WO2018101360A1 - ゴム組成物および空気入りタイヤ - Google Patents

ゴム組成物および空気入りタイヤ Download PDF

Info

Publication number
WO2018101360A1
WO2018101360A1 PCT/JP2017/042901 JP2017042901W WO2018101360A1 WO 2018101360 A1 WO2018101360 A1 WO 2018101360A1 JP 2017042901 W JP2017042901 W JP 2017042901W WO 2018101360 A1 WO2018101360 A1 WO 2018101360A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
range
rubber composition
hydrocarbon resin
monomer unit
Prior art date
Application number
PCT/JP2017/042901
Other languages
English (en)
French (fr)
Inventor
淳 野澤
涼嗣 亀山
貞治 橋本
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to JP2018554210A priority Critical patent/JP7081494B2/ja
Publication of WO2018101360A1 publication Critical patent/WO2018101360A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/18Homopolymers or copolymers of hydrocarbons having four or more carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition having excellent processability and excellent balance between rolling resistance and wet grip performance.
  • a cross-linked product of a rubber composition in which silica is added to a rubber component as a filler constitutes a tire compared to a cross-linked product of a rubber composition in which carbon black is mixed. In this case, the rolling resistance is reduced. Therefore, a tire excellent in fuel efficiency can be obtained by constituting a tire using a crosslinked product of a rubber composition containing silica.
  • Patent Document 1 for the purpose of improving tire rolling resistance and wet grip properties, a specific amount of a softening agent having a specific structure and a specific amount of a hydrocarbon resin are added to a rubber component. Is disclosed.
  • the present invention has been made in view of the above problems, and has as its main object to provide a rubber composition that is excellent in workability and excellent in the balance between rolling resistance and wet grip performance.
  • a hydrocarbon resin containing a monomer unit in a predetermined ratio and having a predetermined characteristic such as a weight average molecular weight within a predetermined range is improved in processability, rolling resistance and wet grip performance for a rubber composition.
  • the present invention has been completed by finding that it is involved in a well-balanced improvement of both performances.
  • a rubber composition in which 1 part by mass to 200 parts by mass of a hydrocarbon resin is blended with 100 parts by mass of a diene rubber, and the hydrocarbon resin is an aliphatic monomer unit. Content of the monomer unit having a structure in which two or more cyclic structures are combined among the aromatic monomer units in the aromatic monomer unit is 50 mass%.
  • the rubber composition is characterized by having a weight average molecular weight (Mw) in the range of 700 to 6000 and a softening point in the range of 80 ° C to 150 ° C.
  • the hydrocarbon resin is composed of 10 to 60% by mass of 1,3-pentadiene monomer units, 1 to 30% by mass of alicyclic monoolefin monomer units having 4 to 6 carbon atoms, and 4 to 4 carbon atoms.
  • 8 acyclic monoolefin monomer unit 1% by mass to 50% by mass, alicyclic diolefin monomer unit 0% by mass to 10% by mass, and the above aromatic monomer unit 0.1% by mass to 50% by weight
  • the number average molecular weight (Mn) is in the range of 400 to 3000
  • the Z average molecular weight (Mz) is in the range of 1500 to 20000
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw / Mn) is preferably in the range of 1.0 to 4.0
  • the ratio of the Z average molecular weight to the weight average molecular weight (Mz / Mw) is preferably in the range of 1.0 to 4.0.
  • the monomer having a structure in which two or more cyclic structures are bonded is at least one selected from the group consisting of naphthalene compounds, fluorene compounds, biphenyl compounds, anthracene compounds, phenanthrene compounds, indene compounds, and benzothiophene compounds. It is preferable.
  • the hydrocarbon resin has a mixed aniline point value of 25 ° C. to 100 ° C. measured at the lowest temperature at which a mixed solution (volume ratio 2: 1: 1) of aniline, methylcyclohexane and the hydrocarbon resin exists as a uniform solution. It is preferably within the range of ° C.
  • a pneumatic tire characterized by using the above rubber composition for a tread.
  • the present invention has an effect that it is possible to provide a rubber composition which is excellent in workability and has a good balance between rolling resistance and wet grip performance.
  • the present invention relates to a rubber composition and a pneumatic tire using it as a tread.
  • a rubber composition and a pneumatic tire of the present invention will be described in detail.
  • the rubber composition of the present invention is a rubber composition comprising 1 part by mass to 200 parts by mass of a hydrocarbon resin per 100 parts by mass of a diene rubber.
  • a content of the monomer unit containing the monomer unit and the aromatic monomer unit, the monomer unit having a structure in which two or more cyclic structures are bonded among the aromatic monomer units in the aromatic monomer unit. Is 50 mass% or more, the weight average molecular weight (Mw) is in the range of 700 to 6000, and the softening point is in the range of 80 ° C. to 150 ° C.
  • the rubber composition includes an aliphatic monomer unit and an aromatic monomer unit, and has a structure in which two or more cyclic structures are bonded among the aromatic monomer units.
  • a rubber composition having excellent workability and excellent balance of rolling resistance and wet grip performance can be obtained, but as follows.
  • the hydrocarbon resin can have a weight average molecular weight (Mw) that is moderately low and a softening point that is moderately high. For this reason, the hydrocarbon resin has excellent compatibility with the diene rubber, and for example, uniform mixing with the diene rubber is facilitated, so that the obtained rubber composition has excellent processability.
  • the loss factor tan ⁇ at 60 ° C. of the crosslinked product can be lowered, and the loss coefficient tan ⁇ at 0 ° C. can be appropriately increased.
  • a pneumatic tire using such a rubber composition as a tread is manufactured, a pneumatic tire or the like having an excellent balance of rolling resistance and wet grip performance can be formed.
  • the rubber composition of the present invention contains a diene rubber and a hydrocarbon resin.
  • a diene rubber and a hydrocarbon resin.
  • hydrocarbon resin includes an aliphatic monomer unit and an aromatic monomer unit.
  • Aromatic monomer unit The aromatic monomer unit in the present invention includes a monomer unit having a structure in which two or more cyclic structures are bonded.
  • the monomer constituting the monomer unit having a structure in which two or more cyclic structures are bonded is usually one or more aliphatic carbon-carbon unsaturated bonds in the molecular structure and two or more cyclic structures. Those having a structure in which are bonded to each other are preferably used.
  • any structure that includes one or more aromatic rings among the two or more cyclic structures may be used. It may contain a ring and a non-aromatic ring structure.
  • the aliphatic carbon-carbon unsaturated bond is not particularly limited as long as it has radical polymerizability, and a vinyl group can be preferably used.
  • the aliphatic carbon-carbon unsaturated bond may be included as a part of the cyclic structure, such as a vinylene group included in a five-membered ring of indene, or a vinyl group included in 1-vinylnaphthalene. In this way, it may be bonded to the ring structure.
  • it is particularly preferable that the aliphatic carbon-carbon unsaturated bond is included as a part of the cyclic structure. This is because the polymerizability, the molecular weight, and the controllability of the softening point are excellent.
  • the cyclic structure is a non-aromatic ring structure.
  • the number of carbons of the cyclic structure including the aliphatic carbon-carbon unsaturated bond as a part thereof has desired characteristics.
  • Any hydrocarbon resin can be used as long as it can be formed. For example, it can be in the range of 4 to 8, but is preferably in the range of 4 to 6.
  • the aliphatic carbon-carbon unsaturated bond is included as a part of the indene five-membered ring as described above, and
  • the cyclic structure containing a group carbon-carbon unsaturated bond as a part thereof has 5 carbon atoms.
  • the aliphatic carbon-carbon unsaturated bond is bonded to the cyclic structure like a vinyl group contained in 1-vinylnaphthalene. They may be directly bonded to each other, or may be bonded to the cyclic structure via a spacer, such as an allyl group contained in allylnaphthalene.
  • the spacer examples include a hydrocarbon group bonded to a vinyl group such as a 2-propenyl group (allyl group) and 1-butenyl group, a carbonyl group bonded to a vinyl group such as an acryloyl group and a methacryloyl group. it can.
  • the number of carbon atoms of the spacer is not particularly limited as long as it can form a hydrocarbon resin having desired characteristics, and can be within a range of, for example, 1 to 3.
  • the number of the aliphatic carbon-carbon unsaturated bond contained in the monomer having a structure in which two or more cyclic structures are bonded is usually one or more, for example, within the range of 1 to 2. Although it is possible, one is preferred.
  • the number of the aliphatic carbon-carbon unsaturated bonds is the number of each monomer when two or more types of monomers are included as monomers having a structure in which two or more cyclic structures are combined. It refers to the number of aliphatic carbon-carbon unsaturated bonds involved.
  • a structure in which two or more cyclic structures are bonded includes a structure in which a cyclic structure forms a condensed ring group such as a naphthalene structure, a fluorene structure, an anthracene structure, a phenanthrene structure, a benzothiophene structure, an indene, or the like, a biphenyl structure A group in which cyclic structures are directly connected by a single bond, such as a terphenyl structure, or a structure in which cyclic structures are formed by a condensed ring group or a group in which cyclic structures are directly connected by a single bond The thing including both of what to do can be mentioned.
  • Examples of the structure in which two or more cyclic structures are bonded include only an aromatic ring include naphthalene structure, biphenyl structure, anthracene structure, phenanthrene structure, benzothiophene structure, and the like. Examples of those containing a family ring structure include a fluorene structure and an indene structure.
  • the structure in which the two or more cyclic structures are bonded includes an aromatic ring and a non-aromatic ring structure. Since the structure in which two or more cyclic structures are combined includes an aromatic ring and a non-aromatic ring structure as a cyclic structure, the hydrocarbon resin is excellent in workability and has rolling resistance and wet grip performance. This is because a rubber composition having an excellent balance can be provided.
  • the cyclic structure includes oxygen, nitrogen, sulfur, such as a benzothiophene structure, in addition to a ring structure formed only by carbon, such as a naphthalene structure, a fluorene structure, a biphenyl structure, an anthracene structure, a phenanthrene structure, and the like. It may have a heterocyclic ring containing atoms other than carbon such as.
  • the cyclic structure may have a substituent.
  • substituents include halogen atoms (F, Cl, Br, I), hydroxyl groups, carboxyl groups, cyano groups, amino groups, nitro groups, sulfo groups, carbamoyl groups, sulfamoyl groups, ureido groups, alkyl groups, alkenyls.
  • alkynyl group alkynyl group, aliphatic acyl group, aliphatic acyloxy group, alkoxy group, alkoxycarbonyl group, alkoxycarbonylamino group, alkylthio group, alkylsulfonyl group, aliphatic amide group, aliphatic sulfonamido group, aliphatic substituted amino group
  • an aliphatic substituted carbamoyl group, an aliphatic substituted sulfamoyl group, an aliphatic substituted ureido group, and the like can be given.
  • the number of the cyclic structures included in the structure in which the two or more cyclic structures are combined may be two or more, and may be in the range of 2 to 6, but in the range of 2 to 3. Is preferred.
  • the monomer having a structure in which two cyclic structures are bonded include 1-vinylnaphthalene, 4-vinylbiphenyl, and indene.
  • Specific examples of the monomer having a structure in which three cyclic structures are bonded include 2,7-divinylfluorene and 9-vinylanthracene.
  • the monomer having a structure in which two or more cyclic structures are bonded is preferably a naphthalene compound, a fluorene compound, a biphenyl compound, an anthracene compound, a phenanthrene compound, an indene compound and a benzothiophene compound.
  • an indene compound is preferable, and indene is particularly preferable.
  • the hydrocarbon resin has excellent workability and a rubber composition having excellent balance of rolling resistance and wet grip performance. Because they can give things.
  • naphthalene compound examples include those having a naphthalene structure and one or more aliphatic carbon-carbon unsaturated bonds in the molecular structure, such as 1-vinylnaphthalene, 2-vinylnaphthalene, allylnaphthalene, butenyl. Naphthalene etc. can be mentioned.
  • fluorene compound examples include those having a fluorene structure and one or more aliphatic carbon-carbon unsaturated bonds in its molecular structure, such as 2,7-divinylfluorene, 2-vinylfluorene, allylfluorene, Examples include butenyl fluorene.
  • biphenyl compound examples include those having a biphenyl structure and one or more aliphatic carbon-carbon unsaturated bonds in the molecular structure, such as 4-vinylbiphenyl, 4-vinyl-p-terphenyl, etc. Can be mentioned.
  • anthracene compounds include those having an anthracene structure and one or more aliphatic carbon-carbon unsaturated bonds in the molecular structure, such as 9-vinylanthracene, 2-vinylanthracene, 9,10-divinyl.
  • Anthracene, allyl anthracene, butenyl anthracene, etc. can be mentioned.
  • phenanthrene compound examples include those having a phenanthrene structure and one or more aliphatic carbon-carbon unsaturated bonds in the molecular structure, such as 9-vinylphenanthrene and 3-vinylphenanthrene. .
  • the indene compound may be any compound having an indene structure in its molecular structure.
  • indene methylindene, ethylindene, propylindene, butylindene, t-butylindene, sec-butylindene, n-pentyl
  • alkyl-substituted indenes such as indene, 2-methyl-butylindene, 3-methyl-butylindene, n-hexylindene, 2-methyl-pentylindene, 3-methyl-pentylindene, 4-methyl-pentylindene, etc. Can do.
  • benzothiophene compound examples include those having a benzothiophene structure and one or more aliphatic carbon-carbon unsaturated bonds in the molecular structure.
  • benzothiophene compound examples include those having a benzothiophene structure and one or more aliphatic carbon-carbon unsaturated bonds in the molecular structure.
  • 5-vinylbenzothiophene, 2-vinyldibenzothiophene, etc. Can be mentioned.
  • the monomer having a structure in which two or more cyclic structures are bonded may include only one type of monomer, or may include two or more types of monomers mixed together. Good.
  • the monomer having a structure in which two or more cyclic structures are bonded can be a mixture of 9-vinylanthracene which is an anthracene compound and 9-vinylphenanthrene which is a phenanthrene compound.
  • the content of the monomer unit having a structure in which two or more cyclic structures are combined in the aromatic monomer unit may be 50% by mass or more, and is in the range of 55% by mass to 99.9% by mass. In particular, it is preferably in the range of 58% by mass to 99.85% by mass, and particularly preferably in the range of 60% by mass to 99.8% by mass. It is because the said hydrocarbon resin can give the rubber composition excellent in workability and the balance of rolling resistance and wet grip performance because the said content is in the above-mentioned range.
  • the aromatic monomer unit in the present invention includes a monomer unit having a structure in which two or more cyclic structures are bonded, but in addition to a monomer unit having a structure in which two or more cyclic structures are bonded, A monomer unit containing only one cyclic structure, that is, a monomer unit containing only one aromatic ring as the cyclic structure may be included.
  • a monomer unit containing only one cyclic structure that is, a monomer unit containing only one aromatic ring as the cyclic structure may be included.
  • Examples of the monomer constituting the monomer unit containing only one cyclic structure include styrene, ⁇ -methylstyrene, vinyltoluene and the like.
  • the hydrocarbon resin can provide a rubber composition having excellent workability and excellent balance between rolling resistance and wet grip performance.
  • it may be in the range of 0.1% by mass to 50% by mass, preferably in the range of 5% by mass to 45% by mass, and more preferably in the range of 8% by mass to 43% by mass. It is preferably within the range of 10% by mass to 40% by mass. It is because the said hydrocarbon resin can give the rubber composition excellent in workability and the balance of rolling resistance and wet grip performance because the said content is in the above-mentioned range.
  • Aliphatic monomer unit As the aliphatic monomer unit in the present invention, it is possible to provide a rubber composition that exhibits the above-mentioned predetermined characteristics, is excellent in workability, and has an excellent balance of rolling resistance and wet grip performance. Any hydrocarbon resin can be used as long as it can be formed.
  • Such an aliphatic monomer unit may be any unit that does not contain an aromatic ring, such as a 1,3-pentadiene monomer unit, an alicyclic monoolefin monomer having 4 to 6 carbon atoms.
  • a unit, an acyclic monoolefin monomer unit having 4 to 8 carbon atoms, an alicyclic diolefin monomer unit, and the like can be preferably included.
  • 1,3-pentadiene monomer unit 10 mass% to 60 mass%, C 4-6 alicyclic monoolefin monomer unit 1 mass % To 30% by mass, 1 to 50% by mass of acyclic monoolefin monomer units having 4 to 8 carbon atoms, and 0 to 10% by mass of alicyclic diolefin monomer units. it can.
  • the content of 1,3-pentadiene monomer units in the hydrocarbon resin is a hydrocarbon resin that is excellent in processability and can provide a rubber composition with a good balance of rolling resistance and wet grip performance.
  • Any material can be used as long as it can be obtained.
  • it can be in the range of 10% by mass to 60% by mass, preferably in the range of 15% by mass to 55% by mass, and more preferably in the range of 20% by mass to It is preferably in the range of 50% by mass, and particularly preferably in the range of 25% by mass to 48% by mass. It is because the said hydrocarbon resin can give the rubber composition excellent in workability and the balance of rolling resistance and wet grip performance because the said content is in the above-mentioned range.
  • the cis / trans isomer ratio in 1,3-pentadiene is not particularly limited and may be any ratio.
  • the alicyclic monoolefin having 4 to 6 carbon atoms is a hydrocarbon compound having 4 to 6 carbon atoms having one aliphatic carbon-carbon unsaturated bond and a non-aromatic ring structure in its molecular structure. is there.
  • Specific examples of the alicyclic monoolefin having 4 to 6 carbon atoms include cyclobutene, cyclopentene, cyclohexene, methylcyclobutene, and methylcyclopentene.
  • the content of the alicyclic monoolefin monomer unit having 4 to 6 carbon atoms in the hydrocarbon resin is to provide a rubber composition having excellent workability and a good balance between rolling resistance and wet grip performance.
  • Any hydrocarbon resin can be used as long as it can be obtained.
  • it can be in the range of 1% by mass to 30% by mass, and preferably in the range of 3% by mass to 28% by mass.
  • it is preferably in the range of 5% by mass to 26% by mass, and particularly preferably in the range of 7% by mass to 25% by mass. It is because the said hydrocarbon resin can give the rubber composition excellent in workability and the balance of rolling resistance and wet grip performance because the said content is in the above-mentioned range.
  • the ratio of each of the corresponding compounds may be any ratio, and is not particularly limited, but preferably contains at least cyclopentene, and has 4 to 6 carbon atoms.
  • the proportion of cyclopentene in the alicyclic monoolefin is more preferably 50% by mass or more.
  • An acyclic monoolefin having 4 to 8 carbon atoms has one aliphatic carbon-carbon unsaturated bond in its molecular structure, and is a chain hydrocarbon compound having 4 to 8 carbon atoms having no ring structure It is.
  • Specific examples of the acyclic monoolefin having 4 to 8 carbon atoms include butenes such as 1-butene, 2-butene and isobutylene (2-methylpropene); 1-pentene, 2-pentene, 2-methyl-1 -Pentenes such as butene, 3-methyl-1-butene, 2-methyl-2-butene; hexenes such as 1-hexene, 2-hexene, 2-methyl-1-pentene; 1-heptene, 2-heptene Heptenes such as 2-methyl-1-hexene; 1-octene, 2-octene, 2-methyl-1-heptene, diisobutylene (2,4,4-trimethyl-1-pentene and 2,4,4- Octene
  • the content of the acyclic monoolefin monomer unit having 4 to 8 carbon atoms in the hydrocarbon resin is to provide a rubber composition having excellent workability and excellent balance between rolling resistance and wet grip performance.
  • Any hydrocarbon resin can be used as long as it can be obtained.
  • it can be in the range of 1 to 50% by mass, preferably in the range of 5 to 45% by mass, In particular, it is preferably in the range of 10% by mass to 42% by mass, and particularly preferably in the range of 15% by mass to 40% by mass. It is because the said hydrocarbon resin can give the rubber composition excellent in workability and the balance of rolling resistance and wet grip performance because the said content is in the above-mentioned range.
  • the ratio of each of the corresponding compounds may be any ratio, and is not particularly limited.
  • at least 2-methyl-2-butene Preferably, at least one selected from the group consisting of isobutylene and diisobutylene is included, and the total amount of 2-methyl-2-butene, isobutylene and diisobutylene occupies in the alicyclic monoolefin having 4 to 6 carbon atoms
  • the ratio is more preferably 50% by mass or more.
  • the hydrocarbon resin may contain an alicyclic diolefin as a raw material.
  • An alicyclic diolefin is a hydrocarbon compound having two or more aliphatic carbon-carbon unsaturated bonds and a non-aromatic ring structure in its molecular structure.
  • Specific examples of the alicyclic diolefin include multimers of cyclopentadiene such as cyclopentadiene and dicyclopentadiene, and multimers of methylcyclopentadiene and methylcyclopentadiene.
  • the content of the cycloaliphatic diolefin monomer unit in the hydrocarbon resin is a hydrocarbon resin that is excellent in processability and can provide a rubber composition with a good balance of rolling resistance and wet grip performance.
  • Any material can be used as long as it can be obtained.
  • it can be in the range of 0% by mass to 10% by mass, and preferably in the range of 0% by mass to 7% by mass. It is preferably in the range of 5% by mass, and particularly preferably in the range of 0% by mass to 3% by mass. It is because the said hydrocarbon resin can give the rubber composition excellent in workability and the balance of rolling resistance and wet grip performance because the said content is in the above-mentioned range.
  • the above aliphatic monomer units are 1,3-pentadiene monomer units, alicyclic monoolefin monomer units having 4 to 6 carbon atoms, and acyclic monoolefin monomer units having 4 to 8 carbon atoms.
  • Monomer units may be included.
  • Other monomers used for constituting such other monomer units may be compounds having addition polymerizability that can be addition copolymerized with 1,3-pentadiene or the like other than the aforementioned monomers. There is no particular limitation.
  • Examples of the other monomers include carbon numbers other than 1,3-pentadiene such as 1,3-butadiene, 1,2-butadiene, isoprene, 1,3-hexadiene, and 1,4-pentadiene.
  • An unsaturated monoolefin having 7 or more carbon atoms such as cycloheptene; an acyclic monoolefin having 4 to 8 carbon atoms such as ethylene, propylene and nonene.
  • the hydrocarbon resin can provide a rubber composition having excellent workability and excellent balance of rolling resistance and wet grip performance.
  • it can be in the range of 50% by mass to 99.9% by mass, and preferably in the range of 60% by mass to 90% by mass. It is because the said hydrocarbon resin can give the rubber composition excellent in workability and the balance of rolling resistance and wet grip performance because the said content is in the above-mentioned range.
  • the weight average molecular weight (Mw) of the hydrocarbon resin is not particularly limited as long as it is in the range of 700 to 6000, but it is particularly preferable to be in the range of 900 to 5000. More preferably, it is within the range of 1000 to 4000. This is because, when the weight average molecular weight (Mw) is within the above range, the hydrocarbon resin can be excellent in compatibility with the diene rubber. As a result, the hydrocarbon resin can easily reduce the loss coefficient tan ⁇ at 60 ° C. of the cross-linked product of the rubber composition and can be excellent in rolling resistance. In addition, when the weight average molecular weight (Mw) is within the above-described range, the hydrocarbon resin can easily increase the loss coefficient tan ⁇ at 0 ° C. and can have excellent rolling resistance. Because.
  • the number average molecular weight (Mn) of the hydrocarbon resin can be in the range of 400 to 3000, preferably in the range of 450 to 2500, particularly in the range of 500 to 2000. Is more preferable. This is because when the number average molecular weight (Mn) is within the above-mentioned range, the hydrocarbon resin can be excellent in compatibility with the diene rubber. As a result, the hydrocarbon resin can easily reduce the loss coefficient tan ⁇ at 60 ° C. of the cross-linked product of the rubber composition and can be excellent in rolling resistance.
  • the Z average molecular weight (Mz) of the hydrocarbon resin can be in the range of 1500 to 20000, preferably in the range of 1800 to 15000, particularly in the range of 2000 to 10,000. Is more preferable. This is because, when the Z average molecular weight (Mz) is within the above range, the hydrocarbon resin can be excellent in compatibility with the diene rubber. As a result, the hydrocarbon resin can easily reduce the loss coefficient tan ⁇ at 60 ° C. of the cross-linked product of the rubber composition and can be excellent in rolling resistance.
  • the number average molecular weight (Mn), the weight average molecular weight (Mw), and the Z average molecular weight (Mz) of the hydrocarbon resin are determined as polystyrene-converted values measured by high performance liquid chromatography.
  • Mn number average molecular weight
  • Mw weight average molecular weight
  • Mz Z average molecular weight of the hydrocarbon resin
  • the ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight of the hydrocarbon resin can be in the range of 1.0 to 4.0, and more preferably in the range of 1.1 to 3.5. In particular, it is more preferable to be in the range of 1.2 to 3.0. This is because when the ratio is within the above-described range, the hydrocarbon resin can be excellent in compatibility with the diene rubber. As a result, the hydrocarbon resin can easily reduce the loss coefficient tan ⁇ at 60 ° C. of the cross-linked product of the rubber composition and can be excellent in wet grip performance.
  • the ratio of the Z average molecular weight to the weight average molecular weight of the hydrocarbon resin can be in the range of 1.0 to 4.0, and in particular, in the range of 1.1 to 3.5. In particular, it is more preferable to be in the range of 1.2 to 3.0. This is because when the ratio is within the above-described range, the hydrocarbon resin can be excellent in compatibility with the diene rubber. As a result, the hydrocarbon resin can easily reduce the loss coefficient tan ⁇ at 60 ° C. of the cross-linked product of the rubber composition and can be excellent in wet grip performance.
  • the softening point of the hydrocarbon resin is not particularly limited as long as it is in the range of 80 ° C. to 150 ° C. Among them, it is preferably in the range of 85 ° C. to 145 ° C., particularly 90 ° C. to More preferably, it is within the range of 140 ° C. This is because when the softening point is within the above-described range, the hydrocarbon resin can be excellent in compatibility with the diene rubber. As a result, the hydrocarbon resin can easily reduce the loss coefficient tan ⁇ at 60 ° C. of the cross-linked product of the rubber composition and can be excellent in rolling resistance. Further, since the softening point is within the above-described range, the hydrocarbon resin can easily increase the loss coefficient tan ⁇ at 0 ° C. and can have excellent wet grip performance. .
  • the softening point in the present invention is a value measured according to JIS K 6863 for hydrocarbon resins, for example.
  • the mixed aniline point (MMAP) of the hydrocarbon resin can be in the range of 25 ° C. to 100 ° C., preferably 27 ° C. to 90 ° C., particularly 30 ° C. to 75 ° C. It is more preferable to be within the range. This is because when the mixed aniline point is within the above range, the hydrocarbon resin can be excellent in compatibility with the diene rubber. As a result, the hydrocarbon resin can easily reduce the loss coefficient tan ⁇ at 60 ° C. of the cross-linked product of the rubber composition and can be excellent in rolling resistance. In addition, since the mixed aniline point is within the above range, the hydrocarbon resin can easily increase the loss coefficient tan ⁇ at 0 ° C. and can have excellent wet grip performance. is there.
  • the mixed aniline point in the present invention is a temperature measured as the lowest temperature at which a mixed solution (volume ratio 2: 1: 1) of aniline, methylcyclohexane and the above hydrocarbon resin exists as a uniform solution. It is a value measured using methylcyclohexane instead of heptane according to JIS K 2256 for hydrocarbon resins.
  • the blending amount of the hydrocarbon resin is not particularly limited as long as it is 1 part by mass to 200 parts by mass with respect to 100 parts by mass of the diene rubber, but 1 part by mass to 100 parts by mass of the diene rubber. It is preferably in the range of 70 parts by mass, and more preferably in the range of 3 parts by mass to 35 parts by mass. This is because, when the blending amount is within the above-described range, the rubber composition has excellent processability and excellent balance between rolling resistance and wet grip performance.
  • the method for producing the hydrocarbon resin may be any method that can obtain a hydrocarbon resin containing an aliphatic monomer unit and an aromatic monomer unit.
  • a preferred example is a method in which a polymerizable component (monomer mixture A) having monomers capable of constituting a monomer unit and an aromatic monomer unit is subjected to addition polymerization.
  • a hydrocarbon resin can be obtained by addition polymerization using a Friedel-Crafts type cationic polymerization catalyst.
  • a method suitably used for producing the hydrocarbon resin the following aluminum halide (A), halogenated hydrocarbon (B1) in which a halogen atom is bonded to a tertiary carbon atom, and carbon-carbon non-carbon are described.
  • a polymerization catalyst is obtained, and the above aliphatic monomer and The method which has the superposition
  • the addition amount of each monomer contained in the monomer mixture A can be the same as the content of each monomer unit in the hydrocarbon resin. Therefore, as the aliphatic monomer unit, 1,3-pentadiene monomer unit 10 mass% to 60 mass%, C 4-6 alicyclic monoolefin monomer unit 1 mass% to 30 mass%, It contains 1 to 50% by mass of acyclic monoolefin monomer unit having 4 to 8 carbon atoms and 0 to 10% by mass of alicyclic diolefin monomer unit, and 0% of aromatic monomer unit.
  • the above-described production method is more specifically composed of 10% by mass to 60% by mass of 1,3-pentadiene monomer, and 4 to 6 carbon atoms.
  • 1% by mass to 30% by mass of alicyclic monoolefin monomer 1% by mass to 50% by mass of acyclic monoolefin monomer having 4 to 8 carbon atoms, 0% by mass of alicyclic diolefin monomer 10% by mass, and the content of the monomer having a structure in which two or more cyclic structures are combined is Can be assumed to have a polymerization step of polymerizing the monomer mixture A comprising an aromatic monomer 0.1 wt% to 50 wt% of the above is at least 50 wt% in aromatic monomer.
  • aluminum halide (A) examples include aluminum chloride (AlCl 3 ) and aluminum bromide (AlBr 3 ). Of these, aluminum chloride is preferably used from the viewpoint of versatility.
  • the amount of aluminum halide (A) used is not particularly limited, but is preferably in the range of 0.05 to 10 parts by mass, more preferably 100 parts by mass of the polymerizable component (monomer mixture A). It is within the range of 0.1 to 5 parts by mass.
  • the activity of the polymerization catalyst becomes extremely good.
  • Specific examples of the halogenated hydrocarbon (B1) in which a halogen atom is bonded to a tertiary carbon atom include t-butyl chloride, t-butyl bromide, 2-chloro-2-methylbutane, and triphenylmethyl chloride. .
  • t-butyl chloride is particularly preferably used because it has an excellent balance between activity and ease of handling.
  • Examples of the unsaturated bond in the halogenated hydrocarbon (B2) in which a halogen atom is bonded to a carbon atom adjacent to the carbon-carbon unsaturated bond include a carbon-carbon double bond and a carbon-carbon triple bond, and an aromatic ring It also includes a carbon-carbon conjugated double bond in Specific examples of such compounds include benzyl chloride, benzyl bromide, (1-chloroethyl) benzene, allyl chloride, 3-chloro-1-propyne, 3-chloro-1-butene, 3-chloro-1-butyne, Examples include cinnamon chloride. Among these, benzyl chloride is preferably used because it is excellent in balance between activity and ease of handling.
  • halogenated hydrocarbon (B) may be used by 1 type, or may be used in combination of 2 or more types.
  • the amount of the halogenated hydrocarbon (B) used is preferably in the range of 0.05 to 50, more preferably in the range of 0.1 to 10, in terms of the molar ratio to the aluminum halide (A).
  • the order of adding each component of the monomer mixture and the polymerization catalyst to the polymerization reactor is not particularly limited, and may be added in any order, but the polymerization reaction is well controlled, From the viewpoint of more accurately controlling the weight average molecular weight and the like, after adding the monomer mixture and a part of the components of the polymerization catalyst to the polymerization reactor and starting the polymerization reaction, the remainder of the polymerization catalyst is subjected to the polymerization reaction It is preferable to add to the vessel.
  • the aluminum halide (A) and the alicyclic monoolefin may be mixed. preferable. This is because by subjecting the aluminum halide (A) and the alicyclic monoolefin to contact treatment, gel formation can be prevented and a hydrocarbon resin in which the weight average molecular weight and the like are controlled with high accuracy can be obtained.
  • the amount of the alicyclic monoolefin mixed with the aluminum halide (A) is preferably at least 5 times (mass ratio) the amount of the aluminum halide (A). If the amount of the alicyclic monoolefin is too small, the effect of preventing gel formation may be insufficient.
  • the mass ratio of alicyclic monoolefin to aluminum halide (A) is preferably 5: 1 to 120: 1, more preferably 10: 1 to 100: 1, and even more preferably 15: 1 to 80: 1. . If the alicyclic monoolefin is used in an excessive amount from this ratio, the catalytic activity is lowered and the polymerization may not proceed sufficiently.
  • the charging order is not particularly limited, and the aluminum halide (A) may be charged into the alicyclic monoolefin, and conversely, An alicyclic monoolefin may be introduced into the aluminum halide (A). Since mixing usually involves exotherm, an appropriate diluent can also be used. As the diluent, a solvent described later can be used.
  • the aliphatic monomer unit includes a 1,3-pentadiene monomer unit, an acyclic monoolefin monomer unit, etc. in addition to the alicyclic monoolefin monomer unit, as described above.
  • the mixture M of the aluminum halide (A) and the alicyclic monoolefin it is preferable to mix the mixture M with the mixture a containing at least 1,3-pentadiene and the acyclic monoolefin.
  • the mixture a may contain an alicyclic diolefin.
  • the preparation method of the mixture a is not particularly limited, and each of the pure compounds may be mixed to obtain the target mixture a.
  • a mixture containing the target monomer derived from a fraction of a naphtha decomposition product May be used to obtain the desired mixture a.
  • the C5 fraction after extraction of isoprene and cyclopentadiene (including its multimer) can be preferably used.
  • the type of the solvent is not particularly limited as long as it does not inhibit the polymerization reaction, but saturated aliphatic hydrocarbons or aromatic hydrocarbons are preferable.
  • saturated aliphatic hydrocarbon used as the solvent include n-pentane, n-hexane, 2-methylpentane, 3-methylpentane, n-heptane, 2-methylhexane, 3-methylhexane, and 3-ethylpentane.
  • Examples include 5-10 chain saturated aliphatic hydrocarbons; cyclic saturated aliphatic hydrocarbons having 5 to 10 carbon atoms such as cyclopentane, cyclohexane, cycloheptane, cyclooctane and the like.
  • aromatic hydrocarbon used as the solvent include aromatic hydrocarbons having 6 to 10 carbon atoms such as benzene, toluene and xylene.
  • a solvent may be used individually by 1 type and may be used as a 2 or more types of mixed solvent.
  • the amount of the solvent used is not particularly limited, but is preferably in the range of 10 parts by weight to 1,000 parts by weight with respect to 100 parts by weight of the polymerizable component (monomer mixture A), and 50 parts by weight to More preferably, it is in the range of 500 parts by weight.
  • a mixture of an addition polymerizable component and a non-addition polymerizable component such as a mixture of cyclopentane and cyclopentene derived from the C5 fraction is added to the polymerization reaction system, and the addition polymerizable component is a single amount. It can be used as a component of the body mixture, and the non-addition polymerizable component can be used as a solvent.
  • the polymerization temperature for carrying out the polymerization reaction is not particularly limited, but is preferably in the range of ⁇ 20 ° C. to 100 ° C., and preferably in the range of 0 ° C. to 75 ° C. If the polymerization temperature is too low, the polymerization activity may be reduced and productivity may be inferior. If the polymerization temperature is too high, the controllability such as the weight average molecular weight of the resulting hydrocarbon resin may be inferior.
  • the pressure for performing the polymerization reaction may be atmospheric pressure or increased pressure.
  • the polymerization reaction time can be appropriately selected, but is usually selected within the range of 10 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • the polymerization reaction can be stopped by adding a polymerization terminator such as methanol, an aqueous sodium hydroxide solution or an aqueous ammonia solution to the polymerization reaction system when a desired polymerization conversion rate is obtained.
  • a polymerization terminator such as methanol, an aqueous sodium hydroxide solution or an aqueous ammonia solution
  • the method for producing the hydrocarbon resin has at least the polymerization step, but may have other steps as necessary.
  • the other steps include, for example, a catalyst residue that is generated when a polymerization terminator is added in the polymerization step after the polymerization step to inactivate the polymerization catalyst, and the catalyst residue insoluble in the solvent is removed by filtration or the like.
  • the unreacted monomer and solvent are removed, and further, the low molecular weight oligomer component is removed by steam distillation or the like, and the solid resin is obtained by cooling. Etc.
  • diene rubber any diene rubber that can be blended with the hydrocarbon resin in a rubber composition can be used.
  • a diene rubber for example, a diene rubber described in JP-A-2015-189873 can be used. More specifically, the diene rubbers are natural rubber (NR), isoprene rubber (IR), butadiene rubber (BR), styrene-butadiene copolymer rubber (SBR), acrylonitrile-butadiene copolymer rubber (NBR).
  • NR natural rubber
  • IR isoprene rubber
  • BR butadiene rubber
  • SBR styrene-butadiene copolymer rubber
  • NBR acrylonitrile-butadiene copolymer rubber
  • Ethylene-propylene-diene terpolymer EPDM
  • styrene-butadiene copolymer rubber butadiene rubber and the like are preferable.
  • the diene rubber need only contain at least one kind, and may contain only one kind, or a mixture of two or more kinds.
  • the molecular weight and microstructure of the diene rubber are not particularly limited, and may be terminally modified with an amine, amide, silyl, alkoxysilyl, carboxyl, hydroxyl group or the like, or epoxidized.
  • the diene rubber may be hydrogenated, but is preferably not hydrogenated.
  • the rubber composition of the present invention contains a diene rubber and a hydrocarbon resin, but may contain other components as necessary.
  • the other components include compounding agents such as a silane coupling agent, a crosslinking agent, a crosslinking accelerator, a crosslinking activator, an anti-aging agent, an activator, a process oil, a plasticizer, a lubricant, and a tackifier. Necessary amount can be blended.
  • Such other components and their contents can be the same as those described in JP-A-2016-30795, for example.
  • the above other components can contain a filler.
  • a filler what is generally used for a rubber composition can be used, for example, carbon black, clay, diatomaceous earth, silica, talc, barium sulfate, calcium carbonate, magnesium carbonate, metal oxide, mica,
  • various metal powders, wood powder, glass powder, ceramic powder, inorganic hollow fillers such as glass balloons and silica balloons; organic hollow fillers made of polystyrene, polyvinylidene fluoride, polyvinylidene fluoride copolymers, etc. Etc.
  • silica, carbon black and the like described in JP-A-2016-30795 can be used.
  • the filler is preferably silica or carbon black, and particularly preferably silica. This is because the rubber composition is excellent in wet grip properties by being the filler.
  • the filler only needs to contain at least one type, and may contain only one type, or a mixture of two or more types.
  • the filler can be used by mixing silica and carbon black.
  • the content of the filler is not particularly limited as long as it is excellent in processability and can provide a rubber composition excellent in the balance between rolling resistance and wet grip performance.
  • the content can be, for example, in the range of 10 parts by mass to 200 parts by mass with respect to 100 parts by mass of the diene rubber, and more preferably in the range of 30 parts by mass to 150 parts by mass. In particular, it is preferably in the range of 50 to 70 parts by mass. This is because the rubber composition has excellent processability and wet grip properties when the content is within the above-described range.
  • the rubber composition of the present invention may be prepared by kneading each component according to a conventional method.
  • a component excluding a thermally unstable component such as a crosslinking agent or a crosslinking accelerator and a diene rubber are used.
  • a heat-unstable component such as a crosslinking agent or a crosslinking accelerator can be mixed with the kneaded product to obtain a desired composition.
  • the kneading temperature of the component excluding the thermally unstable component and the diene rubber is preferably in the range of 80 ° C. to 200 ° C., more preferably in the range of 120 ° C.
  • the kneaded product and the thermally unstable component are usually mixed after cooling to 100 ° C. or lower, preferably 80 ° C. or lower.
  • a known crosslinking method can be used.
  • a molding machine corresponding to a desired shape such as an extruder, an injection molding machine, a compressor
  • Examples of the method include forming by a roll or the like, performing a crosslinking reaction by heating, and fixing the shape as a crosslinked product.
  • the molding temperature is usually in the range of 10 ° C to 200 ° C, preferably in the range of 25 ° C to 120 ° C.
  • the crosslinking temperature is usually in the range of 100 ° C.
  • the crosslinking time is usually in the range of 1 minute to 24 hours, preferably 2 minutes to 12 hours. And particularly preferably within the range of 3 minutes to 6 hours.
  • the rubber cross-linked product even if the surface is cross-linked, it may not be sufficiently cross-linked to the inside. Good.
  • the heating method a general method used for crosslinking of the rubber composition such as press heating, steam heating, oven heating, hot air heating, etc. may be appropriately selected.
  • the rubber composition of the present invention has an excellent balance between rolling resistance and wet grip performance.
  • the rubber composition of the present invention is preferably used as a material for each part of the tire such as a tread (cap tread, base tread), carcass, sidewall, bead portion, etc. of the tire, taking advantage of such characteristics.
  • a tread cap tread, base tread
  • tire parts such as treads, carcass, sidewalls, and bead portions, and particularly excellent in low heat generation. Therefore, it can be particularly suitably used as a tread for a fuel-efficient tire, and in particular, it is preferably used for a cap tread.
  • the pneumatic tire of the present invention is characterized by using the above rubber composition in a tread.
  • the tread is one that uses the above rubber composition, that is, one that is formed using the rubber composition, and usually contains a cross-linked product of the rubber composition.
  • the pneumatic tire only needs to have a tread formed using the rubber composition, and other parts may also be formed using the rubber composition.
  • the tread formed using the rubber composition may be a part of the tread or the entire tread, but preferably includes at least a cap tread.
  • the present invention is not limited to the above embodiment.
  • the above-described embodiment is an exemplification, and the present invention has substantially the same configuration as the technical idea described in the claims of the present invention, and any device that exhibits the same function and effect is the present invention. It is included in the technical scope of the invention.
  • the hydrocarbon resin used as a sample is subjected to gel permeation chromatography analysis to determine the number average molecular weight (Mn), weight average molecular weight (Mw) and Z average molecular weight (Mz) in terms of standard polystyrene, and the molecular weight distribution is Mw / Mn ratio and Mz / Mw ratio.
  • the gel permeation chromatography analysis uses “HLC-8320GPC” manufactured by Tosoh Corporation as a measuring device, and the column uses three connected “TSKgel SuperMultipore HZ” manufactured by Tosoh Corporation, with tetrahydrofuran as a solvent. , 40 ° C. and a flow rate of 1.0 mL / min.
  • Measurement item Dynamic storage elastic modulus E ' : Dynamic loss modulus E '' : Loss tangent tan ⁇ -Sample preparation method: punching from sheet-Specimen shape: length 50 mm x width 2 mm x thickness 2 mm ⁇ Number of specimens: 1 ⁇ Distance between clamps: 20mm
  • the obtained polymer solution was charged into a distillation kettle and heated in a nitrogen atmosphere to remove the polymerization solvent and unreacted monomers. Subsequently, the low molecular weight oligomer component was distilled off at 240 ° C. or higher while blowing saturated water vapor, and the hydrocarbon resin of Production Example 1 was obtained.
  • the number average molecular weight, weight average molecular weight, Z average molecular weight, molecular weight distribution, softening point, and mixed aniline point were measured. These measurement results are summarized in Table 1 below.
  • the aromatic monoolefins contained in the mixture a 1 are to be included as aromatic monomer.
  • aromatic monoolefin 0.95 part of styrene (5.0% by mass in the aromatic monomer) and 18.05 parts of 1-vinylnaphthalene (95.0% by mass in the aromatic monomer) were used. Using.
  • styrene is used as an aromatic monomer other than the monomer having a structure in which two or more cyclic structures are bonded, as in Production Example 1.
  • an aromatic monomer is not included.
  • Example 1 Oil-extended emulsion-polymerized styrene butadiene rubber (SBR) (trade name “Nipol 1739”, manufactured by Nippon Zeon Co., Ltd., bound styrene content: 40%, vinyl bond content of butadiene unit: 13.5 mol in a Banbury mixer %, Weight average molecular weight: 690,000, molecular weight distribution (Mw / Mn): 3.98, glass transition temperature (Tg): -35 ° C., containing 37.5 parts of extended oil with respect to 100 parts of rubber component) 96.3 parts (content of rubber component: 70 parts, content of extending oil: 26.3 parts) and solution polymerized butadiene rubber (BR) (trade name “Nipol BR1220”, manufactured by Nippon Zeon Co., Ltd., butadiene unit part) Vinyl bond content: 2 mol%, weight average molecular weight: 490,000, molecular weight distribution (Mw / Mn):
  • silica trade name “Zeosil 1165MP” manufactured by Rhodia
  • carbon black Cabot Japan K.K.
  • N339 5.0 parts by the company, trade name “N339”
  • silane coupling agent bis [3- (triethoxysilyl) propyl] tetrasulfide (trade name “Si69” by Degussa) and production examples 10.0 parts of the hydrocarbon resin obtained in 1 was added, and after kneading for 90 seconds, 23.4 parts of silica (trade name “Zeosil 1165MP” manufactured by Rhodia), 3.0 parts of zinc oxide, 2.0 of stearic acid Part and anti-aging agent: 2.0 parts of N-phenyl-N ′-(1,3-dimethylbutyl) -p-phenylenediamine (trade name “NOCRACK 6C” manufactured by Ouchi Shinsei Co., Ltd.)
  • allo-Max T-DAE 5.0 parts was charged. Thereafter, the mixture was kneaded at 90 ° C. as a starting temperature, kneaded at 145 ° C. to 155 ° C. for 60 seconds or more (primary kneading), and then the kneaded product was discharged from the mixer.
  • the obtained kneaded product was cooled to room temperature and then kneaded again (secondary kneading) at 90 ° C. for 2 minutes in a Banbury mixer, and then the kneaded product was discharged from the mixer.
  • the temperature of the kneaded product at the end of kneading was 145 ° C.
  • the obtained kneaded product was mixed with 1.7 parts of sulfur and a vulcanization accelerator: N-cyclohexyl-2-benzothiazolylsulfenamide (CBS trade name “NOXELLA CZ-G”).
  • CBS trade name “NOXELLA CZ-G” N-cyclohexyl-2-benzothiazolylsulfenamide
  • DPG product name Noxeller D
  • Ouchi Shinsei Chemical Co., Ltd. Diphenylguanidine
  • the kneading conditions for primary kneading, secondary kneading and vulcanizing agent kneading were as shown below.
  • Examples 2 to 3 and Comparative Examples 1 to 3 As shown in Table 2 below, a rubber composition was obtained in the same manner as in Example 1 except that the hydrocarbon resin obtained in Production Examples 2 to 6 was used instead of the hydrocarbon resin obtained in Production Example 1. .
  • the rubber composition is excellent in both rolling resistance and wet grip performance. It was confirmed that Moreover, even when the said rubber composition contains fillers, such as a silica, it has confirmed that the dispersibility of a filler was favorable and became what was excellent in workability.
  • those having a predetermined proportion of monomer units having a structure in which two or more cyclic structures are bonded, and having characteristics such as a predetermined weight average molecular weight (Mw) and a softening point In particular, for example, a hydrocarbon resin having a moderately low weight average molecular weight (Mw) and a ratio (Mw / Mn) of the weight average molecular weight to the number average molecular weight (Mn) and a moderately high softening point to diene rubber It was confirmed that the rubber composition was excellent in processability and excellent in both rolling resistance and wet grip performance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を提供することを主目的とする。 本発明は、ジエン系ゴム100質量部に対し、炭化水素樹脂1質量部~200質量部を配合してなるゴム組成物であり、上記炭化水素樹脂は、脂肪族単量体単位と芳香族単量体単位とを含み、上記芳香族単量体単位のうち2以上の環状構造が結合した構造を有する単量体単位の上記芳香族単量体単位中の含有量が50質量%以上であり、重量平均分子量(Mw)が700~6000の範囲内であり、かつ軟化点が80℃~150℃の範囲内であることを特徴とするゴム組成物を提供することにより、上記課題を解決する。

Description

ゴム組成物および空気入りタイヤ
 本発明は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物に関するものである。
 近年、自動車用のタイヤには、環境問題および資源問題から低燃費性が強く求められる一方で、安全性の面から例えば、ウェットグリップ性の向上が要求されている。ゴム成分に充填剤としてシリカを配合したゴム組成物の架橋物(以下、単にゴム架橋物と称する場合がある。)は、カーボンブラックを配合したゴム組成物の架橋物に比べて、タイヤを構成した場合の転がり抵抗が小さくなる。そのため、シリカを配合したゴム組成物の架橋物を用いてタイヤを構成することにより、低燃費性に優れたタイヤを得ることができる。
 しかしながら、従来のゴム成分にシリカを配合しても、ゴム成分とシリカとの親和性が不十分で、これらが分離しやすいことに起因して、架橋前のゴム組成物の加工性が悪く、また、これを架橋して得られるゴム架橋物は、タイヤを構成した場合の転がり抵抗が不十分となるといった不具合がある。
 また、特許文献1では、タイヤの転がり抵抗およびウェットグリップ性の向上を図ることを目的として、ゴム成分に、特定構造の軟化剤を特定量配合すると共に、特定構造の炭化水素樹脂を特定量配合することが開示されている。
特開2010-241965号公報
 特許文献1に記載の特定構造の軟化剤および炭化水素樹脂では、これらを添加して得られるゴム架橋物によりタイヤを製造した場合に、確かに、ウェットグリップ性および転がり抵抗の両特性を向上させることが可能であるが、未だ不十分であるといった問題がある。
 本発明は、上記問題点に鑑みてなされたものであり、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を提供することを主目的とする。
 本発明者らは加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与える炭化水素樹脂について鋭意検討を進めた結果、2以上の環状構造が結合した構造を有する単量体単位を所定の割合で含み、かつ、所定の範囲内の重量平均分子量等の所定の特性を有する炭化水素樹脂が、ゴム組成物について、加工性の向上と、転がり抵抗及びウェットグリップ性能の両性能のバランスのよい向上とに関与することを見出して本発明を完成させるに至ったものである。
 かくして、本発明によれば、ジエン系ゴム100質量部に対し、炭化水素樹脂1質量部~200質量部を配合してなるゴム組成物であり、上記炭化水素樹脂は、脂肪族単量体単位と芳香族単量体単位とを含み、上記芳香族単量体単位のうち2以上の環状構造が結合した構造を有する単量体単位の上記芳香族単量体単位中の含有量が50質量%以上であり、重量平均分子量(Mw)が700~6000の範囲内であり、かつ軟化点が80℃~150℃の範囲内であることを特徴とするゴム組成物が提供される。
 上記炭化水素樹脂が、1,3-ペンタジエン単量体単位10質量%~60質量%、炭素数4~6の脂環式モノオレフィン単量体単位1質量%~30質量%、炭素数4~8の非環式モノオレフィン単量体単位1質量%~50質量%、脂環式ジオレフィン単量体単位0質量%~10質量%、及び上記芳香族単量体単位0.1質量%~50質量%を含み、数平均分子量(Mn)が400~3000の範囲内であり、Z平均分子量(Mz)が1500~20000の範囲内であり、数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲内であり、重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~4.0の範囲内であることが好ましい。
 上記2以上の環状構造が結合した構造を有する単量体が、ナフタレン化合物、フルオレン化合物、ビフェニル化合物、アントラセン化合物、フェナントレン化合物、インデン化合物及びベンゾチオフェン化合物からなる群から選択される少なくとも1種であることが好ましい。
 上記炭化水素樹脂が、アニリン、メチルシクロヘキサン及び上記炭化水素樹脂の混合液(体積比2:1:1)が均一な溶液として存在する最低温度で測定される混合アニリン点の値が25℃~100℃の範囲内であることが好ましい。
 また、本発明によれば、上述のゴム組成物をトレッドに使用したことを特徴とする空気入りタイヤが提供される。
 本発明は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を提供できるという効果を奏する。
 本発明は、ゴム組成物およびそれをトレッドに使用した空気入りタイヤに関するものである。以下、本発明のゴム組成物および空気入りタイヤについて詳細に説明する。
I.ゴム組成物
 本発明のゴム組成物は、ジエン系ゴム100質量部に対し、炭化水素樹脂1質量部~200質量部を配合してなるゴム組成物であり、上記炭化水素樹脂は、脂肪族単量体単位と芳香族単量体単位とを含み、上記芳香族単量体単位のうち2以上の環状構造が結合した構造を有する単量体単位の上記芳香族単量体単位中の含有量が50質量%以上であり、重量平均分子量(Mw)が700~6000の範囲内であり、かつ軟化点が80℃~150℃の範囲内であることを特徴とするものである。
 本発明によれば、ゴム組成物が、脂肪族単量体単位と芳香族単量体単位とを含み、上記芳香族単量体単位のうち2以上の環状構造が結合した構造を有する単量体単位を所定の割合で含み、かつ、所定の重量平均分子量、軟化点等の特性を有する炭化水素樹脂を、ジエン系ゴムに対して所定量含むことで、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を得ることができる。
 ここで、上記炭化水素樹脂を用いることで、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を得ることができる理由については明確ではないが、以下のように推察される。すなわち、芳香族単量体単位として上記2以上の環状構造が結合した構造を有する単量体単位を所定の割合で含む炭化水素樹脂を用い、さらに、上記所定の特性を有するものであることにより、上記炭化水素樹脂は、重量平均分子量(Mw)が適度に低く、軟化点が適度に高いものとすることができる。このため、上記炭化水素樹脂は、ジエン系ゴムとの相溶性に優れたものとなり、例えば、ジエン系ゴムとの均一な混合等が容易となることから、得られるゴム組成物は加工性に優れたものとなり、また、得られたゴム組成物について、その架橋物の60℃での損失係数tanδを低く、また0℃での損失係数tanδを適度に高くすることができる。その結果、例えば、このようなゴム組成物をトレッドに使用した空気入りタイヤを製造した場合には、転がり抵抗及びウェットグリップ性能のバランスに優れた空気入りタイヤ等を形成可能となるのである。
 以上のことから、上記炭化水素樹脂をジエン系ゴムに対して所定量含むことで、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を得ることができるのである。
 本発明のゴム組成物は、ジエン系ゴムおよび炭化水素樹脂を含むものである。以下、本発明のゴム組成物に含まれる各成分について詳細に説明する。
A.炭化水素樹脂
 上記炭化水素樹脂は、脂肪族単量体単位と芳香族単量体単位とを含むものである。
1.芳香族単量体単位
 本発明における芳香族単量体単位は、2以上の環状構造が結合した構造を有する単量体単位を含むものである。
 2以上の環状構造が結合した構造を有する単量体単位を構成する単量体としては、通常、その分子構造中に脂肪族炭素-炭素不飽和結合を1つ以上と、2以上の環状構造が結合した構造と、を有するものが好適に用いられる。ここで、2以上の環状構造が結合した構造としては、2以上の環状構造のうち芳香族環を1つ以上含むものであればよく、芳香族環のみを含むものであっても、芳香族環および非芳香族性の環構造を含むものであってもよい。
 上記脂肪族炭素-炭素不飽和結合としては、ラジカル重合性を有するものであればよく、ビニル基を好ましく用いることができる。
 上記脂肪族炭素-炭素不飽和結合は、インデンの五員環に含まれるビニレン基のように、上記環状構造の一部として含まれるものであってもよく、1-ビニルナフタレンに含まれるビニル基のように、環状構造に対して結合するものであってもよい。本発明においては、なかでも、上記脂肪族炭素-炭素不飽和結合が、環状構造の一部として含まれるものであることが好ましい。これにより重合性、分子量および軟化点の制御性に優れたものとなるからである。なお、脂肪族炭素-炭素不飽和結合が、環状構造の一部として含まれるものである場合、その環状構造は非芳香族性の環構造である。
 上記脂肪族炭素-炭素不飽和結合が、環状構造の一部として含まれるものである場合、上記脂肪族炭素-炭素不飽和結合をその一部として含む環状構造の炭素数は、所望の特性を有する炭化水素樹脂を形成可能なものであればよく、例えば、4~8の範囲内とすることができるが、特に4~6の範囲内であることが好ましい。
 なお、2以上の環状構造が結合した構造を有する単量体がインデンである場合、上述のように脂肪族炭素-炭素不飽和結合は、インデンの五員環の一部として含まれ、上記脂肪族炭素-炭素不飽和結合をその一部として含む環状構造の炭素数は5つとなる。
 上記脂肪族炭素-炭素不飽和結合が、環状構造に対して結合するものである場合、上記脂肪族炭素-炭素不飽和結合は、1-ビニルナフタレンに含まれるビニル基のように、環状構造に対して直接結合するものであってもよく、アリルナフタレンに含まれるアリル基のように、スペーサを介して上記環状構造に結合するものであってもよい。
 上記スペーサとしては、2-プロペニル基(アリル基)、1-ブテニル基等のビニル基に結合する炭化水素基、アクリルロイル基、メタアクリロイル基等のビニル基に結合するカルボニル基等を挙げることができる。
 上記スペーサの炭素数については、所望の特性を有する炭化水素樹脂を形成可能なものであればよく、例えば、1~3の範囲内とすることができる。
 上記脂肪族炭素-炭素不飽和結合の、2以上の環状構造が結合した構造を有する単量体に含まれる数としては、通常、1つ以上であり、例えば、1~2の範囲内とすることができるが、1つであることが好ましい。
 なお、上記脂肪族炭素-炭素不飽和結合の数は、上記2以上の環状構造が結合した構造を有する単量体として2種類以上の単量体を含む場合には、それぞれの単量体について含まれる脂肪族炭素-炭素不飽和結合の数をいうものである。
 また、2以上の環状構造が結合した構造としては、ナフタレン構造、フルオレン構造、アントラセン構造、フェナントレン構造、ベンゾチオフェン構造、インデン等のように、環状構造同士が縮合環基を形成するもの、ビフェニル構造、ターフェニル構造等のように、環状構造同士が単結合で直結した基を形成するもの、または、環状構造同士が縮合環基を形成するものおよび環状構造同士が単結合で直結した基を形成するものの両者を含むものを挙げることができる。
 また、2以上の環状構造が結合した構造が芳香族環のみを含むものとしては、例えば、ナフタレン構造、ビフェニル構造、アントラセン構造、フェナントレン構造及びベンゾチオフェン構造等が挙げられ、芳香族環および非芳香族性の環構造を含むものとしては、例えば、フルオレン構造、インデン構造等が挙げられる。本発明においては、なかでも、上記2以上の環状構造が結合した構造が、芳香族環および非芳香族性の環構造を含むものであることが好ましい。上記2以上の環状構造が結合した構造が環状構造として芳香族環および非芳香族性の環構造を含むものであることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 上記環状構造は、ナフタレン構造、フルオレン構造、ビフェニル構造、アントラセン構造、フェナントレン構造等のように、炭素のみにより環状構造が形成されるもの以外に、ベンゾチオフェン構造等のように、酸素、窒素、硫黄等の炭素以外の原子を含む複素環を有するものであってもよい。
 また、上記環状構造は、置換基を有していてもよい。置換基の例としては、ハロゲン原子(F、Cl、Br、I)、ヒドロキシル基、カルボキシル基、シアノ基、アミノ基、ニトロ基、スルホ基、カルバモイル基、スルファモイル基、ウレイド基、アルキル基、アルケニル基、アルキニル基、脂肪族アシル基、脂肪族アシルオキシ基、アルコキシ基、アルコキシカルボニル基、アルコキシカルボニルアミノ基、アルキルチオ基、アルキルスルホニル基、脂肪族アミド基、脂肪族スルホンアミド基、脂肪族置換アミノ基、脂肪族置換カルバモイル基、脂肪族置換スルファモイル基、脂肪族置換ウレイド基などを代表例として挙げることができる。
 上記2以上の環状構造が結合した構造に含まれる上記環状構造の数としては、2以上であればよく、2~6の範囲内とすることができるが、2~3の範囲内であることが好ましい。
 なお、2つの環状構造が結合した構造を有する単量体としては、具体的には、1-ビニルナフタレン、4-ビニルビフェニル、インデン等を挙げることができる。また、3つの環状構造が結合した構造を有する単量体としては、具体的には、2,7-ジビニルフルオレン、9-ビニルアントラセン等を挙げることができる。
 本発明においては、上記2以上の環状構造が結合した構造を有する単量体が、ナフタレン化合物、フルオレン化合物、ビフェニル化合物、アントラセン化合物、フェナントレン化合物、インデン化合物及びベンゾチオフェン化合物であることが好ましく、なかでも、インデン化合物であることが好ましく、特に、インデンであることが好ましい。上記2以上の環状構造が結合した構造を有する単量体が上述の化合物であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 上記ナフタレン化合物としては、ナフタレン構造と、その分子構造中に脂肪族炭素-炭素不飽和結合を1つ以上有するものが挙げられ、例えば、1-ビニルナフタレン、2-ビニルナフタレン、アリルナフタレン、ブテニルナフタレン等を挙げることができる。
 上記フルオレン化合物としては、フルオレン構造と、その分子構造中に脂肪族炭素-炭素不飽和結合を1つ以上有するものが挙げられ、例えば、2,7-ジビニルフルオレン、2-ビニルフルオレン、アリルフルオレン、ブテニルフルオレン等を挙げることができる。
 上記ビフェニル化合物としては、ビフェニル構造と、その分子構造中に脂肪族炭素-炭素不飽和結合を1つ以上有するものが挙げられ、例えば、4-ビニルビフェニル、4-ビニル-p-ターフェニル等を挙げることができる。
 上記アントラセン化合物としては、アントラセン構造と、その分子構造中に脂肪族炭素-炭素不飽和結合を1つ以上有するものが挙げられ、例えば、9-ビニルアントラセン、2-ビニルアントラセン、9,10-ジビニルアントラセン、アリルアントラセン、ブテニルアントラセン等を挙げることができる。
 上記フェナントレン化合物としては、フェナントレン構造と、その分子構造中に脂肪族炭素-炭素不飽和結合を1つ以上有するものが挙げられ、例えば、9-ビニルフェナントレン、3-ビニルフェナントレン等を挙げることができる。
 上記インデン化合物としては、その分子構造中にインデン構造を有するものであればよく、例えば、インデン、メチルインデン、エチルインデン、プロピルインデン、ブチルインデン、t-ブチルインデン、sec-ブチルインデン、n-ペンチルインデン、2-メチル-ブチルインデン、3-メチル-ブチルインデン、n-ヘキシルインデン、2-メチル-ペンチルインデン、3-メチル-ペンチルインデン、4-メチル-ペンチルインデン等のアルキル置換インデン等を挙げることができる。
 上記ベンゾチオフェン化合物としては、ベンゾチオフェン構造と、その分子構造中に脂肪族炭素-炭素不飽和結合を1つ以上有するものが挙げられ、例えば、5-ビニルベンゾチオフェン、2-ビニルジベンゾチオフェン等を挙げることができる。
 上記2以上の環状構造が結合した構造を有する単量体は、1種類の単量体のみを含むものであってもよく、2種類以上の単量体を混合して含むものであってもよい。例えば、上記2以上の環状構造が結合した構造を有する単量体は、アントラセン化合物である9-ビニルアントラセンと、フェナントレン化合物である9-ビニルフェナントレンと、の混合物等とすることができる。
 上記2以上の環状構造が結合した構造を有する単量体単位の芳香族単量体単位中の含有量は、50質量%以上であればよく、55質量%~99.9質量%の範囲内であることが好ましく、なかでも58質量%~99.85質量%の範囲内であることが好ましく、特に60質量%~99.8質量%の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 本発明における芳香族単量体単位は、上記2以上の環状構造が結合した構造を有する単量体単位を含むものであるが、2以上の環状構造が結合した構造を有する単量体単位に加え、1つの環状構造のみを含む単量体単位、すなわち、環状構造として1つの芳香族環のみを含む単量体単位を含むものであってもよい。上記1つの環状構造のみを含む単量体単位を構成する単量体としては、例えば、スチレン、α-メチルスチレン、ビニルトルエン等が挙げられる。
 上記芳香族単量体単位の炭化水素樹脂中の含有量としては、炭化水素樹脂が、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるものであればよく、例えば、0.1質量%~50質量%の範囲内とすることができ、5質量%~45質量%の範囲内であることが好ましく、なかでも8質量%~43質量%の範囲内であることが好ましく、特に、10質量%~40質量%の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
2.脂肪族単量体単位
 本発明における脂肪族単量体単位としては、上記所定の特性を示し、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができる炭化水素樹脂を形成可能なものであればよい。このような脂肪族単量体単位としては、芳香族環を含まないものであればよく、例えば、1,3-ペンタジエン単量体単位、炭素数4~6の脂環式モノオレフィン単量体単位、炭素数4~8の非環式モノオレフィン単量体単位、脂環式ジオレフィン単量体単位等を好ましく含むことができる。例えば、脂肪族単量体単位として、炭化水素樹脂中に、1,3-ペンタジエン単量体単位10質量%~60質量%、炭素数4~6の脂環式モノオレフィン単量体単位1質量%~30質量%、炭素数4~8の非環式モノオレフィン単量体単位1質量%~50質量%および脂環式ジオレフィン単量体単位0質量%~10質量%を含むものとすることができる。
 1,3-ペンタジエン単量体単位の炭化水素樹脂中の含有量としては、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができる炭化水素樹脂を得ることができるものであればよく、例えば、10質量%~60質量%の範囲内とすることができ、15質量%~55質量%の範囲内であることが好ましく、なかでも20質量%~50質量%の範囲内であることが好ましく、特に、25質量%~48質量%の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 なお、1,3-ペンタジエンにおけるシス/トランス異性体比は任意の比でよく、特に
限定されない。
 炭素数4~6の脂環式モノオレフィンは、その分子構造中に脂肪族炭素-炭素不飽和結合を1つと非芳香族性の環構造とを有する炭素数が4~6の炭化水素化合物である。炭素数4~6の脂環式モノオレフィンの具体例としては、シクロブテン、シクロペンテン、シクロヘキセン、メチルシクロブテン、メチルシクロペンテンを挙げることができる。
 炭素数4~6の脂環式モノオレフィン単量体単位の炭化水素樹脂中の含有量としては、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができる炭化水素樹脂を得ることができるものであればよく、例えば、1質量%~30質量%の範囲内とすることができ、3質量%~28質量%の範囲内であることが好ましく、なかでも5質量%~26質量%の範囲内であることが好ましく、特に、7質量%~25質量%の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 なお、炭素数4~6の脂環式モノオレフィンにおいて、これに該当する各化合物の割合は任意の割合でよく、特に限定されないが、少なくともシクロペンテンが含まれることが好ましく、炭素数4~6の脂環式モノオレフィン中にシクロペンテンの占める割合が50質量%以上であることがより好ましい。
 炭素数4~8の非環式モノオレフィンは、その分子構造中に脂肪族炭素-炭素不飽和結合1つを有し、環構造を有さない炭素数が4~8の鎖状炭化水素化合物である。炭素数4~8の非環式モノオレフィンの具体例としては、1-ブテン、2-ブテン、イソブチレン(2-メチルプロペン)などのブテン類;1-ペンテン、2-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、2-メチル-2-ブテンなどのペンテン類;1-ヘキセン、2-ヘキセン、2-メチル-1-ペンテンなどのヘキセン類;1-ヘプテン、2-ヘプテン、2-メチル-1-ヘキセンなどのヘプテン類;1-オクテン、2-オクテン、2-メチル-1-ヘプテン、ジイソブチレン(2,4,4-トリメチル-1-ペンテン及び2,4,4-トリメチル-1-ペンテン)などのオクテン類を挙げることができる。
 炭素数4~8の非環式モノオレフィン単量体単位の炭化水素樹脂中の含有量としては、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができる炭化水素樹脂を得ることができるものであればよく、例えば、1質量%~50質量%の範囲内とすることができ、5質量%~45質量%の範囲内であることが好ましく、なかでも10質量%~42質量%の範囲内であることが好ましく、特に、15質量%~40質量%の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 なお、炭素数4~8の非環式モノオレフィンにおいて、これに該当する各化合物(異性体を含む)の割合は任意の割合でよく、特に限定されないが、少なくとも2-メチル-2-ブテン、イソブチレン及びジイソブチレンからなる群から選択される少なくとも一種が含まれることが好ましく、炭素数4~6の脂環式モノオレフィン中に2-メチル-2-ブテン、イソブチレン及びジイソブチレンの合計量が占める割合が50質量%以上であることがより好ましい。
 炭化水素樹脂は、脂環式ジオレフィンをその原料に含んでいてもよい。脂環式ジオレフィンは、その分子構造中に脂肪族炭素-炭素不飽和結合を2つ以上と非芳香族性の環構造とを有する炭化水素化合物である。脂環式ジオレフィンの具体例としては、シクロペンタジエン、ジシクロペンタジエンなどのシクロペンタジエンの多量体、メチルシクロペンタジエン、メチルシクロペンタジエンの多量体を挙げることができる。
 脂環式ジオレフィン単量体単位の炭化水素樹脂中の含有量としては、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができる炭化水素樹脂を得ることができるものであればよく、例えば、0質量%~10質量%の範囲内とすることができ、0質量%~7質量%の範囲内であることが好ましく、なかでも0質量%~5質量%の範囲内であることが好ましく、特に、0質量%~3質量%の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 上記脂肪族単量体単位は、1,3-ペンタジエン単量体単位、炭素数4~6の脂環式モノオレフィン単量体単位、炭素数4~8の非環式モノオレフィン単量体単位、脂環式ジオレフィン単量体単位以外に、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与える炭化水素樹脂を得ることができる範囲内で、その他の単量体単位を含んでいてもよい。このようなその他の単量体単位を構成するために用いられるその他の単量体は、前述した単量体以外で1,3-ペンタジエンなどと付加共重合され得る付加重合性を有する化合物であれば、特に限定されない。上記その他の単量体には、例えば、1,3-ブタジエン、1,2-ブタジエン、イソプレン、1,3-ヘキサジエン、1,4-ペンタジエンなどの1,3-ペンタジエン以外の炭素数4~6の不飽和炭化水素;シクロヘプテンなどの炭素数7以上の脂環式モノオレフィン;エチレン、プロピレン、ノネンなどの炭素数4~8以外の非環式モノオレフィン等が包含される。
 但し、炭化水素樹脂中の上記その他の単量体単位の炭化水素樹脂中の含有量としては、上記所定の特性を有する炭化水素樹脂を得ることができるものであればよく、具体的には、通常、0質量%~30質量%の範囲内であり、0質量%~25質量%の範囲内であることが好ましく、0質量%~20質量%の範囲内であることがより好ましい。上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
 上記脂肪族単量体単位の炭化水素樹脂中の含有量としては、炭化水素樹脂が、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるものであればよく、例えば、50質量%~99.9質量%の範囲内とすることができ、60質量%~90質量%の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、上記炭化水素樹脂は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を与えることができるからである。
3.炭化水素樹脂
 上記炭化水素樹脂の重量平均分子量(Mw)は、700~6000の範囲内であれば特に限定されるものではないが、なかでも、900~5000の範囲内であることが好ましく、特に1000~4000の範囲内であることがより好ましい。重量平均分子量(Mw)が上述の範囲内であることにより、炭化水素樹脂はジエン系ゴムとの相溶性に優れたものとすることができるからである。また、その結果、炭化水素樹脂は、ゴム組成物の架橋物について、60℃での損失係数tanδを低くすることが容易であり、転がり抵抗に優れたものとすることができるからである。また、重量平均分子量(Mw)が上述の範囲内であることにより、炭化水素樹脂は、0℃での損失係数tanδを高くすることが容易であり、転がり抵抗に優れたものとすることができるからである。
 上記炭化水素樹脂の数平均分子量(Mn)は、400~3000の範囲内とすることができ、なかでも、450~2500の範囲内であることが好ましく、特に500~2000の範囲内であることがより好ましい。数平均分子量(Mn)が上述の範囲内であることにより、炭化水素樹脂はジエン系ゴムとの相溶性に優れたものとすることができるからである。また、その結果、炭化水素樹脂は、ゴム組成物の架橋物について、60℃での損失係数tanδを低くすることが容易であり、転がり抵抗に優れたものとすることができるからである。
 上記炭化水素樹脂のZ平均分子量(Mz)は、1500~20000の範囲内とすることができ、なかでも、1800~15000の範囲内であることが好ましく、特に2000~10000の範囲内であることがより好ましい。Z平均分子量(Mz)が上述の範囲内であることにより、炭化水素樹脂はジエン系ゴムとの相溶性に優れたものとすることができるからである。また、その結果、炭化水素樹脂は、ゴム組成物の架橋物について、60℃での損失係数tanδを低くすることが容易であり、転がり抵抗に優れたものとすることができるからである。
 なお、本発明において、炭化水素樹脂の数平均分子量(Mn)、重量平均分子量(Mw)およびZ平均分子量(Mz)は、高速液体クロマトグラフィの測定による、ポリスチレン換算の値として求めるものとする。数平均分子量、重量平均分子量およびZ平均分子量の測定は、より具体的には、測定装置として、東ソー社製「HLC-8320GPC」を使用し、カラムは東ソー社製「TSKgel SuperMultiporeHZ」を3本連結したものを用い、テトラヒドロフランを溶媒として、40℃、1.0mL/minの流量で測定できる。
 上記炭化水素樹脂の数平均分子量に対する重量平均分子量の比(Mw/Mn)は、1.0~4.0の範囲内とすることができ、なかでも、1.1~3.5の範囲内であることが好ましく、特に1.2~3.0の範囲内であることがより好ましい。上記比が上述の範囲内であることにより、炭化水素樹脂はジエン系ゴムとの相溶性に優れたものとすることができるからである。また、その結果、炭化水素樹脂は、ゴム組成物の架橋物について、60℃での損失係数tanδを低くすることが容易であり、ウェットグリップ性能に優れたものとすることができるからである。
 上記炭化水素樹脂の重量平均分子量に対するZ平均分子量の比(Mz/Mw)は、1.0~4.0の範囲内とすることができ、なかでも、1.1~3.5の範囲内であることが好ましく、特に1.2~3.0の範囲内であることがより好ましい。上記比が上述の範囲内であることにより、炭化水素樹脂はジエン系ゴムとの相溶性に優れたものとすることができるからである。また、その結果、炭化水素樹脂は、ゴム組成物の架橋物について、60℃での損失係数tanδを低くすることが容易であり、ウェットグリップ性能に優れたものとすることができるからである。
 上記炭化水素樹脂の軟化点は、80℃~150℃の範囲内であれば特に限定されるものではないが、なかでも、85℃~145℃の範囲内であることが好ましく、特に90℃~140℃の範囲内であることがより好ましい。上記軟化点が上述の範囲内であることにより、炭化水素樹脂はジエン系ゴムとの相溶性に優れたものとすることができるからである。また、その結果、炭化水素樹脂は、ゴム組成物の架橋物について、60℃での損失係数tanδを低くすることが容易であり、転がり抵抗に優れたものとすることができるからである。また、軟化点が上述の範囲内であることにより、炭化水素樹脂は、0℃での損失係数tanδを高くすることが容易であり、ウェットグリップ性能に優れたものとすることができるからである。
 なお、本発明における軟化点は、例えば、炭化水素樹脂についてJIS K 6863に従い測定する値である。
 上記炭化水素樹脂の混合アニリン点(MMAP)は、25℃~100℃の範囲内とすることができ、なかでも、27℃~90℃の範囲内であることが好ましく、特に30℃~75℃の範囲内であることがより好ましい。上記混合アニリン点が上述の範囲内であることにより、炭化水素樹脂はジエン系ゴムとの相溶性に優れたものとすることができるからである。また、その結果、炭化水素樹脂は、ゴム組成物の架橋物について、60℃での損失係数tanδを低くすることが容易であり、転がり抵抗に優れたものとすることができるからである。また、混合アニリン点が上述の範囲内であることにより、炭化水素樹脂は、0℃での損失係数tanδを高くすることが容易であり、ウェットグリップ性能に優れたものとすることができるからである。
 なお、本発明における混合アニリン点は、アニリン、メチルシクロヘキサン及び上記炭化水素樹脂の混合液(体積比2:1:1)が均一な溶液として存在する最低温度として測定される温度であり、例えば、炭化水素樹脂についてJIS K 2256に準じ、ヘプタンに替えてメチルシクロヘキサンを用いて測定する値である。
 上記炭化水素樹脂の配合量は、ジエン系ゴム100質量部に対し、1質量部~200質量部であれば特に限定されるものではないが、ジエン系ゴム100質量部に対し、1質量部~70質量部の範囲内であることが好ましく、3質量部~35質量部の範囲内であることがより好ましい。上記配合量が上述の範囲内であることにより、ゴム組成物は、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたものとなるからである。
4.炭化水素樹脂の製造方法
 上記炭化水素樹脂の製造方法は、脂肪族単量体単位と芳香族単量体単位とを含む炭化水素樹脂を得ることができる方法であればよく、上記した脂肪族単量体単位および芳香族単量体単位を構成可能な単量体を有する重合性成分(単量体混合物A)を、好適には付加重合する方法を挙げることができる。
 例えば、フリーデルクラフツ型のカチオン重合触媒を用いた付加重合によって、炭化水素樹脂を得ることができる。炭化水素樹脂を製造するために好適に用いられる方法としては、次に述べる、ハロゲン化アルミニウム(A)と、3級炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B1)及び炭素-炭素不飽和結合に隣接する炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B2)からなる群より選ばれるハロゲン化炭化水素(B)とを組み合わせて、重合触媒とし、上述の脂肪族単量体および芳香族単量体を含む単量体混合物Aを重合する重合工程を有する方法を挙げることができる。
 また、上記単量体混合物Aに含まれる各単量体の添加量は、炭化水素樹脂における各単量体単位の含有量と同様とすることができる。したがって、脂肪族単量体単位として、1,3-ペンタジエン単量体単位10質量%~60質量%、炭素数4~6の脂環式モノオレフィン単量体単位1質量%~30質量%、炭素数4~8の非環式モノオレフィン単量体単位1質量%~50質量%および脂環式ジオレフィン単量体単位0質量%~10質量%を含み、芳香族単量体単位を0.1質量%~50質量%含む炭化水素樹脂を製造する場合、上記製造方法は、より具体的には、1,3-ペンタジエン単量体10質量%~60質量%、炭素数4~6の脂環式モノオレフィン単量体1質量%~30質量%、炭素数4~8の非環式モノオレフィン単量体1質量%~50質量%、脂環式ジオレフィン単量体0質量%~10質量%、及び2以上の環状構造が結合した構造を有する単量体の含有量が芳香族単量体中50質量%以上である上述の芳香族単量体0.1質量%~50質量%を含む単量体混合物Aを重合する重合工程を有するものとすることができる。
 ハロゲン化アルミニウム(A)の具体例としては、塩化アルミニウム(AlCl)、臭化アルミニウム(AlBr)などを挙げることができる。なかでも汎用性などの観点から、塩化アルミニウムが好適に用いられる。
 ハロゲン化アルミニウム(A)の使用量は、特に限定されないが、重合性成分(単量体混合物A)100質量部に対し、好ましくは0.05質量部~10質量部の範囲内、より好ましくは0.1質量部~5質量部の範囲内である。
 ハロゲン化炭化水素(B)を、ハロゲン化アルミニウム(A)と併用することにより、重合触媒の活性が極めて良好なものとなる。3級炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B1)の具体例としては、t-ブチルクロライド、t-ブチルブロマイド、2-クロロ-2-メチルブタン、トリフェニルメチルクロライドを挙げることができる。これらのなかでも、活性と取り扱いやすさとのバランスに優れる点で、t-ブチルクロライドが特に好適に用いられる。炭素-炭素不飽和結合に隣接する炭素原子にハロゲン原子が結合したハロゲン化炭化水素(B2)における不飽和結合としては、炭素-炭素二重結合および炭素-炭素三重結合が挙げられ、芳香族環などにおける炭素-炭素共役二重結合も含むものである。このような化合物の具体例としては、ベンジルクロライド、ベンジルブロマイド、(1-クロロエチル)ベンゼン、アリルクロライド、3-クロロ-1-プロピン、3-クロロ-1-ブテン、3-クロロ-1-ブチン、ケイ皮クロライドが挙げられる。これらのなかでも、活性と取り扱いやすさとのバランスに優れる点で、ベンジルクロライドが好適に用いられる。なお、ハロゲン化炭化水素(B)は、1種類で用いても、2種類以上を組み合わせて用いてもよい。
 ハロゲン化炭化水素(B)の使用量は、ハロゲン化アルミニウム(A)に対するモル比で、好ましくは0.05~50の範囲内、より好ましくは0.1~10の範囲内である。
 重合反応を行うに当たり、単量体混合物や重合触媒のそれぞれの成分を重合反応器に添加する順序は特に限定されず、任意の順で添加すればよいが、重合反応を良好に制御して、より重量平均分子量等を精度よく制御する観点からは、単量体混合物と重合触媒の成分の一部とを重合反応器に添加して、重合反応を開始した後に、重合触媒の残部を重合反応器に添加することが好ましい。
 炭化水素樹脂の製造に当たっては、脂肪族単量体単位として脂環式モノオレフィン単量体単位を含む場合には、まず、ハロゲン化アルミニウム(A)と脂環式モノオレフィンとを混合することが好ましい。ハロゲン化アルミニウム(A)と脂環式モノオレフィンとを接触処理することによって、ゲルの生成を防止でき、重量平均分子量等を精度よく制御された炭化水素樹脂が得られるためである。
 ハロゲン化アルミニウム(A)と混合する脂環式モノオレフィンの量は、ハロゲン化アルミニウム(A)の量の少なくとも5倍(質量比)が好ましい。脂環式モノオレフィンの量が過少であるとゲル生成防止の効果が不十分となるおそれがある。脂環式モノオレフィンとハロゲン化アルミニウム(A)との質量比は好ましくは5:1~120:1、より好ましくは10:1~100:1、さらに好ましくは15:1~80:1である。この割合より脂環式モノオレフィンを過度に多く使用すると触媒活性が低下し、重合が十分に進行しなくなるおそれがある。
 ハロゲン化アルミニウム(A)と脂環式モノオレフィンとを混合するに際し、投入順序は特に制限されず、脂環式モノオレフィン中にハロゲン化アルミニウム(A)を投入してもよいし、逆に、ハロゲン化アルミニウム(A)中に脂環式モノオレフィンを投入してもよい。混合は通常、発熱をともなうので、適当な希釈剤を用いることもできる。希釈剤としては後述する溶媒を用いることができる。
 脂肪族単量体単位として、脂環式モノオレフィン単量体単位以外に1,3-ペンタジエン単量体単位、非環式モノオレフィン単量体単位等を含む場合には、上記のようにして、ハロゲン化アルミニウム(A)と脂環式モノオレフィンとの混合物Mを調製した後、少なくとも1,3-ペンタジエンおよび非環式モノオレフィンを含む混合物aと、混合物Mとを混合することが好ましい。上記混合物aには脂環式ジオレフィンが含まれていてもよい。
 混合物aの調製方法は特に限定されず、それぞれ純粋な化合物を混合して目的の混合物aを得てもよいし、例えばナフサ分解物の留分などに由来する、目的の単量体を含む混合物を用いて、目的の混合物aを得てもよい。例えば、混合物aに1,3-ペンタジエンなどを配合するためには、イソプレンおよびシクロペンタジエン(その多量体を含む)を抽出した後のC5留分を好適に用いることができる。
 混合物aと混合物Mと共に、ハロゲン化炭化水素(B)をさらに混合することが好ましい。これら3者の投入順序は特に制限されない。
 重合反応をより良好に制御する観点からは、重合反応系に溶媒を添加して、重合反応を行うことが好ましい。溶媒の種類は、重合反応を阻害しないものであれば特に制限はないが、飽和脂肪族炭化水素または芳香族炭化水素が好適である。溶媒として用いられる飽和脂肪族炭化水素としては、例えば、n-ペンタン、n-ヘキサン、2-メチルペンタン、3-メチルペンタン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、3-エチルペンタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、3,3-ジメチルペンタン、2,2,3-トリメチルブタン、2,2,4-トリメチルペンタンなどの炭素数5~10の鎖状飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの炭素数5~10の範囲内の環状飽和脂肪族炭化水素が挙げられる。溶媒として用いられる芳香族炭化水素としては、例えば、ベンゼン、トルエン、キシレンなどの炭素数6~10の範囲内の芳香族炭化水素が挙げられる。溶媒は1種を単独で使用してもよいし、2種以上の混合溶媒として用いてもよい。溶媒の使用量は、特に限定されないが、重合性成分(単量体混合物A)100質量部に対して、10質量部~1,000質量部の範囲内であることが好ましく、50質量部~500質量部の範囲内であることがより好ましい。なお、例えば、C5留分に由来するシクロペンタンとシクロペンテンとの混合物のような、付加重合性成分と非付加重合性成分との混合物を重合反応系に添加して、付加重合性成分は単量体混合物の成分として用い、非付加重合性成分は溶媒として用いるようにすることもできる。
 重合反応を行う際の重合温度は、特に限定されないが、-20℃~100℃の範囲内であることが好ましく、0℃~75℃の範囲内であることが好ましい。重合温度が低すぎると重合活性が低下して生産性が劣る可能性があり、重合温度が高すぎると得られる炭化水素樹脂の重量平均分子量等の制御性に劣るおそれがある。重合反応を行う際の圧力は、大気圧下でも加圧下でもよい。重合反応時間は、適宜選択できるが、通常10分間~12時間、好ましくは30分間~6時間の範囲で選択される。
 重合反応は、所望の重合転化率が得られた時点で、メタノール、水酸化ナトリウム水溶液、アンモニア水溶液などの重合停止剤を重合反応系に添加することにより停止することができる。
 上記炭化水素樹脂の製造方法は、上記重合工程を少なくとも有するものであるが、必要に応じて、その他の工程を有するものであってもよい。上記その他の工程としては、例えば、重合工程後に、重合工程において重合停止剤を添加して、重合触媒を不活性化した際に生成する、溶媒に不溶な触媒残渣を濾過などにより除去する触媒残渣除去工程、重合工程による重合反応停止後、未反応の単量体と溶媒を除去し、さらに水蒸気蒸留などにより低分子量のオリゴマー成分を除去し、冷却することにより、固体状の樹脂を得る回収工程等を有することができる。
B.ジエン系ゴム
 上記ジエン系ゴムとしては、ゴム組成物に上記炭化水素樹脂と共に配合することができる任意のジエン系ゴムを用いることができる。このようなジエン系ゴムとしては、例えば、特開2015-189873号公報に記載のジエン系ゴムを用いることができる。上記ジエン系ゴムは、より具体的には、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、アクリロニトリル-ブタジエン共重合体ゴム(NBR)、エチレン-プロピレン-ジエンターポリマー(EPDM)等を挙げることができ、なかでも、スチレン-ブタジエン共重合体ゴム、ブタジエンゴム等であることが好ましい。上記ジエン系ゴムであることにより、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を得ることができるからである。上記ジエン系ゴムは、少なくとも1種を含むものであればよく、1種類のみを含むものであってもよく、2種類以上を混合して用いてもよい。
 また、上記ジエン系ゴムは、その分子量やミクロ構造は特に制限されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基等で末端変性されていても、エポキシ化されていてもよい。上記ジエン系ゴムは、水素添加されたものであってもよいが、水素添加していないものであることが好ましい。
C.その他の成分
 本発明のゴム組成物は、ジエン系ゴムおよび炭化水素樹脂を含むものであるが、必要に応じて、その他の成分を含むものであってもよい。上記その他の成分としては、例えば、シランカップリング剤、架橋剤、架橋促進剤、架橋活性化剤、老化防止剤、活性剤、プロセス油、可塑剤、滑剤、粘着付与剤などの配合剤をそれぞれ必要量配合できる。なお、このようなその他の成分およびその含有量としては、例えば、特開2016-30795号公報に記載の内容と同様とすることができる。
 上記その他の成分は、フィラーを含むことができる。上記フィラーとしては、ゴム組成物に一般的に使用されるものを用いることができ、例えば、カーボンブラック、クレー、珪藻土、シリカ、タルク、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、金属酸化物、マイカ、水酸化アルミニウム、各種の金属粉、木粉、ガラス粉、セラミックス粉などの他、ガラスバルーン、シリカバルーンなどの無機中空フィラー;ポリスチレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体などからなる有機中空フィラー等を挙げることができる。これらのフィラーのうち、例えば、シリカ、カーボンブラック等については、特開2016-30795号公報に記載のものを用いることができる。
 本発明においては、なかでも、上記フィラーが、シリカ、カーボンブラックであることが好ましく、特に、シリカであることが好ましい。上記フィラーであることにより、ゴム組成物は、ウェットグリップ性に優れたものとなるからである。
 また、フィラーは、少なくとも1種を含むものであればよく、1種類のみを含むものであってもよく、2種類以上を混合して用いてもよい。例えば、上記フィラーは、シリカおよびカーボンブラックを混合して用いることができる。
 上記フィラーの含有量としては、加工性に優れ、かつ、転がり抵抗及びウェットグリップ性能のバランスに優れたゴム組成物を得ることができるものであればよい。上記含有量は、例えば、ジエン系ゴム100質量部に対する割合で、10質量部~200質量部の範囲内とすることができ、なかでも30質量部~150質量部の範囲内であることが好ましく、特に、50質量部~70質量部の範囲内であることが好ましい。上記含有量が上述の範囲内であることにより、ゴム組成物は、加工性およびウェットグリップ性に優れたものとなるからである。
D.ゴム組成物
 本発明のゴム組成物の製造方法は、常法に従って各成分を混練すればよく、例えば、架橋剤や架橋促進剤などの熱に不安定な成分を除く成分とジエン系ゴムとを混練後、その混練物に架橋剤や架橋促進剤などの熱に不安定な成分を混合して目的の組成物を得ることができる。熱に不安定な成分を除く成分とジエン系ゴムとの混練温度は、好ましくは80℃~200℃の範囲内、より好ましくは120℃~180℃の範囲内であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混合は、通常100℃以下、好ましくは80℃以下まで冷却した後に行われる。
 本発明のゴム組成物をゴム架橋物とする架橋方法としては、公知の架橋方法を用いることができ、例えば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、架橋物として形状を固定化する方法を挙げることができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行うこともできる。成形温度は、通常、10℃~200℃の範囲内、好ましくは25℃~120℃の範囲内である。架橋温度は、通常、100℃~200℃の範囲内、好ましくは130℃~190℃の範囲内であり、架橋時間は、通常、1分~24時間の範囲内、好ましくは2分~12時間の範囲内、特に好ましくは3分~6時間の範囲内である。
 また、ゴム架橋物の形状、大きさなどによっては、表面が架橋していても内部まで十分に架橋していない場合があるので、上記架橋方法は、さらに加熱して二次架橋を行ってもよい。
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱などのゴム組成物の架橋に用いられる一般的な方法を適宜選択すればよい。
 本発明のゴム組成物は、転がり抵抗及びウェットグリップ性能のバランスに優れるものである。そして、本発明のゴム組成物は、このような特性を活かし、例えば、タイヤの、トレッド(キャップトレッド、ベーストレッド)、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料に用いることが好ましく、なかでも、オールシーズンタイヤ、高性能タイヤ、およびスタッドレスタイヤなどの各種タイヤにおいて、トレッド、カーカス、サイドウォール、およびビード部などのタイヤ各部位に好適に用いることができ、特に低発熱性に優れるので、低燃費タイヤのトレッド用として、特に好適に用いることができ、なかでも特に、キャップトレッドに用いることが好ましい。
II.空気入りタイヤ
 次に、本発明の空気入りタイヤについて説明する。本発明の空気入りタイヤは、上述のゴム組成物をトレッドに使用したことを特徴とするものである。
 上記トレッドは、上述のゴム組成物を使用したもの、すなわち、上記ゴム組成物を用いて形成されたものであり、通常、上記ゴム組成物の架橋物を含むものである。
 このようなトレッドの形成に用いられるゴム組成物及びその架橋物については、上記「I.ゴム組成物」の項に記載の内容と同様とすることができるので、ここでの説明は省略する。
 上記空気入りタイヤは、そのトレッドが上記ゴム組成物を用いて形成されたものであればよく、他の部位も上記ゴム組成物を用いて形成されたものであってもよい。
 上記ゴム組成物を用いて形成されるトレッドは、トレッドの一部であってもよくトレッドの全体であってもよいが、少なくともキャップトレッドを含むことが好ましい。
 また、本発明の空気入りタイヤの製造方法としては、上記組成物を用いて形成されたトレッドを有する空気入りタイヤを製造できる方法であればよく、公知の空気入りタイヤの製造方法を用いることができる。
 本発明は、上記実施形態に限定されるものではない。上記実施形態は、例示であり、本発明の特許請求の範囲に記載された技術的思想と実質的に同一な構成を有し、同様な作用効果を奏するものは、いかなるものであっても本発明の技術的範囲に包含される。
 以下に、実施例および比較例を挙げて、本発明についてより具体的に説明する。なお、各例中の部および%は、特に断りのない限り、質量基準である。
 各種の測定については、以下の方法に従って行った。
〔数平均分子量、重量平均分子量、Z平均分子量および分子量分布〕
 試料となる炭化水素樹脂について、ゲル・パーミエーション・クロマトグラフィー分析し、標準ポリスチレン換算値の数平均分子量(Mn)、重量平均分子量(Mw)およびZ平均分子量(Mz)を求め、分子量分布はMw/Mnの比およびMz/Mwの比で示した。なお、ゲル・パーミエーション・クロマトグラフィー分析は、測定装置として、東ソー社製「HLC-8320GPC」を使用し、カラムは東ソー社製「TSKgel SuperMultiporeHZ」を3本連結したものを用い、テトラヒドロフランを溶媒として、40℃、1.0mL/minの流量で測定した。
〔軟化点(℃)〕
 試料となる炭化水素樹脂について、JIS K 6863に従い測定した。
〔混合アニリン点(℃)〕
 試料となる炭化水素樹脂について、JIS K 2256に準じ、ヘプタンに替えてメチルシクロヘキサンを用いて測定した。
〔ムーニー粘度(ML1+4)〕
 試料となるゴム組成物について、JIS K 6300-1:2001に従い、以下の条件で測定した。この特性については、基準サンプル(後述の比較例1)を100とする指数で示した。
・試験温度:100℃
・ロータの種類:L形
・使用試験機:(株)島津製作所製島津ムーニービスコメーターSMV-300J
〔引張強さ(MPa)および伸び(%)〕
 試料となるゴム架橋物の試験片について、JIS K 6251:2010に従い、以下の条件で引張強さ(tensile stress(MPa))および伸び(elongation(%))を測定した。これらの特性については、基準サンプル(後述の比較例1)を100とする指数で示した。
・試験片作製方法:プレス加硫によりシート作製後、打抜き加工
・試験片形状:ダンベル状3号形
・試験片採取方向:列理に対し平行方向
・試験片数:3
・測定温度:23℃
・試験速度:500mm/min
・使用試験機:ALPHA TECHNOLOGIES社製TENSOMETER 10k
・試験機容量:ロードセル式 1kN
〔損失正接tanδ〕
 試料となるゴム架橋物の試験片について、JIS K 7244-4に従い、以下の測定条件で、動的歪み0.5%、10Hzの条件で、0℃および60℃での損失正接tanδを測定した。この特性については、基準サンプル(後述の比較例1)を100とする指数で示した。なお、0℃での損失正接tanδが高いほど、ウェットグリップ性能に優れ、60℃での損失正接tanδが低いほど、転がり抵抗に優れる。
測定項目:動的貯蔵弾性率E’
    :動的損失弾性率E’’
    :損失正接tanδ
・試料調製方法:シートより打抜き加工
・試験片形状:長さ50mm×幅2mm×厚さ2mm
・試験片数:1
・クランプ間距離:20mm
〔製造例1〕
 重合反応器にシクロペンタン56.1部及びシクロペンテン15.5部の混合物を重合反応器に仕込み、70℃に昇温した後、塩化アルミニウム0.75部を添加した(混合物M)。引き続き、1,3-ペンタジエン46.7部、イソブチレン18.4部、ジイソブチレン0.1部、ジシクロペンタジエン0.1部、C4-C6不飽和炭化水素0.2部、C4-C6飽和炭化水素7.2部および芳香族モノオレフィン19.0部からなる混合物aを、60分間に亘り温度(70℃)を維持して、前記混合物Mを含む重合反応器に連続的に添加しながら重合を行った。その後、水酸化ナトリウム水溶液を重合反応器に添加して、重合反応を停止した。なお、重合反応時の重合反応器中の成分の種類及び量を表1にまとめて示した。重合停止により生成した沈殿物をろ過により除去した後、得られた重合体溶液を蒸留釜に仕込み、窒素雰囲気下で加熱し、重合溶媒と未反応単量体を除去した。次いで、240℃以上で、飽和水蒸気を吹き込みながら、低分子量のオリゴマー成分を留去し、製造例1の炭化水素樹脂を得た。得られた製造例1の炭化水素樹脂については、数平均分子量、重量平均分子量、Z平均分子量、分子量分布、軟化点及び混合アニリン点を測定した。これらの測定結果は、下記表1にまとめて示した。
 なお、混合物aに含まれる芳香族モノオレフィンは、芳香族単量体として含まれるものである。また、芳香族モノオレフィンとしては、スチレン0.95部(芳香族単量体中5.0質量%)および1-ビニルナフタレン18.05部(芳香族単量体中95.0質量%)を用いた。
〔製造例2~6〕
 重合反応器に添加する成分の種類及び量を下記表1に示すとおりにそれぞれ変更したこと以外は製造例1と同様にして炭化水素樹脂を得た。得られた製造例2~6の炭化水素樹脂についても、製造例1の炭化水素樹脂と同様に、数平均分子量、重量平均分子量、Z平均分子量、分子量分布、軟化点及び混合アニリン点を測定した。これらの測定結果は、下記表1にまとめて示した。
 なお、製造例2~6では、2以上の環状構造が結合した構造を有する単量体以外の芳香族単量体として、製造例1と同様に、スチレンを用いるものである。また、製造例4では、芳香族単量体を含まないものである。
Figure JPOXMLDOC01-appb-T000001
〔実施例1〕
 バンバリー型ミキサー中で、油展された乳化重合スチレンブタジエンゴム(SBR)(商品名「Nipol1739」、日本ゼオン社製、結合スチレン量:40%、ブタジエン単位部分のビニル結合含有量:13.5モル%、重量平均分子量:690,000、分子量分布(Mw/Mn):3.98、ガラス転移温度(Tg):-35℃、ゴム成分100部に対して37.5部の伸展油を含有)96.3部(ゴム成分の含有量:70部、伸展油の含有量:26.3部)と、溶液重合ブタジエンゴム(BR)(商品名「NipolBR1220」、日本ゼオン社製、ブタジエン単位部分のビニル結合含有量:2モル%、重量平均分子量:490,000、分子量分布(Mw/Mn):2.52、ムーニー粘度(ML1+4,100℃):44、ガラス転移温度(Tg):-110℃)30.0部と、を30秒素練りし、次いでシリカ(ローディア社製、商品名「Zeosil1165MP」)46.6部、カーボンブラック(キャボットジャパン(株)社製、商品名「N339」)5.0部、シランカップリング剤:ビス[3-(トリエトキシシリル)プロピル]テトラスルフィド(デグッサ社製、商品名「Si69」)6.0部および製造例1で得た炭化水素樹脂10.0部を添加して、90秒混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)23.4部、酸化亜鉛3.0部、ステアリン酸2.0部および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興社製、商品名「ノクラック6C」)2.0部を添加し、更に90秒間混練し、次いで、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)5.0部を投入した。その後、90℃を開始温度として混練し、145℃~155℃で60秒間以上混練(一次練り)した後、ミキサーから混練物を排出させた。
 得られた混練物を、室温まで冷却した後、再度バンバリー型ミキサー中で、90℃を開始温度として2分間混練(二次練り)した後、ミキサーから混練物を排出させた。混錬終了時の混練物の温度は145℃であった。
 次いで、50℃の2本のロールで、得られた混練物に、硫黄1.7部、加硫促進剤:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS 商品名「ノクセラーCZ-G」、大内新興化学工業社製)1.8部、およびジフェニルグアニジン(DPG 商品名「ノクセラーD」、大内新興化学工業社製)1.7部を加えてこれらを混練(加硫剤混練り)した後、シート状のゴム組成物を取り出した。
 なお、一次練り、二次練りおよび加硫剤混練りの混練条件は、以下に示す条件とした。
(一次練りおよび二次練りの混練条件)
・試験機:(株)東洋精機製作所製ラボプラストミル バンバリー型ミキサーB-600
・充填率:70~75vol%
・ローター回転数:50rpm
・試験開始設定温度:90℃
(加硫剤混練りの混練条件)
・試験機:池田機械工業(株)製電気加熱式高温ロール機
・ロールサイズ:6φ×16
・前ロール回転数:24rpm
・前後ロール回転比:1:1.22
・ロール温度:50℃±5℃
・切り返し回数:左右2回ずつ
・丸め通し幅:ロール間隔約0.8mm
・丸め通し回数:5回
〔実施例2~3および比較例1~3〕
 下記表2に示すように、製造例1で得た炭化水素樹脂の代わりに製造例2~6で得た炭化水素樹脂を用いた以外は、実施例1と同様にしてゴム組成物を得た。
〔評価〕
 実施例および比較例で得られたゴム組成物を、プレス圧力約8MPa、プレス温度160℃で40分間プレス架橋し、その後さらに23℃の恒温室で一晩熟成した後、150mm×150mm×厚さ2mmのゴム架橋物の試験片を作製した。
 実施例および比較例で得られたゴム組成物およびゴム架橋物について、ゴム組成物のムーニー粘度、ゴム架橋物の引張強さ(MPa)、伸び(%)および損失正接tanδを測定した。結果を下記表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表1および表2から、実施例では、0℃での損失正接tanδが高く、60℃での損失正接tanδが低いものとなることが確認できた。この結果から、転がり抵抗およびウェットグリップ性能の両者に優れたものとなることが確認できた。
 また、ジエン系ゴムおよび炭化水素樹脂を含む場合に、転がり抵抗およびウェットグリップ性能の両者に優れたものとなることで、ゴム組成物は、両者が相溶性良く混合し加工性に優れたものとなることが確認できた。また、上記ゴム組成物は、シリカ等のフィラーを含む場合でも、フィラーの分散性が良好であり、加工性に優れたものとなることが確認できた。
 すなわち、表1および表2から、2以上の環状構造が結合した構造を有する単量体単位を所定の割合で含み、かつ、所定の重量平均分子量(Mw)および軟化点等の特性を有するもの、特に例えば、重量平均分子量(Mw)及び重量平均分子量と数平均分子量(Mn)との比(Mw/Mn)が適度に低く、軟化点が適度に高い炭化水素樹脂を、ジエン系ゴムに対して所定量含むことで、ゴム組成物は、加工性に優れ、かつ、転がり抵抗およびウェットグリップ性能の両者に優れるものとなることが確認できた。

Claims (5)

  1.  ジエン系ゴム100質量部に対し、
     炭化水素樹脂1質量部~200質量部を配合してなるゴム組成物であり、
     前記炭化水素樹脂は、
     脂肪族単量体単位と芳香族単量体単位とを含み、
     前記芳香族単量体単位のうち2以上の環状構造が結合した構造を有する単量体単位の前記芳香族単量体単位中の含有量が50質量%以上であり、
     重量平均分子量(Mw)が700~6000の範囲内であり、かつ軟化点が80℃~150℃の範囲内であることを特徴とするゴム組成物。
  2.  前記炭化水素樹脂が、
     1,3-ペンタジエン単量体単位10質量%~60質量%、
     炭素数4~6の脂環式モノオレフィン単量体単位1質量%~30質量%、
     炭素数4~8の非環式モノオレフィン単量体単位1質量%~50質量%、
     脂環式ジオレフィン単量体単位0質量%~10質量%、及び
     前記芳香族単量体単位0.1質量%~50質量%を含み、
     数平均分子量(Mn)が400~3000の範囲内であり、
     Z平均分子量(Mz)が1500~20000の範囲内であり、
     数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲内であり、
     重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~4.0の範囲内であることを特徴とする請求項1に記載のゴム組成物。
  3.  前記2以上の環状構造が結合した構造を有する単量体が、ナフタレン化合物、フルオレン化合物、ビフェニル化合物、アントラセン化合物、フェナントレン化合物、インデン化合物及びベンゾチオフェン化合物からなる群から選択される少なくとも1種であることを特徴とする請求項1または請求項2に記載のゴム組成物。
  4.  前記炭化水素樹脂が、アニリン、メチルシクロヘキサン及び前記炭化水素樹脂の混合液(体積比2:1:1)が均一な溶液として存在する最低温度で測定される混合アニリン点の値が25℃~100℃の範囲内であることを特徴とする請求項1から請求項3までのいずれかの請求項に記載のゴム組成物。
  5.  請求項1から請求項4までのいずれかの請求項に記載のゴム組成物をトレッドに使用したことを特徴とする空気入りタイヤ。
PCT/JP2017/042901 2016-12-01 2017-11-29 ゴム組成物および空気入りタイヤ WO2018101360A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018554210A JP7081494B2 (ja) 2016-12-01 2017-11-29 ゴム組成物および空気入りタイヤ

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016234053 2016-12-01
JP2016-234053 2016-12-01

Publications (1)

Publication Number Publication Date
WO2018101360A1 true WO2018101360A1 (ja) 2018-06-07

Family

ID=62241602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/042901 WO2018101360A1 (ja) 2016-12-01 2017-11-29 ゴム組成物および空気入りタイヤ

Country Status (3)

Country Link
JP (1) JP7081494B2 (ja)
TW (1) TW201825577A (ja)
WO (1) WO2018101360A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090665A1 (ja) 2018-10-30 2020-05-07 日本ゼオン株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
WO2022225027A1 (ja) * 2021-04-21 2022-10-27 日本ゼオン株式会社 ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649282A (ja) * 1992-07-30 1994-02-22 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2009019154A (ja) * 2007-07-13 2009-01-29 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物
WO2013115010A1 (ja) * 2012-02-01 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013132905A1 (ja) * 2012-03-06 2013-09-12 住友ゴム工業株式会社 水添分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
US20140044918A1 (en) * 2012-08-09 2014-02-13 Guangdong Shengyi Sci.Tech Co., Ltd Polyphenylene ether resin composition, and a prepreg and a copper clad laminate made therefrom
JP2014088544A (ja) * 2012-10-04 2014-05-15 Sumitomo Rubber Ind Ltd 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
JP2014224196A (ja) * 2013-05-16 2014-12-04 住友ゴム工業株式会社 分枝共役ジエン共重合体および水添分枝共役ジエン共重合体、ゴム組成物、並びに空気入りタイヤ
JP2015007194A (ja) * 2013-06-25 2015-01-15 住友ゴム工業株式会社 タイヤ用ゴム組成物およびタイヤ
JP2015086315A (ja) * 2013-10-31 2015-05-07 住友ゴム工業株式会社 ゴム組成物および空気入りタイヤ
JP2016512183A (ja) * 2013-03-05 2016-04-25 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン タイヤ用の多層ラミネート

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3375923D1 (en) * 1982-02-15 1988-04-14 Exxon Research Engineering Co Improvement in or relating to petroleum resins
US4558107A (en) * 1982-06-11 1985-12-10 Exxon Research & Engineering Co. Aromatic high softening point petroleum resins and process for its preparation
JP3464504B2 (ja) * 1993-07-23 2003-11-10 新日本石油化学株式会社 印刷インキ用石油樹脂組成物およびその製造法
JP4765141B2 (ja) * 2000-05-19 2011-09-07 東ソー株式会社 芳香族系炭化水素樹脂及びそれよりなるホットメルト接着用芳香族系炭化水素樹脂組成物
JP2006206850A (ja) * 2005-01-31 2006-08-10 Nippon Zeon Co Ltd 変性石油樹脂及びそれを用いた粘着剤組成物
JP2008274120A (ja) * 2007-04-27 2008-11-13 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたタイヤ
JP2008274121A (ja) * 2007-04-27 2008-11-13 Sumitomo Rubber Ind Ltd ゴム組成物およびそれを用いたタイヤ
US8697793B2 (en) * 2010-03-19 2014-04-15 The Yokohama Rubber Co., Ltd. Rubber composition for use in tires
JP2012251118A (ja) * 2011-06-07 2012-12-20 Jsr Corp 共役ジエン系エラストマーおよびその製造方法並びにゴム組成物、ゴム弾性体およびタイヤ
CN102757530B (zh) * 2012-06-27 2014-01-29 宁波职业技术学院 一种浅色冷聚碳九石油树脂的制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0649282A (ja) * 1992-07-30 1994-02-22 Kanegafuchi Chem Ind Co Ltd 熱可塑性樹脂組成物
JP2009019154A (ja) * 2007-07-13 2009-01-29 Sumitomo Rubber Ind Ltd タイヤ用ゴム組成物
WO2013115010A1 (ja) * 2012-02-01 2013-08-08 住友ゴム工業株式会社 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
WO2013132905A1 (ja) * 2012-03-06 2013-09-12 住友ゴム工業株式会社 水添分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
US20140044918A1 (en) * 2012-08-09 2014-02-13 Guangdong Shengyi Sci.Tech Co., Ltd Polyphenylene ether resin composition, and a prepreg and a copper clad laminate made therefrom
JP2014088544A (ja) * 2012-10-04 2014-05-15 Sumitomo Rubber Ind Ltd 分枝共役ジエン共重合体、ゴム組成物および空気入りタイヤ
JP2016512183A (ja) * 2013-03-05 2016-04-25 カンパニー ジェネラレ デ エスタブリシュメンツ ミシュラン タイヤ用の多層ラミネート
JP2014224196A (ja) * 2013-05-16 2014-12-04 住友ゴム工業株式会社 分枝共役ジエン共重合体および水添分枝共役ジエン共重合体、ゴム組成物、並びに空気入りタイヤ
JP2015007194A (ja) * 2013-06-25 2015-01-15 住友ゴム工業株式会社 タイヤ用ゴム組成物およびタイヤ
JP2015086315A (ja) * 2013-10-31 2015-05-07 住友ゴム工業株式会社 ゴム組成物および空気入りタイヤ

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090665A1 (ja) 2018-10-30 2020-05-07 日本ゼオン株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
WO2022225027A1 (ja) * 2021-04-21 2022-10-27 日本ゼオン株式会社 ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ

Also Published As

Publication number Publication date
JP7081494B2 (ja) 2022-06-07
JPWO2018101360A1 (ja) 2019-10-24
TW201825577A (zh) 2018-07-16

Similar Documents

Publication Publication Date Title
JP7081495B2 (ja) ゴム組成物および空気入りタイヤ
JP6729085B2 (ja) 炭化水素樹脂およびタイヤ用エラストマー組成物
JP7255137B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP6954305B2 (ja) ゴム組成物および空気入りタイヤ
JP7081494B2 (ja) ゴム組成物および空気入りタイヤ
JP6780325B2 (ja) 変性炭化水素樹脂およびタイヤ用エラストマー組成物
JP7255136B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP7081496B2 (ja) ゴム組成物および空気入りタイヤ
JP7452431B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP7293892B2 (ja) ゴム組成物
JP6828737B2 (ja) シラン変性炭化水素樹脂およびタイヤ用エラストマー組成物
JP6954304B2 (ja) ゴム組成物および空気入りタイヤ
JP6954303B2 (ja) ゴム組成物および空気入りタイヤ
WO2021079844A1 (ja) ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ
EP4328264A1 (en) Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition
JPS61197645A (ja) タイヤトレツド用ゴム組成物
JP2024067610A (ja) ゴム組成物
JP2022059837A (ja) スタッドレスタイヤ用ゴム組成物およびそれを用いたスタッドレスタイヤ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17877122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018554210

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17877122

Country of ref document: EP

Kind code of ref document: A1