WO2020262259A1 - ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物 - Google Patents

ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物 Download PDF

Info

Publication number
WO2020262259A1
WO2020262259A1 PCT/JP2020/024232 JP2020024232W WO2020262259A1 WO 2020262259 A1 WO2020262259 A1 WO 2020262259A1 JP 2020024232 W JP2020024232 W JP 2020024232W WO 2020262259 A1 WO2020262259 A1 WO 2020262259A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
compound
terminal
formula
aliphatic hydrocarbon
Prior art date
Application number
PCT/JP2020/024232
Other languages
English (en)
French (fr)
Inventor
陽介 山本
高橋 真
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN202080046996.3A priority Critical patent/CN114026110A/zh
Priority to JP2021526942A priority patent/JP7301965B2/ja
Priority to EP20831684.4A priority patent/EP3992187A4/en
Publication of WO2020262259A1 publication Critical patent/WO2020262259A1/ja
Priority to US17/558,542 priority patent/US20220112234A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/062General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for alpha- or omega-carboxy functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/06General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents
    • C07K1/061General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups
    • C07K1/065General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length using protecting groups or activating agents using protecting groups for hydroxy functions, not being part of carboxy functions
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/20Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring
    • C07C43/23Ethers having an ether-oxygen atom bound to a carbon atom of a six-membered aromatic ring containing hydroxy or O-metal groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D219/00Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
    • C07D219/04Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
    • C07D219/08Nitrogen atoms
    • C07D219/10Nitrogen atoms attached in position 9
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D311/86Oxygen atoms, e.g. xanthones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D311/00Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
    • C07D311/02Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
    • C07D311/78Ring systems having three or more relevant rings
    • C07D311/80Dibenzopyrans; Hydrogenated dibenzopyrans
    • C07D311/82Xanthenes
    • C07D311/84Xanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D311/88Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D335/16Oxygen atoms, e.g. thioxanthones
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D335/00Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom
    • C07D335/04Heterocyclic compounds containing six-membered rings having one sulfur atom as the only ring hetero atom condensed with carbocyclic rings or ring systems
    • C07D335/10Dibenzothiopyrans; Hydrogenated dibenzothiopyrans
    • C07D335/12Thioxanthenes
    • C07D335/14Thioxanthenes with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 9
    • C07D335/18Nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/02General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length in solution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/06Dipeptides
    • C07K5/06008Dipeptides with the first amino acid being neutral
    • C07K5/06017Dipeptides with the first amino acid being neutral and aliphatic
    • C07K5/0606Dipeptides with the first amino acid being neutral and aliphatic the side chain containing heteroatoms not provided for by C07K5/06086 - C07K5/06139, e.g. Ser, Met, Cys, Thr
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/08Tripeptides
    • C07K5/0815Tripeptides with the first amino acid being basic
    • C07K5/0817Tripeptides with the first amino acid being basic the first amino acid being Arg
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K5/00Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
    • C07K5/04Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing only normal peptide links
    • C07K5/10Tetrapeptides
    • C07K5/1002Tetrapeptides with the first amino acid being neutral
    • C07K5/1005Tetrapeptides with the first amino acid being neutral and aliphatic
    • C07K5/101Tetrapeptides with the first amino acid being neutral and aliphatic the side chain containing 2 to 4 carbon atoms, e.g. Val, Ile, Leu
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/04Linear peptides containing only normal peptide links
    • C07K7/08Linear peptides containing only normal peptide links having 12 to 20 amino acids
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K7/00Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
    • C07K7/64Cyclic peptides containing only normal peptide links
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/22Ortho- or ortho- and peri-condensed systems containing three rings containing only six-membered rings
    • C07C2603/24Anthracenes; Hydrogenated anthracenes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2603/00Systems containing at least three condensed rings
    • C07C2603/02Ortho- or ortho- and peri-condensed systems
    • C07C2603/04Ortho- or ortho- and peri-condensed systems containing three rings
    • C07C2603/30Ortho- or ortho- and peri-condensed systems containing three rings containing seven-membered rings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/55Design of synthesis routes, e.g. reducing the use of auxiliary or protecting groups

Definitions

  • the present disclosure relates to a method for producing a peptide compound, a reagent for forming a protecting group, and a condensed polycyclic compound.
  • Examples of the peptide production method include a solid phase method and a liquid phase method.
  • the solid-phase method is advantageous in that the isolation and purification after the reaction can be performed only by washing the resin, but the reaction is essentially a heterogeneous phase, and an excess amount of reaction reagent is used to compensate for the low reactivity. It is necessary or problematic in terms of tracking the reaction and analyzing the reaction product while supported on a carrier.
  • the liquid phase method has good reactivity, and the intermediate peptide can be purified by extraction washing, isolation and the like after the condensation reaction. However, the liquid phase method still has problems in each step of coupling reaction and deprotection.
  • Patent Document 1 International Publication No. 2018/021233
  • Patent Document 2 International Publication No. 2010/1133939
  • Patent Document 1 only describes a xanthene compound that is difficult to precipitate in an organic solvent and is easy to separate and purify by a liquid-liquid phase separation operation, and a xanthene compound suitable for solid-liquid phase separation is used. There is no description or suggestion regarding the protective group that was present.
  • An object to be solved by one embodiment of the present disclosure is to provide a method for producing a peptide compound having excellent deprotection rate and stability over time.
  • Another problem to be solved by another embodiment of the present disclosure is to provide a reagent for forming a protecting group, which is excellent in deprotection rate and stability over time.
  • a problem to be solved by yet another embodiment of the present disclosure is to provide a novel condensed polycyclic compound.
  • a method for producing a peptide compound which comprises a step of using a compound represented by the following formula (1).
  • Y 1 represents -OR 17 , -NHR 18 , -SH, or a halogen atom
  • R 17 represents a hydrogen atom, an active ester-type carbonyl group, or an active ester-type sulfonyl group
  • R 18 represents a hydrogen atom, an alkyl group, an arylalkyl group or a heteroarylalkyl group, or a 9-fluorenylmethoxycarbonyl group.
  • R 110 represents RA or an alkyl group
  • R 100 to R 107 independently represent a hydrogen atom or an alkyl group.
  • R 1 to R 8 independently represent RA , a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group, and at least one of R 1 to R 8 and Y 2 has RA
  • the above RA represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group, and when only one RA is present, the number of carbon atoms of the above aliphatic hydrocarbon group of RA is 12 or more.
  • R a there are a plurality number of carbon atoms of at least one of said aliphatic hydrocarbon group R a may be 12 or more, However, RA does not have a silyl group and a hydrocarbon group having a silyloxy structure.
  • the step of using the compound represented by the above formula (1) is a C-terminal protection step of protecting the carboxy group or amide group of the amino acid compound or peptide compound by the compound represented by the above formula (1).
  • 1> The method for producing a peptide compound.
  • ⁇ 3> The method for producing a peptide compound according to ⁇ 2>, wherein the amino acid compound or peptide compound in the C-terminal protection step is an N-terminal protected amino acid compound or an N-terminal protected peptide compound.
  • N-terminal deprotection step of deprotecting the N-terminal of the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound obtained in the above C-terminal protection step, and the N-terminal deprotection step.
  • a peptide chain extension step of condensing the N-terminal protected amino acid compound or the N-terminal protected peptide compound with the N-terminal of the C-terminal protected amino acid compound or the C-terminal protected peptide compound obtained in the above N-terminal deprotection step is further included.
  • 3> The method for producing a peptide compound.
  • ⁇ 5> The method for producing a peptide compound according to ⁇ 4>, further comprising a precipitation step of precipitating the N-terminal protected C-terminal protected peptide compound obtained in the peptide chain extension step.
  • Step6> After the precipitation step, Step of deprotecting the N-terminal of the obtained N-terminal protected C-terminal protected peptide compound, A step of condensing an N-terminal protected amino acid compound or an N-terminal protected peptide compound with the N-terminal of the obtained C-terminal protected peptide compound, and
  • the method for producing a peptide compound according to ⁇ 5> which further comprises the step of precipitating the obtained N-terminal protected C-terminal protected peptide compound at least once in this order.
  • ⁇ 7> The method for producing a peptide compound according to any one of ⁇ 1> to ⁇ 6>, further comprising a C-terminal deprotection step of deprotecting a C-terminal protecting group.
  • ⁇ 8> The total number of carbon atoms in all the aliphatic hydrocarbon group in which all of R A has found 18 at least, ⁇ 1> to any one method for producing a peptide according to the ⁇ 7>.
  • ⁇ 9> The method for producing a peptide compound according to any one of ⁇ 1> to ⁇ 8>, wherein the total carbon number of all aliphatic hydrocarbon groups possessed by all RA is 36 to 80.
  • ⁇ 10> The method for producing a peptide according to any one of ⁇ 1> to ⁇ 9>, wherein at least one of R 3 and R 6 in the above formula (1) is RA .
  • the R A is independently, a manufacturing method of a group represented by the following formula (f1) or formula (a1) ⁇ 1> ⁇ peptide compound according to any one of ⁇ 10>.
  • the wavy line portion represents the coupling position with other configurations, and m9 represents an integer of 1 to 3.
  • X 9 independently represents a single bond, -O-, -S-, -COO-, -OCO-, -OCONH-, -NHCONH-, -NHCO-, or -CONH-.
  • Each R 9 independently represents a divalent aliphatic hydrocarbon group.
  • Ar 1 represents a (m10 + 1) -valent aromatic group or a (m10 + 1) -valent complex aromatic group.
  • m10 represents an integer of 1 to 3 and represents X 10 independently represents a single bond, -O-, -S-, -COO-, -OCO-, -OCONH-, -NHCONH-, -NHCO-, or -CONH-.
  • Each of R 10 independently represents a monovalent aliphatic hydrocarbon group, and at least one of R 10 is a monovalent aliphatic hydrocarbon group having 5 or more carbon atoms.
  • the wavy line portion represents the coupling position with other configurations.
  • m20 represents an integer from 1 to 10.
  • X 20 independently represents a single bond, -O-, -S-, -COO-, -OCO-, -OCONH-, -NHCONH-, -NHCO-, or -CONH-.
  • At least one of R 20 is a divalent aliphatic hydrocarbon group having 5 or more carbon atoms.
  • the wavy line portion represents the coupling position with other configurations
  • m10 represents an integer of 1 to 3
  • m11 represents an integer of 1 to 3.
  • X 10 independently represents a single bond, -O-, -S-, -COO-, -OCO-, -OCONH-, -NHCONH-, -NHCO-, or -CONH-.
  • Each of R 10 independently represents a monovalent aliphatic hydrocarbon group having 5 or more carbon atoms.
  • Y 1 represents -OR 17 , -NHR 18 , -SH, or a halogen atom
  • R 17 represents a hydrogen atom, an active ester-type carbonyl group, or an active ester-type sulfonyl group
  • R 18 represents a hydrogen atom, an alkyl group, an arylalkyl group, a heteroarylalkyl group, or a 9-fluorenylmethoxycarbonyl group.
  • R 110 represents RA or an alkyl group
  • R 100 to R 107 independently represent a hydrogen atom or an alkyl group.
  • R 1 to R 8 independently represent RA , a hydrogen atom, a halogen atom, an alkyl group or an alkoxy group, and at least one of R 1 to R 8 and Y 2 has RA
  • the above RA Represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group, and at least one of the above aliphatic hydrocarbon groups in RA has 12 or more carbon atoms.
  • RA does not have a silyl group and a hydrocarbon group having a silyloxy structure.
  • reagent for forming a protecting group according to ⁇ 14> wherein the reagent for forming a protecting group is a reagent for forming a protecting group of a carboxy group or an amide group.
  • reagent for forming a protecting group is a reagent for forming a protecting group of a carboxy group or an amide group.
  • Ya 1 represents -ORa 17 , -NHRa 18 , -SH, or a halogen atom
  • Ra 17 represents a hydrogen atom, an active ester-type carbonyl group, or an active ester-type sulfonyl group
  • Ra 18 represents a linear or branched alkyl group having a hydrogen atom or 10 or less carbon atoms, an arylalkyl group or a heteroarylalkyl group, or a 9-fluorenylmethoxycarbonyl group.
  • Ra 1 to Ra 8 independently represent RA , a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • At least one of Ra 2 to Ra 7 has RA , RA represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group, and RA represents at least one of the above aliphatic groups.
  • the hydrocarbon group has 12 or more carbon atoms, However, RA does not have a silyl group and a hydrocarbon group having a silyloxy structure.
  • the wavy line portion represents the coupling position with other configurations
  • m9 represents an integer of 1 to 3
  • X 9 independently represents a single coupling, -O-, -S-, and -COO-.
  • R 9 independently represents a divalent aliphatic hydrocarbon group
  • Ar 1 has a (m10 + 1) valence.
  • m10 represents an integer of 1 to 3
  • X 10 independently represents a single bond, -O-, -S-, -COO.
  • each R 10 is independently, represents a monovalent aliphatic hydrocarbon group, at least one of R 10 Is a monovalent aliphatic hydrocarbon group having 5 or more carbon atoms.
  • the wavy line portion represents the coupling position with other configurations
  • m20 represents an integer of 1 to 10
  • X 20 independently represents a single bond, -O-, -S-, and -COO.
  • the wavy line portion represents the connection position with other configurations
  • m10 represents an integer of 1 to 3
  • m11 represents an integer of 1 to 3
  • X 10 is an independent single bond.
  • R 10 is an independent one with 5 or more carbon atoms.
  • X 20 which binds with another configuration in the formula (a1) is condensed polycyclic compound according to an -O- ⁇ 19>.
  • a method for producing a peptide compound having excellent deprotection rate and stability over time it is possible to provide a reagent for forming a protecting group having excellent deprotection rate and stability over time.
  • a novel condensed polycyclic compound can be provided.
  • each term has the following meaning.
  • the numerical range represented by using "-" means a range including the numerical values before and after "-" as the lower limit value and the upper limit value.
  • the upper limit value or the lower limit value described in one numerical range may be replaced with the upper limit value or the lower limit value of another numerical range described stepwise. Good.
  • the upper limit value or the lower limit value of the numerical range may be replaced with the value shown in the examples.
  • process is included in this term as long as the intended purpose of the process is achieved, not only in an independent process but also in cases where it cannot be clearly distinguished from other processes.
  • substitution or non-substitution includes those having no substituent as well as those having a substituent.
  • alkyl group includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • the chemical structural formula may be described by a simplified structural formula in which a hydrogen atom is omitted.
  • the alkyl group may be chain-like or branched, and may be substituted with a halogen atom or the like.
  • Examples of the alkyl group having 1 to 6 carbon atoms include methyl, ethyl, propyl, isopropyl, butyl, tert-butyl and the like.
  • Examples of the alkenyl group having 2 to 6 carbon atoms include 1-propenyl.
  • the aryl group is preferably an aryl group having 6 to 14 carbon atoms, and examples thereof include a phenyl group, a 1-naphthyl group, a 2-naphthyl group, a biphenylyl group and a 2-anthryl group. Of these, an aryl group having 6 to 10 carbon atoms is more preferable, and a phenyl group is particularly preferable.
  • Examples of the silyl group include trimethylsilyl, triethylsilyl, dimethylphenylsilyl, tert-butyldimethylsilyl, tert-butyldiethylsilyl and the like.
  • Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom and an iodine atom.
  • Examples of the alkoxy group having 1 to 6 carbon atoms include methoxy, ethoxy, propoxy and the like.
  • Benzyl is mentioned as an aralkyl group having 7 to 10 carbon atoms.
  • Examples of the acyl group having 1 to 6 carbon atoms include acetyl and propionyl.
  • Examples of the aralkyl-carbonyl group having 7 to 10 carbon atoms include benzylcarbonyl.
  • Examples of the alkoxycarbonyl group having 1 to 6 carbon atoms include methoxycarbonyl, ethoxycarbonyl, and Boc group.
  • the Boc group means a tert-butoxycarbonyl group.
  • Examples of the aralkyloxycarbonyl group having 7 to 14 carbon atoms include benzyloxycarbonyl and Fmoc group.
  • the Fmoc group means a 9-fluorenylmethoxycarbonyl group.
  • the method for producing a peptide compound according to the present disclosure includes a step of using a compound represented by the following formula (1).
  • Y 1 represents -OR 17 , -NHR 18 , -SH, or a halogen atom
  • R 17 represents a hydrogen atom, an active ester-type carbonyl group, or an active ester-type sulfonyl group.
  • the R 18 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms in a straight chain or a branched chain, an arylalkyl group, a heteroarylalkyl group, or a 9-fluorenylmethoxycarbonyl group (hereinafter, Fmoc).
  • R 110 represents RA or an alkyl group
  • R 100 to R 107 independently represent a hydrogen atom or an alkyl group.
  • R 1 to R 8 independently represent RA , a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and among R 1 to R 8 and Y 2 .
  • At least one has RA
  • the RA represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group, and when only one RA is present, the above RA of RA .
  • the aliphatic hydrocarbon group has 12 or more carbon atoms and a plurality of RAs are present, at least one of the above aliphatic hydrocarbon groups in RA has 12 or more carbon atoms.
  • RA does not have a silyl group and a hydrocarbon group having a silyloxy structure.
  • the present disclosure it is possible to provide a method for producing a peptide compound having an excellent yield.
  • a method for producing a peptide compound having excellent deprotection rate and stability over time The detailed mechanism by which the above effect is obtained is unknown, but it is presumed as follows.
  • the excellent stability over time means that the condensed polycyclic compound represented by the formula (1) according to the present disclosure does not decompose during storage, or the condensed polycyclic compound represented by the formula (1) according to the present disclosure. It means that the compound protected by the ring compound does not deprotect and decompose except under the deprotection conditions.
  • the protected compound Since the compound represented by the formula (1) according to the present disclosure has at least one aliphatic hydrocarbon group having 12 or more carbon atoms, the protected compound is excellent in hydrophobic solvent solubility. Further, with respect to the hydrophilic solvent, the aliphatic hydrocarbon groups in RA aggregate and have a condensed polycyclic structure, so that the peptide compound obtained has a stacking interaction between the condensed polycyclic structures. As a result, it is excellent in crystallization, purification and separability. In other words, when the compound protected by the formula (1) is subjected to the reaction, the reaction proceeds rapidly because it is excellent in solvent solubility in the hydrophobic solvent which is the reaction solvent, and the polarity is poor at the time of purification. Since the target product is efficiently crystallized and purified by adding a solvent, it is suitable for solid-liquid phase separation, and it is estimated that the yield of the obtained compound (peptide compound, etc.) is excellent.
  • the compound protected by the compound represented by the formula (1) according to the present disclosure has a high deprotection rate, so that side reactions are suppressed, and the yield of the obtained peptide compound or the like is excellent.
  • the reason why the deprotection rate is excellent is that the compound represented by the formula (1) has a condensed polycyclic structure as compared with the diphenylmethane type compound described in Patent Document 2, and the electron donating property of Y 2 is excellent. the substituents, electron density of the carbon atom to which Y 1 is connected is estimated to be because the excellent deprotection rate to increase.
  • the compound represented by the formula (1) and the compound protected by the compound represented by the formula (1) according to the present disclosure are aliphatic hydrocarbon groups having no silyloxy structure described in Patent Document 1. Therefore, it is presumed that the product is solid at room temperature and is inferior in reactivity between molecules, so that it is excellent in storage stability and the production of by-products is suppressed, so that the yield is excellent.
  • Patent Document 1 which describes a protecting group suitable for liquid-liquid phase separation
  • a hydrocarbon group having a silyloxy structure of a protecting group suitable for liquid-liquid phase separation is referred to as an aliphatic hydrocarbon group having 12 or more carbon atoms. There is no description or suggestion to change to.
  • the storage stability of pharmaceutical raw materials is important for quality control (GMP) in pharmaceutical manufacturing.
  • the compound represented by the formula (1) and the compound protected by the compound represented by the formula (1) according to the present disclosure are excellent in storage stability and can be used particularly preferably for the production of pharmaceutical products. From the above, the compound protected by the compound represented by the formula (1) according to the present disclosure can achieve both the deprotection rate and the stability over time. In this specification, it is said that a high deprotection speed is excellent in deprotection speed.
  • the C-terminal protecting group can be deprotected even under weak acid conditions, the side reaction of the obtained peptide can be suppressed, and an acid-sensitive peptide, for example, an N-alkylamide structure can be produced. It is suitable for peptide synthesis.
  • the compound represented by the formula (1) not only forms a protecting group, but also modifies the peptide compound, adjusts the solubility in water or an organic solvent, and crystallizes. It can be used for improvement, multimerization, etc.
  • the compound represented by the formula (1) is preferably used for forming a protecting group, and more preferably used for forming a C-terminal protecting group in an amino acid compound or a peptide compound.
  • Y 1 in the formula (1) represents -OR 17 , -NHR 18 , -SH, or a halogen atom
  • R 17 represents a hydrogen atom, an active ester-type carbonyl group, or an active ester-type sulfonyl group
  • R 18 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms in a straight chain or a branched chain, an arylalkyl group, or a heteroarylalkyl group.
  • halogen atom a bromine atom and a chlorine atom are preferable from the viewpoint of reaction yield and storage stability.
  • Examples of the active ester-type carbonyl group in R 17 include an imide carbonyloxysuccinate, an alkoxycarbonyl group, an aryloxycarbonyl group, an aralkyloxycarbonyl group, and the like, and carbonyloxysuccinic acid from the viewpoint of deprotection rate and stability over time. Imide and the like are preferably mentioned.
  • Examples of the active ester-type sulfonyl group in R 17 include an alkylsulfonyl group and an arylsulfonyl group.
  • R 17 is preferably a hydrogen atom or an active ester-type protecting group, and more preferably a hydrogen atom.
  • Examples of the alkyl group in R 18 include an alkyl group having 1 to 30 carbon atoms, preferably an alkyl group having 1 to 10 carbon atoms, and more preferably an alkyl group having 1 to 6 carbon atoms. Of these, a methyl group and an ethyl group are more preferable.
  • Examples of the arylalkyl group in R 18 include an arylalkyl group having 7 to 30 carbon atoms, preferably an arylalkyl group having 7 to 20 carbon atoms, and an aralkyl group having 7 to 16 carbon atoms (for example, an aralkyl group having 7 to 16 carbon atoms).
  • a group in which an alkylene group having 1 to 6 carbon atoms is bonded to an aryl group of 6 to 10) is more preferable.
  • Preferable specific examples include a benzyl group, a 1-phenylethyl group, a 2-phenylethyl group, a 1-phenylpropyl group, a naphthylmethyl group, a 1-naphthylethyl group, a 1-naphthylpropyl group and the like, and a benzyl group. Is more preferably mentioned.
  • the heteroaryl group in R 18, include heteroaryl groups having 5 to 30 carbon atoms, preferably a heteroaryl group having 5 to 20 carbon atoms, heteroarylalkyl groups having 5 to 16 carbon atoms (For example, a group in which an alkylene group having 1 to 6 carbon atoms is bonded to a heteroaryl group having 4 to 10 carbon atoms) is more preferable. Suitable specific examples include an indolylmethyl group, a furfuryl group, a benzofuranylmethyl group, a thiophenylmethyl group, a benzothiophenylmethyl group and the like.
  • R 18 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, preferably an aryl alkyl group or Fmoc group having 7 to 16 carbon atoms, a hydrogen atom, It is more preferably a methyl group, an ethyl group, a benzyl group or an Fmoc group, and further preferably a hydrogen atom or an Fmoc group.
  • R 18 is Fmoc group, by deprotecting the Fmoc group with a base DBU to be described later, since the Y A is -NH 2, if R 18 is Fmoc group, and, R 18 is It can be considered to be equivalent to the case of a hydrogen atom.
  • Y 1 -OR 17 (R 17 is a hydrogen atom or an active ester-type protecting group)
  • - NHR 18 R 18 is a hydrogen atom or a linear or branched It is preferably an alkyl group having 1 to 6 carbon atoms, an aralkyl group, or an Fmoc group), or a halogen atom
  • ⁇ OR 17 R 17 is a hydrogen atom or an active ester-type protecting group
  • -NHR 18 (R 18 is a hydrogen atom or a linear or branched alkyl group having 1 to 6 carbon atoms, or Fmoc is a group) are more preferably, -NHR 18 (R 18 is a hydrogen atom or It is more preferably an alkyl group having 1 to 6 carbon atoms in a straight chain or a branched chain).
  • R 110 is preferably RA .
  • RA has the same meaning as RA described later, and the preferred embodiment is also the same.
  • the alkyl group in R 100 to R 107 is preferably an alkyl group having 1 to 5 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, and an alkyl having 1 or 2 carbon atoms. It is more preferably a group.
  • R 102 ⁇ R 105 in may be different from each is preferably a R 102 and R 104 and R 103 and R 105 are identical groups respectively .
  • the R 102 and R 104 are more preferably an alkyl group or a hydrogen atom having 1 to 5 carbon atoms, further preferably an alkyl group or a hydrogen atom having 1 to 3 carbon atoms, and 1 carbon atom. Alternatively, it is particularly preferably an alkyl group of 2 or a hydrogen atom, and most preferably both are hydrogen atoms.
  • the R 103 and R 105 are more preferably an alkyl group or a hydrogen atom having 1 to 5 carbon atoms, further preferably an alkyl group or a hydrogen atom having 1 to 3 carbon atoms, and 1 carbon atom. Alternatively, it is particularly preferably an alkyl group of 2 or a hydrogen atom, and most preferably both are hydrogen atoms. Specific examples include -CH 2- CH 2- and the like.
  • the R 106 R 107 in ⁇ CR 106 R 107 ⁇ is preferably the same group, more preferably an alkyl group having 1 to 5 carbon atoms, and an alkyl group having 1 to 3 carbon atoms. Is more preferable, and an alkyl group having 1 or 2 carbon atoms is particularly preferable. Specific examples include -CH 2- , -C (CH 3 ) 2- , -C (C 2 H 5 ) 2-, and the like.
  • R 1 to R 8 independently represent RA , a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and among R 1 to R 8 and Y 2 respectively .
  • At least one has RA and the above RA represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group.
  • the aliphatic hydrocarbon group has 12 or more carbon atoms, and when a plurality of RAs are present in the compound, at least one of the aliphatic hydrocarbons is present.
  • the group has 12 or more carbon atoms.
  • RA does not have a silyl group and a hydrocarbon group having a silyloxy structure.
  • R 1 ⁇ R 8 is R A, more preferably only R 3 or R 6 is R A, R 1 ⁇ R 5 and R 7 ⁇ R 8 are each independently , Hydrogen atom, halogen atom, alkyl group or alkoxy group, and R 3 or R 6 is more preferably RA .
  • R 1 to R 8 RA a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group or an alkoxy group is preferable, and RA , a hydrogen atom, a fluorine atom or a chlorine atom is more preferable.
  • the "organic group having an aliphatic hydrocarbon group” in RA means a monovalent organic having an aliphatic hydrocarbon group in its molecular structure (one bonder bonded to ring A). It is a group.
  • the "aliphatic hydrocarbon group” in the “organic group having an aliphatic hydrocarbon group” is a linear, branched, or cyclic saturated or unsaturated aliphatic hydrocarbon group, and is a fat having 5 or more carbon atoms.
  • Group hydrocarbon groups are preferable, aliphatic hydrocarbon groups having 5 to 60 carbon atoms are more preferable, aliphatic hydrocarbon groups having 5 to 30 carbon atoms are more preferable, and aliphatic hydrocarbon groups having 10 to 30 carbon atoms are particularly preferable. preferable.
  • the site of the "aliphatic hydrocarbon group" in the "organic group having an aliphatic hydrocarbon group” is not particularly limited, and may be present at the terminal (monovalent group) or at any other site. (For example, a divalent group).
  • Examples of the "aliphatic hydrocarbon group” include an alkyl group, a cycloalkyl group, an alkenyl group, an alkynyl group and the like.
  • a pentyl group such as an icosyl group, a tetracosyl group, a lauryl group, a tridecyl group, a myristyl group, an oleyl group, and an isostearyl group, and a divalent group derived from them (1 hydrogen atom from the above monovalent group).
  • alkyl group for example, an alkyl group having 5 to 30 carbon atoms is preferable, and for example, a pentyl group, a hexyl group, an octyl group, a decyl group, a hexadecyl group, an octadecyl group, an icosyl group, a tetracosyl group, a lauryl group, etc.
  • Examples thereof include a tridecyl group, a myristyl group and an isostearyl group, with an octadecyl group, an icosyl group, a docosyl group or a tetracosyl group being preferable, and an icosyl group, a docosyl group or a tetracosyl group being more preferable.
  • a cycloalkyl group for example, a cycloalkyl group having 5 to 30 carbon atoms is preferable, and examples thereof include a cyclopentyl group, a cyclohexyl group, an isobornyl group, a tricyclodecanyl group and the like.
  • alkenyl group for example, an alkenyl group having 5 to 30 carbon atoms is preferable, and examples thereof include a vinyl group, a 1-propenyl group, an allyl group, an isopropenyl group, a butenyl group, an isobutenyl group and the like.
  • alkynyl group for example, an alkynyl group having 5 to 30 carbon atoms is preferable, and examples thereof include a 4-pentynyl group and a 5-hexenyl group.
  • steroid group for example, cholesterol, estradiol and the like are preferable.
  • the site other than the "aliphatic hydrocarbon group" in the "organic group having an aliphatic hydrocarbon group” can be arbitrarily set. For example, it has sites such as -O-, -S-, -COO-, -OCONH-, -CONH-, and hydrocarbon groups (monovalent or divalent groups) other than "aliphatic hydrocarbon groups”. May be.
  • hydrocarbon groups monovalent or divalent groups
  • Examples of the "hydrocarbon group” other than the "aliphatic hydrocarbon group” include aromatic hydrocarbon groups, and specifically, for example, monovalent groups such as aryl groups and derived from them. The divalent group to be used is used.
  • hydrocarbon group other than the above-mentioned aliphatic hydrocarbon group and the above-mentioned aliphatic hydrocarbon group may be substituted with a substituent selected from a halogen atom, an oxo group and the like.
  • the bonds (substitutions) of R 1 to R 8 of the "organic group having an aliphatic hydrocarbon group” are mediated by the "aliphatic hydrocarbon group” or the "hydrocarbon group” existing in the above RA , that is, direct carbon - even those that are bound by a carbon bond, -O present in the R a -, - S -, - COO -, - OCONH -, - CONH- sites such as those through the There may be.
  • the binding (substitution) of R 1 to R 8 is preferably via -O-, -S-, -COO- or -CONH-. It is particularly preferable that it is mediated by —O—.
  • the bond (substitution) of the "organic group having an aliphatic hydrocarbon group" to N in Y 2 is via the "hydrocarbon group" present in the above RA from the viewpoint of ease of compound synthesis. That is, those directly bonded by a carbon-nitrogen bond are preferable.
  • R A is present only one, when the total number of carbon atoms of all the aliphatic hydrocarbon groups of the R A is, R A there are multiple is the total number of carbon atoms in all the aliphatic hydrocarbon group having all of R a, in view of the deprotection rate and stability over time, is preferably 18 or more, more preferably 24 to 200, It is more preferably 32 to 100, particularly preferably 34 to 80, and most preferably 36 to 80.
  • the compound represented by formula (1) according to the present disclosure is a compound having at least one of 12 or more aliphatic hydrocarbon group having a carbon in at least one of R A, at least one of R A, carbon A compound having at least one aliphatic hydrocarbon group having 12 to 100 carbon atoms is preferable, and a compound having at least one aliphatic hydrocarbon group having 18 to 40 carbon atoms is more preferable, and the compound has 20 to 20 carbon atoms. More preferably, the compound has at least one of 36 aliphatic hydrocarbon groups.
  • the aliphatic hydrocarbon group is preferably an alkyl group, more preferably a linear alkyl group, from the viewpoint of stability over time.
  • the carbon number of one RA is preferably 12 to 200, more preferably 18 to 150, further preferably 18 to 100, and preferably 20 to 80, respectively. Especially preferable.
  • R 1 ⁇ R 8 is preferably R A, at least one of R 2 ⁇ R 7 , RA , and at least one selected from the group consisting of R 2 , R 3 , R 6 , and R 7 is even more preferably RA , any of R 3 and R 6 .
  • R 3 or R 6 is most preferably RA .
  • At least one RA is represented by any of the following formulas (f1), formulas (a1), formulas (b1) or formulas (e1) from the viewpoint of deprotection rate and stability over time. It is preferable that the group is represented by the following formula (f1) or (a1), and it is particularly preferable that the group is represented by the following formula (f1).
  • the wavy line portion represents the coupling position with other configurations
  • m9 represents an integer of 1 to 3
  • X 9 independently represents a single coupling, -O-, -S-, -COO-. , -OCO-, -OCONH-, -NHCONH-, -NHCO-, or -CONH-
  • R 9 independently represents a divalent aliphatic hydrocarbon group
  • Ar 1 is (m10 + 1). It represents a valent aromatic group or a (m10 + 1) valent heteroaromatic group
  • m10 represents an integer of 1 to 3
  • X 10 are independently single-bonded, -O-, -S-,-, respectively.
  • R 10 independently represents a monovalent aliphatic hydrocarbon group, at least 1 of R 10 .
  • One is a monovalent aliphatic hydrocarbon group having 5 or more carbon atoms.
  • the wavy line portion represents the coupling position with other configurations
  • m20 represents an integer of 1 to 10
  • X 20 independently represents a single bond, -O-, -S-, and -COO.
  • the wavy line portion represents the coupling position with other configurations
  • mb represents 1 or 2
  • b1 to b4 each independently represent an integer of 0 to 2
  • X b1 to X b4 represent an integer of 0 to 2.
  • Each independently represents a single bond, -O-, -S-, -COO-, -OCONH-, or -CONH-
  • R b2 and R b4 independently represent a hydrogen atom, a methyl group, or a carbon. It represents an aliphatic hydrocarbon group having 5 or more carbon atoms
  • R b3 represents an aliphatic hydrocarbon group having 5 or more carbon atoms.
  • the wavy line portion represents a bond position with another configuration
  • X e1 represents a single bond, -O-, -S-, -NHCO-, or -CONH-
  • me is 0 to 0 to.
  • e1 represents an integer of 0 to 11
  • e2 represents an integer of 0 to 5
  • X e2 independently represent a single bond, -O-, -S-, -COO-, -OCONH.
  • R e2 each independently represents a hydrogen atom, a methyl group, an organic group having an aliphatic hydrocarbon group having 5 or more carbon atoms.
  • the m9 in the formula (f1) is preferably 1 or 2, and more preferably 1.
  • X 9 and X 10 in the formula (f1) are preferably -O-, -S-, -COO-, -OCONH-, or -CONH-, and more preferably -O-. preferable.
  • Each of R 9 in the formula (f1) is preferably an alkylene group having 1 to 10 carbon atoms independently, more preferably an alkylene group having 1 to 4 carbon atoms, and particularly preferably a methylene group.
  • R 10 in the formula (f1) is preferably a monovalent aliphatic hydrocarbon group having 5 to 60 carbon atoms, and more preferably a monovalent aliphatic hydrocarbon group having 12 to 50 carbon atoms.
  • a monovalent aliphatic hydrocarbon group having 18 to 40 carbon atoms is more preferable, and a monovalent aliphatic hydrocarbon group having 20 to 32 carbon atoms is particularly preferable.
  • each of R 10 is preferably a linear alkyl group or a branched alkyl group independently, and more preferably a linear alkyl group.
  • the m10 in the formula (f1) is preferably 2 or 3, and more preferably 2.
  • Ar 1 in the formula (f1) is preferably an aromatic group having a (m10 + 1) valence, and is a group obtained by removing (m10 + 1) hydrogen atoms from benzene, or removing (m10 + 1) hydrogen atoms from naphthalene. It is more preferably a naphthalene group, and particularly preferably a group obtained by removing (m10 + 1) hydrogen atoms from benzene.
  • the group represented by the above formula (f1) is preferably a group represented by the following formula (f2) from the viewpoint of deprotection rate and stability over time.
  • the wavy line portion represents the connection position with other configurations
  • m10 represents an integer of 1 to 3
  • m11 represents an integer of 1 to 3
  • X 10 is an independent single bond.
  • R 10 is an independent one with 5 or more carbon atoms.
  • m10 in formula (f2), X 10 and R 10 has the same meaning as m10, X 10 and R 10 in the formula (f1), preferable embodiments thereof are also the same.
  • M11 in the formula (f2) is preferably 1 or 2, and more preferably 1.
  • the m20 in the formula (a1) is preferably 1 or 2, and more preferably 1.
  • To X 20 are each independently of formula (a1), -O -, - S -, - COO -, - OCONH-, or preferably from -CONH-, more preferably -O-.
  • R 20 in the formula (a1) is preferably 5 or more divalent aliphatic hydrocarbon group having a carbon, more preferably a divalent aliphatic hydrocarbon group having 5 to 60 carbon atoms, carbon It is more preferably a divalent aliphatic hydrocarbon group having a number of 8 to 40, and particularly preferably a divalent aliphatic hydrocarbon group having 12 to 32 carbon atoms.
  • R 20 is preferably a linear alkylene group.
  • the mb in the formula (b1) is preferably 1.
  • B1 to b4 in the formula (b1) are preferably 1 or 2, respectively, and more preferably 1.
  • X b1 to X b4 in the formula (b1) are preferably -O-, -S-, -COO-, -OCONH-, or -CONH-, and more preferably -O-.
  • R b2 and R b4 in the formula (b1) are preferably hydrogen atoms, methyl groups, or aliphatic hydrocarbon groups having 5 to 60 carbon atoms, respectively, and have hydrogen atoms, methyl groups, or carbon atoms.
  • R b3 in the formula (b1) is preferably a monovalent aliphatic hydrocarbon group having 5 to 60 carbon atoms, and more preferably a monovalent aliphatic hydrocarbon group having 5 to 60 carbon atoms.
  • a monovalent aliphatic hydrocarbon group having 8 to 40 carbon atoms is more preferable, and a monovalent aliphatic hydrocarbon group having 12 to 32 carbon atoms is particularly preferable.
  • R b3 is preferably a linear alkyl group.
  • the compound represented by the above formula (1) is preferably a compound represented by the following formula (10) from the viewpoint of deprotection rate and stability over time.
  • Y 1 represents -OR 17 , -NHR 18 , -SH, or a halogen atom
  • R 17 represents a hydrogen atom, an active ester-type carbonyl group, or an active ester-type sulfonyl group.
  • the above R 18 represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms in a linear or branched chain, an arylalkyl group, a heteroarylalkyl group, or an Fmoc group.
  • the aliphatic hydrocarbon group has 12 or more carbon atoms, except that RA does not have a silyl group and a hydrocarbon group having a silyloxy structure, and n10 and n11 are independently integers of 0 to 4, respectively. , And neither n10 nor n11 becomes 0.
  • Y 1 and RA are synonymous with Y 1 and RA in formula (1), respectively, and the preferred embodiments are also the same. It is preferable that n10 and n11 in the formula (10) are independently integers of 0 to 2, and it is more preferable that one of n10 and n11 is 0 and the other is 1. From the viewpoint of deprotection rate and stability over time, RA is preferably bonded to any of the 2-position, 3-position, 4-position, 5-position, 6-position and 7-position of the condensed polycycle, and the condensed polycycle It is more preferable to bind to any of the 2-position, 3-position, 6-position and 7-position, and further preferably to any of the 3-position and 6-position of the condensed polycycle.
  • the compound represented by the formula (10) is preferably a compound represented by the formula (100) or the formula (200) from the viewpoint of the deprotection rate and the stability over time, and is represented by the formula (100). More preferably, it is a compound.
  • Y 1 represents -OH or -NHR 18
  • R 18 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in a linear or branched chain.
  • R 18 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in a linear or branched chain.
  • R 18 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in a linear or branched chain.
  • R 18 is a hydrogen atom or an alkyl group having 1 to 6 carbon atoms in a linear or branched chain.
  • RA represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group, and at least one fat of RA.
  • the number of carbon atoms of the group hydrocarbon group is 12 or more, provided that, R a is a silyl group, and does not have a hydrocarbon group having a silyloxy structure, respectively the n100 and n200 independently an integer of 1-4 Represent
  • RA in the formulas (100) and (200) is synonymous with RA in the formula (1), and the preferred embodiment is also the same.
  • R 18 in Y 1 in the formula (100) and (200) is synonymous with R 18 in Y 1 in the formula (1), and the preferred embodiment is also the same.
  • RA is preferably bonded to any of the 2-position, 3-position, and 4-position of the condensed polycycle, and the 2-position and 3-position of the condensed polycycle. It is more preferable to bind to any of the above, and it is further preferable to bind to the 3-position of the condensed polycycle.
  • n100 and n200 are preferably integers of 1 to 3, preferably 1 or 2, and more preferably 1.
  • RA in the formulas (10), (100) and (200) is the above formula (f1), formula (a1), formula (b1) or formula (e1) from the viewpoint of deprotection speed and stability over time. It is preferable that the group is represented by any of the above formulas (f1), more preferably the group is represented by either the above formula (f1) or the above formula (a1), and the group represented by the above formula (f1). It is more preferable that the group is represented by the above formula (f2).
  • Equation (10) as the R 18 in Y 1 in the formula (100) and (200), from the viewpoint of the deprotection rate and stability over time, a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, having a carbon number of 7 to It is preferably an arylalkyl group or Fmoc group of 16, more preferably a hydrogen atom, a methyl group, an ethyl group, a benzyl group or an Fmoc group, and even more preferably a hydrogen atom or an Fmoc group.
  • RA is bound to the 3-position of the fused polycycle from the viewpoint of deprotection rate and stability over time
  • Y 1 is -NHR 18 (preferably a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, an arylalkyl group or an Fmoc group having 7 to 16 carbon atoms, and more preferably a hydrogen atom, a methyl group, an ethyl group, a benzyl group or an Fmoc group. It represents a group, more preferably a hydrogen atom or an Fmoc group), and RA preferably has the above formula (f1) (preferably a group represented by (f2)).
  • the molecular weight of the compound represented by the formula (1) is not particularly limited, but is preferably 340 to 3,000 from the viewpoint of deprotection rate, crystallization property, solvent solubility, and yield. It is more preferably 400 to 2,000, further preferably 500 to 1,500, and particularly preferably 800 to 1,300. Further, when the molecular weight is 3,000 or less, the ratio of the formula (1) to the target product is appropriate, and the ratio of the compound obtained by deprotecting the formula (1) does not decrease, so that the productivity is excellent. ..
  • the method for producing the compound represented by the formula (1) according to the present disclosure is not particularly limited, but can be produced by referring to a known method.
  • the starting compound used for producing the compound represented by the formula (1) may be a commercially available compound, or may be produced according to a method known per se or a method similar thereto. it can.
  • the produced compound represented by the formula (1) may be purified by a known purification method. For example, a method of isolating and purifying by recrystallization, column chromatography, or the like, a method of purifying by reprecipitation by means for changing the solution temperature, a means for changing the solution composition, or the like can be performed.
  • the method for synthesizing the compound represented by the formula (1) according to the present disclosure is not particularly limited, but for example, it can be synthesized according to the following scheme using 3-hydroxyxanthone or the like as a starting material. In addition, it is also possible to synthesize by referring to the synthesis method described in International Publication No. 2018/021233.
  • R 1r to R 8r independently represent RA , a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms or an alkoxy group having 1 to 4 carbon atoms, and at least one of R 1r to R 8r and Y2.
  • One represents RA .
  • X 100 represents Cl, Br, I.
  • R 180 represents a hydrogen atom, an alkyl group, or an Fmoc group.
  • the step of using the compound represented by the above formula (1) protects the carboxy group or the amide group of the amino acid compound or the peptide compound by the compound represented by the above formula (1). It is preferable that the C-terminal protection step is performed.
  • the method for producing a peptide compound according to the present disclosure is a carboxy group or an amide group of an amino acid compound or a peptide compound depending on the compound represented by the above formula (1) from the viewpoint of ease of synthesis of the peptide compound and yield.
  • the N-terminal deprotection step that deprotects the N-terminal of the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound obtained in the above C-terminal protection step, and Further includes a peptide chain extension step of condensing the N-terminal protected amino acid compound or the N-terminal protected peptide compound with the N-terminal of the C-terminal protected amino acid compound or the C-terminal protected peptide compound obtained in the above N-terminal deprotection step.
  • the method for producing a peptide compound according to the present disclosure preferably further includes a C-terminal deprotection step of deprotecting a C-terminal protecting group. Further, the method for producing a peptide compound according to the present disclosure preferably further includes a dissolution step of dissolving the compound represented by the above formula (1) in a solvent before the C-terminal protection step.
  • the method for producing a peptide compound according to the present disclosure preferably includes a dissolution step of dissolving the compound represented by the above formula (1) in a solvent before the C-terminal protection step.
  • a solvent a general organic solvent can be used for the reaction, but the higher the solubility in the solvent, the better the reactivity can be expected. Therefore, the condensed polycyclic aromatic hydrocarbon represented by the formula (1) can be expected. It is preferable to select a solvent having a high solubility of the compound.
  • halogenated hydrocarbons such as chloroform and dichloromethane
  • non-polar organic solvents such as 1,4-dioxane, tetrahydrofuran and cyclopentyl methyl ether. Two or more of these solvents may be mixed and used in an appropriate ratio.
  • the above-mentioned carbon halides and non-polar organic solvents aromatic hydrocarbons such as benzene, toluene and xylene; nitriles such as acetonitrile and propionitrile; ketones such as acetone and 2-butanone; N, N -Amids such as dimethylformamide and N-methylpyrrolidone; sulfoxides such as dimethyl sulfoxide may be mixed and used in an appropriate ratio as long as the compound represented by the formula (1) can be dissolved.
  • the solvent described in Organic Process Research & Development, 2017, 21, 3, 365-369 may be used.
  • the method for producing a peptide compound according to the present disclosure preferably includes a C-terminal protection step of protecting the carboxy group or amide group of the amino acid compound or peptide compound with the compound represented by the above formula (1).
  • the amino acid compound or peptide compound used in the C-terminal protection step is not particularly limited, and known ones can be used, but the N-terminal protected amino acid compound or the N-terminal protected peptide compound may be used. It is more preferably an Fmoc-protected amino acid compound or an Fmoc-protected peptide compound.
  • the amino acid compound used in the C-terminal protection step or the hydroxy group, amino group, carbonyl group, amide group, imidazole group, indol group, guanidyl group, mercapto group and the like other than the C-terminal portion of the peptide compound will be described later. It is preferably protected by a known protective group such as a protective group.
  • the amount of the amino acid compound or peptide compound used as the reaction substrate is preferably 1 molar equivalent to 10 molar equivalents, preferably 1 molar equivalent to 5 molar equivalents, relative to 1 molar equivalent of the compound represented by the above formula (1). It is more preferably 1 molar equivalent to 2 molar equivalents, and particularly preferably 1 to 1.5.
  • the condensing agent is used in a solvent that does not affect the reaction in the presence of a condensation additive (condensation activator). Is preferably added or reacted in an acid catalyst.
  • a condensation additive condensation activator
  • the condensing agent is added in the presence of the condensation additive (condensation activator), or the condensing agent is used. It is preferable to react with a base.
  • the amount of the condensation additive used is preferably 0.05 molar equivalent to 1.5 molar equivalent with respect to 1 molar equivalent of the condensed polycyclic aromatic hydrocarbon compound represented by the above formula (1).
  • a condensing agent generally used in peptide synthesis can be used without limitation in the present disclosure, and is not limited to this, for example, 4- (4,6-dimethoxy-1,3,5).
  • -Triazine-2-yl) -4-methylmorphonium chloride DMT-MM
  • O- (benzotriazole-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU) O- (7-azabenzotriazole-1-yl) -1,1,3,3-tetramethyluronium hexafluorophosphate (HATU)
  • O- (6-chlorobenzotriazole-1-yl) -1, 1,3,3-Tetramethyluronium hexafluorophosphate HBTU (6-Cl)
  • O- (benzotriazole-1-yl) -1,1,3,3-tetramethyluronium tetrafluorobolate TBTU
  • the amount of the condensing agent used is preferably 1 molar equivalent to 10 molar equivalents, more preferably 1 molar equivalent to 5 molar equivalents, relative to 1 molar equivalent of the compound represented by the above formula (1). ..
  • an acid catalyst generally used in peptide synthesis can be used without limitation, and examples thereof include methanesulfonic acid, trifluoromethanesulfonic acid, and p-toluenesulfonic acid. Of these, methanesulfonic acid and p-toluenesulfonic acid are preferable.
  • the amount of the acid catalyst used is preferably 4.0 molar equivalents, which exceeds 0 molar equivalents, and is 0.05 molar equivalents to 1.5 molar equivalents, relative to 1 molar equivalent of the compound represented by the above formula (1).
  • the equivalent is more preferably 0.1 molar equivalent to 0.3 molar equivalent.
  • an activator in the above C-terminal protection step, in order to promote the reaction and suppress side reactions such as racemization, It is preferable to add an activator.
  • the activator in the present disclosure is a reagent that, when coexisting with a condensing agent, leads an amino acid to a corresponding active ester, symmetric acid anhydride, or the like to facilitate the formation of a peptide bond (amide bond).
  • an activator generally used in peptide synthesis can be used without limitation, for example, 4-dimethylaminopyridine, N-methylimidazole, boronic acid derivative, 1-hydroxybenzotriazole (HOBt).
  • Ethyl 1-hydroxytriazole-4-carboxylate (HOCt), 1-hydroxy-7-azabenzotriazole (HOAt), 3-hydroxy-1,2,3-benzotriazodin-4 (3H) -one ( HOOBt), N-Hydroxysuccinimide (HOSu), N-Hydroxyphthalimide (HOPht), N-Hydroxy-5-norbornene-2,3-dicarboxyimide (HONb), pentafluorophenol, ethyl (hydroxyimino) cyanoacetate (Oxyma) ) Etc.
  • HOCt 1-hydroxytriazole-4-carboxylate
  • HOAt 1-hydroxy-7-azabenzotriazole
  • HONb 3-hydroxy-1,2,3-benzotriazodin-4 (3H) -one
  • HOBt N-Hydroxysuccinimide
  • HPht N-Hydroxyphthalimide
  • HONb N-H
  • the amount of the activator to be used is preferably more than 0 molar equivalent and 4.0 molar equivalent, more preferably 0.1 molar equivalent to 1.5 molar equivalent, relative to the amino acid compound or peptide compound. ..
  • a base generally used in peptide synthesis can be used without limitation, and examples thereof include a tertiary amine such as diisopropylethylamine.
  • the solvent the above-mentioned solvent can be preferably used in the above-mentioned dissolution step.
  • the reaction temperature is not particularly limited, but is preferably ⁇ 10 ° C. to 80 ° C., and more preferably 0 ° C. to 40 ° C.
  • the reaction time is not particularly limited, but is preferably 1 hour to 30 hours.
  • a method similar to that of a general liquid phase organic synthesis reaction can be applied. That is, the reaction can be traced using thin layer silica gel chromatography, high performance liquid chromatography, NMR or the like.
  • the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound obtained by the above C-terminal protection step may be purified.
  • the obtained N-terminal protected C-terminal protected amino acid compound or N-terminal protected C-terminal protected peptide compound is dissolved in a solvent (reaction solvent), and the product obtained after carrying out the desired organic synthesis reaction is isolated.
  • a method of changing the solvent in which the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound is dissolved eg, changing the solvent composition, changing the type of solvent
  • reprecipitating is preferable.
  • the reaction is carried out under conditions in which the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound is dissolved.
  • the solvent is distilled off and then the solvent is replaced, or by adding a polar solvent to the reaction system without distilling off the solvent, the agglomerates are precipitated and impurities are eliminated.
  • polar organic solvents such as methanol, acetonitrile and water are used alone or in combination.
  • the reaction is carried out under conditions in which the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound is dissolved, and after the reaction, the solvent substitution is, for example, a halogenated solvent, THF or the like for dissolution.
  • a polar organic solvent such as methanol, acetonitrile or water for precipitation.
  • the method for producing a peptide compound according to the present disclosure includes an N-terminal deprotection step of deprotecting the N-terminal of the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound obtained in the above C-terminal protection step. It is preferable to include it.
  • the N-terminal protecting group a protecting group for an amino group described later, which is generally used in technical fields such as peptide chemistry, can be used, but in the present disclosure, a Boc group and a benzyloxycarbonyl group (hereinafter, Cbz) can be used.
  • a group or Z group) or Fmoc group is preferably used.
  • the deprotection conditions are appropriately selected depending on the type of the temporary protecting group, but a group that can be deprotected under conditions different from the removal of the protecting group derived from the compound represented by the above formula (1) is preferable.
  • a group that can be deprotected under conditions different from the removal of the protecting group derived from the compound represented by the above formula (1) is preferable.
  • an Fmoc group it is carried out by treating with a base
  • a Boc group it is carried out by treating with an acid.
  • the reaction is carried out in a solvent that does not affect the reaction.
  • the above-mentioned solvent can be preferably used in the above-mentioned dissolution step.
  • the method for producing a peptide compound according to the present disclosure is a method for producing an N-terminal protected amino acid compound or an N-terminal protected peptide compound at the N-terminal of the C-terminal protected amino acid compound or C-terminal protected peptide compound obtained in the above N-terminal deprotection step. It is preferable to include a peptide chain extension step of condensing.
  • the peptide chain extension step is preferably carried out under peptide synthesis conditions generally used in the field of peptide chemistry, using the above-mentioned condensing agent, condensation additive and the like.
  • the N-terminal protected amino acid compound or N-terminal protected peptide compound is not particularly limited and any desired compound can be used, but an Fmoc-protected amino acid compound or Fmoc-protected peptide compound can be preferably used.
  • the hydroxy group, amino group, carbonyl group, amide group, imidazole group, indol group, guanidyl group, mercapto group and the like other than the C-terminal portion of the N-terminal protected amino acid compound or the N-terminal protected peptide compound are protective groups described later. It is preferable that it is protected by a known protective group such as.
  • the method for producing a peptide compound according to the present disclosure preferably further includes a precipitation step of precipitating the N-terminal protected C-terminal protected peptide compound obtained in the peptide chain extension step.
  • the precipitation step can be carried out in the same manner as the purification (reprecipitation) of the C-terminal protection step.
  • the polar solvent is added to the reaction system without distilling off the reaction solvent after the reaction in the previous stage.
  • THF is used as the non-polar organic solvent as the reaction solvent
  • acetonitrile is used as the polar solvent.
  • the ratio (volume basis) of the non-polar organic solvent to the polar solvent is preferably 1: 1 to 1: 100, more preferably 1: 3 to 1:50, and even more preferably 1: 5 to 1:20.
  • the N-terminal protected C-terminal protected amino acid compound or the N-terminal protected C-terminal protected peptide compound can be efficiently precipitated, and the desired product can be efficiently purified.
  • the method for producing a peptide compound according to the present disclosure is a step of deprotecting the N-terminal of the obtained N-terminal protected C-terminal protected peptide compound after the precipitation step, and the N-terminal of the obtained C-terminal protected peptide compound. It is preferable that the step of condensing the N-terminal protected amino acid compound or the N-terminal protected peptide compound and the step of precipitating the obtained N-terminal protected C-terminal protected peptide compound are further included once or more in this order. By repeating the above three steps, the chain extension of the obtained peptide compound can be easily performed. Each step in the above three steps can be performed in the same manner as each corresponding step described above.
  • the method for producing a peptide compound according to the present disclosure preferably further includes a C-terminal deprotection step of deprotecting a C-terminal protecting group.
  • the final target product is obtained by removing the C-terminal protecting group formed by the compound represented by the above formula (1) in the C-terminal protected peptide compound having a desired number of amino acid residues.
  • a certain peptide compound can be obtained.
  • a method for removing the C-terminal protecting group a deprotection method using an acidic compound is preferably mentioned. For example, a method of adding an acid catalyst and a method of hydrogenating using a metal catalyst can be mentioned.
  • the acid catalyst examples include trifluoroacetic acid (TFA), hydrochloric acid, trifluoroethanol (TFE), hexafluoroisopropanol (HFIP), acetic acid, etc.
  • TFA trifluoroacetic acid
  • TFE trifluoroethanol
  • HFIP hexafluoroisopropanol
  • acetic acid etc.
  • TFA trifluoroacetic acid
  • TFE trifluoroethanol
  • HFIP hexafluoroisopropanol
  • acetic acid etc.
  • concentration of the acid can be appropriately selected depending on the side chain protecting group of the extending amino acid and the deprotection conditions, and may be 0.01% by mass to 100% by mass with respect to the total mass of the solvent used.
  • the concentration of TFA is preferably 70% by mass or less, more preferably 50% by mass or less, further preferably 30% by mass or less, and particularly preferably 10% by mass or less.
  • the concentration of TFA is preferably 10% by volume or less, more preferably 5% by volume or less, further preferably 5% by volume or less, and particularly preferably 1% by volume or less, based on the total volume of the solvent used.
  • the lower limit is preferably 0.01% by volume, more preferably 0.1% by volume, and even more preferably 0.5% by volume.
  • the deprotection time is preferably 5 hours or less, more preferably 3 hours or less, and even more preferably 1 hour or less.
  • Peptides that are suitable for deprotecting the C-terminal protecting group under weak acid conditions include, for example, peptides having an N-alkylamide structure.
  • the method for producing the peptide compound according to the present disclosure is preferably a method for producing a peptide compound that is sensitive to an acid, and a peptide compound having an N-alkylamide structure. The manufacturing method of is more preferable.
  • the peptide compound which is the final target product obtained by the method for producing a peptide compound according to the present disclosure, can be isolated and purified according to a method commonly used in peptide chemistry.
  • the final target peptide compound can be isolated and purified by extracting and washing the reaction mixture, crystallization, chromatography and the like.
  • the type of peptide produced by the method for producing a peptide compound according to the present disclosure is not particularly limited, but the number of amino acid residues of the peptide compound is preferably, for example, about several tens or less.
  • the peptides obtained by the method for producing a peptide compound according to the present disclosure are similar to existing or unknown synthetic peptides and natural peptides, and are used in various fields such as, but not limited to, pharmaceuticals, foods, cosmetics, electronic materials, and biosensors. It can be used in fields such as sensors.
  • the precipitation step can be appropriately omitted as long as it does not affect the reaction in the next step.
  • amino acid compound used in the method for producing a peptide compound according to the present disclosure and the peptide compound have a hydroxy group, an amino group, a carboxy group, a carbonyl group, a guadinyl group, a mercapto group, etc., these groups are subjected to peptide chemistry or the like.
  • a commonly used protective group may be introduced, and the target compound can be obtained by removing the protective group if necessary after the reaction.
  • Examples of the hydroxy group protective group include an alkyl group having 1 to 6 carbon atoms, an aryl group, a trityl group, an aralkyl group having 7 to 10 carbon atoms, a formyl group, an acyl group having 1 to 6 carbon atoms, a benzoyl group, and carbon.
  • Examples thereof include an aralkyl-carbonyl group having a number of 7 to 10, a 2-tetrahydropyranyl group, a 2-tetrahydrofuranyl group, a silyl group, and an alkenyl group having 2 to 6 carbon atoms.
  • These groups may be substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, alkyl groups having 1 to 6 carbon atoms, and nitro groups.
  • amino group protecting group examples include a formyl group, an acyl group having 1 to 6 carbon atoms, an alkoxycarbonyl group having 1 to 6 carbon atoms, a benzoyl group, an aralkyl-carbonyl group having 7 to 10 carbon atoms, and 7 to 7 carbon atoms.
  • aralkyloxycarbonyl group trityl group, monomethoxytrityl group, 1- (4,4-Dimethyl-2,6-dioxocyclohex-1-ylidene) -3-methylbutyl group, phthaloyl group, N, N-dimethylaminomethylene
  • examples thereof include a group, a silyl group, and an alkenyl group having 2 to 6 carbon atoms. These groups may be substituted with 1 to 3 substituents selected from the group consisting of halogen atoms, alkoxy groups having 1 to 6 carbon atoms, and nitro groups.
  • carboxy group protecting group examples include the above hydroxy group protecting group and trityl group.
  • Examples of the carbonyl group protecting group include cyclic acetals (eg, 1,3-dioxane), acyclic acetals (eg, di (alkyls having 1 to 6 carbon atoms) acetals) and the like.
  • Examples of the protecting group of the guanidyl group include 2,2,4,6,7-pentamethyldihydrobenzofuran-5-sulfonyl group, 2,3,4,5,6-pentamethylbenzenesulfonyl group, tosyl group and nitro. Examples include groups.
  • Examples of the protective group of the mercapto group include a trityl group, a 4-methylbenzyl group, an acetylaminomethyl group, a t-butyl group, a t-butylthio group and the like.
  • the method for removing these protecting groups may be carried out according to a known method, for example, the method described in Protective Groups in Organic Synthesis, published by John Wiley and Sons (1980).
  • a method using an acid, a base, ultraviolet light, hydrazine, phenylhydrazine, sodium N-methyldithiocarbamate, tetrabutylammonium fluoride, palladium acetate, trialkylsilyl halide and the like, a reduction method and the like are used.
  • the reagent for forming a protecting group according to the present disclosure contains a compound represented by the above formula (1). According to another embodiment of the present invention, a reagent for forming a protecting group having excellent yield can be provided. In particular, it is possible to provide a reagent for forming a protecting group, which is excellent in deprotection rate and stability over time.
  • the protecting group forming reagent according to the present disclosure is preferably a carboxy group or amide group protecting group forming reagent, and more preferably a C-terminal protecting group forming reagent of an amino acid compound or a peptide compound.
  • the preferred embodiment of the compound represented by the formula (1) in the reagent for forming a protecting group according to the present disclosure is the same as the preferred embodiment of the compound represented by the formula (1) according to the present disclosure described above.
  • the content of the condensed polycyclic aromatic hydrocarbon compound represented by the formula (1) in the protecting group forming reagent according to the present disclosure is not particularly limited, but is 0. It is preferably from 1% by mass to 100% by mass, more preferably from 1% by mass to 100% by mass, and even more preferably from 3% by mass to 100% by mass.
  • the reagent for forming a protecting group according to the present disclosure may contain components other than the compound represented by the formula (1).
  • Ya 1 represents -ORa 17 , -NHRa 18 , -SH, or a halogen atom
  • Ra 17 represents a hydrogen atom, an active ester-type carbonyl group, or an active ester-type sulfonyl group
  • Ra 18 represents a hydrogen atom or a linear or branched alkyl group having 10 or less carbon atoms, an arylalkyl group or a heteroarylalkyl group, or an Fmoc group.
  • Ra 1 to Ra 8 independently represent RA , a hydrogen atom, a halogen atom, an alkyl group having 1 to 4 carbon atoms, or an alkoxy group having 1 to 4 carbon atoms.
  • At least one of Ra 2 to Ra 7 has RA , RA represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group, and RA represents at least one aliphatic hydrocarbon.
  • the hydrogen group has 12 or more carbon atoms, However, RA does not have a silyl group and a hydrocarbon group having a silyloxy structure.
  • the condensed polycyclic compound represented by the formula (1a), which is the compound according to the present disclosure, is a novel compound and can be suitably used for the production of a peptide compound.
  • it can be suitably used as a reagent for forming a protecting group, more preferably used as a reagent for forming a protecting group of a carboxy group or an amide group, and particularly as a reagent for forming a C-terminal protecting group of an amino acid compound or a peptide compound. It can be preferably used.
  • Ra 17 and Ra 18 have the same meaning as R 17 and R 18 in formula (1), and so do preferred embodiments.
  • Ya 2 in the formula (1a) has the same meaning as Y 2 in the formula (1), and the preferred embodiment is also the same.
  • R A in formula (1a) are the same as R A in the formula (1), a preferable embodiment thereof is also the same.
  • the condensed polycyclic compound represented by the formula (1a) in the compound according to the present disclosure is the above-mentioned method for producing a peptide compound according to the present disclosure, except that at least one of Ra 2 to Ra 7 has RA . It is the same as the compound represented by the above-mentioned formula (1), and the same applies to preferred embodiments other than the preferred embodiments described later.
  • the fused polycyclic compound represented by the above formula (1a) is a compound in which at least one of Ra 2 to Ra 7 has RA , and from the viewpoint of deprotection rate and stability over time, Ra 3 and Ra 6 preferably, at least one is a compound having a R a, one of Ra 3 and Ra 6 is more preferably a compound having a R a.
  • the condensed polycyclic compound represented by the above formula (1a) is preferably a compound represented by either the following formula (100a) or the formula (200a) from the viewpoint of deprotection rate and stability over time. It is more preferable that the compound is represented by the following formula (100a).
  • Y 1 represents -OH or -NH 2
  • RA represents an aliphatic hydrocarbon group or an organic group having an aliphatic hydrocarbon group.
  • RA has at least one aliphatic hydrocarbon group having 12 or more carbon atoms, except that RA does not have a silyl group and a hydrocarbon group having a silyloxy structure.
  • the RA in the compound represented by the above formula (100a) and the formula (200a) is synonymous with the RA in the compound represented by the above formula (1a), and the preferred embodiment is also the same.
  • the condensed polycyclic compound represented by the above formula (1a) can be synthesized in the same manner as the compound represented by the above formula (1).
  • purification by column chromatography is performed by an automatic purification device ISOLERA (manufactured by Biotage) or a medium pressure liquid chromatograph YFLC-Wprep2XY. N (manufactured by Yamazen Corporation) was used.
  • ISOLERA manufactured by Biotage
  • YFLC-Wprep2XY. N manufactured by Yamazen Corporation
  • SNAPKP-SilCartridge manufactured by Biotage
  • high flash columns W001, W002, W003, W004 or W005 were used as carriers in silica gel column chromatography.
  • the mixing ratio in the eluent used for column chromatography is the volume ratio.
  • the MS spectrum was measured using ACQUITY SQD LC / MS System (manufactured by Waters, ionization method: ESI (ElectroSpray Ionization, electrospray ionization) method).
  • the NMR spectrum was measured using Bruker AV300 (Made by Bruker, 300 MHz) or Bruker AV400 (manufactured by Bruker, 400 MHz) using tetramethylsilane as an internal reference, and the total ⁇ value was expressed in ppm.
  • the HPLC purity was measured using ACQUITY UPLC (manufactured by Waters, column: CSH C18 1.7 ⁇ m).
  • Intermediate (1-1) was synthesized by the method described in European Patent Application Publication No. 2518041.
  • Intermediate (1-1) (4.00 g, 5.16 mmol), 3-hydroxyxanthene-9-one (1.31 g, 6.24 mmol), potassium carbonate (1.43 g, 10.3 mmol), N-methyl Pyrrolidone (NMP, 40 mL) was mixed and stirred at 110 ° C. for 3 hours under a nitrogen atmosphere.
  • the reaction solution was cooled to 55 ° C. and extracted with toluene and water.
  • the solid precipitated by adding methanol to the obtained organic layer was filtered and dried under reduced pressure to obtain an intermediate (1-2) (4.66 g, yield 95%).
  • Diazabicycloundecene (DBU, 391 ⁇ L, 2.57 mmol) was added to the mixture of compound (1-NF-1) (1.51 g, 1.29 mmol) and tetrahydrofuran (20 mL), and the mixture was stirred at room temperature for 2 hours. did. After completion of the reaction, acetonitrile (80 mL) was added, the mixture was stirred, and the precipitate was filtered and dried under reduced pressure to give compound (1-N-1) (1.15 g, yield 94%).
  • DBU Diazabicycloundecene
  • Example 2 and 3 and Comparative Examples 1 and 2 Compound (1-NF-2), compound (1-NF-3), comparative compound (1-NF-1), comparative, similar to the method for obtaining N-protected C-protected amino acids (1-N-1).
  • the corresponding N-protected C-protected amino acid was synthesized by condensing compound (2-NF-1) with N-[(9H-fluoren-9-ylmethoxy) carbonyl] -L-leucine.
  • N-methylmorpholine (2.05 molar equivalents) and methanesulfonic acid (2.0 molar equivalents) were added in that order, followed by Fmoc-Gly-OH (1.25 molar equivalents), (1- Cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylaminomorpholinocarbenium hexafluorophosphate (COMU, 1.25 molar equivalents) was added and stirred.
  • N-methylmorpholine (2.05 molar equivalents) and methanesulfonic acid (2.0 molar equivalents) were added in that order, followed by Fmoc-Cys (Trt-OH (1.25 molar equivalents), ( 1-Cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylaminomorpholinocarbenium hexafluorophosphate (COMU, 1.25 molar equivalents) was added and stirred.
  • N-methylmorpholine (2.05 molar equivalents) and methanesulfonic acid (2.0 molar equivalents) were added in that order, followed by Fmoc-Arg (Pbf) -OH (1.25 molar equivalents).
  • Fmoc-Arg (Pbf) -OH (1.25 molar equivalents).
  • 1-Cyano-2-ethoxy-2-oxoethylideneaminooxy Dimethylaminomorpholinocarbenium hexafluorophosphate (COMU, 1.25 molar equivalents) was added and stirred.
  • N-methylmorpholine (2.05 molar equivalents) and methanesulfonic acid (2.0 molar equivalents) were added in that order, followed by Fmoc-MeNle-OH (1.25 molar equivalents), (1- Cyano-2-ethoxy-2-oxoethylideneaminooxy) dimethylaminomorpholinocarbenium hexafluorophosphate (COMU, 1.25 molar equivalents) was added and stirred.
  • Example 8 Synthesis of Fmoc-MeNle-MeNle-Arg (Pbf) -Cys (Trt) -Gly-NH-XantTAG (1)
  • Fmoc-MeNle-Arg (Pbf) -Cys (Trt) -Gly-NH-XantTAG (1) (2.00 g, 1.70 mmol) was dissolved in tetrahydrofuran (17 mL) and diazabicycloundecene (DBU, 2). (0.0 molar equivalent) was added and stirred.
  • DBU diazabicycloundecene
  • N, N-diisopropylethylamine (6.05 eq) and methanesulfonic acid (2.0 eq) were added in sequence, followed by Fmoc-MeNle-OH (2.0 eq), (. 7-azabenzotriazole-1-yloxy) tripyrrolidinophosphonium hexafluorophosphate (PyAOP, 2.0 molar equivalents) was added and stirred.
  • the method for producing a peptide compound including the step of using the compound represented by the formula (1) according to the present disclosure has a high yield of the peptide compound obtained in any of the examples, and is total. It can be seen that the yield is also excellent.
  • Trp Boc-protected tryptophan residue Boc: tert-butylcarbonyl group Ser (Trt): Trt-protected serine residue Leu: Leucine residue His (Boc): Boc-protected histidine residue Asn (Trt): Trt-protected asparagine Residue MeAla: N-methylalanine residue Ph: Phenylalanine residue ClAc: Chloroacetyl group
  • Example 9 Synthesis of cyclic peptide A
  • ClAc-Phe-MeAla-Asn-Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg-Cys-Gly-NH 2 (0.167 g) at room temperature, acetonitrile and 0.1 mol / A 1/1 mixed solution (138 mL) of L triethylammonium dicarbonate buffer and a 0.5 mol / L tris (2-carboxyethyl) phosphine aqueous solution (138 ⁇ L) were added, and the mixture was stirred for 2 hours.
  • Example 10 Synthesis of cyclic peptide B) ClAc-Phe-MeAla-Asn (Mmt) -Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg (Pbf) -Cys-Gly-NH 2 (39.4 mg) at room temperature.
  • a 1/1 mixture (11 mL) of acetonitrile and 0.1 mol / L triethylammonium dicarbonate buffer and a 0.5 mol / L tris (2-carboxyethyl) phosphine aqueous solution (23 ⁇ L) were added, and the mixture was stirred for 2 hours.
  • Examples 9 and 10 according to the method for producing a peptide compound according to the present disclosure, it can also be applied to the production of a cyclic peptide compound having an N-alkylamide structure.
  • the C-terminal protecting group could be deprotected even under weak acid conditions, the side reaction of the obtained peptide could be suppressed, the purity was high, and the yield was high.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • Biophysics (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

式(1)で表される化合物を用いる工程を含むペプチド化合物の製造方法、上記化合物を含む保護基形成用試薬、及び、上記化合物。R1~R8及びY2のうち少なくとも1つはRAを有し、上記RAは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、少なくとも1つの上記脂肪族炭化水素基の炭素数が、12以上である。但し、RAはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。

Description

ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
 本開示は、ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物に関する。
 ペプチドの製造方法としては、固相法、液相法などがある。
 固相法は、反応後の単離及び精製をレジンの洗浄だけで行える点で有利ではあるが、本質的に不均一相の反応であり、低い反応性を補うために反応試薬を過剰量用いる必要があったり、反応の追跡及び担体に担持された状態での反応生成物の解析の点で問題がある。
 一方、液相法は、反応性が良好で、縮合反応の後に抽出洗浄、単離等により中間体ペプチドの精製ができる。しかし、液相法には、カップリング反応及び脱保護の各工程における課題が未だ存在する。
 従来の保護基形成用試薬としては、特許文献1に記載されたキサンテン化合物、及び、特許文献2に記載されたジフェニルメタン化合物が知られている。
  特許文献1:国際公開第2018/021233号
  特許文献2:国際公開第2010/113939号
 特許文献1には、有機溶媒中で析出しにくく、液-液相分離の操作により分離精製が容易であるキサンテン化合物が記載されているだけで、固-液相分離に適したキサンテン化合物を用いた保護基に関する記載も示唆もない。
 本開示の一実施形態が解決しようとする課題は、脱保護速度及び経時安定性に優れるペプチド化合物の製造方法を提供することである。
 また、本開示の他の一実施形態が解決しようとする課題は、脱保護速度及び経時安定性に優れる保護基形成用試薬を提供することである。
 また、本開示の更に他の一実施形態が解決しようとする課題は、新規な縮合多環化合物を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 下記式(1)で表される化合物を用いる工程を含むペプチド化合物の製造方法。
Figure JPOXMLDOC01-appb-C000010
 式(1)中、Yは、-OR17、-NHR18、-SH、又は、ハロゲン原子を表し、上記R17は、水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、上記R18は、水素原子、アルキル基、アリールアルキル基又はヘテロアリールアルキル基、又は、9-フルオレニルメトキシカルボニル基を表し、
 Yは、-N(R110)-、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR106107-を表し、上記R110は、R又はアルキル基を表し、上記R100~R107はそれぞれ独立に、水素原子又はアルキル基を表し、
 R~Rはそれぞれ独立に、R、水素原子、ハロゲン原子、アルキル基又はアルコキシ基を表し、R~R及びYのうち少なくとも1つはRを有し、上記Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rが1つのみ存在する場合は、Rの上記脂肪族炭化水素基の炭素数が、12以上であり、Rが複数存在する場合は、Rの少なくとも1つの上記脂肪族炭化水素基の炭素数が、12以上であり、
 但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
<2> 上記式(1)で表される化合物を用いる工程が、上記式(1)で表される化合物によりアミノ酸化合物又はペプチド化合物のカルボキシ基又はアミド基を保護するC末端保護工程である<1>に記載のペプチド化合物の製造方法。
<3> 上記C末端保護工程におけるアミノ酸化合物又はペプチド化合物が、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物である<2>に記載のペプチド化合物の製造方法。
<4> 上記C末端保護工程で得られたN末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物のN末端を脱保護するN末端脱保護工程、及び、
 上記N末端脱保護工程で得られたC末端保護アミノ酸化合物又はC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させるペプチド鎖延長工程
 を更に含む<3>に記載のペプチド化合物の製造方法。
<5>上記ペプチド鎖延長工程で得られたN末端保護C末端保護ペプチド化合物を沈殿させる沈殿工程を更に含む<4>に記載のペプチド化合物の製造方法。
<6> 上記沈殿工程の後に、
 得られたN末端保護C末端保護ペプチド化合物のN末端を脱保護する工程、
 得られたC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させる工程、及び、
 得られたN末端保護C末端保護ペプチド化合物を沈殿する工程
 をこの順で1回以上更に含む、<5>に記載のペプチド化合物の製造方法。
<7> C末端保護基を脱保護するC末端脱保護工程を更に含む、<1>~<6>のいずれか1つに記載のペプチド化合物の製造方法。
<8> 全てのRが有する全ての脂肪族炭化水素基の合計炭素数が、18以上である、<1>~<7>のいずれか1つに記載のペプチドの製造方法。
<9> 全てのRが有する全ての脂肪族炭化水素基の合計炭素数が、36~80である<1>~<8>のいずれか1つに記載のペプチド化合物の製造方法。
<10> 上記式(1)中のR及びRの少なくとも一方が、Rである<1>~<9>のいずれか1つに記載のペプチドの製造方法。
<11> 上記Rが、それぞれ独立に、下記式(f1)又は式(a1)で表される基である<1>~<10>のいずれか1つに記載のペプチド化合物の製造方法。
Figure JPOXMLDOC01-appb-C000011
 式(f1)中、波線部分は、他の構成との結合位置を表し、m9は1~3の整数を表し、
 Xはそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
 Rはそれぞれ独立に、二価の脂肪族炭化水素基を表し、
 Arは(m10+1)価の芳香族基、又は、(m10+1)価の複素芳香族基を表し、
 m10は、1~3の整数を表し、
 X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
 R10はそれぞれ独立に、一価の脂肪族炭化水素基を表し、R10の少なくとも1つは、炭素数5以上の一価の脂肪族炭化水素基である。
Figure JPOXMLDOC01-appb-C000012

 式(a1)中、波線部分は、他の構成との結合位置を表し、
m20は、1~10の整数を表し、
20はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
20の少なくとも1つは、炭素数5以上の二価の脂肪族炭化水素基である。
<12> 上記式(f1)で表される基が、下記式(f2)で表される基である<11>に記載のペプチド化合物の製造方法。
Figure JPOXMLDOC01-appb-C000013
 式(f2)中、波線部分は、他の構成との結合位置を表し、m10は、1~3の整数を表し、m11は、1~3の整数を表し、
10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
10はそれぞれ独立に、炭素数5以上の一価の脂肪族炭化水素基を表す。
<13> 上記式(a1)における、他の構成と結合するX20が、-O-である<11>に記載のペプチド化合物の製造方法。
<14> 下記式(1)で表される化合物を含む保護基形成用試薬。
Figure JPOXMLDOC01-appb-C000014
 式(1)中、Yは、-OR17、-NHR18、-SH、又は、ハロゲン原子を表し、上記R17は、水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、上記R18は、水素原子、アルキル基、アリールアルキル基、ヘテロアリールアルキル基、又は、9-フルオレニルメトキシカルボニル基を表し、
 Yは、-N(R110)-、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR106107-を表し、上記R110は、R又はアルキル基を表し、上記R100~R107はそれぞれ独立に、水素原子又はアルキル基を表し、
 R~Rはそれぞれ独立に、R、水素原子、ハロゲン原子、アルキル基又はアルコキシ基を表し、R~R及びYのうち少なくとも1つはRを有し、上記Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rの少なくとも1つの上記脂肪族炭化水素基の炭素数が、12以上であり、
 但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
<15> 上記保護基形成用試薬が、カルボキシ基又はアミド基の保護基形成用試薬である<14>に記載の保護基形成用試薬。
<16> 上記保護基形成用試薬が、アミノ酸化合物又はペプチド化合物のC末端保護基形成用試薬である<14>又は<15>に記載の保護基形成用試薬。
<17> 下記式(1a)で表される縮合多環化合物。
Figure JPOXMLDOC01-appb-C000015
 式(1a)中、Yaは-ORa17、-NHRa18、-SH、又は、ハロゲン原子を表し、上記Ra17は水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、上記Ra18は水素原子又は炭素数10以下の直鎖若しくは分岐鎖のアルキル基、アリールアルキル基又はヘテロアリールアルキル基、又は9-フルオレニルメトキシカルボニル基を表し、
 Yaは、-N(R110)-、-O-、-S-、-CRa100=CRa101-、-CRa102Ra103-CRa104Ra105)-、又は、-CRa106Ra107-を表し、上記R110はR又はアルキル基を表し、上記Ra100~Ra107はそれぞれ独立に、水素原子又はアルキル基を表し、
 Ra~Raはそれぞれ独立にR、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、
 Ra~Raの少なくとも1つはRを有し、Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rは、少なくとも1つの上記脂肪族炭化水素基の炭素数が、12以上であり、
 但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
<18> 上記式(1a)中のR及びRの少なくとも一方が、Rである、<17>に記載の縮合多環化合物。
<19> 上記式(1a)中のRがそれぞれ独立に、下記式(f1)又は式(a1)で表される基である、<17>又は<18>に記載の縮合多環化合物。
Figure JPOXMLDOC01-appb-C000016
 式(f1)中、波線部分は他の構成との結合位置を表し、m9は1~3の整数を表し、Xはそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、Rはそれぞれ独立に、二価の脂肪族炭化水素基を表し、Arは(m10+1)価の芳香族基、又は、(m10+1)価の複素芳香族基を表し、m10は、1~3の整数を表し、X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R10はそれぞれ独立に、一価の脂肪族炭化水素基を表し、R10の少なくとも1つは、炭素数5以上の一価の脂肪族炭化水素基である。
Figure JPOXMLDOC01-appb-C000017
 式(a1)中、波線部分は他の構成との結合位置を表し、m20は、1~10の整数を表し、X20はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R20の少なくとも1つは、炭素数5以上の二価の脂肪族炭化水素基である。
<20> 上記式(f1)で表される基が、下記式(f2)で表される基である<19>に記載の縮合多環化合物。
Figure JPOXMLDOC01-appb-C000018
 式(f2)中、波線部分は他の構成との結合位置を表し、m10は、1~3の整数を表し、m11は、1~3の整数を表し、X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R10はそれぞれ独立に、炭素数5以上の一価の脂肪族炭化水素基を表す。
<21> 上記式(a1)における他の構成と結合するX20が、-O-である<19>に記載の縮合多環化合物。
 本発明の一実施形態によれば、脱保護速度及び経時安定性に優れるペプチド化合物の製造方法を提供することができる。
 また、本発明の他の一実施形態によれば、脱保護速度及び経時安定性に優れる保護基形成用試薬を提供することができる。
 また、本発明の更に他の一実施形態によれば、新規な縮合多環化合物を提供することができる。
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 本明細書において、特に断らない限り、各用語は次の意味を有する。 「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本明細書中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 「工程」との語は、独立した工程だけでなく、他の工程と明確に区別できない場合であっても工程の所期の目的が達成されれば、本用語に含まれる。
 基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含する。
 化学構造式は、水素原子を省略した簡略構造式で記載する場合もある。
 「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 2以上の好ましい態様の組み合わせは、より好ましい態様である。
 アルキル基は、鎖状でも分岐状でもよく、ハロゲン原子等で置換されていてもよい。炭素数(「炭素原子数」ともいう。)1~6のアルキル基としては、メチル、エチル、プロピル、イソプロピル、ブチル、tert-ブチル等が挙げられる。
 炭素数2~6のアルケニル基としては、1-プロぺニルが挙げられる。
 アリール基としては、炭素数6~14のアリール基が好ましく、フェニル基、1-ナフチル基、2-ナフチル基、ビフェニリル基、2-アンスリル基等が挙げられる。中でも、炭素数6~10のアリール基がより好ましく、フェニル基が特に好ましい。
 シリル基としては、トリメチルシリル、トリエチルシリル、ジメチルフェニルシリル、tert-ブチルジメチルシリル、tert-ブチルジエチルシリル等が挙げられる。
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が挙げられる。
 炭素数1~6のアルコキシ基としては、メトキシ、エトキシ、プロポキシ等が挙げられる。
 炭素数7~10のアラルキル基としては、ベンジルが挙げられる。
 炭素数1~6のアシル基としては、アセチル、プロピオニルが挙げられる。
 炭素数7~10のアラルキル-カルボニル基としは、ベンジルカルボニルが挙げられる。
 炭素数1~6のアルコキシカルボニル基としては、メトキシカルボニル、エトキシカルボニル、Boc基が挙げられる。Boc基は、tert-ブトキシカルボニル基を意味する。
 炭素数7~14のアラルキルオキシカルボニル基としては、ベンジルオキシカルボニル、Fmoc基が挙げられる。Fmoc基は、9-フルオレニルメトキシカルボニル基を意味する。
(ペプチド化合物の製造方法)
 本開示に係るペプチド化合物の製造方法は、下記式(1)で表される化合物を用いる工程を含む。
Figure JPOXMLDOC01-appb-C000019
 式(1)中、Yは、-OR17、-NHR18、-SH、又は、ハロゲン原子を表し、上記R17は、水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、上記R18は、水素原子、又は、直鎖若しくは分岐鎖の炭素数1~6のアルキル基、又は、アリールアルキル基、ヘテロアリールアルキル基、又は、9-フルオレニルメトキシカルボニル基(以下、Fmoc基ともいう)を表し、
 Yは、-N(R110)-、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR106107-を表し、上記R110は、R又はアルキル基を表し、上記R100~R107はそれぞれ独立に、水素原子又はアルキル基を表し、
 R~Rは、それぞれ独立に、R、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、R~R及びYのうち少なくとも1つはRを有し、上記Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rが1つのみ存在する場合は、Rの上記脂肪族炭化水素基の炭素数が、12以上であり、Rが複数存在する場合は、Rの少なくとも1つの上記脂肪族炭化水素基の炭素数が、12以上であり、
 但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
 本開示の一実施形態によれば、収率に優れるペプチド化合物の製造方法を提供することができる。特に脱保護速度及び経時安定性に優れるペプチド化合物の製造方法を提供することができる。上記効果が得られる詳細なメカニズムは不明であるが、以下のように推測される。
 なお、経時安定性に優れるとは、保管中に本開示に係る式(1)で表される縮合多環化合物が分解しないこと、又は、本開示に係る式(1)で表される縮合多環化合物で保護された化合物が、脱保護条件以外のときに脱保護及び分解しないことを意味する。
 本開示に係る式(1)で表される化合物は、少なくとも1つの炭素数12以上の脂肪族炭化水素基を有することから、保護された化合物は疎水性の溶剤溶解性に優れる。更に、親水性溶剤に対しては、R中の脂肪族炭化水素基が凝集することや、縮合多環構造を有することにより、得られるペプチド化合物において、縮合多環構造同士によるスタッキング相互作用が生じることにより、晶析性に優れ、精製及び分離性にも優れる。
 言い換えれば、式(1)で保護された化合物を反応に供する場合、反応溶剤である疎水性溶剤への溶剤溶解性に優れるため、反応が速やかに進行し、かつ、精製時には貧溶媒である極性溶媒を添加することで目的物が効率よく晶析精製されるため、固-液相分離に好適であり、得られる化合物(ペプチド化合物等)の収率に優れると推定している。
 また、本開示に係る式(1)で表される化合物により保護された化合物は、脱保護速度が速いため副反応が抑えられ、得られるペプチド化合物等の収率に優れると推定している。脱保護速度に優れる理由は、式(1)で表される化合物は、特許文献2に記載のジフェニルメタン型の化合物と比べて、縮合多環構造を有しており、またYの電子供与性の置換基により、Yが連結する炭素原子の電子密度が向上するため脱保護速度に優れるためと推定される。
 本開示に係る式(1)で表される化合物、及び式(1)で表される化合物により保護された化合物は、特許文献1に記載のシリルオキシ構造を有さない脂肪族炭化水素基であることから、常温で固体であり、分子間の反応性に劣るため、保存安定性に優れ、副生成物の生成が抑制されるため収率に優れると推定している。
 液-液相分離に適した保護基が記載された特許文献1において、液-液相分離に適した保護基のシリルオキシ構造を有する炭化水素基を、炭素数が12以上の脂肪族炭化水素基に変更することは記載も示唆も一切ない。また、液-液相分離のタグをシリル基からアルキル基に変更する動機づけはない。
 特に、医薬品製造における品質管理(GMP)上、医薬品原料の保存安定性は重要である。本開示に係る式(1)で表される化合物、及び式(1)で表される化合物により保護された化合物は、保存安定性に優れるので、医薬品製造に特に好適に用いることができる。
 以上のことから本開示に係る式(1)で表される化合物により保護された化合物は、脱保護速度と経時安定性を両立できる。なお、本明細書において、脱保護速度が速いことを脱保護速度に優れるという。
 更にまた、副反応が生じ易い非天然アミノ酸を含む非天然ペプチドのような難合成ペプチドでも、副反応を抑制し高純度で合成できる。
 本開示の製造方法では、弱酸条件でもC末端保護基の脱保護が可能であり、得られるペプチドの副反応を抑制することが可能であり、酸に弱いペプチド、例えば、N-アルキルアミド構造を有するペプチド合成に好適である。
 以下、本開示に係るペプチド化合物の製造方法について、詳細に説明する。
 本開示に係るペプチド化合物の製造方法において、式(1)で表される化合物は、保護基の形成だけでなく、ペプチド化合物の変性、水又は有機溶媒等への溶解度の調整、結晶化性の改良、多量体化等に用いることができる。
 中でも、式(1)で表される化合物は、保護基の形成に用いることが好ましく、アミノ酸化合物又はペプチド化合物におけるC末端保護基の形成に用いることがより好ましい。
<式(1)で表される縮合多環芳香族炭化水素化合物>
 本開示に係る式(1)で表される化合物について、以下、詳述する。
〔Y
 式(1)におけるYは、-OR17、-NHR18、-SH、又は、ハロゲン原子を表し、上記R17は、水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、上記R18は、水素原子、又は、直鎖若しくは分岐鎖の炭素数1~6のアルキル基、又は、アリールアルキル基又はヘテロアリールアルキル基を表す。
 ハロゲン原子としては、反応収率及び保管安定性の観点から、臭素原子、塩素原子が好ましい。
 R17における活性エステル型カルボニル基としては、カルボニルオキシコハク酸イミド、アルコキシカルボニル基、アリールオキシカルボニル基、アラルキルオキシカルボニル基等が挙げられ、脱保護速度及び経時安定性の観点から、カルボニルオキシコハク酸イミド等が好ましく挙げられる。
 R17における活性エステル型スルホニル基としては、アルキルスルホニル基、アリールスルホニル基等が挙げられ、脱保護速度及び経時安定性の観点から、炭素数1~6のアルキルスルホニル基、p-トルエンスルホニル基等が好ましく挙げられる。
 中でもR17は水素原子又は活性エステル型保護基が好ましく、水素原子がより好ましい。
 R18におけるアルキル基としては、炭素数1~30のアルキル基が挙げられ、炭素数1~10のアルキル基であることが好ましく、炭素数1~6のアルキル基であることがより好ましい。中でも、メチル基、及び、エチル基がより好ましく挙げられる。
18におけるアリールアルキル基としては、炭素数7~30のアリールアルキル基が挙げられ、炭素数7~20のアリールアルキル基であることが好ましく、炭素数7~16のアラルキル基(例えば、炭素数6~10のアリール基に炭素数1~6のアルキレン基が結合した基)がより好ましく挙げられる。好適な具体例としては、ベンジル基、1-フェニルエチル基、2-フェニルエチル基、1-フェニルプロピル基、ナフチルメチル基、1-ナフチルエチル基、1-ナフチルプロピル基等が挙げられ、ベンジル基がより好ましく挙げられる。
 R18におけるヘテロアリールアルキル基としては、炭素数5~30のヘテロアリールアルキル基が挙げられ、炭素数5~20のヘテロアリールアルキル基であることが好ましく、炭素数5~16のヘテロアリールアルキル基(例えば、炭素数4~10のヘテロアリール基に炭素数1~6のアルキレン基が結合した基)がより好ましく挙げられる。好適な具体例としては、インドリルメチル基、フルフリル基、ベンゾフラニルメチル基、チオフェニルメチル基、ベンゾチオフェニルメチル基等が挙げられる。
 中でも、脱保護速度及び経時安定性の観点から、R18は、水素原子、炭素数1~6のアルキル基、炭素数7~16のアリールアルキル基又はFmoc基であることが好ましく、水素原子、メチル基、エチル基、ベンジル基又はFmoc基であることがより好ましく、水素原子、又はFmoc基であることが更に好ましい。R18がFmoc基である場合、後述するDBU等の塩基でFmoc基を脱保護することで、Yが-NHになることから、R18がFmoc基である場合、及び、R18が水素原子である場合とは等価であると見なすことができる。
 脱保護速度及び経時安定性の観点から、Yとしては、-OR17(R17は水素原子又は活性エステル型保護基である)、-NHR18(R18は水素原子又は直鎖若しくは分岐鎖の炭素数1~6のアルキル基、アラルキル基、又は、Fmoc基である)、又は、ハロゲン原子であることが好ましく、-OR17(R17は水素原子又は活性エステル型保護基である)、又は、-NHR18(R18は水素原子又は直鎖若しくは分岐鎖の炭素数1~6のアルキル基、又はFmoc基である)であることがより好ましく、-NHR18(R18は水素原子又は直鎖若しくは分岐鎖の炭素数1~6のアルキル基)であることが更に好ましい。
〔Y
 Yは、-N(R110)-、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR10610-を表す。
 R110はRであることが好ましい。Rとしては、後述するRと同義であり、好ましい態様も同様である。
 R100~R107におけるアルキル基としては、炭素数1~5のアルキル基であることが好ましく、炭素数1~3の炭素数のアルキル基であることがより好ましく、炭素数1又は2のアルキル基であることが更に好ましい。
 -CR100=CR101-におけるR100及びR101としては、それぞれ同一の基であることが好ましく、炭素数1~5のアルキル基又は水素原子であることがより好ましく、炭素数1~3の炭素数のアルキル基又は水素原子であることが更に好ましく、炭素数1若しくは2のアルキル基又は水素原子であることが特に好ましく、R100及びR101の両方が水素原子であることが最も好ましい。
 具体例としては、-CH=CH-、-C(CH)=C(CH)-等が挙げられる。
 -CR102103-CR104105-におけるR102~R105としては、それぞれ異なっていてもよいが、R102及びR104とR103及びR105とがそれぞれ同一の基であることが好ましい。
 R102及びR104としては、炭素数1~5のアルキル基又は水素原子であることがより好ましく、炭素数1~3の炭素数のアルキル基又は水素原子であることが更に好ましく、炭素数1若しくは2のアルキル基又は水素原子であることが特に好ましく、両方が水素原子であることが最も好ましい。
 R103及びR105としては、炭素数1~5のアルキル基又は水素原子であることがより好ましく、炭素数1~3の炭素数のアルキル基又は水素原子であることが更に好ましく、炭素数1若しくは2のアルキル基又は水素原子であることが特に好ましく、両方が水素原子であることが最も好ましい。
 具体例としては、-CH-CH-等が挙げられる。
 -CR106107-におけるR106107としては、それぞれ同一の基であることが好ましく、炭素数1~5のアルキル基であることがより好ましく、炭素数1~3の炭素数のアルキル基であることが更に好ましく、炭素数1若しくは2のアルキル基であることが特に好ましい。
 具体例としては、-CH-、-C(CH-、-C(C-等が挙げられる。
 脱保護速度及び経時安定性の観点から、Yとしては、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR10610-が好ましく、酸素原子(-O-)、又は、硫黄原子(-S-)であることがより好ましく、酸素原子(-O-)であることが更に好ましい。
〔R~R
 R~Rは、それぞれ独立に、R、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、R~R及びYのうち少なくとも1つはRを有し、上記Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表す。化合物中に、Rが1つのみ存在する場合、上記脂肪族炭化水素基の炭素数が、12以上であり、化合物中に、Rが複数存在する場合、その少なくとも1つの脂肪族炭化水素基の炭素数が、12以上である。但し、Rはシリル基及びシリルオキシ構造を有する炭化水素基を有さない。R~Rのうち1つのみがRであることが好ましく、R又はRだけがRであることがより好ましく、R~R及びR~Rはそれぞれ独立に、水素原子、ハロゲン原子、アルキル基又はアルコキシ基であり、R又はRはRであることが更に好ましい。
 R~RとしてはR、水素原子、フッ素原子、塩素原子、メチル基又はアルコキシ基が好ましく、R、水素原子、フッ素原子又は塩素原子がより好ましい。
 本明細書中、Rにおける「脂肪族炭化水素基を有する有機基」とは、その分子構造中に脂肪族炭化水素基を有する一価(環Aに結合する結合手が1つ)の有機基である。
 「脂肪族炭化水素基を有する有機基」における「脂肪族炭化水素基」とは、直鎖、分岐状、若しくは環状の飽和又は不飽和の脂肪族炭化水素基であり、炭素数5以上の脂肪族炭化水素基が好ましく、炭素数5~60の脂肪族炭化水素基がより好ましく、炭素数5~30の脂肪族炭化水素基が更に好ましく、炭素数10~30の脂肪族炭化水素基が特に好ましい。
 「脂肪族炭化水素基を有する有機基」における「脂肪族炭化水素基」の部位は、特に限定されず、末端に存在しても(1価基)、それ以外の部位に存在してもよい(例えば二価基)。
 「脂肪族炭化水素基」としては、アルキル基、シクロアルキル基、アルケニル基、アルキニル基等が挙げられ、具体的には、ペンチル基、ヘキシル基、オクチル基、デシル基、ヘキサデシル基、オクタデシル基、イコシル基、テトラコシル基、ラウリル基、トリデシル基、ミリスチル基、オレイル基、イソステアリル基等の一価の基、及び、それらから誘導される二価の基(上記一価の基から水素原子を1つ除いた二価の基)や、各種ステロイド基から水酸基などを除外した基などが挙げられる。
 「アルキル基」としては、例えば、炭素数5~30のアルキル基等が好ましく、例えば、ペンチル基、ヘキシル基、オクチル基、デシル基、ヘキサデシル基、オクタデシル基、イコシル基、テトラコシル基、ラウリル基、トリデシル基、ミリスチル基、イソステアリル基等が挙げられ、オクタデシル基、イコシル基、ドコシル基、又は、テトラコシル基が好ましく、イコシル基、ドコシル基、又は、テトラコシル基がより好ましい。
 「シクロアルキル基」としては、例えば、炭素数5~30のシクロアルキル基等が好ましく、例えば、シクロペンチル基、シクロヘキシル基、イソボルニル基、トリシクロデカニル基等が挙げられる。また、これらが繰り返し連結してもよく、2環以上の縮合構造であってもよい。
 「アルケニル基」としては、例えば、炭素数5~30のアルケニル基等が好ましく、例えば、ビニル基、1-プロペニル基、アリル基、イソプロペニル基、ブテニル基、イソブテニル基等が挙げられる。
 「アルキニル基」としては、例えば、炭素数5~30のアルキニル基等が好ましく、例えば、4-ペンチニル基、5-ヘキセニル基等が挙げられる。
 「ステロイド基」としては、例えば、コレストロール、エストラジオール等が好ましい。
 「脂肪族炭化水素基を有する有機基」中の「脂肪族炭化水素基」以外の部位は任意に設定することができる。例えば-O-、-S-、-COO-、-OCONH-、-CONH-、「脂肪族炭化水素基」以外の炭化水素基(一価の基又は二価の基)等の部位を有していてもよい。
 「脂肪族炭化水素基」以外の「炭化水素基」としては、例えば、芳香族炭化水素基等が挙げられ、具体的には、例えば、アリール基等の一価の基、及び、それらから誘導される二価の基が用いられる。
 また、上記脂肪族炭化水素基、上記脂肪族炭化水素基以外の炭化水素基は、ハロゲン原子、オキソ基等から選択される置換基で置換されていてもよい。
 「脂肪族炭化水素基を有する有機基」のR~Rの結合(置換)は、上記R中に存在する「脂肪族炭化水素基」又は上記「炭化水素基」を介するもの、すなわち、直接炭素-炭素結合で結合しているものであっても、上記R中に存在する-O-、-S-、-COO-、―OCONH-、-CONH-等の部位を介するものであってもよい。好ましくは、化合物の合成のし易さの点から、R~Rの結合(置換)は、-O-、-S-、-COO-又は-CONH-を介するものであることが好ましく、-O-を介するものであることが特に好ましい。
 「脂肪族炭化水素基を有する有機基」のYにおけるNへの結合(置換)は、化合物合成のし易さの観点から、上記R中に存在する「炭化水素基」を介するもの、すなわち、直接炭素-窒素結合で結合しているものが好ましい。
 本開示に係る式(1)で表される化合物において、Rが1つのみ存在する場合は、Rが有する全ての脂肪族炭化水素基の合計炭素数が、Rが複数存在する場合は、全てのRが有する全ての脂肪族炭化水素基の合計炭素数が、脱保護速度及び経時安定性の観点から、18以上であることが好ましく、24~200であることがより好ましく、32~100であることが更に好ましく、34~80であることが特に好ましく、36~80であることが最も好ましい。
 また、本開示に係る式(1)で表される化合物は、少なくとも1つのRにおいて炭素数12以上の脂肪族炭化水素基を少なくとも1つ有する化合物であり、少なくとも1つのRにおいて、炭素数12~100の脂肪族炭化水素基を少なくとも1つ有する化合物であることが好ましく、炭素数18~40の脂肪族炭化水素基を少なくとも1つ有する化合物であることがより好ましく、炭素数20~36の脂肪族炭化水素基を少なくとも1つ有する化合物であることが更に好ましい。
 更に上記脂肪族炭化水素基は、経時安定性の観点から、アルキル基であることが好ましく、直鎖アルキル基であることがより好ましい。
 また、1つのRの炭素数はそれぞれ独立に、12~200であることが好ましく、18~150であることがより好ましく、18~100であることが更に好ましく、20~80であることが特に好ましい。
 上記式(1)で表される化合物は、脱保護速度及び経時安定性の観点から、R~Rの少なくとも1つが、Rであることが好ましく、R~Rの少なくとも1つが、Rであることがより好ましく、R、R、R、及び、Rからなる群より選ばれる少なくとも1つが、Rであることが更に好ましく、R及びRのいずれか一方が、Rであることが特に好ましく、R又はRが、Rであることが最も好ましい。
 式(1)において、少なくとも1つのRが、脱保護速度及び経時安定性の観点から、下記式(f1)又は、式(a1)、式(b1)又は式(e1)のいずれかで表される基であることが好ましく、下記式(f1)又は式(a1)で表される基であることがより好ましく、下記式(f1)で表される基であることが特に好ましい。
Figure JPOXMLDOC01-appb-C000020
 式(f1)中、波線部分は他の構成との結合位置を表し、m9は1~3の整数を表し、Xはそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、Rはそれぞれ独立に、二価の脂肪族炭化水素基を表し、Arは、(m10+1)価の芳香族基、又は、(m10+1)価の複素芳香族基を表し、m10は、1~3の整数を表し、X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R10はそれぞれ独立に、一価の脂肪族炭化水素基を表し、R10の少なくとも1つは、炭素数5以上の一価の脂肪族炭化水素基である。
Figure JPOXMLDOC01-appb-C000021
 式(a1)中、波線部分は他の構成との結合位置を表し、m20は、1~10の整数を表し、X20はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R20の少なくとも1つは、炭素数5以上の二価の脂肪族炭化水素基である。
Figure JPOXMLDOC01-appb-C000022
 式(b1)中、波線部分は他の構成との結合位置を表し、mbは、1又は2を表し、b1~b4はそれぞれ独立に、0~2の整数を表し、Xb1~Xb4はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCONH-、又は、-CONH-を表し、Rb2及びRb4はそれぞれ独立に、水素原子、メチル基、又は、炭素数5以上の脂肪族炭化水素基を表し、Rb3は、炭素数5以上の脂肪族炭化水素基を表す。
Figure JPOXMLDOC01-appb-C000023
 式(e1)中、波線部分は他の構成との結合位置を表し、Xe1は、単結合、-O-、-S-、-NHCO-、又は、-CONH-を表し、meは0~15の整数を表し、e1は0~11の整数を表し、e2は0~5の整数を表し、Xe2はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCONH-、-NHCO-、又は、-CONH-を表し、Re2はそれぞれ独立に、水素原子、メチル基、炭素数5以上の脂肪族炭化水素基を有する有機基を表す。
 式(f1)におけるm9は、1又は2であることが好ましく、1であることがより好ましい。
 式(f1)におけるX及びX10はそれぞれ独立に、-O-、-S-、-COO-、-OCONH-、又は、-CONH-であることが好ましく、-O-であることがより好ましい。
 式(f1)におけるRはそれぞれ独立に、炭素数1~10のアルキレン基であることが好ましく、炭素数1~4のアルキレン基であることがより好ましく、メチレン基であることが特に好ましい。
 式(f1)におけるR10はそれぞれ独立に、炭素数5~60の一価の脂肪族炭化水素基であることが好ましく、炭素数12~50の一価の脂肪族炭化水素基がより好ましく、炭素数18~40の一価の脂肪族炭化水素基が更に好ましく、炭素数20~32の一価の脂肪族炭化水素基であることが特に好ましい。また、R10はそれぞれ独立に、直鎖アルキル基、又は、分岐アルキル基であることが好ましく、直鎖アルキル基であることがより好ましい。
 式(f1)におけるm10は、2又は3であることが好ましく、2であることがより好ましい。
 式(f1)におけるArは、(m10+1)価の芳香族基であることが好ましく、ベンゼンから(m10+1)個の水素原子を除いた基、又は、ナフタレンから(m10+1)個の水素原子を除いた基であることがより好ましく、ベンゼンから(m10+1)個の水素原子を除いた基であることが特に好ましい。
 また、上記式(f1)で表される基は、脱保護速度及び経時安定性の観点から、下記式(f2)で表される基であることが好ましい。
Figure JPOXMLDOC01-appb-C000024
 式(f2)中、波線部分は他の構成との結合位置を表し、m10は、1~3の整数を表し、m11は、1~3の整数を表し、X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R10はそれぞれ独立に、炭素数5以上の一価の脂肪族炭化水素基を表す。
 式(f2)におけるm10、X10及びR10はそれぞれ、式(f1)におけるm10、X10及びR10と同義であり、好ましい態様も同様である。
 式(f2)におけるm11は、1又は2であることが好ましく、1であることがより好ましい。
 式(a1)におけるm20は、1又は2であることが好ましく、1であることがより好ましい。
 式(a1)におけるX20はそれぞれ独立に、-O-、-S-、-COO-、-OCONH-、又は、-CONH-であることが好ましく、-O-であることがより好ましい。
 式(a1)におけるR20は、炭素数5以上の二価の脂肪族炭化水素基であることが好ましく、炭素数5~60の二価の脂肪族炭化水素基であることがより好ましく、炭素数8~40の二価の脂肪族炭化水素基であることが更に好ましく、炭素数12~32の二価の脂肪族炭化水素基であることが特に好ましい。また、R20は、直鎖アルキレン基であることが好ましい。
 式(b1)におけるmbは、1であることが好ましい。
 式(b1)におけるb1~b4はそれぞれ独立に、1又は2であることが好ましく、1であることがより好ましい。
 式(b1)におけるXb1~Xb4はそれぞれ独立に、-O-、-S-、-COO-、-OCONH-、又は、-CONH-であることが好ましく、-O-であることがより好ましい。
 式(b1)におけるRb2及びRb4はそれぞれ独立に、水素原子、メチル基、又は、炭素数5~60の脂肪族炭化水素基であることが好ましく、水素原子、メチル基、又は、炭素数8~40のアルキル基であることが好ましく、水素原子、メチル基、又は、炭素数12~32のアルキル基であることが特に好ましい。
  式(b1)におけるRb3は、炭素数5~60の、一価の脂肪族炭化水素基であることが好ましく、炭素数5~60の一価の脂肪族炭化水素基であることがより好ましく、炭素数8~40の一価の脂肪族炭化水素基であることが更に好ましく、炭素数12~32の一価の脂肪族炭化水素基であることが特に好ましい。また、Rb3は、直鎖アルキル基であることが好ましい。
 上記式(1)で表される化合物は、脱保護速度及び経時安定性の観点から、下記式(10)で表される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000025
 式(10)中、Yは、-OR17、-NHR18、-SH、又は、ハロゲン原子を表し、上記R17は、水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、上記R18は、水素原子、又は、直鎖若しくは分岐鎖の炭素数1~6のアルキル基、又は、アリールアルキル基、ヘテロアリールアルキル基、又は、Fmoc基を表し、
 Yは、-N(R)-、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR106107-を表し、上記R100~R107はそれぞれ独立に、水素原子又はアルキル基を表し、Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rの少なくとも1つの脂肪族炭化水素基の炭素数が、12以上であり、但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さず、n10及びn11はそれぞれ独立に、0~4の整数を表し、n10及びn11の両方が0になることはない。
 式(10)中、Y、及び、Rはそれぞれ、式(1)におけるY、及び、Rと同義であり、好ましい態様も同様である。
 式(10)におけるn10及びn11はそれぞれ独立に、0~2の整数であることが好ましく、n10及びn11のいずれか一方が0であり、他方が1であることがより好ましい。
 脱保護速度及び経時安定性の観点から、Rは、縮合多環の2位、3位、4位、5位、6位及び7位のいずれかに結合することが好ましく、縮合多環の2位、3位、6位及び7位のいずれかに結合することがより好ましく、縮合多環の3位、及び、6位のいずれかに結合することが更に好ましい。
 式(10)で表される化合物は、脱保護速度及び経時安定性の観点から、式(100)又は式(200)で表される化合物であることが好ましく、式(100)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000026
 式(100)又は式(200)中、Yは、-OH、又は、-NHR18、を表し、R18は、水素原子、又は、直鎖若しくは分岐鎖の炭素数1~6のアルキル基、又は、アリールアルキル基、ヘテロアリールアルキル基、又は、Fmoc基を表し、Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rの少なくとも1つの脂肪族炭化水素基の炭素数が、12以上であり、但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さず、n100及びn200はそれぞれ独立に、1~4の整数を表す。
 式(100)及び式(200)中のRは、式(1)におけるRと同義であり、好ましい態様も同様である。式(100)及び式(200)中のYにおけるR18は、式(1)中のYにおけるR18と同義であり、好ましい態様も同様である。
 脱保護速度及び経時安定性の観点から、Rは、縮合多環の2位、3位、及び、4位のいずれかに結合することが好ましく、縮合多環の2位、及び、3位のいずれかに結合することがより好ましく、縮合多環の3位に結合することが更に好ましい。
 n100及びn200は、1~3の整数であることが好ましく、1又は2であることが好ましく、1であることがより好ましい。
 式(10)、式(100)及び式(200)におけるRは、脱保護速度及び経時安定性の観点から、上記式(f1)、式(a1)、式(b1)又は式(e1)のいずれかで表される基であることが好ましく、上記式(f1)又は式(a1)のいずれかで表される基であることがより好ましく、上記式(f1)で表される基であることが更に好ましく、上記式(f2)で表される基であることが特に好ましい。
 式(10)、式(100)及び式(200)におけるYにおけるR18としては、脱保護速度及び経時安定性の観点から、水素原子、炭素数1~6のアルキル基、炭素数7~16のアリールアルキル基又はFmoc基であることが好ましく、水素原子、メチル基、エチル基、ベンジル基又はFmoc基であることがより好ましく、水素原子、又はFmoc基であることが更に好ましい。
 式(1)で表される化合物が、式(100)で表される化合物である場合、脱保護速度及び経時安定性の観点から、Rは、縮合多環の3位に結合し、Yは、-NHR18(好ましくは水素原子、炭素数1~6のアルキル基、炭素数7~16のアリールアルキル基又はFmoc基、より好ましくは水素原子、メチル基、エチル基、ベンジル基又はFmoc基、更に好ましくは水素原子、又はFmoc基である)を表し、Rが、上記式(f1)(好ましくは、(f2)で表される基)であることが好ましい。
 式(f1)中、m9、X、X10、R、R10、m10及びArは、上述の式(f1)中、m9、X、X10、R、R10、m10及びArと同義であり、好ましい態様も同様である。また、式(f2)におけるm10、X10及びR10はそれぞれ、式(f1)におけるm10、X10及びR10と同義であり、好ましい態様も同様である。
 式(1)で表される化合物の分子量は、特に制限はないが、脱保護速度、晶析性、溶剤溶解性、及び、収率の観点から、340~3,000であることが好ましく、400~2,000であることがより好ましく、500~1,500であることが更に好ましく、800~1,300であることが特に好ましい。また、分子量が3,000以下であると、目的物に占める式(1)の割合が適度であり、式(1)を脱保護して得られる化合物の割合が少なくならないため、生産性に優れる。
 式(1)で表される化合物の具体例としては、下記に示す化合物が好ましく挙げられるが、これらに限定されないことは言うまでもない。なお、Meはメチル基を表し、Etはエチル基を表す。
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
<式(1)で表される化合物の製造方法>
 本開示に係る式(1)で表される化合物の製造方法としては、特に限定されないが、公知の方法を参照して製造することができる。
 式(1)で表される化合物の製造に用いる原料化合物は、特に述べない限り、市販されているものを用いてもよいし、自体公知の方法、又は、これらに準ずる方法に従って製造することもできる。
 また、必要に応じ、製造した式(1)で表される化合物を公知の精製方法により、精製してもよい。例えば、再結晶、カラムクロマトグラフィー等によって単離及び精製する方法、及び、溶液温度を変化させる手段や溶液組成を変化させる手段等によって再沈殿により精製する方法等を行うことができる。
 本開示に係る式(1)で表される化合物の合成方法は、特に限定されるものではないが、例えば、3-ヒドロキシキサントン等を出発原料として、以下のスキームに従って合成することができる。また、国際公開第2018/021233号に記載の合成方法を参考に合成することもできる。
Figure JPOXMLDOC01-appb-C000031
 R1r~R8rはそれぞれ独立に、R、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、R1r~R8r及びY2のうち少なくとも1つはRを表す。X100はCl、Br、Iを表す。R180は水素原子、アルキル基、又はFmoc基を表す。
(ペプチド化合物の製造方法)
 本開示に係るペプチド化合物の製造方法において、上記式(1)で表される化合物を用いる工程が、上記式(1)で表される化合物によりアミノ酸化合物又はペプチド化合物のカルボキシ基又はアミド基を保護するC末端保護工程であることが好ましい。
 また、本開示に係るペプチド化合物の製造方法は、ペプチド化合物の合成容易性、及び、収率の観点から、上記式(1)で表される化合物によりアミノ酸化合物又はペプチド化合物のカルボキシ基又はアミド基を保護するC末端保護工程に加え、上記C末端保護工程で得られたN末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物のN末端を脱保護するN末端脱保護工程、及び、上記N末端脱保護工程で得られたC末端保護アミノ酸化合物又はC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させるペプチド鎖延長工程を更に含むことがより好ましく、
 上記ペプチド鎖延長工程で得られたN末端保護C末端保護ペプチド化合物を沈殿させる沈殿工程を更に含むことが更に好ましく、
 上記沈殿工程の後に、得られたN末端保護C末端保護ペプチド化合物のN末端を脱保護する工程、得られたC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させる工程、及び、得られたN末端保護C末端保護ペプチド化合物を沈殿する工程をこの順で1回以上更に含むことが特に好ましい。
 また、本開示に係るペプチド化合物の製造方法は、C末端保護基を脱保護するC末端脱保護工程を更に含むことが好ましい。
 更に、本開示に係るペプチド化合物の製造方法は、上記C末端保護工程の前に、上記式(1)で表される化合物を溶媒に溶解する溶解工程を更に含むことが好ましい。
 以下、上述した各工程等について詳細に説明する。
<溶解工程>
 本開示に係るペプチド化合物の製造方法は、上記C末端保護工程の前に、上記式(1)で表される化合物を溶媒に溶解する溶解工程を含むことが好ましい。
 溶媒としては、一般的な有機溶媒を反応に用いることができるが、上記溶媒における溶解度が高い程、優れた反応性が期待できるため、式(1)で表される縮合多環芳香族炭化水素化合物の溶解度の高い溶媒を選択することが好ましい。具体的にはクロロホルム、ジクロロメタン等のハロゲン化炭化水素類;1,4-ジオキサン、テトラヒドロフラン、シクロペンチルメチルエーテル等の非極性有機溶媒等が挙げられる。これらの溶媒は2種以上を適宜の割合で混合して用いてもよい。また、上記ハロゲン化炭素類や非極性有機溶媒に、ベンゼン、トルエン、キシレン等の芳香族炭化水素類;アセトニトリル、プロピオニトリル等のニトリル類;アセトン、2-ブタノン等のケトン類;N,N-ジメチルホルムアミド、N-メチルピロリドン等のアミド類;ジメチルスルホキシド等のスルホキシド類を、式(1)で表される化合物が溶解し得る限り、適宜の割合で混合して用いてもよい。
 また、Organic Process Research & Development、2017、21、3、365-369に記載の溶剤を使用してもよい。
<C末端保護工程>
 本開示に係るペプチド化合物の製造方法は、上記式(1)で表される化合物によりアミノ酸化合物又はペプチド化合物のカルボキシ基又はアミド基を保護するC末端保護工程を含むことが好ましい。
 上記C末端保護工程に用いられるアミノ酸化合物、又は、ペプチド化合物としては、特に制限はなく、公知のものを用いることができるが、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物であることが好ましく、Fmoc保護アミノ酸化合物、又は、Fmoc保護ペプチド化合物であることがより好ましい。
 また、上記C末端保護工程に用いられるアミノ酸化合物、又は、ペプチド化合物におけるC末端部分以外のヒドロキシ基、アミノ基、カルボニル基、アミド基、イミダゾール基、インドール基、グアニジル基、メルカプト基等は後述する保護基等の公知の保護基により保護されていることが好ましい。
 反応基質であるアミノ酸化合物又はペプチド化合物の使用量は、上記式(1)で表される化合物1モル当量に対し、1モル当量~10モル当量であることが好ましく、1モル当量~5モル当量であることがより好ましく、1モル当量~2モル当量であることが更に好ましく、1~1.5であることが特に好ましい。
 式(1)におけるYが-OHである上記式(1)で表される化合物を用いる場合は、反応に影響を及ぼさない溶媒中、縮合添加剤(縮合活性化剤)存在下、縮合剤を添加するか、酸触媒中で反応させることが好ましく挙げられる。
 式(1)におけるYが-NHR18である上記式(1)で表される化合物を用いる場合は、縮合添加剤(縮合活性化剤)存在下、縮合剤を添加するか、縮合剤と塩基と反応させることが好ましく挙げられる。
 縮合添加剤の使用量は、上記式(1)で表される縮合多環芳香族炭化水素化合物1モル当量に対して、0.05モル当量~1.5モル当量であることが好ましい。
 縮合剤としては、ペプチド合成において一般的に用いられる縮合剤が、本開示においても制限なく用いることができ、これに限定されないが、例えば、4-(4,6-ジメトキシ-1,3,5-トリアジン-2-イル)-4-メチルモルホニウムクロリド(DMT-MM)、O-(ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU)、O-(7-アザベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HATU)、O-(6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムヘキサフルオロホスフェート(HBTU(6-Cl))、O-(ベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート(TBTU)、O-(6-クロロベンゾトリアゾール-1-イル)-1,1,3,3-テトラメチルウロニウムテトラフルオロボレート(TCTU)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロリン酸塩(COMU)、ジシクロヘキシルカルボジイミド(DCC)、ジイソプロピルカルボジイミド(DIC)、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)、その塩酸塩(EDC・HCl)、及び、ヘキサフルオロリン酸(ベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウム(PyBop)等を挙げることができる。
 中でも、DIC、EDC、EDC・HCl、DMT-MM、HBTU、HATU、又は、COMUが好ましい。
 縮合剤の使用量は、上記式(1)で表される化合物1モル当量に対して、1モル当量~10モル当量であることが好ましく、1モル当量~5モル当量であることがより好ましい。
 縮合反応に用いる酸触媒としては、ペプチド合成において一般的に用いられる酸触媒を制限なく用いることができ、例えば、メタンスルホン酸、トリフルオロメタンスルホン酸、p-トルエンスルホン酸等を挙げることができる。
 中でもメタンスルホン酸、p-トルエンスルホン酸が好ましい。
 酸触媒の使用量は、上記式(1)で表される化合物1モル当量に対して、0モル当量を超え4.0モル当量であることが好ましく、0.05モル当量~1.5モル当量であることがより好ましく、0.1モル当量~0.3モル当量であることが更に好ましい。
 上記C末端保護工程において、反応を促進し、ラセミ化などの副反応を抑制するため、
活性化剤を添加することが好ましい。
 本開示における活性化剤とは、縮合剤との共存化で、アミノ酸を、対応する活性エステル、対称酸無水物などに導いて、ペプチド結合(アミド結合)を形成させやすくする試薬である。
 活性化剤としては、ペプチド合成において一般的に用いられる活性化剤を制限なく用いることができ、例えば、4-ジメチルアミノピリジン、N-メチルイミダゾール、ボロン酸誘導体、1-ヒドロキシベンゾトリアゾール(HOBt)、エチル 1-ヒドロキシトリアゾール-4-カルボキシレート(HOCt)、1-ヒドロキシ-7-アザベンゾトリアゾール(HOAt)、3-ヒドロキシ-1,2,3-ベンゾトリアゾジン-4(3H)-オン(HOOBt)、N-ヒドロキシスクシンイミド(HOSu)、N-ヒドロキシフタルイミド(HOPht)、N-ヒドロキシ-5-ノルボルネン-2,3-ジカルボキシイミド(HONb)、ペンタフルオロフェノール、エチル(ヒドロキシイミノ)シアノアセタート(Oxyma)等を挙げることができる。中でも、4-ジメチルアミノピリジン、HOBt、HOCt、HOAt、HOOBt、HOSu、HONb、又は、Oxymaが好ましい。
 活性化剤の使用量は、アミノ酸化合物又はペプチド化合物に対して、0モル当量を超え4.0モル当量であることが好ましく、0.1モル当量~1.5モル当量であることがより好ましい。
 塩基としては、ペプチド合成において一般的に用いられる塩基を制限なく用いることができ、例えば、ジイソプロピルエチルアミンなどの第三級アミン等が挙げられる。
 溶媒としては、上記溶解工程において上述した溶剤を好適に用いることができる。
 反応温度は、特に制限はないが、-10℃~80℃であることが好ましく、0℃~40℃であることがより好ましい。反応時間は、特に制限はないが、1時間~30時間であることが好ましい。
 反応の進行の確認は、一般的な液相有機合成反応と同様の方法を適用できる。すなわち、薄層シリカゲルクロマトグラフィー、高速液体クロマトグラフィー、NMR等を用いて反応を追跡することができる。
 また、上記C末端保護工程により得られたN末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物は、精製してもよい。
 例えば、得られたN末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物を溶媒(反応溶媒)に溶解させ、所望の有機合成反応を行った後に得られる生成物を単離する。そして、N末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物が溶解している溶媒を変化させ(例、溶媒組成の変更、溶媒の種類の変更)、再沈殿させる方法が好ましい。
 具体的には、N末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物が溶解するような条件下にて反応を行う。反応後、溶媒を留去後、溶媒置換するか、溶媒を留去せずに、反応系へ極性溶媒を添加することによって、凝集物を沈殿化し不純物を淘汰する。
 置換溶媒又は極性溶媒としては、メタノール、アセトニトリル、水等の極性有機溶媒を単独又は混合して用いる。すなわち、N末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物が溶解するような条件下にて反応を行い、反応後、溶媒置換としては、例えば溶解にはハロゲン化溶媒、THF等を用いて、沈殿化にはメタノール、アセトニトリルや水等の極性有機溶媒を用いる。
<N末端脱保護工程>
 本開示に係るペプチド化合物の製造方法は、上記C末端保護工程で得られたN末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物のN末端を脱保護するN末端脱保護工程を含むことが好ましい。
 N末端の保護基としては、ペプチド化学等の技術分野で一般的に用いられる後述のアミノ基の保護基が使用可能であるが、本開示においては、Boc基、ベンジルオキシカルボニル基(以下、Cbz基、又はZ基ともいう。)、又は、Fmoc基が好適に用いられる。
 脱保護条件は、当該一時保護基の種類により適宜選択されるが、上記式(1)で表される化合物由来の保護基の除去とは異なる条件により脱保護できる基が好ましい。例えば、Fmoc基の場合は、塩基で処理することにより行われ、Boc基の場合は、酸で処理することにより行われる。当該反応は、反応に影響を及ぼさない溶媒中で行われる。
 塩基としては、ジメチルアミン、ジエチルアミンなどの第二級アミンや、1,8-ジアザビシクロ[5.4.0]-7-ウンデセン(DBU)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、1,5-ジアザビシクロ[4.3.0]-5-ノネン(DBN)などの求核性のない有機塩基等が挙げられる。
 溶媒としては、上記溶解工程において上述した溶剤を好適に用いることができる。
<ペプチド鎖延長工程>
 本開示に係るペプチド化合物の製造方法は、上記N末端脱保護工程で得られたC末端保護アミノ酸化合物又はC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させるペプチド鎖延長工程を含むことが好ましい。
 上記ペプチド鎖延長工程は、上述した縮合剤、縮合添加剤等を使用し、ペプチド化学の分野において一般的に用いられるペプチド合成条件下で好適に行われる。
 N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物としては、特に制限はなく、所望のものを用いることができるが、Fmoc保護アミノ酸化合物、又は、Fmoc保護ペプチド化合物を好適に用いることができる。
 また、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物におけるC末端部分以外のヒドロキシ基、アミノ基、カルボニル基、アミド基、イミダゾール基、インドール基、グアニジル基、メルカプト基等は後述する保護基等の公知の保護基により保護されていることが好ましい。
<沈殿工程>
 本開示に係るペプチド化合物の製造方法は、上記ペプチド鎖延長工程で得られたN末端保護C末端保護ペプチド化合物を沈殿させる沈殿工程を更に含むことが好ましい。
 沈殿工程は、上記C末端保護工程の精製(再沈殿)と同様にして行うことができる。
 具体的には、前段の反応後に反応溶媒を留去せずに、反応系へ極性溶媒を添加する。この場合、反応溶媒は非極性有機溶媒としてはTHFを用い、極性溶媒はアセトニトリルを用いる。非極性有機溶媒と極性溶媒との使用割合(体積基準)は、1:1~1:100が好ましく、1:3~1:50がより好ましく、1:5~1:20がさらに好ましい。この使用割合の場合、N末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物を効率的に沈殿させることができ、目的物を効率的に精製することができる。
<鎖延長>
 本開示に係るペプチド化合物の製造方法は、上記沈殿工程の後に、得られたN末端保護C末端保護ペプチド化合物のN末端を脱保護する工程、得られたC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させる工程、及び、得られたN末端保護C末端保護ペプチド化合物を沈殿する工程をこの順で1回以上更に含むことが好ましい。
 上記3工程を繰り返し行うことにより、得られるペプチド化合物の鎖延長を容易に行うことができる。
 上記3工程における各工程は、上述した対応する各工程と同様に行うことができる。
<C末端脱保護工程>
 本開示に係るペプチド化合物の製造方法は、C末端保護基を脱保護するC末端脱保護工程を更に含むことが好ましい。
 上記C末端脱保護工程において、所望のアミノ酸残基数を有するC末端保護ペプチド化合物における上記式(1)で表される化合物により形成されたC末端保護基を除去することによって、最終目的物であるペプチド化合物を得ることができる。
 C末端保護基の除去方法としては、酸性化合物を用いた脱保護方法が好ましく挙げられる。
 例えば、酸触媒を添加する方法や金属触媒を用いて水素添加する方法が挙げられる。酸触媒としては、トリフルオロ酢酸(TFA)、塩酸、トリフルオロエタノール(TFE)、ヘキサフルオロイソプロパノール(HFIP)、酢酸などが挙げられ、強酸で分解しないペプチドに対しては、TFAが好ましく、強酸で分解するペプチドに対しては、TFE、HFIP、又は、酢酸が好ましい。酸の濃度は、伸長するアミノ酸の側鎖保護基及び脱保護条件に応じ、適宜選択することができ、使用する溶媒の全質量に対し、0.01質量%~100質量%が挙げられる。
 TFAの濃度は、70質量%以下が好ましく、50質量%以下がより好ましく、30質量%以下が更に好ましく、10質量%以下が特に好ましい。
 TFAの濃度は、使用する溶媒の全体積に対し、10体積%以下が好ましく、5体積%以下がより好ましく、5体積%以下が更に好ましく、1体積%以下が特に好ましい。下限値は、0.01体積%が好ましく、0.1体積%がより好ましく、0.5体積%が更に好ましい。
 脱保護時間は、5時間以下が好ましく、3時間以下がより好ましく、1時間以下が更に好ましい。
 本開示においては、弱酸条件でもC末端保護基の脱保護が可能であり、得られるペプチドの副反応を抑制することが可能である。
 弱酸条件下でのC末端保護基の脱保護が好適なペプチド(すなわち、酸に弱いペプチド)としては、例えば、N-アルキルアミド構造を有するペプチドが挙げられる。
 得られるペプチドの副反応を抑制し、かつ、経時安定性の観点から、本開示に係るペプチド化合物の製造方法は、酸に弱いペプチド化合物の製造方法が好ましく、N-アルキルアミド構造を有するペプチド化合物の製造方法がより好ましい。
 本開示に係るペプチド化合物の製造方法により得られた最終目的物であるペプチド化合物は、ペプチド化学で常用される方法に従って、単離精製することができる。例えば、反応混合物を抽出洗浄、晶析、クロマトグラフィーなどによって、最終目的物であるペプチド化合物を単離精製することができる。
 本開示に係るペプチド化合物の製造方法により製造されるペプチドの種類は特に限定されないが、ペプチド化合物のアミノ酸残基数が、例えば、数十以下程度であることが好ましい。本開示に係るペプチド化合物の製造方法によって得られるペプチドは、既存の又は未知の合成ペプチドや天然ペプチドと同様に、様々な分野、例えばこれに限定されないが、医薬、食品、化粧品、電子材料、バイオセンサー等の分野に利用できる。
 本開示に係るペプチド化合物の製造方法は、次工程の反応に影響を及ぼさない範囲で上記沈殿工程を適宜省略することも可能である。
 本開示に係るペプチド化合物の製造方法に用いられるアミノ酸化合物、及び、ペプチド化合物がヒドロキシ基、アミノ基、カルボキシ基、カルボニル基、グアジニル基、メルカプト基等を有する場合、これらの基にペプチド化学等で一般的に用いられるような保護基が導入されていてもよく、反応後に必要に応じて保護基を除去することにより目的化合物を得ることができる。
 ヒドロキシ基の保護基としては、例えば、炭素数1~6のアルキル基、アリール基、トリチル基、炭素数7~10のアラルキル基、ホルミル基、炭素数1~6のアシル基、ベンゾイル基、炭素数7~10のアラルキル-カルボニル基、2-テトラヒドロピラニル基、2-テトラヒドロフラニル基、シリル基、炭素数2~6のアルケニル基等が挙げられる。これらの基は、ハロゲン原子、炭素数1~6のアルキル基、及び、ニトロ基よりなる群から選ばれる1個~3個の置換基で置換されていてもよい。
 アミノ基の保護基としては、例えば、ホルミル基、炭素数1~6のアシル基、炭素数1~6のアルコキシカルボニル基、ベンゾイル基、炭素数7~10のアラルキル-カルボニル基、炭素数7~14のアラルキルオキシカルボニル基、トリチル基、モノメトキシトリチル基、1-(4,4-Dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl基、フタロイル基、N,N-ジメチルアミノメチレン基、シリル基、炭素数2~6のアルケニル基等が挙げられる。これらの基は、ハロゲン原子、炭素数1~6のアルコキシ基、及び、ニトロ基よりなる群から選ばれる1個~3個の置換基で置換されていてもよい。
 カルボキシ基の保護基としては、例えば、上記ヒドロキシ基の保護基、トリチル基等が挙げられる。
 カルボニル基の保護基としては、例えば、環状アセタール(例、1,3-ジオキサン)、非環状アセタール(例、ジ(炭素数1~6のアルキル)アセタール)等が挙げられる。
 グアニジル基の保護基としては、例えば、2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル基、2,3,4,5,6-ペンタメチルベンゼンスルホニル基、トシル基、ニトロ基等が挙げられる。
 メルカプト基(スルフヒドリル基)の保護基としては、例えば、トリチル基、4-メチルベンジル基、アセチルアミノメチル基、t-ブチル基、t-ブチルチオ基等が挙げられる。
 これらの保護基の除去方法は、公知の方法、例えば、ProtectiveGroups in Organic Synthesis,John Wiley and Sons刊(1980)に記載の方法等に準じて行えばよい。例えば、酸、塩基、紫外光、ヒドラジン、フェニルヒドラジン、N-メチルジチオカルバミン酸ナトリウム、テトラブチルアンモニウムフルオリド、酢酸パラジウム、トリアルキルシリルハライド等を使用する方法、還元法等が用いられる。
(保護基形成用試薬)
 本開示に係る保護基形成用試薬は、上記式(1)で表される化合物を含む。本発明の他の一実施形態によれば、収率に優れる保護基形成用試薬を提供することができる。特に脱保護速度及び経時安定性に優れる保護基形成用試薬を提供することができる。
 本開示に係る保護基形成用試薬は、カルボキシ基又はアミド基の保護基形成用試薬であることが好ましく、アミノ酸化合物又はペプチド化合物のC末端保護基形成用試薬であることがより好ましい。
 本開示に係る保護基形成用試薬における式(1)で表される化合物の好ましい態様は、上述した本開示に係る式(1)で表される化合物の好ましい態様と同様である。
 本開示に係る保護基形成用試薬における式(1)で表される縮合多環芳香族炭化水素化合物の含有量は、特に制限はないが、保護基形成用試薬の全質量に対し、0.1質量%~100質量%であることが好ましく、1質量%~100質量%であることがより好ましく、3質量%~100質量%であることが更に好ましい。
 本開示に係る保護基形成用試薬は、式(1)で表される化合物以外の他の成分を含んでいてもよい。
(式(1a)で表される縮合多環化合物)
 本開示に係る化合物は、下記式(1a)で表される縮合多環化合物である。
Figure JPOXMLDOC01-appb-C000032
  式(1a)中、Yaは-ORa17、-NHRa18、-SH、又は、ハロゲン原子を表し、上記Ra17は水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、上記Ra18は水素原子又は炭素数10以下の直鎖若しくは分岐鎖のアルキル基、アリールアルキル基又はヘテロアリールアルキル基、又はFmoc基を表し、
 Yaは、-N(R110)-、-O-、-S-、-CRa100=CRa101-、-CRa102Ra103-CRa104Ra105)-、又は、-CRa106Ra107-を表し、上記R110はR又はアルキル基を表し、上記Ra100~Ra107はそれぞれ独立に、水素原子又はアルキル基を表し、
 Ra~Raはそれぞれ独立にR、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、
 Ra~Raの少なくとも1つはRを有し、Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rは、少なくとも1つの脂肪族炭化水素基の炭素数が、12以上であり、
 但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
 本開示に係る化合物である式(1a)で表される縮合多環化合物は、新規な化合物であり、ペプチド化合物の製造に好適に用いることができる。中でも、保護基形成用試薬として好適に用いることができ、カルボキシ基又はアミド基の保護基形成用試薬としてより好適に用いることができ、アミノ酸化合物又はペプチド化合物のC末端保護基形成用試薬として特に好適に用いることができる。
 式(1a)中、Ra17及びRa18は、式(1)中のR17及びR18と同義であり、好ましい態様も同様である。
 式(1a)におけるYaは、式(1)中にYと同義であり、好ましい態様も同様である。
 式(1a)におけるRは、式(1)中にRと同義であり、好ましい態様も同様である。
 本開示に係る化合物における式(1a)で表される縮合多環化合物は、Ra~Raの少なくとも1つはRを有すること以外は、上述した本開示に係るペプチド化合物の製造方法において上述した式(1)で表される化合物と同様であり、後述する好ましい態様以外の好ましい態様も同様である。
 上記式(1a)で表される縮合多環化合物は、Ra~Raの少なくとも1つはRを有する化合物であり、脱保護速度及び経時安定性の観点から、Ra及びRaの少なくとも1つはRを有する化合物であることが好ましく、Ra及びRaのいずれか1つはRを有する化合物であることがより好ましい。
 上記式(1a)で表される縮合多環化合物は、脱保護速度及び経時安定性の観点から、下記式(100a)又は式(200a)のいずれかで表される化合物であることが好ましく、下記式(100a)で表される化合物であることがより好ましい。
Figure JPOXMLDOC01-appb-C000033
 式(100a)、及び、式(200a)中、Yは、-OH、又は、-NHを表し、Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、Rは、少なくとも1つの脂肪族炭化水素基の炭素数が、12以上であり、但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
 上記式(100a)、及び、式(200a)で表される化合物におけるRは、上記式(1a)で表される化合物におけるRと同義であり、好ましい態様も同様である。
 また、上記式(1a)で表される縮合多環化合物は、上記式(1)で表される化合物と同様にして、合成することができる。
 以下に実施例を挙げて本発明の実施形態を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、及び、処理手順等は、本発明の実施形態の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本発明の実施形態の範囲は以下に示す具体例に限定されない。なお、特に断りのない限り、「部」、「%」は質量基準である。また、室温とは、25℃を意味する。
 特に記載のない場合、カラムクロマトグラフィーによる精製は、自動精製装置ISOLERA(Biotage社製)又は中圧液体クロマトグラフYFLC-Wprep2XY.N(山善(株)製)を使用した。
 特に記載のない場合、シリカゲルカラムクロマトグラフィーにおける担体は、SNAPKP-Sil Cartridge(Biotage社製)、ハイフラッシュカラムW001、W002、W003、W004又はW005(山善(株)製)を使用した。
 カラムクロマトグラフィーに用いる溶離液における混合比は、体積比である。例えば、「ヘキサン:酢酸エチルの勾配溶離=50:50~0:100」は、50%ヘキサン/50%酢酸エチルの溶離液を最終的に0%ヘキサン/100%酢酸エチルの溶離液へ変化させたことを意味する。
 また、例えば、「ヘキサン:酢酸エチルの勾配溶離=50:50~0:100、メタノール:酢酸エチルの勾配溶離=0:100~20:80」は、50%ヘキサン/50%酢酸エチルの溶離液を0%ヘキサン/100%酢酸エチルの溶離液へ変化させた後、最終的に20%メタノール/80%酢酸エチルの溶離液へ変化させたことを意味する。
 MSスペクトルは、ACQUITY SQD LC/MS System(Waters社製、イオン化法:ESI(ElectroSpray Ionization、エレクトロスプレーイオン化)法)を用いて測定した。
 NMRスペクトルは、内部基準としてテトラメチルシランを用い、Bruker AV300(Bruker社製、300MHz)、又は、Bruker AV400(Bruker社製、400MHz)を用いて測定し、全δ値をppmで表した。
 HPLC純度は、ACQUITY UPLC(Waters社製、カラム:CSH C18 1.7μm)を用いて測定した。
<保護基形成用試薬(化合物(1-1)、化合物(1-NF-1)、化合物(1-N-1))の合成>
Figure JPOXMLDOC01-appb-C000034
 中間体(1-1)は、欧州特許出願公開第2518041号明細書に記載の方法により合成した。
 中間体(1-1)(4.00g、5.16mmol)、3-ヒドロキシキサンテン-9-オン(1.31g、6.24mmol)、炭酸カリウム(1.43g、10.3mmol)、N-メチルピロリドン(NMP、40mL)とを混合し、窒素雰囲気下、110℃で3時間撹拌した。反応溶液を55℃まで降温し、トルエン、水で抽出した。得られた有機層にメタノールを添加することで析出した固体をろ過、減圧乾燥させることにより、中間体(1-2)(4.66g、収率95%)を得た。
 窒素雰囲気下、中間体(1-2)(4.66g、4.90mmol)、水素化ホウ素ナトリウム(0.57g、14.7mmol)、テトラヒドロフラン(47mL)とを混合し、45℃で撹拌させたところへ、メタノール(2.3mL)を滴下した。反応溶液を45℃で3時間撹拌し、メタノール(93mL)を緩やかに滴下した。得られたスラリーを45℃で30分間撹拌した後、水浴で室温まで冷却し、析出した固体をろ過及び乾燥させることにより化合物(1-1)(4.58g、収率98%)を得た。
 H-NMR(CDCl,300MHz)δ=0.88(6H,t),1.19-1.50(76H,m),1.77(4H,m),1.92(1H,d),3.94(4H,t)5.02(2H,s),5.79(1H,d),6.41(1H,t),6.57(2H,d),6.74(1H,d),6.83(1H,dd),7.13-7.20(2H,m),7.35(1H,td),7.49(1H,d),7.59(1H,d).
 化合物(1-1)(4.58g、4.80mmol)、カルバミン酸9-フルオレニルメチル(Fmoc-NH、2.30g、9.61mmol)、及び、テトラヒドロフラン(46mL)を混合し、40℃で完溶させ、溶液を室温まで降温し、トリフルオロ酢酸(0.36ml、4.8mmol)を滴下した。反応溶液を室温(で1時間撹拌し、メタノール(93mL)を添加することで析出した固体をろ過及び乾燥させることにより粗結晶を得た。得られた粗結晶をシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=9:1~4:1)に供することで精製し、化合物(1-NF-1)(4.61g、収率82%)を得た。
 H-NMR(CDCl,300MHz)δ=0.88(6H,t),1.19-1.50(76H,m),1.77(4H,m),3.94(4H,t),4.23(1H,t),4.52(2H,d),5.00(2H,s),5.19(1H,d),6.13(1H,d),6.41(1H,t),6.56(2H,d),6.69(1H,d),6.77(1H,dd),7.11(2H,t),7.25-7.46(7H,m),7.58(2H,d),7.75(2H,d).
 化合物(1-NF-1)(1.51g、1.29mmol)、テトラヒドロフラン(20mL)を混合したところへ、ジアザビシクロウンデセン(DBU、391μL、2.57mmol)を加え、室温で2時間撹拌した。反応完結後、アセトニトリル(80mL)を加えて撹拌し、沈殿物をろ過、減圧乾燥することで、化合物(1-N-1)(1.15g、収率94%)を得た。
 H-NMR(CDCl,300MHz)δ=0.88(6H,t),1.20-1.50(76H,m),1.76(4H,m),3.94(4H,t),5.00(2H,s),5.03(1H,s),6.40(1H,t),6.57(2H,d),6.72(1H,d),6.78(1H,dd),7.09-7.15(2H,m),7.25-7.29(1H,m),7.38(1H,d),7.48(1H,dd).
<保護基形成用試薬(化合物(1-NF-2))の合成>
Figure JPOXMLDOC01-appb-C000035
 化合物(1-NF-1)と同様に合成することで化合物(1-NF-2)を得た。
 H-NMR(CDCl,300MHz)δ=0.88(6H,t),1.19-1.50(60H,m),1.77(4H,m),3.94(4H,t),4.23(1H,t),4.52(2H,d),5.00(2H,s),5.19(1H,d),6.13(1H,d),6.41(1H,t),6.56(2H,d),6.69(1H,d),6.77(1H,dd),7.11(2H,t),7.25-7.46(7H,m),7.58(2H,d),7.75(2H,d).
<保護基形成用試薬(化合物(1-NF-3))の合成>
Figure JPOXMLDOC01-appb-C000036
 化合物(1-NF-1)と同様に合成することで化合物(1-NF-3)を得た。
 H-NMR(CDCl,300MHz)δ=0.88(9H,t),1.19-1.50(90H,m),1.70-1.85(6H,m),3.97(6H,m),4.23(1H,t),4.53(2H,d),4.96(2H,s),5.21(1H,d),6.14(1H,d),6.63(2H,s),6.71(1H,d),6.78(1H,dd),7.08-7.19(2H,m),7.25-7.47(7H,m),7.58(2H,d),7.75(2H,d).
<比較用保護基形成用試薬(比較化合物(1-NF-1))の合成>
 比較化合物(1-NF-1)は、国際公報第2018/021322号の段落0113~段落0118の記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000037
<比較用保護基形成用試薬(比較化合物(2-NF-1))の合成>
 比較化合物(2-NF-1)は、国際公報第2010/113939号の段落0147~段落0152の記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000038
(実施例1)
<保護アミノ酸化合物(N末端保護C末端保護アミノ酸(2))の合成
Figure JPOXMLDOC01-appb-C000039
 化合物(1-NF-1)(1.00g、0.851mmol)をテトラヒドロフラン(8.5mL)中に溶解させ、ジアザビシクロウンデセン(DBU、2.0モル当量)を加えて撹拌した。脱保護反応完結後、N-メチルモルホリン(NMM、2.05モル当量)、メタンスルホン酸(MsOH、2.0モル当量)順次を加えた後、N-[(9H-フルオレン-9-イルメトキシ)カルボニル]-L-ロイシン(Fmoc-Leu-OH、1.25モル当量)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロリン酸塩(COMU、1.25モル当量)を添加して攪拌した。縮合反応完結後、アセトニトリル(43mL)を加えて撹拌し、沈殿物をろ過してアセトニトリルで洗浄し、減圧乾燥させることにより、N-保護C-保護アミノ酸(1-N-1)(1.08g、収率98.4%)を得た。なお、Fmocは、Fmoc基を表し、Leuはロイシン残基を表す。
(実施例2及び3、並びに、比較例1及び2)
 N-保護C-保護アミノ酸(1-N-1)を得る方法と同様に、化合物(1-NF-2)、化合物(1-NF-3)、比較化合物(1-NF-1)、比較化合物(2-NF-1)をN-[(9H-フルオレン-9-イルメトキシ)カルボニル]-L-ロイシンと縮合させることで、対応するN-保護C-保護アミノ酸を合成した。
(評価1)
<脱保護速度>
 上記で合成したN末端保護C末端保護アミノ酸化合物について、保護したカルボキサミド部位の脱保護率(C末端の脱保護率)を以下のように求めた。
 Fmoc-Leu-NH-Tag(実施例の化合物を用いたN末端保護C末端保護アミノ酸、及び、比較例の化合物を用いたN末端保護C末端保護アミノ酸)100mgと、Fmoc-Leu-NH-Tagと等モル量のFmoc-Gly-OH(内部標準)とを混合したところに、クロロホルム/トリイソプロピルシラン/3、6-ジオキサ-1、8-オクタンジチオール/水/トリフルオロ酢酸(87.5/2.5/2.5/2.5/5:vol%)をFmoc-Leu-NH-Tag基準で基質濃度が0.025Mとなるように添加し、30℃60分撹拌した。
 反応液5μLをMeOH(メタノール):400μLに溶解し、Ultra Performance LC(ウルトラパフォーマンス液体クロマトグラフィー、Waters社製、型番:ACQUITY)を用いて、Fmoc-Leu-NH-Tagを脱保護して生成するFmoc-Leu-NHとFmoc-Gly-OHとの比率を定量することで脱保護率(%)を求め、下記基準に基づいて評価を行った。
 ウルトラパフォーマンス液体クロマトグラフィーに用いたカラム及び測定条件について以下に示す。
 カラム:Waters社製、型番:BEH C18 1.7μm、2.1mm×30mm
 流量:0.5mL/min
 溶媒:A液:0.1%ギ酸-水、B液:0.1%ギ酸-アセトニトリル
 グラジエントサイクル:0.00min(A液/B液=95/5)、2.00min(A液/B液=5/95)、3.00min(A液/B液=95/5)
 検出波長:254nm
 脱保護速度の評価については、「B」以上の場合を合格とした。結果を表1に示す。
 なお、脱保護率が高いほど、脱保護速度が速く、脱保護速度に優れるといえる。
-評価基準-
 「A」:脱保護率が90%以上である。
 「B」:脱保護率が50%以上90%未満である。
 「C」:脱保護率が10%以上50%未満である。
 「D」:脱保護率が10%未満である。
<経時安定性>
 上記で得られたN-保護C-保護アミノ酸(10mg)を大気下で50℃の恒温槽に3日間保管した後、残存するN-保護C-保護アミノ酸量を求め、下記基準に基づいて評価を行った。その結果を表1に示す。
 経時安定性の評価については、「B」以上の場合を合格とした。
 なお、N-保護C-保護アミノ酸の残存率が高いほど、ペプチド化合物の経時安定性が高く、副反応を抑制でき、収率に優れるといえる。
-評価基準-
  「A」:残存率が98%以上である。
  「B」:残存率が96%以上98%未満である。
  「C」:残存率が94%以上96%未満である。
  「D」:残存率が94%未満である。
Figure JPOXMLDOC01-appb-T000040
 表1から、実施例1~実施例3で使用した式(1)で表される化合物は、比較例1及び2の化合物に比べて、脱保護速度と経時安定性との両立に優れる。
<保護ペプチド(5残基ペプチド:Fmoc-MeNle-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-保護基)の合成>
 なお、上述した以外の各略称の詳細を、以下に示す。
 MeNle:N-メチルノルロイシン残基
 Arg(Pbf):Pbf保護アルギニン残基
 Pbf:2,2,4,6,7-ペンタメチルジヒドロベンゾフラン-5-スルホニル基
 Cys(Trt):Trt保護システイン残基
 Trt:トリフェニルメチル基
 Gly:グリシン残基
(実施例4:Fmoc-Gly-NH-XantTAG(1)の合成)
 9H-フルオレン-9-イルメチル N-(3-(3,5-ビス(ドコシルオキシ)ベンジルオキシ)-9H-キサンテン-9-イル)カルバメート(上記化合物(1-1)に相当する。「Fmoc-NH-XantTAG(1)」とも表記する。)(2.00g、1.70mmol)をテトラヒドロフラン(17mL)中に溶解させ、ジアザビシクロウンデセン(DBU、2.0モル当量)を加えて撹拌した。脱保護反応完結後、N-メチルモルホリン(2.05モル当量)、メタンスルホン酸(2.0モル当量)順次を加えた後、Fmoc-Gly-OH(1.25モル当量)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロリン酸塩(COMU、1.25モル当量)を添加して攪拌した。縮合反応完結後、アセトニトリル(85mL)を加えて撹拌し、沈殿物をろ過してアセトニトリルで洗浄し、減圧乾燥させることにより、Fmoc-Gly-NH-XantTAG(1)(2.09g、収率99.7%)を得た。
(実施例5:Fmoc-Cys(Trt)-Gly-NH-XantTAG(1)の合成)
 Fmoc-Gly-NH-XantTAG(1)(2.09g、1.70mmol)をテトラヒドロフラン(17mL)中に溶解させ、ジアザビシクロウンデセン(DBU、2.0モル当量)を加えて撹拌した。脱保護反応完結後、N-メチルモルホリン(2.05モル当量)、メタンスルホン酸(2.0モル当量)順次を加えた後、Fmoc-Cys(Trt-OH(1.25モル当量)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロリン酸塩(COMU、1.25モル当量)を添加して攪拌した。縮合反応完結後、アセトニトリル(85mL)を加えて撹拌し、沈殿物をろ過してアセトニトリルで洗浄し、減圧乾燥させることにより、Fmoc-Cys(Trt)-Gly-NH-XantTAG(1)(2.64g、収率98.6%)を得た。
(実施例6:Fmoc-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)の合成)
 Fmoc-Cys(Trt)-Gly-NH-XantTAG(1)(2.50g、1.58mmol)をテトラヒドロフラン(16mL)中に溶解させ、ジアザビシクロウンデセン(DBU、2.0モル当量)を加えて撹拌した。脱保護反応完結後、N-メチルモルホリン(2.05モル当量)、メタンスルホン酸(2.0モル当量)順次を加えた後、Fmoc-Arg(Pbf)-OH(1.25モル当量)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロリン酸塩(COMU、1.25モル当量)を添加して攪拌した。縮合反応完結後、アセトニトリル(79mL)を加えて撹拌し、沈殿物をろ過してアセトニトリルで洗浄し、減圧乾燥させることにより、Fmoc-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)(3.04g、収率96.6%)を得た。
 ESI-MS(+)=1985.1
(実施例7:Fmoc-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)の合成)
 Fmoc-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)(2.50g、1.26mmol)をテトラヒドロフラン(13mL)中に溶解させ、ジアザビシクロウンデセン(DBU、2.0モル当量)を加えて撹拌した。脱保護反応完結後、N-メチルモルホリン(2.05モル当量)、メタンスルホン酸(2.0モル当量)順次を加えた後、Fmoc-MeNle-OH(1.25モル当量)、(1-シアノ-2-エトキシ-2-オキソエチリデンアミノオキシ)ジメチルアミノモルホリノカルベニウムヘキサフルオロリン酸塩(COMU、1.25モル当量)を添加して攪拌した。縮合反応完結後、アセトニトリル(63mL)を加えて撹拌し、沈殿物をろ過してアセトニトリルで洗浄し、減圧乾燥させることにより、Fmoc-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)(2.53g、収率95.1%)を得た。
(実施例8:Fmoc-MeNle-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)の合成)
 Fmoc-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)(2.00g、1.70mmol)をテトラヒドロフラン(17mL)中に溶解させ、ジアザビシクロウンデセン(DBU、2.0モル当量)を加えて撹拌した。脱保護反応完結後、N,N-ジイソプロピルエチルアミン(6.05モル当量)、メタンスルホン酸(2.0モル当量)順次を加えた後、Fmoc-MeNle-OH(2.0モル当量)、(7-アザベンゾトリアゾール-1-イルオキシ)トリピロリジノホスホニウムヘキサフルオロりん酸塩(PyAOP、2.0モル当量)を添加して攪拌した。縮合反応完結後、アセトニトリル(57mL)を加えて撹拌し、沈殿物をろ過してアセトニトリルで洗浄し、減圧乾燥させることにより、Fmoc-MeNle-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)(2.43g、収率94.7%)を得た。
 実施例4~8に示すように、本開示に係る式(1)で表される化合物を用いる工程を含むペプチド化合物の製造方法は、いずれの例でも得られるペプチド化合物の収率が高く、総収率でも優れることがわかる。
<15残基ペプチド:ClAc-Phe-NMeAla-Asn(Trt)-Pro-His(Boc)-Leu-Ser(Trt)-Trp(Boc)-Ser(Trt)-Trp(Boc)-MeNle-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-保護基の合成>
 なお、上述した以外の各略称の詳細を、以下に示す。
 Trp(Boc):Boc保護トリプトファン残基
 Boc:tert-ブチルカルボニル基
 Ser(Trt):Trt保護セリン残基
 Leu:ロイシン残基
 His(Boc):Boc保護ヒスチジン残基
 Asn(Trt):Trt保護アスパラギン残基
 MeAla:N-メチルアラニン残基
 Phe:フェニルアラニン残基
 ClAc:クロロアセチル基
-ClAc-Phe-MeAla-Asn(Trt)-Pro-His(Boc)-Leu-Ser(Trt)-Trp(Boc)-Ser(Trt)-Trp(Boc)-MeNle-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)の合成-
 実施例8で得られたFmoc-MeNleu-MeNleu-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)を用いて、Fmoc基の除去と、下記表2に示すアミノ酸、又は、カルボン酸の縮合反応とを繰り返し、ペプチド鎖を伸長した。反応溶媒にはTHFを使用し、沈殿工程の極性溶媒にアセトニトリルを使用した。沈殿工程のTHFとアセトニトリルの使用割合は、1:5又は1:10で実施した。
Figure JPOXMLDOC01-appb-T000041
<ペプチドの脱保護及び環化工程>
-ClAc-Phe-MeAla-Asn-Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg-Cys-Gly-NHの合成-
 ClAc-Phe-MeAla-Asn(Trt)-Pro-His(Boc)-Leu-Ser(Trt)-Trp(Boc)-Ser(Trt)-Trp(Boc)-MeNle-MeNle-Arg(Pbf)-Cys(Trt)-Gly-NH-XantTAG(1)(0.300g、0.0665mmol)に、室温下、トリフルオロ酢酸、トリイソプロピルシラン、3、6-ジオキサ-1、8-オクタンジチオール及び水の92.5/2.5/2.5/2.5混合液(6.9mL)を加え、30分間攪拌した。反応液にTert-ブチルメチルエーテル及びノルマルヘキサンの1/1混合液(69mL)を加えて攪拌後、遠心分離により上澄み液を除去した。沈殿物へのTert-ブチルメチルエーテル(69mL)の添加と攪拌、遠心分離、上澄み液の除去操作を2回繰り返した後、減圧乾燥させることにより、ClAc-Phe-MeAla-Asn-Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg-Cys-Gly-NH(0.167g)を得た。
(実施例9:環状ペプチドAの合成)
 ClAc-Phe-MeAla-Asn-Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg-Cys-Gly-NH(0.167g)に、室温下、アセトニトリル及び0.1mol/L二炭酸トリエチルアンモニウム緩衝液の1/1混合液(138mL)、0.5mol/Lトリス(2-カルボキシエチル)ホスフィン水溶液(138μL)を加え、2時間攪拌した。環化反応完結後、減圧下濃縮し、下記構造を有する環状ペプチドA(0.145g)を得た。
 HPLC純度(220nm):89.6%
 MS(ESI,m/Z):1868.3(M+H)、1866.3(M-H)
Figure JPOXMLDOC01-appb-C000042
<15残基ペプチド:ClAc-Phe-MeAla-Asn(Mmt)-Pro-His(Mmt)-Leu-Ser(Trt)-Trp-Ser(Trt)-Trp-MeNle-MeNle-Arg(Pbf)-Cys(Mmt)-Gly-NH-保護基の合成>
 なお、上述した以外の各略称の詳細を、以下に示す。
 Cys(Mmt):Mmt保護システイン残基
 Mmt:4-メトキシトリチル基
 His(Mmt):Mmt保護ヒスチジン残基
 Asn(Mmt):Mmt保護アスパラギン残基
-ClAc-Phe-MeAla-Asn(Mmt)-Pro-His(Mmt)-Leu-Ser(Trt)-Trp-Ser(Trt)-Trp-MeNle-MeNle-Arg(Pbf)-Cys(Mmt)-Gly-NH-XantTAG(1)の合成-
 実施例4で得られたFmoc-Gly-NH-XantTAG(1)を用いて、Fmoc基の除去と、下記表3に示すアミノ酸、又は、カルボン酸の縮合反応と、を繰り返し、ペプチド鎖を伸長した。
Figure JPOXMLDOC01-appb-T000043
<ペプチドの脱保護及び環化工程>
-ClAc-Phe-MeAla-Asn(Mmt)-Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg(Pbf)-Cys-Gly-NHの合成-
 ClAc-Phe-MeAla-Asn(Mmt)-Pro-His(Mmt)-Leu-Ser(Trt)-Trp-Ser(Trt)-Trp-MeNle-MeNle-Arg(Pbf)-Cys(Mmt)-Gly-NH-XantTAG(1)(50mg、0.0114mmol)に、室温下、トリフルオロ酢酸/ヘキサフルオロイソプロパノール/ジクロロメタン(1/10/100:vol%、1.14mL)、トリイソプロピルシラン(10.0モル当量)、及び、3、6-ジオキサ-1、8-オクタンジチオール(10.0モル当量)を加え、1時間攪拌した。反応液にTert-ブチルメチルエーテル及びノルマルヘキサンの1/1混合液(10mL)を加えて攪拌後、遠心分離により上澄み液を除去した。沈殿物へのTert-ブチルメチルエーテル(69mL)の添加と攪拌、遠心分離、上澄み液の除去操作を2回繰り返した後、減圧乾燥させることにより、ClAc-Phe-MeAla-Asn(Mmt)-Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg-Cys(Mmt)-Gly-NH(40.4mg)を得た。
(実施例10:環状ペプチドBの合成)
 ClAc-Phe-MeAla-Asn(Mmt)-Pro-His-Leu-Ser-Trp-Ser-Trp-MeNle-MeNle-Arg(Pbf)-Cys-Gly-NH(39.4mg)に、室温下、アセトニトリル及び0.1mol/L二炭酸トリエチルアンモニウム緩衝液の1/1混合液(11mL)、0.5mol/Lトリス(2-カルボキシエチル)ホスフィン水溶液(23μL)を加え、2時間攪拌した。環化反応完結後、減圧下濃縮し、下記構造を有する環状ペプチドB(32.7mg)を得た。
 HPLC純度(220nm):88.5%
 MS(ESI,m/Z):1197.6(M+H)/2、1195.6(M-H)/2
Figure JPOXMLDOC01-appb-C000044
 実施例9及び10に示すように、本開示に係るペプチド化合物の製造方法によれば、N-アルキルアミド構造を有する環状ペプチド化合物の製造にも適用することができる。弱酸条件でもC末端保護基の脱保護でき、得られるペプチドの副反応を抑制することができ、純度が高く、収率が高かった。
 2019年6月28日に出願された日本国特許出願第2019-122492号の開示、及び、2019年12月6日に出願された日本国特許出願第2019-221545号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (17)

  1.  下記式(1)で表される化合物を用いる工程を含むペプチド化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000001

     式(1)中、Yは、-OR17、-NHR18、-SH、又は、ハロゲン原子を表し、前記R17は、水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、前記R18は、水素原子、アルキル基、アリールアルキル基又はヘテロアリールアルキル基、又は、9-フルオレニルメトキシカルボニル基を表し、
     Yは、-N(R110)-、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR106107-を表し、前記R110は、R又はアルキル基を表し、前記R100~R107はそれぞれ独立に、水素原子又はアルキル基を表し、
     R~Rはそれぞれ独立に、R、水素原子、ハロゲン原子、アルキル基又はアルコキシ基を表し、R~R及びYのうち少なくとも1つはRを有し、前記Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、少なくとも1つの前記脂肪族炭化水素基の炭素数が、12以上であり、
     但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
  2.  前記式(1)で表される化合物を用いる工程が、前記式(1)で表される化合物によりアミノ酸化合物又はペプチド化合物のカルボキシ基又はアミド基を保護するC末端保護工程である請求項1に記載のペプチド化合物の製造方法。
  3.  前記C末端保護工程におけるアミノ酸化合物又はペプチド化合物が、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物であり、
     前記C末端保護工程で得られたN末端保護C末端保護アミノ酸化合物又はN末端保護C末端保護ペプチド化合物のN末端を脱保護するN末端脱保護工程、及び、
     前記N末端脱保護工程で得られたC末端保護アミノ酸化合物又はC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させるペプチド鎖延長工程、
     前記ペプチド鎖延長工程で得られたN末端保護C末端保護ペプチド化合物を沈殿させる沈殿工程
     を更に含む請求項2に記載のペプチド化合物の製造方法。
  4.  前記沈殿工程の後に、
     得られたN末端保護C末端保護ペプチド化合物のN末端を脱保護する工程、
     得られたC末端保護ペプチド化合物のN末端に、N末端保護アミノ酸化合物、又は、N末端保護ペプチド化合物を縮合させる工程、及び、
     得られたN末端保護C末端保護ペプチド化合物を沈殿する工程
     をこの順で1回以上更に含む、請求項3に記載のペプチド化合物の製造方法。
  5.  C末端保護基を脱保護するC末端脱保護工程を更に含む、請求項1~請求項4のいずれか1項に記載のペプチド化合物の製造方法。
  6.  前記脂肪族炭化水素基の合計炭素数が、18以上である、請求項1~請求項5のいずれか1項に記載のペプチドの製造方法。
  7.  R~Rのうち1つのみがRである、請求項1~請求項6のいずれか1項に記載のペプチド化合物の製造方法。
  8.  前記式(1)中のR及びRの少なくとも一方が、Rである請求項1~請求項7のいずれか1項に記載のペプチドの製造方法。
  9.  前記Rが、それぞれ独立に、下記式(f1)又は式(a1)で表される基である請求項1~請求項8のいずれか1項に記載のペプチド化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000002

     式(f1)中、波線部分は、他の構成との結合位置を表し、mは1~3の整数を表し、
     Xはそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
     Rはそれぞれ独立に、二価の脂肪族炭化水素基を表し、
     Arは(m10+1)価の芳香族基、又は、(m10+1)価の複素芳香族基を表し、
     m10は、1~3の整数を表し、
     X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
     R10はそれぞれ独立に、一価の脂肪族炭化水素基を表し、R10の少なくとも1つは、炭素数5以上の一価の脂肪族炭化水素基である。
    Figure JPOXMLDOC01-appb-C000003

     式(a1)中、波線部分は、他の構成との結合位置を表し、
    m20は、1~10の整数を表し、
    20はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
    20の少なくとも1つは、炭素数5以上の二価の脂肪族炭化水素基である。
  10.  前記式(f1)で表される基が、下記式(f2)で表される基である請求項9に記載のペプチド化合物の製造方法。
    Figure JPOXMLDOC01-appb-C000004

     式(f2)中、波線部分は、他の構成との結合位置を表し、m10は、1~3の整数を表し、m11は、1~3の整数を表し、
    10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、
    10はそれぞれ独立に、炭素数5以上の一価の脂肪族炭化水素基を表す。
  11.  下記式(1)で表される化合物を含む保護基形成用試薬。
    Figure JPOXMLDOC01-appb-C000005

     式(1)中、Yは、-OR17、-NHR18、-SH、又は、ハロゲン原子を表し、前記R17は、水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、前記R18は、水素原子、アルキル基、アリールアルキル基、ヘテロアリールアルキル基、又は、9-フルオレニルメトキシカルボニル基を表し、
     Yは、-N(R110)-、-O-、-S-、-CR100=CR101-、-CR102103-CR104105-、又は、-CR106107-を表し、前記R110は、R又はアルキル基を表し、前記R100~R107はそれぞれ独立に、水素原子又はアルキル基を表し、
     R~Rはそれぞれ独立に、R、水素原子、ハロゲン原子、アルキル基又はアルコキシ基を表し、R~R及びYのうち少なくとも1つはRを有し、前記Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、少なくとも1つの前記脂肪族炭化水素基の炭素数が、12以上であり、
     但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
  12.  前記保護基形成用試薬が、カルボキシ基又はアミド基の保護基形成用試薬である請求項11に記載の保護基形成用試薬。
  13.  前記保護基形成用試薬が、アミノ酸化合物又はペプチド化合物のC末端保護基形成用試薬である請求項11又は請求項12に記載の保護基形成用試薬。
  14.  下記式(1a)で表される縮合多環化合物。
    Figure JPOXMLDOC01-appb-C000006

     式(1a)中、Yaは-ORa17、-NHRa18、-SH、又は、ハロゲン原子を表し、前記Ra17は水素原子、活性エステル型カルボニル基又は活性エステル型スルホニル基を表し、前記Ra18は水素原子又は炭素数10以下の直鎖若しくは分岐鎖のアルキル基、アリールアルキル基又はヘテロアリールアルキル基、又は9-フルオレニルメトキシカルボニル基を表し、
     Yaは、-N(R110)-、-O-、-S-、-CRa100=CRa101-、-CRa102Ra103-CRa104Ra105)-、又は、-CRa106Ra107-を表し、前記R110は、R又はアルキル基を表し、前記Ra100~Ra107はそれぞれ独立に、水素原子又はアルキル基を表し、
     Ra~Raはそれぞれ独立にR、水素原子、ハロゲン原子、炭素数1~4のアルキル基又は炭素数1~4のアルコキシ基を表し、
     Ra~Raの少なくとも1つはRを有し、Rは、脂肪族炭化水素基、又は、脂肪族炭化水素基を有する有機基を表し、少なくとも1つの前記脂肪族炭化水素基の炭素数が、12以上であり、
     但し、Rはシリル基、及び、シリルオキシ構造を有する炭化水素基を有さない。
  15.  前記式(1a)中のR及びRの少なくとも一方が、Rである、請求項14に記載の縮合多環化合物。
  16.  前記式(1a)中のRがそれぞれ独立に、下記式(f1)又は式(a1)で表される基である、請求項14又は請求項15に記載の縮合多環化合物。
    Figure JPOXMLDOC01-appb-C000007

     式(f1)中、波線部分は他の構成との結合位置を表し、m9は1~3の整数を表し、Xはそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、Rはそれぞれ独立に、二価の脂肪族炭化水素基を表し、Arは(m10+1)価の芳香族基、又は、(m10+1)価の複素芳香族基を表し、m10は、1~3の整数を表し、X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R10はそれぞれ独立に、一価の脂肪族炭化水素基を表し、R10の少なくとも1つは、炭素数5以上の一価の脂肪族炭化水素基である。
    Figure JPOXMLDOC01-appb-C000008

     式(a1)中、波線部分は他の構成との結合位置を表し、m20は、1~10の整数を表し、X20はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R20の少なくとも1つは、炭素数5以上の二価の脂肪族炭化水素基である。
  17.  前記式(f1)で表される基が、下記式(f2)で表される基である請求項16に記載の縮合多環化合物。
    Figure JPOXMLDOC01-appb-C000009

     式(f2)中、波線部分は他の構成との結合位置を表し、m10は、1~3の整数を表し、m11は、1~3の整数を表し、X10はそれぞれ独立に、単結合、-O-、-S-、-COO-、-OCO-、-OCONH-、-NHCONH-、-NHCO-、又は、-CONH-を表し、R10はそれぞれ独立に、炭素数5以上の一価の脂肪族炭化水素基を表す。
PCT/JP2020/024232 2019-06-28 2020-06-19 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物 WO2020262259A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202080046996.3A CN114026110A (zh) 2019-06-28 2020-06-19 肽化合物的制造方法、保护基形成用试剂及稠合多环化合物
JP2021526942A JP7301965B2 (ja) 2019-06-28 2020-06-19 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
EP20831684.4A EP3992187A4 (en) 2019-06-28 2020-06-19 PROCESS FOR THE PREPARATION OF A PEPTIDE COMPOUND, PROTECTING GROUP REAGENT AND CONDENSED POLYCYCLIC COMPOUND
US17/558,542 US20220112234A1 (en) 2019-06-28 2021-12-21 Method for producing peptide compound, protective group-forming reagent, and condensed polycyclic compound

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2019-122492 2019-06-28
JP2019122492 2019-06-28
JP2019-221545 2019-12-06
JP2019221545 2019-12-06

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/558,542 Continuation US20220112234A1 (en) 2019-06-28 2021-12-21 Method for producing peptide compound, protective group-forming reagent, and condensed polycyclic compound

Publications (1)

Publication Number Publication Date
WO2020262259A1 true WO2020262259A1 (ja) 2020-12-30

Family

ID=74060996

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024232 WO2020262259A1 (ja) 2019-06-28 2020-06-19 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物

Country Status (6)

Country Link
US (1) US20220112234A1 (ja)
EP (1) EP3992187A4 (ja)
JP (1) JP7301965B2 (ja)
CN (1) CN114026110A (ja)
TW (1) TW202112759A (ja)
WO (1) WO2020262259A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138605A1 (ja) 2020-12-22 2022-06-30 富士フイルム株式会社 ペプチドの製造方法、保護基形成用試薬、及び、縮合多環化合物
WO2022196797A1 (ja) 2021-03-19 2022-09-22 富士フイルム株式会社 アミノ酸又はペプチドの製造方法、保護基形成用試薬、及び、化合物

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113939A1 (ja) 2009-03-30 2010-10-07 味の素株式会社 ジフェニルメタン化合物
EP2518041A1 (en) 2009-12-25 2012-10-31 Ajinomoto Co., Inc. Benzyl compound
WO2018021233A1 (ja) 2016-07-25 2018-02-01 積水メディカル株式会社 新規キサンテン保護剤
WO2018021322A1 (ja) 2016-07-26 2018-02-01 三菱電機株式会社 半導体装置
WO2019123994A1 (ja) * 2017-12-19 2019-06-27 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤
JP2019122492A (ja) 2018-01-12 2019-07-25 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法およびプログラム

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010104169A1 (ja) 2009-03-12 2010-09-16 味の素株式会社 フルオレン化合物
CN107011131B (zh) * 2010-08-30 2020-11-10 味之素株式会社 含有支链的芳香族化合物
CN110317188B (zh) * 2018-03-29 2023-01-17 深圳翰宇药业股份有限公司 化合物及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010113939A1 (ja) 2009-03-30 2010-10-07 味の素株式会社 ジフェニルメタン化合物
EP2518041A1 (en) 2009-12-25 2012-10-31 Ajinomoto Co., Inc. Benzyl compound
WO2018021233A1 (ja) 2016-07-25 2018-02-01 積水メディカル株式会社 新規キサンテン保護剤
WO2018021322A1 (ja) 2016-07-26 2018-02-01 三菱電機株式会社 半導体装置
WO2019123994A1 (ja) * 2017-12-19 2019-06-27 積水メディカル株式会社 新規アルキルジフェニルメタン保護剤
JP2019122492A (ja) 2018-01-12 2019-07-25 オリンパス株式会社 内視鏡装置、内視鏡装置の作動方法およびプログラム

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Protective Groups in Organic Synthesis", 1980, JOHN WILEY AND SONS
BREGA VALENTINA, SCALETTI FEDERICA, ZHANG XIANZHI, WANG LI-SHENG, LI PRUDENCE, XU QIAOBING, ROTELLO VINCENT M., THOMAS SAMUEL W.: "Polymer amphiphiles for photoregulated anticancer drug delivery.", ACS APPLIED MATERIALS AND INTERFACES, vol. 11, 2018, pages 2814 - 2820, XP055781468 *
ORGANIC PROCESS RESEARCH & DEVELOPMENT, vol. 21, no. 3, 2017, pages 365 - 369
See also references of EP3992187A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022138605A1 (ja) 2020-12-22 2022-06-30 富士フイルム株式会社 ペプチドの製造方法、保護基形成用試薬、及び、縮合多環化合物
WO2022196797A1 (ja) 2021-03-19 2022-09-22 富士フイルム株式会社 アミノ酸又はペプチドの製造方法、保護基形成用試薬、及び、化合物

Also Published As

Publication number Publication date
JP7301965B2 (ja) 2023-07-03
US20220112234A1 (en) 2022-04-14
EP3992187A4 (en) 2022-07-27
TW202112759A (zh) 2021-04-01
CN114026110A (zh) 2022-02-08
JPWO2020262259A1 (ja) 2020-12-30
EP3992187A1 (en) 2022-05-04

Similar Documents

Publication Publication Date Title
KR102122575B1 (ko) 아마톡신 빌딩 블록 및 아마톡신류의 합성 방법
JPWO2020175473A1 (ja) ペプチド化合物の製造方法、保護基形成用試薬、及び、芳香族複素環化合物
JP7139511B2 (ja) ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環芳香族炭化水素化合物
JP7238123B2 (ja) ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環芳香族炭化水素化合物
US20220112234A1 (en) Method for producing peptide compound, protective group-forming reagent, and condensed polycyclic compound
RU2696276C2 (ru) Способы получения аналогов окситоцина
JP7459121B2 (ja) ペプチド化合物の製造方法、保護基形成用試薬、及び、ヒドラジン誘導体
WO2022138605A1 (ja) ペプチドの製造方法、保護基形成用試薬、及び、縮合多環化合物
WO2022196797A1 (ja) アミノ酸又はペプチドの製造方法、保護基形成用試薬、及び、化合物
WO2023106356A1 (ja) ペプチド化合物の製造方法、保護基形成用試薬、及び置換ベンジル化合物
JP5982720B2 (ja) 高分子固体状支持体を用いたヒスチジル−プロリンアミド誘導体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20831684

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526942

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2020831684

Country of ref document: EP