WO2022225027A1 - ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ - Google Patents

ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ Download PDF

Info

Publication number
WO2022225027A1
WO2022225027A1 PCT/JP2022/018478 JP2022018478W WO2022225027A1 WO 2022225027 A1 WO2022225027 A1 WO 2022225027A1 JP 2022018478 W JP2022018478 W JP 2022018478W WO 2022225027 A1 WO2022225027 A1 WO 2022225027A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular weight
rubber
average molecular
mass
rubber composition
Prior art date
Application number
PCT/JP2022/018478
Other languages
English (en)
French (fr)
Inventor
淳 野澤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Priority to CN202280028666.0A priority Critical patent/CN117157352A/zh
Priority to JP2023515522A priority patent/JPWO2022225027A1/ja
Priority to EP22791798.6A priority patent/EP4328264A1/en
Priority to US18/554,992 priority patent/US20240191066A1/en
Publication of WO2022225027A1 publication Critical patent/WO2022225027A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • B60C1/0016Compositions of the tread
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C11/00Tyre tread bands; Tread patterns; Anti-skid inserts
    • B60C11/0008Tyre tread bands; Tread patterns; Anti-skid inserts characterised by the tread rubber
    • B60C2011/0016Physical properties or dimensions
    • B60C2011/0025Modulus or tan delta
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2312/00Crosslinking
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Definitions

  • the present invention relates to a rubber composition, and more particularly to a rubber composition capable of providing a crosslinked rubber having an excellent balance of rolling resistance, wet grip performance and low temperature performance.
  • a crosslinked product of a rubber composition containing silica as a filler in a rubber component has a smaller rolling resistance when a tire is constructed than a crosslinked product of a rubber composition containing carbon black. Therefore, by forming a tire using a crosslinked product of a rubber composition containing silica, a tire having excellent fuel efficiency can be obtained.
  • Patent Document 1 for the purpose of improving the rolling resistance and wet grip performance of a tire, a specific amount of a softening agent with a specific structure is blended with a rubber component, and a specific amount of a hydrocarbon resin with a specific structure is blended. It is disclosed to
  • the inventors of the present invention conducted studies to achieve the above object, and found that a rubber composition obtained by blending a specific hydrocarbon resin with a diene rubber specifically has a number average molecular weight (Mn) of , weight average molecular weight (Mw), Z average molecular weight (Mz), ratio of weight average molecular weight to number average molecular weight (Mw/Mn), ratio of Z average molecular weight to weight average molecular weight (Mz/Mw), and softening point are specified. and the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) is controlled within the range of 0.4 to 0.8.
  • the present inventors have found that the composition can achieve the above objects, and have completed the present invention.
  • a rubber composition containing a diene rubber and a hydrocarbon resin The content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene rubber,
  • the hydrocarbon resin is containing an aliphatic monomeric unit, or an aliphatic monomeric unit and an aromatic monomeric unit,
  • the number average molecular weight (Mn) is in the range of 400 to 3000
  • the weight average molecular weight (Mw) is in the range of 700 to 6000
  • Z-average molecular weight (Mz) is in the range of 1500 to 20000
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) is in the range of 1.0 to 4.0
  • the ratio of the Z-average molecular weight to the weight-average molecular weight (Mz/Mw) is in the range of 1.0 to 3.5
  • the hydrocarbon resin is 1,3-pentadiene monomer unit 1 to 70 mass%, 1 to 30% by mass of alicyclic monoolefin monomer units having 4 to 6 carbon atoms, 0 to 15% by mass of isoprene monomer units, 0 to 50% by mass of acyclic monoolefin monomer units having 4 to 8 carbon atoms, It preferably contains 0 to 10% by mass of alicyclic diolefin monomer units and 0 to 40% by mass of aromatic monoolefin monomer units.
  • the hydrocarbon resin is preferably a hydride.
  • the rubber composition of the present invention further contains a filler.
  • the rubber composition of the present invention preferably further contains a cross-linking agent.
  • the rubber composition of the present invention preferably contains styrene-butadiene copolymer rubber or butadiene rubber as the diene rubber.
  • a cross-linked rubber obtained by cross-linking the above rubber composition. Furthermore, according to the present invention, there is provided a pneumatic tire characterized by using the above rubber composition or the above crosslinked rubber in a tread.
  • the rubber composition of the present invention is a rubber composition containing a diene rubber and a hydrocarbon resin, A content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene rubber.
  • a content of the hydrocarbon resin is 1 to 200 parts by mass with respect to 100 parts by mass of the diene rubber.
  • the hydrocarbon resin used in the present invention is containing an aliphatic monomeric unit, or an aliphatic monomeric unit and an aromatic monomeric unit,
  • the number average molecular weight (Mn) is in the range of 400 to 3000
  • the weight average molecular weight (Mw) is in the range of 700 to 6000
  • Z-average molecular weight (Mz) is in the range of 1500 to 20000
  • the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) is in the range of 1.0 to 4.0
  • the ratio of the Z-average molecular weight to the weight-average molecular weight (Mz/Mw) is in the range of 1.0 to 3.5
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) is in the range of 0.4 to 0.8, It has a softening point temperature in the range of 80 to 150°C.
  • the hydrocarbon resin used in the present invention may contain at least aliphatic monomer units, and may contain aromatic monomer units in addition to aliphatic monomer units.
  • Aliphatic monomers for forming the aliphatic monomer units may be those containing no aromatic ring and containing at least unsaturated hydrocarbons.
  • examples of such aliphatic monomers include , 1,3-pentadiene, alicyclic monoolefin monomers having 4 to 6 carbon atoms, isoprene, acyclic monoolefin monomers having 4 to 8 carbon atoms, alicyclic diolefin monomers, etc. be able to.
  • a mixture containing these aliphatic monomers may be added to the polymerization reaction system when producing the hydrocarbon resin.
  • the aliphatic monomer contained in the mixture is used as a monomer unit component constituting the hydrocarbon resin.
  • the addition-polymerizable components other than the aliphatic monomer contained in the mixture may also be used as constituent components of the monomer units of the hydrocarbon resin, and the non-addition-polymerizable component may be used as a solvent during polymerization.
  • a mixture containing such an aliphatic monomer for example, a C5 fraction containing 1,3-pentadiene, cyclopentene, isobutylene, etc. as an aliphatic monomer can be preferably used.
  • the hydrocarbon resin preferably contains, as aliphatic monomer units, 1,3-pentadiene monomer units and alicyclic monoolefin monomer units having 4 to 6 carbon atoms. It may further contain a monomer unit, an acyclic monoolefin monomer unit having 4 to 8 carbon atoms and an alicyclic diolefin monomer unit.
  • the content of the 1,3-pentadiene monomer unit in the hydrocarbon resin is not particularly limited, but is preferably 1 to 70% by mass, more preferably 20 to 65% by mass, and still more preferably 30 to 60% by mass. % by weight, particularly preferably 35 to 52% by weight.
  • the cis/trans isomer ratio in 1,3-pentadiene may be any ratio and is not particularly limited.
  • An alicyclic monoolefin having 4 to 6 carbon atoms forming an alicyclic monoolefin monomer unit having 4 to 6 carbon atoms has one ethylenically unsaturated bond and a non-aromatic ring in its molecular structure. It is a hydrocarbon compound having 4 to 6 carbon atoms and having the structure Specific examples of alicyclic monoolefins having 4 to 6 carbon atoms include cyclobutene, cyclopentene, cyclohexene, methylcyclobutene, methylcyclopentene and the like.
  • the content of the alicyclic monoolefin monomer unit having 4 to 6 carbon atoms in the hydrocarbon resin is not particularly limited, but is preferably 1 to 30% by mass, more preferably 5 to 25% by mass, More preferably 9 to 22% by mass, still more preferably 11 to 19% by mass, particularly preferably 13 to 17% by mass.
  • the ratio of each compound corresponding to this may be any ratio and is not particularly limited, but it is preferable that at least cyclopentene is included, and 4 carbon atoms
  • the proportion of cyclopentene in the alicyclic monoolefin of 1 to 6 is more preferably 50% by mass or more, still more preferably 80% by mass or more, and particularly preferably 100% by mass.
  • the hydrocarbon resin used in the present invention preferably contains isoprene monomer units.
  • isoprene monomer units By containing isoprene monomer units, the wet grip performance of the crosslinked rubber obtained is further enhanced. be able to.
  • the content of isoprene monomer units in the hydrocarbon resin is not particularly limited, but is preferably 0 to 15% by mass, more preferably 0.1 to 12% by mass, still more preferably 0.15 to 10% by mass. % by weight, even more preferably 0.2 to 9% by weight. By setting the content of the isoprene monomer unit within the above range, the wet grip performance of the obtained crosslinked rubber can be more appropriately enhanced.
  • the content of the isoprene monomer unit is 6 to 10% by mass.
  • the content of the isoprene monomer unit is particularly preferably 0.15 to 0.5% by mass from the viewpoint of further improving the balance of resistance, wet grip performance and low temperature performance.
  • An acyclic monoolefin having 4 to 8 carbon atoms forming an acyclic monoolefin monomer unit having 4 to 8 carbon atoms has one ethylenically unsaturated bond in its molecular structure and has a ring structure. It is a chain hydrocarbon compound having 4 to 8 free carbon atoms.
  • acyclic monoolefins having 4 to 8 carbon atoms include butenes such as 1-butene, 2-butene and isobutylene (2-methylpropene); 1-pentene, 2-pentene, 2-methyl-1 -pentenes such as butene, 3-methyl-1-butene and 2-methyl-2-butene; hexenes such as 1-hexene, 2-hexene and 2-methyl-1-pentene; 1-heptene and 2-heptene , 2-methyl-1-hexene and other heptenes; 1-octene, 2-octene, 2-methyl-1-heptene, diisobutylene (2,4,4-trimethyl-1-pentene and 2,4,4- octenes such as trimethyl-1-pentene);
  • the content of the acyclic monoolefin monomer unit having 4 to 8 carbon atoms in the hydrocarbon resin is not particularly limited, but is preferably 0 to 50% by mass, more preferably 8 to 45% by mass, More preferably 10 to 40% by mass, particularly preferably 14 to 37% by mass.
  • the ratio of each corresponding compound may be any ratio and is not particularly limited, but at least 2-methyl-2-butene , isobutylene, and diisobutylene, and 2-methyl-2-butene, isobutylene, and diisobutylene in the acyclic monoolefin having 4 to 8 carbon atoms. More preferably, the proportion of the total amount is 50% by mass or more.
  • An alicyclic diolefin forming an alicyclic diolefin monomer unit is a hydrocarbon compound having two or more ethylenically unsaturated bonds and a non-aromatic ring structure in its molecular structure.
  • Specific examples of alicyclic diolefins include cyclopentadiene polymers such as cyclopentadiene and dicyclopentadiene, methylcyclopentadiene polymers, and methylcyclopentadiene polymers.
  • the content of the alicyclic diolefin monomer units in the hydrocarbon resin is not particularly limited, but is preferably 0 to 10% by mass, more preferably 0.03 to 5% by mass, and still more preferably 0. 0.05 to 4% by weight, particularly preferably 0.08 to 3% by weight.
  • the obtained crosslinked rubber can be made more excellent in rolling resistance, wet grip performance and low temperature performance.
  • the hydrocarbon resin of the present invention includes 1,3-pentadiene monomer units, alicyclic monoolefin monomer units having 4 to 6 carbon atoms, isoprene monomer units, and acyclic monomer units having 4 to 8 carbon atoms. It may contain monomer units other than the formula monoolefin monomer unit and the alicyclic diolefin monomer unit.
  • Such other monomers forming such other monomer units are not particularly limited as long as they are addition-polymerizable compounds that can be addition-copolymerized with 1,3-pentadiene or the like.
  • Such other monomers include, for example, 1,3-pentadiene such as 1,3-butadiene, 1,2-butadiene, 1,3-hexadiene and 1,4-pentadiene, and C4 monomers other than isoprene.
  • 1,3-pentadiene such as 1,3-butadiene, 1,2-butadiene, 1,3-hexadiene and 1,4-pentadiene
  • C4 monomers other than isoprene alicyclic monoolefins having 7 or more carbon atoms such as cycloheptene
  • acyclic monoolefins having carbon atoms other than 4 to 8 such as ethylene, propylene and nonene;
  • the content of other monomer units in the hydrocarbon resin is usually in the range of 0-30% by mass, preferably 0-25% by mass, more preferably 0-20% by mass.
  • the content of the aliphatic monomer unit in the hydrocarbon resin is not particularly limited, but is preferably 50% by mass or more, more preferably 60% by mass or more, still more preferably 70% by mass or more, and particularly preferably It is 80% by mass or more.
  • the content of the aliphatic monomer unit is not particularly limited, but is preferably 60% by mass or more. , more preferably 63 to 90% by mass, still more preferably 65 to 85% by mass, and particularly preferably 68 to 81% by mass.
  • the hydrocarbon resin used in the present invention may contain aromatic monomer units in addition to aliphatic monomer units.
  • aromatic monomer for forming the aromatic monomer unit may have an aromatic ring and can be copolymerized with an aliphatic monomer. mers.
  • a mixture containing aromatic monomers such as aromatic monoolefin monomers may be added to the polymerization reaction system during the production of the hydrocarbon resin.
  • the aromatic monomer contained in the mixture is used as a component of the monomer units constituting the hydrocarbon resin.
  • the addition-polymerizable components other than the aromatic monomer contained in the mixture may also be used as constituent components of the monomer units of the hydrocarbon resin, and the non-addition-polymerizable component may be used as a solvent during polymerization.
  • a mixture containing such an aromatic monomer for example, a C9 fraction containing a styrene compound, an indene compound, etc. as the aromatic monomer can be preferably used.
  • Aromatic monoolefin monomers are aromatic compounds that have one ethylenically unsaturated bond in their molecular structure.
  • aromatic monoolefins include styrene compounds such as styrene, ⁇ -methylstyrene, ⁇ -methylstyrene and vinyltoluene; indene compounds such as indene and 1-methylindene; and coumarone.
  • the content of the aromatic monoolefin monomer units in the hydrocarbon resin is not particularly limited, but is preferably 0 to 40% by mass, more preferably 10 to 37% by mass, and still more preferably 15 to 35% by mass. %, particularly preferably 19 to 32% by weight.
  • the number average molecular weight (Mn) of the hydrocarbon resin used in the present invention is in the range of 400 to 3000, preferably in the range of 500 to 2000, more preferably in the range of 700 to 1300, still more preferably in the range of 800 to 1100. be. Further, the weight average molecular weight (Mw) of the hydrocarbon resin used in the present invention is in the range of 700 to 6000, preferably in the range of 1000 to 4000, more preferably in the range of 1400 to 3000, still more preferably in the range of 1600 to 2500. Range.
  • the Z-average molecular weight (Mz) of the hydrocarbon resin used in the present invention is in the range of 1500 to 20000, preferably in the range of 2200 to 10000, more preferably in the range of 2700 to 6500, still more preferably in the range of 3200 to 5700. Range.
  • the weight average molecular weight to number average molecular weight ratio (Mw/Mn) of the hydrocarbon resin used in the present invention is in the range of 1.0 to 4.0, preferably 1.2 to 3.2, more preferably is in the range of 1.5 to 2.9, more preferably in the range of 1.7 to 2.6. Further, the ratio (Mz/Mw) of the Z-average molecular weight to the weight-average molecular weight of the hydrocarbon resin used in the present invention is in the range of 1.0 to 3.5, preferably in the range of 1.2 to 3.2. , more preferably in the range of 1.4 to 2.8, more preferably in the range of 1.6 to 2.5.
  • Hydrocarbon resin number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz), ratio of weight average molecular weight to number average molecular weight (Mw/Mn) and ratio of Z average molecular weight to weight average molecular weight (Mz/Mw) By setting Mz/Mw) within the above range, the obtained crosslinked rubber can have an excellent balance among rolling resistance, wet grip performance and low temperature performance.
  • Hydrocarbon resin number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz), ratio of weight average molecular weight to number average molecular weight (Mw/Mn) and ratio of Z average molecular weight to weight average molecular weight ( Mz/Mw) can be obtained as a value converted to polystyrene by gel permeation chromatography using tetrahydrofuran as a developing solvent.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz) of the hydrocarbon resin the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) and the weight average molecular weight
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) of the hydrocarbon resin is set to 0.4 to The range is 0.8.
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) is in the range of 0.4 to 0.8.
  • the rubber composition obtained in this way can provide a cross-linked rubber having an excellent balance of rolling resistance, wet grip performance and low temperature performance.
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) of the hydrocarbon resin is in the range of 0.4 to 0.8.
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) may be in the range of 0.4 to 0.8, preferably in the range of 0.4 to 0.78, more preferably in the range of 0.41 to 0.75, more preferably in the range of 0.43 to 0.72, particularly preferably in the range of 0.47 to 0.67, most preferably in the range of 0.5 to 0.64 is.
  • the peak top molecular weight (Mp) of the hydrocarbon resin is not particularly limited, it is preferably in the range of 500-4000, more preferably in the range of 700-2500, still more preferably in the range of 1000-1500.
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) is measured by gel permeation chromatography using tetrahydrofuran as a developing solvent. It is determined by determining the average molecular weight (Mw) and the peak top molecular weight (Mp) and calculating the ratio (Mp/Mw).
  • the peak top molecular weight (Mp) is the molecular weight at which the detection value (elution amount) is the maximum in the GPC chart obtained by gel permeation chromatography measurement, and Mp/Mw is such a detection value (elution amount ) represents the relationship between the peak top molecular weight (Mp) which is the maximum molecular weight and the weight average molecular weight (Mw).
  • Mp/Mw value tends to contain a relatively large amount of low-molecular-weight components
  • a larger Mp/Mw value tends to contain a larger amount of high-molecular-weight components.
  • the number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz) of the hydrocarbon resin the ratio of the weight average molecular weight to the number average molecular weight (Mw/Mn) and the Z average to the weight average molecular weight
  • Mz/Mw the ratio of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) of the hydrocarbon resin
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) of the hydrocarbon resin depends on the method of adjusting the type and amount of the monomer used for polymerization and the amount of polymerization catalyst used. , a method of adjusting the polymerization temperature, and a method of adjusting the mixing temperature and mixing time when the polymerization catalyst is previously mixed in the volatile solvent.
  • the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) of the hydrocarbon resin tends to decrease as the amount of the polymerization catalyst used increases and the polymerization temperature increases. It is in.
  • the softening point of the hydrocarbon resin used in the present invention is in the range of 80 to 150°C, preferably 85 to 145°C, more preferably 90 to 140°C, more preferably 90 to 115°C. , particularly preferably 92 to 105°C.
  • the softening point of hydrocarbon resin can be measured according to JIS K6863.
  • the method for producing the hydrocarbon resin used in the present invention is not particularly limited, but examples include a method of addition polymerization of a monomer mixture for constituting the hydrocarbon resin, for example, Friedel-Crafts-type cationic polymerization.
  • a preferred method is addition polymerization using a catalyst.
  • the Friedel-Crafts-type cationic polymerization catalyst is not particularly limited, and includes halides such as aluminum, iron, tantalum, zirconium, tin, beryllium, boron, antimony, gallium, bismuth, and molybdenum. Among them, aluminum halides such as aluminum chloride (AlCl 3 ) and aluminum bromide (AlBr 3 ) are suitable.
  • the amount of the Friedel-Crafts-type cationic polymerization catalyst used is preferably 0.05 to 10 parts by mass, more preferably 0.1 to 5 parts by mass, with respect to 100 parts by mass of the monomer mixture used for polymerization. It is preferably 0.5 to 2.0 parts by mass, particularly preferably 0.7 to 1.7 parts by mass.
  • a halogenated hydrocarbon may be used in combination with the Friedel-Crafts-type cationic polymerization catalyst from the viewpoint that the catalytic activity can be further enhanced.
  • halogenated hydrocarbons include halogenated hydrocarbons in which a halogen atom is bonded to a tertiary carbon atom such as t-butyl chloride, t-butyl bromide, 2-chloro-2-methylbutane, triphenylmethyl chloride; benzyl Carbon-carbon unsaturated bonds such as chloride, benzyl bromide, (1-chloroethyl)benzene, allyl chloride, 3-chloro-1-propyne, 3-chloro-1-butene, 3-chloro-1-butyne, cinnamon chloride, etc.
  • halogenated hydrocarbon in which a halogen atom is bonded to the carbon atom adjacent to; Among these, t-butyl chloride and benzyl chloride are preferred from the viewpoint of excellent balance between catalytic activity and handleability.
  • Halogenated hydrocarbons may be used singly or in combination of two or more.
  • the amount of halogenated hydrocarbon used is preferably in the range of 0.05 to 50, more preferably in the range of 0.1 to 10, in terms of molar ratio to the Friedel-Crafts-type cationic polymerization catalyst.
  • a volatile solvent to the polymerization reaction system and carry out the polymerization reaction.
  • the type of volatile solvent is not particularly limited as long as it does not interfere with the polymerization reaction, but saturated aliphatic hydrocarbons or aromatic hydrocarbons are suitable.
  • saturated aliphatic hydrocarbons examples include n-pentane, n-hexane, 2-methylpentane, 3-methylpentane, n-heptane, 2-methylhexane, 3-methylhexane, 3-ethylpentane, 2,2 - C5-C10 compounds such as dimethylpentane, 2,3-dimethylpentane, 2,4-dimethylpentane, 3,3-dimethylpentane, 2,2,3-trimethylbutane and 2,2,4-trimethylpentane chain saturated aliphatic hydrocarbons; cyclic saturated aliphatic hydrocarbons having 5 to 10 carbon atoms such as cyclopentane, cyclohexane, cycloheptane and cyclooctane; Examples of aromatic hydrocarbons include aromatic hydrocarbons having 6 to 10 carbon atoms such as benzene, toluene and xylene.
  • Volatile solvents may be used singly or in combination of two or more.
  • the amount of the volatile solvent used is not particularly limited, but is preferably 10 to 1,000 parts by mass, more preferably 50 to 500 parts by mass, based on 100 parts by mass of the monomer mixture used for polymerization.
  • the order of adding the respective components of the monomer mixture and the polymerization catalyst to the polymerization reactor is not particularly limited, and may be added in any order, from the viewpoint of good control of the polymerization reaction.
  • the polymerization catalyst is added in advance to the volatile solvent and mixed to obtain the polymerization catalyst.
  • a preferred method is to prepare the monomer mixture in a volatile solvent and then add the monomer mixture to the polymerization reactor to initiate the polymerization reaction.
  • the polymerization catalyst When the polymerization catalyst is added in advance to the volatile solvent and mixed, it is preferable to set conditions such that aggregation of the polymerization catalyst, etc., partially remains in the volatile solvent.
  • the temperature is preferably 45-80° C., more preferably 50-70° C.
  • the mixing time is preferably 10 seconds to 4 minutes, more preferably 30 seconds to 3 minutes.
  • the polymerization temperature during the polymerization reaction is not particularly limited, it is preferably 50 to 90°C, more preferably 55 to 85°C, and still more preferably 60 to 78°C.
  • the polymerization reaction time may be appropriately selected, but it is usually 10 minutes to 12 hours, preferably 30 minutes to 6 hours.
  • the polymerization reaction is stopped by adding a polymerization terminator such as methanol, an aqueous sodium hydroxide solution, or an aqueous ammonia solution to the polymerization reaction system when a desired polymerization conversion rate is obtained, thereby obtaining a polymer containing a hydrocarbon resin.
  • a polymerization terminator such as methanol, an aqueous sodium hydroxide solution, or an aqueous ammonia solution
  • a polymerization terminator may be added to remove the solvent-insoluble catalyst residue generated when the polymerization catalyst is deactivated by filtration or the like.
  • the obtained hydrocarbon resin may be converted into a hydride by subjecting the obtained hydrocarbon resin to a hydrogenation reaction for hydrogenating carbon-carbon double bonds in the hydrocarbon resin, if necessary. That is, it may be a hydrocarbon resin hydride. Hydrogenation of the hydrocarbon resin can be carried out by contacting the hydrocarbon resin with hydrogen in the presence of a hydrogenation catalyst.
  • the hydrogenation catalyst is not particularly limited, but a nickel catalyst is preferred.
  • a catalyst containing, as a main component, a compound in which nickel as a metal is supported on an inorganic compound supported as a carrier is preferred.
  • supported inorganic compounds as carriers include silica, alumina, boria, silica-alumina, diatomaceous earth, clay, clay, magnesia, magnesia-silica (silica-magnesium oxide), titania, zirconia and the like.
  • magnesia-silica is preferable from the viewpoint of reactivity.
  • the rubber composition of the present invention contains a diene rubber in addition to the hydrocarbon resin described above.
  • the diene rubber is not particularly limited as long as it can be blended with the hydrocarbon resin.
  • diene-based rubbers include diene-based rubbers described in JP-A-2015-189873. Specifically, natural rubber (NR), isoprene rubber (IR), butadiene rubber ( BR), styrene-butadiene copolymer rubber (SBR), ethylene-propylene-diene terpolymer (EPDM), etc., among which styrene-butadiene copolymer rubber, butadiene rubber, etc. are preferred.
  • styrene-butadiene copolymer rubber is more preferred.
  • the Mooney viscosity (ML1+4, 100° C.) of the diene rubber is not particularly limited, it is preferably 20-90, more preferably 30-80.
  • the Mooney viscosity of the oil-extended rubber is preferably within the above range.
  • the glass transition temperature (Tg) of the diene rubber is not particularly limited, but preferably -110°C to 20°C, more preferably -90°C to 0°C. By using such a rubber as the diene rubber, the crosslinked rubber can be made to have an excellent balance among rolling resistance, wet grip performance and low temperature performance.
  • the diene rubber may be used singly or in combination of two or more.
  • the molecular weight and microstructure of the diene rubber used in the present invention are not particularly limited. good.
  • the diene rubber used in the present invention may be hydrogenated, but is preferably non-hydrogenated.
  • the content of butadiene units in the diene rubber is preferably 30% by mass or more, and more It is preferably 50% by mass or more, and the vinyl bond content in the butadiene unit is not particularly limited, but is preferably 1 to 90%, more preferably 3 to 85%, and still more preferably 5 to 80%. .
  • the blending ratio of the diene rubber and the hydrocarbon resin may be 1 to 200 parts by mass of the hydrocarbon resin per 100 parts by mass of the diene rubber. It is preferably blended in an amount of 70 parts by mass, more preferably 3 to 35 parts by mass, even more preferably 15 to 25 parts by mass. If the amount of the hydrocarbon resin is too small, the resulting crosslinked rubber will be inferior in wet grip performance and low temperature performance, while if it is too large, the resulting crosslinked rubber will be inferior in rolling resistance. end up
  • the rubber composition of the present invention may consist only of the diene rubber and the hydrocarbon resin, but may further contain other components.
  • Other components that can be contained in the rubber composition of the present invention include, for example, fillers, silane coupling agents, cross-linking agents, cross-linking accelerators, cross-linking activators, anti-aging agents, antioxidants, activators, and process oils. , plasticizers, lubricants, tackifiers, etc., and these other compounding agents can be blended in required amounts.
  • filler that can be blended in the rubber composition of the present invention
  • those commonly used in rubber compositions can be used, such as carbon black, clay, diatomaceous earth, silica, talc, barium sulfate, calcium carbonate,
  • Inorganic hollow fillers such as magnesium carbonate, metal oxides, mica, aluminum hydroxide, various metal powders, wood powders, glass powders, ceramic powders, glass balloons, silica balloons; polystyrene, polyvinylidene fluoride, polyvinylidene fluoride copolymers organic hollow fillers such as
  • silica examples include dry-process white carbon, wet-process white carbon, colloidal silica, and precipitated silica.
  • wet process white carbon containing hydrous silicic acid as a main component is preferable.
  • a carbon-silica dual phase filler in which silica is supported on the surface of carbon black may also be used.
  • These silicas can be used alone or in combination of two or more.
  • the nitrogen adsorption specific surface area of the silica used is preferably 100-400 m 2 /g, more preferably 150-350 m 2 /g.
  • the pH of silica is preferably pH 5-10.
  • the amount of silica compounded in the rubber composition of the present invention is preferably 10 to 200 parts by mass, more preferably 20 to 150 parts by mass, and still more preferably 30 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. ⁇ 75 parts by mass.
  • Silane coupling agents include, for example, vinyltriethoxysilane, ⁇ -(3,4-epoxycyclohexyl)ethyltrimethoxysilane, N-( ⁇ -aminoethyl)- ⁇ -aminopropyltrimethoxysilane, 3-octatio- 1-propyl-triethoxysilane, bis(3-(triethoxysilyl)propyl)disulfide, bis(3-(triethoxysilyl)propyl)tetrasulfide, ⁇ -trimethoxysilylpropyldimethylthiocarbamyltetrasulfide, and ⁇ -trimethoxysilylpropylbenzothiazyltetrasulfide and the like. These silane coupling agents can be used alone or in combination of two or more. The amount of the silane coupling agents can be used alone or in combination of two or more. The amount of the silane coupling
  • carbon black examples include furnace black, acetylene black, thermal black, channel black, and graphite. These carbon blacks can be used alone or in combination of two or more.
  • the amount of carbon black compounded is usually 120 parts by mass or less per 100 parts by mass of the rubber component in the rubber composition.
  • the filler may be used singly or in combination of two or more.
  • a mixture of silica and carbon black can be used as the filler.
  • the content of the filler other than silica and carbon black may be within the range where the effect of the present invention can be obtained, for example, it can be 120 parts by mass or less with respect to 100 parts by mass of the rubber component in the rubber composition. .
  • cross-linking agents include, but are not limited to, sulfur, halogenated sulfur, organic peroxides, quinone dioximes, organic polyvalent amine compounds, alkylphenol resins having methylol groups, and the like. Among these, sulfur is preferably used.
  • the amount of the cross-linking agent is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. is.
  • cross-linking accelerators include sulfenamide-based cross-linking accelerators; guanidine-based cross-linking accelerators; thiourea-based cross-linking accelerators; thiazole-based cross-linking accelerators; thiuram-based cross-linking accelerators; cross-linking accelerator; and the like.
  • those containing a sulfenamide cross-linking accelerator are preferred.
  • These cross-linking accelerators may be used alone or in combination of two or more.
  • the amount of the cross-linking accelerator compounded is preferably 0.1 to 15 parts by mass, more preferably 0.5 to 5 parts by mass, and particularly preferably 1 to 4 parts by mass with respect to 100 parts by mass of the rubber component in the rubber composition. Department.
  • cross-linking activators examples include higher fatty acids such as stearic acid; zinc oxide; and the like. These cross-linking activators may be used alone or in combination of two or more.
  • the amount of the cross-linking activator is preferably 0.05 to 20 parts by mass, particularly preferably 0.5 to 15 parts by mass, per 100 parts by mass of the rubber component in the rubber composition.
  • the rubber composition of the present invention may contain anti-aging agents such as amine-based stabilizers, phenol-based stabilizers, phosphorus-based stabilizers, and sulfur-based stabilizers.
  • anti-aging agents such as amine-based stabilizers, phenol-based stabilizers, phosphorus-based stabilizers, and sulfur-based stabilizers.
  • the amount of the anti-aging agent to be added may be appropriately determined depending on the type of anti-aging agent.
  • antioxidants include, but are not limited to, pentaerythritol tetrakis[3-(3,5-di-t-butyl-4-hydroxyphenyl)propionate], octadecyl-3-(3,5-di-t -butyl-4-hydroxyphenyl)propionate, 2,6-di-t-butyl-p-cresol, hindered phenolic compounds such as di-t-butyl-4-methylphenol; thiodicarboxylate esters; phosphites such as tris(nonylphenyl)phosphite; and the like.
  • Antioxidants may be used singly or in combination of two or more. Although the content of the antioxidant is not particularly limited, it is preferably 10 parts by mass or less, more preferably 0.05 to 5 parts by mass, based on 100 parts by mass of the rubber component in the rubber composition.
  • the rubber composition of the present invention may contain a resin other than the diene rubber and the above hydrocarbon resin.
  • the resin By blending the resin, the rubber composition can be imparted with tackiness and the dispersibility of the filler in the rubber composition can be enhanced. As a result, further improvements in rolling resistance, wet grip performance, and low temperature performance of the obtained crosslinked rubber can be expected.
  • the plasticizer it is also possible to improve the processability of the rubber composition.
  • resins examples include C9 petroleum resins, dicyclopentadiene resins, terpene resins, terpene phenol resins, aromatic modified terpene resins, alkylphenol-acetylene resins, rosin resins, rosin ester resins, indene resins, and indene.
  • examples include C9 resins, ⁇ -methylstyrene/indene copolymer resins, coumarone-indene resins, farnesene resins, and polylimonene resins. These resins may be modified or hydrogenated. These resins may be used alone or in combination of two or more.
  • the amount of the resin compounded is preferably 25 parts by mass or less with respect to 100 parts by mass of the rubber component in the rubber composition.
  • each component may be kneaded according to a conventional method.
  • the desired rubber composition can be obtained by kneading the kneaded product with a heat-unstable component such as a cross-linking agent or a cross-linking accelerator.
  • the kneading temperature for kneading the components excluding the thermally unstable components, the diene rubber, and the hydrocarbon resin is preferably 80 to 200° C., more preferably 120 to 180° C., and the kneading time is , preferably 30 seconds to 30 minutes.
  • the kneaded product and the heat-labile component are kneaded after cooling to preferably 100° C. or lower, more preferably 80° C. or lower.
  • the rubber composition of the present invention By using the rubber composition of the present invention, it is possible to obtain a cross-linked rubber having an excellent balance of rolling resistance, wet grip performance and low temperature performance.
  • the rubber composition of the present invention is preferably used, for example, as a material for tire parts such as the tread (cap tread, base tread), carcass, sidewall, and bead portion.
  • tire parts such as the tread (cap tread, base tread), carcass, sidewall, and bead portion.
  • it can be suitably used for each tire part such as the tread, carcass, sidewall, and bead portion. It can be used particularly preferably, and it is particularly preferable to use it for a cap tread.
  • the rubber cross-linked product of the present invention is obtained by cross-linking the rubber composition of the present invention described above.
  • the rubber cross-linked product of the present invention can be obtained by molding the rubber composition of the present invention into a desired shape using a molding machine such as an extruder, an injection molding machine, a compressor, a roll, etc., and then heating. It can be produced by performing a cross-linking reaction with and fixing the shape as a rubber cross-linked product. In this case, the cross-linking may be performed after pre-molding, or the cross-linking may be performed at the same time as the molding.
  • the molding temperature is usually 10-200°C, preferably 25-120°C.
  • the crosslinking temperature is usually 100 to 200°C, preferably 130 to 190°C
  • the crosslinking time is usually 1 minute to 24 hours, preferably 2 minutes to 12 hours, particularly preferably 3 minutes to 6 hours. .
  • the inside may not be sufficiently cross-linked, so secondary cross-linking may be performed by further heating.
  • heating method a general method used for cross-linking rubber compositions such as press heating, steam heating, oven heating, and hot air heating may be appropriately selected.
  • the rubber crosslinked product of the present invention thus obtained is obtained using the rubber composition of the present invention described above, and therefore has an excellent balance of rolling resistance, wet grip performance and low temperature performance.
  • the rubber cross-linked product of the present invention utilizes its excellent rolling resistance, wet grip performance and low temperature performance, and is used in tire parts such as tread (cap tread, base tread), carcass, sidewall, bead portion, etc. It is preferably used as a material, especially in various tires such as all-season tires, high-performance tires, and studless tires. For example, it can be used particularly preferably for tire treads, and particularly preferably for cap treads.
  • a pneumatic tire according to the present invention is characterized by using the rubber composition described above in a tread.
  • the tread uses the above-mentioned rubber composition, that is, is formed using the above-mentioned rubber composition, and usually the rubber composition of the present invention is crosslinked. It includes things.
  • the pneumatic tire may have a tread formed using the rubber composition, and other parts may also be formed using the rubber composition.
  • the tread formed using the rubber composition may be part of the tread or the entire tread, but preferably includes at least a cap tread.
  • any method can be used as long as it can manufacture a pneumatic tire having a tread formed using the above composition, and a known method for manufacturing a pneumatic tire can be used. can.
  • gel permeation chromatography analysis uses "HLC-8320GPC” manufactured by Tosoh Corporation as a measuring device, and the column is made by connecting three “TSKgel SuperMultiporeHZ” manufactured by Tosoh Corporation, and tetrahydrofuran is used as a solvent. , 40° C. and a flow rate of 1.0 mL/min.
  • Mooney viscosity of rubber composition (ML1+4)
  • the Mooney viscosity (ML1+4) of the rubber composition was measured according to JIS K 6300-1:2001 under the following conditions. It can be judged that the smaller the value of the Mooney viscosity, the better the processability.
  • ⁇ Test temperature 100°C
  • ⁇ Type of rotor L type
  • ⁇ Testing machine used Shimadzu Mooney Viscometer SMV-300J manufactured by Shimadzu Corporation
  • Measurement item dynamic storage modulus E' ⁇ Sample preparation method: punching from a sheet ⁇ Specimen shape: length 50 mm x width 2 mm x thickness 2 mm ⁇ Number of test pieces: 1 ⁇ Distance between clamps: 20mm
  • Example 1 Manufacture of hydrocarbon resin
  • a polymerization reactor was charged with 52.7 parts of cyclopentane as a hydrocarbon solvent, heated to 70° C., then 1.0 part of aluminum chloride as a polymerization catalyst was added, and the temperature (70° C.) was maintained.
  • the aluminum chloride was dispersed in the cyclopentane in such a way that some agglomerates remained by mixing for 2 minutes while the mixture was still intact.
  • Table 1 summarizes the types and amounts of the components in the polymerization reactor during the polymerization reaction.
  • a polymer solution containing a hydrocarbon resin, an unreacted monomer, and the like was obtained by removing a precipitate formed by the termination of polymerization by filtration. Then, the polymer solution was placed in a still and heated under a nitrogen atmosphere to remove the polymerization solvent and unreacted monomers to obtain a hydrocarbon resin. Since the amount of unreacted monomer was very small, it can be determined that the monomer composition constituting the obtained hydrocarbon resin is almost the same as the monomer composition used for polymerization (described later. The same applies to Examples 2 to 4 and Comparative Examples 1 to 5.).
  • the number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz), peak top molecular weight (Mp), molecular weight distribution (Mw/Mn, Mz/Mw), the ratio of the weight average molecular weight (Mw) to the peak top molecular weight (Mp) (Mp/Mw), and the softening point were measured.
  • Table 1 shows the results.
  • the obtained kneaded material was cooled to room temperature, it was again kneaded (secondary kneading) in the Banbury type mixer at a starting temperature of 90°C for 2 minutes, and then the kneaded material was discharged from the mixer.
  • the temperature of the kneaded product at the end of kneading was 145°C.
  • ⁇ Testing machine Electric heating type high temperature roll machine manufactured by Ikeda Machinery Co., Ltd. ⁇ Roll size: 6 ⁇ x 16 ⁇ Front roll rotation speed: 24 rpm ⁇ Front and rear roll rotation ratio: 1:1.22 ⁇ Roll temperature: 50 ⁇ 5°C ⁇ Number of turns: 2 times each for left and right ⁇ Rounding width: 0.8 mm between rolls ⁇ Rounding number of times: 5 times
  • Examples 2 to 4 Manufacture of hydrocarbon resin
  • Hydrocarbon resins of Examples 2 to 4 were obtained in the same manner as in Example 1.
  • the C9 fraction mainly contains styrene, ⁇ -methylstyrene, ⁇ -methylstyrene, vinyltoluene and indene as aromatic monomers. shows the amount used in Then, the obtained hydrocarbon resin was measured in the same manner as in Example 1. Table 3 shows the results.
  • hydrogen resins number average molecular weight (Mn), weight average molecular weight (Mw), Z average molecular weight (Mz), ratio of weight average molecular weight to number average molecular weight (Mw/Mn), ratio of Z average molecular weight to weight average molecular weight ( Mz/Mw), and the softening point are within the predetermined range of the present invention, and the ratio (Mp/Mw) of the peak top molecular weight (Mp) to the weight average molecular weight (Mw) is in the range of 0.4 to 0.8 According to the rubber composition obtained by blending a certain hydrocarbon resin, the rubber cross-linked product obtained by using this has a low storage modulus E′ at ⁇ 25° C., excellent low-temperature performance, and a high temperature resistance at 0° C.
  • Loss tangent tan ⁇ is high, wet grip performance is excellent, loss tangent tan ⁇ at 60°C is kept low, rolling resistance is low, and low temperature performance, wet grip performance and rolling resistance are well balanced It was excellent (Examples 1-4).
  • a hydrocarbon resin having a peak top molecular weight (Mp) to weight average molecular weight (Mw) ratio (Mp/Mw) of more than 0.8 is used, the resulting crosslinked rubber is -25.
  • the storage elastic modulus E' at °C was high, the low temperature performance was poor, the loss tangent tan ⁇ at 0 °C was low, and the wet grip performance was poor (Comparative Examples 1 to 3 and 5).

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Tires In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

ジエン系ゴムおよび炭化水素樹脂を含有するゴム組成物であって、前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であり、前記炭化水素樹脂は、脂肪族単量体単位、または脂肪族単量体単位および芳香族単量体単位を含むものであり、数平均分子量(Mn)が400~3000の範囲であり、重量平均分子量(Mw)が700~6000の範囲であり、Z平均分子量(Mz)が1500~20000の範囲であり、数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲であり、重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~3.5の範囲であり、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.4~0.8の範囲であり、軟化点温度が80~150℃の範囲である、ゴム組成物を提供する。

Description

ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ
 本発明は、ゴム組成物に関し、さらに詳しくは、転がり抵抗、ウェットグリップ性能および低温性能のバランスに優れたゴム架橋物を与えることができるゴム組成物に関するものである。
 近年、自動車用のタイヤには、環境問題および資源問題から低燃費性が強く求められる一方で、安全性の面から、たとえば、ウェットグリップ性の向上が要求されている。ゴム成分に充填剤としてシリカを配合したゴム組成物の架橋物は、カーボンブラックを配合したゴム組成物の架橋物に比べて、タイヤを構成した場合の転がり抵抗が小さくなる。そのため、シリカを配合したゴム組成物の架橋物を用いてタイヤを構成することにより、低燃費性に優れたタイヤを得ることができる。
 しかしながら、従来のゴム成分にシリカを配合しても、ゴム成分とシリカとの親和性が不十分で、これらが分離しやすいことに起因して、これらを架橋して得られるゴム架橋物は、タイヤを構成した場合の転がり抵抗や、低温性能が不十分となるといった不具合がある。
 たとえば、特許文献1では、タイヤの転がり抵抗およびウェットグリップ性能の向上を図ることを目的として、ゴム成分に、特定構造の軟化剤を特定量配合すると共に、特定構造の炭化水素樹脂を特定量配合することが開示されている。
特開2010-241965号公報
 特許文献1に記載の特定構造の軟化剤および炭化水素樹脂によれば、これらを添加して得られるゴム組成物を用いてタイヤを製造した場合に、転がり抵抗およびウェットグリップ性能の両特性を、一定程度向上させることが可能であるものの、低燃費性や安全性のさらなる向上という観点より、転がり抵抗およびウェットグリップ性能のさらなる向上が求められており、これらに加えて、低温性能にも優れていることも求められている。
 本発明は、このような実状に鑑みてなされたものであり、転がり抵抗、ウェットグリップ性能および低温性能のバランスに優れたゴム架橋物を与えることのできるゴム組成物を提供することを目的とする。
 本発明者等は、上記目的を達成すべく検討を行ったところ、ジエン系ゴムに対し、特定の炭化水素樹脂を配合してなるゴム組成物により、具体的には、数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量に対する重量平均分子量の比(Mw/Mn)、重量平均分子量に対するZ平均分子量の比(Mz/Mw)、および軟化点が特定の範囲にあり、かつ、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.4~0.8の範囲に制御された炭化水素樹脂を配合してなるゴム組成物により、上記目的を達成できることを見出し、本発明を完成させるに至った。
 すなわち、本発明によれば、ジエン系ゴムおよび炭化水素樹脂を含有するゴム組成物であって、
 前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であり、
 前記炭化水素樹脂は、
 脂肪族単量体単位、または脂肪族単量体単位および芳香族単量体単位を含むものであり、
 数平均分子量(Mn)が400~3000の範囲であり、
 重量平均分子量(Mw)が700~6000の範囲であり、
 Z平均分子量(Mz)が1500~20000の範囲であり、
 数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲であり、
 重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~3.5の範囲であり、
 重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.4~0.8の範囲であり、
 軟化点温度が80~150℃の範囲である、
 ゴム組成物が提供される。
 本発明のゴム組成物において、
 前記炭化水素樹脂は、
 1,3-ペンタジエン単量体単位1~70質量%、
 炭素数4~6の脂環式モノオレフィン単量体単位1~30質量%、
 イソプレン単量体単位0~15質量%、
 炭素数4~8の非環式モノオレフィン単量体単位0~50質量%、
 脂環式ジオレフィン単量体単位0~10質量%、および
 芳香族モノオレフィン単量体単位0~40質量%を含むものであることが好ましい。
 本発明のゴム組成物において、前記炭化水素樹脂が、水素化物であることが好ましい。
 本発明のゴム組成物は、さらにフィラーを含有することが好ましい。
 本発明のゴム組成物は、さらに架橋剤を含有することが好ましい。
 本発明のゴム組成物は、前記ジエン系ゴムとして、スチレン-ブタジエン共重合体ゴムまたはブタジエンゴムを含有することが好ましい。
 また、本発明によれば、上記のゴム組成物を架橋してなるゴム架橋物が提供される。
 さらに、本発明によれば、上記のゴム組成物または上記のゴム架橋物をトレッドに使用したことを特徴とする空気入りタイヤが提供される。
 本発明によれば、転がり抵抗、ウェットグリップ性能および低温性能のバランスに優れたゴム架橋物を与えることのできるゴム組成物を提供することができる。
 本発明のゴム組成物は、ジエン系ゴムおよび炭化水素樹脂を含有するゴム組成物であって、
 前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であるものである。
 以下、本発明のゴム組成物の各成分について説明する。
<炭化水素樹脂>
 本発明で用いる炭化水素樹脂は、
 脂肪族単量体単位、または脂肪族単量体単位および芳香族単量体単位を含むものであり、
 数平均分子量(Mn)が400~3000の範囲であり、
 重量平均分子量(Mw)が700~6000の範囲であり、
 Z平均分子量(Mz)が1500~20000の範囲であり、
 数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲であり、
 重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~3.5の範囲であり、
 重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.4~0.8の範囲であり、
 軟化点温度が80~150℃の範囲であるものである。
 本発明で用いる炭化水素樹脂は、少なくとも脂肪族単量体単位を含有するものであればよく、脂肪族単量体単位に加えて、芳香族単量体単位を含むものであってもよい。
(脂肪族単量体単位)
 まず、本発明で用いる炭化水素樹脂に含まれる脂肪族単量体単位について説明する。
 脂肪族単量体単位を形成するための脂肪族単量体としては、芳香環を含まず、不飽和炭化水素を少なくとも含むものであればよく、このような脂肪族単量体としては、たとえば、1,3-ペンタジエン、炭素数4~6の脂環式モノオレフィン単量体、イソプレン、炭素数4~8の非環式モノオレフィン単量体、脂環式ジオレフィン単量体等を挙げることができる。また、本発明においては、これらの脂肪族単量体が含まれる混合物を、炭化水素樹脂を製造する際の重合反応系に添加してもよい。この際、混合物に含まれる脂肪族単量体は、炭化水素樹脂を構成する単量体単位の成分として用いられる。なお、混合物に含まれる脂肪族単量体以外の付加重合性成分も炭化水素樹脂の単量体単位の構成成分として用い、非付加重合性成分は重合時の溶媒として用いるようにすることもできる。このような脂肪族単量体が含まれる混合物としては、たとえば、脂肪族単量体として1,3-ペンタジエン、シクロペンテン、イソブチレンなどを含むC5留分を好適に用いることができる。
 炭化水素樹脂は、脂肪族単量体単位として、1,3-ペンタジエン単量体単位、炭素数4~6の脂環式モノオレフィン単量体単位を含むことが好ましく、これらに加えて、イソプレン単量体単位、炭素数4~8の非環式モノオレフィン単量体単位および脂環式ジオレフィン単量体単位をさらに含んでもよい。
 炭化水素樹脂中における、1,3-ペンタジエン単量体単位の含有量は、特に限定されないが、好ましくは1~70質量%であり、より好ましくは20~65質量%、さらに好ましくは30~60質量%、特に好ましくは35~52質量%である。1,3-ペンタジエン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、転がり抵抗、ウェットグリップ性能および低温性能により優れたものとすることができる。なお、1,3-ペンタジエンにおけるシス/トランス異性体比は任意の比でよく、特に限定されない。
 炭素数4~6の脂環式モノオレフィン単量体単位を形成する炭素数4~6の脂環式モノオレフィンは、その分子構造中にエチレン性不飽和結合を1つと非芳香族性の環構造とを有する炭素数が4~6の炭化水素化合物である。炭素数4~6の脂環式モノオレフィンの具体例としては、シクロブテン、シクロペンテン、シクロヘキセン、メチルシクロブテン、メチルシクロペンテンなどが挙げられる。
 炭化水素樹脂中における、炭素数4~6の脂環式モノオレフィン単量体単位の含有量は、特に限定されないが、好ましくは1~30質量%であり、より好ましくは5~25質量%、さらに好ましくは9~22質量%、さらにより好ましくは11~19質量%、特に好ましくは13~17質量%である。炭素数4~6の脂環式モノオレフィン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、転がり抵抗、ウェットグリップ性能および低温性能により優れたものとすることができる。
 なお、炭素数4~6の脂環式モノオレフィンとしては、これに該当する各化合物の割合は任意の割合でよく、特に限定されないが、少なくともシクロペンテンが含まれていることが好ましく、炭素数4~6の脂環式モノオレフィン中にシクロペンテンの占める割合が50質量%以上であることがより好ましく、80質量%以上であることがさらに好ましく、100質量%であることが特に好ましい。
 また、本発明で用いる炭化水素樹脂は、イソプレン単量体単位を含有していることが好ましく、イソプレン単量体単位を含有していることにより、得られるゴム架橋物のウェットグリップ性能をより高めることができる。炭化水素樹脂中における、イソプレン単量体単位の含有量は、特に限定されないが、好ましくは0~15質量%であり、より好ましくは0.1~12質量%、さらに好ましくは0.15~10質量%、さらにより好ましくは0.2~9質量%である。イソプレン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物のウェットグリップ性能をより適切に高めることができる。なお、得られるゴム架橋物のウェットグリップ性能をより一層高めるという観点からは、イソプレン単量体単位の含有量は、6~10質量%とすることが特に好ましく、得られるゴム架橋物を、転がり抵抗、ウェットグリップ性能および低温性能のバランスにより一層優れるものとするという観点からは、イソプレン単量体単位の含有量は、0.15~0.5質量%とすることが特に好ましい。
 炭素数4~8の非環式モノオレフィン単量体単位を形成する炭素数4~8の非環式モノオレフィンは、その分子構造中にエチレン性不飽和結合1つを有し、環構造を有さない炭素数が4~8の鎖状炭化水素化合物である。炭素数4~8の非環式モノオレフィンの具体例としては、1-ブテン、2-ブテン、イソブチレン(2-メチルプロペン)などのブテン類;1-ペンテン、2-ペンテン、2-メチル-1-ブテン、3-メチル-1-ブテン、2-メチル-2-ブテンなどのペンテン類;1-ヘキセン、2-ヘキセン、2-メチル-1-ペンテンなどのヘキセン類;1-ヘプテン、2-ヘプテン、2-メチル-1-ヘキセンなどのヘプテン類;1-オクテン、2-オクテン、2-メチル-1-ヘプテン、ジイソブチレン(2,4,4-トリメチル-1-ペンテンおよび2,4,4-トリメチル-1-ペンテン)などのオクテン類;などを挙げることができる。
 炭化水素樹脂中における、炭素数4~8の非環式モノオレフィン単量体単位の含有量は、特に限定されないが、好ましくは0~50質量%であり、より好ましくは8~45質量%、さらに好ましくは10~40質量%、特に好ましくは14~37質量%である。炭素数4~8の非環式モノオレフィン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、転がり抵抗、ウェットグリップ性能および低温性能により優れたものとすることができる。
 なお、炭素数4~8の非環式モノオレフィンとしては、これに該当する各化合物(異性体を含む)の割合は任意の割合でよく、特に限定されないが、少なくとも2-メチル-2-ブテン、イソブチレン、およびジイソブチレンからなる群から選択される少なくとも1種が含まれることが好ましく、炭素数4~8の非環式モノオレフィン中に2-メチル-2-ブテン、イソブチレン、およびジイソブチレンの合計量が占める割合が50質量%以上であることがより好ましい。
 脂環式ジオレフィン単量体単位を形成する脂環式ジオレフィンは、その分子構造中に、2つ以上のエチレン性不飽和結合と非芳香族性の環構造とを有する炭化水素化合物である。脂環式ジオレフィンの具体例としては、シクロペンタジエン、ジシクロペンタジエンなどのシクロペンタジエンの多量体、メチルシクロペンタジエン、メチルシクロペンタジエンの多量体などが挙げられる。
 炭化水素樹脂中における、脂環式ジオレフィン単量体単位の含有量は、特に限定されないが、好ましくは0~10質量%であり、より好ましくは0.03~5質量%、さらに好ましくは0.05~4質量%、特に好ましくは0.08~3質量%である。脂環式ジオレフィン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物を、転がり抵抗、ウェットグリップ性能および低温性能により優れたものとすることができる。
 また、本発明の炭化水素樹脂は、1,3-ペンタジエン単量体単位、炭素数4~6の脂環式モノオレフィン単量体単位、イソプレン単量体単位、炭素数4~8の非環式モノオレフィン単量体単位、および脂環式ジオレフィン単量体単位以外の、その他の単量体単位を含んでいてもよい。
 このようなその他の単量体単位を形成するその他の単量体は、1,3-ペンタジエンなどと付加共重合され得る付加重合性を有する化合物であれば、特に限定されない。このようなその他の単量体としては、たとえば、1,3-ブタジエン、1,2-ブタジエン、1,3-ヘキサジエン、1,4-ペンタジエンなどの1,3-ペンタジエンおよびイソプレン以外の炭素数4~6の不飽和炭化水素;シクロヘプテンなどの炭素数7以上の脂環式モノオレフィン;エチレン、プロピレン、ノネンなどの炭素数4~8以外の非環式モノオレフィン;等が挙げられる。
 炭化水素樹脂中における、その他の単量体単位の含有量は、通常、0質量%~30質量%の範囲であり、好ましくは0~25質量%、より好ましくは0~20質量%である。
 炭化水素樹脂中における、脂肪族単量体単位の含有量は、特に限定されないが、好ましくは50質量%以上であり、より好ましくは60質量%以上、さらに好ましくは70質量%以上、特に好ましくは80質量%以上である。特に、炭化水素樹脂が、脂肪族単量体単位および芳香族単量体単位を含むものである場合における、脂肪族単量体単位の含有量は、特に限定されないが、好ましくは60質量%以上であり、より好ましくは63~90質量%、さらに好ましくは65~85質量%、特に好ましくは68~81質量%である。
(芳香族単量体単位)
 本発明で用いる炭化水素樹脂は、脂肪族単量体単位に加えて、芳香族単量体単位を含むものであってもよい。炭化水素樹脂として、脂肪族単量体単位に加えて、芳香族単量体単位を含むものを用いることにより、得られるゴム架橋物を、転がり抵抗、ウェットグリップ性能により優れたものとすることができる。芳香族単量体単位を形成するための芳香族単量体としては、芳香環を有し、脂肪族単量体と共重合することができるものであればよく、たとえば、芳香族モノオレフィン単量体が挙げられる。また、本発明においては、芳香族モノオレフィン単量体などの芳香族単量体が含まれる混合物を、炭化水素樹脂を製造する際の重合反応系に添加してもよい。この際、混合物に含まれる芳香族単量体は、炭化水素樹脂を構成する単量体単位の成分として用いられる。なお、混合物に含まれる芳香族単量体以外の付加重合性成分も炭化水素樹脂の単量体単位の構成成分として用い、非付加重合性成分は重合時の溶媒として用いるようにすることもできる。このような芳香族単量体が含まれる混合物としては、たとえば、芳香族単量体としてスチレン化合物、インデン化合物などを含むC9留分を好適に用いることができる。
 芳香族モノオレフィン単量体は、その分子構造中にエチレン性不飽和結合1つを有する芳香族化合物である。芳香族モノオレフィンの具体例としては、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルトルエンなどのスチレン化合物;インデン、1-メチルインデンなどのインデン化合物;クマロンなどが挙げられる。
 炭化水素樹脂中における、芳香族モノオレフィン単量体単位の含有量は、特に限定されないが、好ましくは0~40質量%であり、より好ましくは10~37質量%、さらに好ましくは15~35質量%、特に好ましくは19~32質量%である。芳香族モノオレフィン単量体単位の含有量を上記範囲とすることにより、得られるゴム架橋物の転がり抵抗、およびウェットグリップ性能をより適切に高めることができる。
 本発明で用いる炭化水素樹脂の数平均分子量(Mn)は、400~3000の範囲であり、好ましくは500~2000の範囲、より好ましくは700~1300の範囲、さらに好ましくは800~1100の範囲である。また、本発明で用いる炭化水素樹脂の重量平均分子量(Mw)は、700~6000の範囲であり、好ましくは1000~4000の範囲、より好ましくは1400~3000の範囲、さらに好ましくは1600~2500の範囲である。また、本発明で用いる炭化水素樹脂のZ平均分子量(Mz)は、1500~20000の範囲であり、好ましくは2200~10000の範囲、より好ましくは2700~6500の範囲、さらに好ましくは3200~5700の範囲である。
 本発明で用いる炭化水素樹脂の数平均分子量に対する重量平均分子量の比(Mw/Mn)は、1.0~4.0の範囲であり、好ましくは1.2~3.2の範囲、より好ましくは1.5~2.9の範囲、さらに好ましくは1.7~2.6の範囲である。また、本発明で用いる炭化水素樹脂の重量平均分子量に対するZ平均分子量の比(Mz/Mw)は、1.0~3.5の範囲であり、好ましくは1.2~3.2の範囲であり、より好ましくは1.4~2.8の範囲、さらに好ましくは1.6~2.5の範囲である。
 炭化水素樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量に対する重量平均分子量の比(Mw/Mn)および重量平均分子量に対するZ平均分子量の比(Mz/Mw)を上記範囲とすることにより、得られるゴム架橋物を、転がり抵抗、ウェットグリップ性能および低温性能のバランスに優れたものとすることができる。
 炭化水素樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量に対する重量平均分子量の比(Mw/Mn)および重量平均分子量に対するZ平均分子量の比(Mz/Mw)は、テトラヒドロフランを展開溶媒として用い、ゲル・パーミエーション・クロマトグラフィー測定による、ポリスチレン換算の値として求めることができる。
 また、本発明においては、炭化水素樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量に対する重量平均分子量の比(Mw/Mn)および重量平均分子量に対するZ平均分子量の比(Mz/Mw)を上記範囲とすることに加え、炭化水素樹脂の重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)を、0.4~0.8の範囲とするものである。本発明においては、炭化水素樹脂として、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が、0.4~0.8の範囲にあるものを用い、これをジエン系ゴムに配合することで、このようにして得られるゴム組成物を、転がり抵抗、ウェットグリップ性能および低温性能のバランスに優れたゴム架橋物を与えるものとすることができるものである。特に、本発明者が鋭意検討を行ったところ、炭化水素樹脂として、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.4~0.8の範囲であるものを用いることにより、比(Mp/Mw)が1に近い場合と比較して、低分子量成分を比較的多く含むものとすることができ、これにより、転がり抵抗を良好なものとしながら、ウェットグリップ性能および低温性能をより向上させることができ、結果として、転がり抵抗、ウェットグリップ性能および低温性能にバランス良く優れたものとすることがでることを見出したものである。
 重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が低すぎると、転がり抵抗が低下してしまう。一方、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が高すぎると、ウェットグリップ性能および低温性能が低下してしまう。重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)は、0.4~0.8の範囲であればよいが、好ましくは0.4~0.78の範囲、より好ましくは0.41~0.75の範囲、さらに好ましくは0.43~0.72の範囲、特に好ましくは0.47~0.67の範囲、最も好ましくは0.5~0.64の範囲である。なお、炭化水素樹脂のピークトップ分子量(Mp)は、特に限定されないが、好ましくは500~4000の範囲であり、より好ましくは700~2500の範囲、さらに好ましくは1000~1500の範囲である。
 重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)は、テトラヒドロフランを展開溶媒として用い、ゲル・パーミエーション・クロマトグラフィー測定による、ポリスチレン換算の値として、炭化水素樹脂の重量平均分子量(Mw)およびピークトップ分子量(Mp)の値を求め、これらの比(Mp/Mw)を算出することにより求められる。ピークトップ分子量(Mp)は、ゲル・パーミエーション・クロマトグラフィー測定により得られるGPCチャートにおいて、検出値(溶出量)が最大となる分子量であり、Mp/Mwは、このような検出値(溶出量)が最大となる分子量であるピークトップ分子量(Mp)と、重量平均分子量(Mw)との関係を表すものである。Mp/Mwの値が小さい程、低分子量成分が比較的多く含まれる傾向にあり、また、Mp/Mwの値が大きい程、高分子量成分が多く含まれる傾向にある。なお、GPCチャートにおいて、ピークが2つ以上存在する場合には、最も大きなピークに対応する分子量を、ピークトップ分子量(Mp)とする。
 本発明において、炭化水素樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量に対する重量平均分子量の比(Mw/Mn)および重量平均分子量に対するZ平均分子量の比(Mz/Mw)、炭化水素樹脂の重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)は、重合に用いる単量体の種類および量、ならびに重合条件により調整することができる。なかでも、炭化水素樹脂の重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)は、重合に用いる単量体の種類および量を調整する方法や、重合触媒の使用量を調整する方法、重合温度を調整する方法、ならびに、重合触媒を予め揮発性溶媒中に混合する際の混合温度および混合時間を調整する方法を適宜組み合わせる方法により制御することができる。たとえば、重合触媒の使用量が多い程、また、重合温度が高い程、炭化水素樹脂の重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)は、小さな値となる傾向にある。また、重合触媒を予め揮発性溶媒中に混合する際の混合時間が短い程、炭化水素樹脂の重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)は、小さな値となる傾向にある。
 また、本発明で用いる炭化水素樹脂の軟化点は、80~150℃の範囲であり、好ましくは85~145℃の範囲、より90℃~140℃の範囲、さらに好ましくは90~115℃の範囲、特に好ましくは92~105℃である。軟化点を上記範囲とすることにより、ジエン系ゴムとの相溶性を高めることができ、これにより、得られるゴム架橋物の転がり抵抗、ウェットグリップ性能および低温性能を適切に高めることができる。炭化水素樹脂の軟化点は、JIS K6863に従い測定することができる。
<炭化水素樹脂の製造方法>
 本発明で用いる炭化水素樹脂を製造する方法としては、特に限定されないが、炭化水素樹脂を構成するための単量体混合物を、付加重合する方法が挙げられ、たとえば、フリーデルクラフツ型のカチオン重合触媒を用いた付加重合による方法が好適に挙げられる。
 フリーデルクラフツ型のカチオン重合触媒としては、特に限定されないが、アルミニウム、鉄、タンタル、ジルコニウム、スズ、ベリリウム、ホウ素、アンチモン、ガリウム、ビスマス、モリブデンなどのハロゲン化物を挙げることができるが、これらのなかでも、塩化アルミニウム(AlCl)や臭化アルミニウム(AlBr)などのハロゲン化アルミニウムが好適である。フリーデルクラフツ型のカチオン重合触媒の使用量は、重合に使用する単量体混合物100質量部に対し、好ましくは、0.05~10質量部、より好ましくは0.1~5質量部、さらに好ましくは0.5~2.0質量部、特に好ましくは0.7~1.7質量部である。
 また、重合に際しては、触媒活性をより高めることができるという点より、フリーデルクラフツ型のカチオン重合触媒に加えて、ハロゲン化炭化水素を併用してもよい。
 ハロゲン化炭化水素の具体例としては、t-ブチルクロライド、t-ブチルブロマイド、2-クロロ-2-メチルブタン、トリフェニルメチルクロライドなどの3級炭素原子にハロゲン原子が結合したハロゲン化炭化水素;ベンジルクロライド、ベンジルブロマイド、(1-クロロエチル)ベンゼン、アリルクロライド、3-クロロ-1-プロピン、3-クロロ-1-ブテン、3-クロロ-1-ブチン、ケイ皮クロライドなどの炭素-炭素不飽和結合に隣接する炭素原子にハロゲン原子が結合したハロゲン化炭化水素;などが挙げられる。これらのなかでも、触媒活性と取り扱い性とのバランスに優れるという観点より、t-ブチルクロライド、ベンジルクロライドが好ましい。ハロゲン化炭化水素は、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。ハロゲン化炭化水素の使用量は、フリーデルクラフツ型のカチオン重合触媒に対するモル比で、好ましくは0.05~50の範囲、より好ましくは0.1~10の範囲である。
 また、重合反応をより良好に制御する観点からは、重合反応系に揮発性溶媒を添加して、重合反応を行うことが好ましい。揮発性溶媒の種類は、重合反応を阻害しないものであれば特に制限はないが、飽和脂肪族炭化水素または芳香族炭化水素が好適である。飽和脂肪族炭化水素としては、たとえば、n-ペンタン、n-ヘキサン、2-メチルペンタン、3-メチルペンタン、n-ヘプタン、2-メチルヘキサン、3-メチルヘキサン、3-エチルペンタン、2,2-ジメチルペンタン、2,3-ジメチルペンタン、2,4-ジメチルペンタン、3,3-ジメチルペンタン、2,2,3-トリメチルブタン、2,2,4-トリメチルペンタンなどの炭素数5~10の鎖状飽和脂肪族炭化水素;シクロペンタン、シクロヘキサン、シクロヘプタン、シクロオクタンなどの炭素数5~10の環状飽和脂肪族炭化水素;などが挙げられる。芳香族炭化水素としては、たとえば、ベンゼン、トルエン、キシレンなどの炭素数6~10の芳香族炭化水素;などが挙げられる。揮発性溶媒は、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。揮発性溶媒の使用量は、特に限定されないが、重合に使用する単量体混合物100質量部に対して、好ましくは10~1,000質量部、より好ましくは50~500質量部である。
 重合反応を行うに当たり、単量体混合物や重合触媒のそれぞれの成分を重合反応器に添加する順序は特に限定されず、任意の順で添加すればよいが、重合反応を良好に制御するという観点や、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)を制御するという観点より、揮発性溶媒中に、重合触媒を予め添加し、混合することで、重合触媒を揮発性溶媒中に分散させた状態とし、ここに、単量体混合物を重合反応器に添加して、重合反応を開始する方法が好ましい。
 揮発性溶媒中に、重合触媒を予め添加し、混合する際には、揮発性溶媒中において重合触媒の凝集等が部分的に残存するような状態となるような条件とすることが好ましく、混合温度は、好ましくは45~80℃であり、より好ましくは50~70℃であり、混合時間は、好ましくは10秒~4分、より好ましくは30秒~3分である。
 重合反応を行う際の重合温度は、特に限定されないが、好ましくは50~90℃、より好ましくは55~85℃、さらに好ましくは60~78℃である。また、重合反応時間は、適宜選択すればよいが、通常10分~12時間、好ましくは30分~6時間である。
 重合反応は、所望の重合転化率が得られた時点で、メタノール、水酸化ナトリウム水溶液、アンモニア水溶液などの重合停止剤を重合反応系に添加することにより停止することにより、炭化水素樹脂を含む重合体溶液を得ることができる。
 重合後には、重合停止剤を添加して、重合触媒を不活性化した際に生成する、溶媒に不溶な触媒残渣を、濾過などにより除去してもよい。
 また、重合後には、水蒸気蒸留などにより、炭化水素樹脂を含む重合体溶液から、溶媒、未反応の単量体、低分子量のオリゴマー成分等の揮発性有機化合物成分を、除去することが好ましい。
 なお、得られた炭化水素樹脂について、必要に応じて、炭化水素樹脂中の炭素-炭素二重結合を水素化する水素化反応を行うことで、水素化物としてもよい。すなわち、炭化水素樹脂水素化物としてもよい。
 炭化水素樹脂の水素化は、水素化触媒の存在下において、炭化水素樹脂を水素と接触させることにより行うことができる。
 水素化触媒としては、特に限定されないが、ニッケル触媒が好ましい。特に、反応性が高いという観点より、担体としての担持無機化合物に、金属としてのニッケルを担持してなる化合物を主成分として含む触媒が好ましい。担体としての担持無機化合物の具体例としては、シリカ、アルミナ、ボリア、シリカ-アルミナ、珪藻土、白土、粘土、マグネシア、マグネシア-シリカ(シリカ-酸化マグネシウム)、チタニア、ジルコニアなどが挙げられ、これらのなかでも、反応性の観点より、マグネシア-シリカが好ましい。
<ジエン系ゴム>
 本発明のゴム組成物は、上述した炭化水素樹脂に加えて、ジエン系ゴムを含有する。ジエン系ゴムとしては、炭化水素樹脂とともに配合することができるものであれば特に限定されない。このようなジエン系ゴムとしては、たとえば、特開2015-189873号公報に記載のジエン系ゴムを挙げることができ、具体的には、天然ゴム(NR)、イソプレンゴム(IR)、ブタジエンゴム(BR)、スチレン-ブタジエン共重合体ゴム(SBR)、エチレン-プロピレン-ジエンターポリマー(EPDM)等を挙げることができ、なかでも、スチレン-ブタジエン共重合体ゴム、ブタジエンゴム等であることが好ましく、スチレン-ブタジエン共重合体ゴムがより好ましい。なお、ジエン系ゴムのムーニー粘度(ML1+4,100℃)は、特に限定されないが、好ましくは20~90であり、より好ましくは30~80である。ジエン系ゴムが油展ゴムである場合は、その油展ゴムのムーニー粘度が上記範囲内であることが好ましい。また、ジエン系ゴムのガラス転移温度(Tg)は、特に限定されないが、好ましくは-110℃~20℃であり、より好ましくは-90℃~0℃である。ジエン系ゴムとして、このようなゴムを用いることにより、ゴム架橋物を転がり抵抗、ウェットグリップ性能および低温性能のバランスにより優れたものとすることができる。ジエン系ゴムは、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。
 また、本発明で用いるジエン系ゴムは、その分子量やミクロ構造は特に限定されず、アミン、アミド、シリル、アルコキシシリル、カルボキシル、ヒドロキシル基などで末端変性されていても、エポキシ化されていてもよい。また、本発明で用いるジエン系ゴムは、水素化されたものであってもよいが、水素化されていないものであることが好ましい。ジエン系ゴムとして、スチレン-ブタジエン共重合体ゴム、ブタジエンゴム等の、ブタジエン単位を含むジエン系ゴムを用いる場合、ジエン系ゴムにおけるブタジエン単位の含有量は、好ましくは30質量%以上であり、より好ましくは50質量%以上であり、ブタジエン単位中のビニル結合含有量は、特に限定されないが、好ましくは1~90%であり、より好ましくは3~85%、さらに好ましくは5~80%である。
 本発明のゴム組成物における、ジエン系ゴムと上記炭化水素樹脂との配合割合は、ジエン系ゴム100質量部に対して、炭化水素樹脂が1~200質量部配合されていればよく、1~70質量部配合されることが好ましく、3~35質量部配合されることがより好ましく、15~25質量部配合されることがさらに好ましい。炭化水素樹脂の配合量が少なすぎると、得られるゴム架橋物はウェットグリップ性能および低温性能に劣るものとなってしまい、一方、多すぎると、得られるゴム架橋物は転がり抵抗に劣るものとなってしまう。
 本発明のゴム組成物は、ジエン系ゴムおよび上記炭化水素樹脂のみからなるものであってよいが、さらに、他の成分を含有するものであってもよい。本発明のゴム組成物に含有され得る他の成分としては、たとえば、フィラー、シランカップリング剤、架橋剤、架橋促進剤、架橋活性化剤、老化防止剤、酸化防止剤、活性剤、プロセスオイル、可塑剤、滑剤、粘着付与剤などを挙げることができ、これらその他の配合剤をそれぞれ必要量配合できる。
 本発明のゴム組成物に配合され得るフィラーとしては、ゴム組成物に一般的に使用されるものを用いることができ、たとえば、カーボンブラック、クレー、珪藻土、シリカ、タルク、硫酸バリウム、炭酸カルシウム、炭酸マグネシウム、金属酸化物、マイカ、水酸化アルミニウム、各種の金属粉、木粉、ガラス粉、セラミックス粉、ガラスバルーン、シリカバルーン等の無機中空フィラー;ポリスチレン、ポリフッ化ビニリデン、ポリフッ化ビニリデン共重合体等の有機中空フィラー等を挙げることができる。
 シリカとしては、たとえば、乾式法ホワイトカーボン、湿式法ホワイトカーボン、コロイダルシリカ、沈降シリカなどが挙げられる。これらの中でも、含水ケイ酸を主成分とする湿式法ホワイトカーボンが好ましい。また、カーボンブラック表面にシリカを担持させたカーボン-シリカデュアル・フェイズ・フィラーを用いてもよい。これらのシリカは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。用いるシリカの窒素吸着比表面積(ASTM D3037-81に準じBET法で測定される)は、好ましくは100~400m/g、より好ましくは150~350m/gである。また、シリカのpHは、pH5~10であることが好ましい。
 本発明のゴム組成物におけるシリカの配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは10~200質量部であり、より好ましくは20~150質量部、さらに好ましくは30~75質量部である。シリカの配合量を上記範囲とすることにより、得られるゴム架橋物を転がり抵抗、ウェットグリップ性能および低温性能により優れたものとすることができる。
 フィラーとして、シリカを用いる場合には、シランカップリング剤を併用することが好ましい。シランカップリング剤としては、たとえば、ビニルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、N-(β-アミノエチル)-γ-アミノプロピルトリメトキシシラン、3-オクタチオ-1-プロピル-トリエトキシシラン、ビス(3-(トリエトキシシリル)プロピル)ジスルフィド、ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド、γ-トリメトキシシリルプロピルジメチルチオカルバミルテトラスルフィド、およびγ-トリメトキシシリルプロピルベンゾチアジルテトラスルフィドなどを挙げることができる。これらのシランカップリング剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。シランカップリング剤の配合量は、シリカ100質量部に対して、好ましくは0.1~30質量部、より好ましくは1~15質量部である。
 カーボンブラックとしては、たとえば、ファーネスブラック、アセチレンブラック、サーマルブラック、チャンネルブラック、およびグラファイト等を挙げることができる。これらのカーボンブラックは、それぞれ単独で、あるいは2種以上を組み合わせて用いることができる。カーボンブラックの配合量は、ゴム組成物中のゴム成分100質量部に対して、通常、120質量部以下である。
 また、フィラーは、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。たとえば、フィラーとして、シリカおよびカーボンブラックを混合して用いることができる。
 シリカおよびカーボンブラック以外のフィラーの含有量としては、本発明の効果が得られる範囲であればよく、たとえば、ゴム組成物中のゴム成分100質量部に対して120質量部以下とすることができる。
 架橋剤としては、特に限定されないが、たとえば、硫黄、ハロゲン化硫黄、有機過酸化物、キノンジオキシム類、有機多価アミン化合物、メチロール基を有するアルキルフェノール樹脂などが挙げられる。これらの中でも、硫黄が好ましく使用される。架橋剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~5質量部、特に好ましくは1~4質量部である。
 架橋剤として、硫黄または含硫黄化合物を用いる場合には、架橋促進剤および架橋活性化剤を併用することが好ましい。架橋促進剤としては、たとえば、スルフェンアミド系架橋促進剤;グアニジン系架橋促進剤;チオウレア系架橋促進剤;チアゾール系架橋促進剤;チウラム系架橋促進剤;ジチオカルバミン酸系架橋促進剤;キサントゲン酸系架橋促進剤;などが挙げられる。これらのなかでも、スルフェンアミド系架橋促進剤を含むものが好ましい。これらの架橋促進剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋促進剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.1~15質量部、より好ましくは0.5~5質量部、特に好ましくは1~4質量部である。
 架橋活性化剤としては、たとえば、ステアリン酸などの高級脂肪酸;酸化亜鉛;などを挙げることができる。これらの架橋活性化剤は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。架橋活性化剤の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは0.05~20質量部、特に好ましくは0.5~15質量部である。
 また、本発明のゴム組成物には、所望により、アミン系安定剤、フェノール系安定剤、リン系安定剤、イオウ系安定剤などの老化防止剤を添加してもよい。老化防止剤の添加量は、その種類などに応じて適宜決定すればよい。
 また、本発明のゴム組成物には、必要に応じて、酸化防止剤を添加してもよい。酸化防止剤としては、特に限定されないが、たとえば、ペンタエリスリトールテトラキス[3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート]、オクタデシル-3-(3,5-ジ-t-ブチル-4-ヒドロキシフェニル)プロピオネート、2,6-ジ-t-ブチル-p-クレゾール、ジ-t-ブチル-4-メチルフェノールなどのヒンダードフェノール系化合物;ジラウリルチオプロピオネートなどのチオジカルボキシレートエステル類;トリス(ノニルフェニル)ホスファイトなどの亜燐酸塩類;などが挙げられる。酸化防止剤は、1種単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。酸化防止剤の含有量は、特に限定されないが、ゴム組成物中のゴム成分100質量部に対して、好ましくは10質量部以下であり、より好ましくは0.05~5質量部である。
 また、本発明のゴム組成物には、ジエン系ゴムおよび上記炭化水素樹脂以外に樹脂を配合してもよい。樹脂を配合することにより、ゴム組成物に粘着性を付与させたり、ゴム組成物中の充填剤の分散性を高めることができる。その結果、得られるゴム架橋物の転がり抵抗、ウェットグリップ性能および低温性能のさらなる向上が期待できる。また、可塑剤と同様な効果として、ゴム組成物の加工性を向上させることもできる。樹脂としては、たとえば、C9系石油樹脂、ジシクロペンタジエン系樹脂、テルペン系樹脂、テルペンフェノール樹脂、芳香族変性テルペン樹脂、アルキルフェノール-アセチレン樹脂、ロジン系樹脂、ロジンエステル樹脂、インデン系樹脂、インデンを含有するC9系樹脂、α-メチルスチレン・インデン共重合体樹脂、クマロン-インデン樹脂、ファルネセン系樹脂、ポリリモネン樹脂などが挙げられる。これらの樹脂は、変性されていたり、水素添加されていたりするものであってもよい。これらの樹脂は、それぞれ単独で、あるいは2種以上を組み合わせて用いられる。樹脂の配合量は、ゴム組成物中のゴム成分100質量部に対して、好ましくは25質量部以下である。
 本発明のゴム組成物の製造方法は、常法に従って各成分を混練すればよく、たとえば、架橋剤や架橋促進剤等の熱に不安定な成分を除く成分と、ジエン系ゴムと、炭化水素樹脂とを混練後、その混練物に架橋剤や架橋促進剤等の熱に不安定な成分を混練して目的のゴム組成物を得ることができる。熱に不安定な成分を除く成分と、ジエン系ゴムと、炭化水素樹脂とを混練する際の混練温度は、好ましくは80~200℃、より好ましくは120~180℃であり、その混練時間は、好ましくは30秒~30分である。また、その混練物と熱に不安定な成分との混練は、好ましくは100℃以下、より好ましくは80℃以下まで冷却した後に行われる。
 本発明のゴム組成物を用いることにより、転がり抵抗、ウェットグリップ性能および低温性能のバランスに優れたゴム架橋物を得ることができる。本発明のゴム組成物は、このような特性を活かし、たとえば、タイヤの、トレッド(キャップトレッド、ベーストレッド)、カーカス、サイドウォール、ビード部などのタイヤ各部位の材料に用いることが好ましく、なかでも、オールシーズンタイヤ、高性能タイヤ、およびスタッドレスタイヤなどの各種タイヤにおいて、トレッド、カーカス、サイドウォール、およびビード部などのタイヤ各部位に好適に用いることができ、たとえば、タイヤのトレッド用として、特に好適に用いることができ、なかでも特に、キャップトレッドに用いることが好ましい。
<ゴム架橋物>
 本発明のゴム架橋物は、上述した本発明のゴム組成物を架橋してなるものである。
 本発明のゴム架橋物は、本発明のゴム組成物を用い、たとえば、所望の形状に対応した成形機、たとえば、押出機、射出成形機、圧縮機、ロールなどにより成形を行い、加熱することにより架橋反応を行い、ゴム架橋物として形状を固定化することにより製造することができる。この場合においては、予め成形した後に架橋しても、成形と同時に架橋を行ってもよい。成形温度は、通常、10~200℃、好ましくは25~120℃である。架橋温度は、通常、100~200℃、好ましくは130~190℃であり、架橋時間は、通常、1分~24時間、好ましくは2分~12時間、特に好ましくは3分~6時間である。
 また、ゴム架橋物の形状、大きさ等によっては、表面が架橋していても内部まで十分に架橋していない場合があるので、さらに加熱して二次架橋を行ってもよい。
 加熱方法としては、プレス加熱、スチーム加熱、オーブン加熱、熱風加熱等のゴム組成物の架橋に用いられる一般的な方法を適宜選択すればよい。
 このようにして得られる本発明のゴム架橋物は、上述した本発明のゴム組成物を用いて得られるものであるため、転がり抵抗、ウェットグリップ性能および低温性能のバランスに優れるものである。
 本発明のゴム架橋物は、その優れた転がり抵抗、ウェットグリップ性能および低温性能を活かし、たとえば、タイヤにおいて、トレッド(キャップトレッド、ベーストレッド)、カーカス、サイドウォール、ビード部等のタイヤ各部位の材料に用いることが好ましく、なかでも、オールシーズンタイヤ、高性能タイヤ、およびスタッドレスタイヤ等の各種タイヤにおいて、トレッド、カーカス、サイドウォール、およびビード部等のタイヤ各部位に好適に用いることができ、たとえば、タイヤのトレッド用として、特に好適に用いることができ、なかでも特に、キャップトレッドに用いることが好ましい。
 次に、本発明の空気入りタイヤについて説明する。本発明の空気入りタイヤは、上述のゴム組成物をトレッドに使用したことを特徴とするものである。
 上記トレッドは、上述のゴム組成物を使用したもの、すなわち、上記ゴム組成物を用いて形成されたものであり、通常、上述した本発明のゴム組成物を架橋してなる本発明のゴム架橋物を含むものである。
 上記空気入りタイヤは、そのトレッドが上記ゴム組成物を用いて形成されたものであればよく、他の部位も上記ゴム組成物を用いて形成されたものであってもよい。
 上記ゴム組成物を用いて形成されるトレッドは、トレッドの一部であってもよくトレッドの全体であってもよいが、少なくともキャップトレッドを含むことが好ましい。
 また、本発明の空気入りタイヤの製造方法としては、上記組成物を用いて形成されたトレッドを有する空気入りタイヤを製造できる方法であればよく、公知の空気入りタイヤの製造方法を用いることができる。
 以下に、実施例および比較例を挙げて、本発明をさらに具体的に説明するが、本発明は、これらの実施例のみに限定されるものではない。なお、「部」および「%」は、特に断りのない限り質量基準である。
 本実施例および比較例において行った試験方法は以下のとおりである。
〔炭化水素樹脂の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、ピークトップ分子量(Mp)、分子量分布(Mw/Mn、Mz/Mw)、重量平均分子量(Mw)とピークトップ分子量(Mp)との比(Mp/Mw)〕
 炭化水素樹脂について、ゲル・パーミエーション・クロマトグラフィー分析し、標準ポリスチレン換算値の数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)およびピークトップ分子量(Mp)を求め、また、これらの結果に基づき、分子量分布(Mw/Mn、Mz/Mw)、および重量平均分子量(Mw)とピークトップ分子量(Mp)との比(Mp/Mw)を求めた。なお、ゲル・パーミエーション・クロマトグラフィー分析は、測定装置として、東ソー社製「HLC-8320GPC」を使用し、カラムは東ソー社製「TSKgel SuperMultiporeHZ」を3本連結したものを用い、テトラヒドロフランを溶媒として、40℃、1.0mL/minの流量で測定した。
〔炭化水素樹脂の軟化点〕
 炭化水素樹脂について、JIS K6863に従い測定した。
〔ゴム組成物のムーニー粘度(ML1+4)〕
 ゴム組成物について、JIS K 6300-1:2001に従い、以下の条件でムーニー粘度(ML1+4)を測定した。ムーニー粘度の値が小さいほど、加工性に優れると判断できる。
・試験温度:100℃
・ロータの種類:L形
・使用試験機:島津製作所社製島津ムーニービスコメーターSMV-300J
〔ゴム架橋物の引張強さ(MPa)および伸び(%)〕
 試料となるゴム架橋物の試験片について、JIS K 6251:2010に従い、以下の条件で引張強さ(tensile stress(MPa))および伸び(elongation(%))を測定した。数値が大きいほど、引張強さおよび伸びに優れると判断できる。
・試験片作製方法:プレス架橋によりシート作製後、打抜き加工
・試験片形状:ダンベル状3号形
・試験片採取方向:列理に対し平行方向
・試験片数:3
・測定温度:23℃
・試験速度:500mm/min
・使用試験機:ALPHA TECHNOLOGIES社製TENSOMETER 10k
・試験機容量:ロードセル式 1kN
〔-25℃における貯蔵弾性率E’〕
 試料となるゴム架橋物の試験片について、JIS K 7244-4に従い、以下の測定条件で、動的歪み0.5%、10Hzの条件で-25℃における貯蔵弾性率E’を測定した。この特性については、実施例1、比較例1,2は、比較例1(基準サンプル)を100とする指数で示し、実施例2~4、比較例3~5は、比較例3(基準サンプル)を100とする指数で示した。-25℃における貯蔵弾性率E’が低いほど、低温性能に優れると判断できる。
測定項目:動的貯蔵弾性率E’
・試料作製方法:シートより打抜き加工
・試験片形状:長さ50mm×幅2mm×厚さ2mm
・試験片数:1
・クランプ間距離:20mm
〔損失正接tanδ〕
 試料となるゴム架橋物の試験片について、JIS K 7244-4に従い、以下の測定条件で、動的歪み0.5%、10Hzの条件で0℃での損失正接tanδ、および、動的歪み2.0%、10Hzの条件で60℃での損失正接tanδを測定した。この特性については、実施例1、比較例1,2は、比較例1(基準サンプル)を100とする指数で示し、実施例2~4、比較例3~5は、比較例3(基準サンプル)を100とする指数で示した。0℃での損失正接tanδが高いほど、ウェットグリップ性能に優れると判断でき、60℃での損失正接tanδが低いほど、転がり抵抗に優れる(60℃での損失正接tanδが低いほど、転がり抵抗が低い)と判断できる。
測定項目:動的貯蔵弾性率E’
    :動的損失弾性率E”
    :損失正接tanδ
・試料作製方法:シートより打抜き加工
・試験片形状:長さ50mm×幅2mm×厚さ2mm
・試験片数:1
・クランプ間距離:20mm
〔実施例1〕
(炭化水素樹脂の製造)
 重合反応器に、炭化水素溶媒としてのシクロペンタン52.7部を仕込み、70℃に昇温した後、重合触媒としての塩化アルミニウム1.0部を添加し、温度(70℃)を維持した状態のまま、2分間混合することで、シクロペンタン中に、塩化アルミニウムを、一部凝集が残存するような状態で分散させた。次いで、2分間の混合を終了した後、ここに、1,3-ペンタジエン48.2部、イソプレン0.3部、シクロペンテン17.0部、イソブチレン33.0部、ジイソブチレン1.0部、ジシクロペンタジエン0.3部、C4-C6不飽和炭化水素0.2部、C4-C6飽和炭化水素15.8部およびトルエン0.1部からなる混合物を、60分間に亘り温度(70℃)を維持して、重合反応器に連続的に添加しながら重合を行った。その後、水酸化ナトリウム水溶液を重合反応器に添加して、重合反応を停止した。なお、重合反応時の重合反応器中の成分の種類および量を表1にまとめて示した。そして、重合停止により生成した沈殿物をろ過により除去することで、炭化水素樹脂および未反応単量体等を含む重合体溶液を得た。次いで、重合体溶液を蒸留釜に仕込み、窒素雰囲気下で加熱し、重合溶媒と未反応単量体を除去し、炭化水素樹脂とした。なお、未反応単量体の量は極少量であったため、得られた炭化水素樹脂を構成する単量体組成は、重合に使用した単量体組成とほぼ同様であると判断できる(後述する実施例2~4、比較例1~5においても同様。)。そして、得られた炭化水素樹脂について、上記方法にしたがって、数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、ピークトップ分子量(Mp)、分子量分布(Mw/Mn、Mz/Mw)、重量平均分子量(Mw)とピークトップ分子量(Mp)との比(Mp/Mw)、および軟化点の測定を行った。結果を表1に示す。
(ゴム組成物の製造)
 バンバリー型ミキサー中で、溶液重合スチレンブタジエンゴム(SBR)(商品名「Nipol NS612」、ZSエラストマー社製、スチレン単量体単位含有量15重量%、ブタジエン単位部分のビニル結合含有量30%、ムーニー粘度(ML1+4,100℃)62、ガラス転移温度(Tg)-65℃、伸展油は含有しない)100部を30秒素練りし、次いでシリカ(東ソー・シリカ社製、商品名「Nipsil AQ」)46.6部、カーボンブラック(キャボットジャパン社製、商品名「N339」)5部、シランカップリング剤:ビス(3-(トリエトキシシリル)プロピル)テトラスルフィド(テグッサ社製、商品名「Si69」)6部、および上記にて得られた炭化水素樹脂20部を添加して、90秒混練後、シリカ(ローディア社製、商品名「Zeosil1165MP」)23.4部、酸化亜鉛3部、ステアリン酸2部、および老化防止剤:N-フェニル-N’-(1,3-ジメチルブチル)-p-フェニレンジアミン(大内新興化学工業社製、商品名「ノクラック6C」)2部を添加し、さらに90秒間混練し、次いで、プロセスオイル(新日本石油社製、商品名「アロマックス T-DAE」)10部を投入した。その後、90℃を開始温度として、145~155℃で60秒間以上混練(一次練り)した後、ミキサーから混練物を排出させた。
 得られた混練物を、室温まで冷却した後、再度バンバリー型ミキサー中で、90℃を開始温度として2分間混練(二次練り)した後、ミキサーから混練物を排出させた。混練終了時の混練物の温度は145℃であった。
 次いで、50℃の2本のロールで、得られた混練物に、硫黄1.7部、架橋促進剤:N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド(CBS 商品名「ノクセラーCZ-G」、大内新興化学工業社製)1.8部、およびジフェニルグアニジン(DPG 商品名「ノクセラーD」、大内新興化学工業社製)1.7部を加えてこれらを混練(架橋剤混練り)した後、シート状のゴム組成物を取り出した。そして、得られたゴム組成物について、ムーニー粘度(ML1+4)の測定を行った。結果を表2に示す。
 なお、一次練り、二次練り、および架橋剤混練りの混練条件は、以下に示す条件とした。
(一次練りおよび二次練りの混練条件)
・試験機:東洋精機製作所社製ラボプラストミル バンバリー型ミキサーB-600
・充填率:70~75vol%
・ロータ回転数:50rpm
・試験開始設定温度:90℃
(架橋剤混練りの混練条件)
・試験機:池田機械工業社製電気加熱式高温ロール機
・ロールサイズ:6φ×16
・前ロール回転数:24rpm
・前後ロール回転比:1:1.22
・ロール温度:50±5℃
・切り返し回数:左右2回ずつ
・丸め通し幅:ロール間隔約0.8mm
・丸め通し回数:5回
(ゴム架橋物の製造)
 そして、上記にて得られたゴム組成物を、プレス圧力約8MPa、プレス温度160℃で40分間プレス架橋し、その後さらに23℃の恒温室で一晩熟成した後、150mm×150mm×厚さ2mmのゴム架橋物の試験片を作製した。得られたゴム架橋物について、引張強さ(MPa)、伸び(%)、-25℃における貯蔵弾性率E’、および損失正接tanδ(0℃、60℃)の測定を行った。結果を表2に示す。
〔比較例1,2〕
(炭化水素樹脂の製造)
 重合反応器に添加する成分の種類および量、重合触媒としての塩化アルミニウムを混合する際の混合温度および混合時間、ならびに、重合温度を下記表1に示すとおりにそれぞれ変更したこと以外は、実施例1と同様にして、比較例1,2の炭化水素樹脂をそれぞれ得た。そして、得られた炭化水素樹脂について、実施例1と同様に測定を行った。結果を表1に示す。
(ゴム組成物、ゴム架橋物の製造)
 上記にて得られた炭化水素樹脂を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物を得て、同様に測定を行った。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
〔実施例2~4〕
(炭化水素樹脂の製造)
 重合反応器に添加する成分の種類および量、重合触媒としての塩化アルミニウムを混合する際の混合温度および混合時間、ならびに、重合温度を下記表3に示すとおりにそれぞれ変更したこと以外は、実施例1と同様にして、実施例2~4の炭化水素樹脂をそれぞれ得た。なお、実施例1に記載のない、C9留分およびスチレンは、1,3-ペンタジエン等と共に混合し、重合に供した。なお、C9留分は、芳香族単量体として、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルトルエンおよびインデンを主として含有するものであり、表3中には、芳香族単量体換算での使用量を示した。そして、得られた炭化水素樹脂について、実施例1と同様に測定を行った。結果を表3に示す。
(ゴム組成物、ゴム架橋物の製造)
 上記にて得られた炭化水素樹脂を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物を得て、同様に測定を行った。結果を表4に示す。
〔比較例3~5〕
(炭化水素樹脂の製造)
 重合反応器に添加する成分の種類および量、重合触媒としての塩化アルミニウムを混合する際の混合温度および混合時間、ならびに、重合温度を下記表3に示すとおりにそれぞれ変更したこと以外は、実施例1と同様にして、比較例3~5の炭化水素樹脂をそれぞれ得た。なお、実施例1に記載のない、C9留分およびスチレンは、1,3-ペンタジエン等と共に混合し、重合に供した。なお、C9留分は、芳香族単量体として、スチレン、α-メチルスチレン、β-メチルスチレン、ビニルトルエンおよびインデンを主として含有するものであり、表3中には、芳香族単量体換算での使用量を示した。そして、得られた炭化水素樹脂について、実施例1と同様に測定を行った。結果を表3に示す。
(ゴム組成物、ゴム架橋物の製造)
 上記にて得られた炭化水素樹脂を用いた以外は、実施例1と同様にして、ゴム組成物、およびゴム架橋物を得て、同様に測定を行った。結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表1、表2に示す実施例1と比較例1,2との結果、表3、表4に示す実施例2~4と比較例3~5との結果より、ゴム組成物に対し、炭化水素樹脂として、数平均分子量(Mn)、重量平均分子量(Mw)、Z平均分子量(Mz)、数平均分子量に対する重量平均分子量の比(Mw/Mn)、重量平均分子量に対するZ平均分子量の比(Mz/Mw)、および軟化点が本発明所定の範囲にあり、かつ、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.4~0.8の範囲にある炭化水素樹脂を配合してなるゴム組成物によれば、これを用いて得られるゴム架橋物は、-25℃における貯蔵弾性率E’が低く、低温性能に優れ、また、0℃での損失正接tanδが高く、ウェットグリップ性能に優れ、しかも、60℃での損失正接tanδも低く抑えられており、転がり抵抗が低いものであり、低温性能、ウェットグリップ性能、および転がり抵抗がバランスして優れたものであった(実施例1~4)。
 一方、炭化水素樹脂として、重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.8を超えるものを使用した場合には、得られるゴム架橋物は、-25℃における貯蔵弾性率E’が高く、低温性能に劣るとともに、0℃での損失正接tanδが低く、ウェットグリップ性能にも劣るものであった(比較例1~3,5)。
 また、炭化水素樹脂として、重量平均分子量に対するZ平均分子量の比(Mz/Mw)が高すぎるものを使用した場合には、得られるゴム架橋物は、-0℃での損失正接tanδが低く、ウェットグリップ性能に劣るとともに、60℃での損失正接tanδが高く、転がり抵抗が高いものであった(比較例4)。

Claims (8)

  1.  ジエン系ゴムおよび炭化水素樹脂を含有するゴム組成物であって、
     前記炭化水素樹脂の含有量が、前記ジエン系ゴム100質量部に対して1~200質量部であり、
     前記炭化水素樹脂は、
     脂肪族単量体単位、または脂肪族単量体単位および芳香族単量体単位を含むものであり、
     数平均分子量(Mn)が400~3000の範囲であり、
     重量平均分子量(Mw)が700~6000の範囲であり、
     Z平均分子量(Mz)が1500~20000の範囲であり、
     数平均分子量に対する重量平均分子量の比(Mw/Mn)が1.0~4.0の範囲であり、
     重量平均分子量に対するZ平均分子量の比(Mz/Mw)が1.0~3.5の範囲であり、
     重量平均分子量(Mw)に対するピークトップ分子量(Mp)の比(Mp/Mw)が0.4~0.8の範囲であり、
     軟化点温度が80~150℃の範囲である、
     ゴム組成物。
  2.  前記炭化水素樹脂は、
     1,3-ペンタジエン単量体単位1~70質量%、
     炭素数4~6の脂環式モノオレフィン単量体単位1~30質量%、
     イソプレン単量体単位0~15質量%、
     炭素数4~8の非環式モノオレフィン単量体単位0~50質量%、
     脂環式ジオレフィン単量体単位0~10質量%、および
     芳香族モノオレフィン単量体単位0~40質量%を含む、
     請求項1に記載のゴム組成物。
  3.  前記炭化水素樹脂が、水素化物である請求項1または2に記載のゴム組成物。
  4.  さらにフィラーを含有する、請求項1~3のいずれかに記載のゴム組成物。
  5.  さらに架橋剤を含有する、請求項1~4のいずれかに記載のゴム組成物。
  6.  前記ジエン系ゴムとして、スチレン-ブタジエン共重合体ゴムまたはブタジエンゴムを含有する、請求項1~5のいずれかに記載のゴム組成物。
  7.  請求項1~6のいずれかに記載のゴム組成物を架橋してなるゴム架橋物。
  8.  請求項1~6のいずれかに記載のゴム組成物または請求項6に記載のゴム架橋物をトレッドに使用した空気入りタイヤ。
PCT/JP2022/018478 2021-04-21 2022-04-21 ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ WO2022225027A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280028666.0A CN117157352A (zh) 2021-04-21 2022-04-21 橡胶组合物以及使用其的橡胶交联物和充气轮胎
JP2023515522A JPWO2022225027A1 (ja) 2021-04-21 2022-04-21
EP22791798.6A EP4328264A1 (en) 2021-04-21 2022-04-21 Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition
US18/554,992 US20240191066A1 (en) 2021-04-21 2022-04-21 Rubber composition, and rubber crosslinked product and pneumatic tire using said rubber composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071731 2021-04-21
JP2021-071731 2021-04-21

Publications (1)

Publication Number Publication Date
WO2022225027A1 true WO2022225027A1 (ja) 2022-10-27

Family

ID=83722349

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/018478 WO2022225027A1 (ja) 2021-04-21 2022-04-21 ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ

Country Status (5)

Country Link
US (1) US20240191066A1 (ja)
EP (1) EP4328264A1 (ja)
JP (1) JPWO2022225027A1 (ja)
CN (1) CN117157352A (ja)
WO (1) WO2022225027A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241965A (ja) 2009-04-06 2010-10-28 Bridgestone Corp ゴム組成物およびそれを用いたタイヤ
JP2015189873A (ja) 2014-03-28 2015-11-02 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
JP2018002861A (ja) * 2016-06-30 2018-01-11 日本ゼオン株式会社 炭化水素樹脂およびタイヤ用エラストマー組成物
WO2018101360A1 (ja) * 2016-12-01 2018-06-07 日本ゼオン株式会社 ゴム組成物および空気入りタイヤ
JP2020070329A (ja) * 2018-10-30 2020-05-07 日本ゼオン株式会社 ゴム組成物およびそれを用いた空気入りタイヤ

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010241965A (ja) 2009-04-06 2010-10-28 Bridgestone Corp ゴム組成物およびそれを用いたタイヤ
JP2015189873A (ja) 2014-03-28 2015-11-02 横浜ゴム株式会社 ゴム組成物およびそれを用いた空気入りタイヤ
JP2018002861A (ja) * 2016-06-30 2018-01-11 日本ゼオン株式会社 炭化水素樹脂およびタイヤ用エラストマー組成物
WO2018101360A1 (ja) * 2016-12-01 2018-06-07 日本ゼオン株式会社 ゴム組成物および空気入りタイヤ
JP2020070329A (ja) * 2018-10-30 2020-05-07 日本ゼオン株式会社 ゴム組成物およびそれを用いた空気入りタイヤ

Also Published As

Publication number Publication date
EP4328264A1 (en) 2024-02-28
CN117157352A (zh) 2023-12-01
JPWO2022225027A1 (ja) 2022-10-27
US20240191066A1 (en) 2024-06-13

Similar Documents

Publication Publication Date Title
US10137733B2 (en) Pneumatic tire
JP7081495B2 (ja) ゴム組成物および空気入りタイヤ
JP6729085B2 (ja) 炭化水素樹脂およびタイヤ用エラストマー組成物
JP7255137B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
TW201945425A (zh) 橡膠用添加劑、未交聯橡膠組合物、交聯橡膠及輪胎
JP6954305B2 (ja) ゴム組成物および空気入りタイヤ
JP7255136B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP6780325B2 (ja) 変性炭化水素樹脂およびタイヤ用エラストマー組成物
JP7081494B2 (ja) ゴム組成物および空気入りタイヤ
JP7452431B2 (ja) ゴム組成物およびそれを用いた空気入りタイヤ
JP7293892B2 (ja) ゴム組成物
WO2022225027A1 (ja) ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ
JP7081496B2 (ja) ゴム組成物および空気入りタイヤ
JP6828737B2 (ja) シラン変性炭化水素樹脂およびタイヤ用エラストマー組成物
WO2021079844A1 (ja) ゴム組成物ならびにそれを用いたゴム架橋物および空気入りタイヤ
JP2020143199A (ja) タイヤ用ゴム組成物及び空気入りタイヤ
JP6954304B2 (ja) ゴム組成物および空気入りタイヤ
JP6954303B2 (ja) ゴム組成物および空気入りタイヤ
EP4316869A1 (en) Rubber composition for tire and tire
EP4289633A1 (en) Tire
JP2024067610A (ja) ゴム組成物
JP2023096737A (ja) タイヤ
JP2024097293A (ja) タイヤ
JP2022187976A (ja) タイヤ用ゴム組成物、トレッドゴム及びタイヤ
JP2023055085A (ja) 脂肪族炭化水素-芳香族化合物-ジシクロペンタジエン類共重合石油樹脂及びゴム組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791798

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023515522

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18554992

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022791798

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022791798

Country of ref document: EP

Effective date: 20231121