,其中,所述接枝剂中,可聚合结构单元的含量为1-15摩尔%,优选为2-14摩尔%,更优选为2.5-12摩尔%。
  14. 根据权利要求9-13中任意一项所述的方法,其中,所述接枝剂的重均分子量为1万至30万,优选为2万至20万,更优选为5万至18万;分子量分布指数为1-2.5,优选为1.1-2。
  15. 根据权利要求9-14中任意一项所述的方法,其中,所述路易斯酸与异丁烯的摩尔比为1:500-5000,优选为1:1000-4000,更优选为1:1500-3500。
  16. 根据权利要求9-15中任意一项所述的方法,其中,所述能够提供质子的化合物与所述路易斯酸的摩尔比为0.01-1:1,优选为0.04-0.8:1,更优选为0.08-0.2:1。
  17. 根据权利要求9-16中任意一项所述的方法,其中,所述路易斯酸为二氯乙基铝和/或二乙基氯化铝,优选为二氯乙基铝。
  18. 根据权利要求9-17中任意一项所述的方法,其中,所述稀释剂选自烷烃和卤代烷烃,优选选自卤代烷烃,更优选选自C1-C10的卤代烷烃。
  19. 根据权利要求9-18中任意一项所述的方法,其中,所述接触在-120℃至-50℃的温度范围进行,优选在-110至-80℃的温度范围内进行,更优选在-100℃至-90℃的温度范围内进行。
  20. 一种由权利要求9-19中任意一项所述的方法制备的丁基橡胶。
  21. 一种卤代丁基橡胶,该卤代丁基橡胶含有橡胶基体以及与橡胶基体键合的卤素元素,其特征在于,所述橡胶基体为权利要求1-8和20中任意一项所述的丁基橡胶。
  22. 根据权利要求21所述的卤代丁基橡胶,其中,所述卤素元素为氯元素和/或溴元素。
  23. 根据权利要求21或22所述的卤代丁基橡胶,其中,以该卤代丁基橡胶的总量为基准,卤素元素的含量在0.2-2摩尔%的范围内,优选在0.4-1.5摩尔%的范围内。
  24. 一种组合物,该组合物含有丁基橡胶和/或卤代丁基橡胶、硫化剂以及可选的至少一种添加剂,所述添加剂选自硫化促进剂和炭黑,所述丁基橡胶为权利要求1-8和20中任意一项所述的丁基橡胶,所述卤代丁基橡胶为权利要求21-23中任意一项所述的卤代丁基橡胶。
  25. 一种橡胶制品,该橡胶制品是将权利要求24所述的组合物进行硫化而形成的。
  26. 权利要求1-8和20中任意一项所述的丁基橡胶、权利要求21-23中任意一项所述的卤代丁基橡胶、权利要求24所述的组合物、或者权利要求25所述的橡胶制品在制备车用轮胎气密层、车用轮胎内胎以及硫化胶囊中的应用。
  27. 一种车用轮胎气密层,该车用轮胎气密层由权利要求21-23中任意一项所述的卤代丁基橡胶、权利要求24所述的组合物、或者权利要求25所述的橡胶制品形成。
  28. 一种车用轮胎内胎,该车用轮胎内胎由权利要求1-8和20中任意一项所述的丁基橡胶、权利要求21-23中任意一项所述的卤代丁基橡胶、权利要求24所述的组合物、或者权利要求25所述的橡胶制品形成。
  29. 一种硫化胶囊,该硫化胶囊由权利要求1-8和20中任意一项所述的丁基橡胶、权利要求24所述的组合物、或者权利要求25所述的橡胶制品形成。
PCT/CN2017/100940 2016-09-07 2017-09-07 丁基橡胶及制备方法以及橡胶制品和组合物及应用以及车用轮胎气密层、内胎和硫化胶囊 WO2018045987A1 (zh)

Priority Applications (9)

Application Number Priority Date Filing Date Title
US16/331,470 US10894881B2 (en) 2016-09-07 2017-09-07 Product, composition and application thereof, and automobile tire inner liner, tube and curing bladder
MYPI2019000581A MY192249A (en) 2016-09-07 2017-09-07 Butyl rubber, preparation method therefor, and rubber product, composition and application thereof, and automobile tire inner liner, tube and curing bladder
DE112017004476.6T DE112017004476T5 (de) 2016-09-07 2017-09-07 Butylkautschuk und seine Herstellungsverfahren, Kautschukprodukt und Zusammensetzung und Verwendung sowie luftdichte Schicht des Autoreifens, Schlauch und vulkanisierte Kapsel
RU2019108241A RU2718909C1 (ru) 2016-09-07 2017-09-07 Бутилкаучук, способ его получения; резиновое изделие, композиция и ее применение; внутренняя оболочка шины, камера и диафрагма для вулканизации
KR1020197009927A KR102190223B1 (ko) 2016-09-07 2017-09-07 부틸 고무, 그것의 제조 방법, 및 고무 제품, 조성물 및 그것의 용도, 및 자동차 타이어 이너 라이너, 이너 튜브 및 큐어링 블래더
JP2019512753A JP6820128B2 (ja) 2016-09-07 2017-09-07 ブチルゴム、その製造方法、ゴム製品、組成物及び応用、並びに、車両用タイヤインナーライナー、インナーチューブ及び加硫ブラダー
BR112019004474-4A BR112019004474B1 (pt) 2016-09-07 2017-09-07 Borracha de butila, método de preparação do mesmo, e produto de borracha, composição e aplicação do mesmo, e revestimento interno de pneu de automóvel, tubo e uma membrana de vulcanização
SA519401245A SA519401245B1 (ar) 2016-09-07 2019-03-06 منتج، تركيبة، واستخدامهما، وبطانة داخلية لإطارات السيارات، أنبوب داخلي لإطارات السيارات وكيس غشائي للمعالجة
PH12019500503A PH12019500503A1 (en) 2016-09-07 2019-03-07 Butyl rubber, preparation method therefor, and rubber product, composition and application thereof, and automobile tire inner liner, tube and curing bladder

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201610806653.8 2016-09-07
CN201610806751.1 2016-09-07
CN201610806653 2016-09-07
CN201610806751 2016-09-07

Publications (1)

Publication Number Publication Date
WO2018045987A1 true WO2018045987A1 (zh) 2018-03-15

Family

ID=61532286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100940 WO2018045987A1 (zh) 2016-09-07 2017-09-07 丁基橡胶及制备方法以及橡胶制品和组合物及应用以及车用轮胎气密层、内胎和硫化胶囊

Country Status (10)

Country Link
US (1) US10894881B2 (zh)
JP (1) JP6820128B2 (zh)
KR (1) KR102190223B1 (zh)
CN (1) CN107793535B (zh)
DE (1) DE112017004476T5 (zh)
MY (1) MY192249A (zh)
PH (1) PH12019500503A1 (zh)
RU (1) RU2718909C1 (zh)
SA (1) SA519401245B1 (zh)
WO (1) WO2018045987A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102107833B1 (ko) * 2018-12-20 2020-05-07 넥센타이어 주식회사 타이어 이너라이너 고무 조성물 및 이를 포함하는 타이어
CN113462092A (zh) * 2021-07-15 2021-10-01 大冢材料科技(上海)有限公司 一种用于硫化胶囊的橡胶组合物及其制备方法

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110698776A (zh) * 2019-12-16 2020-01-17 永一橡胶有限公司 一种高强度轮胎硫化胶囊的制备方法
CN113736020A (zh) * 2020-05-29 2021-12-03 中国石油化工股份有限公司 一种半官能化不对称长链支化的苯乙烯-丁二烯-异戊二烯无规共聚物及其制备和应用
CN113831458B (zh) * 2020-06-24 2024-05-28 中国石油天然气股份有限公司 中门尼粘度、低饱和度丁基橡胶的制备方法
CN111804253A (zh) * 2020-07-14 2020-10-23 山东京博中聚新材料有限公司 一种丁苯胶乳反应釜洗釜水的回用工艺
CN113352665B (zh) * 2021-05-07 2023-03-14 赛轮(沈阳)轮胎有限公司 一种缓解丁基胶内衬层接头开的方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474924A (en) * 1983-01-27 1984-10-02 Exxon Research & Engineering Co. Stabilized slurries of isoolefin polymers
CN1036022A (zh) * 1987-12-11 1989-10-04 埃克森化学专利公司 改善了加工性能的异烯烃聚合物
CN101353403A (zh) * 2007-07-27 2009-01-28 中国石油化工股份有限公司 星形支化聚异丁烯或丁基橡胶的制备方法
CN103724571A (zh) * 2012-10-16 2014-04-16 中国石油化工股份有限公司 一种支化聚合物及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3780002A (en) 1971-02-19 1973-12-18 Exxon Research Engineering Co Broad molecular weight butyl rubber process
US5194538A (en) 1992-07-15 1993-03-16 Polysar Corporation Preparation of butyl rubber with bimodal molecular weight distribution
RU2079522C1 (ru) * 1994-06-23 1997-05-20 Ярославский государственный технический университет Вулканизуемая резиновая композиция для изготовления вулканизационных диафрагм
CA2308257A1 (en) 2000-05-05 2001-11-05 Adam A. Gronowski Process for preparation of butyl rubber having broad molecular weight distribution
CN101550255B (zh) 2001-12-10 2011-05-04 埃克森美孚化学专利公司 弹性体组合物
US7241831B2 (en) 2001-12-10 2007-07-10 Exxonmobil Chemical Patents Inc. Elastomeric compositions
RU2303044C2 (ru) * 2001-12-10 2007-07-20 Эксонмобил Кемикэл Пейтентс Инк. Галогенированные тройные сополимеры на изоолефиновой основе и их использование в композициях для применения в пневматической диафрагме, такой как внутренняя оболочка шины или камера для пневматической шины
JP4510761B2 (ja) * 2002-12-20 2010-07-28 エクソンモービル・ケミカル・パテンツ・インク 重合プロセス
CA2551997C (en) * 2005-08-26 2014-05-27 Lanxess Inc. Novel methods for the preparation of butyl graft copolymers
CN100523018C (zh) 2005-11-18 2009-08-05 中国石油化工股份有限公司 一种异烯烃聚合物或共聚物的制备方法
UA116435C2 (uk) 2011-07-20 2018-03-26 Арланксео Дойчланд Гмбх Спосіб одержання бромованого бутилкаучуку
SG11201608800PA (en) * 2014-04-30 2016-11-29 Arlanxeo Singapore Pte Ltd Copolymer having low isoprenoid content

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4474924A (en) * 1983-01-27 1984-10-02 Exxon Research & Engineering Co. Stabilized slurries of isoolefin polymers
CN1036022A (zh) * 1987-12-11 1989-10-04 埃克森化学专利公司 改善了加工性能的异烯烃聚合物
CN101353403A (zh) * 2007-07-27 2009-01-28 中国石油化工股份有限公司 星形支化聚异丁烯或丁基橡胶的制备方法
CN103724571A (zh) * 2012-10-16 2014-04-16 中国石油化工股份有限公司 一种支化聚合物及其制备方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102107833B1 (ko) * 2018-12-20 2020-05-07 넥센타이어 주식회사 타이어 이너라이너 고무 조성물 및 이를 포함하는 타이어
CN113462092A (zh) * 2021-07-15 2021-10-01 大冢材料科技(上海)有限公司 一种用于硫化胶囊的橡胶组合物及其制备方法
CN113462092B (zh) * 2021-07-15 2024-01-02 大冢材料科技(上海)有限公司 一种用于硫化胶囊的橡胶组合物及其制备方法

Also Published As

Publication number Publication date
CN107793535A (zh) 2018-03-13
SA519401245B1 (ar) 2023-01-12
KR20190052043A (ko) 2019-05-15
CN107793535B (zh) 2021-02-02
KR102190223B1 (ko) 2020-12-14
PH12019500503A1 (en) 2019-11-18
US20190218384A1 (en) 2019-07-18
MY192249A (en) 2022-08-11
JP2019529618A (ja) 2019-10-17
US10894881B2 (en) 2021-01-19
RU2718909C1 (ru) 2020-04-15
DE112017004476T5 (de) 2019-05-23
BR112019004474A2 (pt) 2019-10-01
JP6820128B2 (ja) 2021-01-27

Similar Documents

Publication Publication Date Title
WO2018045987A1 (zh) 丁基橡胶及制备方法以及橡胶制品和组合物及应用以及车用轮胎气密层、内胎和硫化胶囊
CN110240762B (zh) 一种橡胶组合物及其应用和一种轮胎内胎及其制备方法
BR112017020142B1 (pt) Composição de elastômero termoplástico, métodos para produzir a mesma, artigo moldado, peça de automóvel, mangueira de automóvel e porta-mala de automóvel compreendendo a referida composição
CA2086098C (en) Composition for tire carcass
JPH05508435A (ja) タイヤインナーライナー用組成物
TW201825578A (zh) 橡膠組成物及充氣輪胎
WO2013011820A1 (ja) ゴム組成物、架橋ゴム組成物、空気入りタイヤ及びイソブチレン系重合体の製造方法
JP4420629B2 (ja) ゴム組成物及びそれを用いたタイヤ
JP3582184B2 (ja) エチレン−α−オレフィン−非共役ジエン共重合ゴム 組成物
JP4387088B2 (ja) ウエットグリップ性の改良されたゴム組成物
JP7336454B2 (ja) 多元共重合体、ゴム組成物、樹脂組成物、タイヤ及び樹脂製品
WO2018101360A1 (ja) ゴム組成物および空気入りタイヤ
JPH01135850A (ja) ゴム組成物及びゴム組成物の製造方法
JP7464520B2 (ja) 高強度サイドウォールのための組成物
JPH05507952A (ja) 動的手段組成物
JP3633060B2 (ja) 低結晶性エチレン系ランダム共重合体およびその組成物
JP7031003B2 (ja) ゴム組成物及びタイヤ
WO2018101362A1 (ja) ゴム組成物および空気入りタイヤ
JP7490443B2 (ja) グラフトポリマーの製造方法、グラフトポリマー、ゴム組成物及びタイヤ
BR112019004474B1 (pt) Borracha de butila, método de preparação do mesmo, e produto de borracha, composição e aplicação do mesmo, e revestimento interno de pneu de automóvel, tubo e uma membrana de vulcanização
JP4086545B2 (ja) ウェットグリップ性を改良したゴム組成物
JP2020050796A (ja) 空気入りタイヤ
JP2020055941A (ja) ゴム組成物及びタイヤ
JP2020050795A (ja) 空気入りタイヤ
JP2024067610A (ja) ゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17848160

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019512753

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112019004474

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20197009927

Country of ref document: KR

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019004474

Country of ref document: BR

Free format text: APRESENTE A TRADUCAO SIMPLES DA FOLHA DE ROSTO DA CERTIDAO DE DEPOSITO DAS PRIORIDADES REIVINDICADAS; OU DECLARACAO DE QUE OS DADOS DO PEDIDO INTERNACIONAL ESTAO FIELMENTE CONTIDOS NAS PRIORIDADES REIVINDICADAS, CONTENDO TODOS OS DADOS IDENTIFICADORES (NUMERO DA PRIORIDADE, DATA, DEPOSITANTE E INVENTORES), CONFORME O PARAGRAFO UNICO DO ART. 25 DA RESOLUCAO 77/2013. CABE SALIENTAR NAO FOI POSSIVEL INDIVIDUALIZAR OS TITULARES DA CITADA PRIORIDADE, INFORMACAO NECESSARIA PARA O EXAME DA CESSAO DO DOCUMENTO DE PRIORIDADE, SE FOR O CASO.

REG Reference to national code

Ref country code: BR

Ref legal event code: B01E

Ref document number: 112019004474

Country of ref document: BR

Free format text: EM ADITAMENTO A EXIGENCIA PUBLICADA NA RPI 2525, SOLICITA-SE QUE A EXIGENCIA SEJA RESPONDIDA CORRETAMENTE SOB CODIGO DE PETICAO 207, NUM PRAZO DE 60 DIAS, E QUE SEJA EFETUADO O PAGAMENTO DAS DUAS GRUS DE CODIGO 207, ESPECIFICO PARA ESSE TIPO DE SERVICO, CORRESPONDENTES AS DUAS EXIGENCIAS FORMULADAS (RPI 2525 E RPI 2538).

ENP Entry into the national phase

Ref document number: 112019004474

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20190307

122 Ep: pct application non-entry in european phase

Ref document number: 17848160

Country of ref document: EP

Kind code of ref document: A1