WO2018021233A1 - 新規キサンテン保護剤 - Google Patents

新規キサンテン保護剤 Download PDF

Info

Publication number
WO2018021233A1
WO2018021233A1 PCT/JP2017/026670 JP2017026670W WO2018021233A1 WO 2018021233 A1 WO2018021233 A1 WO 2018021233A1 JP 2017026670 W JP2017026670 W JP 2017026670W WO 2018021233 A1 WO2018021233 A1 WO 2018021233A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
carbon atoms
hydrogen atom
xtn
linear
Prior art date
Application number
PCT/JP2017/026670
Other languages
English (en)
French (fr)
Inventor
矢野 真也
利裕 森
秀樹 窪田
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to KR1020197000655A priority Critical patent/KR102434863B1/ko
Priority to CN201780042906.1A priority patent/CN109476684B/zh
Priority to EP17834239.0A priority patent/EP3489245B1/en
Priority to ES17834239T priority patent/ES2830974T3/es
Priority to JP2017557218A priority patent/JP6283775B1/ja
Priority to US16/319,581 priority patent/US10508124B2/en
Publication of WO2018021233A1 publication Critical patent/WO2018021233A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • C07F7/1872Preparation; Treatments not provided for in C07F7/20
    • C07F7/1892Preparation; Treatments not provided for in C07F7/20 by reactions not provided for in C07F7/1876 - C07F7/1888
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B51/00Introduction of protecting groups or activating groups, not provided for in the preceding groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/062General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for alpha- or omega-carboxy functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/063General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for alpha-amino functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/064General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for omega-amino or -guanidino functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/065General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for hydroxy functions, not being part of carboxy functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/066General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for omega-amido functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/067General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for sulfur-containing functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/08General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using activating agents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a novel xanthene compound useful as a protective agent for carboxy group, hydroxyl group, diol group, amino group, amide group or mercapto group.
  • an object of the present invention is to provide a protecting group that facilitates separation and purification after the reaction without solidification or insolubilization by improving the solubility of the functional group-protected compound in an organic solvent. It is in.
  • the present inventor has developed a trialkylsilyloxy group at the terminal via an oxyalkylene group on the benzene ring of the xanthene compound.
  • a compound having a functional group protected with this xanthene compound is difficult to precipitate in an organic solvent, is easily separated and purified by liquid-liquid phase separation, and is found to be useful as a protective agent. Completed the invention.
  • the present invention provides the following [1] to [12].
  • Y is —OR 17 (wherein R 17 represents a hydrogen atom or an active ester-type protecting group), —NHR 18 (wherein R 18 is a hydrogen atom or a straight or branched chain having 1 to 6 carbon atoms) A chain alkyl group or an aralkyl group), an azide, a halogen atom, or a carbonyl group integrated with a methylene group, wherein at least one of R 1 to R 8 is represented by the formula (2)
  • R 9 represents a linear or branched alkylene group having 1 to 16 carbon atoms
  • X represents O or CONR 19 (wherein R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms);
  • A is the formula (3), (4), (5), (6), (7), (8), (9), (10), (11), (12) or (13)
  • R 10 , R 11 and R 12 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms, or an aryl group which may have a substituent;
  • R 13 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms, and
  • R 14 , R 15 and R 16 each represents a linear or branched alkylene group having 1 to 3 carbon atoms
  • Y is —OR 17 (where R 17 represents a hydrogen atom or an active ester-type protecting group), —NHR 18 (where R 18 is a hydrogen atom or a straight or branched chain having 1 to 6 carbon atoms)
  • a xanthene compound of [1] which is an azide or a halogen atom.
  • Y is —OR 17 (where R 17 represents a hydrogen atom or an active ester-type protecting group), —NHR 18 (where R 18 is a hydrogen atom, or a straight or branched chain having 1 to 6 carbon atoms)
  • Y is —OR 17 (where R 17 represents a hydrogen atom), —NHR 18 (where R 18 represents a hydrogen atom), or a carbonyl group integrated with a methylene group [1] The xanthene compounds described.
  • a method for producing a compound which is carried out using a carboxy group, hydroxyl group, diol group, amino group, amide group or mercapto group protective agent comprising the xanthene compound according to any one of [1] to [9].
  • a method for producing a peptide which is carried out using a carboxy group, hydroxyl group, diol group, amino group, amide group or mercapto group protective agent comprising the xanthene compound according to any one of [1] to [9].
  • the compound in which the functional group is protected by using the xanthene compound (1) of the present invention is liable to be liquid and has improved solubility in a solvent. Therefore, separation after the condensation reaction can be performed by an operation such as liquid-liquid phase separation. Easy to purify. In the production process of various chemical substances such as pharmaceuticals and agricultural chemicals, when insolubilization and solidification of raw materials and intermediates are hindered, these can be achieved by binding the xanthene compound (1) of the present invention to the raw materials and intermediate compounds.
  • the xanthene compound of the present invention represented by the general formula (1) is characterized in that at least one of R 1 to R 8 has the structure of the formula (2).
  • Y represents —OR 17 (wherein R 17 represents a hydrogen atom or an active ester-type protecting group), —NHR 18 (where R 18 represents a hydrogen atom or a straight chain having 1 to 6 carbon atoms).
  • R 17 represents a hydrogen atom or an active ester-type protecting group
  • NHR 18 represents a hydrogen atom or a straight chain having 1 to 6 carbon atoms.
  • an azide a halogen atom
  • the halogen atom include a fluorine atom, a bromine atom, a chlorine atom, and an iodine atom.
  • the active ester type protecting group include an active ester type carbonyl group and an active ester type sulfonyl group.
  • Examples of the active ester type carbonyl group include a carbonyloxysuccinimide, an alkoxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, and the like, more preferably a carbonyloxysuccinimide.
  • Examples of the active ester type sulfonyl group include an alkylsulfonyl group and an arylsulfonyl group, and more preferable examples include a C 1 -C 6 alkylsulfonyl group and a p-toluenesulfonyl group.
  • Y represents —OR 17 (wherein R 17 represents a hydrogen atom or an active ester-type protecting group), —NHR 18 (wherein R 18 represents a hydrogen atom or a linear or branched chain having 1 to 6 carbon atoms).
  • An alkyl group or an aralkyl group), an azide or a halogen atom is preferred.
  • Y represents —OR 17 (wherein R 17 represents a hydrogen atom or an active ester-type protecting group) or —NHR 18 (wherein R 18 represents a hydrogen atom or a linear or branched group having 1 to 6 carbon atoms).
  • a chain alkyl group or an aralkyl group) is more preferred.
  • Y is more preferably —OR 17 (where R 17 represents a hydrogen atom) or —NHR 18 (where R 18 represents a hydrogen atom).
  • R 1 to R 8 represents a group represented by the formula (2), and one or two of them may be a group represented by the formula (2). preferable.
  • the remainder is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • the remaining halogen atom represented by R 1 to R 8 include a fluorine atom, a chlorine atom, and a bromine atom. Of these, a fluorine atom and a chlorine atom are preferable, and the remaining alkoxy group having 1 to 4 carbon atoms. Examples thereof include a methoxy group, an ethoxy group, an n-propyloxy group, an isopropyloxy group, and an n-butyloxy group, and among these, a methoxy group is preferable.
  • alkyl group having 1 to 4 carbon atoms examples include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, and an n-butyl group, and among these, a methyl group is preferable.
  • R 9 represents a linear or branched alkylene group having 1 to 16 carbon atoms.
  • the number of carbon atoms of the alkylene group is preferably 2 or more, preferably 6 or more, more preferably 8 or more, and 16 or less from the viewpoint of improving the solubility of the compound bonded with the xanthene compound (1) of the present invention in a solvent. Is preferable, 14 or less is more preferable, and 12 or less is more preferable.
  • a linear or branched alkylene group having 2 to 16 carbon atoms is preferable, a linear or branched alkylene group having 6 to 16 carbon atoms is more preferable, and an alkylene group having 8 to 14 carbon atoms is more preferable.
  • a linear or branched alkylene group is more preferable, and a linear or branched alkylene group having 8 to 12 carbon atoms is more preferable.
  • Specific examples of the alkylene group include a methylene group, an ethylene group, a trimethylene group, a tetramethylene group, a pentamethylene group, a hexamethylene group, a heptamethylene group, an octamethylene group, a nanomethylene group, a decamethylene group, an undecamethylene group, and a dodecacene group.
  • Examples include a methylene group and a tetradecamethylene group.
  • X represents O or CONR 19 .
  • R 19 represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms, preferably a hydrogen atom.
  • A is represented by the formula (3), (4), (5), (6), (7), (8), (9), (10), (11), (12) or (13).
  • R 10 , R 11 and R 12 are the same or different and each represents a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group which may have a substituent. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group, tert-butyl group, n-pentyl group, Examples include n-hexyl group.
  • an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group, tert-butyl, and isopropyl group are more preferable.
  • the aryl group which may have a substituent include an aryl group having 6 to 10 carbon atoms, specifically, a phenyl group, a naphthyl group and the like which may be substituted by an alkyl group having 1 to 3 carbon atoms. Is mentioned. Of these, a phenyl group is more preferable.
  • R 13 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms.
  • Examples of the linear or branched alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a trimethylene group, and a propylene group, and among these, a single bond is particularly preferable.
  • R 14 , R 15 and R 16 each represent a linear or branched alkylene group having 1 to 3 carbon atoms.
  • Examples of the linear or branched alkylene group having 1 to 3 carbon atoms include a methylene group, an ethylene group, a trimethylene group, and a propylene group, and a methylene group is particularly preferable.
  • Y is —OR 17 (wherein R 17 represents a hydrogen atom) or —NHR 18 (wherein R 18 represents a hydrogen atom); at least one of R 1 to R 8 One, preferably 1 to 2 is a group represented by the formula (2), and the remainder is a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms; R 9 is carbon More preferred are compounds having a linear or branched alkylene group of 2 to 16; R 13 is a single bond or a methylene group; and R 14 , R 15 and R 16 are methylene groups.
  • R 9 is a linear or branched alkyl group having 6 to 16 carbon atoms; X is O or CONH; A is represented by the formula (3) or (13) R 10 , R 11 and R 12 are the same or different and are alkyl groups having 1 to 4 carbon atoms; R 13 is a single bond; R 14 , R 15 and R 16 are methylene groups Is more preferred.
  • R 3b and R 7b represent a hydrogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and Y, A, X and R 9 are the same as above)
  • Examples of the xanthene compound (1) of the present invention include the following (a) to (e).
  • Y represents —OR 17 (wherein R 17 represents a hydrogen atom) or —NHR 18 (wherein R 18 represents a hydrogen atom); R a represents a hydrogen atom having 1 to 4 carbon atoms; An alkyl group or an alkoxy group having 1 to 4 carbon atoms.)
  • the xanthene compound (1) of the present invention can be produced, for example, according to the following reaction formula.
  • Hal represents a halogen atom
  • at least one of R 1a to R 8a represents a hydroxyl group, and the remainder is a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • B represents an amino acid derivative having a mercapto group
  • Z represents a compound having a —CONH— group
  • R 1 to R 8 , X, and A are the same as above
  • a silyloxylated alkyl halide (14) and a xanthene compound (15) are reacted to obtain a silyloxylated xanthene compound (16), and then a carbonyl group is converted to a hydroxy group and reacted with a compound having a —CONH 2 group.
  • Compound (17) is obtained.
  • the protecting group of compound (17) is deprotected to obtain compound (1b).
  • a compound (18) is obtained by making the xanthene compound (1a) which has a hydroxyl group react with the amino acid which has a mercapto group, or the amino acid derivative which has a mercapto group.
  • the starting material silyloxylated alkyl halide (14) can be produced, for example, by reacting a halogenated alcohol and a silylating agent in the presence of a base.
  • a bromine atom etc. are mentioned as a halogen atom in a compound (14).
  • silylating agent used in the above reaction examples include triisopropylsilyl chloride (TIPSCl), triisopropylsilyl bromide, triisopropylsilyl iodide, methanesulfonyltriisopropylsilyl, trifluoromethanesulfonylisopropylsilyl, p-toluenesulfonyltriisopropylsilyl.
  • TIPSCl triisopropylsilyl chloride
  • TBDPSCl tert-butyldimethylchlorosilane
  • TBSCl tert-butyldimethylchlorosilane
  • Bases include TEA, DIPEA, DBU, diazabicyclononene (DBN), DABCO, imidazole, N-methylimidazole, N, N-dimethylaniline, pyridine, 2,6-lutidine, DMAP, LDA, NaOAc, MeONa, Organic bases such as MeOK, lithium hexamethyldisilazide (LHMDS), sodium bis (trimethylsilyl) amide (NaHMDS), Na 2 CO 3 , NaHCO 3 , NaH, NaNH 2 , K 2 CO 3 , Cs 2 CO 3, etc. An inorganic base is mentioned.
  • Solvents include hydrocarbons such as hexane and heptane, diethyl ether, diisopropyl ether, cyclopentyl methyl ether (CPME), ethers such as tetrahydrofuran and dioxane, nitriles such as acetonitrile, dimethylformamide (DMF), dimethylacetamide, hexa Amides such as methylphosphoramide, sulfoxides such as dimethyl sulfoxide, lactams such as N-methylpyrrolidone, hydrogen halides such as chloroform and dichloromethane, aromatic hydrocarbons such as toluene and xylene, or a mixture thereof A solvent is mentioned. The reaction may be performed, for example, at 0 to 100 ° C. for 1 to 24 hours.
  • the reaction of the silyloxylated alkyl halide (14) and the xanthene compound (15) is preferably performed in the presence of a base.
  • Bases used in the above reaction include TEA, DIPEA, DBU, DBN, DABCO, imidazole, N-methylimidazole, N, N-dimethylaniline, pyridine, 2,6-lutidine, DMAP, LDA, NaOAc, MeONa, MeOK.
  • Organic bases such as lithium hexamethyldisilazide (LHMDS) and sodium bis (trimethylsilyl) amide (NaHMDS), and inorganic bases such as Na 2 CO 3 , NaHCO 3 , NaH, K 2 CO 3 , and Cs 2 CO 3 It is done.
  • Solvents include hydrocarbons such as hexane and heptane, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran and dioxane, nitriles such as acetonitrile, amides such as DMF, dimethylacetamide and hexamethylphosphoramide, Examples thereof include sulfoxides such as dimethyl sulfoxide, lactams such as N-methylpyrrolidone, hydrogen halides such as chloroform and dichloromethane, aromatic hydrocarbons such as toluene and xylene, or a mixed solvent thereof.
  • the reaction may be performed, for example, at 40 ° C. to 150 ° C. for 1 hour to 24 hours.
  • Examples of the method for converting the carbonyl group of the compound of the formula (16) into a hydroxy group include means for reducing using a reducing agent.
  • Examples of the reducing agent include lithium borohydride, sodium borohydride, lithium aluminum hydride, and aluminum hydride.
  • Solvents include hydrocarbons such as hexane and heptane, alcohols such as methanol and ethanol, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran and dioxane, aromatic hydrocarbons such as toluene and xylene, or these
  • the mixed solvent is mentioned.
  • the reaction is preferably carried out, for example, at 0 ° C. to 90 ° C. for 1 hour to 120 hours.
  • the reaction between the compound of formula (1a) and the compound having a —CONH 2 group is preferably a method of reacting with a compound having a —CONH 2 group in the presence of an acid catalyst.
  • the compound having a —CONH 2 group include Fmoc-NH 2 , ethyl carbamate, isopropyl carbamate, AcNH 2 , HCONH 2 , Cbz-NH 2 , CF 3 CONH 2 , and Fmoc-amino acid —NH 2 .
  • the acid catalyst examples include acids such as trifluoromethanesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, acetic acid, hydrochloric acid, and sulfuric acid.
  • Solvents include hydrocarbons such as hexane and heptane, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran, and dioxane, aromatic hydrocarbons such as toluene and xylene, hydrogen halides such as chloroform and dichloromethane, Or these mixed solvents are mentioned.
  • the reaction may be performed, for example, at 20 ° C. to 150 ° C. for 0.5 hour to 48 hours.
  • a method of treating the compound (17) with a base is desirable.
  • the base include bases such as diethylamine, piperidine, dimethylamine, DBU, morpholine, sodium hydroxide, and potassium hydroxide.
  • Solvents include hydrocarbons such as hexane and heptane, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran, and dioxane, aromatic hydrocarbons such as toluene and xylene, hydrogen halides such as chloroform and dichloromethane, Examples thereof include alcohols such as methanol, ethanol and isopropyl alcohol, or mixed solvents thereof.
  • the reaction may be performed, for example, at 0 ° C. to 150 ° C. for 0.5 hour to 48 hours.
  • the reaction between the formula (1a) and an amino acid derivative having a mercapto group is preferably carried out by reacting with an amino acid having a mercapto group or an amino acid derivative having a mercapto group in the presence of an acid catalyst.
  • amino acids having a mercapto group include cystein, homocystein, mercaptoorvaline, mercaptonorleucine and the like.
  • amino acid derivatives having a mercapto group include compounds in which the N-terminus of these amino acids is N-methylated, and the N-terminus of these amino acids is a benzyloxycarbonyl (Cbz or Z) group, fluorenylmethoxycarbonyl (Fmoc) Group, acetyl (Ac) group, benzyl group, allyl group, allyloxycarbonyl (Aloc) group, 2-nitrobenzenesulfonyl (Ns) group, 2,4-dinitrobenzenesulfonyl (DNs) group, 4-nitrobenzenesulfonyl (Nos) A compound protected with a group, etc., a compound whose amino acid C-terminal is protected with an amide group, a methyl ester group, an ethyl ester group, a tert-butyl ester group, a benzyl ester group, an allyl ester group, etc., and these protecting
  • the acid catalyst examples include acids such as trifluoromethanesulfonic acid, methanesulfonic acid, p-toluenesulfonic acid, acetic acid, hydrochloric acid, and sulfuric acid.
  • Solvents include hydrocarbons such as hexane and heptane, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran, and dioxane, aromatic hydrocarbons such as toluene and xylene, hydrogen halides such as chloroform and dichloromethane, Or these mixed solvents are mentioned.
  • the reaction may be performed, for example, at 20 ° C. to 150 ° C. for 0.5 hour to 24 hours.
  • the xanthene compound (1) of the present invention can be used as a protective agent for a functional group such as carboxy group, hydroxyl group, diol group, amino group, amide group or mercapto group.
  • a compound in which a carboxy group, a hydroxyl group, a diol group, an amino group, an amide group or a mercapto group is protected with the xanthene compound (1) of the present invention is characterized by being liquid and highly soluble in a solvent. Therefore, a compound having a functional group protected using the xanthene compound (1) of the present invention as a protecting agent is easily dissolved in an organic solvent and can be easily separated and purified by an operation such as liquid-liquid phase separation. Further, the protecting group used in the compound of the present invention can be easily removed by acid or catalytic reduction.
  • the compound that can be protected by the xanthene compound (1) of the present invention may be a compound having a carboxy group, a hydroxyl group, a diol group, an amino group, an amide group, or a mercapto group.
  • amino acids, peptides, sugar compounds, proteins, nucleic acids Compounds, various other pharmaceutical compounds, agricultural chemical compounds, other various polymers, dendrimer compounds, and the like.
  • the peptide synthesis method using the xanthene compound (1) of the present invention as a protective agent is, for example, a production method including the following steps (1) to (4).
  • This peptide synthesis method is particularly advantageous industrially because it allows liquid-liquid separation of the protected peptide obtained in each step.
  • the intermediate compound is once isolated from the solution in the intermediate step, purified, and then subjected to the next step, which is further advantageous industrially.
  • the xanthene compound (1) of the present invention is condensed with the C-terminal carboxy group of an N-protected amino acid or N-protected peptide in a soluble solvent to protect the C-terminus with the xanthene compound (1) of the present invention.
  • N-protected C-protected amino acids or N-protected C-protected peptides are obtained.
  • the C-terminal is protected with the xanthene compound (1) of the present invention by reacting the xanthene compound (1) of the present invention with the C-terminal amide group of an N-protected amino acid or N-protected peptide in a soluble solvent.
  • N-protected C-protected amino acids or N-protected C-protected peptides are obtained.
  • the protecting group at the N-terminus of the obtained N-protected C-protected amino acid or N-protected C-protected peptide is removed to obtain a C-protected amino acid or C-protected peptide.
  • An N-protected C-protected peptide is obtained by condensing an N-protected amino acid or N-protected peptide to the N-terminus of the obtained C-protected amino acid or C-protected peptide.
  • the protecting group at the N-terminus and the protecting group at the C-terminus of the obtained N-protected C-protected peptide are removed to obtain the target peptide.
  • Soluble solvents include hydrocarbons such as hexane and heptane, ethers such as diethyl ether, diisopropyl ether, CPME, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyltetrahydropyran, dioxane, methyl tert-butyl ether, ethyl acetate, acetic acid
  • examples thereof include esters such as butyl, isopropyl acetate and isobutyl acetate, hydrogen halides such as chloroform and dichloromethane, aromatic hydrocarbons such as toluene and xylene, or a mixed solvent thereof.
  • nitriles such as acetonitrile, amides such as DMF, dimethylacetamide and hexamethylphosphoramide, sulfoxides such as dimethyl sulfoxide, and lactams such as N-methylpyrrolidone are mixed with these soluble solvents.
  • condensing agents include COMU, HATU, HBTU, HCTU, TATU, TBTU, TCTU, TOTU, TDBTU, DEPBT, WSCI, WCSI / HCl, DCC, DIC, CDI, PyAop, PyBop, T 3 P, DMT-MM, etc. Can be mentioned.
  • condensation aid examples include Oxyma, HOAt, HOBt, HOOBt, HOCt, HOSu, HONb, HOPht, and the like.
  • base used for the condensation reaction examples include DIPEA, N-methylmorpholine, 2,4,6-trimethylpyridine, DMAP and the like.
  • the condensation reaction may be performed, for example, at 0 ° C. to 40 ° C. for 10 minutes to 24 hours.
  • N-terminal protecting group and C-terminal protecting group removing agent examples include diethylamine, piperidine, dimethylamine, DBU, DABCO, triethylamine, morpholine, sodium carbonate, sodium tert-butoxide, potassium tert-butoxide and the like, or these Or an acid such as acetic acid, formic acid, hydrochloric acid, sulfuric acid, trichloroacetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, hexafluoroisopropanol, or a mixture thereof.
  • an acid such as acetic acid, formic acid, hydrochloric acid, sulfuric acid, trichloroacetic acid, trifluoroacetic acid, methanesulfonic acid, trifluoromethanesulfonic acid, p-toluenesulfonic acid, hexa
  • the N-terminal protecting group may be removed, for example, at 0 ° C. to 40 ° C. for 5 minutes to 24 hours. Removal of the C-terminal protecting group may be carried out at 0 ° C. to 40 ° C. for 30 minutes to 24 hours, for example.
  • Example (1-a) Br- (CH 2 ) 11 -OTIPS 8.10 g (19.9 mmol), 3,6-dihydroxyxanthone 2.02 g (8.8 mmol), potassium carbonate 4.39 g (31.8 mmol) were suspended in DMF 58.9 mL. The mixture was heated to 85 ° C. and stirred for 2 hours. The reaction solution was filtered, and the residue was washed with 124 mL of heptane. The filtrate was separated, and 59 mL of heptane was added to the resulting heptane layer, followed by separation and washing with 59 mL of DMF. The liquid separation washing with heptane and DMF was performed once more.
  • 59 mL of heptane was added to the resulting heptane layer, and the mixture was washed once with 59 mL of 1N hydrochloric acid, once with 59 mL of 5% aqueous sodium hydrogen carbonate, and twice with 59 mL of water.
  • 59 mL of heptane was added to the obtained heptane layer, and the mixture was washed once with 59 mL of DMF and twice with 59 mL of acetonitrile.
  • Example (1-b) TIPS2-Xtn-C ⁇ O 0.30 g (0.34 mmol) was dissolved in a mixed solution of THF (anhydrous) 2.3 mL and methanol 0.45 mL, 39 mg (1.02 mmol) of sodium borohydride was added, and 55 The mixture was heated to ° C. and stirred for 1 hour and 40 minutes. Furthermore, 39 mg (1.02 mmol) of sodium borohydride and 0.62 mL of methanol were added and stirred at 55 ° C. for 30 minutes. Further, 78 mg (2.04 mmol) of sodium borohydride was added and stirred at 55 ° C. for 30 minutes.
  • TIPS2-Xtn-NHFmoc and TIPS2-Xtn-NH 2 represent structures in the figure.
  • Example (2-b) To the toluene solution obtained in the previous step, 7.11 g (29.7 mmol) of Fmoc-NH 2 and 82.5 mL of acetic acid were added, heated to 50 ° C., and stirred for 30 minutes. After the reaction solution is cooled to 5 ° C., 194 mL of toluene is added, washed 3 times with 648 mL of 5% aqueous sodium hydrogen carbonate solution and twice with 648 mL of water, and the organic layer is concentrated under reduced pressure and contains TIPS2-Xtn-NHFmoc. A mixture was obtained.
  • Example (2-c) The mixture obtained in the previous step was dissolved in 248 mL of THF, 13.3 mL (89.1 mmol) of DBU was added, and the mixture was stirred at room temperature for 30 minutes. The reaction solution was cooled to 5 ° C., quenched with 59.4 mL of 1N hydrochloric acid, and concentrated under reduced pressure. The obtained residue was dissolved in 500 mL of heptane and separated and washed 5 times with 500 mL of acetonitrile.
  • Example (3-a) Br- (CH 2 ) 8 -OTIPS 1.49 g (4.07 mmol), 3,6-dihydroxyxanthone 0.41 g (1.81 mmol) and potassium carbonate 0.90 g (6.52 mmol) were suspended in 12.1 mL of DMF. The mixture was heated to 85 ° C. and stirred for 2 hours 30 minutes. The reaction solution was filtered, and the filtrate was washed with 25.3 mL of heptane. The filtrate was separated, and 12.1 mL of heptane was added to the obtained heptane layer, followed by separation and washing with 12.1 mL of DMF.
  • 7.0 mL of heptane was added, and the mixture was washed once with 7.0 mL of 1N hydrochloric acid, once with 7.0 mL of 5% aqueous sodium hydrogen carbonate, and once with 7.0 mL of water.
  • 7.0 mL of heptane was added, and the solution was separated and washed twice with 7.0 mL of acetonitrile.
  • Example (5-a) Br- (CH 2 ) 14 -OTIPS 1.53 g (3.34 mmol), 3,6-dihydroxyxanthone 0.34 g (1.51 mmol) and potassium carbonate 0.75 g (5.43 mmol) were suspended in 10.1 mL of DMF. The mixture was heated to 85 ° C. and stirred for 3 hours. The reaction solution was filtered, and the filtrate was washed with 21.1 mL of heptane. The filtrate was separated, and 10.1 mL of heptane was added to the resulting heptane layer, followed by separation and washing with 10.1 mL of DMF.
  • Example (7-a) Br— (CH 2 ) 10 —CONH— (CH 2 ) 2 —OTIPS 1.63 g (3.50 mmol), 3,6-dihydroxyxanthone 0.29 g (1.25 mmol), potassium carbonate 0.69 g (5.00 mmol) ) was suspended in 8.3 mL of DMF, heated to 115 ° C. and stirred for 2 hours. The reaction solution was filtered. 25 mL of water was added to the filtrate, the slurry was washed, and the precipitate was collected by filtration. The slurry was washed with water and filtered one more time.
  • Example (7-b) TIPS2-Xtn—C ⁇ O (C 10 —CONH—C 2 ) 0.21 g (0.21 mmol) was dissolved in a mixed solution of 1.5 mL of THF (anhydrous) and 0.15 mL of methanol, and 64 mg of sodium borohydride ( 1.69 mmol) was added, heated to 35 ° C. and stirred for 10 minutes. Further, 0.15 mL of methanol was added and stirred at 35 ° C. for 50 minutes. Further, 32 mg (0.84 mmol) of sodium borohydride and 0.15 mL of methanol were added and stirred at 35 ° C. for 21 hours and 10 minutes.
  • Example (8-a) Br— (CH 2 ) 10 —CONH—C (CH 2 OTIPS) 3 9.01 g (10.8 mmol), 3-hydroxanthen-9-one 2.86 g (12.9 mmol), potassium carbonate 2.69 g (19 .4 mmol) was suspended in 72 mL of DMF, heated to 120 ° C. and stirred for 5 hours. The reaction solution was filtered, and the residue was washed with 151 mL of heptane. The filtrate was separated, and 72 mL of heptane and 72 mL of DMF were added to the resulting heptane layer for separation and washing. Further, 72 mL of DMF was added, and liquid separation washing was performed twice. The obtained heptane layer was separated and washed once with 72 mL of water. The heptane layer was concentrated under reduced pressure to obtain 5.68 g of TIPS3-Xtn-C ⁇ O.
  • Example (8-c) To the toluene solution obtained in the previous step, 0.21 g (0.87 mmol) of 9-fluorenylmethylcarbamate, 0.42 mL of acetic acid, and 1.72 g of molecular sieves were added and stirred at 50 ° C. for 3 hours and 30 minutes. The reaction solution was filtered, diluted with 10 mL of toluene, and separated and washed once with 40 mL of 5% aqueous sodium hydrogen carbonate solution, once with 30 mL, and once with 20 mL of water. The solution was concentrated under reduced pressure to give a mixture containing TIPS3-Xtn-NHFmoc.
  • Example (8-d) The mixture obtained in the previous step was dissolved in 6.9 mL of THF, 0.15 mL (1.03 mmol) of DBU was added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was concentrated under reduced pressure, and the residue was dissolved in 21.0 mL of heptane and separated and washed with 7.0 mL of DMF. To the obtained heptane layer, 7.0 mL of heptane and 7.0 mM of DMF were added, and liquid separation washing was performed twice. 7.0 mL of heptane was added to the heptane layer, followed by separation and washing with 7.0 mL of 50% water-containing acetonitrile.
  • TIPS3-Xtn-C O (6-OMe) and TIPS3-Xtn-OH (6-OMe) indicate the structures in the figure).
  • Example (10-a) Br— (CH 2 ) 10 —CONH—CH (CH 2 —OTIPS) 2 1.53 g (2.35 mmol), 3,6-dihydroxyxanthone 0.19 g (0.84 mmol), potassium carbonate 0.47 g (3. 36 mmol) was suspended in 5.6 mL of DMF, heated to 115 ° C., and stirred for 3 hours 30 minutes. The reaction solution was filtered and the residue was washed with 11.8 mL of heptane. The filtrate was separated, and 5.6 mL of heptane was added to the obtained heptane layer, followed by separation and washing with 5.6 mL of DMF.
  • TIPS6-Xtn-C O
  • TIPS6-Xtn-OH O
  • TIPS6-Xtn-NHFmoc O
  • TIPS6-Xtn-NH 2 indicate the structures in the figure.
  • TIPS6-Xtn-C O 3.00 g (1.72 mmol) was dissolved in a mixed solution of THF (anhydrous) 12.5 mL and methanol 3.8 mL, and 0.79 g (20.8 mmol) of sodium borohydride was added. And stirred at room temperature for 15 hours. The reaction was stopped by adding 47.0 mL of acetone, and the mixture was concentrated under reduced pressure. The residue was dissolved in 37.6 mL of toluene and separated and washed with 25.1 mL of 5% aqueous sodium hydrogen carbonate solution. Further, it was washed 3 times with 25.1 mL of 5% aqueous sodium hydrogen carbonate solution to obtain a toluene solution of a mixture containing TIPS6-Xtn-OH.
  • Example (11-c) To the toluene solution obtained in the previous step, 0.50 g (2.10 mmol) of 9-fluorenylmethylcarbamate, 5.74 mL of acetic acid, and 0.49 g of molecular sieves were added and stirred at room temperature for 6 hours. After the reaction solution was cooled to 5 ° C., 45.1 mL of a saturated aqueous sodium bicarbonate solution was added and stirred for 30 minutes.
  • the reaction solution was filtered, the filtrate was washed with 13.5 mL of toluene, and the filtrate was separated, and then once with 45.1 mL of saturated aqueous sodium hydrogen carbonate solution and once with 45.1 mL of 5% aqueous sodium hydrogen carbonate solution.
  • the extract was washed twice with 45.1 mL, and the organic layer was concentrated under reduced pressure to obtain a mixture containing TIPS2-Xtn-NHFmoc.
  • Example (11-d) The mixture obtained in the previous step was dissolved in 12.7 mL of THF, 0.69 mL (4.58 mmol) of DBU was added, and the mixture was stirred at room temperature for 1 hour. The reaction solution was cooled to 5 ° C., quenched with 3.1 mL of 1N hydrochloric acid, and concentrated under reduced pressure. The obtained residue was dissolved in 25.5 mL of heptane and separated and washed 6 times with 25.5 mL of acetonitrile.
  • Fmoc-L-Cys-NH 2 and Fmoc-Cys (TIPS2-Xtn) -NH 2 represent the structures in the figure.
  • FIG. 1 shows the result of measuring the solubility of the compound protected with the xanthene protecting agent in the present invention.
  • Peptide used as model: H-Phe-Leu-NH 2 H-Phe-Leu-NH 2 and H-Phe-Leu-NH- (TIPS2-Xtn) were synthesized, and each compound was saturated with CPME (cyclopentyl methyl ether) at 25 ° C., and its solubility was measured.
  • CPME cyclopentyl methyl ether
  • H-Phe-Leu-NH 2 to which TIPS-type protective agent is not bound dissolves only 0.5 mM in CPME, and when TIPS2-Xtn-NH 2 is bound, it is 586 mM, which is about 1100 times. As a result, the solubility was improved. The result is shown in FIG. From this result, it was confirmed that the peptide solubility was remarkably improved by derivatization with a xanthene protecting agent. Note that H-Phe-Leu-NH 2 and H-Phe-Leu-NH- (TIPS2-Xtn) have the following structures.
  • H-Phe-Leu-NH- (TIPS2-Xtn) 209 mg (0.18 mmol) of H-Phe-Leu-NH- (TIPS2-Xtn) was dissolved in 3.23 mL of dichloromethane, 0.37 mL (5.10 mmol) of trifluoroethanol, and 73 ⁇ L (0.96 mmol) of trifluoroacetic acid were dissolved. The mixture was added and stirred at room temperature for 1 hour and 10 minutes. After confirming disappearance of H-Phe-Leu-NH- (TIPS2-Xtn), the reaction solution was concentrated under reduced pressure, and the residue was added dropwise to 18.8 mL of diisopropyl ether cooled to 5 ° C., and 4 ° C. at 5 ° C. and 3000 rpm.
  • the precipitate was obtained by centrifuging for 5 minutes and removing the supernatant by decantation. Slurry washing with this diisopropyl ether, centrifugation, and decantation were further performed three times to obtain a precipitate. The precipitate was dried under reduced pressure to obtain 49 mg of H-Phe-Leu-NH 2 .

Abstract

官能基を保護した化合物を固体化又は不溶化させず、反応後の分離、精製を容易ならしめる保護基を開発することにある。 一般式(1)(式中、Yは-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、アジド、ハロゲン原子、又はメチレン基と一体となったカルボニル基を示し、R1~R8のうちの少なくとも1個は式(2)で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し; R9は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示し; XはO又はCONR19(ここでR19は水素原子又は炭素数1~4のアルキル基を示す)を示し; Aは式(3)等(ここで、R10、R11及びR12は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していてもよいアリール基を示し;R13は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R14、R15及びR16はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す)で表される基を示す)で表されるキサンテン化合物。

Description

新規キサンテン保護剤
 本発明は、カルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基等の保護剤として有用な新規キサンテン化合物に関する。
 ペプチド合成や種々の化合物の合成において、カルボキシ基、水酸基、ジオール基、アミノ基、アミド基やメルカプト基等の官能基を保護して反応させる必要が生じることがある。そのような保護基としては、簡便な方法により保護ができ、かつ穏和な条件で脱離できるものが望まれる。例えば、カルボキシ基の保護基としては、ベンジルエステル(Bn)、tert-ブチルエステル等が知られている。また、最近、ベンジルアルコール系化合物やジフェニルメタン系化合物が保護基として有用であることが報告されている(特許文献1、2)。
国際公開第2012/029794号パンフレット 国際公開第2010/113939号パンフレット
 しかしながら、従来の保護基で官能基を保護した化合物は、析出しやすい欠点があった。特にペプチド合成においては有機溶媒にも不溶になってしまうため、反応後の化合物の分離、精製が困難になることがしばしばであった。この分離、精製の困難性は、縮合反応が連続して行なわれるペプチド合成においては大きな問題であった。
 従って、本発明の課題は、官能基を保護した化合物の有機溶媒への溶解性を向上させることで、反応後の分離、精製を固体化又は不溶化することなく容易ならしめる保護基を提供することにある。
 そこで本発明者は、キサンテン化合物の置換基について種々検討した結果、キサンテン化合物のベンゼン環にオキシアルキレン基を介し末端にトリアルキルシリルオキシ基を開発した。本キサンテン化合物を用いて官能基を保護した化合物が有機溶媒中で析出しにくく、液-液相分離の操作により分離精製が容易であり、当該化合物が保護剤として有用であることを見出し、本発明を完成した。
 すなわち、本発明は、次の〔1〕~〔12〕を提供するものである。
〔1〕一般式(1)
Figure JPOXMLDOC01-appb-C000004
(式中、Yは-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、アジド、ハロゲン原子、又はメチレン基と一体となったカルボニル基を示し、R1~R8のうちの少なくとも1個は式(2)
Figure JPOXMLDOC01-appb-C000005
で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
9は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示し;
XはO又はCONR19(ここでR19は水素原子又は炭素数1~4のアルキル基を示す)を示し;
Aは式(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)又は(13)
Figure JPOXMLDOC01-appb-C000006
(ここで、R10、R11及びR12は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していてもよいアリール基を示し;R13は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R14、R15及びR16はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す)
で表される基を示す)
で表されるキサンテン化合物。
〔2〕Yが-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、アジド又はハロゲン原子である〔1〕記載のキサンテン化合物。
〔3〕Yが-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)を示す〔1〕記載のキサンテン化合物。
〔4〕Yが-OR17(ここでR17は水素原子を示す)、-NHR18(ここでR18は水素原子を示す)、又はメチレン基と一体となったカルボニル基である〔1〕記載のキサンテン化合物。
〔5〕Yが-OR17(ここでR17は水素原子を示す)、又は-NHR18(ここで、R18は水素原子を示す)を示す〔1〕記載のキサンテン化合物。
〔6〕R1~R8のうち少なくとも1個が式(2)で表される基であり、残余が水素原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である〔1〕~〔5〕のいずれかに記載のキサンテン化合物。
〔7〕R9が炭素数2~16の直鎖又は分岐鎖のアルキレン基である〔1〕~〔6〕のいずれかに記載のキサンテン化合物。
〔8〕R9が炭素数6~16の直鎖又は分岐鎖のアルキレン基である〔1〕~〔7〕のいずれかに記載のキサンテン化合物。
〔9〕R13が単結合又はメチレン基であり、R14、R15及びR16がメチレン基である〔1〕~〔8〕のいずれかに記載のキサンテン化合物。
〔10〕〔1〕~〔9〕のいずれかに記載のキサンテン化合物からなるカルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基の保護剤。
〔11〕〔1〕~〔9〕のいずれかに記載のキサンテン化合物からなるカルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基の保護剤を用いて行う化合物の製造法。
〔12〕〔1〕~〔9〕のいずれかに記載のキサンテン化合物からなるカルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基の保護剤を用いて行うペプチドの製造法。
 本発明のキサンテン化合物(1)を用いて官能基を保護した化合物は、液状になりやすく、また溶媒への溶解性が向上するため、液-液相分離等の操作により、縮合反応後の分離、精製が容易である。
 医薬、農薬等様々な化学物質の製造工程において、原料や中間体の不溶化、固化が支障となっている場合、原料や中間体化合物に本発明のキサンテン化合物(1)を結合させることで、これらの溶解性を向上させ、これらの問題点を解決することができる。
シクロペンチルメチルエーテル(CPME)に対する溶解度測定結果を示す。
 一般式(1)で表される本発明のキサンテン化合物は、R1~R8の少なくとも1個が式(2)の構造を有する点に特徴がある。かかる構造を有することにより、このキサンテン化合物(1)を用いて保護した化合物が液状になりやすく、また溶媒への溶解性が顕著に向上する。
 一般式(1)中、Yは-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、アジド、ハロゲン原子、又はメチレン基と一体となったカルボニル基を示す。ここで、ハロゲン原子としては、フッ素原子、臭素原子、塩素原子、ヨウ素原子が挙げられる。
 活性エステル型保護基としては、活性エステル型カルボニル基、活性エステル型スルホニル基が挙げられる。活性エステル型カルボニル基としては、カルボニルオキシコハク酸イミド、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基等が挙げられ、より好ましくはカルボニルオキシコハク酸イミド等が挙げられる。
 活性エステル型スルホニル基としては、アルキルスルホニル基、アリールスルホニル基等が挙げられ、より好ましくはC1-C6アルキルスルホニル基、p-トルエンスルホニル基等が挙げられる。
 Yとしては、-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、アジド又はハロゲン原子が好ましい。
 また、Yとしては、-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)又は-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)がより好ましい。
 Yとしては、-OR17(ここでR17は水素原子を示す)、又は-NHR18(ここでR18は水素原子を示す)がさらに好ましい。
 本発明のキサンテン化合物は、R1~R8のうち、少なくとも1個が式(2)で示される基を示すが、このうち1~2個が式(2)で示される基であることが好ましい。
 残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である。ここで、R1~R8で示される残余のハロゲン原子としてはフッ素原子、塩素原子、臭素原子が挙げられ、このうちフッ素原子、塩素原子が好ましく、また残余の炭素数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基等が挙げられ、このうち、メトキシ基が好ましい。また、炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられ、このうちメチル基が好ましい。
 R9は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示す。当該アルキレン基の炭素数は、本発明キサンテン化合物(1)を結合させた化合物の溶媒への溶解度を向上させる点から、2以上が好ましく、6以上が好ましく、8以上がさらに好ましく、また16以下が好ましく、14以下がより好ましく、12以下がさらに好ましい。
 当該アルキレン基のうち、炭素数2以上16以下の直鎖又は分岐鎖のアルキレン基が好ましく、炭素数6以上16以下の直鎖又は分岐鎖のアルキレン基がより好ましく、炭素数8以上14以下の直鎖又は分岐鎖のアルキレン基がさらに好ましく、炭素数8以上12以下の直鎖又は分岐鎖のアルキレン基がさらに好ましい。当該アルキレン基の具体例としては、メチレン基、エチレン基、トリメチレン基、テトラメチレン基、ペンタメチレン基、ヘキサメチレン基、ヘプタメチレン基、オクタメチレン基、ナノメチレン基、デカメチレン基、ウンデカメチレン基、ドデカメチレン基、テトラデカメチレン基等が挙げられる。
 XはO又はCONR19を示す。
 ここでR19は水素原子又は炭素数1~4のアルキル基を示し、水素原子が好ましい。
 Aは、式(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)又は(13)で示される基を示す。R10、R11及びR12は、同一又は異なって、炭素数1~6の直鎖又は分岐鎖のアルキル基、又は置換基を有していてもよいアリール基を示す。ここで炭素数1~6のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。このうち、炭素数1~4のアルキル基がより好ましく、メチル基、tert-ブチル、イソプロピル基がさらに好ましい。
 置換基を有していてもよいアリール基としては、炭素数6~10のアリール基が挙げられ、具体的には炭素数1~3のアルキル基が置換してもよいフェニル基、ナフチル基等が挙げられる。このうち、フェニル基がさらに好ましい。
 R13は、単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す。炭素数1~3の直鎖又は分岐鎖のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられるが、このうち単結合が特に好ましい。
 R14、R15及びR16は、それぞれ炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す。炭素数1~3の直鎖又は分岐鎖のアルキレン基としては、メチレン基、エチレン基、トリメチレン基、プロピレン基が挙げられるが、メチレン基が特に好ましい。
 一般式(1)において、Yが-OR17(ここでR17は水素原子を示す)、又は-NHR18(ここでR18は水素原子を示す)であり;R1~R8のうち少なくとも1個、好ましくは1~2個が式(2)で示される基であり、残余が水素原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基であり;R9が炭素数2~16の直鎖又は分岐鎖のアルキレン基であり;R13が単結合又はメチレン基であり;R14、R15及びR16がメチレン基である化合物がより好ましい。
 また、一般式(2)において、R9が炭素数6~16の直鎖又は分岐鎖のアルキル基であり;XはO又はCONHであり;Aは、式(3)又は(13)で示される基であり;R10、R11及びR12は、同一又は異なって、炭素数1~4のアルキル基であり;R13は単結合であり;R14、R15及びR16はメチレン基である化合物がより好ましい。
 式(1)におけるY及びR1~R8が置換した構造としては、例えば次の構造が好ましい。
Figure JPOXMLDOC01-appb-C000007
(式中、R3b及びR7bは水素原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、Y、A、X及びR9は前記と同じ)
 本発明のキサンテン化合物(1)としては、次の(a)~(e)が挙げられる。
(a)TIPS2型-PP保護剤
Figure JPOXMLDOC01-appb-C000008
(式中、Yは-OR17(ここでR17は水素原子を示す)、又は-NHR18(ここでR18は水素原子を示す)を示し、Raは水素原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。)
(b)TIPS3型-P保護剤
Figure JPOXMLDOC01-appb-C000009
(式中、Y及びRaは(a)と同様である。)
(c)TIPS4型-PP保護剤
Figure JPOXMLDOC01-appb-C000010
(式中、Y及びRaは(a)と同様である。)
(d)TIPS6型-PP保護剤
Figure JPOXMLDOC01-appb-C000011
(式中、Y及びRaは(a)と同様である。)
(e)TBDPS2型-PP保護剤
Figure JPOXMLDOC01-appb-C000012
(式中、Y及びRaは(a)と同様である。)
 本発明のキサンテン化合物(1)は、例えば次の反応式に従って製造することができる。
Figure JPOXMLDOC01-appb-C000013
(式中、Halはハロゲン原子を示し、R1a~R8aのうち少なくとも1個は水酸基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、Bはメルカプト基を有するアミノ酸誘導体を示し、Zは-CONH-基を有する化合物を示し、R1~R8、X、及びAは前記と同じ)
 シリルオキシ化アルキルハライド(14)とキサンテン化合物(15)とを反応させて、シリルオキシ化キサンテン化合物(16)を得、次いでカルボニル基をヒドロキシ基に変換し、-CONH2基を有する化合物と反応させて、化合物(17)が得られる。次いで化合物(17)の保護基を脱保護して化合物(1b)が得られる。また、ヒドロキシ基を有するキサンテン化合物(1a)にメルカプト基を有するアミノ酸又はメルカプト基を有するアミノ酸誘導体と反応させることにより、化合物(18)が得られる。
 原料であるシリルオキシ化アルキルハライド(14)は、例えばハロゲン化アルコールとシリル化剤とを塩基の存在下に反応させることにより製造することができる。化合物(14)中のハロゲン原子としては、臭素原子等が挙げられる。
 上記反応に用いられるシリル化剤としては、塩化トリイソプロピルシリル(TIPSCl)、臭化トリイソプロピルシリル、ヨウ化トリイソプロピルシリル、メタンスルホニルトリイソプロピルシリル、トリフルオロメタンスルホニルイソプロピルシリル、p-トルエンスルホニルトリイソプロピルシリル、tert-ブチルジフェニルクロロシラン(TBDPSCl)、tert-ブチルジメチルクロロシラン(TBSCl)等が挙げられる。
 塩基としては、TEA、DIPEA、DBU、ジアザビシクロノネン(DBN)、DABCO、イミダゾール、N-メチルイミダゾール、N、N-ジメチルアニリン、ピリジン、2、6-ルチジン、DMAP、LDA、NaOAc、MeONa、MeOK、リチウムヘキサメチルジシラジド(LHMDS)、ナトリウムビス(トリメチルシリル)アミド(NaHMDS)等の有機塩基、Na2CO3、NaHCO3、NaH、NaNH2、K2CO3、Cs2CO3等の無機塩基が挙げられる。
 溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、シクロペンチルメチルエーテル(CPME)、テトラヒドロフラン、ジオキサン等のエーテル類、アセトニトリル等のニトリル類、ジメチルホルムアミド(DMF)、ジメチルアセトアミド、ヘキサメチルホスホルアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、N-メチルピロリドン等のラクタム類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、トルエン、キシレン等の芳香族炭化水素類、またはこれらの混合溶媒が挙げられる。
 反応は、例えば0℃~100℃で1時間~24時間行えばよい。
 シリルオキシ化アルキルハライド(14)とキサンテン化合物(15)との反応は、塩基の存在下に行うのが好ましい。
 上記反応に用いられる塩基としては、TEA、DIPEA、DBU、DBN、DABCO、イミダゾール、N-メチルイミダゾール、N、N-ジメチルアニリン、ピリジン、2、6-ルチジン、DMAP、LDA、NaOAc、MeONa、MeOK、リチウムヘキサメチルジシラジド(LHMDS)、ナトリウムビス(トリメチルシリル)アミド(NaHMDS)等の有機塩基、Na2CO3、NaHCO3、NaH、K2CO3、Cs2CO3等の無機塩基が挙げられる。
 溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、アセトニトリル等のニトリル類、DMF、ジメチルアセトアミド、ヘキサメチルホスホルアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、N-メチルピロリドン等のラクタム類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、トルエン、キシレン等の芳香族炭化水素類、またはこれらの混合溶媒が挙げられる。
 反応は、例えば40℃~150℃で1時間~24時間行えばよい。
 式(16)の化合物のカルボニル基をヒドロキシ基に変換する方法としては、還元剤を用いて還元する手段が挙げられる。
 還元剤としては、水素化ホウ素リチウム、水素化ホウ素ナトリウム、水素化アルミニウムリチウム、水素化アルミニウムが挙げられる。溶媒としては、ヘキサン、ヘプタン等の炭化水素類、メタノール、エタノール等のアルコール類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、またはこれらの混合溶媒が挙げられる。反応は、例えば0℃~90℃で1時間~120時間行うのが好ましい。
 式(1a)の化合物と-CONH2基を有する化合物との反応は、酸触媒下で、-CONH2基を有する化合物と反応させる方法が好ましい。
 -CONH2基を有する化合物としては、Fmoc-NH2、エチルカルバメート、イソプロピルカルバメート、AcNH2、HCONH2、Cbz-NH2、CF3CONH2、Fmoc-アミノ酸-NH2等が挙げられる。酸触媒としてはトリフルオロメタンスルホン酸、メタンスルホン酸、p-トルエンスルホン酸、酢酸、塩酸、硫酸等の酸が挙げられる。溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、またはこれらの混合溶媒が挙げられる。反応は、例えば20℃~150℃で0.5時間~48時間行えばよい。
 式(17)の化合物から化合物(1b)を得るには、化合物(17)を塩基で処理する方法が望ましい。
 塩基としてはジエチルアミン、ピペリジン、ジメチルアミン、DBU、モルホリン、水酸化ナトリウム、水酸化カリウム等の塩基が挙げられる。溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、メタノール、エタノール、イソプロピルアルコール等のアルコール類、またはこれらの混合溶媒が挙げられる。反応は、例えば0℃~150℃で0.5時間~48時間行えばよい。
 式(1a)とメルカプト基を有するアミノ酸誘導体の反応は、酸触媒下で、メルカプト基を有するアミノ酸又はメルカプト基を有するアミノ酸誘導体と反応させる方法が好ましい。
 メルカプト基を有するアミノ酸としては、Cysteine、homocysteine、mercaptonorvaline、mercaptonorleucine等が挙げられる。メルカプト基を有するアミノ酸誘導体としては、これらのアミノ酸のN末端がN-メチル化された化合物、及びこれらのアミノ酸のN末端がベンジルオキシカルボニル(Cbz又はZ)基、フルオレニルメトキシカルボニル(Fmoc)基、アセチル(Ac)基、ベンジル基、アリル基、アリルオキシカルボニル(Aloc)基、2-ニトロベンゼンスルホニル(Ns)基、2、4-ジニトロベンゼンスルホニル(DNs)基、4-ニトロベンゼンスルホニル(Nos)基等で保護された化合物、及びアミノ酸C末端がアミド基、メチルエステル基、エチルエステル基、tert-ブチルエステル基、ベンジルエステル基、アリルエステル基等で保護された化合物、及びこれらの保護基でN末端とC末端の両方が保護された化合物、及びこれらに対応するD-アミノ酸化合物等が挙げられる。
 酸触媒としてはトリフルオロメタンスルホン酸、メタンスルホン酸、p-トルエンスルホン酸、酢酸、塩酸、硫酸等の酸が挙げられる。溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、ジオキサン等のエーテル類、トルエン、キシレン等の芳香族炭化水素類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、またはこれらの混合溶媒が挙げられる。反応は、例えば20℃~150℃で0.5時間~24時間行えばよい。
 本発明のキサンテン化合物(1)は、カルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基等の官能基の保護剤として使用できる。本発明のキサンテン化合物(1)でカルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基を保護された化合物は、液状性、溶媒に対する溶解性が高いという特徴を有する。従って、本発明のキサンテン化合物(1)を保護剤として用いて官能基を保護した化合物は、有機溶媒に溶解され易く、液-液相分離等の操作により分離精製が容易となる。また、本発明化合物で使用された保護基は、酸や接触還元等により容易に脱離することができる。
 本発明のキサンテン化合物(1)で保護できる化合物としては、カルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基を有する化合物であればよく、例えばアミノ酸、ペプチド、糖化合物、タンパク質、核酸化合物、その他種々の医薬品化合物、農薬化合物、その他、種々のポリマー、デンドリマー化合物等が挙げられる。
 本発明のキサンテン化合物(1)を保護剤として用いるペプチドの合成法は、例えば次の工程(1)~(4)を含む製法である。このペプチド合成法は、各工程で得られる保護ペプチドの分離を液-液分離することができることから、工業的に特に有利である。
 また、必要に応じて、途中工程で中間体化合物を溶液から一旦単離して、精製した後、次工程に供することもできることから、工業的に更に有利である。
(1)本発明のキサンテン化合物(1)を、可溶性溶媒中、N-保護アミノ酸又はN-保護ペプチドのC末端カルボキシ基と縮合させて、本発明のキサンテン化合物(1)でC末端が保護されたN-保護C-保護アミノ酸又はN-保護C-保護ペプチドを得る。若しくは、本発明のキサンテン化合物(1)を、可溶性溶媒中、N-保護アミノ酸又はN-保護ペプチドのC末端アミド基と反応させて、本発明のキサンテン化合物(1)でC末端が保護されたN-保護C-保護アミノ酸又はN-保護C-保護ペプチドを得る。
(2)得られたN-保護C-保護アミノ酸又はN-保護C-保護ペプチドのN末端の保護基を除去して、C-保護アミノ酸又はC-保護ペプチドを得る。
(3)得られたC-保護アミノ酸又はC-保護ペプチドのN末端に、N-保護アミノ酸又はN-保護ペプチドを縮合させて、N-保護C-保護ペプチドを得る。
(4)得られたN-保護C-保護ペプチドのN末端の保護基及びC末端の保護基を除去して、目的のペプチドを得る。
 可溶性溶媒としては、ヘキサン、ヘプタン等の炭化水素類、ジエチルエーテル、ジイソプロピルエーテル、CPME、テトラヒドロフラン、2-メチルテトラヒドロフラン、4-メチルテトラヒドロピラン、ジオキサン、メチルtert-ブチルエーテル等のエーテル類、酢酸エチル、酢酸ブチル、酢酸イソプロピル、酢酸イソブチル等のエステル類、クロロホルム、ジクロロメタンなどのハロゲン化水素類、トルエン、キシレン等の芳香族炭化水素類、またはこれらの混合溶媒が挙げられる。また、これらの可溶性溶媒にアセトニトリル等のニトリル類、DMF、ジメチルアセトアミド、ヘキサメチルホスホルアミド等のアミド類、ジメチルスルホキシド等のスルホキシド類、N-メチルピロリドン等のラクタム類等の溶媒を混合してもよい。
 縮合剤としては、COMU、HATU、HBTU、HCTU、TATU、TBTU、TCTU、TOTU、TDBTU、DEPBT、WSCI、WCSI・HCl、DCC、DIC、CDI、PyAop、PyBop、T3P、DMT-MM等が挙げられる。
 縮合補助剤としては、Oxyma、HOAt、HOBt、HOOBt、HOCt、HOSu、HONb、HOPht等が挙げられる。
 縮合反応に用いる塩基としては、DIPEA、N-メチルモルホリン、2,4,6-トリメチルピリジン、DMAP等が挙げられる。
 縮合反応は、例えば0℃~40℃で10分~24時間行えばよい。
 N末端の保護基、C末端の保護基の除去剤としては、ジエチルアミン、ピペリジン、ジメチルアミン、DBU、DABCO、トリエチルアミン、モルホリン、炭酸ナトリウム、ナトリウムtert-ブトキシド、カリウムtert-ブトキシド等の塩基、またはこれらの混合物、あるいは、酢酸、ギ酸、塩酸、硫酸、トリクロロ酢酸、トリフルオロ酢酸、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸、ヘキサフルオロイソプロパノール等の酸、またはこれらの混合物が挙げられる。
 N末の保護基の除去は、例えば0℃~40℃で5分~24時間行えばよい。
 C末の保護基の除去は、例えば0℃~40℃で30分~24時間行えばよい。
 次に実施例を挙げて、本発明を詳細に説明するが、本発明は何らこれに限定されるものではない。
実施例1
 TIPS2-Xtn-OHの合成
Figure JPOXMLDOC01-appb-C000014
(以下、Br-(CH211-OTIPS、TIPS2-Xtn-C=O、TIPS2-Xtn-OHは図中の構造を示すこととする。)
実施例(1-a)
 Br-(CH211-OTIPS 8.10g(19.9mmol)、3,6-ジヒドロキシキサントン2.02g(8.8mmol)、炭酸カリウム4.39g(31.8mmol)をDMF58.9mLに懸濁し、85℃に加熱し、2時間撹拌した。反応溶液を濾過し、濾物をヘプタン124mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン59mLを加え、DMF59mLで分液洗浄した。前記のへプタンとDMFによる分液洗浄を、さらに1回行った。得られたヘプタン層に、ヘプタン59mLを加え、1N塩酸59mLで1回、5%炭酸水素ナトリウム水溶液59mLで1回、水59mLで2回分液洗浄した。得られたヘプタン層にヘプタン59mLを加え、DMF59mLで1回、アセトニトリル59mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=70:1→0:100)で精製し、TIPS2-Xtn-C=O 7.85gを得た。
1H-NMR(400MHz,CDCl3)δ1.02-1.08(m,42H),1.24-1.41(m,24H),1.43-1.58(m,8H),1.77-1.88(m,4H),3.67(t,4H),4.06(t,4H),6.83(d,2H),6.91(dd,2H),8.22(d,2H)
13C-NMR(100MHz,CDCl3)δ12.2(6C),18.2(12C),26.0(2C),26.1(2C),29.2-29.8(12C),33.2(2C),63.6(2C),68.8(2C),100.8(2C),113.4(2C),115.8(2C),128.2(2C),158.2(2C),164.4(2C),175.7
実施例(1-b)
 TIPS2-Xtn-C=O 0.30g(0.34mmol)をTHF(無水)2.3mL、メタノール0.45mLの混合溶液に溶解させ、水素化ホウ素ナトリウム39mg(1.02mmol)を添加し、55℃に加熱し、1時間40分撹拌した。さらに水素化ホウ素ナトリウム39mg(1.02mmol)、メタノール0.62mLを添加し、55℃で30分撹拌した。さらに水素化ホウ素ナトリウム78mg(2.04mmol)を添加し、55℃で30分撹拌した。さらに水素化ホウ素ナトリウム39mg(1.02mmol)、メタノール0.40mLを添加し、55℃で30分撹拌した。アセトン1.2mL、CPMEを7.5mL加え、水2.3mLで1回、5%炭酸水素ナトリウム水溶液2.3mLで1回、水2.3mLで2回洗浄し、有機層を減圧下で濃縮した。得られた残渣をヘプタン7.5mLに溶解し、DMF3.8mLで分液洗浄した。得られたヘプタン層にヘプタン3.8mLを加え、アセトニトリル3.8mLで分液洗浄した。前記のへプタンとアセトニトリルによる分液洗浄を、さらに1回行った後、ヘプタン層を減圧下で濃縮し、TIPS2-Xtn-OH 0.32gを得た。
1H-NMR(400MHz,Benzene-d6)δ1.12-1.16(m,42H),1.24-1.49(m,28H),1.57-1.68(m,9H),3.65-3.72(m,8H),5.57(d,1H),6.77(dd,2H),6.86(d,2H),7.40(d,2H)
13C-NMR(100MHz,Benzene-d6)δ12.8(6C),18.7(12C),26.7(2C),26.8(2C),29.8-30.5(12C),33.9(2C),63.3,64.1(2C),68.6(2C),102.0(2C),111.9(2C),116.8(2C),131.5(2C),152.5(2C),160.9(2C)
実施例2
 TIPS2-Xtn-NH2の合成
Figure JPOXMLDOC01-appb-C000015
(以下、TIPS2-Xtn-NHFmoc、TIPS2-Xtn-NH2は図中の構造を示すこととする。
実施例(2-a)
 TIPS2-Xtn-C=O 21.8g(24.8mmol)をTHF(無水)180mL、メタノール18mLの混合溶液に溶解させ、水素化ホウ素ナトリウム7.5g(198mmol)を添加し、35℃に加熱し、10分撹拌した。さらにメタノール18mLを添加し、35℃で1時間攪拌した。さらに水素化ホウ素ナトリウム3.7g(99.0mmol)、メタノール18mLを添加し、35℃で20時間30分撹拌した。アセトン446mLを添加し、反応溶液を減圧下で濃縮し、得られた残渣をトルエン540mLに溶解し、5%炭酸水素ナトリウム水溶液360mLで4回洗浄した。得られた有機層をトルエン18mLで希釈し、無水硫酸ナトリウム153gを加え、充分撹拌した後濾過し、トルエン90mLで濾物を洗浄し、TIPS2-Xtn-OHを含むトルエン溶液を得た。
実施例(2-b)
 前工程で得たトルエン溶液にFmoc-NH27.11g(29.7mmol)、酢酸82.5mLを加え、50℃に加熱し、30分撹拌した。反応溶液を5℃に冷却した後、トルエンを194mL加え、5%炭酸水素ナトリウム水溶液648mLで3回、水648mLで2回洗浄し、有機層を減圧下で濃縮し、TIPS2-Xtn-NHFmocを含む混合物を得た。
実施例(2-c)
 前工程で得た混合物を、THF248mLに溶解し、DBU 13.3mL(89.1mmol)を添加し、室温で30分撹拌した。反応溶液を5℃に冷却し、1N塩酸59.4mLで反応を停止し、減圧下で濃縮した。得られた残渣をヘプタン500mLに溶解し、アセトニトリル500mLで5回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル:トリエチルアミン=18.75:1.25:1→0:19:1)で精製し、TIPS2-Xtn-NH2 8.86gを得た。
1H-NMR(400MHz,Benzene-d6)δ1.12-1.16(m,42H),1.24-1.40(m,24H),1.40-1.50(m,4H),1.56-1.68(m,10H),3.65-3.74(m,8H),4.76(s,1H),6.78(dd,2H),6.86(d,2H),7.25(d,2H)
13C-NMR(100MHz,Benzene-d6)δ12.8(6C),18.7(12C),26.7(2C),26.8(2C),30.0-30.5(12C),33.9(2C),46.8,64.1(2C),68.5(2C),102.1(2C),111.6(2C),119.0(2C),130.6(2C),152.6(2C),160.3(2C)
実施例3
 TIPS2-Xtn-OH(C8)の合成
Figure JPOXMLDOC01-appb-C000016
(以下、Br-(CH28-OTIPS、TIPS2-Xtn-C=O(C8)、TIPS2-Xtn-OH(C8)は図中の構造を示すこととする。)
実施例(3-a)
 Br-(CH28-OTIPS 1.49g(4.07mmol)、3,6-ジヒドロキシキサントン0.41g(1.81mmol)、炭酸カリウム0.90g(6.52mmol)をDMF12.1mLに懸濁し、85℃に加熱し、2時間30分撹拌した。反応溶液を濾過し、濾物をヘプタン25.3mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン12.1mLを加え、DMF12.1mLで分液洗浄した。得られたヘプタン層に、ヘプタン12.1mLを加え、1N塩酸12.1mLで1回、5%炭酸水素ナトリウム水溶液12.1mLで1回、水12.1mLで1回分液洗浄した。得られたヘプタン層にヘプタン12.1mLを加え、アセトニトリル12.1mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=80:1→0:100)で精製し、TIPS2-Xtn-C=O(C8)1.29gを得た。
1H-NMR(400MHz,CDCl3)δ1.02-1.08(m,42H),1.33-1.44(m,12H),1.44-1.60(m,8H),1.79-1.89(m,4H),3.68(t,4H),4.06(t,4H),6.83(d,2H),6.91(dd,2H),8.22(d,2H)
13C-NMR(100MHz,CDCl3)δ12.2(6C),18.2(12C),25.9(2C),26.1(2C),29.1(2C),29.5(4C),33.1(2C),63.6(2C),68.8(2C),100.8(2C),113.3(2C),115.8(2C),128.2(2C),158.2(2C),164.4(2C),175.7
ESIMS MH+ 797.5
実施例(3-b)
 TIPS2-Xtn-C=O(C8) 0.73g(0.91mmol)をTHF(無水)6.6mL、メタノール0.66mLの混合溶液に溶解させ、水素化ホウ素ナトリウム0.28g(7.30mmol)を添加し、35℃に加熱し、10分撹拌した。さらにメタノール0.66mLを添加し、35℃で50分撹拌した。さらに水素化ホウ素ナトリウム0.14g(3.65mmol)、メタノール0.66mLを添加し、35℃で18時間30分撹拌した。アセトン16.4mL、ヘキサンを66.3mL加え、5%炭酸水素ナトリウム水溶液36.5mLで4回した。得られたヘキサン層にヘキサン3.3mL、無水硫酸ナトリウム5.1gを加え、充分撹拌した後濾過し、ヘキサン3.3mLで濾物を洗浄し、濾液を減圧下で濃縮して、TIPS2-Xtn-OH(C8)0.72gを得た。
1H-NMR(400MHz,Benzene-d6)δ1.12-1.16(m,42H),1.22-1.37(m,12H),1.37-1.45(m,4H),1.52-1.66(m,9H),3.67(t,8H),5.57(d,1H),6.76(dd,2H),6.85(d,2H),7.40(d,2H)
13C-NMR(100MHz,Benzene-d6)δ12.8(6C),18.7(12C),26.6(2C),26.7(2C),29.9(2C),30.1(2C),30.2(2C),33.8(2C),63.4,64.1(2C),68.5(2C),102.0(2C),111.9(2C),116.8(2C),131.5(2C),152.5(2C),160.9(2C)
ESIMS MNa+ 821.5
実施例4
 TBDPS2-Xtn-OHの合成
Figure JPOXMLDOC01-appb-C000017
(以下、Br-(CH211-OTBDPS、TBDPS2-Xtn-C=O、TBDPS2-Xtn-OHは図中の構造を示すこととする。)
実施例(4-a)
 Br-(CH211-OTBDPS 1.16g(2.38mmol)、3,6-ジヒドロキシキサントン0.24g(1.06mmol)、炭酸カリウム0.53g(3.80mmol)をDMF7.0mLに懸濁し、85℃に加熱し、3時間撹拌した。反応溶液を濾過し、濾物をヘプタン14.8mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン7.0mLを加え、アセトニトリル7.0mLで分液洗浄した。得られたヘプタン層に、ヘプタン7.0mLを加え、1N塩酸7.0mLで1回、5%炭酸水素ナトリウム水溶液7.0mLで1回、水7.0mLで1回分液洗浄した。得られたヘプタン層にヘプタン7.0mLを加え、アセトニトリル7.0mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=80:1→0:100)で精製し、TBDPS2-Xtn-C=O 0.67gを得た。
1H-NMR(400MHz,CDCl3)δ1.05(s,18H),1.24-1.42(m,24H),1.42-1.63(m,8H),1.77-1.89(m,4H),3.66(t,4H),4.07(t,4H),6.84(d,2H),6.92(dd,2H),7.30-7.44(m,12H),7.60-7.70(m,8H),8.23(d,2H)
13C-NMR(100MHz,CDCl3)δ19.4(2C),25.9(2C),26.1(2C),27.0(6C),29.2-29.7(12C),32.7(2C),64.2(2C),68.8(2C),100.8(2C),113.4(2C),115.8(2C),127.7(8C),128.3(2C),129.6(4C),134.3(4C),135.7(8C),158.2(2C),164.4(2C),175.7
ESIMS MNa+ 1067.5
実施例(4-b)
 TBDPS2-Xtn-C=O 0.33g(0.32mmol)をTHF(無水)2.3mL、メタノール0.23mLの混合溶液に溶解させ、水素化ホウ素ナトリウム95mg(2.52mmol)を添加し、35℃に加熱し、10分撹拌した。さらにメタノール0.23mLを添加し、35℃で50分撹拌した。さらに水素化ホウ素ナトリウム48mg(1.26mmol)、メタノール0.23mLを添加し、35℃で18時間30分撹拌した後、室温まで冷却し、49時間30分撹拌した。アセトン5.7mL、ヘキサンを22.9mL加え、5%炭酸水素ナトリウム水溶液12.6mLで4回した。得られたヘキサン層にヘキサン1.2mL、無水硫酸ナトリウム2.3gを加え、充分撹拌した後濾過し、ヘキサン1.2mLで濾物を洗浄し、濾液を減圧下で濃縮して、TBDPS2-Xtn-OH 0.31gを得た。
1H-NMR(400MHz,Benzene-d6)δ1.20(s,18H),1.22-1.29(m,24H),1.31-1.43(m,4H),1.53-1.69(m,9H),3.65-3.73(m,8H),5.57(d,1H),6.77(dd,2H),6.85(d,2H),7.21-7.27(m,12H),7.40(d,2H),7.77-7.83(m,8H)
ESIMS MNa+ 1069.2
実施例5
 TIPS2-Xtn-OH(C14)の合成
Figure JPOXMLDOC01-appb-C000018
(以下、Br-(CH214-OTIPS、TIPS2-Xtn-C=O(C14)、TIPS2-Xtn-OH(C14)は図中の構造を示すこととする。)
実施例(5-a)
 Br-(CH214-OTIPS 1.53g(3.34mmol)、3,6-ジヒドロキシキサントン0.34g(1.51mmol)、炭酸カリウム0.75g(5.43mmol)をDMF10.1mLに懸濁し、85℃に加熱し、3時間撹拌した。反応溶液を濾過し、濾物をヘプタン21.1mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン10.1mLを加え、DMF10.1mLで分液洗浄した。得られたヘプタン層に、ヘプタン10.1mLを加え、1N塩酸10.1mLで1回、5%炭酸水素ナトリウム水溶液10.1mLで1回、水10.1mLで1回分液洗浄した。得られたヘプタン層にヘプタン10.1mLを加え、アセトニトリル10.1mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮し、TIPS2-Xtn-C=O(C14)1.34gを得た。
1H-NMR(400MHz,CDCl3)δ1.04-1.08(m,42H),1.23-1.42(m,40H),1.43-1.58(m,4H),1.79-1.89(m,4H),3.66(t,4H),4.06(t,4H),6.83(d,2H),6.91(dd,2H),8.22(d,2H)
ESIMS MH+ 965.8
実施例(5-b)
 TIPS2-Xtn-OH(C8)と同様の方法で、TIPS2-Xtn-OH(C14)を得た。
1H-NMR(400MHz,Benzene-d6)δ1.12-1.16(m,42H),1.23-1.49(m,40H),1.57-1.69(m,9H),3.66-3.73(m,8H),5.57(d,1H),6.77(dd,2H),6.86(d,2H),7.40(d,2H)
ESIMS MNa+ 990.2
実施例6
 TIPS2-Xtn-OH(C8OC2)の合成
Figure JPOXMLDOC01-appb-C000019
(以下、Br-(CH28-O-(CH22-OTIPS、TIPS2-Xtn-C=O(C8OC2)、TIPS2-Xtn-OH(C8OC2)は図中の構造を示すこととする。)
実施例(6-a)
 Br-(CH28-O-(CH22-OTIPS 0.95g(2.31mmol)、3,6-ジヒドロキシキサントン0.23g(1.03mmol)、炭酸カリウム0.57g(4.11mmol)をDMF6.8mLに懸濁し、85℃に加熱し、2時間40分撹拌した。反応溶液を濾過し、濾物をヘプタン14.4mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン6.8mLを加え、DMF6.8mLで分液洗浄した。得られたヘプタン層に、ヘプタン6.8mLを加え、1N塩酸6.8mLで1回、5%炭酸水素ナトリウム水溶液6.8mLで1回、水6.8mLで1回分液洗浄した。得られたヘプタン層にヘプタン6.8mLを加え、アセトニトリル6.8mLで分液洗浄した。前記のヘプタンとアセトニトリルによる分液洗浄をさらに一回行い、ヘプタン層を減圧下で濃縮した。得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=40:1→0:100)で精製し、TIPS2-Xtn-C=O(C8OC2)0.24gを得た。
1H-NMR(400MHz,CDCl3)δ1.03-1.07(m,42H),1.25-1.43(m,12H),1.43-1.53(m,4H),1.53-1.62(m,4H),1.77-1.89(m,4H),3.48(t,4H),3.52(t,4H),3.83(t,4H),4.06(t,4H),6.82(d,2H),6.91(dd,2H),8.21(d,2H)
ESIMS MH+ 885.6
実施例(6-b)
 TIPS2-Xtn-OH(C8)と同様の方法で、TIPS2-Xtn-OH(C8OC2)を得た。
1H-NMR(400MHz,Benzene-d6)δ1.11-1.15(m,42H),1.20-1.29(m,8H),1.29-1.42(m,8H),1.54-1.66(m,9H),3.39(t,4H),3.49(t,4H),3.68(t,4H),3.83(t,4H),5.58(d,1H),6.76(dd,2H),6.85(d,2H),7.41(d,2H)
ESIMS MNa+ 909.8
実施例7
 TIPS2-Xtn-OH(C10-CONH-C2)の合成
Figure JPOXMLDOC01-appb-C000020
(以下、Br-(CH210-CONH-(CH22-OTIPS、TIPS2-Xtn-C=O(C10-CONH-C2)、TIPS2-Xtn-OH(C10-CONH-C2)は図中の構造を示すこととする。)
実施例(7-a)
 Br-(CH210-CONH-(CH22-OTIPS 1.63g(3.50mmol)、3,6-ジヒドロキシキサントン0.29g(1.25mmol)、炭酸カリウム0.69g(5.00mmol)をDMF8.3mLに懸濁し、115℃に加熱し、2時間撹拌した。反応溶液を濾過した。濾液に水25mLを添加し、スラリー洗浄し、沈澱物を濾取した。前記の水によるスラリー洗浄、濾取をさらに一回行った。得られた沈澱物にアセトニトリル25mLを添加し、スラリー洗浄し、沈澱物を濾取した。前記のアセトニトリルによるスラリー洗浄、濾取をさらに一回行った。得られた沈澱物を減圧下で乾燥し、TIPS2-Xtn-C=O(C10-CONH-C2)0.99gを得た。
1H-NMR(400MHz,CDCl3)δ1.03-1.08(m,42H),1.25-1.42(m,20H),1.43-1.53(m,4H),1.56-1.68(m,4H),1.79-1.88(m,4H),2.18(t,4H),3.40(q,4H),3.76(t,4H),4.06(t,4H),5.89(t,2H),6.83(d,2H),6.91(dd,2H),8.21(d,2H)
ESIMS MNa+ 1017.7
 実施例(7-b)
 TIPS2-Xtn-C=O(C10-CONH-C2)0.21g(0.21mmol)をTHF(無水)1.5mL、メタノール0.15mLの混合溶液に溶解させ、水素化ホウ素ナトリウム64mg(1.69mmol)を添加し、35℃に加熱し、10分撹拌した。さらにメタノール0.15mLを添加し、35℃で50分撹拌した。さらに水素化ホウ素ナトリウム32mg(0.84mmol)、メタノール0.15mLを添加し、35℃で21時間10分撹拌した。アセトン3.8mL、酢酸エチル15.3mLを加え、5%炭酸水素ナトリウム水溶液8.4mLで4回した。得られた有機層に酢酸エチル0.8mL、無水硫酸ナトリウム1.47gを加え、充分撹拌した後濾過し、酢酸エチル0.8mLで濾物を洗浄し、濾液を減圧下で濃縮して、TIPS2-Xtn-OH(C10-CONH-C2)0.21gを得た。
 ESIMS MNa+ 1019.6
実施例8
 TIPS3-Xtn-NH2の合成
Figure JPOXMLDOC01-appb-C000021
(以下、Br-(CH210-CONH-C(CH2OTIPS)3、TIPS3-Xtn-C=O、TIPS3-Xtn-OH、TIPS3-Xtn-NHFmoc、TIPS3-Xtn-NH2は図中の構造を示すこととする。)
実施例(8-a)
 Br-(CH210-CONH-C(CH2OTIPS)3 9.01g(10.8mmol)、3-ヒドロキサンテン-9-オン2.86g(12.9mmol)、炭酸カリウム2.69g(19.4mmol)をDMF72mLに懸濁し、120℃に加熱し、5時間撹拌した。反応溶液を濾過し、濾物をヘプタン151mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン72mL、DMF72mLを加え、分液洗浄した。さらにDMF72mLを加え、分液洗浄を2回行った。得られたヘプタン層に、水72mLで1回分液洗浄した。ヘプタン層を減圧下で濃縮して、TIPS3-Xtn-C=O 5.68gを得た。
1H-NMR(400MHz,CDCl3)δ1H-NMR(400MHz,CDCl3)δ1.02-1.08(m,63H),1.24-1.39(m,10H),1.44-1.62(m,4H),1.85(quin.,2H),2.09(t,2H),4.04(s,6H),4.08(t,2H),5.75(s,1H),6.87(d,1H),6.94(dd,1H),7.37(t,1H),7.45(d,1H),7.66-7.72(m,1H),8.24(d,1H),8.33(dd,1H)
実施例(8-b)
 TIPS3-Xtn-C=O 0.70g(0.73mmol)をTHF(無水)4.0mL、メタノール0.8mLの混合溶液に溶解させ、水素化ホウ素ナトリウム0.22g(5.81mmol)を添加し、35℃に加熱し、4時間撹拌した。アセトン0.86mLを加え反応を停止し、減圧下で濃縮した。得られた残渣をトルエン13mLに溶解し、5%炭酸水素ナトリウム水溶液3.9mLで2回、水3.9mLで2回分液洗浄し、TIPS3-Xtn-OHを含むトルエン溶液を得た。
実施例(8-c)
 前工程で得たトルエン溶液に、9-フルオレニルメチルカルバメート0.21g(0.87mmol)、酢酸0.42mL、モレキュラーシーブス4Å1.72gを添加し、50℃で3時間30分撹拌した。反応溶液を濾過し、トルエン10mLで希釈し、5%炭酸水素ナトリウム水溶液40mLで1回、30mLで1回、水20mLで1回分液洗浄した。溶液を減圧下で濃縮し、TIPS3-Xtn-NHFmocを含む混合物を得た。
実施例(8-d)
 前工程で得た混合物をTHF6.9mLに溶解し、DBU0.15mL(1.03mmol)を添加し、室温で1時間撹拌した。反応溶液を減圧下で濃縮し、残渣をヘプタン21.0mLに溶解させ、DMF7.0mLで分液洗浄した。得られたヘプタン層にヘプタン7.0mL、DMF7.0mMを加え、分液洗浄を2回行った。ヘプタン層にヘプタンを7.0mL加え、50%含水アセトニトリル7.0mLで分液洗浄した。前記のへプタンと50%含水アセトニトリルによる分液洗浄を、さらに1回行った。得られたヘプタン層にヘプタン7.0mLを加え、アセトニトリル7.0mLで分液洗浄した。前記のへプタンとアセトニトリルによる分液洗浄を、さらに1回行った後、ヘプタン層を減圧下で濃縮し、得られた残渣をシリカゲルクロマトグラフィー(ヘプタン:酢酸エチル:トリエチルアミン=17.8:1.2:1→0:19:1)で精製し、TIPS3-Xtn-NH20.44gを得た。
1H-NMR(400MHz,Benzene-d6)δ1.14-1.18(m,63H),1.22-1.40(m,14H),1.63(quin.,2H),1.75(quin.,2H),2.20(t,2H),3.69(t,2H),4.43(s,6H),4.70(s,1H),5.91(s,1H),6.78(dd,1H),6.82(d,1H),6.93(td,1H),7.04(td,1H),7.14(dd,1H),7.22(d,1H),7.28(dd,1H)
実施例9
 TIPS3-Xtn-OH(6-OMe)の合成
Figure JPOXMLDOC01-appb-C000022
(以下、TIPS3-Xtn-C=O(6-OMe)、TIPS3-Xtn-OH(6-OMe)は図中の構造を示すこととする。)
実施例(9-a)
 Br-(CH210-CONH-C(CH2OTIPS)3 0.40g(0.48mmol)、3-ヒドロキシ-6-メトキシキサントン0.22g(0.91mmol)、炭酸カリウム0.20g(1.43mmol)をDMF3.2mLに懸濁し、115℃に加熱し、3時間20分撹拌した。反応溶液を濾過し、濾物をヘプタン4.8mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン2.4mLを加え、DMF2.4mLで分液洗浄した。得られたヘプタン層に、ヘプタン2.4mLを加え、1N塩酸2.4mLで1回、5%炭酸水素ナトリウム水溶液2.4mLで1回、水2.4mLで1回分液洗浄した。得られたヘプタン層にヘプタン2.4mLを加え、アセトニトリル2.4mLで分液洗浄した。前記のヘプタンとアセトニトリルによる分液洗浄をさらに一回行い、ヘプタン層を減圧下で濃縮して、TIPS3-Xtn-C=O(6-OMe)0.27gを得た。
1H-NMR(400MHz,CDCl3)δ1.00-1.07(m,63H),1.20-1.40(m,10H),1.48(quin.,2H),1.57(quin.,2H),1.84(quin.,2H),2.09(t,2H),3.92(s,3H),4.02-4.09(m,8H),5.75(s,1H),6.84(dd,2H),6.89-6.94(m,2H),8.20-8.25(m,2H)
ESIMS MH+ 998.8
実施例(9-b)
 TIPS2-Xtn-OH(C8)と同様の方法で、TIPS3-Xtn-OH(6-OMe)を得た。
1H-NMR(400MHz,Benzene-d6)δ1.15-1.19(m,63H),1.20-1.41(m,12H),1.55-1.80(m,5H),2.19(t,2H),3.30(s,3H),3.70(t,2H),4.42(s,6H),5.56(d,1H),5.91(s,1H),6.68(dd,1H),6.75-6.80(m,2H),6.85(d,1H),7.36-7.43(m,2H)
ESIMS MNa+ 1022.7
実施例10
 TIPS4-Xtn-OH(C10-CONH-CH(CH22)の合成
Figure JPOXMLDOC01-appb-C000023
(以下、Br-(CH210-CONH-CH(CH2-OTIPS)2、TIPS4-Xtn-C=O(C10-CONH-CH(CH22)、TIPS4-Xtn-OH(C10-CONH-CH(CH22)は図中の構造を示すこととする。)
実施例(10-a)
 Br-(CH210-CONH-CH(CH2-OTIPS)2 1.53g(2.35mmol)、3,6-ジヒドロキシキサントン0.19g(0.84mmol)、炭酸カリウム0.47g(3.36mmol)をDMF5.6mLに懸濁し、115℃に加熱し、3時間30分撹拌した。反応溶液を濾過し、濾物をヘプタン11.8mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン5.6mLを加え、DMF5.6mLで分液洗浄した。得られたヘプタン層に、ヘプタン5.6mLを加え、1N塩酸5.6mLで1回、5%炭酸水素ナトリウム水溶液5.6mLで1回、水5.6mLで1回分液洗浄した。得られたヘプタン層にヘプタン5.6mLを加え、アセトニトリル5.6mLで分液洗浄した。前記のヘプタンとアセトニトリルによる分液洗浄をさらに一回行った。ヘプタン層を減圧下で濃縮して、TIPS4-Xtn-C=O(C10-CONH-CH(CH22)0.74gを得た。
1H-NMR(400MHz,CDCl3)δ1.04-1.08(m,84H),1.22-1.42(m,20H),1.43-1.52(m,4H),1.56-1.66(m,4H),1.79-1.88(m,4H),2.16(t,4H),3.64-3.70(m,4H),3.86-3.91(m,4H),3.94-4.04(m,2H),4.06(t,4H),5.84(d,2H),6.83(d,2H),6.91(dd,2H),8.22(d,2H)
ESIMS MH+ 1367.9
実施例(10-b)
 TIPS2-Xtn-OH(C8)と同様の方法で、TIPS4-Xtn-OH(C10-CONH-CH(CH22)を得た。
1H-NMR(400MHz,Benzene-d6)δ1.10-1.15(m,84H),1.20-1.41(m,24H),1.60-1.73(m,9H),2.03(t,4H),3.68-3.77(m,8H),4.01-4.07(m,4H),4.27-4.36(m,2H),5.61(d,1H),5.71(d,2H),6.78(dd,2H),6.87(d,2H),7.44(d,2H)
ESIMS MNa+ 1391.7
実施例11
 TIPS6-Xtn-NH2の合成
Figure JPOXMLDOC01-appb-C000024
(以下、TIPS6-Xtn-C=O、TIPS6-Xtn-OH、TIPS6-Xtn-NHFmoc、TIPS6-Xtn-NH2は図中の構造を示すこととする。)
実施例(11-a)
 Br-(CH210-CONH-C(CH2OTIPS)3 8.18g(9.77mmol)、3,6-ジヒドロキシキサントン0.68g(3.00mmol)、炭酸カリウム1.50g(10.9mmol)をDMF20.0mLに懸濁し、90℃に加熱し、9.5時間撹拌した。反応溶液を濾過し、濾物をヘプタン42mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン20mLを加え、DMF20mLで分液洗浄した。前記のへプタンとDMFによる分液洗浄を、さらに1回行った。得られたヘプタン層に、ヘプタン20mLを加え、1N塩酸20mLで1回、5%炭酸水素ナトリウム水溶液20mLで1回、水20mLで2回分液洗浄した。得られたヘプタン層にヘプタン20mLを加え、DMF20mLで1回、アセトニトリル20mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル=35:1→10:1)で精製し、TIPS6-Xtn-C=O 4.13gを得た。
1H-NMR(400MHz,Chloroform-d1)δ1.00-1.12(m,126H),1.25-1.37(m,20H),1.47(quin,4H),1.57(quin,4H),1.83(quin,4H),2.08(t,4H),4.03(s,12H),4.05(t,4H),5.74(s,2H),6.82(dd,2H),6.88-6.92(m,2H),8.21(dd,2H)
実施例(11-b)
 TIPS6-Xtn-C=O 3.00g(1.72mmol)をTHF(無水)12.5mL、メタノール3.8mLの混合溶液に溶解させ、水素化ホウ素ナトリウム0.79g(20.8mmol)を添加し、室温で15時間撹拌した。アセトン47.0mLを加え反応を停止し、減圧下で濃縮し、残渣をトルエン37.6mLで溶解させ、5%炭酸水素ナトリウム水溶液25.1mLで分液洗浄した。さらに5%炭酸水素ナトリウム水溶液25.1mLで3回洗浄し、TIPS6-Xtn-OHを含む混合物のトルエン溶液を得た。
1H-NMR(400MHz,Benzene-d6)δ1.07-1.13(m,126H),1.14-1.26(m,20H),1.34-1.37(m,4H),1.58(quin,4H),1.68(quin,4H),2.13(t,4H),3.64(t,4H),4.36(s,12H),5.52-5.55(d,1H),5.85(s,2H),6.72(dd,2H),6.80(d,2H),7.37(d,2H)
実施例(11-c)
 前工程で得たトルエン溶液に、9-フルオレニルメチルカルバメート0.50g(2.10mmol)、酢酸5.74mL、モレキュラーシーブス4Å0.49gを添加し、室温で6時間撹拌した。反応溶液を5℃に冷却した後、飽和炭酸水素ナトリウム水溶液45.1mL加え、30分間攪拌した。反応溶液を濾過し、濾物をトルエン13.5mLで洗浄し、濾液を分液した後、飽和炭酸水素ナトリウム水溶液45.1mLで1回、5%炭酸水素ナトリウム水溶液45.1mLで1回、水45.1mLで2回洗浄し、有機層を減圧下で濃縮し、TIPS2-Xtn-NHFmocを含む混合物を得た。
実施例(11-d)
 前工程で得た混合物をTHF12.7mLに溶解し、DBU 0.69mL(4.58mmol)を添加し、室温で1時間撹拌した。反応溶液を5℃に冷却し、1N塩酸3.1mLで反応を停止し、減圧下で濃縮した。得られた残渣をヘプタン25.5mLに溶解し、アセトニトリル25.5mLで6回分液洗浄した。ヘプタン層を減圧下で濃縮して、得られた残渣をシリカゲルカラムクロマトグラフィー(ヘプタン:酢酸エチル:トリエチルアミン=18.75:1.25:1→0:19:1)で精製し、TIPS6-Xtn-NH2 1.37gを得た。
1H-NMR(400MHz,Benzene-d6)δ1.06-1.14(m,126H),1.14-1.19(m,20H),1.25-1.32(m,4H),1.58(quin,4H),1.69(quin,4H),2.13(t,4H),3.65(t,4H),4.37(s,12H),4.69(s,1H),5.84(s,2H),6.73(dd,2H),6.81(d,2H),7.19(d,2H)
実施例12
 Fmoc-Cys(TIPS2-Xtn)-NH2の合成と脱保護
Figure JPOXMLDOC01-appb-C000025
(以下、Fmoc-L-Cys-NH2、Fmoc-Cys(TIPS2-Xtn)-NH2は図中の構造を示すこととする。)
実施例(12-a)
 TIPS2-Xtn-C=O 0.10g(0.12mmol)をTHF(無水)0.83mL、メタノール83μLの混合溶液に溶解させ、水素化ホウ素ナトリウム35mg(0.92mmol)を添加し、35℃に加熱し、10分撹拌した。さらにメタノール83μLを添加し、35℃で50分攪拌した。さらに水素化ホウ素ナトリウム17mg(0.46mmol)、メタノール83μLを添加し、35℃で20時間45分撹拌した。アセトン2.0mLを添加し、反応溶液を減圧下で濃縮し、得られた残渣をトルエン2.5mLに溶解し、5%炭酸水素ナトリウム水溶液1.7mLで4回洗浄した。得られた有機層をトルエン0.1mLで希釈し、無水硫酸ナトリウム0.71gを加え、充分撹拌した後濾過し、トルエン0.4mLで濾物を洗浄し、TIPS2-Xtn-OHを含むトルエン溶液を得た。
実施例(12-b)
 前工程で得たトルエン溶液にFmoc-L-Csy-NH43mg(0.13mmol)、モレキュラーシーブス4Å39mg、酢酸0.38mLを添加し、25℃で1時間30分撹拌した。反応溶液を5℃に冷却し、飽和炭酸水素ナトリウム水溶液4.5mLを加え、反応を停止した。トルエン3.0mLを加え、分液し、飽和炭酸水素ナトリウム水溶液4.5mLで2回、水3.0mLで1回分液洗浄し、有機層を減圧下で濃縮した。
 得られた残渣にメタノール 3.1mL添加し、5℃に冷却後、スラリー洗浄し、沈澱物を濾取した。前記のメタノールによるスラリー洗浄、濾取をさらに2回行った。得られた沈澱物をヘプタン30mLとCPME4.5mLの混合溶媒に溶解し、アセトニトリル30mLで3回分液洗浄した。ヘプタン層を減圧下で濃縮し、Fmoc-Cys(TIPS2-Xtn)-NH76mgを得た。
ESIMS MNa+ 1229.8
実施例(12-c)
 Fmoc-Cys(TIPS2-Xtn)-NH2 57mg(0.05mmol)をジクロロメタン 0.76mLに溶解し、3,6-ジオキサ-1,8-オクタンジチオール 47μL(0.29mmol)、トリイソプロピルシラン47μL(0.22mmol)、トリフルオロ酢酸94μL(1.23mmol)を添加し、室温で2時間撹拌した。反応溶液を減圧下で濃縮し、残渣を5℃に冷却したジイソプロピルエーテル3.8mLに滴下し、沈澱物を濾取した。このジイソプロピルエーテルによるスラリー洗浄、濾過をさらに3回行い、沈殿物を濾取した。沈澱物を減圧下で乾燥し、Fmoc-L-Cys-NH9mgを得た。
ESIMS MNa+ 364.9
実施例13
 ペプチド化合物に対する溶解度向上性能の確認
 本発明におけるキサンテン保護剤で保護した化合物の溶解度を測定した結果を図1に示す。
 モデルとして使用したペプチド:H-Phe-Leu-NH2
 H-Phe-Leu-NH2、H-Phe-Leu-NH-(TIPS2-Xtn)を合成し、25℃でCPME(シクロペンチルメチルエーテル)にそれぞれの化合物を飽和させ、その溶解度を測定した。
 その結果、TIPS型保護剤の結合していないH-Phe-Leu-NH2がCPMEにわずか0.5mMしか溶解しないのに比べ、TIPS2-Xtn-NH2を結合した場合、586mMと約1100倍以上溶解度が向上した。その結果を図1に示す。この結果から、キサンテン保護剤で誘導体化することで、ペプチドの溶解度が著しく向上することが確認できた。なお、H-Phe-Leu-NH2とH-Phe-Leu-NH-(TIPS2-Xtn)は下記の構造を示すこととする。
Figure JPOXMLDOC01-appb-C000026
実施例(13-a)
 H-Phe-Leu-NH-(TIPS2-Xtn)の合成
 TIPS2-Xtn-NH2 1.67g(1.89mmol)をCPME 18.9mLに溶解し、DMF 8.1mL、DIPEA 1.32mL(7.55mmol)、Fmoc-Leu-OH 1.00g(2.83mmol)、(ヒドロキシイミノ)シアノ酢酸エチル(Oxyma) 0.40g(2.83mmol)、 (1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノ-モルホリノ-カルベニウムヘキサフルオロリン酸塩(COMU)  1.21g(2.83mmol)を加え、室温で50分撹拌した。TIPS2-Xtn-NH2の消失を確認後、2-(2-アミノエトキシ)エタノール 112μL(1.13mmol)を加え、室温で15分撹拌した。反応溶液にDMSO 18.9mLに溶解した3-メルカプト-1-プロパンスルホン酸ナトリウム4.04g(22.6mmol)を添加し、DMSO 1.9mL、DBU2.12mL(14.2mmol)を加え、40分撹拌した。Fmoc-Leu-NH-(TIPS2-Xtn)の消失を確認後、5℃に冷却した後、4M CPME/HCl 3.72mL(14.9mmol)を滴下し、室温まで昇温し、CPME0.8mL、20%食塩水80mL、10%炭酸ナトリウム水溶液68mLを加え、分液洗浄した。得られた有機相にDMSO 0.6mL、DMF 0.6mL、50%リン酸水素二カリウム水溶液 23mLを加え、分液洗浄し、H-Leu-NH-(TIPS2-Xtn)を含む混合液を得た。なお、Fmoc-Leu-NH-(TIPS2-Xtn)とH-Leu-NH-(TIPS2-Xtn)は下記の構造を示すこととする。
Figure JPOXMLDOC01-appb-C000027
 得られた混合液に対し、CPME 3.4mL、DMF11.3mL、DIPEA 1.31mL(7.55mmol)、Fmoc-Phe-OH 1.10g(2.83mmol)、Oxyma 0.40g(2.83mmol)、COMU 1.21g(2.83mmol)を加え、室温で50分撹拌した。H-Leu-NH-(TIPS2-Xtn)の消失を確認後、2-(2-アミノエトキシ)エタノール 112μL(1.13mmol)を加え、室温で15分撹拌した。反応溶液にDMSO 18.9mLに溶解した3-メルカプト-1-プロパンスルホン酸ナトリウム4.04g(22.6mmol)を添加し、5℃に冷却した後、DMSO 1.9mL、DBU2.12mL(14.2mmol)を加え、35分撹拌した。Fmoc-Phe-Leu-NH-(TIPS2-Xtn)の消失を確認後、4M CPME/HCl 3.72mL(14.9mmol)を滴下し、室温まで昇温し、CPME0.9mL、20%食塩水 88mL、10%炭酸ナトリウム水溶液 75mLを加え、分液洗浄した。得られた有機相にDMSO 0.8mL、DMF 0.8mL、50%リン酸水素二カリウム水溶液 31mLを加え、分液洗浄した。溶液を減圧下で濃縮し、得られた残渣を、ヘプタン66mLに溶解し、アセトニトリル28mLで2回分液洗浄した。ヘプタン層を減圧下で濃縮し、得られた残渣を減圧下で乾燥し、H-Phe-Leu-NH-(TIPS2-Xtn)1.75gを得た。
ESIMS MNa+ 1164.8
 なお、Fmoc-Phe-Leu-NH-(TIPS2-Xtn)は下記の構造を示す。
Figure JPOXMLDOC01-appb-C000028
実施例(13-b)
 H-Phe-Leu-NH2の合成
 H-Phe-Leu-NH-(TIPS2-Xtn)209mg(0.18mmol)をジクロロメタン3.23mLに溶解し、トリフルオロエタノール0.37mL(5.10mmol)、トリフルオロ酢酸73μL(0.96mmol)を添加し、室温で1時間10分撹拌した。H-Phe-Leu-NH-(TIPS2-Xtn)の消失を確認後、反応溶液を減圧下で濃縮し、残渣を5℃に冷却したジイソプロピルエーテル18.8mLに滴下し、5℃、3000rpmで4分間遠心分離し、デカンテーションにより上精を除去することで沈殿物を得た。このジイソプロピルエーテルによるスラリー洗浄、遠心分離、デカンテーションをさらに3回行い、沈殿物を得た。沈澱物を減圧下で乾燥し、H-Phe-Leu-NH49mgを得た。
ESIMS MH+ 278.0
 以上の結果から、本発明のキサンテン保護剤を用いて官能基を保護された化合物は、有機溶媒に対する溶解度が大幅に向上することがわかった。

Claims (12)

  1.  一般式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Yは-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、アジド、ハロゲン原子、又はメチレン基と一体となったカルボニル基を示し、R1~R8のうちの少なくとも1個は式(2)
    Figure JPOXMLDOC01-appb-C000002
    で表される基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    9は炭素数1~16の直鎖又は分岐鎖のアルキレン基を示し;
    XはO又はCONR19(ここでR19は水素原子又は炭素数1~4のアルキル基を示す)を示し;
    Aは式(3)、(4)、(5)、(6)、(7)、(8)、(9)、(10)、(11)、(12)又は(13)
    Figure JPOXMLDOC01-appb-C000003
    (ここで、R10、R11及びR12は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していてもよいアリール基を示し;R13は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R14、R15及びR16はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す)
    で表される基を示す)
    で表されるキサンテン化合物。
  2.  Yが-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)、アジド又はハロゲン原子である請求項1記載のキサンテン化合物。
  3.  Yが-OR17(ここでR17は水素原子又は活性エステル型保護基を示す)、-NHR18(ここで、R18は水素原子又は炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又はアラルキル基を示す)を示す請求項1記載のキサンテン化合物。
  4.  Yが-OR17(ここでR17は水素原子を示す)、-NHR18(ここでR18は水素原子を示す)、又はメチレン基と一体となったカルボニル基である請求項1記載のキサンテン化合物。
  5.  Yが-OR17(ここでR17は水素原子を示す)、又は-NHR18(ここで、R18は水素原子を示す)を示す請求項1記載のキサンテン化合物。
  6.  R1~R8のうち少なくとも1個が式(2)で表される基であり、残余が水素原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基である請求項1~5のいずれかに記載のキサンテン化合物。
  7.  R9が炭素数2~16の直鎖又は分岐鎖のアルキレン基である請求項1~6のいずれかに記載のキサンテン化合物。
  8.  R9が炭素数6~16の直鎖又は分岐鎖のアルキレン基である請求項1~7のいずれかに記載のキサンテン化合物。
  9.  R13が単結合又はメチレン基であり、R14、R15及びR16がメチレン基である請求項1~8のいずれかに記載のキサンテン化合物。
  10.  請求項1~9のいずれかに記載のキサンテン化合物からなるカルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基の保護剤。
  11.  請求項1~9のいずれかに記載のキサンテン化合物からなるカルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基の保護剤を用いて行う化合物の製造法。
  12.  請求項1~9のいずれかに記載のキサンテン化合物からなるカルボキシ基、水酸基、ジオール基、アミノ基、アミド基又はメルカプト基の保護剤を用いて行うペプチドの製造法。
PCT/JP2017/026670 2016-07-25 2017-07-24 新規キサンテン保護剤 WO2018021233A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020197000655A KR102434863B1 (ko) 2016-07-25 2017-07-24 신규 크산텐 보호제
CN201780042906.1A CN109476684B (zh) 2016-07-25 2017-07-24 新型呫吨保护剂
EP17834239.0A EP3489245B1 (en) 2016-07-25 2017-07-24 New xanthene protective agent
ES17834239T ES2830974T3 (es) 2016-07-25 2017-07-24 Nuevo agente protector de xanteno
JP2017557218A JP6283775B1 (ja) 2016-07-25 2017-07-24 新規キサンテン保護剤
US16/319,581 US10508124B2 (en) 2016-07-25 2017-07-24 Xanthene protective agent

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-145022 2016-07-25
JP2016145022 2016-07-25
JP2017025508 2017-02-15
JP2017-025508 2017-02-15

Publications (1)

Publication Number Publication Date
WO2018021233A1 true WO2018021233A1 (ja) 2018-02-01

Family

ID=61016540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026670 WO2018021233A1 (ja) 2016-07-25 2017-07-24 新規キサンテン保護剤

Country Status (9)

Country Link
US (1) US10508124B2 (ja)
EP (1) EP3489245B1 (ja)
JP (1) JP6283775B1 (ja)
KR (1) KR102434863B1 (ja)
CN (1) CN109476684B (ja)
ES (1) ES2830974T3 (ja)
HU (1) HUE052347T2 (ja)
TW (1) TWI735624B (ja)
WO (1) WO2018021233A1 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123994A1 (ja) * 2017-12-19 2019-06-27 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤
WO2019184089A1 (zh) * 2018-03-29 2019-10-03 深圳翰宇药业股份有限公司 化合物及其制备方法和应用
WO2020175472A1 (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環芳香族炭化水素化合物
WO2020262259A1 (ja) 2019-06-28 2020-12-30 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
WO2021059859A1 (ja) * 2019-09-24 2021-04-01 コニカミノルタ株式会社 検出方法および検出装置
JP7063409B1 (ja) 2021-07-02 2022-05-09 ペプチスター株式会社 Fmоc基を除去する方法
WO2022138605A1 (ja) 2020-12-22 2022-06-30 富士フイルム株式会社 ペプチドの製造方法、保護基形成用試薬、及び、縮合多環化合物
JP7162853B1 (ja) 2021-07-02 2022-10-31 ペプチスター株式会社 液相ペプチド合成用担体結合ペプチドの分析方法
EP4086272A1 (en) 2021-05-07 2022-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing cyclic compounds comprising n-substituted amino acid residues
WO2023013757A1 (ja) * 2021-08-05 2023-02-09 積水メディカル株式会社 アルキルシリルオキシ置換ベンジル化合物の製造方法
WO2023214577A1 (ja) * 2022-05-02 2023-11-09 中外製薬株式会社 ジケトピペラジン形成による欠損を抑制するペプチド合成方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201833127A (zh) * 2017-02-27 2018-09-16 日商積水醫療股份有限公司 新穎四環式保護劑
JP6531235B1 (ja) * 2017-12-19 2019-06-12 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038650A1 (ja) * 2015-08-28 2017-03-09 積水メディカル株式会社 ベンジル化合物

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5101059A (en) * 1989-12-05 1992-03-31 Research Corporation Technologies, Inc. Amino acid protecting groups
US20080293639A1 (en) * 2005-04-29 2008-11-27 The Regents Of The University Of California Peptides and peptide mimetics to treat pathologies characterized by an inflammatory response
CN101522207A (zh) * 2006-08-08 2009-09-02 加利福尼亚大学董事会 治疗性肽的水杨酰苯胺增强口服输送
JP2010113939A (ja) 2008-11-06 2010-05-20 Nissan Motor Co Ltd 双極型二次電池およびその製造方法
US8722934B2 (en) 2009-03-30 2014-05-13 Ajinomoto Co., Inc. Diphenylmethane compound
JP2012029794A (ja) 2010-07-29 2012-02-16 Omron Healthcare Co Ltd 電子血圧計用基板、電子血圧計用モジュール、および電子血圧計
CN103080058B (zh) 2010-08-30 2017-04-12 味之素株式会社 含有支链的芳香族化合物
CN102070595A (zh) * 2011-01-20 2011-05-25 中国人民解放军第二军医大学 取代苯并呫吨酮类化合物及其应用

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017038650A1 (ja) * 2015-08-28 2017-03-09 積水メディカル株式会社 ベンジル化合物

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
CASILLAS,L.K. ET AL.: "Total Synthesis of O-Methylsterigmatocystin Using N-Alkylnitrilium Salts and Carbonyl-Alkene Interconversion in a New Xanthone Synthesis", JOURNAL OF ORGANIC CHEMISTRY, vol. 64, no. 11, 1999, pages 4050 - 4059, XP055457272 *
FONTENEAU,N. ET AL.: "Synthesis of quinone and xanthone analogs of rhein", TETRAHEDRON, vol. 57, no. 44, 2001, pages 9131 - 9135, XP004311149 *
LI,J. ET AL.: "Singapore Green '': A New Fluorescent Dye for Microarray and Bioimaging Applications", ORGANIC LETTERS, vol. 11, no. 2, 2009, pages 405 - 408, XP055197665 *
See also references of EP3489245A4 *

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019123994A1 (ja) * 2017-12-19 2019-06-27 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤
US10870667B2 (en) 2017-12-19 2020-12-22 Sekisui Medical Co., Ltd. Alkyldiphenylmethane protective agent
US11542287B2 (en) 2017-12-19 2023-01-03 Sekisui Medical Co., Ltd. Alkyldiphenylmethane protective agent
WO2019184089A1 (zh) * 2018-03-29 2019-10-03 深圳翰宇药业股份有限公司 化合物及其制备方法和应用
CN110317188A (zh) * 2018-03-29 2019-10-11 深圳翰宇药业股份有限公司 化合物及其制备方法和应用
CN110317188B (zh) * 2018-03-29 2023-01-17 深圳翰宇药业股份有限公司 化合物及其制备方法和应用
WO2020175472A1 (ja) * 2019-02-28 2020-09-03 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環芳香族炭化水素化合物
JPWO2020262259A1 (ja) * 2019-06-28 2020-12-30
JP7301965B2 (ja) 2019-06-28 2023-07-03 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
WO2020262259A1 (ja) 2019-06-28 2020-12-30 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
WO2021059859A1 (ja) * 2019-09-24 2021-04-01 コニカミノルタ株式会社 検出方法および検出装置
WO2022138605A1 (ja) 2020-12-22 2022-06-30 富士フイルム株式会社 ペプチドの製造方法、保護基形成用試薬、及び、縮合多環化合物
EP4086272A1 (en) 2021-05-07 2022-11-09 Chugai Seiyaku Kabushiki Kaisha Methods for producing cyclic compounds comprising n-substituted amino acid residues
JP7162853B1 (ja) 2021-07-02 2022-10-31 ペプチスター株式会社 液相ペプチド合成用担体結合ペプチドの分析方法
WO2023277186A1 (ja) * 2021-07-02 2023-01-05 ペプチスター株式会社 液相ペプチド合成用担体結合ペプチドの分析方法
JP2023008765A (ja) * 2021-07-02 2023-01-19 ペプチスター株式会社 液相ペプチド合成用担体結合ペプチドの分析方法
JP2023007949A (ja) * 2021-07-02 2023-01-19 ペプチスター株式会社 Fmоc基を除去する方法
JP7063409B1 (ja) 2021-07-02 2022-05-09 ペプチスター株式会社 Fmоc基を除去する方法
WO2023013757A1 (ja) * 2021-08-05 2023-02-09 積水メディカル株式会社 アルキルシリルオキシ置換ベンジル化合物の製造方法
WO2023214577A1 (ja) * 2022-05-02 2023-11-09 中外製薬株式会社 ジケトピペラジン形成による欠損を抑制するペプチド合成方法

Also Published As

Publication number Publication date
EP3489245A1 (en) 2019-05-29
CN109476684A (zh) 2019-03-15
CN109476684B (zh) 2021-05-04
JPWO2018021233A1 (ja) 2018-07-26
JP6283775B1 (ja) 2018-02-21
EP3489245A4 (en) 2020-02-19
TWI735624B (zh) 2021-08-11
US10508124B2 (en) 2019-12-17
KR102434863B1 (ko) 2022-08-22
TW201803862A (zh) 2018-02-01
ES2830974T3 (es) 2021-06-07
HUE052347T2 (hu) 2021-04-28
KR20190033516A (ko) 2019-03-29
EP3489245B1 (en) 2020-10-14
US20190263842A1 (en) 2019-08-29

Similar Documents

Publication Publication Date Title
JP6283775B1 (ja) 新規キサンテン保護剤
JP6116782B1 (ja) ベンジル化合物
JP6283774B1 (ja) 新規ジフェニルメタン保護剤
CN111491941B (zh) 新型烷基二苯甲烷保护剂
JPWO2012165546A1 (ja) ペプチドの製造方法
KR102421025B1 (ko) 신규 트리틸 보호제
JP6322350B1 (ja) 新規トリチル保護剤
JP6531235B1 (ja) 新規アルキルジフェニルメタン保護剤
CN116568694A (zh) 碘酪氨酸衍生物及制备碘酪氨酸衍生物的方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2017557218

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834239

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197000655

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017834239

Country of ref document: EP

Effective date: 20190225