WO2023013757A1 - アルキルシリルオキシ置換ベンジル化合物の製造方法 - Google Patents

アルキルシリルオキシ置換ベンジル化合物の製造方法 Download PDF

Info

Publication number
WO2023013757A1
WO2023013757A1 PCT/JP2022/030045 JP2022030045W WO2023013757A1 WO 2023013757 A1 WO2023013757 A1 WO 2023013757A1 JP 2022030045 W JP2022030045 W JP 2022030045W WO 2023013757 A1 WO2023013757 A1 WO 2023013757A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon atoms
group
formula
represent
alkylsilyloxy
Prior art date
Application number
PCT/JP2022/030045
Other languages
English (en)
French (fr)
Inventor
健太 齋藤
晋 四月朔日
和幸 東山
慎治 只野
卓 松本
準 阿部
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to JP2023540423A priority Critical patent/JPWO2023013757A1/ja
Publication of WO2023013757A1 publication Critical patent/WO2023013757A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C49/00Ketones; Ketenes; Dimeric ketenes; Ketonic chelates
    • C07C49/76Ketones containing a keto group bound to a six-membered aromatic ring
    • C07C49/84Ketones containing a keto group bound to a six-membered aromatic ring containing ether groups, groups, groups, or groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C69/00Esters of carboxylic acids; Esters of carbonic or haloformic acids
    • C07C69/76Esters of carboxylic acids having a carboxyl group bound to a carbon atom of a six-membered aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/04General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length on carriers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present invention relates to a method for producing an alkylsilyloxy-substituted benzyl compound.
  • liquid-phase peptide synthesis carrier a liquid-phase peptide synthesis carrier (Tag) has been reported. Since the carrier for liquid-phase peptide synthesis (Tag) is a highly hydrophobic compound, by binding highly hydrophilic amino acids, peptides or amino acid amides (hereinafter sometimes referred to as amino acids, etc.) to this carrier, organic solvent The solubility in can be greatly improved.
  • the amino acid or the like bound to the carrier is dissolved in the organic layer, and unnecessary components such as surplus raw material amino acids used in the peptide elongation reaction and its By dissolving in the aqueous layer the decomposition products and compounds produced as by-products when the protective groups of the starting amino acids are deprotected, there is an advantage that the amino acids bound to the carrier can be simply purified by liquid-liquid separation.
  • an object of the present invention is to provide an industrial process for producing an alkylsilyloxy-substituted benzyl compound in which the reaction steps are easy to control.
  • the present inventors introduced a hydroxyalkyloxy group to a compound having a benzoyl skeleton, a diphenylketone skeleton (benzophenone skeleton) or a xanthone skeleton, and then introduced an alkylsilyl group to the hydroxyl group.
  • Br--(CH 2 ) 11 --O--TIPS which is a raw material which has caused problems of poor stability and difficulty in separating from the intermediate compound in the conventional method.
  • the reaction process can be easily controlled, and the raw materials or decomposition products of the raw materials can be easily removed.
  • the present inventors have found that an alkylsilyloxy-substituted benzyl compound can be industrially advantageously obtained, and have completed the present invention.
  • the term “solid” refers to both those having a crystalline structure and amorphous-like solids.
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. showing 4 alkoxy groups;
  • R B is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms, or An alkoxy group or when R B has the structure of this formula, R 5b may combine with R 5b in formula (3) to form an ether bond (--O--). indicates the binding site with RB .
  • R 5b may combine with R 5b in formula (3) to form an ether bond (--O--). indicates the binding site with RB .
  • FIG.) shows the group represented by General formula (5) characterized by reacting an alkyl silylating agent with a benzoyl compound represented by
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;
  • R C is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, or 4 alkyl group or alkoxy group having 1 to 4 carbon atoms, or when R C has the structure of this formula, R 5c is an ether bond (—O -), where * indicates a binding site with R C ). shows the group represented by A method for producing an alkylsilyloxy-substituted benzoyl compound represented by [2] General formula (3)
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. showing 4 alkoxy groups;
  • R B is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms, or represents an alkoxy group, or when R B represents the structure of this formula, R 5b may form an ether bond (—O—) together with R 5b in formula (3)) represents a group represented by Note that * indicates a binding site with RB .
  • An alkyl silylating agent is reacted with a benzoyl compound represented by the general formula (5)
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;
  • R C is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, or 4 alkyl group or C 1-4 alkoxy group), or when R C shows the structure of this formula, R 5c is the same as R 5c in formula (5) may form an ether bond (-O-). Note that * indicates a binding site with R C . ) (6), characterized by obtaining an alkylsilyloxy-substituted benzoyl compound represented by and then reducing the alkylsilyloxy-substituted benzoyl compound
  • RD is a hydrogen atom or the following formula
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, or 4 alkyl group or C 1-4 alkoxy group, or when R D shows the structure of this formula, R 5c together with R 5c in formula (6) is an ether bond (-O -), where * indicates the binding site with R D ). shows the group represented by A method for producing an alkylsilyloxy-substituted benzyl compound represented by [3]
  • the alkylsilyloxy-substituted benzoyl compound represented by the general formula (3) is represented by the general formula (1)
  • R 1 to 5 of R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;
  • R A is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms) or when R A has the structure of this formula, R 5a may combine with R 5a in formula (1) to form an ether bond (--O--). Note that * indicates a binding site with RA .
  • R 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkyl group having 1 to 4 carbon atoms. showing 4 alkoxy groups;
  • R B is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms, or An alkoxy group or when R B has the structure of this formula, R 5b may combine with R 5b in formula (3) to form an ether bond (--O--). indicates the binding site with RB .) shows the group represented by Benzoyl compound represented by.
  • the method of the present invention there is no need to use raw materials that have caused problems of poor stability and difficulty in separating from intermediate compounds in conventional methods.
  • the intermediate compound is solid, the reaction process can be easily controlled, and the raw materials or decomposition products of the raw materials can be easily removed, and the alkylsilyloxy-substituted benzyl compound can be obtained industrially advantageously.
  • R 1 to 5 of R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms;
  • R A is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or R A represents the structure of this formula
  • R 5a may form an ether bond (--O--) together with R 5a in formula (1), and * indicates the bonding site with R A show.) showing a group represented by; 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms or alkoxy groups having 1 to 4 carbon atoms. indicating a group; R B is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms, or An alkoxy group or when R B has the structure of this formula, R 5b may combine with R 5b in formula (3) to form an ether bond (--O--). indicates the binding site with RB .) showing a group represented by; 1 to 5 of R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, or 1 to 1 carbon atoms. 4 alkyl group or an alkoxy group having 1 to 4 carbon atoms; R C is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, or 4 alkyl group or alkoxy group having 1 to 4 carbon atoms, or when R C has the structure of this formula, R 5c is an ether bond (—O -), where * indicates a binding site with R C ). showing a group represented by; RD is a hydrogen atom or the following formula
  • R 1c to R 5c represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, or 4 alkyl group or C 1-4 alkoxy group, or when R D shows the structure of this formula, R 5c together with R 5c in formula (6) is an ether bond (-O -), where * indicates the binding site with R D ). shows the group represented by
  • the present invention provides an alkylsilyloxy-alkyloxybenzoyl compound represented by the general formula (5), characterized by reacting the hydroxyalkyloxybenzoyl compound represented by the general formula (3) with an alkylsilylating agent. manufacturing method. This structure is indicated when the term "alkylsilyloxy-substituted benzoyl compound" is used in the specification.
  • the hydroxyalkyloxybenzoyl compound represented by the general formula (3) is reacted with an alkylsilylating agent to obtain an alkylsilyloxy-alkyloxybenzoyl compound represented by the general formula (5), and then A method for producing an alkylsilyloxy-alkyloxybenzyl compound represented by the general formula (6), characterized by reducing the alkylsilyloxy-alkyloxybenzoyl compound.
  • This structure is indicated when the term "alkylsilyloxy-substituted benzyl compound" is used in the specification.
  • the hydroxyalkyloxybenzoyl compound represented by the general formula (3) is preferably obtained by reacting the hydroxybenzoyl compound represented by the general formula (1) with a halogenated alcohol. Moreover, since the hydroxyalkyloxybenzoyl compound represented by the general formula (3) is a novel compound, the present invention provides the hydroxyalkyloxybenzoyl compound.
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • the number of hydroxy groups is preferably 1 to 4, more preferably 2 to 4, still more preferably 2 to 3, and even more preferably 2.
  • the remaining group includes a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms is preferable. , more preferably a hydrogen atom.
  • the alkyl group having 1 to 4 carbon atoms includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group and the like.
  • alkoxy groups having 1 to 4 carbon atoms include methoxy, ethoxy, n-propyloxy, isopropyloxy and n-butyloxy groups.
  • Halogen atoms include chlorine, bromine, fluorine and iodine atoms.
  • R A is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1a to R 5a represent a hydroxy group, and the remainder represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, or R A represents the structure of this formula
  • R 5a may form an ether bond (--O--) together with R 5a in formula (1), and * indicates the bonding site with R A show.
  • Alkoxy groups having 1 to 6 carbon atoms include methoxy, ethoxy, n-propyloxy, isopropyloxy, n-butyloxy, tert-butyloxy, isobutyloxy, n-pentyl and n-hexyl groups.
  • an alkoxy group having 1 to 5 carbon atoms is preferable, and an alkoxy group having 1 to 4 carbon atoms is more preferable.
  • the groups represented by R 1a to R 5a the same groups as described above are preferred.
  • a benzoyl compound of general formula (3) is obtained by reacting a compound of general formula (1) with a halogenated alcohol (2) (described as Hal-alcohol in the formula).
  • Halogenated alcohols include halogenated alcohols having 1 to 16 carbon atoms, preferably halogenated alcohols having 2 to 16 carbon atoms, more preferably halogenated alcohols having 4 to 16 carbon atoms, and still more preferably. is a halogenated alcohol having 6 to 16 carbon atoms, more preferably a halogenated alcohol having 8 to 16 carbon atoms.
  • Halogen atoms include bromine, chlorine, iodine and fluorine atoms, with bromine, chlorine and iodine atoms being preferred.
  • Alcohols include straight or branched chain alcohols.
  • reaction of the compound of general formula (1) and halogenated alcohol (2) is preferably carried out in the presence of a base in a solvent.
  • Reaction solvents used include dimethylformamide (hereinafter referred to as DMF), diethylformamide, 1-methyl-2-pyrrolidone (hereinafter referred to as NMP), amide solvents such as dimethylacetamide, and 1,3-dimethyl-2-imidazolidinium.
  • Urea solvents such as non (hereinafter referred to as DMI), halogenated solvents such as methylene chloride, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, ketones such as acetone, methyl ethyl ketone and methyl isobutyl ketone, methanol, ethanol, isopropanol, n alcoholic solvents such as -propanol and n-butanol; polar solvents such as acetonitrile; and mixed solvents of these.
  • amide-based solvents and urea-based solvents are preferred, and DMF and DMI are more preferred.
  • inorganic bases such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium hydride, and their hydrates, lithium Metal alkoxides such as methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, 1,8-diazabicyclo[5.4.0]-7-undecene, diisopropylethylamine, triethylamine, dimethylaniline , and imidazole.
  • Preferred bases include potassium carbonate and lithium hydroxide.
  • the reaction may be carried out at a temperature of 0°C to 200°C, preferably 50°C to 150°C, more preferably 70°C to 120°C. The reaction is preferably carried out for 15 minutes to 48 hours.
  • the benzoyl compound of general formula (3) obtained by this reaction can be isolated as a solid, so it is easy to purify and easy to handle. Isolation and purification can be easily carried out by means such as washing, recrystallization, and the like, which are usually industrially applicable.
  • R 1b to R 5b in general formula (3) represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms, or It represents an alkoxy group having 1 to 4 carbon atoms.
  • the number of hydroxyalkyloxy groups is preferably 1 to 4, more preferably 2 to 4, even more preferably 2 to 3, and even more preferably 2.
  • the remaining group includes a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms is preferable. , more preferably a hydrogen atom.
  • R B is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms, or An alkoxy group or when R B has the structure of this formula, R 5b may combine with R 5b in formula (3) to form an ether bond (--O--). indicates the binding site with RB .) represents a group represented by Here, the groups such as hydroxyalkyloxy groups having 1 to 16 carbon atoms are preferably the same as the above R 1b to R 5b .
  • 1 to 5 of R 1b to R 5b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, and carbon atoms. an alkyl group of 1 to 4 or an alkoxy group of 1 to 4 carbon atoms; R B is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1b to R 4b represent a hydroxyalkyloxy group having 1 to 16 carbon atoms, and the remainder are hydrogen atoms, halogen atoms, alkyl groups having 1 to 4 carbon atoms, or
  • R B represents the structure of this formula
  • R 5b forms an ether bond (--O--) together with R 5b in formula (3), where * represents R B and indicates the binding site of It may be a compound showing a group represented by.
  • the alkyl silylating agent (4) used in this reaction is a silylating agent having 1 to 3 alkylsilyl groups, and is a silyl having an alkylsilyl group represented by the following formulas (7) to (17). agents are preferred.
  • * in the figure indicates the bonding point of the hydroxy group with the oxygen atom.
  • R 7 , R 8 and R 9 are the same or different and represent a linear or branched alkyl group having 1 to 6 carbon atoms or an aryl group which may have a substituent;
  • R 10 represents a single bond or a linear or branched alkylene group having 1 to 3 carbon atoms, and R 11 , R 12 and R 13 each represent a linear or branched alkylene group having 1 to 3 carbon atoms
  • the linear or branched alkyl group having 1 to 6 carbon atoms includes methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, sec-butyl group and tert-butyl group. , n-pentyl group, n-hexyl group and the like. Among them, an alkyl group having 1 to 4 carbon atoms is more preferable, and a methyl group, a tert-butyl group and an isopropyl group are more preferable.
  • the aryl group which may have a substituent includes an aryl group having 6 to 10 carbon atoms, specifically a phenyl group and a naphthyl group optionally substituted by an alkyl group having 1 to 3 carbon atoms. etc. Among these, a phenyl group is more preferable.
  • Alkyl silylating agents include alkylsilyl halides, alkylsilylimidazoles, alkylsilylbenztriazoles, alkylsilyltrifluoromethanesulfonyl and the like.
  • the halogen atom includes a bromine atom, a chlorine atom and an iodine atom.
  • reaction between the benzoyl compound of general formula (3) and the alkyl silylating agent (4) is preferably carried out in a solvent in the presence of a base.
  • reaction solvents used include amide solvents such as DMF, diethylformamide, NMP and dimethylacetamide, urea solvents such as DMI, halogenated solvents such as methylene chloride, ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, and acetone. , methyl ethyl ketone, methyl isobutyl ketone, polar solvents such as acetonitrile, and various mixed solvents thereof.
  • Bases include inorganic salts such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium hydride, and their hydrates, lithium Metal alkoxides such as methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide, potassium methoxide, potassium ethoxide, 1,8-diazabicyclo[5.4.0]-7-undecene, diisopropylethylamine, triethylamine, dimethyl Organic bases such as aniline and imidazole are included.
  • inorganic salts such as lithium hydroxide, sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hydride, potassium hydride, and their hydrates
  • lithium Metal alkoxides such as methoxide, lithium ethoxide, sodium methoxide, sodium ethoxide,
  • Preferred bases include imidazole.
  • the reaction may be carried out at a temperature of 0°C to 150°C, preferably 20°C to 100°C, more preferably 50°C to 80°C. Also, the reaction is preferably carried out for 15 minutes to 48 hours. In this reaction, a slight amount of silyl-based compound derived from the alkyl silylating agent may be by-produced in the reaction mixture. In that case, it is preferable to remove the silyl compound by liquid-liquid separation.
  • the target alkylsilyloxy-substituted benzoyl compound (5) dissolves in an alkane solvent such as heptane.
  • liquid-liquid separation is preferably carried out using a polar solvent such as acetonitrile, methanol, DMF or dimethylsulfoxide. It is preferable to use a mixed solvent of two or more polar solvents, and a combination of acetonitrile and methanol is particularly preferable.
  • a polar solvent such as acetonitrile, methanol, DMF or dimethylsulfoxide. It is preferable to use a mixed solvent of two or more polar solvents, and a combination of acetonitrile and methanol is particularly preferable.
  • R 1c to R 5c in general formula (5) represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, the remainder being hydrogen atoms; It represents a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms.
  • the structure of the alkyloxy group having 1 to 29 carbon atoms substituted with this alkylsilyloxy group is represented by the following formula.
  • R E represents a linear or branched alkyl group having 1 to 16 carbon atoms
  • A represents formulas (7) to (17).
  • * is a benzoyl skeleton or diphenyl ketone skeleton, which is a mother nucleus. , indicates the bonding site with the carbon atom on the xanthone skeleton.
  • the alkyloxy group having 1 to 29 carbon atoms is the number of carbon atoms in the hydroxyalkyloxy chain having 1 to 16 carbon atoms derived from the halogenated alcohol (2) and the silylating agent represented by formulas (7) to (17). Of these, it is the total number of carbon atoms contained in R 10 , R 11 , R 12 and R 13 .
  • the alkyloxy group having 1 to 29 carbon atoms substituted with the 1 to 3 alkylsilyloxy groups is preferably 1 to 4, more preferably 2 to 4, even more preferably 2 to 3, and 2 is even more preferable.
  • the remaining group includes a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms, and a hydrogen atom, a halogen atom, or an alkyl group having 1 to 4 carbon atoms is preferable. , more preferably a hydrogen atom.
  • R C is a hydrogen atom, a hydroxy group, an alkoxy group having 1 to 6 carbon atoms or the following formula
  • R 1b to R 5b represent an alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups, and the remainder are hydrogen atoms, halogen atoms, or 4 alkyl group or alkoxy group having 1 to 4 carbon atoms, or when R C has the structure of this formula, R 5c is an ether bond (—O -), where * indicates a binding site with R C ).
  • R 5c is an ether bond (—O -), where * indicates a binding site with R C ).
  • R 5c is an ether bond (—O -), where * indicates a binding site with R C ).
  • R 1c represents a group represented by
  • examples of the alkyloxy group having 1 to 29 carbon atoms substituted with 1 to 3 alkylsilyloxy groups are the same as the above alkylsilyl groups.
  • other substituents of R 1c to R 5c are preferably the same as those of R 1b to R 5b .
  • the alkylsilyloxy-alkyloxybenzyl compound of general formula (6) is obtained.
  • the reduction reaction is not particularly limited as long as it can reduce a carbonyl group, but a method using a reducing agent is preferred.
  • reducing agents include iron (II) ions, lithium aluminum hydride, sodium borohydride, lithium borohydride, sodium bis(2-ethoxyethoxy)aluminum hydride (hereinafter referred to as SBAH), borane, diisobutylaluminum hydride, and the like. is mentioned.
  • the reduction reaction can be carried out using aromatic hydrocarbon solvents such as benzene and toluene, ether solvents such as tetrahydrofuran, 2-methyltetrahydrofuran and cyclopentyl methyl ether, and alcohol solvents such as methanol, ethanol, isopropanol, n-propanol and n-butanol. , or a mixed solvent thereof at a temperature of 0° C. to 100° C. for 15 minutes to 48 hours.
  • aromatic hydrocarbon solvents such as benzene and toluene
  • ether solvents such as tetrahydrofuran, 2-methyltetrahydrofuran and cyclopentyl methyl ether
  • alcohol solvents such as methanol, ethanol, isopropanol, n-propanol and n-butanol.
  • a mixed solvent thereof at a temperature of 0° C. to 100° C. for 15 minutes to 48 hours.
  • Alkylsilyloxy-alkyloxybenzyl compounds of general formula (6) are useful as carriers for liquid-phase peptide synthesis, as described in Patent Documents 1-3. Also, the hydroxy group in formula (6) can be converted to a halogenocarbonyloxy group, an active ester-type carbonyloxy group, an active ester-type sulfonyloxy group, or the like.
  • the above heptane and DMF separation washes were carried out one more time.
  • 71 mL of heptane was added to the obtained heptane layer, and the layer was separated and washed once with 71 mL of 1M aqueous hydrochloric acid solution, once with 71 mL of 5% aqueous sodium hydrogen carbonate solution, and once with 71 mL of distilled water.
  • 71 mL of heptane was added to the obtained heptane layer, and the layer was separated and washed once with 71 mL of DMF and once with 71 mL of acetonitrile.
  • TIPS2-Dpm-OH TIPS2-Dpm-C O 0.81 g (0.93 mmol) was dissolved in a mixed solution of THF (anhydrous) 7.1 mL and methanol 0.36 mL, sodium borohydride 42 mg (1.12 mmol) was added, Stirred for .5 hours. 0.89 mL of 1M aqueous hydrochloric acid solution was added to the reaction solution to stop the reaction, 20.3 mL of cyclopentyl methyl ether was added, and 6.1 mL of 1 M aqueous hydrochloric acid solution was added once, 6.1 mL of 5% aqueous sodium hydrogen carbonate solution was added once, and distilled water was added.
  • 94 mL of SBAH (70% toluene solution) was added dropwise over 30 minutes, and the mixture was further stirred under ice cooling for 2 hours.
  • 584 mL of a 30% sodium potassium tartrate aqueous solution was added dropwise, and the mixture was further stirred for 1 hour.
  • the mixture was warmed to room temperature, transferred to a separatory funnel with 150 mL of toluene, and the upper layer was recovered. Concentration under reduced pressure gave TIPS2-Dpm-OH 145 g (yield 99%).
  • the amount of HO-(CH 2 ) 11 -OTIPS contained as an impurity in TIPS2-Dpm-OH was analyzed by the same method as in Comparative Example 1. HO-(CH 2 ) 11 -OTIPS contained in TIPS2-Dpm-OH was 1.6% by weight.
  • SBAH 50% toluene solution
  • 4.0 mL of a 30% sodium potassium tartrate aqueous solution was added dropwise, and the mixture was further stirred for 1 hour. After raising the temperature to room temperature, the mixture was transferred to a separatory funnel and the upper layer was collected. The resulting upper layer was dried over anhydrous magnesium sulfate and then filtered. The resulting solution was concentrated under reduced pressure to obtain 1.0 g (quant.) of TIPS2-Dpm-OH.
  • the amount of HO-(CH 2 ) 11 -OTIPS contained as an impurity in TIPS2-Dpm-OH was analyzed by the same method as in Comparative Example 1. HO-(CH 2 ) 11 -OTIPS contained in TIPS2-Dpm-OH was below the detection limit.
  • an organic solvent such as methanol that has a high dissolving power for 11-bromo-1-undecanol.
  • the purity of the crude TIPS2-Dpm-OH, which is the final target product could be improved.
  • HO-(CH 2 ) 11 -OTIPS contained in the target TIPS2-Dpm-OH was 1.6% by weight, which was lower than in Comparative Example 1.
  • the amount of HO--( CH.sub.2 ) .sub.11 --OTIPS which is an impurity that is difficult to separate, can be significantly reduced in the production method of the present invention compared to the conventional method. Since it is difficult to liquid-liquid separate HO-(CH 2 ) 11 -OTIPS by conventional methods, it is necessary to further refine the resulting HO-(CH 2 ) 11 -OTIPS by column chromatography or the like. there were. Thus, it has been difficult to mass-produce alkylsilyloxy-alkyloxybenzyl compounds on an industrial scale by conventional methods.
  • the production method of the present application can greatly reduce the amount of HO--(CH 2 ) 11 --OTIPS mixed in, making it possible to industrially obtain an alkylsilyloxy-substituted benzyl compound.
  • Br-(CH 2 ) 11 -O-TIPS used in the conventional method is an unstable compound that gradually decomposes at room temperature, and the method of the present invention avoids using unstable raw materials. There is also the advantage of
  • TIPS2-B-CHO and TIPS2-B-OH refer to structures in the figure.
  • the above heptane and DMF separation washes were carried out one more time. 8.2 mL of heptane was added to the obtained heptane layer, and the layer was separated and washed once with 8.2 mL of 1M hydrochloric acid aqueous solution, once with 8.2 mL of 5% aqueous sodium hydrogen carbonate solution, and once with 8.2 mL of distilled water. 8.2 mL of heptane was added to the obtained heptane layer, and the layer was separated and washed with 8.2 mL of DMF.
  • residue A was subjected to silica gel column chromatography, and Br-(CH 2 ) 11 -O-TIPS and its HO--(CH 2 ) 11 --O--TIPS, which is a decomposed product, was removed.
  • TIPS2-B-OH TIPS2-B-CHO 0.49 g (0.62 mmol) was dissolved in a mixed solution of THF (anhydrous) 4.7 mL, methanol 0.24 mL, cooled to 5 ° C., sodium borohydride 28 mg (0.75 mmol) Add and stir for 1 hour. 0.59 mL of 1M hydrochloric acid aqueous solution was added to the reaction solution to terminate the reaction, 12.3 mL of cyclopentyl methyl ether was added, 3.7 mL of 1M aqueous hydrochloric acid solution was added three times, 3.7 mL of 5% aqueous sodium hydrogen carbonate solution was added once, and distilled water was added.
  • HO2-B-CO 2 Me and TIPS2-B-CO 2 Me indicate the structures in the formulas.
  • the filtered solid was suspended in 4.5 L of acetonitrile and stirred at room temperature for 2 hours. The solid was filtered and washed with acetonitrile. The resulting solid was dried under reduced pressure to obtain 814 g of HO2-B-CO 2 Me (yield 90%).
  • TIPS2-B- CO2Me 813 g (1.60 mol) of HO2-B-CO 2 Me and 489 g (7.18 mol) of imidazole were dissolved in 4872 mL of DMF, and after adding 975 mL (4.60 mol) of TIPS-Cl, the mixture was stirred at room temperature for 1.5 hours. 570 mL of methanol was added and stirred for 1.5 hours. Further, 5690 mL of distilled water and 4880 mL of heptane were added, stirred at room temperature for 15 minutes, allowed to stand, and the lower layer was discarded.
  • TIPS2-B-OH 844 g (1.03 mol) of TIPS2-B-CO 2 Me was dissolved in 3282 mL of toluene and cooled with ice under a nitrogen stream. 445 mL of SBAH (70% toluene solution) was added dropwise over 30 minutes, and the mixture was further stirred for 30 minutes under ice cooling. 3282 mL of a 30% sodium potassium tartrate aqueous solution was added dropwise, and the mixture was further stirred for 1 hour. After raising the temperature to room temperature and separating the layers, anhydrous magnesium sulfate was added to the upper layer, and after stirring for 1 hour, filtration and washing with toluene were performed. After concentration under reduced pressure, 758 g of TIPS2-B-OH concentration residue was obtained.
  • Example 2 the intermediate HO2-B-CO 2 Me, side chain extended with 11-bromo-1-undecanol, was a solid. Therefore, 11-bromo-1-undecanol can be easily removed by washing HO2-B-CO 2 Me with an organic solvent such as acetonitrile, which has a high dissolving power for 11-bromo-1-undecanol. , the purity of the final target TIPS2-B-OH concentrated residue could be improved.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)

Abstract

反応工程が制御しやすく、工業的に有利なアルキルシリルオキシ置換ベンジル化合物の製造方法を提供する。 一般式(3)(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し; RBは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。) で表される基を示す) で表されるベンゾイル化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5) (式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し; RCは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。) で表される基を示す) で表されるアルキルシリルオキシ置換ベンゾイル化合物の製造方法。

Description

アルキルシリルオキシ置換ベンジル化合物の製造方法
 本発明は、アルキルシリルオキシ置換ベンジル化合物の製造方法に関する。
 液相ペプチド合成において、液相ペプチド合成用担体(Tag)が報告されている。液相ペプチド合成用担体(Tag)は疎水性が高い化合物であるため、親水性の高いアミノ酸、ペプチド又はアミノ酸アミド(以下、アミノ酸等ということがある)を本担体に結合することで、有機溶媒への溶解性を大きく向上させることができる。従って、本担体にアミノ酸等を結合した状態でペプチド伸長反応を実施した場合、担体に結合したアミノ酸等を有機層に溶解させ、不要成分、たとえばペプチド伸長反応に使用した余剰の原料アミノ酸や、その分解物、原料アミノ酸の保護基を脱保護した際に副生する化合物等を水層に溶解させることで、液液分離により、担体に結合したアミノ酸等を簡便に精製できるという利点がある。
 液相ペプチド合成用担体(Tag)のなかでも、特許文献1~7及び非特許文献1に示す液相ペプチド合成用担体(Tag)は、ベンジル骨格、ジフェニルメタン骨格又はキサンテン骨格等の母核に対して、アルキルシリルオキシ基が結合した炭素数1~16のアルキルオキシ側鎖が1つ以上結合した構造である。これらの液相ペプチド合成用担体(Tag)は、アルキルシリルオキシ基が結合した側鎖構造によって、液相ペプチド合成用担体(Tag)全体の疎水性を絶妙にコントロールしており、液相ペプチド合成用担体(Tag)として特に有用である。
特許第6116782号公報 特許第6201076号公報 特許第6283774号公報 特許第6283775号公報 特許第6322350号公報 特許第6393857号公報 特許第6531235号公報
Molecules 2021, 26, 3497-3505.
 これらの液相ペプチド合成用担体(Tag)の製造方法は特許文献1~7に示されている。しかし、この従来法では、製造過程の原料の1つであるBr-(CH211-O-TIPSがオイル状であり、さらに安定性が不良で取扱いにくかった。またこの原料と中間体化合物の物性がいずれもオイル状で近似しており、液液分離が困難であった。したがって原料又は原料の分解物が目的物に不純物として混入しやすく、通常の工業的な操作のみでは液相ペプチド合成用担体(Tag)そのものの純度を向上させにくいため、カラムクロマトグラフィーによる精密精製等の煩雑な操作が必要になるという課題があった。
 従って、本発明の課題は、反応工程が制御しやすい、アルキルシリルオキシ置換ベンジル化合物の工業的な製造方法を提供することにある。
 そこで、本発明者らは、ベンゾイル骨格、ジフェニルケトン骨格(ベンゾフェノン骨格)又はキサントン骨格の化合物にヒドロキシアルキルオキシ基を導入しておき、次いでそのヒドロキシル基にアルキルシリル基を導入した後、各骨格に結合しているカルボニル基を還元することによるアルキルシリルオキシ置換ベンジル化合物の工業的な製造方法を見出した。本発明の方法によれば、従来法で安定性不良や中間体化合物との分離難が問題となっていた原料であるBr-(CH211-O-TIPSを使用する必要がない。また、中間体化合物が固体であることから反応工程が制御しやすく、かつ原料又は原料の分解物を除去しやすくなる。以上により、本発明者らはアルキルシリルオキシ置換ベンジル化合物が工業的に有利に得られることを見出し、本発明を完成した。
 なお、本発明で「固体」とは、結晶構造を有するものと、アモルファス様の固形物の双方を示すものとする。
 すなわち、本発明は、次の発明[1]~[4]を提供するものである。
[1]一般式(3)
Figure JPOXMLDOC01-appb-C000015
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000016
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示す)
で表されるベンゾイル化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
Figure JPOXMLDOC01-appb-C000017
(式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000018
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示す)
で表されるアルキルシリルオキシ置換ベンゾイル化合物の製造方法。
[2]一般式(3)
Figure JPOXMLDOC01-appb-C000019
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000020
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい)
で表される基を示す。なお、*はRBとの結合部位を示す。)
で表されるベンゾイル化合物にアルキルシリル化剤を反応させて一般式(5)
Figure JPOXMLDOC01-appb-C000021
(式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000022
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す)で表される基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表されるアルキルシリルオキシ置換ベンゾイル化合物を得、次いで当該アルキルシリルオキシ置換ベンゾイル化合物を還元することを特徴とする、一般式(6)
Figure JPOXMLDOC01-appb-C000023
Dは、水素原子又は次式
Figure JPOXMLDOC01-appb-C000024
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RDがこの式の構造を示すとき、R5cは式(6)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRDとの結合部位を示す。)
で表される基を示す)
で表されるアルキルシリルオキシ置換ベンジル化合物の製造方法。
[3]前記一般式(3)で表されるアルキルシリルオキシ置換ベンゾイル化合物が、一般式(1)
Figure JPOXMLDOC01-appb-C000025
(式中、R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Aは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000026
(R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す)
で表される基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
で表される化合物にハロゲン化アルコールを反応させて得られるものである、[1]又は[2]記載の製造方法。
[4]一般式(3)
Figure JPOXMLDOC01-appb-C000027
(式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000028
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示す)
で表されるベンゾイル化合物。
 本発明方法によれば、従来法で安定性不良や中間体化合物との分離難が問題となっていた原料を使用する必要がない。また、中間体化合物が固体であることから反応工程が制御しやすく、かつ原料または原料の分解物を除去しやすくなり、工業的に有利にアルキルシリルオキシ置換ベンジル化合物が得られる。
 本発明における一般式(1)の化合物から一般式(6)の化合物までの反応を反応式で示せば、以下の通りである。
Figure JPOXMLDOC01-appb-C000029
(式中、R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Aは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000030
(R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
で表される基を示し;
1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000031
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示し;
1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000032
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(6)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示し;
Dは、水素原子又は次式
Figure JPOXMLDOC01-appb-C000033
(R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RDがこの式の構造を示すとき、R5cは式(6)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRDとの結合部位を示す。)
で表される基を示す)
 本発明は、前記一般式(3)で表されるヒドロキシアルキルオキシベンゾイル化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)で表されるアルキルシリルオキシ―アルキルオキシベンゾイル化合物の製造方法である。明細書中で「アルキルシリルオキシ置換ベンゾイル化合物」と記載した場合、この構造を示すものとする。
 また本発明は、前記一般式(3)で表されるヒドロキシアルキルオキシベンゾイル化合物にアルキルシリル化剤を反応させて一般式(5)で表されるアルキルシリルオキシ―アルキルオキシベンゾイル化合物を得、次いで当該アルキルシリルオキシ―アルキルオキシベンゾイル化合物を還元することを特徴とする、一般式(6)で表されるアルキルシリルオキシ―アルキルオキシベンジル化合物の製造方法である。明細書中で「アルキルシリルオキシ置換ベンジル化合物」と記載した場合、この構造を示すものとする。
 ここで、前記一般式(3)で表されるヒドロキシアルキルオキシベンゾイル化合物は、一般式(1)で表されるヒドロキシベンゾイル化合物にハロゲン化アルコールを反応させて得るのが好ましい。
 また、前記一般式(3)で表されるヒドロキシアルキルオキシベンゾイル化合物は新規化合物であるから、本発明は当該ヒドロキシアルキルオキシベンゾイル化合物を提供するものである。
 まず原料化合物である、一般式(1)の化合物について説明する。
 R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。
 当該ヒドロキシ基は、1~4個が好ましく、2~4個がより好ましく、2~3個がさらに好ましく、2個がよりさらに好ましい。
 残余の基としては、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基が挙げられるが、水素原子、ハロゲン原子又は炭素数1~4のアルキル基が好ましく、水素原子がより好ましい。
 ここで、炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基等が挙げられる。炭素数1~4のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基などが挙げられる。ハロゲン原子としては、塩素原子、臭素原子、フッ素原子、ヨウ素原子が挙げられる。
 RAは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000034
(R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
で表される基を示す。
 炭素数1~6のアルコキシ基としては、メトキシ基、エトキシ基、n-プロピルオキシ基、イソプロピルオキシ基、n-ブチルオキシ基、tert-ブチルオキシ基、イソブチルオキシ基、n-ペンチル基、n-ヘキシル基などが挙げられる。このうち、炭素数1~5のアルコキシ基が好ましく、炭素数1~4のアルコキシ基がより好ましい。
 R1a~R5aで示される基としては、前記と同様の基が好ましい。
 一般式(1)の化合物にハロゲン化アルコール(2)(式中ではHal-アルコールと記載)を反応させることにより、一般式(3)のベンゾイル化合物が得られる。
 ハロゲン化アルコールとしては、炭素数1~16のハロゲン化アルコールが挙げられ、好ましくは炭素数2~16のハロゲン化アルコールであり、より好ましくは炭素数4~16のハロゲン化アルコールであり、さらに好ましくは炭素数6~16のハロゲン化アルコールであり、さらに好ましくは炭素数8~16のハロゲン化アルコールである。ハロゲン原子としては、臭素原子、塩素原子、ヨウ素原子、フッ素原子が挙げられ、臭素原子、塩素原子、ヨウ素原子が好ましい。アルコールとしては、直鎖又は分岐鎖のアルコールが挙げられる。
 一般式(1)の化合物とハロゲン化アルコール(2)の反応は、溶媒中塩基の存在下に行うのが好ましい。
 使用される反応溶媒としては、ジメチルホルムアミド(以下、DMF)、ジエチルホルムアミド、1-メチル-2-ピロリドン(以下、NMP)、ジメチルアセトアミドなどのアミド系溶媒、1, 3-ジメチル-2-イミダゾリジノン(以下、DMI)などのウレア系溶媒、塩化メチレンなどのハロゲン化溶媒、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノールなどのアルコール系溶媒、アセトニトリルなどの極性溶媒、またこれら各種の混合溶媒が挙げられる。このうち、アミド系溶媒、ウレア系溶媒が好ましく、DMF、DMIがさらに好ましい。
 塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム、水素化カリウムなどの無機塩基、並びにそれらの水和物、リチウムメトキシド、リチウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシドなど金属アルコキシド、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ジイソプロピルエチルアミン、トリエチルアミン、ジメチルアニリン、イミダゾールなどの有機塩基が挙げられる。好ましい塩基として、炭酸カリウム、水酸化リチウムが挙げられる。
 反応は、0℃~200℃の温度で行えばよく、50~150℃が好ましく、70~120℃がさらに好ましい。反応は、15分~48時間行うのが好ましい。
 この反応で得られる一般式(3)のベンゾイル化合物は、固体として単離することができるため、精製が容易であり、取り扱い性が良好である。なお、単離精製は、洗浄、再結晶などの通常工業的に採用できる手段により、容易に行われる。
 一般式(3)中のR1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。
 当該ヒドロキシアルキルオキシ基は、1~4個が好ましく、2~4個がより好ましく、2~3個がさらに好ましく、2個がよりさらに好ましい。
 残余の基としては、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基が挙げられるが、水素原子、ハロゲン原子又は炭素数1~4のアルキル基が好ましく、水素原子がより好ましい。
 RBは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000035
(R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
で表される基を示す。
 ここで、炭素数1~16のヒドロキシアルキルオキシ基などの基は、前記R1b~R5bと同様のものが好ましい。
 前記一般式(3)で表される化合物のうち、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
 RBは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000036
(R1b~R4bのうち1~4個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成する。なお、*はRBとの結合部位を示す。)
で表される基を示す化合物であってもよい。
 前記一般式(3)のヒドロキシアルキルオキシベンゾイル化合物にアルキルシリル化剤(4)を反応させることにより、一般式(5)のアルキルシリルオキシ―アルキルオキシベンゾイル化合物が得られる。
 この反応に用いられるアルキルシリル化剤(4)としては、1~3個のアルキルシリルを有するシリル化剤であり、次の式(7)~(17)で表されるアルキルシリル基を有するシリル化剤が好ましい。なお、図中*はヒドロキシ基の酸素原子との結合点を示す。
Figure JPOXMLDOC01-appb-C000037
(ここで、R7、R8、R9は、同一又は異なって、炭素数1~6の直鎖若しくは分岐鎖のアルキル基、又は置換基を有していても良いアリール基を示し;R10は単結合又は炭素数1~3の直鎖又は分岐鎖のアルキレン基を示し、R11、R12及びR13はそれぞれ、炭素数1~3の直鎖又は分岐鎖のアルキレン基を示す)
 ここで炭素数1~6の直鎖又は分岐鎖のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基等が挙げられる。このうち、炭素数1~4のアルキル基がより好ましく、メチル基、tert-ブチル基、イソプロピル基がさらに好ましい。
 置換基を有していてもよいアリール基としては、炭素数6~10のアリール基が挙げられ、具体的には炭素数1~3のアルキル基が置換していてもよいフェニル基、ナフチル基等が挙げられる。このうち、フェニル基がさらに好ましい。
 アルキルシリル化剤としては、アルキルシリルハライド、アルキルシリルイミダゾール、アルキルシリルベンズトリアゾール、アルキルシリルトリフルオロメタンスルホニルなどが挙げられる。ここで、ハロゲン原子としては、臭素原子、塩素原子、ヨウ素原子が挙げられる。
 一般式(3)のベンゾイル化合物とアルキルシリル化剤(4)との反応は、溶媒中塩基の存在下に行うのが好ましい。
 使用される反応溶媒としては、DMF、ジエチルホルムアミド、NMP、ジメチルアセトアミドなどのアミド系溶媒、DMIなどのウレア系溶媒、塩化メチレンなどのハロゲン化溶媒、テトラヒドロフラン、2-メチルテトラヒドロフランなどのエーテル類、アセトン、メチルエチルケトン、メチルイソブチルケトンなどのケトン類、アセトニトリルなどの極性溶媒、またこれら各種の混合溶媒が挙げられる。このうち、アミド系溶媒、ウレア系溶媒が好ましく、DMF、NMP、DMIがさらに好ましい。
 塩基としては、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム、水素化ナトリウム、水素化カリウムなどの無機塩、ならびにそれらの水和物、リチウムメトキシド、リチウムエトキシド、ナトリウムメトキシド、ナトリウムエトキシド、カリウムメトキシド、カリウムエトキシドなどの金属アルコキシド、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン、ジイソプロピルエチルアミン、トリエチルアミン、ジメチルアニリン、イミダゾールなどの有機塩基が挙げられる。好ましい塩基としてはイミダゾールが挙げられる。
 反応は、0℃~150℃の温度で行えばよく、20~100℃が好ましく、50~80℃がさらに好ましい。また反応は、15分~48時間行うのが好ましい。
 この反応において、反応混合液中には、アルキルシリル化剤に由来する微量のシリル系化合物が副生していることがある。その場合には、シリル系化合物を液液分離で除去するのが好ましい。目的物であるアルキルシリルオキシ置換ベンゾイル化合物(5)は、ヘプタンなどのアルカン系溶剤に溶解する。これに対してアセトニトリル、メタノール、DMF、ジメチルスルホキシドなどの極性溶媒を用いて液液分離をするのが好ましい。極性溶媒は2種以上の混合溶媒を用いるのが好ましく、特にアセトニトリルとメタノールの組み合わせが好ましい。
 一般式(5)中のR1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す。このアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基の構造は、次式で表される。
Figure JPOXMLDOC01-appb-C000038
(REは、炭素数1~16の直鎖または分枝鎖のアルキル基を示し、Aは式(7)~(17)を示す。なお、*は母核であるベンゾイル骨格、ジフェニルケトン骨格、キサントン骨格上の炭素原子との結合部位を示す。)
 アルキルオキシ基の炭素数1~29は、ハロゲン化アルコール(2)に由来する炭素数1~16のヒドロキシアルキルオキシ鎖の炭素数と、式(7)~(17)に示されるシリル化剤のうち、R10、R11、R12及びR13に含まれる炭素数の合計値である。
 当該1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基は、1~4個が好ましく、2~4個がより好ましく、2~3個がさらに好ましく、2個がよりさらに好ましい。
 残余の基としては、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基が挙げられるが、水素原子、ハロゲン原子又は炭素数1~4のアルキル基が好ましく、水素原子がより好ましい。
 RCは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
Figure JPOXMLDOC01-appb-C000039
(R1b~R5bのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
で表される基を示す。
 ここで、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基は、前記アルキルシリル基と同じものが挙げられる。また、R1c~R5cの他の置換基は、前記R1b~R5bと同様のものが好ましい。
 得られたアルキルシリルオキシ―アルキルオキシベンゾイル化合物(5)を還元することにより一般式(6)のアルキルシリルオキシ―アルキルオキシベンジル化合物が得られる。
 還元反応は、カルボニル基が還元できる方法であれば特に限定されないが、還元剤を用いる方法が好ましい。還元剤としては、鉄(II)イオン、水素化アルミニウムリチウム、水素化ホウ素ナトリウム、水素化ホウ素リチウム、水素化ビス(2-エトキシエトキシ)アルミニウムナトリウム(以下、SBAH)、ボラン、水素化ジイソブチルアルミニウムなどが挙げられる。
 還元反応は、ベンゼン、トルエンなどの芳香族炭化水素系溶媒、テトラヒドロフラン、2-メチルテトラヒドロフラン、シクロペンチルメチルエーテルなどのエーテル系溶媒、メタノール、エタノール、イソプロパノール、n-プロパノール、n-ブタノールなどのアルコール系溶媒、またはこれらの混合溶媒中で、0℃~100℃の温度で、15分~48時間行うのが好ましい。
 前記還元反応により、一般式(6)のアルキルシリルオキシ―アルキルオキシベンジル化合物が得られる。
 一般式(6)のアルキルシリルオキシ―アルキルオキシベンジル化合物は、特許文献1~3に記載のように、液相ペプチド合成用担体として有用である。また、式(6)中のヒドロキシ基を、ハロゲノカルボニルオキシ基、活性エステル型カルボニルオキシ基、活性エステル型スルホニルオキシ基等に変換することもできる。
 次に実施例を挙げて本発明をさらに詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。
比較例1 従来法によるTIPS2-Dpm―OHの合成
Figure JPOXMLDOC01-appb-C000040
(以下、Br-(CH211-OTIPS、TIPS2-Dpm-C=O、TIPS2-Dpm-OHは式中の構造を示すこととする。)
(1-a)Br-(CH211-O-TIPS
 11-ブロモ-1-ウンデカノール0.90g(3.58mmol)をジクロロメタン12.8mLに溶解し、イミダゾール0.61g(8.96mmol)を加え、5℃に冷却し、トリイソプロピルシリルクロライド(以下、TIPS-Cl) 0.91mL(4.30mmol)を滴下した。5分後、室温に戻し、2時間撹拌した。反応溶液にシクロペンチルメチルエーテル51.2mLを加え、蒸留水12.8mLで1回、1M塩酸水溶液12.8mLで1回、蒸留水12.8mLで3回洗浄し、有機層を留去した。残渣をヘプタン51.2mLに溶解し、アセトニトリル25.6mLで分液洗浄した。得られたヘプタン層に ヘプタン12.8mLを加え、アセトニトリル25.6mLで、分液洗浄した。前記のへプタンとアセトニトリルによる分液洗浄を、さらに1回行った後、溶媒を留去して、Br-(CH 2 11-O-TIPS 1.45g(収率99.3%)を得た。得られたBr-(CH 2 11-O-TIPSはオイル状であった。
1H-NMR(400MHz,CDCl3)δ1.03-1.20(m,21H),1.24-1.49(m,14H),1.54(quin.,2H),1.85(quin.,2H),3.41(t,2H),3.66(t,2H)
ESIMS MH+407.1
(1-b)TIPS2-Dpm-C=O
 Br-(CH211-OTIPS 9.81g(24.1mmol)、4,4’-ジヒドロキシベンゾフェノン2.29g(10.7mmol)、炭酸カリウム5.33g(38.5mmol)をDMF3.2mLに懸濁し、85℃に加熱し、2時間撹拌した。反応溶液を濾過し、濾物をヘプタン150mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン71mLを加え、DMF71mLで分液洗浄した。前記のへプタンとDMFによる分液洗浄を、さらに1回行った。得られたヘプタン層に、ヘプタン71mLを加え、1M塩酸水溶液71mLで1回、5%炭酸水素ナトリウム水溶液71mLで1回、蒸留水71mLで1回分液洗浄した。得られたヘプタン層にヘプタン71mLを加え、DMF71mLで1回、アセトニトリル71mLで1回分液洗浄した。ヘプタン層を減圧下で濃縮して、TIPS2-Dpm-C=O 10.7gを得た。
1H-NMR(400MHz,CDCl3)δ1.04-1.08(m,42H),1.20-1.39(m,24H),1.41-1.49(m,4H),1.49-1.57(m,4H),1.71-1.85(m,4H),3.67(t,4H),4.03(t,4H),6.94(d,4H),7.77(d,4H)
1 3C-NMR(100MHz,CDCl3)δ12.2(6C),18.2(12C),26.0(2C),26.2(2C),29.2-29.8(12C),33.2(2C),63.7(2C),68.4(2C),114.0(4C),130.7(2C),132.4(4C),162.6(2C),194.6
ESIMS MNa+889.8
(1-c)TIPS2-Dpm-OH
 TIPS2-Dpm-C=O 0.81g(0.93mmol)をTHF(無水)7.1mL、メタノール 0.36mLの混合溶液に溶解させ、水素化ホウ素ナトリウム 42mg(1.12mmol)を添加し、1.5時間撹拌した。反応溶液に1M塩酸水溶液0.89mLを加え反応を停止し、シクロペンチルメチルエーテルを20.3mL加え、1M塩酸水溶液6.1mLで1回、5%炭酸水素ナトリウム水溶液6.1mLで1回、蒸留水6.1mLで1回洗浄し、有機層を減圧下で濃縮した。得られた残渣をヘプタン20.0mLに溶解し、DMF10.0mLで分液洗浄した。得られたヘプタン層にヘプタン10.0mLを加え、アセトニトリル10.0mLで分液洗浄した。前記のへプタンとアセトニトリルによる分液洗浄を、さら に1回行った後、ヘプタン層を減圧下で濃縮し、TIPS2-Dpm-OH 0.81g を得た。
1H-NMR(400MHz,Benzene-d )δ1.12-1.16(m,42H),1.23-1.54(m,32H),1.57-1.71(m,4H),1.79(s,1H),3.68(t,8H),5.61(s,1H),6.84-6.89(m,4H),7.27-7.33(m,4H)
1 3C-NMR(100MHz,Benzene-d )δ12.8(6C),18.7(12C),26.7(2C),26.8(2C),30.2-30.5(12C),33.9(2C),64.1(2C),68.3(2C),75.9,114.9(4C),128.6(4C),137.8(2C),159.4(2C)
 TIPS2-Dpm-OHの粗精製物に不純物として含まれるHO-(CH21 1-OTIPSの割合をHPLCにて分析したところ、5.1重量%含まれていた。
分析条件(HPLC)
カラム:YMC-Triart C18
    (内径3.0 mm、長さ100 mm、粒径1.9μm)
移動相A:0.01Mギ酸アンモニウム含有、アセトニトリル:水=8:2溶液
移動相B:0.01Mギ酸アンモニウム含有、イソプロパノール:水=100:1溶液
流速:0.25mL/分
カラム温度:40℃
検出波長:200nm
グラジエント条件:0%B(0分)→0%B(5分)→100%B(22分)→100%B(27分)→0%B(29分)→0%B(31分)
実施例1 本発明の方法によるTIPS2-Dpm―OHの合成
Figure JPOXMLDOC01-appb-C000041
(以下、HO-Dpm-C=O、TIPS2-Dpm-C=Oは式中の構造を示すこととする。)
(2-a)HO-Dpm-C=O
 4,4’-ジヒドロキシベンゾフェノン 40.0g(186.9mmol)、11-ブロモ-1-ウンデカノール 112.0g(445.8mmol)、炭酸カリウム75.9g(548.2mmol)をDMF400mLに溶解し、90℃に加熱し、2時間撹拌した。蒸留水480mLを反応液に滴下し、生成物を析出させ、室温まで放冷した。析出物を濾過し、濾物を蒸留水で洗浄した。濾取した固体をメタノール480mLに再懸濁し、60℃に加熱し、1時間攪拌した。室温まで放冷後、固体を濾過し、メタノールで洗浄した。得られた固体を減圧乾燥し、HO-Dpm-C=O 100.6g(収率97%)を得た。
1H-NMR(400MHz,Pyridine-D5)δ8.04(d,J=8.7Hz,4H),7.17(d,J=8.7Hz,4H),5.93(brs,2H),4.04(t,J=6.6Hz,4H),3.90(t,J=6.2Hz,4H),1.70-1.84(m,8H), 1.39-1.59(m,8H),1.20-1.39(m,20H)
1 3C-NMR(100MHz,Pyridine-D5) δ26.3,26.6,29.4,29.6,29.8,29.9,30.0,33.8,62.1,68.5,114.6,131.1,132.6,163.0,194.0
 ESIMS [M+Na]+ Calculated for[C3554Na15+:577.3864,found:577.3863
(2-b)TIPS2-Dpm-C=O
 HO-Dpm-C=O 100.0g(180.2mmol)、イミダゾール 44.2g(649.3mmol)、TIPS―Cl 83.7g(434.2mmol)をDMF600mLに溶解し、50℃に加熱し、2時間撹拌した。メタノール58.3mLを添加し、8時間攪拌した。さらに、蒸留水601mL、ヘプタン661mLを添加し、室温で30分間攪拌後、下層を廃棄した。上層にヘプタン120mL、アセトニトリル300mL、メタノール300mLを添加して分液し、下層を廃棄した。本操作をさらに1回おこなった。得られた上層を減圧濃縮し、TIPS2-Dpm-C=O 158.5g(quant.)を得た。
(2-c)TIPS2-Dpm-OH
 得られたTIPS2-Dpm-C=O 146.0g(168.3mmol)、をトルエン 584mLに溶解し、氷冷した。SBAH(70%トルエン溶液)  94mLを30分以上かけて滴下し、さらに氷冷下で2時間攪拌した。30%酒石酸ナトリウムカリウム水溶液 584mLを滴下し、さらに1時間攪拌した。室温に昇温し、トルエン 150mLで分液漏斗に移し替え、上層を回収した。減圧濃縮し、TIPS2-Dpm-OH 145g(収率99%)を得た。
 TIPS2-Dpm-OHに不純物として含まれるHO-(CH211-OTIPSの量を、比較例1と同一の方法で分析した。TIPS2-Dpm-OHに含まれるHO-(CH211-OTIPSは1.6重量%であった。
実施例2 本発明の方法によるTIPS2-Dpm―OHの合成
(3-a)HO-Dpm-C=O
 4,4’-ジヒドロキシベンゾフェノン10.0g(46.7mmol)、11-ブロモ-1-ウンデカノール28.1g(112.0mmol)、水酸化リチウム一水和物4.9g(116.5mmol)をDMI 117mLに溶解し、70℃で4時間撹拌した。蒸留水175mLを反応液に滴下し、生成物を析出させ、室温まで放冷した。析出物を濾過し、濾物を蒸留水で洗浄した。濾取した固体をメタノール 117mLに再懸濁し、60℃で1時間攪拌した。室温まで放冷後、固体を濾過し、メタノールで洗浄した。得られた固体を減圧乾燥し、HO-Dpm-C=O 25.2g(収率97%)を得た。
(3-b)TIPS2-Dpm-C=O
 HO-Dpm-C=O 5.0g(9.0mmol)、イミダゾール 2.2g(32.4mmol)、TIPS―Cl 4.58mL(21.6mmol)をNMP 30.0mLに溶解し、50℃で3時間撹拌した。その後、メタノール 2.9mLを添加し、室温で8時間攪拌した。これに蒸留水 30.0mL、ヘプタン 30.0mLを添加し、室温で30分間攪拌後、下層を廃棄した。上層にメタノール 15.0mL、アセトニトリル 15.0mLを添加して分液し、下層を廃棄した。上層にヘプタン 15.0mL、メタノール 15.0mL、アセトニトリル 15.0mLを添加して再度分液し、下層を廃棄した。得られた上層を減圧濃縮し、TIPS2-Dpm-C=O 7.86g(quant.)を得た。
(3-c)TIPS2-Dpm-OH
 得られたTIPS2-Dpm-C=O 1.0g(1.2mmol)、をトルエン 4.0mLに溶解し、氷冷した。SBAH(70%トルエン溶液) 650μLを滴下し、氷冷下で2時間攪拌した。30%酒石酸ナトリウムカリウム水溶液 4.0mLを滴下し、さらに1時間攪拌した。室温に昇温後、分液漏斗に移し替え、上層を回収した。得られた上層を無水硫酸マグネシウムで乾燥後、濾過した。得られた溶液を減圧濃縮し、TIPS2-Dpm-OH 1.0g(quant.)を得た。
 TIPS2-Dpm-OHに不純物として含まれるHO-(CH211-OTIPSの量を、比較例1と同一の方法で分析した。TIPS2-Dpm-OHに含まれるHO-(CH211-OTIPSは検出限界以下であった。
 比較例1では、Br-(CH211-O-TIPSは、4,4’-ジヒドロキシベンゾフェノンに対して2.25当量添加されていた。余剰分である0.25当量分のBr-(CH211-O-TIPS、ならびに本化合物が分解されたHO-(CH211-O-TIPSは脂溶性であり、分液操作上は目的物であるTIPS2-Dpm-C=O、TIPS2-Dpm-OHと類似した物性を有し、分離することが困難であった。側鎖を伸長した中間体であるTIPS2-Dpm-C=O、TIPS2-Dpm-OHは共にオイル状の化合物であったため、TIPS2-Dpm-C=O、またはTIPS2-Dpm-OHを固化させてBr-(CH11-O-TIPSを特定の溶媒を用いて洗浄して除去するという操作ができなかった。このため、これらの側鎖伸長反応の原料由来の化合物は、4,4’-ジヒドロキシベンゾフェノンに対して0.25当量近くという多くの量を維持したまま、最終目的物にまで混入しており、TIPS2-Dpm-OHの粗精製物の純度を低下させていた。目的物であるTIPS2-Dpm-OHには、HO-(CH211-OTIPSが5.1重量%も含まれていた。
 これに対して実施例1では、11―ブロモ-1―ウンデカノールを用いて側鎖を伸長した中間体HO-Dpm―C=Oは、固体状物であった。このため、11―ブロモ-1―ウンデカノールの溶解力が高いメタノールのような有機溶媒でHO-Dpm―C=Oを洗浄することにより、11―ブロモ-1―ウンデカノールを容易に除去することができ、最終目的物であるTIPS2-Dpm-OHの粗精製物の純度を向上させることができた。目的物であるTIPS2-Dpm-OHに含まれるHO-(CH211-OTIPSは1.6重量%と、比較例1より低減された。また実施例2では、反応溶媒および使用する塩基を変更することにより、HO-(CH211-OTIPSの残存原因であったHO-(CH211-BrとHO-Dpm―C=Oの炭酸架橋体の生成を抑制することに成功し、最終目的物であるTIPS2-Dpm-OHに含まれるHO-(CH211-OTIPSの量を検出限界以下に低減させることが出来た。
 以上より、本発明の製造法では分離が困難である不純物であるHO-(CH211-OTIPSの混入量を、従来法と比較し大幅に低減させることができた。
 従来の方法では、HO-(CH211-OTIPSを液液分離することが困難であったため、得られたHO-(CH211-OTIPSをさらにカラムクロマトグラフィー等で精密精製する必要があった。このように、従来法ではアルキルシリルオキシ―アルキルオキシベンジル化合物を工業スケールで大量に製造することは困難であった。これに対し、本願の製造方法ではHO-(CH211-OTIPSの混入量を大幅に低減させることができ、アルキルシリルオキシ置換ベンジル化合物を工業的に有利に得ることができるようになった。
 なお、従来法で使用していたBr-(CH11-O-TIPSは室温で徐々に分解するという不安定な化合物であり、本発明の方法には不安定な原料の使用を回避したという利点もある。
比較例2 従来法によるTIPS2-B-OHの合成
Figure JPOXMLDOC01-appb-C000042
(以下、TIPS2-B-CHO、TIPS2-B-OHは図中の構造を示すこととする。)
(4-a):TIPS2-B-CHO
 Br-(CH211-O-TIPS 1.20g(2.95mmol)、2,4-ジヒドロキシベンズアルデヒド 0.17g(1.23mmol)、炭酸カリウム 0.612g(4.43mmol)をDMF 8.2mLに懸濁し、85℃に加熱し、2時間撹拌した。反応溶液を濾過し、濾物をヘプタン 17.2mLで洗浄した。濾液を分液し、得られたヘプタン層にヘプタン 8.2mLを加え、DMF 8.2mLで分液洗浄した。前記のへプタンとDMFによる分液洗浄を、さらに1回行った。得られたヘプタン層に、ヘプタン 8.2mLを加え、1M塩酸水溶液 8.2mLで1回、5%炭酸水素ナトリウム水溶液 8.2mLで1回、蒸留水 8.2mLで1回分液洗浄した。得られたヘプタン層にヘプタン 8.2mLを加え、DMF 8.2mLで分液洗浄した。得られたヘプタン層にヘプタン 8.2mLを加え、アセトニトリル 8.2mLで分液洗浄した。ヘプタン層を留去して得られた残渣Aをシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=100:1)で精製し、TIPS2-B-CHO 0.82g(84.2%)を得た。なお、本反応では、溶媒を留去して得られた残渣Aの中にBr-(CH211-O-TIPSおよびその分解物であるHO-(CH211-O-TIPSが多量に含まれていた。これらを最終製品であるTIPS2-B-OHへ誘導後に除去することは困難であったため、残渣Aをシリカゲルカラムクロマトグラフィーに供し、本工程にてBr-(CH211-O-TIPSおよびその分解物であるHO-(CH211-O-TIPSを除去した。
1H-NMR(400MHz,CDCl3)δ1.03-1.06(m,42H),1.20-1.39(m,28H),1.40-1.56(m,4H),1.73-1.86(m,4H),3.64-3.68(m,4H),3.96-4.04(m,4H),6.41(d,1H),6.48-6.52(m,1H),7.79(d,1H),10.33(s,1H)
1 3C-NMR(100MHz,CDCl3)δ12.2(6C),18.2(12C),26.0(2C),26.1,26.2,29.2-29.8(12C),33.2(2C),63.7(2C),68.6,68.7,99.1,106.3,119.1,130.4,163.5,165.9,188.6
ESIMS MH+791.6
(4-b):TIPS2-B-OH
 TIPS2-B-CHO 0.49g(0.62mmol)をTHF(無水)4.7mL、メタノール 0.24mLの混合溶液に溶解させ、5℃に冷却し、水素化ホウ素ナトリウム 28mg(0.75mmol)を添加し、1時間撹拌した。反応溶液に1M塩酸水溶液0.59mLを加え反応を停止し、シクロペンチルメチルエーテルを12.3mL加え、1M塩酸水溶液 3.7mLで3回、5%炭酸水素ナトリウム水溶液 3.7mLで1回、蒸留水 3.7mLで1回分液洗浄し、溶媒を留去した。得られた残渣をヘプタン 12.3mLに溶解し、DMF 6.2mLで分液洗浄した。得られたヘプタン層にヘプタン 6.2mLを加え、アセトニトリル 6.2mLで分液洗浄した。前記のへプタンとアセトニトリルによる分液洗浄を、さらに1回行った後、溶媒を留去して、TIPS2-B-OH 0.44g(収率89.6%)を得た。
1H-NMR(400MHz,CDCl3)δ1.04-1.07(m,42H),1.20-1.39(m,28H),1.40-1.57(m,4H),1.71-1.85(m,4H),2.24(t,1H),3.64-3.69(m,4H),3.89-4.00(m,4H),4.61(d,2H),6.39-6.44(m,1H),6.45(d,1H),7.13(d,1H)
1 3C-NMR(100MHz,CDCl3)δ12.2(6C),18.2(12C),26.0(2C),26.2,26.3,29.4-29.8(12C),33.2(2C),62.2,63.7(2C),68.2,68.3,100.0,104.6,121.9,129.7,158.3,160.3
ESIMS MNa+815.6
実施例3 本発明の方法によるTIPS2-B-OHの合成
Figure JPOXMLDOC01-appb-C000043
(以下、HO2-B-CO2Me、TIPS2-B-CO2Meは式中の構造を示すこととする。)
(5-a)HO2-B-CO2Me
 2,4―ジヒドロキシ安息香酸メチルエステル 300g(1.78mol)、11―ブロモ-1―ウンデカノール 1345g(5.35mol)、炭酸セシウム 1976g(6.06mol)をDMF 3Lに懸濁させ、50℃で2時間攪拌した。室温に冷却後、蒸留水 9Lを反応液に滴下し、10℃まで冷却し生成物を析出させた。析出物を濾過後、得られた固体を蒸留水で洗浄し、更にアセトニトリルで洗浄した。濾取した固体をアセトニトリル 4.5Lに懸濁させ、室温で2時間攪拌した。固体を濾過し、アセトニトリルで洗浄した。得られた固体を減圧乾燥し、HO2-B-CO2Me 814g(収率90%)を得た。
1H-NMR(400MHz,CDCl3)δ7.82(d,J=9.2Hz,1H),6.43-6.49(m,2H),3.99(t,J=6.4Hz,2H),3.98(t,J=6.4Hz,2H),3.85(s,3H),3.59-3.69(m,4H),1.72-1.89(m,4H),1.40-1.61(m,8H),1.24-1.40(m,26H)
13C-NMR(100MHz,CDCl3)δ25.9,26.1(2C),29.2,29.3,29.4,29.5(2C),29.6(2C),29.7(2C),32.9,51.7,63.2,68.3,69.0,100.4,105.2,112.4,133.9,161.0,163.9,166.6
ESIMS [M+H]+ Calculated for[C30536+:509.3838,found:509.3837
(5-b)TIPS2-B-CO2Me
 HO2-B-CO2Me 813g(1.60mol)、イミダゾール 489g(7.18mol)をDMF 4872mLに溶解させ、TIPS―Cl 975mL(4.60mol)を添加後、室温で1.5時間攪拌した。メタノール 570mLを添加し、1.5時間攪拌した。更に蒸留水 5690mL、ヘプタン 4880mLを添加し、室温で15分攪拌、静置し、下層を廃棄した。上層に50%IPA水溶液 2440mLを添加後、攪拌、静置し、下層を廃棄した。更に上層に50%IPA水溶液 2440mLを添加後、攪拌、静置し、下層を廃棄した。上層を減圧濃縮後、トルエン 2400mLを添加し、共沸後、TIPS2-B-CO2Me 1689gを得た。
1H-NMR(400MHz,CDCl3)δ7.82(d,J=9.2Hz,1H),6.43-6.49(m,2H),3.99(t,J=6.9Hz,2H),3.98(t,J=6.4Hz,2H),3.84(s,3H),3.63-3.71(m,4H),1.72-1.90(m,4H),1.40-1.60(m,8H),1.24-1.40(m,26H),1.00-1.14(m,46H),13C-NMR(100MHz,CDCl3)δ12.2,18.2,26.0,26.1(2C),29.3(2C),29.5(2C),29.6(2C),29.7(3C),29.8(2C),33.2,51.7,63.6,68.4,69.0,100.4,105.2,112.4,133.9,161.0,163.9,166.6
ESIMS [M+H]+ Calculated for[C48936Si2+:821.6505,found:821.6507
(5-c)TIPS2-B-OH
 TIPS2-B-CO2Me 844g(1.03mol)をトルエン 3282mLに溶解し、窒素気流下、氷冷した。SBAH(70%トルエン溶液)  445mLを30分以上かけて滴下し、更に氷冷下で30分攪拌した。30%酒石酸ナトリウムカリウム水溶液 3282mLを滴下し、更に1時間攪拌した。室温に昇温し、分液後、上層に無水硫酸マグネシウムを添加、1時間攪拌後、濾過、トルエン洗浄を行った。減圧濃縮し、TIPS2-B-OH濃縮残渣758gを得た。
 TIPS2-B-OH濃縮残渣に含まれるHO-(CH211-OTIPSの量を比較例1と同一のHPLC条件にて分析したところ、HO-(CH211-OTIPSは0.25%重量含まれていた。
 比較例2では、Br-(CH211-O-TIPSは、2,4-ジヒドロキシベンズアルデヒドに対して2.4当量添加されていた。余剰分である0.4当量分のBr-(CH211-O-TIPS、ならびに本化合物が分解されたHO-(CH211-O-TIPSは脂溶性であり、分液操作上は目的物であるTIPS2-B-CHO、TIPS2-B-OHと類似した物性を有し、分離することが困難であった。側鎖を伸長した中間体であるTIPS2-B-CHO、TIPS2-B-OHは共にオイル状の化合物であったため、TIPS2-B-CHO、またはTIPS2-B-OHを固化させてBr-(CH211-O-TIPSを特定の溶媒を用いて洗浄して除去するという操作ができなかった。このため、これらの側鎖伸長反応の原料由来の化合物は、2,4-ジヒドロキシベンズアルデヒドに対して0.4当量近くという多くの量を維持したまま、最終目的物にまで混入しており、TIPS2-B-OHの粗精製物、すなわち液液分離後の残渣Aの純度を低下させていた。残渣Aには、Br-(CH211-O-TIPSおよびその分解物であるHO-(CH211-O-TIPSが多量に含まれていた。これらを最終製品であるTIPS2-B-OHへ誘導後に除去することは困難であったため、残渣Aをシリカゲルカラムクロマトグラフィーに供する必要があった。このように、従来法ではTIPS2-B-OHを工業スケールで大量に製造することは困難であった。
 これに対して実施例2では、11―ブロモ-1―ウンデカノールを用いて側鎖を伸長した中間体HO2-B-CO2Meは、固体状物であった。このため、11―ブロモ-1―ウンデカノールの溶解力が高いアセトニトリルのような有機溶媒でHO2-B-CO2Meを洗浄することにより、11―ブロモ-1―ウンデカノールを容易に除去することができ、最終目的物であるTIPS2-B-OH濃縮残渣の純度を向上させることができた。

Claims (4)

  1.  一般式(3)
    Figure JPOXMLDOC01-appb-C000001
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000002
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)で表される基を示す)
    で表されるベンゾイル化合物にアルキルシリル化剤を反応させることを特徴とする一般式(5)
    Figure JPOXMLDOC01-appb-C000003
    (式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキルオキシ基又は炭素数1~4のアルコキシ基を示し;
    Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000004
    (R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)
    で表される基を示す)
    で表されるアルキルシリルオキシ置換ベンゾイル化合物の製造方法。
  2.  一般式(3)
    Figure JPOXMLDOC01-appb-C000005
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は
    Figure JPOXMLDOC01-appb-C000006
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
    で表される基を示す)
    で表されるベンゾイル化合物にアルキルシリル化剤を反応させて一般式(5)
    Figure JPOXMLDOC01-appb-C000007
    (式中、R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Cは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000008
    (R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RCがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRCとの結合部位を示す。)で表される基を示す)
    で表されるアルキルシリルオキシ置換ベンゾイル化合物を得、次いで当該アルキルシリルオキシ置換ベンゾイル化合物を還元することを特徴とする、一般式(6)
    Figure JPOXMLDOC01-appb-C000009
    Dは、水素原子又は次式
    Figure JPOXMLDOC01-appb-C000010
    (R1c~R5cのうち1~5個は、1~3個のアルキルシリルオキシ基で置換された炭素数1~29のアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RDがこの式の構造を示すとき、R5cは式(5)中のR5cと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRDとの結合部位を示す。)
    で表される基を示す)
    で表されるアルキルシリルオキシ置換ベンジル化合物の製造方法。
  3.  前記一般式(3)で表されるアルキルシリルオキシ置換ベンゾイル化合物が、一般式(1)
    Figure JPOXMLDOC01-appb-C000011
    (式中、R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Aは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000012
    (R1a~R5aのうち1~5個は、ヒドロキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示す)
    で表される基を示すか、RAがこの式の構造を示すとき、R5aは式(1)中のR5aと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRAとの結合部位を示す。)
    で表される化合物にハロゲン化アルコールを反応させて得られるものである、請求項1又は2記載の製造方法。
  4.  一般式(3)
    Figure JPOXMLDOC01-appb-C000013
    (式中、R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示し;
    Bは、水素原子、ヒドロキシ基、炭素数1~6のアルコキシ基又は次式
    Figure JPOXMLDOC01-appb-C000014
    (R1b~R5bのうち1~5個は、炭素数1~16のヒドロキシアルキルオキシ基を示し、残余は水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を示すか、RBがこの式の構造を示すとき、R5bは式(3)中のR5bと一緒になってエーテル結合(-O-)を形成してもよい。なお、*はRBとの結合部位を示す。)
    で表される基を示す)
    で表されるベンゾイル化合物。
PCT/JP2022/030045 2021-08-05 2022-08-05 アルキルシリルオキシ置換ベンジル化合物の製造方法 WO2023013757A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023540423A JPWO2023013757A1 (ja) 2021-08-05 2022-08-05

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021129360 2021-08-05
JP2021-129360 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013757A1 true WO2023013757A1 (ja) 2023-02-09

Family

ID=85156028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030045 WO2023013757A1 (ja) 2021-08-05 2022-08-05 アルキルシリルオキシ置換ベンジル化合物の製造方法

Country Status (3)

Country Link
JP (1) JPWO2023013757A1 (ja)
TW (1) TW202311275A (ja)
WO (1) WO2023013757A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263741A1 (en) * 2003-03-21 2005-12-01 Chen Shaw H Glassy chiral-nematic liquid crystals and optical devices containing same
JP2009513502A (ja) * 2003-07-02 2009-04-02 エフ.ホフマン−ラ ロシュ アーゲー アリールアミン置換キナゾリノン化合物
JP5086643B2 (ja) * 2004-11-18 2012-11-28 キッセイ薬品工業株式会社 1−置換−3−(β−D−グリコピラノシル)含窒素ヘテロ環化合物、及びそれを含有する医薬
JP2015061842A (ja) * 2008-02-29 2015-04-02 ランセウス メディカル イメージング, インコーポレイテッド 灌流造影を含む適用のための造影剤
JP2015531760A (ja) * 2012-08-10 2015-11-05 ランセウス メディカル イメージング, インコーポレイテッド 造影剤の合成および使用のための組成物、方法およびシステム
KR20160107954A (ko) * 2015-03-06 2016-09-19 주식회사 엘지화학 역 파장 분산성 화합물, 이를 포함하는 역 파장 분산성 조성물 및 광학 이방체
WO2017038650A1 (ja) * 2015-08-28 2017-03-09 積水メディカル株式会社 ベンジル化合物
WO2017221889A1 (ja) * 2016-06-20 2017-12-28 積水メディカル株式会社 新規ジフェニルメタン保護剤
WO2018021233A1 (ja) * 2016-07-25 2018-02-01 積水メディカル株式会社 新規キサンテン保護剤
JP2019508511A (ja) * 2015-12-17 2019-03-28 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングMerck Patent GmbH 液晶混合物および液晶ディスプレイ
JP2020097609A (ja) * 2015-03-10 2020-06-25 ダイキン工業株式会社 ニトリルオキシド化合物
JP2021507888A (ja) * 2017-12-21 2021-02-25 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag 化合物及び癌の治療におけるそれらの使用
JP2021102590A (ja) * 2019-12-26 2021-07-15 キッセイ薬品工業株式会社 ヒポキサンチン化合物

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050263741A1 (en) * 2003-03-21 2005-12-01 Chen Shaw H Glassy chiral-nematic liquid crystals and optical devices containing same
JP2009513502A (ja) * 2003-07-02 2009-04-02 エフ.ホフマン−ラ ロシュ アーゲー アリールアミン置換キナゾリノン化合物
JP5086643B2 (ja) * 2004-11-18 2012-11-28 キッセイ薬品工業株式会社 1−置換−3−(β−D−グリコピラノシル)含窒素ヘテロ環化合物、及びそれを含有する医薬
JP2015061842A (ja) * 2008-02-29 2015-04-02 ランセウス メディカル イメージング, インコーポレイテッド 灌流造影を含む適用のための造影剤
JP2015531760A (ja) * 2012-08-10 2015-11-05 ランセウス メディカル イメージング, インコーポレイテッド 造影剤の合成および使用のための組成物、方法およびシステム
KR20160107954A (ko) * 2015-03-06 2016-09-19 주식회사 엘지화학 역 파장 분산성 화합물, 이를 포함하는 역 파장 분산성 조성물 및 광학 이방체
JP2020097609A (ja) * 2015-03-10 2020-06-25 ダイキン工業株式会社 ニトリルオキシド化合物
WO2017038650A1 (ja) * 2015-08-28 2017-03-09 積水メディカル株式会社 ベンジル化合物
JP2019508511A (ja) * 2015-12-17 2019-03-28 メルク・パテント・ゲゼルシヤフト・ミツト・ベシユレンクテル・ハフツングMerck Patent GmbH 液晶混合物および液晶ディスプレイ
WO2017221889A1 (ja) * 2016-06-20 2017-12-28 積水メディカル株式会社 新規ジフェニルメタン保護剤
WO2018021233A1 (ja) * 2016-07-25 2018-02-01 積水メディカル株式会社 新規キサンテン保護剤
JP2021507888A (ja) * 2017-12-21 2021-02-25 アストラゼネカ・アクチエボラーグAstrazeneca Aktiebolag 化合物及び癌の治療におけるそれらの使用
JP2021102590A (ja) * 2019-12-26 2021-07-15 キッセイ薬品工業株式会社 ヒポキサンチン化合物

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHEN-ZHOU NIE, BO ZUO, LI LIU, MENG WANG, SHUAI HUANG, XU-MAN CHEN, HONG YANG: "Nanoporous Supramolecular Liquid Crystal Polymeric Material for Specific and Selective Uptake of Melamine", MACROMOLECULES, AMERICAN CHEMICAL SOCIETY, US, vol. 53, no. 11, 9 June 2020 (2020-06-09), US , pages 4204 - 4213, XP055736177, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.0c00322 *

Also Published As

Publication number Publication date
JPWO2023013757A1 (ja) 2023-02-09
TW202311275A (zh) 2023-03-16

Similar Documents

Publication Publication Date Title
WO1999001420A1 (fr) Procede de preparation de derives d'acide 2-aminomalonique, et intermediaires utilises dans ce procede
JP2007530436A5 (ja)
WO2009116657A1 (ja) シクロアルカンジカルボン酸モノエステルの製造方法
JP5781432B2 (ja) ピリピロペン誘導体の製造法
JP2021504418A (ja) 2−(5−メトキシイソクロマン−1−イル)−4,5−ジヒドロ−1h−イミダゾールおよびその硫酸水素塩の製造方法
JP2021514371A (ja) 一酸化窒素を供与するプロスタグランジン類似体の製造方法
TWI441812B (zh) 用於製備吡唑羧酸醯胺之方法
TWI623521B (zh) 一種製備利馬前列素的中間體、其製備方法以及藉由其製備利馬前列素的方法
JP2008266172A (ja) 3−o−アルキル−5,6−o−(1−メチルエチリデン)−l−アスコルビン酸の製造方法および5,6−o−(1−メチルエチリデン)−l−アスコルビン酸の製造方法
WO2023013757A1 (ja) アルキルシリルオキシ置換ベンジル化合物の製造方法
KR20230117260A (ko) 1-(3,5-디클로로페닐)-2,2,2-트리플루오로에타논 및그의 유도체의 제조 방법
EP3911660B1 (en) Process for preparation of 2-amino-5-hydroxy propiophenone
WO2022202982A1 (ja) ビオチンの製造方法、並びに、ビオチンのl-リシン塩及びその製造方法
TW202241390A (zh) 製備一氧化氮供體型前列腺素類似物之方法
JP2009073739A (ja) 医薬品中間体として許容しうる高純度な光学活性1−アリール−1,3−プロパンジオールの製造方法
JP5309680B2 (ja) フッ素化エステル化合物の製造方法及びその中間体
JP4032861B2 (ja) β−オキソニトリル誘導体又はそのアルカリ金属塩の製法
JP7372101B2 (ja) ビス(4-ヒドロキシ安息香酸)1,4-シクロヘキサンジイルビスメチレンの製造方法
WO2024071178A1 (ja) アルキルシリルオキシ置換ベンジルアミン化合物の製造方法
JP3844112B2 (ja) 3,5,6−トリヒドロキシヘキサン酸アンモニウム塩誘導体、及びその製造方法
JP2010083798A (ja) ω−ヒドロキシ長鎖脂肪酸誘導体の製造方法
JP2005097158A (ja) 含フッ素有機化合物の製造方法
TW202419441A (zh) 烷基矽烷氧取代苄胺化合物之製造方法
WO2020050342A1 (ja) N,n'-ジベンジルビオチンのジシクロへキシルアミン塩及びその製造方法
JP2015528458A (ja) 6−ヨード−2−オキシンドールの調製方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853175

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023540423

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE