WO2018021322A1 - 半導体装置 - Google Patents

半導体装置 Download PDF

Info

Publication number
WO2018021322A1
WO2018021322A1 PCT/JP2017/026893 JP2017026893W WO2018021322A1 WO 2018021322 A1 WO2018021322 A1 WO 2018021322A1 JP 2017026893 W JP2017026893 W JP 2017026893W WO 2018021322 A1 WO2018021322 A1 WO 2018021322A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode plate
metal
metal member
electrode
semiconductor device
Prior art date
Application number
PCT/JP2017/026893
Other languages
English (en)
French (fr)
Inventor
藤野 純司
井本 裕児
翔平 小川
三紀夫 石原
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780044550.5A priority Critical patent/CN109478521B/zh
Priority to JP2018529918A priority patent/JP6602480B2/ja
Priority to US16/301,893 priority patent/US10727163B2/en
Publication of WO2018021322A1 publication Critical patent/WO2018021322A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/16Fillings or auxiliary members in containers or encapsulations, e.g. centering rings
    • H01L23/18Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device
    • H01L23/24Fillings characterised by the material, its physical or chemical properties, or its arrangement within the complete device solid or gel at the normal operating temperature of the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/047Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being parallel to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/04Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls
    • H01L23/043Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body
    • H01L23/049Containers; Seals characterised by the shape of the container or parts, e.g. caps, walls the container being a hollow construction and having a conductive base as a mounting as well as a lead for the semiconductor body the other leads being perpendicular to the base
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/495Lead-frames or other flat leads
    • H01L23/49517Additional leads
    • H01L23/49524Additional leads the additional leads being a tape carrier or flat leads
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/538Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames the interconnection structure between a plurality of semiconductor chips being formed on, or in, insulating substrates
    • H01L23/5385Assembly of a plurality of insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/09Structure, shape, material or disposition of the bonding areas after the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L24/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L24/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/35Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L24/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L24/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L24/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0555Shape
    • H01L2224/05552Shape in top view
    • H01L2224/05553Shape in top view being rectangular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05599Material
    • H01L2224/056Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/05617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/05624Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • H01L2224/0601Structure
    • H01L2224/0603Bonding areas having different sizes, e.g. different heights or widths
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/291Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29101Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of less than 400°C
    • H01L2224/29111Tin [Sn] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29339Silver [Ag] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/28Structure, shape, material or disposition of the layer connectors prior to the connecting process
    • H01L2224/29Structure, shape, material or disposition of the layer connectors prior to the connecting process of an individual layer connector
    • H01L2224/29001Core members of the layer connector
    • H01L2224/29099Material
    • H01L2224/29198Material with a principal constituent of the material being a combination of two or more materials in the form of a matrix with a filler, i.e. being a hybrid material, e.g. segmented structures, foams
    • H01L2224/29298Fillers
    • H01L2224/29299Base material
    • H01L2224/293Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/29338Base material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/29347Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32225Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/33Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
    • H01L2224/331Disposition
    • H01L2224/3318Disposition being disposed on at least two different sides of the body, e.g. dual array
    • H01L2224/33181On opposite sides of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/35Manufacturing methods
    • H01L2224/352Mechanical processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/3701Shape
    • H01L2224/37011Shape comprising apertures or cavities
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37025Plural core members
    • H01L2224/37026Plural core members being mutually engaged together, e.g. through inserts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/37124Aluminium [Al] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/36Structure, shape, material or disposition of the strap connectors prior to the connecting process
    • H01L2224/37Structure, shape, material or disposition of the strap connectors prior to the connecting process of an individual strap connector
    • H01L2224/37001Core members of the connector
    • H01L2224/37099Material
    • H01L2224/371Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof
    • H01L2224/37138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron [B], silicon [Si], germanium [Ge], arsenic [As], antimony [Sb], tellurium [Te] and polonium [Po], and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/37147Copper [Cu] as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/34Strap connectors, e.g. copper straps for grounding power devices; Manufacturing methods related thereto
    • H01L2224/39Structure, shape, material or disposition of the strap connectors after the connecting process
    • H01L2224/40Structure, shape, material or disposition of the strap connectors after the connecting process of an individual strap connector
    • H01L2224/401Disposition
    • H01L2224/40135Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/40137Connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being arranged next to each other, e.g. on a common substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45014Ribbon connectors, e.g. rectangular cross-section
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/4501Shape
    • H01L2224/45012Cross-sectional shape
    • H01L2224/45015Cross-sectional shape being circular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45117Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45124Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45144Gold (Au) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/45001Core members of the connector
    • H01L2224/45099Material
    • H01L2224/451Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45138Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 950°C and less than 1550°C
    • H01L2224/45147Copper (Cu) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45565Single coating layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L2224/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • H01L2224/4554Coating
    • H01L2224/45599Material
    • H01L2224/456Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof
    • H01L2224/45617Material with a principal constituent of the material being a metal or a metalloid, e.g. boron (B), silicon (Si), germanium (Ge), arsenic (As), antimony (Sb), tellurium (Te) and polonium (Po), and alloys thereof the principal constituent melting at a temperature of greater than or equal to 400°C and less than 950°C
    • H01L2224/45624Aluminium (Al) as principal constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/484Connecting portions
    • H01L2224/4847Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond
    • H01L2224/48472Connecting portions the connecting portion on the bonding area of the semiconductor or solid-state body being a wedge bond the other connecting portion not on the bonding area also being a wedge bond, i.e. wedge-to-wedge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73221Strap and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/842Applying energy for connecting
    • H01L2224/84201Compression bonding
    • H01L2224/84203Thermocompression bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • H01L2224/848Bonding techniques
    • H01L2224/84801Soldering or alloying
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/85Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a wire connector
    • H01L2224/852Applying energy for connecting
    • H01L2224/85201Compression bonding
    • H01L2224/85205Ultrasonic bonding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/91Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
    • H01L2224/92Specific sequence of method steps
    • H01L2224/921Connecting a surface with connectors of different types
    • H01L2224/9212Sequential connecting processes
    • H01L2224/92142Sequential connecting processes the first connecting process involving a layer connector
    • H01L2224/92147Sequential connecting processes the first connecting process involving a layer connector the second connecting process involving a wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/06Structure, shape, material or disposition of the bonding areas prior to the connecting process of a plurality of bonding areas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/44Structure, shape, material or disposition of the wire connectors prior to the connecting process
    • H01L24/45Structure, shape, material or disposition of the wire connectors prior to the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/42Wire connectors; Manufacturing methods related thereto
    • H01L24/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L24/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/84Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a strap connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/10251Elemental semiconductors, i.e. Group IV
    • H01L2924/10253Silicon [Si]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1027IV
    • H01L2924/10272Silicon Carbide [SiC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/102Material of the semiconductor or solid state bodies
    • H01L2924/1025Semiconducting materials
    • H01L2924/1026Compound semiconductors
    • H01L2924/1032III-V
    • H01L2924/1033Gallium nitride [GaN]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1203Rectifying Diode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1305Bipolar Junction Transistor [BJT]
    • H01L2924/13055Insulated gate bipolar transistor [IGBT]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/13Discrete devices, e.g. 3 terminal devices
    • H01L2924/1304Transistor
    • H01L2924/1306Field-effect transistor [FET]
    • H01L2924/13091Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/14Integrated circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/35Mechanical effects
    • H01L2924/351Thermal stress
    • H01L2924/3511Warping

Definitions

  • the present invention relates to a semiconductor device provided with a semiconductor element.
  • a power semiconductor element suitable for high voltage and large current applications is provided in a case, and electrically connected to an electrode of the semiconductor element through a wiring member such as a circuit pattern or a lead frame formed on a substrate.
  • the connected main terminals are provided outside the case and packaged.
  • An external electric circuit is connected to the main terminal of the semiconductor device, and the semiconductor device controls the operation of the mounted device by controlling the current flowing through the external electric circuit. Since semiconductor devices can be easily mounted in equipment, they are used in a wide range of fields from industrial equipment to home appliances.
  • a semiconductor element used in a semiconductor device has a front electrode and a back electrode, and has a vertical structure in which a high voltage is applied between the front electrode and the back electrode to flow a large current.
  • a back electrode of a semiconductor element is joined to an insulating substrate made of a ceramic material having a high thermal conductivity, and heat generated by the semiconductor element is efficiently exhausted.
  • an electrode plate such as a lead frame directly to the surface electrode of the semiconductor element with solder, the electrical resistance of the wiring portion connected to the surface electrode of the semiconductor element is reduced.
  • the electrode plate has a larger area than the surface electrode of the semiconductor element, and is joined to the surface electrode of one or more semiconductor elements in the semiconductor device.
  • the electrode plate is made of a metal having high conductivity such as copper or aluminum. When the electrode plate is made of aluminum, the surface of the electrode plate is subjected to metallization treatment such as copper plating so that the solder is wet. .
  • a half-cut portion protruding from the surface of the electrode plate and an embossed portion protruding further from the half-cut portion are formed on the electrode plate, and the protruding side of the half-cut portion and the surface electrode of the semiconductor element And were joined with solder. Since the embossed part is brought into contact with the surface electrode of the semiconductor element and soldered, a solder amount having the same thickness as the height of the embossed part is formed between the surface electrode of the semiconductor element and the half-cut part of the electrode plate. Secured (for example, see Patent Document 1)
  • the present invention has been made to solve the above-described problems. Even when the electrode plate is electrically connected to the surface electrode of the semiconductor element using solder bonding, the solder is absorbed by the electrode plate. It is an object to provide a semiconductor device that can be prevented.
  • a semiconductor device is bonded to a semiconductor element having a surface electrode, an electrode plate made of aluminum or an aluminum alloy having a larger area than the surface electrode of the semiconductor element in a plan view, and the surface electrode of the semiconductor element by soldering
  • the semiconductor device of the present invention since the electrode plate made of aluminum or aluminum alloy and the metal member are fixed and the surface electrode of the semiconductor element and the metal member are joined by solder, the solder does not get wet with the electrode plate. It is possible to prevent the solder from being absorbed into the electrode plate.
  • FIG. 1 It is a top view which shows the semiconductor device in Embodiment 1 of this invention. It is sectional drawing which shows the semiconductor device in Embodiment 1 of this invention. It is sectional drawing which shows the manufacturing method of the semiconductor device in Embodiment 1 of this invention. 8 is a partial cross-sectional view showing the method of manufacturing the first lead frame of the semiconductor device in the first embodiment of the present invention.
  • FIG. 10 is a partial cross-sectional view showing another method for manufacturing the first lead frame of the semiconductor device in the first embodiment of the present invention.
  • FIG. 11 is a partial cross-sectional view showing still another method for manufacturing the first lead frame of the semiconductor device in the first embodiment of the present invention. It is sectional drawing which shows the semiconductor device in Embodiment 2 of this invention.
  • FIG. 3 is a view corresponding to FIG.
  • FIG. 2 is a cross-sectional view showing a semiconductor device configured by a plurality of metal layers in which metal members are stacked.
  • FIG. 9 is a partial cross-sectional view corresponding to FIG. 8 and showing a configuration of a solder joint portion between a first lead frame composed of a plurality of metal layers in which metal members are stacked and a surface electrode of a semiconductor element.
  • FIG. 11 is a diagram corresponding to FIG. 10, and is a partial cross-sectional view illustrating another configuration of a solder joint portion between a first lead frame composed of a plurality of metal layers in which metal members are stacked and a surface electrode of a semiconductor element. is there.
  • FIG. 15 is a partial cross-sectional view corresponding to FIG. 14 and showing a configuration of a solder joint portion between a first lead frame composed of a plurality of metal layers in which metal members are stacked and a surface electrode of a semiconductor element.
  • FIG. 1 is a plan view showing a semiconductor device according to the first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing the semiconductor device according to the first embodiment of the present invention.
  • the sealing resin portion 70 is omitted.
  • a semiconductor device 100 includes an insulating substrate 10, semiconductor elements 21 and 22 having a back electrode bonded to a conductor layer 11 provided on the insulating substrate 10, and surface electrodes of the semiconductor elements 21 and 22.
  • a first lead frame 60 that is electrically connected and through which a main circuit current flows, and a second lead frame that is electrically connected to the semiconductor elements 21 and 22 and receives a control signal for controlling the semiconductor elements 21 and 22.
  • the semiconductor elements 21 and 22, and the sealing resin portion 70 that covers the peripheral members of the semiconductor elements 21 and 22, and the case 50 that accommodates these constituent members.
  • the first lead frame 60 has a larger area than the surface electrodes of the semiconductor elements 21 and 22 in plan view, and an electrode plate 63 made of aluminum or an aluminum alloy and a smaller area than the surface electrodes of the semiconductor elements 21 and 22 in plan view. And metal members 61 and 62 fixed to the electrode plate 63 and joined to the surface electrodes of the semiconductor elements 21 and 22 by soldering.
  • the main circuit current is a current flowing in an electric circuit configured using the semiconductor device 100, and the semiconductor device 100 controls conduction and interruption of the main circuit current flowing between the front surface electrode and the back surface electrode. Used for.
  • the insulating substrate 10 is made of an insulating substrate such as a ceramic substrate having a high thermal conductivity such as aluminum nitride (AlN).
  • AlN aluminum nitride
  • the outer dimensions are 40 mm ⁇ 25 mm and the thickness is 0.6 mm.
  • a conductive layer 11 made of a metal having a high conductivity such as copper (Cu) or a copper alloy is provided on the surface of the insulating substrate 10, and a thermal conductivity of copper or a copper alloy or the like is high on the back surface of the insulating substrate 10.
  • a conductor layer 13 made of metal is provided.
  • the conductor layer 11 on the front surface side and the conductor layer 13 on the back surface side may be formed of different materials, but it is preferable to form the same material to reduce the manufacturing cost.
  • the conductor layer 11 and the conductor layer 13 are made of, for example, copper having a thickness of 0.4 mm.
  • the insulating substrate 10 is not limited to an aluminum nitride substrate as long as it is a substrate that can provide insulation and can form a conductor layer that can be soldered like copper.
  • a ceramic substrate such as silicon (Si3N4) may be used, and a substrate other than ceramic such as a glass epoxy substrate or a metal base substrate may be used.
  • the conductor layer 11 is formed with a circuit pattern for allowing a main circuit current to flow through the semiconductor elements 21 and 22, and the semiconductor elements 21 and 22 are joined by a bonding material such as solder or die bond.
  • a metal having a high conductivity is preferred.
  • the conductor layer 13 is bonded to a heat sink (not shown) that exhausts heat generated in the semiconductor elements 21 and 22 to the outside of the semiconductor device 100 by a bonding material such as solder, a metal having high thermal conductivity is used. preferable. Therefore, the conductor layer 11 and the conductor layer 13 are preferably copper or a copper alloy.
  • tin (Sn), nickel on the surface of a metal material having high electrical conductivity and thermal conductivity, such as aluminum and aluminum alloy that does not wet the solder.
  • Ni gold (Au), silver (Ag), or the like may be formed by metallization and may be a metal material in which the solder is wet.
  • the semiconductor elements 21 and 22 are power semiconductor switching elements such as diodes, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors), and control ICs (Integrated). .
  • IGBTs Insulated Gate Bipolar Transistors
  • MOSFETs Metal-Oxide-Semiconductor Field-Effect Transistors
  • control ICs Integrated.
  • the semiconductor elements 21 and 22 are made of a semiconductor material such as silicon (Si), silicon carbide (SiC), or gallium nitride (GaN).
  • the semiconductor elements 21 and 22 have, for example, outer dimensions of 15 mm ⁇ 15 mm and a thickness of 0.3 mm.
  • the semiconductor device 100 includes a pair of a semiconductor element 21 that is a diode and a semiconductor element 22 that is an IGBT
  • the semiconductor device may have a 2-in-1 configuration including two pairs or a 6-in-1 semiconductor device including six pairs.
  • it may be a semiconductor device having a configuration including other semiconductor switching elements such as MOSFETs instead of IGBTs.
  • the semiconductor element 21 that is a diode and the semiconductor element 22 that is an IGBT include a back electrode bonded to the insulating substrate 10 via the conductor layer 11 and a surface electrode provided on the surface opposite to the back electrode. .
  • a first lead frame 60 is connected to the surface electrode.
  • a main circuit current flows between the front surface electrode and the back surface electrode of the semiconductor elements 21 and 22, and the semiconductor elements 21 and 22 are based on control signals input to control electrodes provided in the semiconductor elements 21 and 22. Controls conduction and interruption of main circuit current.
  • the semiconductor element 21 which is a diode has a cathode electrode as a back electrode on the back surface side and an anode electrode as a surface electrode on the surface side.
  • the semiconductor element 22 which is an IGBT has a collector electrode as a back electrode on the back surface side, and has an emitter electrode as a surface electrode and a gate electrode as a control electrode on the surface side.
  • the gate electrode as the control electrode is electrically connected to the second lead frame 67 by the wire 40.
  • the control electrode is not limited to the gate electrode of the semiconductor element 22, and an electrode such as a temperature sensor provided in the semiconductor device 100 is also called a control electrode.
  • FIG. 1 the surface electrode 33 of the semiconductor element 21 and the surface electrode 34 of the semiconductor element 22 are shown, but are omitted in FIG.
  • the back electrodes of the semiconductor element 21 and the semiconductor element 22 are bonded to the conductor layer 11 provided on the insulating substrate 10 with a bonding material (not shown) such as solder. That is, the semiconductor elements 21 and 22 have the back electrodes bonded to the insulating substrate 10 through the conductor layer 11.
  • a terminal plate 66 made of a metal having high conductivity such as aluminum or aluminum alloy is joined to the conductor layer 11 by a method such as ultrasonic joining.
  • a main terminal 65 is provided on the terminal plate 66 and is fixed to the case 50. Thereby, the back electrodes of the semiconductor elements 21 and 22 and the main terminal 65 are electrically connected.
  • the main terminal 65 is provided with a screw hole so that an external wiring member can be screwed.
  • the main terminal 65 is formed with a width of 10 mm and a thickness of 0.6 mm, for example, and may be subjected to copper plating or nickel plating as necessary.
  • the first lead frame 60 has a configuration in which metal members 61 and 62 formed of a metal material such as copper or copper alloy that are wetted by solder are fixed to an electrode plate 63 formed of aluminum or aluminum alloy that is not wettable by solder.
  • the electrode plate 63 has a larger area than the surface electrodes of the semiconductor elements 21 and 22 in plan view and a larger area than the metal members 61 and 62.
  • the metal members 61 and 62 have a smaller area than the surface electrodes of the semiconductor elements 21 and 22 and a smaller area than the electrode plate 63 in plan view.
  • the metal members 61 and 62 may be entirely made of copper or a copper alloy, and the metal members 61 and 62 formed of copper or a copper alloy are metalized by a metal material that is wetted with solder such as silver plating or nickel plating. May be given.
  • the metal members 61 and 62 may be formed of a metal such as nickel, silver, or gold that can be wetted by solder other than copper or copper alloy. However, copper and copper alloy are preferable because they are excellent in electrical conduction and cost. .
  • the metal members 61 and 62 are formed by laminating a plurality of metal layers such as a copper tungsten (Cu—W) fired material and a copper / invar / copper (CIC) clad material having a low coefficient of thermal expansion in addition to copper and a copper alloy.
  • the part joined by the solder to the surface electrode of the semiconductor elements 21 and 22 should just be comprised with copper or copper alloy. That is, the metal members 61 and 62 may be composed of only the first metal layer made of copper or a copper alloy, and the first metal layer and the first metal layer are made of different metals. It is only necessary that the first metal layer has a bonding surface that is formed by laminating a plurality of metal layers including layers and bonded to the surface electrodes 33 and 34 of the semiconductor elements 21 and 22 by solder.
  • the aluminum as used in the field of this invention means the aluminum of purity 99.00% or more, and specifically refers to 1000 series aluminum in JIS specification.
  • the aluminum alloy is an alloy containing aluminum as a main component, and specifically refers to a 2000 series to 8000 series aluminum alloy according to JIS standards. Copper refers to 1000 series copper in JIS standards, and copper alloy refers to 2000 series to 7000 series copper alloys in JIS standards.
  • the electrode plate 63 and the metal members 61 and 62 are joined without using a joining material such as solder, and the electrode plate 63 and the metal members 61 and 62 are in contact and electrically connected.
  • the details of the method for fixing the metal members 61 and 62 to the electrode plate 63 will be described later.
  • the metal members 61 and 62 are inserted into the openings provided in the electrode plate 63.
  • the electrode plate 63 and the metal members 61 and 62 are fixed to each other.
  • the electrode plate 63 is made of, for example, aluminum or aluminum alloy having a thickness of 0.6 mm, and the surface of the electrode plate 63 is also made of the same aluminum or aluminum alloy as the inside of the electrode plate 63. That is, the entire electrode plate 63 is formed of aluminum or an aluminum alloy, and a strong natural oxide film is present on the surface of the electrode plate 63, so that the solder does not get wet.
  • the electrode plate 63 is used to electrically connect the surface electrodes of a plurality of semiconductor elements, or to be electrically connected to an external electric circuit of the semiconductor device. The area is larger.
  • the metal members 61 and 62 are made of, for example, copper or a copper alloy having an outer dimension of 8 mm ⁇ 8 mm and a thickness of 1 mm.
  • the metal members 61 and 62 may be fixed to the electrode plate 63 by, for example, shrink fitting, heat caulking, or pressing, or the metal members 61 and 62 and the electrode plate 63 may be fixed by ultrasonic bonding or thermocompression bonding. Good.
  • the metal members 61 and 62 of the first lead frame 60 are larger than the thickness of the electrode plate 63, a part of the metal member 61 and the metal member 62 protrudes from the electrode plate 63. .
  • the metal members 61 and 62 have protrusions so that a part of the metal members 61 and 62 protrudes from the surface of the electrode plate 63, and the metal members 61 and 62 and the electrode plate 63 is fixed to form a first lead frame 60.
  • the metal members 61 and 62 do not necessarily have a protruding portion protruding from the surface of the electrode plate 63, and the bonding surfaces of the metal members 61 and 62 with the semiconductor elements 21 and 22 are on the surface of the electrode plate 63. You may comprise the same surface or a recessed part. However, if the metal members 61 and 62 have protrusions protruding from the surface of the electrode plate 63, the bonding strength of solder bonding between the protrusions of the metal members 61 and 62 and the semiconductor elements 21 and 22 is increased, and the bonding reliability is increased. Can be increased, which is preferable.
  • the metal member 61 of the first lead frame 60 and the surface electrode of the semiconductor element 21 are joined by the solder 31, and the metal member 62 of the first lead frame 60 and the semiconductor element 22 are connected.
  • the surface electrode is joined by solder 32.
  • the solder 31 and the solder 32 are mainly Sn / Ag based on tin (Sn) and silver (Ag), Sn / Cu based on tin and copper, and mainly tin and bismuth (Bi). It is formed of a solder material having excellent wettability with respect to copper, such as Sn / Bi-based components.
  • lead (Pb) is contained in the material of the solders 31 and 32, the effect of the present invention can be obtained, but solder containing lead is not preferable because of high environmental load.
  • the electrode plate 63 of the first lead frame 60 is formed of aluminum or an aluminum alloy, the solders 31 and 32 are not spread by the electrode plate 63 and absorbed by the electrode plate 63 at the time of soldering. As a result, the amount of solder used for joining the metal members 61 and 62 and the semiconductor elements 21 and 22 is not short, and the metal members 61 and 62 and the semiconductor elements 21 and 22 is joined.
  • the surface electrodes of the semiconductor elements 21 and 22 have a size of, for example, 12 mm ⁇ 12 mm, and the size of the joint surface between the metal members 61 and 62 and the surface electrodes 33 and 34 of the semiconductor elements 21 and 22 is, for example, 8 mm. ⁇ 8 mm. That is, as shown in FIG. 1, the metal members 61 and 62 are entirely located inside the outer periphery of the surface electrodes 33 and 34 of the semiconductor elements 21 and 22 in a plan view, and the metal members 61 and 62 in a plan view. 62 has a smaller area than the surface electrodes 33 and 34 of the semiconductor elements 21 and 22. The metal members 61 and 62 are smaller than the area of the electrode plate 63 in plan view.
  • the solder joint surfaces of the metal members 61 and 62 are located on the inner side of the outer periphery of the surface electrodes 33 and 34 of the semiconductor elements 21 and 22, and the area is smaller than the surface electrodes 33 and 34 of the semiconductor elements 21 and 22.
  • the solders 31 and 32 have a fillet shape in which the base is widened on the surface electrodes 33 and 34 side of the semiconductor elements 21 and 22.
  • the metal members 61 and 62 are projecting portions that protrude from the surface of the electrode plate 63, the bottom surfaces of the projecting portions facing the surface electrodes of the semiconductor elements 21 and 22, and the projecting portions provided between the bottom surface and the electrode plate.
  • the bonding area between the metal members 61 and 62 and the solders 31 and 32 is increased.
  • the first lead frame 60 is excellent in the visibility of the solder joint portion in the inspection after the first lead frame 60 is soldered to the semiconductor elements 21 and 22 with the solder 31 and 32, and the joining stress by the solder 31 and 32 is dispersed. Therefore, the reliability of the solder joint can be increased.
  • a conductive adhesive in which a silver (Ag) filler is dispersed in an epoxy resin instead of solder, Ag, Cu or the like is used.
  • a metal nanoparticle bonding material for bonding metal nanoparticles by firing at low temperature may be used.
  • a conductive adhesive or a metal nanoparticle bonding material is used for either the bonding of the surface electrode 33 of the semiconductor element 21 and the metal member 61 or the bonding of the surface electrode 34 of the semiconductor element 22 and the metal member 62. Also good.
  • the electrode plate 63 formed of aluminum or aluminum alloy has a natural oxide film on the surface, good conductivity cannot be obtained when bonded with a conductive adhesive or metal nanoparticle bonding material.
  • 61 and 62 are made of copper or a copper alloy, and the natural oxide film is porous and relatively easy to break, and a new surface is easily formed. Therefore, even if a conductive adhesive or metal nanoparticle bonding material is used for bonding, The electrical resistance can be reduced.
  • the first lead frame 60 is provided with a main terminal 64 at the end opposite to the side where the metal members 61 and 62 are provided, and the main terminal 64 is fixed to the case 50.
  • the main terminal 64 is provided with a screw hole so that an external wiring member can be screwed.
  • the main terminal 64 is formed with a width of 10 mm and a thickness of 0.6 mm, for example, and may be plated with copper or nickel as necessary. With the above configuration, the main terminal 65 and the main terminal 64 are electrically connected via the conductor layer 11, the semiconductor elements 21 and 22, and the first lead frame 60, and between the main terminal 65 and the main terminal 64.
  • the main circuit current can be allowed to flow through.
  • the second lead frame 67 is formed of copper, copper alloy, aluminum, or aluminum alloy, and is fixed to the case 50. One end of the second lead frame 67 is exposed to the outside of the semiconductor device 100 and serves as a control terminal for inputting a control signal.
  • the second lead frame 67 is formed of aluminum or an aluminum alloy, the wettability of the solder may be improved by performing copper plating or nickel plating on the portion of the control terminal exposed to the outside of the semiconductor device 100.
  • the other end of the second lead frame 67 is electrically connected to the control electrode 23 provided on the surface side of the semiconductor element 22 by a wire 40.
  • the wire 40 may be, for example, an aluminum wire having a diameter of 0.15 mm, an aluminum-coated copper wire, or a gold wire, and is ultrasonically bonded to the second lead frame 67 and the control electrode 23 by wire bonding. Yes.
  • the second lead frame and the control electrode 23 are not limited to wire bonding, but may be electrically connected by a ribbon bar or a bus bar obtained by ultrasonically bonding a metal plate.
  • the case 50 is formed in a frame shape using PPS (Polyphenylene Sulfide) resin, LCP (Liquid Crystal Polymer) resin, or the like.
  • PPS Polyphenylene Sulfide
  • LCP Liquid Crystal Polymer
  • the external dimensions are 48 mm ⁇ 28 mm and the height is 12 mm.
  • An insulating substrate 10 is provided at the bottom of the case 50, and the conductor layer 13 is exposed to the outside of the semiconductor device 100.
  • the insulating substrate 10 is bonded and fixed to the case 50 with an adhesive 80 provided around the insulating substrate 10.
  • the sealing resin portion 70 is made of potting resin and covers the conductor layer 11, the semiconductor elements 21 and 22, the first lead frame 60, the second lead frame 67, the wire 40, and the solders 31 and 32. Insulated and sealed.
  • the sealing resin forming the sealing resin portion 70 is not limited to the potting resin but may be a liquid gel or the like as long as the insulating property is ensured and can be poured and cured at room temperature.
  • the semiconductor device 100 is configured as described above.
  • FIG. 3 is a cross-sectional view showing the method of manufacturing the semiconductor device in the first embodiment of the present invention.
  • FIG. 3A is a diagram illustrating a process until the semiconductor elements 21 and 22 are bonded to the insulating substrate 10.
  • FIG. 3B is a diagram illustrating the surface electrodes of the semiconductor elements 21 and 22 and the first lead frame 60. It is a figure which shows the process until it mounts the plate solders 31a and 32a between the metal members 61 and 62 of this.
  • 3C the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62 of the first lead frame 60 are soldered together, and the control electrodes of the semiconductor element 22 and the second lead frame 67 are joined.
  • FIG. 3D is a diagram illustrating a process until the semiconductor device 100 is completed by forming the sealing resin portion 70.
  • the back electrodes of the semiconductor element 21 and the semiconductor element 22 are formed on the conductor layer 11 of the insulating substrate 10 in which the conductor layer 11 is bonded to the front surface side and the conductor layer 13 is bonded to the back surface side.
  • the back surface electrodes of the semiconductor elements 21 and 22 and the conductor layer 11 may be joined by solder or by a metal nanoparticle joining material.
  • the solder is not remelted by heating in the process of solder joining the surface electrodes of the semiconductor elements 21 and 22 and the first lead frame 60 shown in FIG. It is preferable to use a solder having a higher melting point than the solders 31 and 32 used for joining the surface electrodes of the semiconductor elements 21 and 22 and the first lead frame 60.
  • the insulating substrate 10 in which the semiconductor elements 21 and 22 are joined is arranged at the bottom of the frame-shaped case 50, and the silicone substrate is formed between the periphery of the insulating substrate 10 and the case 50.
  • the adhesive 80 is filled and fixed. Since the adhesive 80 fills the gap between the insulating substrate 10 and the case 50, the potting material filled in the case 50 leaks in the process of forming the sealing resin portion 70 shown in FIG. Can be prevented.
  • the case 50 is provided with a first lead frame 60, a terminal plate 66, and a second lead frame 67, which are configured by the electrode plate 63 and the metal members 61 and 62 in advance by insert molding.
  • a main terminal 64 provided at the end of the first lead frame 60 and a main terminal 65 provided at the end of the terminal plate 66 are fixed to the upper part. A method for fixing the metal members 61 and 62 to the electrode plate 63 will be described later.
  • the first lead frame 60 faces the surface electrodes of the semiconductor elements 21 and 22 in which the bonding surfaces of the metal members 61 and 62 are bonded to the insulating substrate 10.
  • the second lead frame 67 is fixed to the case 50 so that the wire bonding portion is positioned at a position corresponding to the control electrode of the semiconductor element 22 bonded to the insulating substrate 10. Yes.
  • sheet solders 31a and 32a are arranged, and the periphery of the insulating substrate 10 is bonded.
  • the material 80 is adhesively fixed to the case 50.
  • the sheet solders 31a and 32a disposed between the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62 of the first lead frame 60 are melted and solidified. Then, soldering is performed using solders 31 and 32. Further, the control electrode of the semiconductor element 22 and the second lead frame 67 are electrically connected by the wire 40, and the terminal plate 66 and the conductor layer 11 provided on the insulating substrate 10 are joined.
  • the sheet solders 31a and 32a disposed between the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62 of the first lead frame 60 are heated and melted by a reflow furnace or a hot plate.
  • solder which melts at a temperature lower than the melting point of the bonding material obtained by bonding the semiconductor elements 21 and 22 to the conductor layer 11 of the insulating substrate 10 is used.
  • the back electrodes of the conductor layer 11 and the semiconductor elements 21 and 22 are used. It is heated at a temperature at which the bonding material between and does not remelt.
  • the molten solders 31 and 32 get wet with the surface electrodes of the semiconductor elements 21 and 22 and also get wet with the metal members 61 and 62 of the first lead frame 60.
  • the metal members 61 and 62 are located inside the outer circumferences of the surface electrodes of the semiconductor elements 21 and 22 in a plan view and have a smaller area than the surface electrodes of the semiconductor elements 21 and 22 in a plan view, and therefore are shown in FIG. As described above, it has a shape in which the contact angle is small with respect to the surface electrodes of the semiconductor elements 21 and 22 and the base is widened, and it wets not only the bottom surfaces of the protruding portions of the metal members 61 and 62 of the first lead frame 60 but also the side surfaces. A fillet having an expanded shape is formed.
  • the electrode plate 63 of the first lead frame 60 is formed of aluminum or an aluminum alloy, the molten solders 31 and 32 cannot be wetted by the electrode plate 63, and the molten solders 31 and 32 are electrodes. The plate 63 does not spread wet. For this reason, the solder 31 and 32 are not absorbed by the electrode plate 63, and a predetermined amount of solder 31 and 32 is held between the semiconductor elements 21 and 22 and the metal members 61 and 62 of the first lead frame 60. Thus, the amount of solder for solder joining is not insufficient.
  • the metal members 61 and 62 have a smaller area than the surface electrodes of the semiconductor elements 21 and 22 in plan view, the solder does not spread more than necessary on the surfaces of the metal members 61 and 62, so There is no shortage of solder.
  • solders 31 and 32 are cooled to become solidified solders 31 and 32, and the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62 are soldered. Since the solders 31 and 32 are provided only between the semiconductor elements 21 and 22 and the metal members 61 and 62 and do not spread over the electrode plate 63 having a larger area than the surface electrodes of the semiconductor elements 21 and 22 in plan view. A sufficient amount of solder exists between the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62, and a strong and highly reliable solder joint is performed.
  • the surface facing the surface electrode of the semiconductor elements 21 and 22 constituting the bonding surfaces of the metal members 61 and 62 may be a flat surface, a surface on which a protrusion is formed, a surface having a sharp shape, or a semiconductor element 21 and 22 may be curved surfaces having a convex shape on the surface electrode side.
  • the control electrode of the semiconductor element 22 and the second lead frame 67 are bonded by ultrasonic bonding by wire bonding. That is, the control electrode of the semiconductor element 22 and the second lead frame 67 are electrically connected by the wire 40. Further, the terminal plate 66 and the conductor layer 11 provided on the insulating substrate 10 are bonded by ultrasonic bonding. Such ultrasonic bonding may be performed before or after solder bonding of the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62 of the first lead frame 60. The semiconductor elements 21 and 22 are electrically connected between the main terminal 64 and the main terminal 65 of the semiconductor device 100 by the above solder bonding and ultrasonic bonding.
  • a sealing resin portion 70 is formed with potting resin in the case 50, and the case 50 is insulated and sealed.
  • the potting resin heated to 60 ° C is poured into the case 50, vacuum degassed, heated at 100 ° C for 1.5 hours, and then heated at 140 ° C for 1.5 hours to cure the potting resin and seal the resin. Part 70 is formed.
  • the semiconductor device 100 is completed through the above steps.
  • FIG. 4 is a partial cross-sectional view showing the method for manufacturing the first lead frame of the semiconductor device in the first embodiment of the present invention.
  • FIG. 4 shows the metal member 62 of the first lead frame 60 and the surrounding electrode plate 63, and shows a method of fixing the metal member 62 and the electrode plate 63 by shrink fitting.
  • FIG. 4A is a diagram showing a state in which the electrode plate 63 is heated to enlarge the area of the opening formed in the electrode plate 63
  • FIG. FIG. 5 is a view showing a state in which an opening formed in the electrode plate 63 is reduced and the metal member 62 and the electrode plate 63 are fixed by shrinkage fitting.
  • the metal member 61 is omitted in FIG. 4, the metal member 61 is also fixed to the electrode plate 63 by the same method as the metal member 62.
  • an opening is formed in the electrode plate 63 made of aluminum or aluminum alloy by press working or the like.
  • a metal member 62 made of a metal material such as copper or copper alloy that wets the solder is formed by pressing or the like.
  • the opening formed in the electrode plate 63 has a size slightly smaller than 8 mm ⁇ 8 mm. , 7.99 mm ⁇ 7.99 mm.
  • the electrode plate 63 is heated, and the opening formed in the electrode plate 63 is expanded by thermal expansion.
  • the linear thermal expansion coefficient of aluminum is 23 ppm / K
  • the linear thermal expansion coefficient of copper is 16 ppm / K.
  • the size of the opening of the electrode plate 63 is about Since it becomes 0.75% larger, it becomes about 8.05 mm ⁇ about 8.05 mm, which is larger than the outer dimension 8 mm ⁇ 8 mm of the metal member 62. Therefore, as shown in FIG. 4A, the metal member 62 can be fitted into the opening of the electrode plate 63.
  • the electrode plate 63 is cooled with the metal member 62 fitted in the opening of the electrode plate 63, and the electrode plate 63 and the metal member 62 are brought to the same temperature. .
  • the opening formed in the electrode plate 63 is reduced, so that the electrode plate 63 and the metal member 62 are in close contact, and the metal member 62 is inserted into the opening of the electrode plate 63. It is fixed. That is, the electrode plate 63 is fixed to the metal member 62.
  • the opening of the electrode plate 63 is formed to be smaller than the outer dimension of the metal member 62.
  • the electrode plate 63 when the electrode plate 63 is cooled, the opening of the electrode plate 63 and the metal member 62 are deformed and are in close contact with each other. As a result, the first lead frame 60 is formed.
  • aluminum that is lighter than copper can be used as an electrode plate.
  • the first lead frame 60 formed in this way has a difference in linear thermal expansion coefficient between the metal member 62 made of copper and the electrode plate 63 made of aluminum.
  • the size of the opening of the electrode plate 63 may be larger than the outer dimension of the metal member 62.
  • the outer dimensions of the opening of the electrode plate 63 and the metal member 62 are It becomes the same magnitude
  • the first lead frame 60 can be manufactured by shrink fitting.
  • the first lead frame 60 manufactured in this way is configured such that the metal members 61 and 62 and the electrode plate 63 are fixed in contact with each other without using a bonding material. It is excellent and high reliability can be obtained because there is no corrosion or peeling of the bonding material.
  • FIG. 5 is a partial cross-sectional view showing another method for manufacturing the first lead frame of the semiconductor device in the first embodiment of the present invention.
  • FIG. 5 shows the metal member 62 of the first lead frame 60 and the surrounding electrode plate 63 as in FIG. 4.
  • the metal member 62 is pressed to form the metal member 62 and the electrode plate 63. It shows the method of fixing.
  • FIG. 5A is a view showing a state in which a metal member 62a formed slightly smaller than the opening is fitted in the opening formed in the electrode plate 63
  • FIG. 5B shows a state in which the metal member 62a is pressed.
  • FIG. 5 It is a figure which shows the state which processed and enlarged the external dimension and the metal member 62 and the electrode plate 63 were adhered.
  • the metal member 61 is omitted as in FIG. 4, but the metal member 61 is also fixed to the electrode plate 63 by the same method as the metal member 62.
  • an opening is formed in the electrode plate 63, and a metal member 62a having an outer dimension smaller than the opening of the electrode plate 63 is formed by pressing or the like.
  • the outer dimensions of the metal member 62a may be 7.9 mm ⁇ 7.9 mm and the thickness may be 1 mm. Then, the metal member 62 a is fitted into the opening of the electrode plate 63.
  • the metal member 62 formed by crushing the metal member 62a has a large outer dimension perpendicular to the thickness direction, and is fixed in a state where the metal member 62 is inserted into the opening of the electrode plate 63.
  • 1 lead frame 60 is completed. Since the metal member 62 and the electrode plate 63 are in close contact with each other, good electrical conduction with low electrical resistance can be obtained. As described above, the first lead frame 60 can be manufactured by press working.
  • the first lead frame 60 manufactured in this way is configured such that the metal members 61 and 62 and the electrode plate 63 are brought into contact with each other without using a bonding material, as in the case of manufacturing by shrink fitting. Therefore, it is excellent in electric conduction and heat conduction, and high reliability can be obtained because corrosion or peeling of the bonding material does not occur.
  • FIG. 6 is a partial cross-sectional view showing still another method for manufacturing the first lead frame of the semiconductor device in the first embodiment of the present invention.
  • FIG. 6 shows the metal member 62 of the first lead frame 60 and the surrounding electrode plate 63 as in FIG. 4, and shows a method of joining the metal member 62 and the electrode plate 63 by laser welding.
  • FIG. 6A is a view showing a state in which a metal member 62 formed slightly smaller than the opening is fitted in the opening formed in the electrode plate 63
  • FIG. 6B shows a metal member formed by laser welding. It is a figure which shows the state to which 62 and the electrode plate 63 were adhered.
  • the metal member 61 is omitted as in FIG. 4, but the metal member 61 is also fixed to the electrode plate 63 by the same method as the metal member 62.
  • an opening is formed in the electrode plate 63, and a metal member 62 having an outer dimension smaller than the opening formed in the electrode plate 63 is formed.
  • the outer dimensions of the metal member 62a may be 7.9 mm ⁇ 7.9 mm and the thickness may be 1 mm. Then, the metal member 62 is fitted into the opening of the electrode plate 63.
  • a laser beam is applied to the joint between the electrode plate 63 and the metal member 62 to perform laser welding.
  • a welding mark 62b made of an alloy of copper and aluminum is formed at the joint between the electrode plate 63 and the metal member 62, and the metal member 62 and the electrode plate 63 are fixed to complete the first lead frame 60.
  • the first lead frame 60 can be manufactured by laser welding. Further, by promoting the metal diffusion between the electrode plate 63 and the metal member 62 by heat treatment or the like, it is possible to increase electrical conduction, thermal conduction, or mechanical strength. In this case, at least a part between the metal member 62 and the electrode plate 63 is formed with a joint with metal diffusion.
  • the first lead frame 60 can be manufactured by inserting and fixing the metal members 61 and 62 to the opening of the electrode plate 63 by shrink fitting, pressing, or laser welding.
  • the manufacturing method of one lead frame 60 is not limited to the above method.
  • the electrode plate 63 in which no opening is formed and the metal members 61 and 62 may be joined to fix the metal members 61 and 62 and the electrode plate 63, and a load is applied while applying ultrasonic waves.
  • the metal members 61, 62 and the electrode plate 63 are bonded and fixed by ultrasonic bonding, heating and pressing with a load while heating to a temperature higher than the recrystallization temperature of aluminum, or friction stir welding. May be.
  • the area of the electrode plate 63 is larger than the areas of the metal members 61 and 62 in plan view. That is, the area of the surface arranged parallel to the surface electrode of the semiconductor element is larger in the electrode plate 63 than in the metal members 61 and 62.
  • a metallization process such as solder coating or Ni / Au plating may be performed on the surfaces of the metal members 61 and 62 in order to prevent rust. Since the metal film formed on the surfaces of the metal members 61 and 62 by such metallization processing is melted in the solder when the metal members 61 and 62 and the surface electrodes of the semiconductor elements 21 and 22 are joined by solder, It does not remain on the surfaces of the metal members 61 and 62 after the solder joint, and the metal element used for the metallization process is detected from the solder.
  • the first lead frame 60 is made of the metal members 61 and 62 formed of a metal wettable by solder such as copper or copper alloy, and the surface is made of aluminum or aluminum alloy. Since it has a natural oxide film, an electrode plate 63 that does not wet the solder is fixedly formed. Therefore, in order to electrically connect the surface electrodes of the semiconductor elements 21 and 22 and the first lead frame 60, solder is disposed between the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62.
  • the solder Even if the solder is melted, the melted solder wets only on the surface electrodes of the semiconductor elements 21 and 22 and the surfaces of the metal members 61 and 62. That is, the molten solder cannot wet and spread on the electrode plate 63 formed of aluminum or an aluminum alloy. That is, the solder is wetted only on the surfaces of the metal members 61 and 62 having a smaller area than the surface electrodes of the semiconductor elements 21 and 22 in plan view, and the electrode plate 63 having a larger area than the surface electrodes of the semiconductor elements 21 and 22 in plan view. Therefore, the amount of solder necessary for solder joint can be reduced.
  • an amount of solder necessary for joining the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62 is ensured between the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62. Since the surface electrodes of the semiconductor elements 21, 22 and the metal members 61, 62 are soldered with a sufficient amount of solder 31, 32, there is a gap between the surface electrodes of the semiconductor elements 21, 22 and the first lead frame 60. The occurrence of open defects can be suppressed. Furthermore, since the area where the heated and melted solder gets wet is limited to the surface electrodes of the semiconductor elements 21 and 22 and the surfaces of the metal members 61 and 62, the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62. The amount of the solders 31 and 32 provided in the solder joint portion can be reduced to an appropriate amount, and the stress applied to the surface electrodes of the semiconductor elements 21 and 22 by the solders 31 and 32 can be reduced.
  • the semiconductor device 100 Since the main circuit current flowing in the semiconductor device 100 is a large current of, for example, several tens of amperes or more, the semiconductor device 100 is used to efficiently exhaust heat generated in the semiconductor device 100 such as heat generation of the semiconductor elements 21 and 22.
  • a ceramic substrate made of a ceramic having a high thermal conductivity such as aluminum nitride (AlN) is used for the insulating substrate 10 disposed at the bottom of the semiconductor substrate and to which the back electrodes of the semiconductor elements 21 and 22 are bonded.
  • the first lead frame 60 is directly joined to the surface electrodes of the semiconductor elements 21 and 22 with solder. For this reason, the thermal stress generated by the difference between the linear thermal expansion coefficient of the member joined to the front electrode and the rear electrode and the linear thermal expansion coefficient of the semiconductor element is applied to the front electrode and the rear electrode of the semiconductor elements 21 and 22. Applied.
  • the linear thermal expansion coefficient when the electrode plate 63 of the first lead frame 60 is made of aluminum is 23 ppm / K
  • the linear thermal expansion coefficient when the metal members 61 and 62 are made of copper is 16 ppm / K.
  • the linear thermal expansion coefficients of the semiconductor elements 21 and 22 are 3 to 3.5 ppm / K when the material of the semiconductor elements 21 and 22 is Si, and 4.2 to 4.7 ppm / K when SiC is used. In this case, it is 3.2 to 5.6 ppm / K. Since GaN is anisotropic, the value of linear thermal expansion varies greatly depending on the direction.
  • the linear thermal expansion coefficient of the insulating substrate 10 made of aluminum nitride to which the semiconductor elements 21 and 22 are bonded is about 10 ppm / K as a whole including the conductor layer 11 and the conductor layer 13 provided on both surfaces of the insulating substrate 10. It is.
  • the difference in coefficient of linear thermal expansion between the semiconductor elements 21 and 22 is larger in the electrode plate 63 made of aluminum on the front electrode side or the metal members 61 and 62 made of copper than the insulating substrate 10 on the back electrode side. Therefore, the present invention is more effective than forming the entire first lead frame with an electrode plate made of aluminum, applying copper plating to the electrode plate made of aluminum, and joining the electrode plate and the surface electrode of the semiconductor element with solder.
  • the first lead frame 60 is composed of an electrode plate 63 made of aluminum fixed to metal members 61, 62 made of copper, and the surfaces of the metal members 61, 62 and the semiconductor elements 21, 22 Since the thermal stress applied to the surface electrodes of the semiconductor elements 21 and 22 can be reduced by joining the electrodes with solder, the reliability of the semiconductor elements 21 and 22 can be improved.
  • the semiconductor elements 21 and 22 are formed of silicon carbide (SiC)
  • the semiconductor elements 21 and 22 may be continuously used in a state where the temperature exceeds 200 ° C.
  • the first lead frame is constituted only by an electrode plate made of copper-plated aluminum and the electrode plate and the surface electrode of the semiconductor element are joined by solder
  • the aluminum element having a temperature of 200 ° C.
  • the aluminum crystal grains of the electrode plate constituting the first lead frame are coarsened, causing cracks and peeling of the copper plating film applied to the electrode plate, This reduces the reliability of the solder joint between the electrode plate and the surface electrode of the semiconductor element.
  • the first lead frame 60 is configured by fixing an electrode plate 63 made of aluminum or an aluminum alloy and metal members 61 and 62 whose solder joints are made of copper or a copper alloy. Therefore, the metal members 61 and 62 have higher heat resistance than aluminum, and even if the semiconductor elements 21 and 22 are continuously used in a state where the temperature exceeds 200 ° C., the surface of the semiconductor elements 21 and 22 The reliability of the solder joint between the electrode and the metal members 61 and 62 can be sufficiently increased.
  • the electrode plate is plated with copper so that the solder is wetted on the electrode plate.
  • a high level of technology is required for the plating process on aluminum or an aluminum alloy.
  • the electrode plate is formed of aluminum or an aluminum alloy, the result is equivalent to the case where the electrode plate is formed of copper or a copper alloy.
  • the above cost was required.
  • the copper of the thin copper plating film melts into the melted solder during solder joining, and the copper plating film peels off when using semiconductor devices, so the solder joints have high reliability. It was difficult to secure.
  • the first lead frame 60 is configured by fixing the electrode plate 63 made of aluminum or aluminum alloy and the metal members 61 and 62 made of metal wetted by solder such as copper or copper alloy. Therefore, the first lead frame 60 can be manufactured at a low cost, and the metal members 61 and 62 have no problems such as peeling or solder erosion, so that high reliability is ensured in the solder joint portion. can do.
  • FIG. FIG. 7 is a sectional view showing a semiconductor device according to the second embodiment of the present invention. 7, the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in that the semiconductor device 200 does not include a case and a sealing resin portion and is sealed by transfer molding using a mold resin.
  • the first lead frame 60 has a metal member 61, 62 made of a material that wets solder such as copper or copper alloy, and an electrode plate 63 made of aluminum or aluminum alloy fixed. Has been configured.
  • the metal members 61 and 62 are joined to the surface electrodes of the semiconductor elements 21 and 22 joined to the insulating substrate 10 with solder.
  • the electrode plate 63 constituting the first lead frame 60 is provided with a main terminal portion 68 connected to an external electric circuit at the end opposite to the side on which the metal members 61 and 62 are fixed.
  • the main terminal portion 68 is exposed to the outside of the semiconductor device 200, and is subjected to metallization processing with a metal that wets the solder, such as nickel plating or copper plating, as necessary.
  • a terminal board (not shown) joined to the conductor layer 11 of the insulating substrate 10 is provided, and an external electric circuit is connected to the end of the terminal board opposite to the side joined to the conductor layer 11.
  • a main terminal portion (not shown) to be connected is provided.
  • the constituent members of the semiconductor device 200 are sealed with the sealing resin portion 71 by transfer molding.
  • the conductor layer 13 provided on the back surface side of the insulating substrate 10 is provided so as to be exposed to the outside of the sealing resin portion 71, and the conductor layer 13 is joined to a heat sink (not shown) for exhaust heat by soldering or the like. It is comprised so that it can join with a material.
  • the semiconductor device 200 is joined to the surface electrodes of the semiconductor elements 21 and 22 by solder, and is located inside the outer periphery of the surface electrodes of the semiconductor elements 21 and 22 in a plan view. Since the first lead frame 60 is configured by fixing the electrode plate 63 made of aluminum or aluminum alloy to the surface electrodes 21 and 22 and the metal members 61 and 62 having a smaller area than the electrode plate 53, the solders 31 and 32 are formed. Since the electrode plate 63 does not get wet and the solders 31 and 32 are not absorbed by the electrode plate 63, it is possible to ensure a sufficient amount of solder for joining the surface electrodes of the semiconductor elements 21 and 22 and the metal members 61 and 62. And the same effect as in the first embodiment can be obtained.
  • FIG. 8 is a partial cross-sectional view showing the configuration of the solder joint between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element in the third embodiment of the present invention.
  • 8 shows the configuration of the solder joint between the semiconductor element 22 and the metal member 62, the solder joint between the semiconductor element 21 and the metal member 61 has the same configuration.
  • the same reference numerals as those in FIGS. 1 and 2 denote the same or corresponding components, and the description thereof is omitted.
  • the first embodiment of the present invention is different from the first embodiment in the fixing structure of the electrode plate 63 and the metal member 62 constituting the first lead frame 60.
  • the back electrode of the semiconductor element 22 is bonded to the conductor layer 11 provided on the front surface side of the insulating substrate 10 with a bonding material 36 such as solder.
  • the first lead frame 60 is joined to the surface electrode of the semiconductor element 22 with the solder 32.
  • the first lead frame 60 includes a metal member 62 bonded to the surface electrode of the semiconductor element 22 with a solder 32 and an electrode plate 63 fixed to the metal member 62.
  • the electrode plate 63 is electrically connected to the surface electrode of the semiconductor element 22 through the metal member 62.
  • the electrode plate 63 made of aluminum or an aluminum alloy is provided with an opening made of a blind hole that is recessed from the surface of the electrode plate 63, and the stop provided in the electrode plate 63.
  • the metal member 62 is inserted into the opening made of the hole, and the electrode plate 63 and the metal member 62 are fixed.
  • the metal member 62 and the electrode plate 63 can be fixed.
  • FIG. 9 is a partial cross-sectional view showing another configuration of the solder joint between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element in the third embodiment of the present invention.
  • the same reference numerals as those in FIG. 8 denote the same or corresponding components, and the description thereof is omitted.
  • the structure shown in FIG. 8 is different from the structure in which the metal member 62 is bonded and fixed to the surface of the electrode plate 63 constituting the first lead frame 60.
  • a metal member 62 made of a metal such as copper or a copper alloy that wets with solder is stuck and fixed to the surface of an electrode plate 63 made of aluminum or an aluminum alloy. That is, the entire metal member 62 is a protruding portion that protrudes from the surface of the electrode plate 63.
  • the metal member 62 can be adhered and fixed to the electrode plate 63 by ultrasonic bonding.
  • the metal member 62 may be formed on the surface of the electrode plate 63 by a film forming process such as plating or printing.
  • the metal member 62 When the metal member 62 is thin, when the surface electrode of the semiconductor element 22 is joined with solder, a metal material such as copper constituting the metal member 62 melts into the molten solder, so-called solder erosion. As a result, a part of the metal member 62 may be lost and the solder joint strength may be reduced. Therefore, the metal member 62 needs to have a thickness that is not lost even by solder erosion. That is, the thickness of the metal member 62 is 10 ⁇ m or more, and preferably 50 ⁇ m or more.
  • the metal member 62 is preferably formed of a metal plate or a metal foil and bonded to the electrode plate 63 rather than being formed by a film forming process such as plating.
  • the thickness of the metal member 62 is more preferably 100 ⁇ m or more from the viewpoint of easy handling when the metal member 62 is joined.
  • the thickness of the metal member 62 is not limited to the semiconductor device having the configuration shown in FIG. 9, but is 10 ⁇ m or more, preferably 50 ⁇ m or more in the configurations of the semiconductor devices shown in all the embodiments of the present invention. More preferably, it is 100 ⁇ m or more.
  • the thickness of the metal layer having a bonding surface bonded to the surface electrode of the semiconductor element with solder is 10 ⁇ m or more, preferably Is 50 ⁇ m or more, more preferably 100 ⁇ m or more.
  • FIG. 10 is a partial cross-sectional view showing another configuration of the solder joint portion between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element according to the third embodiment of the present invention.
  • the same reference numerals as those in FIG. 8 denote the same or corresponding components, and the description thereof is omitted.
  • the configuration of FIG. 8 is that the electrode plate 63 and the metal member 62 are fixed so that the solder joint surface of the metal member 62 is flush with the surface of the electrode plate 63 constituting the first lead frame 60.
  • the structure is different.
  • the metal member 62 is inserted and fixed in an opening provided in the electrode plate 63 constituting the first lead frame 60.
  • the surface of the electrode plate 63 on the side where the solder 32 is joined and the joint surface of the metal member 62 where the solder 32 is joined constitute the same surface. That is, the metal member 62 does not have a protruding portion that protrudes from the surface of the electrode plate 63. Therefore, the solder 32 is provided only on the surface of the metal member 62 facing the surface electrode of the semiconductor element 22, and the semiconductor shown in FIG. 8, FIG. 9, or the first and second embodiments in which the metal member 62 has a protruding portion. Since the area where the solder 32 is joined is smaller than that of the apparatus, the joining strength of the solder 32 is reduced.
  • the surface of the metal member 62 on the side where the solder 32 of the electrode plate 63 is joined may be the same surface as the joint surface where the solder 32 of the metal member 62 is joined. . Since the metal member 62 is located on the inner side of the outer periphery of the surface electrode of the semiconductor element 22 in a plan view, the solder 32 is formed in a fillet shape having a base spread on the surface electrode side of the semiconductor element 22, and has high bonding reliability. Obtainable.
  • the metal member 62 is inserted and fixed in the opening that penetrates the electrode plate 63 provided in the electrode plate 63, but the metal member 62 is provided in the electrode plate 63 as shown in FIG.
  • the metal member 62 may be inserted into and fixed to the opening made of a hole.
  • the surface of the electrode plate 63 on the side where the solder 32 is joined may be the same as the joint surface where the solder 32 of the metal member 62 is joined.
  • FIG. 11 is a partial cross-sectional view showing a configuration of a solder joint portion between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element according to the fourth embodiment of the present invention.
  • 11 shows the configuration of the solder joint portion between the semiconductor element 22 and the metal member 62, the solder joint portion between the semiconductor element 21 and the metal member 61 as in the semiconductor device shown in the third embodiment.
  • the configuration is the same for.
  • the same reference numerals as those in FIGS. 1, 2, and 8 denote the same or corresponding components, and the description thereof is omitted.
  • the structure of the metal member 162 constituting the first lead frame 60 is different from the first embodiment of the present invention.
  • the first lead frame 60 is composed of an electrode plate 63 made of aluminum or an aluminum alloy, and a metal member 162 made of a metal material wetted by solder such as copper or copper alloy.
  • the member 162 and the electrode plate 63 are fixed.
  • the metal member 162 has an insertion portion 162 a inserted into an opening provided in the electrode plate 63, and a joint portion 162 b having a joint surface joined to the surface electrode of the semiconductor element 22 and the solder 32.
  • the area of the joint portion 162b is larger than the area of the insertion portion 162a. That is, the area of the joint surface of the metal member 162 is larger than the area of the opening provided in the electrode plate 63 in plan view.
  • the area of the joint 162b is smaller than the area of the surface electrode of the semiconductor element 22 in plan view.
  • the metal member 162 is fixed to the electrode plate 63 by inserting the insertion portion 162a into the opening of the electrode plate 63 by the method described in the first embodiment, such as shrink fitting or pressing.
  • the joint 162b of the metal member 162 constitutes a projecting portion projecting from the surface of the electrode plate 63, and the surface electrode of the semiconductor element 22 and the joint 162b of the metal member 162 are joined by the solder 32. . Thereby, the first lead frame 60 and the semiconductor element 22 are electrically connected.
  • the metal member 162 includes the insertion portion 162a inserted into the electrode plate 63 and the joint portion 162b having a joint surface having a larger area than the opening of the electrode plate 63 in plan view. Even when the width is not sufficiently wide and is equal to the width of the joint 162b, the metal member 162 has a sufficient bonding area to be joined to the surface electrode of the semiconductor element 22 by the solder 32, and further the metal member 162 and the electrode plate 63 can be firmly fixed to each other. As a result, good electrical conduction and thermal conduction can be ensured between the first lead frame 60 and the semiconductor element 22.
  • the joint 162 b of the metal member 162 protrudes from the surface of the electrode plate 63, and thus it can be said that the joint 162 b is a protrusion.
  • the joint 162 b does not necessarily protrude from the surface of the electrode plate 63. It does not have to be.
  • the electrode plate 63 may be formed with a recess so that the joint 162b can be accommodated, and the joint 162b may be accommodated in the recess so that the joint 162b does not protrude from the surface of the electrode plate 63.
  • FIG. 12 is a partial cross-sectional view showing another configuration of the solder joint portion between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element according to the fourth embodiment of the present invention.
  • 12 shows the configuration of the solder joint portion between the semiconductor element 22 and the metal member 62 as in FIG. 11, the solder joint portion between the semiconductor element 21 and the metal member 61 has the same configuration. ing.
  • the same reference numerals as those in FIG. 11 denote the same or corresponding components, and the description thereof is omitted.
  • FIG. 11 is different from FIG. 11 in that the metal member 163 constituting the first lead frame 60 has a recessed portion 163 a that is recessed with respect to the joint surface of the metal member 163.
  • the first lead frame 60 is constituted by an electrode plate 63 and a metal member 163 fixed to each other.
  • the metal member 163 is provided with a recess 163 a on the joint surface where the solder 32 is provided, and the recess 163 a is a through-hole penetrating the metal member 163. For this reason, the solder 32 is provided in the recess 163a.
  • the recess 163a is not limited to a through-hole penetrating the metal member 163, and may have any shape that is recessed from the joint surface of the metal member 163 so that the solder 32 can enter the recess 163a.
  • the concave portion 163a into which the solder 32 can enter is provided on the joint surface of the metal member 163, the amount of the solder 32 provided between the surface electrode of the semiconductor element 22 and the metal member 163 is excessive.
  • the recess 163a wets an excessive amount of solder and spreads around the joint between the surface electrode of the semiconductor element 22 and the metal member 163, and prevents the occurrence of a short circuit defect by adhering to the surrounding portion. be able to.
  • the recess shown in FIG. 12 may be provided in the metal member having the insertion portion and the joint shown in FIG. 11, and the same effect can be obtained even with the metal member having the shape shown in FIG. .
  • FIG. 13 is a plan view showing a semiconductor device according to the fifth embodiment of the present invention.
  • FIG. 14 is a partial cross-sectional view showing the configuration of the solder joint between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element in the fifth embodiment of the present invention.
  • 13 and 14 the same reference numerals as those in FIG. 1 denote the same or corresponding components, and the description thereof is omitted.
  • the structure of the first lead frame 60 is different from the first embodiment of the present invention.
  • the sealing resin portion is omitted.
  • the first lead frame 60 of the semiconductor device 300 is a metal formed of a metal such as copper or a copper alloy that gets wet with an electrode plate 63 formed of aluminum or an aluminum alloy.
  • a metal member 165 made of a tube is fixedly configured.
  • the metal pipe constituting the metal member 165 has a flat pipe shape.
  • the electrode plate 63 has an extending portion 63a and an extending portion 63b provided so as to branch from the electrode plate 63.
  • the extending portion 63a is covered with a pipe-shaped metal member 164, and the extending portion 63b.
  • a pipe-shaped metal member 165 is covered with the metal members 164 and 165 and fixed to the extending portions 63a and 63b of the electrode plate 63 by thermocompression bonding.
  • the metal member 165 has a pair of sandwiching portions 165a and 165b provided to face each other, and the extending portion 63b of the electrode plate 63 is sandwiched between the pair of sandwiching portions 165a and 165b.
  • the metal member 165 is fixed.
  • Each of the sandwiching portions 165a and 165b is configured by a tube wall of a metal member 165 that is a metal tube.
  • the metal members 164 and 165 have, for example, an elliptical cross section having an outer major axis of 6 mm, a minor axis of 2 mm, and a thickness of 0.4 mm, and are formed in a pipe shape having a length of 8 mm.
  • the extension parts 63a and 63b of the electrode plate 63 are formed with, for example, a length of 10 mm, a width of 4 mm, and a thickness of 0.6 mm.
  • the surface electrode of the semiconductor element 22 bonded to the conductor layer 11 of the insulating substrate 10 with the bonding material 36 and the metal member 165 fixed to the electrode plate 63 of the first lead frame 60 are soldered. 32 is joined. That is, the electrode plate 63 is electrically connected to the surface electrode of the semiconductor element 22 via the metal member 165.
  • the metal member 164 is similarly configured, and the electrode plate 63 is electrically connected to the surface electrode of the semiconductor element 21 via the metal member 164.
  • the metal member 164 is located inside the outer periphery of the surface electrode 33 of the semiconductor element 21 in a plan view, and the metal member 165 is from the outer periphery of the surface electrode 34 of the semiconductor element 22 in a plan view. Located inside. Further, the metal member 164 has a smaller area than the surface electrode 33 of the semiconductor element 21 in plan view, and the metal member 165 has a smaller area than the surface electrode 34 of the semiconductor element 22 in plan view. As a result, as shown in FIG. 14, the solder 32 that joins the surface electrode of the semiconductor element 22 and the metal member 165 has a fillet shape in which the skirt extends to the surface electrode side of the semiconductor element 22. The surface electrode and the metal member 165 are firmly bonded with high reliability. The same applies to the bonding between the surface electrode of the semiconductor element 21 and the metal member 164.
  • FIG. 15 is a plan view showing a semiconductor device having another configuration according to the fifth embodiment of the present invention.
  • the same reference numerals as those in FIG. 13 denote the same or corresponding components, and the description thereof is omitted.
  • the structure of the first lead frame 60 is different from the semiconductor device of FIG. In FIG. 15, the sealing resin portion is omitted as in FIG.
  • the semiconductor device 400 includes a first lead frame in which metal members 166 and 167 made of a metal tube made of a material such as copper or a copper alloy that wets the solder are fixed to the electrode plate 63. 60. Similar to the metal members shown in FIGS. 13 and 14, the metal members 166 and 167 have a flat pipe shape. Unlike the semiconductor device of FIG. 13, the electrode plate 63 does not have a branching extension portion, and the electrode members 63 are covered with pipe-like metal members 166 and 167 so that the metal members 166 and 167 are electroded. The plate 63 is fixed at a predetermined position. Similarly to the structure shown in FIG.
  • the metal members 166 and 167 have a pair of sandwiching portions provided to face each other, and the pair of sandwiching portions sandwich the electrode plate 63, whereby the metal members 166, 167 and the electrode plate 63 are fixed.
  • the metal members 166 and 167 have, for example, an elliptical cross section with an outer major axis of 8 mm, a minor axis of 2 mm, and a thickness of 0.4 mm, and are formed in a pipe shape with a length of 6 mm. Is formed with a width of 6 mm and a thickness of 0.6 mm, for example.
  • the metal members 166 and 167 are fixed to the electrode plate 63 by thermocompression bonding.
  • the metal members 166 and 167 are located inside the outer periphery of the surface electrodes 33 and 34 of the semiconductor elements 21 and 22 in a plan view. Further, the metal members 166 and 167 are smaller in area than the surface electrodes 33 and 34 of the semiconductor elements 21 and 22 in plan view.
  • the metal member 166 and the surface electrode 33 of the semiconductor element 21 are joined by solder, and the metal member 167 and the surface electrode 34 of the semiconductor element 22 are joined by solder, so that the first lead frame 60 is connected to the semiconductor element 21, 22 is electrically connected. Similar to the semiconductor device described in the first embodiment, the semiconductor device 400 is strong and reliable because a necessary amount of solder is secured between the surface electrodes of the semiconductor elements 21 and 22 and the metal members 166 and 167. High bonding can be obtained.
  • the metal member to be fixed to the electrode plate 63 is configured to sandwich the electrode plate 63 by a pair of opposing clamping portions. Even by a method using a simple tool, a metal member having good solder wettability can be fixed to the electrode plate 63 made of aluminum or an aluminum alloy which does not wet the solder, and the manufacturing cost of the semiconductor device can be reduced. it can.
  • the metal member is formed of a metal tube and covered with the electrode plate.
  • the metal member is not limited to the metal tube as long as the electrode member is sandwiched, and is bent, for example. You may comprise with the metal plate formed so that it may have a U-shaped cross-sectional shape.
  • the metal member is made of a metal such as copper or a copper alloy that wets the solder.
  • the metal member is a clad pipe formed with aluminum on the inner diameter side and copper on the outer diameter side. May be. That is, the metal member may be a clad pipe in which the first metal layer on the outer side is formed of copper and the second metal layer laminated on the inner diameter side of the first metal layer is formed of aluminum. .
  • the metal member By forming the metal member with such a clad pipe made of aluminum and copper, it is possible to improve the bondability between the electrode plate and the metal member with the inner diameter side aluminum, and with the outer diameter side copper. Solder bonding with the surface electrode of the semiconductor element can be performed.
  • FIG. 16 is a partial cross-sectional view showing the configuration of the solder joint between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element in the sixth embodiment of the present invention.
  • 16 shows the configuration of the solder joint portion between the semiconductor element 22 and the metal member 62 as in FIG. 12 shown in the fourth embodiment, but the solder joint portion between the semiconductor element 21 and the metal member 61 is shown.
  • the configuration is the same for.
  • the same reference numerals as those in FIG. 12 denote the same or corresponding components, and the description thereof is omitted.
  • 12 differs from the embodiment shown in FIG. 12 in that the metal member 62 constituting the first lead frame 60 is formed in a caulking ring shape.
  • the metal member 62 is a ring-shaped member 615.
  • the ring-shaped member 615 is made of copper.
  • the ring-shaped member 615 has an opening at the center.
  • the ring-shaped member 615 is inserted and fixed to the opening by caulking. That is, the ring-shaped member 615 is fixed by caulking after being inserted into the opening of the electrode plate 63.
  • the ring-shaped member 615 is crushed on both surfaces of the electrode plate 65 and is larger than the opening of the electrode plate 63. Further, at least a part between the metal member 62 and the electrode plate 63 may be formed with a joint with metal diffusion.
  • the ring-shaped member 615 is crushed on both surfaces of the electrode plate 65 and is larger than the opening of the electrode plate 63, a large bonding area of the metal member 62 to the electrode plate 63 can be ensured. Further, the central opening of the ring-shaped member 615 has a function of adjusting excess solder. Further, by promoting metal diffusion between members by heat treatment or the like, it is possible to obtain effects such as increasing mechanical strength.
  • FIG. 17 is a partial cross-sectional view showing the configuration of the solder joint between the first lead frame of the semiconductor device and the surface electrode of the semiconductor element in the seventh embodiment of the present invention.
  • the same reference numerals as those in FIG. 14 according to the fifth embodiment denote the same or corresponding components, and the description thereof is omitted.
  • the structure of the metal tube is different from FIG. 14 shown in the fifth embodiment of the present invention.
  • FIG. 18 is a perspective view showing a configuration of a metal member 165 made of a metal tube.
  • a part of the metal tube that faces the surface electrodes 33 and 34 of the semiconductor elements 21 and 22 is configured to have a spring property.
  • a part of the metal member 62 forms a protrusion 616 having a spring property independent of the pipe portion by etching or pressing.
  • the protrusion 616 is configured to be elastically deformable in the minor axis direction of the pipe portion.
  • Part of the metal tube facing the surface electrodes 33 and 34 of the semiconductor elements 21 and 22 has a spring property, so that soldering can be facilitated even when the processing accuracy of the electrode plate 63 is poor. . Thereby, it is possible to reduce the stress applied to the solder joint.
  • FIGS. 19 to FIG. 22 corresponds to each of FIG. 2, FIG. 8, FIG. 10, and FIG.
  • FIGS. 19 to 22 has the same configuration as each of FIGS. 2, 8, 10, and 14 unless otherwise specified.
  • the metal member 61 is composed of a first metal layer 611 and a second metal layer 612 laminated on the first metal layer 611.
  • the second metal layer 612 is disposed closer to the insulating substrate 10 than the first metal layer 611.
  • the metal member 62 includes a first metal layer 621 and a second metal layer 622 stacked on the first metal layer 621.
  • the second metal layer 622 is disposed closer to the insulating substrate 10 than the first metal layer 621.
  • the metal member 62 includes a first metal layer 621 and a second metal layer 622 stacked on the first metal layer 621.
  • the second metal layer 622 is disposed closer to the insulating substrate 10 than the first metal layer 621.
  • the metal member 62 includes a first metal layer 621 and a second metal layer 622 stacked on the first metal layer 621.
  • the second metal layer 622 is disposed closer to the insulating substrate 10 than the first metal layer 621.
  • the metal member 165 includes a first metal layer 1651 and a second metal layer 1652 laminated on the first metal layer 1651.
  • the second metal layer 1652 is disposed inside the first metal layer 1651.

Abstract

表面電極を有する半導体素子(21、22)と、平面視で半導体素子(21、22)の表面電極より面積が大きく、アルミニウムまたはアルミニウム合金からなる電極板(63)と、半導体素子(21、22)の表面電極にはんだ(31、32)で接合された接合面を有し、平面視で半導体素子(21、22)の表面電極より面積が小さく、電極板(63)とは異なる金属からなり、電極板(63)に固着され、半導体素子(21、22)の表面電極と電極板(63)とを電気的に接続した金属部材(61、62)と、を備える。

Description

半導体装置
 本発明は、半導体素子を備えた半導体装置に関する。
 半導体装置は、高電圧・大電流の用途に適した電力用の半導体素子をケース内に設け、基板に形成された回路パターンやリードフレームなどの配線部材を介して半導体素子の電極と電気的に接続された主端子をケースの外側に設けてパッケージ化したものである。半導体装置の主端子には外部の電気回路が接続され、半導体装置は、外部の電気回路に流れる電流を制御することで搭載された機器の動作を制御する。半導体装置は、機器内への搭載が容易であるため、産業機器から家電機器まで幅広い分野で利用されている。
 半導体装置に用いられる半導体素子は、表面電極と裏面電極とを有しており、表面電極と裏面電極との間に高電圧が印加され大電流が流れる縦型構造となっている。半導体装置では、熱伝導率が大きいセラミック材料からなる絶縁基板に半導体素子の裏面電極を接合して、半導体素子の発熱を効率的に排熱している。また、リードフレームなどの電極板を、半導体素子の表面電極に直接はんだで接合することで、半導体素子の表面電極に接続される配線部の電気抵抗を小さくしている。電極板は、半導体素子の表面電極より面積が大きく、半導体装置内で1つあるいは複数の半導体素子の表面電極に接合される。電極板は、銅やアルミニウムなどの導電率が大きい金属で形成され、電極板がアルミニウムで形成される場合には、はんだが濡れるように電極板の表面に銅めっきなどのメタライズ処理が施される。
 従来の半導体装置は、電極板に、電極板の表面から突出したハーフカット部と、ハーフカット部からさらに突出したエンボス加工部とが形成され、ハーフカット部の突出した側と半導体素子の表面電極とがはんだで接合されていた。エンボス加工部が半導体素子の表面電極に当接されてはんだ接合されることで、半導体素子の表面電極と電極板のハーフカット部との間にエンボス加工部の高さと同じ厚さのはんだ量が確保されていた(例えば、特許文献1参照)
特開2012-74543号公報
 しかしながら、特許文献1に記された従来の半導体装置にあっては、電極板の面積が半導体素子の表面電極より大きいため、はんだ接合時の加熱により電極板の反りや熱変形が生じ、電極板と半導体素子の表面電極との間の距離が大きくなる場合があり、電極板にはんだが濡れ広がって吸い取られてしまうため、電極板と半導体素子の表面電極との間のはんだ接合部のはんだ量が不足するという問題点があった。
 本発明は、上述のような問題を解決するためになされたもので、はんだ接合を用いて半導体素子の表面電極に電極板を電気的に接続しても、電極板にはんだが吸い取られるのを防止することができる半導体装置を提供することを目的とする。
 本発明に係る半導体装置は、表面電極を有する半導体素子と、平面視で半導体素子の表面電極より面積が大きく、アルミニウムまたはアルミニウム合金からなる電極板と、半導体素子の表面電極にはんだで接合された接合面を有し、平面視で半導体素子の表面電極より面積が小さく、電極板とは異なる金属からなり、電極板に固着され、半導体素子の表面電極と電極板とを電気的に接続した金属部材と、を備える。
 本発明に係る半導体装置によれば、アルミニウムまたはアルミニウム合金からなる電極板と金属部材とを固着させて半導体素子の表面電極と金属部材とをはんだで接合するので、電極板にはんだが濡れないため、電極板にはんだが吸い取られるのを防止することができる。
本発明の実施の形態1における半導体装置を示す平面図である。 本発明の実施の形態1における半導体装置を示す断面図である。 本発明の実施の形態1における半導体装置の製造方法を示す断面図である。 本発明の実施の形態1における半導体装置の第1のリードフレームの製造方法を示す部分断面図である。 本発明の実施の形態1における半導体装置の第1のリードフレームの他の製造方法を示す部分断面図である。 本発明の実施の形態1における半導体装置の第1のリードフレームのさらに他の製造方法を示す部分断面図である。 本発明の実施の形態2における半導体装置を示す断面図である。 本発明の実施の形態3における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。 本発明の実施の形態3における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の他の構成を示す部分断面図である。 本発明の実施の形態3における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の他の構成を示す部分断面図である。 本発明の実施の形態4における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。 本発明の実施の形態4における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の他の構成を示す部分断面図である。 本発明の実施の形態5における半導体装置を示す平面図である。 本発明の実施の形態5における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。 本発明の実施の形態5における他の構成半導体装置を示す平面図である。 本発明の実施の形態6における本導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。 本発明の実施の形態7における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。 本発明の実施の形態7における半導体装置の金属管からなる金属部材の構成を示す斜視図である。 図2に対応する図であって、金属部材が積層された複数の金属層で構成された半導体装置を示す断面図である。 図8に対応する図であって、金属部材が積層された複数の金属層で構成された第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。 図10に対応する図であって、金属部材が積層された複数の金属層で構成された第1のリードフレームと半導体素子の表面電極とのはんだ接合部の他の構成を示す部分断面図である。 図14に対応する図であって、金属部材が積層された複数の金属層で構成された第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。
実施の形態1.
 まず、本発明の実施の形態1における半導体装置の構成を説明する。図1は、本発明の実施の形態1における半導体装置を示す平面図である。また、図2は、本発明の実施の形態1における半導体装置を示す断面図である。なお、図1において、封止樹脂部70は省略して示している。
 図1および図2において、半導体装置100は、絶縁基板10と、絶縁基板10に設けられた導体層11に裏面電極が接合された半導体素子21、22と、半導体素子21、22の表面電極に電気的に接続され主回路電流が流れる第1のリードフレーム60と、半導体素子21、22に電気的に接続され半導体素子21、22を制御するための制御信号が入力される第2のリードフレーム67と、半導体素子21、22および半導体素子21、22の周辺部材を覆う封止樹脂部70と、これらの構成部材を収容するケース50とを備えている。第1のリードフレーム60は、平面視で半導体素子21、22の表面電極より面積が大きく、アルミニウムまたはアルミニウム合金からなる電極板63と、平面視で半導体素子21、22の表面電極より面積が小さく、電極板63に固着され、半導体素子21、22の表面電極にはんだで接合された金属部材61、62とを備えている。ここで、主回路電流とは半導体装置100を用いて構成される電気回路に流れる電流であり、半導体装置100は、表面電極と裏面電極との間に流れる主回路電流の導通および遮断を制御するために用いられる。
 絶縁基板10は、窒化アルミニウム(AlN)など熱伝導率が大きいセラミック基板などの絶縁物基板で構成されており、例えば、外形寸法が40mm×25mmで、厚さが0.6mmである。絶縁基板10の表面には銅(Cu)あるいは銅合金などの導電率が大きい金属で形成された導体層11が設けられ、絶縁基板10の裏面には銅あるいは銅合金などの熱伝導率が大きい金属で形成された導体層13が設けられている。表面側の導体層11および裏面側の導体層13は異なる材料で形成されてもよいが、同じ材料で形成される方が製造コストを低減する上でも好ましい。導体層11および導体層13は、例えば、厚さ0.4mmの銅で形成されている。
 絶縁基板10は、絶縁性が得られ、銅のようにはんだが濡れる導体層が形成できる基板であれば窒化アルミニウム基板に限るものではなく、例えば、アルミナ(Al2O3)や炭化ケイ素(SiC)、窒化ケイ素(Si3N4)などのセラミック基板であってもよく、ガラスエポキシ基板や金属ベース基板などセラミック以外の基板であってもよい。
 導体層11には、半導体素子21、22に主回路電流を流すための回路パターンが形成されており、半導体素子21、22がはんだやダイボンドなどの接合材により接合されるため、導体層11は導電率が大きい金属が好ましい。また、導体層13は半導体素子21、22で発生した熱を半導体装置100の外部に排熱するヒートシンク(図示せず)にはんだなどの接合材により接合されるため、熱伝導率が大きい金属が好ましい。このため導体層11および導体層13は、銅や銅合金が好ましいが、はんだが濡れないアルミニウムやアルミニウム合金などの導電率および熱伝導率が大きい金属材料の表面に、錫(Sn)、ニッケル(Ni)、金(Au)、銀(Ag)などをメタライズ処理で形成し、はんだが濡れるようにした金属材料であってもよい。
 半導体素子21および半導体素子22は、ダイオード、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal―Oxide―Semiconductor Field―Effect Transistor)などの電力用の半導体スイッチング素子や制御用のIC(Integrated Circuit)である。本発明では、半導体素子21がダイオードであり、半導体素子22がIGBTである場合について説明する。半導体素子21、22は、シリコン(Si)、炭化ケイ素(SiC)、窒化ガリウム(GaN)などの半導体材料で形成されている。半導体素子21、22は、例えば、外形寸法が15mm×15mmで、厚さが0.3mmである。
 図1および図2に示すように、本発明では、半導体装置100がダイオードである半導体素子21とIGBTである半導体素子22とを一対備えた1in1構成の半導体装置について説明するが、ダイオードとIGBTとを二対備えた2in1構成の半導体装置や、六対備えた6in1構成の半導体装置であってもよい。また、IGBTに代えてMOSFETなど他の半導体スイッチング素子を備えた構成の半導体装置であってもよい。
 ダイオードである半導体素子21およびIGBTである半導体素子22は、絶縁基板10に導体層11を介して接合された裏面電極と、裏面電極の反対側の面に設けられた表面電極とを備えている。表面電極には第1のリードフレーム60が接続される。半導体素子21、22の表面電極と裏面電極との間には主回路電流が流れ、半導体素子21、22は、半導体素子21、22に設けられた制御電極に入力される制御信号に基づいて、主回路電流の導通と遮断とを制御する。
 ダイオードである半導体素子21は、裏面電極としてのカソード電極を裏面側に有しており、表面電極としてのアノード電極を表面側に有している。また、IGBTである半導体素子22は、裏面電極としてのコレクタ電極を裏面側に有しており、表面電極としてのエミッタ電極と、制御電極としてのゲート電極を表面側に有している。制御電極であるゲート電極は、ワイヤ40により第2のリードフレーム67に電気的に接続されている。制御電極は、半導体素子22のゲート電極に限らず、半導体装置100内に設けられた温度センサなどの電極も制御電極と呼ぶ。なお、図1では、半導体素子21の表面電極33および半導体素子22の表面電極34を示したが、図2では省略している。
 半導体素子21および半導体素子22の裏面電極は、絶縁基板10に設けられた導体層11にはんだなどの接合材(図示せず)で接合されている。すなわち、半導体素子21、22は、導体層11を介して裏面電極が絶縁基板10に接合されている。導体層11には、アルミニウムやアルミニウム合金などの導電率が大きい金属で形成された端子板66が超音波接合などの方法で接合されている。端子板66には、主端子65が設けられておりケース50に固定されている。これにより、半導体素子21、22の裏面電極と主端子65とが電気的に接続されている。主端子65には、外部の配線部材をネジ止めできるようにネジ穴が設けられている。主端子65は、例えば、幅10mm、厚さ0.6mmの大きさで形成されており、必要に応じて銅めっきやニッケルめっきが施されていてもよい。
 第1のリードフレーム60は、はんだが濡れないアルミニウムまたはアルミニウム合金で形成された電極板63に、銅や銅合金などのはんだが濡れる金属材料で形成された金属部材61、62が固着されて構成されている。電極板63は、平面視で半導体素子21、22の表面電極より面積が大きく、金属部材61、62より面積が大きい。また、金属部材61、62は、平面視で半導体素子21、22の表面電極より面積が小さく、電極板63より面積が小さい。金属部材61、62は、全体が銅や銅合金で構成されていてもよく、銅や銅合金で形成された金属部材61、62に銀めっきやニッケルめっきなどのはんだが濡れる金属材料によるメタライズ処理を施していてもよい。なお、金属部材61、62は、銅や銅合金以外に、ニッケル、銀、金などのはんだが濡れる金属で形成してもよいが、銅や銅合金が電気伝導およびコストに優れているため好ましい。
 また、金属部材61、62は、銅や銅合金の他に、熱膨張率が小さい銅タングステン(Cu-W)焼成材や銅/インバー/銅(CIC)クラッド材などの複数の金属層を積層して形成されていてもよく、半導体素子21、22の表面電極にはんだで接合される部分が銅または銅合金で構成されていればよい。すなわち、金属部材61、62は、銅または銅合金からなる第1の金属層のみで構成されていてもよく、第1の金属層と第1の金属層とは異なる金属からなる第2の金属層とを含む複数の金属層を積層して構成され、半導体素子21、22の表面電極33、34にはんだで接合される接合面が第1の金属層に設けられていればよい。
 なお、本発明でいうアルミニウムとは、純度99.00%以上のアルミニウムをいい、具体的には、JIS規格における1000系アルミニウムをいう。また、アルミニウム合金とはアルミニウムを主成分とする合金であり、具体的には、JIS規格における2000系~8000系のアルミニウム合金をいう。また、銅とはJIS規格における1000系の銅をいい、銅合金とはJIS規格で2000系~7000系の銅合金をいう。
 電極板63と金属部材61、62とは、はんだなどの接合材を介さずに接合されており、電極板63と金属部材61、62とは接触して電気的に接続されている。電極板63に金属部材61、62を固着させる方法についての詳細は後述するが、例えば、図1および図2に示すように、電極板63に設けられた開口部に金属部材61、62を挿入して密着させることで、電極板63と金属部材61、62とを固着している。
 電極板63は、例えば、厚さ0.6mmのアルミニウムまたはアルミニウム合金で形成されており、電極板63の表面も電極板63の内部と同じアルミニウムまたはアルミニウム合金で構成されている。すなわち、電極板63は、全体がアルミニウムまたはアルミニウム合金で形成されており、電極板63の表面には強力な自然酸化膜が存在するため、はんだが濡れないようになっている。電極板63は、複数の半導体素子の表面電極を電気的に接続したり、半導体装置の外部の電気回路と電気的に接続したりするため、電極板63は、平面視で半導体素子の表面電極より面積が大きくなっている。金属部材61、62は、例えば、外形寸法が8mm×8mmで、厚さが1mmで形成された銅や銅合金で構成されている。金属部材61、62は、例えば、焼嵌め、熱かしめ、プレス加工によって電極板63に固着してよく、あるいは超音波接合や熱圧着によって金属部材61、62と電極板63とを固着してもよい。
 図2に示すように、第1のリードフレーム60の金属部材61、62の厚さは電極板63の厚さより大きいので、金属部材61および金属部材62の一部が電極板63から突出している。このように金属部材61、62は、金属部材61、62の一部が電極板63の表面から突出した凸部を構成するように突出部を有しており、金属部材61、62と電極板63とが固着されて第1のリードフレーム60が構成されている。なお、金属部材61、62は必ずしも電極板63の表面から突出した突出部を有する必要はなく、電極板63の表面に対して、金属部材61、62の半導体素子21、22との接合面が同一面あるいは凹部を構成してもよい。ただし、金属部材61、62が電極板63の表面から突出した突出部を有する方が、金属部材61、62の突出部と半導体素子21、22とのはんだ接合の接合強度を高め、接合信頼性を高めることができるので好ましい。
 図2に示すように、第1のリードフレーム60の金属部材61と半導体素子21の表面電極とは、はんだ31により接合されており、第1のリードフレーム60の金属部材62と半導体素子22の表面電極とは、はんだ32により接合されている。はんだ31およびはんだ32は、錫(Sn)と銀(Ag)とを主成分とするSn/Ag系、錫と銅とを主成分とするSn/Cu系、錫とビスマス(Bi)とを主成分とするSn/Bi系など銅に対して濡れ性が優れたはんだ材料で形成されている。なお、はんだ31、32の材料に鉛(Pb)を含んでいても本発明の効果が得られるが、鉛を含むはんだは環境負荷が高いため好ましくない。
 第1のリードフレーム60の電極板63は、アルミニウムまたはアルミニウム合金で形成されているため、はんだ接合時に、はんだ31、32が電極板63に濡れ広がって電極板63に吸い取られることがない。この結果、金属部材61、62と半導体素子21、22との接合に用いられるはんだの量が不足することがなく、十分な量のはんだ31、32により、金属部材61、62と半導体素子21、22とが接合される。
 半導体素子21、22の表面電極は、例えば、12mm×12mmの大きさであり、金属部材61、62の半導体素子21、22の表面電極33、34との接合面の大きさは、例えば、8mm×8mmである。すなわち、図1に示すように、平面視で、金属部材61、62は全体が半導体素子21、22の表面電極33、34の外周より内側に位置しており、平面視で、金属部材61、62は半導体素子21、22の表面電極33、34より面積が小さくなっている。そして、金属部材61、62は、平面視で電極板63の面積より小さくなっている。
 従って、金属部材61、62のはんだ接合面が半導体素子21、22の表面電極33、34の外周より内側に位置しており、半導体素子21、22の表面電極33、34より面積が小さいので、はんだ31、32は半導体素子21、22の表面電極33、34側に広く裾野が広がったようなフィレット形状となる。そして、金属部材61、62は電極板63の表面から突出した突出部において、半導体素子21、22の表面電極に対向した突出部の底面、および底面と電極板との間に設けられた突出部の側面で、半導体素子21、22にはんだ接合されているので、金属部材61、62とはんだ31、32との接合面積が増加している。このため、第1のリードフレーム60を半導体素子21、22にはんだ31、32ではんだ接合した後の検査におけるはんだ接合部の視認性に優れ、また、はんだ31、32による接合応力が分散されるためはんだ接合部の信頼性を高めることができる。
 半導体素子21、22の裏面電極と絶縁基板10の導体層11との接合には、はんだの代わりに、銀(Ag)フィラーをエポキシ樹脂に分散させた導電性接着剤や、AgやCuなどの金属ナノ粒子を低温で焼成させて接合する金属ナノ粒子接合材を用いてもよい。また、半導体素子21の表面電極33と金属部材61の接合、あるいは半導体素子22の表面電極34と金属部材62との接合のいずれか一方に、導電性接着剤や金属ナノ粒子接合材を用いてもよい。アルミニウムやアルミニウム合金で形成された電極板63は、表面に自然酸化膜を有しているので、導電性接着剤や金属ナノ粒子接合材で接合すると良好な導電性が得られないが、金属部材61、62は銅や銅合金からなり、自然酸化膜はポーラスで比較的破壊されやすく、新生面が形成されやすいため、導電性接着剤や金属ナノ粒子接合材を用いて接合しても、接合部の電気抵抗を小さくすることができる。
 第1のリードフレーム60は、金属部材61、62が設けられた側とは反対側の端部に主端子64が設けられており、主端子64はケース50に固定されている。主端子64には、主端子65と同様に、外部の配線部材をネジ止めできるようにネジ穴が設けられている。また、主端子64は、例えば、幅10mm、厚さ0.6mmの大きさで形成されており、必要に応じて銅めっきやニッケルめっきが施されていてもよい。以上の構成により、主端子65と主端子64とが、導体層11、半導体素子21、22、第1のリードフレーム60を介して電気的に接続され、主端子65と主端子64との間に主回路電流を流すことができるようになる。
 第2のリードフレーム67は、銅や銅合金あるいはアルミニウムやアルミニウム合金で形成され、ケース50に固定されている。第2のリードフレーム67の一端は半導体装置100の外部に露出しており、制御信号を入力するための制御端子となっている。第2のリードフレーム67をアルミニウムやアルミニウム合金で形成した場合には、半導体装置100の外部に露出した制御端子の部分に銅めっきやニッケルめっきを施してはんだの濡れ性を良くしてもよい。
 第2のリードフレーム67の他端は、半導体素子22の表面側に設けられた制御電極23に、ワイヤ40によって電気的に接続されている。ワイヤ40は、例えば、直径が0.15mmのアルミニウムワイヤ、アルミニウム被覆された銅ワイヤ、あるいは金ワイヤなどであってよく、ワイヤボンディングにより第2のリードフレーム67および制御電極23に超音波接合されている。第2のリードフレームと制御電極23とは、ワイヤボンディングに限らず、リボンボンドや金属板を超音波接合したバスバーによって電気的に接続してもよい。
 ケース50は、PPS(Poly Phenylene Sulfide:ポリフェニレンサルファイド)樹脂やLCP(Liquid Crystal Polymer:液晶ポリマー)樹脂などにより枠状に形成されている。例えば、外形寸法は48mm×28mmで、高さは12mmである。ケース50の底部には、絶縁基板10が設けられ、導体層13を半導体装置100の外部に露出させている。絶縁基板10は、絶縁基板10の周囲に設けられた接着材80によりケース50に接着固定されている。
 封止樹脂部70は、ポッティング樹脂により形成されており、導体層11、半導体素子21、22、第1のリードフレーム60、第2のリードフレーム67、ワイヤ40、およびはんだ31、32を覆って絶縁封止している。なお、封止樹脂部70を形成する封止樹脂は、絶縁性が確保され、流し込んで常温で硬化させることができるものであれば、ポッティング樹脂に限らず、液状ゲル等であってもよい。以上のように半導体装置100は構成される。
 次に、半導体装置100の製造方法について説明する。
 図3は、本発明の実施の形態1における半導体装置の製造方法を示す断面図である。図3(a)は、絶縁基板10に半導体素子21、22を接合するまでの工程を示す図であり、図3(b)は、半導体素子21、22の表面電極と第1のリードフレーム60の金属部材61、62との間に板はんだ31a、32aを載置するまでの工程を示す図である。また、図3(c)は、半導体素子21、22の表面電極と第1のリードフレーム60の金属部材61、62とをはんだ接合して、半導体素子22の制御電極と第2のリードフレーム67とを電気的に接続するまでの工程を示す図であり、図3(d)は、封止樹脂部70を形成して半導体装置100を完成させるまでの工程を示す図である。
 まず、図3(a)に示すように、表面側に導体層11が、裏面側に導体層13が接合された絶縁基板10の導体層11に、半導体素子21および半導体素子22の裏面電極を接合する。半導体素子21、22の裏面電極と導体層11との接合は、はんだにより接合してもよく、金属ナノ粒子接合材で接合してもよい。ただし、はんだで接合する場合には、図3(c)に示す半導体素子21、22の表面電極と第1のリードフレーム60とをはんだ接合する工程時の加熱で、はんだが再溶融しないように、半導体素子21、22の表面電極と第1のリードフレーム60との接合に用いられるはんだ31、32より融点が高いはんだを用いる方が好ましい。
 次に、図3(b)に示すように、枠状のケース50の底部に半導体素子21、22を接合した絶縁基板10を配置し、絶縁基板10の周囲とケース50との間にシリコーン製の接着材80を埋めて接着固定する。接着材80が、絶縁基板10とケース50との間の隙間を埋めることで、図3(d)に示す封止樹脂部70を形成する工程でケース50内に充填されるポッティング材が漏れるのを防止することができる。
 ケース50には、予めインサート成形により、電極板63と金属部材61、62とで構成された第1のリードフレーム60、端子板66、第2のリードフレーム67が設けられており、ケース50の上部に、第1のリードフレーム60の端部に設けられた主端子64と、端子板66の端部に設けられた主端子65とが固定されている。なお、電極板63に金属部材61、62を固着させる方法については後述する。
 ケース50の所定位置に絶縁基板10を挿入した際に、第1のリードフレーム60は、金属部材61、62の接合面が絶縁基板10に接合された半導体素子21、22の表面電極に対向するようにケース50に固定されており、第2のリードフレーム67は、絶縁基板10に接合された半導体素子22の制御電極に対応する位置にワイヤボンディング部が位置するようにケース50に固定されている。
 絶縁基板10に接合された半導体素子21、22の表面電極と第1のリードフレーム60の金属部材61、62との間には、板はんだ31a、32aが配置され、絶縁基板10の周囲が接着材80によりケース50に接着固定される。
 次に、図3(c)に示すように、半導体素子21、22の表面電極と第1のリードフレーム60の金属部材61、62との間に配置した板はんだ31a、32aを溶融、凝固させ、はんだ31、32によりはんだ接合する。また、半導体素子22の制御電極と第2のリードフレーム67とをワイヤ40により電気的に接続し、端子板66と絶縁基板10に設けた導体層11とを接合する。
 半導体素子21、22の表面電極と第1のリードフレーム60の金属部材61、62との間に配置した板はんだ31a、32aは、リフロー炉やホットプレートにより加熱されて溶融する。板はんだ31a、32aには、絶縁基板10の導体層11に半導体素子21、22を接合した接合材の融点より低い温度で溶融するはんだを用い、導体層11と半導体素子21、22の裏面電極との間の接合材が再溶融しない温度で加熱する。
 溶融したはんだ31、32は、半導体素子21、22の表面電極に濡れるとともに、第1のリードフレーム60の金属部材61、62に濡れる。金属部材61、62は、平面視で半導体素子21、22の表面電極の外周より内側に位置し、平面視で半導体素子21、22の表面電極より面積が小さいので、図3(c)に示すように、半導体素子21、22の表面電極に対して接触角が小さく裾野が広がった形状を呈し、第1のリードフレーム60の金属部材61、62の突出部の底面だけでなく側面にも濡れ広がった形状を呈するフィレットが形成される。
 そして、第1のリードフレーム60の電極板63がアルミニウムまたはアルミニウム合金で形成されているので、溶融したはんだ31、32は電極板63には濡れることができず、溶融したはんだ31、32が電極板63に濡れ広がっていくことはない。このため、電極板63にはんだ31、32が吸い取られることがなく、半導体素子21、22と第1のリードフレーム60の金属部材61、62との間には所定量のはんだ31、32が保持され、はんだ接合のためのはんだの量が不足することがない。また、金属部材61、62は、平面視で半導体素子21、22の表面電極より面積が小さいので、金属部材61、62の表面に必要以上にはんだが濡れ広がることも無く、はんだ接合のためのはんだの量が不足することがない。
 その後、溶融したはんだ31、32は冷却されて、凝固したはんだ31、32になり、半導体素子21、22の表面電極と金属部材61、62とがはんだ接合される。はんだ31、32は半導体素子21、22と金属部材61、62との間にのみ設けられており、平面視で半導体素子21、22の表面電極より面積が大きい電極板63には広がっていないので、半導体素子21、22の表面電極と金属部材61、62との間に十分な量のはんだが存在し、強固で信頼性の高いはんだ接合が行われる。
 なお、金属部材61、62の接合面を構成する半導体素子21、22の表面電極と対向する面は平面であってよいが、突起が形成された面、尖った形状を呈する面、あるいは半導体素子21、22の表面電極側に凸の形状を呈する曲面であってもよい。
 そして、半導体素子22の制御電極と第2のリードフレーム67とを、ワイヤボンディングによる超音波接合で接合する。すなわち、ワイヤ40で半導体素子22の制御電極と第2のリードフレーム67とを電気的に接続する。また、端子板66と絶縁基板10に設けられた導体層11とを超音波接合により接合する。これらの超音波接合による接合は、半導体素子21、22の表面電極と第1のリードフレーム60の金属部材61、62とのはんだ接合の前に行ってもよく、後に行ってもよい。以上のはんだ接合および超音波接合により、半導体装置100の主端子64と主端子65との間に半導体素子21、22が電気的に接続される。
 次に、図3(d)に示すように、ケース50内にポッティング樹脂で封止樹脂部70を形成し、ケース50を絶縁封止する。60℃に加熱したポッティング樹脂をケース50内に流し込み、真空脱泡して、100℃で1.5時間加熱後、140℃で1.5時間加熱を行い、ポッティング樹脂を硬化させて封止樹脂部70を形成する。以上の工程により半導体装置100が完成する。
 次に、第1のリードフレームの製造方法について説明する。
 図4は、本発明の実施の形態1における半導体装置の第1のリードフレームの製造方法を示す部分断面図である。図4は、第1のリードフレーム60の金属部材62とその周辺の電極板63とを示しており、焼嵌めにより金属部材62と電極板63とを固着させる方法を示したものである。図4(a)は、電極板63を加熱して、電極板63に形成した開口部の面積を拡大させた状態を示す図であり、図4(b)は、電極板63を冷却して、電極板63に形成された開口部が縮小し、金属部材62と電極板63とが焼嵌めにより固着された状態を示す図である。図4では、金属部材61を省略して示しているが、金属部材61についても、金属部材62と同一の方法により電極板63に固着される。
 まず、アルミニウムまたはアルミニウム合金からなる電極板63にプレス加工などで、開口部を形成する。また、銅や銅合金などはんだが濡れる金属材料からなる金属部材62をプレス加工などで形成する。上述のように金属部材62を、例えば、外形寸法が8mm×8mm、厚さが1mmで形成する場合には、電極板63に形成する開口部は、8mm×8mmよりも少し小さい大きさとし、例えば、7.99mm×7.99mmとする。
 次に、図4(a)に示すように電極板63を加熱し、電極板63に形成した開口部を熱膨張により拡大させる。例えば、電極板63をアルミニウムで形成し、金属部材62を銅で形成した場合、アルミニウムの線熱膨張率は23ppm/K、銅の線熱膨張率は16ppm/Kである。金属部材62の温度を常温(例えば25℃)とし、電極板63の温度を金属部材62の温度より例えば325K高い温度(例えば350℃)に加熱すると、電極板63の開口部の大きさは約0.75%大きくなるので、約8.05mm×約8.05mmになり、金属部材62の外形寸法8mm×8mmより大きくなる。従って、図4(a)に示すように、電極板63の開口部に金属部材62を嵌め込むことができる。
 次に、図4(b)に示すように、電極板63の開口部に金属部材62を嵌め込んだ状態で、電極板63を冷却し、電極板63と金属部材62とを同じ温度にする。電極板63が冷却されると電極板63に形成された開口部が小さくなるので、電極板63と金属部材62とが密着し、金属部材62が電極板63の開口部に挿入された状態で固着される。すなわち、金属部材62に電極板63が固着される。電極板63の開口部は、金属部材62の外形寸法より小さく形成されているが、電極板63が冷却されると、電極板63の開口部と金属部材62とが変形して両者が密着した状態となって第1のリードフレーム60が形成される。また、簡易な加工によって、銅に比較して軽量なアルミニウムを電極板として用いることが可能となる。
 このように形成された第1のリードフレーム60は、銅で形成された金属部材62とアルミニウムで形成された電極板63とで、線熱膨張率に差があるため、半導体装置100に流れる主回路電流によるジュール熱や半導体素子21、22の発熱により第1のリードフレームの温度が上昇した場合に、電極板63の開口部の大きさが金属部材62の外形寸法より大きくなる場合がある。上記の例の場合では、第1のリードフレーム60の温度が常温(例えば25℃)より180K温度上昇すると(例えば、205℃になると)、電極板63の開口部と金属部材62の外形寸法が同じ大きさになり、電極板63と金属部材62との密着性が低下し始める。しかし、第1のリードフレーム60の温度が200℃以下であれば、電極板63と金属部材62とは密着しているため電気抵抗が小さい良好な電気伝導が得られる。なお、第1のリードフレームの温度が200℃以上になる場合には、電極板63に形成される開口部の大きさをさらに小さくすればよい。以上のように、第1のリードフレーム60を焼嵌めにより製造することができる。
 このように製造された第1のリードフレーム60は、金属部材61、62と電極板63とが接合材を介さずに互いに接触して固着されて構成されているので、電気伝導および熱伝導に優れ、また接合材の腐食や剥離などが生じないので高い信頼性が得られる。
 次に、第1のリードフレームを製造する他の製造方法について説明する。図5は、本発明の実施の形態1における半導体装置の第1のリードフレームの他の製造方法を示す部分断面図である。図5は、図4と同様、第1のリードフレーム60の金属部材62とその周辺の電極板63とを示しており、金属部材62をプレス加工して、金属部材62と電極板63とを固着させる方法を示したものである。図5(a)は、電極板63に形成した開口部に、開口部より少し小さく形成した金属部材62aを嵌め込んだ状態を示す図であり、図5(b)は、金属部材62aをプレス加工して外形寸法を大きくして、金属部材62と電極板63とが固着された状態を示す図である。図5では、図4と同様、金属部材61を省略して示しているが、金属部材61についても、金属部材62と同一の方法により電極板63に固着される。
 まず、図5(a)に示すように、電極板63に開口部を形成し、電極板63の開口部より外形寸法が小さい、金属部材62aをプレス加工などにより形成する。例えば、電極板63の開口部の大きさを8mm×8mmとした場合には、金属部材62aの外形寸法を7.9mm×7.9mm、厚さを1mmで形成してもよい。そして、電極板63の開口部に金属部材62aを嵌め込む。
 次に、図5(b)に示すように、プレス加工により金属部材62aの厚さ方向に圧力を加えて金属部材62aを押し潰す。その結果、金属部材62aを押し潰して形成した金属部材62は、厚さ方向に垂直な外形寸法が大きくなり、電極板63の開口部に金属部材62が挿入された状態で固着されて、第1のリードフレーム60が完成する。金属部材62と電極板63とは密着しているため、電気抵抗が小さい良好な電気伝導が得られる。以上のように、第1のリードフレーム60をプレス加工により製造することができる。
 このように製造された第1のリードフレーム60は、焼嵌めにより製造した場合と同様に、金属部材61、62と電極板63とが接合材を介さずに互いに接触して固着されて構成されているので、電気伝導および熱伝導に優れ、また接合材の腐食や剥離などが生じないので高い信頼性が得られる。
 図6は、本発明の実施の形態1における半導体装置の第1のリードフレームのさらに他の製造方法を示す部分断面図である。図6は、図4と同様、第1のリードフレーム60の金属部材62とその周辺の電極板63とを示しており、レーザ溶接により金属部材62と電極板63とを接合する方法を示したものである。図6(a)は、電極板63に形成した開口部に、開口部より少し小さく形成した金属部材62を嵌め込んだ状態を示す図であり、図6(b)は、レーザ溶接により金属部材62と電極板63とが固着された状態を示す図である。図6では、図4と同様、金属部材61を省略して示しているが、金属部材61についても、金属部材62と同一の方法により電極板63に固着される。
 まず、図6(a)に示すように、電極板63に開口部を形成し、電極板63に形成した開口部より外形寸法が小さい金属部材62を形成する。例えば、電極板63の開口部の大きさを8mm×8mmとした場合には、金属部材62aの外形寸法を7.9mm×7.9mm、厚さを1mmで形成してもよい。そして、電極板63の開口部に金属部材62を嵌め込む。
 次に、図6(b)に示すように、電極板63と金属部材62との接合部にレーザを照射し、レーザ溶接する。この結果、電極板63と金属部材62との接合部に銅とアルミニウムとの合金から成る溶接痕62bが形成され、金属部材62と電極板63とが固着され、第1のリードフレーム60が完成する。金属部材62は電極板63に接合されて固着しているため、電気抵抗が小さい良好な電気伝導が得られる。以上のように、第1のリードフレーム60をレーザ溶接により製造することができる。また、熱処理等により、電極板63と金属部材62との間の金属拡散を促進させることで電気伝導や熱伝導、あるいは機械的強度を増大させることが可能となる。この場合、金属部材62と電極板63との間の少なくとも一部に、金属拡散を伴った接合部が形成されている。
 以上のように、第1のリードフレーム60は、焼嵌め、プレス加工、レーザ溶接により電極板63の開口部に金属部材61、62を挿入して固着させることで製造することができるが、第1のリードフレーム60の製造方法は上記方法に限るものではない。例えば、開口部を形成していない電極板63と金属部材61、62とを接合して、金属部材61、62と電極板63とを固着させてもよく、超音波を印加しながら荷重をかけて超音波接合を行ったり、アルミニウムの再結晶温度以上に加熱しながら荷重をかけて熱圧着したり、あるいは摩擦撹拌溶接などにより、金属部材61、62と電極板63とを接合して固着させてもよい。そして、電極板63の面積は、平面視で金属部材61、62の面積より大きい。すなわち、半導体素子の表面電極に平行に配置される面の面積は、電極板63の方が金属部材61、62より大きい。
 なお、金属部材61、62を銅や銅合金で形成した場合、防錆処理のため、金属部材61、62の表面にはんだ被覆やNi/Auめっきなどのメタライズ処理を行ってもよい。このようなメタライズ処理により金属部材61、62の表面に形成された金属膜は、金属部材61、62と半導体素子21、22の表面電極とをはんだで接合する際にはんだ内に溶融するので、はんだ接合後の金属部材61、62の表面には残存せず、はんだ内からメタライズ処理に用いた金属元素が検出される。
 次に、半導体装置100の作用効果について説明する。
 上述したように、本発明の半導体装置100は、第1のリードフレーム60が、銅または銅合金などのはんだが濡れる金属で形成された金属部材61、62に、アルミニウムまたはアルミニウム合金からなり表面に自然酸化膜を有するためにはんだが濡れない電極板63が固着されて形成されている。このため、半導体素子21、22の表面電極と第1のリードフレーム60とを電気的に接続するために、半導体素子21、22の表面電極と金属部材61、62との間にはんだを配置してはんだを溶融させても、溶融したはんだは、半導体素子21、22の表面電極上および金属部材61、62の表面上にしか濡れない。つまり、アルミニウムまたはアルミニウム合金で形成された電極板63には、溶融したはんだは濡れ広がることができない。つまり、平面視で半導体素子21、22の表面電極より面積が小さい金属部材61、62の表面上にのみはんだを濡れさせ、平面視で半導体素子21、22の表面電極より面積が大きい電極板63にははんだを濡れ広がらせないので、はんだ接合に必要なはんだ量を低減することができる。
 この結果、半導体素子21、22の表面電極と金属部材61、62との接合に必要な量のはんだが、半導体素子21、22の表面電極と金属部材61、62との間に確保され、十分な量のはんだ31、32で半導体素子21、22の表面電極と金属部材61、62とがはんだ接合されるために、半導体素子21、22の表面電極と第1のリードフレーム60との間のオープン不良の発生を抑制することができる。さらに、加熱されて溶融したはんだが濡れる領域が、半導体素子21、22の表面電極上と金属部材61、62の表面上に限られるため、半導体素子21、22の表面電極と金属部材61、62とのはんだ接合部に設けられるはんだ31、32の量を適切な量に低減することができ、はんだ31、32によって半導体素子21、22の表面電極に加えられる応力を低減することができる。
 半導体装置100に流れる主回路電流は、例えば、数10A以上といった大電流であるため、半導体素子21、22の発熱など半導体装置100内で発生した熱を効率的に排熱するために半導体装置100の底部に配置され、半導体素子21、22の裏面電極が接合される絶縁基板10には、窒化アルミニウム(AlN)などの熱伝導率が大きいセラミックで形成されたセラミック基板が用いられる。そして、半導体素子21、22の表面電極には第1のリードフレーム60が直接はんだで接合される構成となっている。このため、半導体素子21、22の表面電極および裏面電極には、表面電極および裏面電極に接合される部材の線熱膨張率と半導体素子との線熱膨張率との差によって発生する熱応力が印加される。
 第1のリードフレーム60の電極板63がアルミニウムからなる場合の線熱膨張率は23ppm/Kであり、金属部材61、62が銅からなる場合の線熱膨張率は16ppm/Kである。また、半導体素子21、22の線熱膨張率は、半導体素子21、22の材料が、Siの場合は3~3.5ppm/K、SiCの場合は4.2~4.7ppm/K、GaNの場合は3.2~5.6ppm/Kである。GaNは異方性であるため、方向によって線熱膨張率の値が大きく変わる。さらに、半導体素子21、22が接合される窒化アルミニウム製の絶縁基板10の線熱膨張率は、絶縁基板10の両面に設けられた導体層11および導体層13を含めた全体で約10ppm/Kである。
 半導体素子21、22との線熱膨張率の差は、表面電極側のアルミニウムからなる電極板63あるいは銅からなる金属部材61、62の方が、裏面電極側の絶縁基板10より大きい。従って、第1のリードフレームの全体をアルミニウムからなる電極板で形成し、アルミニウムからなる電極板に銅めっきを施して、電極板と半導体素子の表面電極とをはんだで接合するよりも、本発明の半導体装置100のように、第1のリードフレーム60を銅からなる金属部材61、62に固着されたアルミニウムからなる電極板63で構成し、金属部材61、62と半導体素子21、22の表面電極とをはんだで接合する方が、半導体素子21、22の表面電極に加わる熱応力を小さくできるので、半導体素子21、22の信頼性を高めることができる。
 さらに、半導体素子21、22が炭化ケイ素(SiC)で形成されている場合には、半導体素子21、22の温度が200℃を超える状態で連続使用される場合がある。銅めっきを施したアルミニウムからなる電極板のみで第1のリードフレームを構成し、電極板と半導体素子の表面電極とをはんだで接合した半導体装置では、半導体素子の温度が200℃といったアルミニウムの再結晶温度を上回るような温度で連続使用されると、第1のリードフレームを構成する電極板のアルミニウムの結晶粒が粗大化して、電極板に施した銅めっき膜の亀裂や剥離を生じさせ、電極板と半導体素子の表面電極とのはんだ接合部の信頼性を低下させる。
 しかし、本発明の半導体装置100は、第1のリードフレーム60がアルミニウムまたはアルミニウム合金からなる電極板63とはんだ接合部が銅または銅合金からなる金属部材61、62とを固着させて構成しているので、金属部材61、62はアルミニウムに比較して高い耐熱性を有し、半導体素子21、22の温度が200℃を超えるような状態で連続使用されても、半導体素子21、22の表面電極と金属部材61、62とのはんだ接合部の信頼性を十分に高くすることができる。
 また、従来の半導体装置では、第1のリードフレームをアルミニウムまたはアルミニウム合金からなる電極板で構成する場合には、電極板に銅めっきを施して、電極板にはんだが濡れるようにしていた。しかし、アルミニウムまたはアルミニウム合金へのめっき処理には高度な技術が必要であり、電極板をアルミニウムまたはアルミニウム合金で形成しても、結果的に、電極板を銅または銅合金で形成する場合と同等以上のコストを要していた。さらに、はんだ接合時に薄い銅めっき膜の銅が溶融したはんだ内に溶け出す、いわゆるはんだ食われや、半導体装置の使用時における銅めっき膜の剥がれが発生するため、はんだ接合部に高い信頼性を確保するのが困難であった。
 しかし、本発明の半導体装置100は、第1のリードフレーム60がアルミニウムまたはアルミニウム合金からなる電極板63と銅または銅合金などのはんだが濡れる金属からなる金属部材61、62とを固着させて構成しているので、第1のリードフレーム60を低コストで製造することができ、金属部材61、62は、剥がれやはんだ食われなどの問題を有さないのではんだ接合部に高い信頼性を確保することができる。
実施の形態2.
 図7は、本発明の実施の形態2における半導体装置を示す断面図である。図7において、図1および図2と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、半導体装置200がケースおよび封止樹脂部を備えておらず、モールド樹脂を用いたトランスファーモールドにより封止された構成が相違している。
 図7に示すように、半導体装置200は、第1のリードフレーム60が、銅または銅合金などのはんだが濡れる材料からなる金属部材61、62とアルミニウムまたはアルミニウム合金からなる電極板63とが固着されて構成されている。金属部材61、62は、絶縁基板10に接合された半導体素子21、22の表面電極にはんだで接合されている。
 第1のリードフレーム60を構成する電極板63は、金属部材61、62が固着された側とは反対側の端部に外部の電気回路に接続される主端子部68が設けられている。主端子部68は半導体装置200の外部に露出しており、必要に応じてニッケルめっきや銅めっきなどはんだが濡れる金属によるメタライズ処理が施されている。また、絶縁基板10の導体層11に接合された端子板(図示せず)が設けられており、端子板の導体層11に接合された側と反対側の端部に、外部の電気回路に接続される主端子部(図示せず)が設けられている。
 そして、半導体装置200の構成部材が、トランスファーモールドにより封止樹脂部71で封止されている。絶縁基板10の裏面側に設けられた導体層13は、封止樹脂部71の外部に露出して設けられており、導体層13を排熱用のヒートシンク(図示せず)にはんだなどの接合材で接合できるように構成されている。
 以上のように構成された半導体装置200であっても、半導体素子21、22の表面電極にはんだで接合され、平面視で半導体素子21、22の表面電極の外周より内側に位置し、半導体素子21、22の表面電極および電極板53より面積が小さい金属部材61、62に、アルミニウムまたはアルミニウム合金からなる電極板63を固着させて第1のリードフレーム60を構成したので、はんだ31、32が電極板63に濡れ広がらず、はんだ31、32が電極板63に吸い取られないので、十分な量のはんだを半導体素子21、22の表面電極と金属部材61、62との接合に確保することができ、実施の形態1と同様の効果を得ることができる。
実施の形態3.
 図8は、本発明の実施の形態3における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。なお、図8では、半導体素子22と金属部材62とのはんだ接合部の構成について示しているが、半導体素子21と金属部材61とのはんだ接合部についても同様の構成となっている。図8において、図1および図2と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、第1のリードフレーム60を構成する電極板63と金属部材62との固着構造が相違している。
 図8に示すように、本実施の形態3の半導体装置は、絶縁基板10の表面側に設けられた導体層11に、半導体素子22の裏面電極がはんだなどの接合材36で接合されており、半導体素子22の表面電極に第1のリードフレーム60がはんだ32で接合されている。第1のリードフレーム60は、半導体素子22の表面電極にはんだ32で接合された金属部材62と、金属部材62に固着された電極板63とで構成されている。電極板63は金属部材62を介して半導体素子22の表面電極に電気的に接続されている。
 図8に示すように、アルミニウムまたはアルミニウム合金からなる電極板63には、電極板63の表面から窪んで形成された止まり穴からなる開口部が設けられており、電極板63に設けられた止まり穴からなる開口部に金属部材62が挿入されて、電極板63と金属部材62とが固着されている。電極板63と金属部材62とを焼嵌めや熱かしめによって接合することで、金属部材62と電極板63とを固着させることができる。
 図9は、本発明の実施の形態3における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の他の構成を示す部分断面図である。図9において、図8と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。図8の構成とは、第1のリードフレーム60を構成する電極板63の表面に金属部材62が接合されて固着された構造が相違している。
 図9に示すように、アルミニウムまたはアルミニウム合金からなる電極板63の表面に銅または銅合金などのはんだが濡れる金属からなる金属部材62が貼り付けられて固着されている。すなわち、金属部材62の全体が、電極板63の表面から突出した突出部となっている。金属部材62は超音波接合によって電極板63に貼り付けて固着させることができる。また、金属部材62は、めっきや印刷などの成膜プロセスにより電極板63の表面に形成してもよい。
 金属部材62の厚さが薄い場合には、半導体素子22の表面電極とはんだで接合する際に、金属部材62を構成する銅などの金属材料が溶融したはんだ内に溶け出す、いわゆるはんだ食われにより、金属部材62の一部が無くなりはんだ接合強度が低下する場合がある。従って、金属部材62は、はんだ食われによっても無くならない厚さである必要がある。すなわち、金属部材62の厚さは、10μm以上であって、好ましくは50μm以上である。そして、金属部材62は、めっきなどの成膜プロセスにより形成されるよりも、金属板や金属箔で形成し、電極板63に接合させる方が好ましい。従って、金属部材62を接合する場合の取扱いの容易さから、金属部材62の厚さは100μm以上がさらに好ましい。なお、金属部材62の厚さは、図9に示した構成の半導体装置に限らず、本発明の全ての実施の形態に示した半導体装置の構成において、10μm以上であって、好ましくは50μm以上であり、さらに好ましくは100μm以上である。なお、金属部材が、複数の金属層を積層して構成される場合には、はんだで半導体素子の表面電極に接合される接合面を有する金属層の厚さが、10μm以上であって、好ましくは50μm以上であり、さらに好ましくは100μm以上である。
 図10は、本発明の実施の形態3における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の他の構成を示す部分断面図である。図10において、図8と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。図8の構成とは、第1のリードフレーム60を構成する電極板63の表面に対して金属部材62のはんだ接合面が同一面となるように電極板63と金属部材62とが固着された構造が相違している。
 金属部材62は、第1のリードフレーム60を構成する電極板63に設けられた開口部に挿入されて固着されている。電極板63のはんだ32が接合される側の表面と、金属部材62のはんだ32が接合される接合面とは同一面を構成している。すなわち、金属部材62は、電極板63の表面から突出した突出部を有していない。従って、金属部材62の半導体素子22の表面電極に対向した面のみにはんだ32が設けられており、金属部材62が突出部を有する図8や図9あるいは実施の形態1および2に示した半導体装置に比べ、はんだ32が接合される面積が少ないので、はんだ32の接合強度は低下している。しかし、金属部材62は、図10に示すように、電極板63のはんだ32が接合される側の表面と、金属部材62のはんだ32が接合される接合面とが同一面であってもよい。金属部材62は、平面視で半導体素子22の表面電極の外周より内側に位置しているので、はんだ32は半導体素子22の表面電極側に裾野が広がったフィレット形状で形成され、高い接合信頼を得ることができる。
 また、図10では、金属部材62が電極板63に設けられた電極板63を貫通する開口部に挿入されて固着されているが、図8に示したような電極板63に設けられた止まり穴からなる開口部に金属部材62が挿入されて固着されていてもよい。その場合も、電極板63のはんだ32が接合される側の表面と、金属部材62のはんだ32が接合される接合面とが同一面であってもよい。
実施の形態4.
 図11は、本発明の実施の形態4における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。なお、図11では、半導体素子22と金属部材62とのはんだ接合部の構成について示しているが、実施の形態3で示した半導体装置と同様、半導体素子21と金属部材61とのはんだ接合部についても同様の構成となっている。図11において、図1、図2および図8と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、第1のリードフレーム60を構成する金属部材162の構造が相違している。
 図11に示すように、第1のリードフレーム60は、アルミニウムまたはアルミニウム合金からなる電極板63と、銅または銅合金などのはんだが濡れる金属材料からなる金属部材162とにより構成されており、金属部材162と電極板63とが固着されている。金属部材162は、電極板63に設けられた開口部に挿入された挿入部162aと、半導体素子22の表面電極とはんだ32で接合された接合面を有する接合部162bとを有している。平面視で、接合部162bの面積は、挿入部162aの面積より大きくなっている。すなわち、平面視で金属部材162の接合面の面積が電極板63に設けられた開口部の面積より大きくなっている。また、平面視で、接合部162bの面積は、半導体素子22の表面電極の面積より小さくなっている。
 金属部材162は、焼嵌めやプレス加工など実施の形態1で説明した方法により、電極板63の開口部に挿入部162aを挿入して、電極板63に固着されている。そして、金属部材162の接合部162bが、電極板63の表面から突出した突出部を構成しており、半導体素子22の表面電極と金属部材162の接合部162bとがはんだ32で接合されている。これにより、第1のリードフレーム60と半導体素子22とが電気的に接続されている。
 このように金属部材162を、電極板63に挿入した挿入部162aと、平面視で電極板63の開口部より面積が大きい接合面を有する接合部162bとで構成することにより、電極板63の幅が十分に広くなく、接合部162bの幅と同等である場合であっても、金属部材162が半導体素子22の表面電極にはんだ32で接合される接合面積を十分に確保し、さらに金属部材162と電極板63との固着を強固に行うことができる。この結果、第1のリードフレーム60と半導体素子22との間に良好な電気伝導および熱伝導を確保することができる。
 なお、図11では、金属部材162の接合部162bが電極板63の表面から突出しているため、接合部162bは突出部であるとも言えるが、接合部162bは必ずしも電極板63の表面から突出していなくてもよい。すなわち、電極板63に接合部162bが収まるような窪み部が形成されており、接合部162bが窪み部内に収容されて、接合部162bが電極板63の表面から突出しないようにしてもよい。
 図12は、本発明の実施の形態4における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の他の構成を示す部分断面図である。なお、図12では、図11と同様、半導体素子22と金属部材62とのはんだ接合部の構成について示しているが、半導体素子21と金属部材61とのはんだ接合部についても同様の構成となっている。図12において、図11と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。図11とは、第1のリードフレーム60を構成する金属部材163が、金属部材163の接合面に対して窪んだ凹部163aを有する点が相違している。
 図12に示すように、第1のリードフレーム60は電極板63と金属部材163とが固着されて構成されている。金属部材163には、はんだ32が設けられた接合面に凹部163aが設けられており、凹部163aは金属部材163を貫通する貫通孔となっている。このため、はんだ32が凹部163a内に入り込んで設けられている。なお、凹部163aは、金属部材163を貫通する貫通孔に限るものではなく、金属部材163の接合面から窪んだ形状を呈し、凹部163a内にはんだ32が入り込める形状であればよい。
 このように、金属部材163の接合面にはんだ32が入り込める凹部163aを設けることによって、半導体素子22の表面電極と金属部材163との間に設けられたはんだ32の量が過剰であった場合に、凹部163aが余分な量のはんだを濡れ上げさせて、半導体素子22の表面電極と金属部材163との接合部の周囲に広がり、周囲の部位に付着してショート不良が発生するのを防止することができる。
 なお、図12に示した凹部は、図11に示した挿入部と接合部とを有する金属部材に設けてもよく、図11に示した形状の金属部材であっても同様の効果が得られる。
実施の形態5.
 図13は、本発明の実施の形態5における半導体装置を示す平面図である。また、図14は、本発明の実施の形態5における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。図13および図14において、図1と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態1とは、第1のリードフレーム60の構造が相違している。なお、図13では、封止樹脂部を省略して示している。
 図13および図14に示すように、半導体装置300の第1のリードフレーム60は、アルミニウムまたはアルミニウム合金で形成された電極板63に、銅または銅合金などのはんだが濡れる金属で形成された金属管からなる金属部材165が固着されて構成されている。金属部材165を構成する金属管は、偏平したパイプ形状を呈している。電極板63は、電極板63から枝分かれするように設けられた延在部63aと延在部63bとを有しており、延在部63aにパイプ状の金属部材164を被せ、延在部63bにパイプ状の金属部材165を被せて、金属部材164、165を熱圧着により電極板63の延在部63a、63bに固着させている。
 図14に示すように、金属部材165は対向して設けられた一対の挟持部165a、165bを有しており、電極板63の延在部63bが一対の挟持部165a、165bに挟持されて金属部材165に固着されている。挟持部165a、165bは、それぞれ金属管である金属部材165の管壁で構成されている。金属部材164についても同様である。金属部材164、165は、例えば、外側の長軸が6mm、短軸が2mmで厚さが0.4mmの楕円状の断面を有し、長さが8mmのパイプ状に形成されている。電極板63の延在部63a、63bは、例えば、長さ10mm、幅4mm、厚さ0.6mmで形成されている。
 図14に示すように、絶縁基板10の導体層11に接合材36で接合された半導体素子22の表面電極と、第1のリードフレーム60の電極板63に固着された金属部材165とがはんだ32で接合されている。すなわち、電極板63は金属部材165を介して半導体素子22の表面電極に電気的に接続されている。金属部材164も同様に構成されており、電極板63は金属部材164を介して半導体素子21の表面電極に電気的に接続されている。
 図13に示すように、金属部材164は、平面視で半導体素子21の表面電極33の外周より内側に位置しており、金属部材165は、平面視で半導体素子22の表面電極34の外周より内側に位置している。また、金属部材164は、平面視で半導体素子21の表面電極33より面積が小さく、金属部材165は、平面視で半導体素子22の表面電極34より面積が小さくなっている。この結果、図14に示すように、半導体素子22の表面電極と金属部材165とを接合したはんだ32は、半導体素子22の表面電極側に裾野が広がったようなフィレット形状を呈し、半導体素子22の表面電極と金属部材165とが強固に高い信頼性で接合される。半導体素子21の表面電極と金属部材164との接合についても同様である。
 図15は、本発明の実施の形態5における他の構成の半導体装置を示す平面図である。図15において、図13と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。図13の半導体装置とは、第1のリードフレーム60の構造が相違している。図15では、図13同様、封止樹脂部を省略して示している。
 図15に示すように、半導体装置400は、銅または銅合金などのはんだが濡れる材料で形成された金属管で構成された金属部材166、167を電極板63に固着させて第1のリードフレーム60を構成している。金属部材166、167は、図13、図14で示した金属部材と同様、偏平したパイプ形状を呈している。図13の半導体装置とは異なり、電極板63は枝分かれしたような延在部を有しておらず、電極板63にパイプ状の金属部材166、167を被せて、金属部材166、167を電極板63の所定位置で固着させている。図14で示した構造と同様に、金属部材166、167は対向して設けられた一対の挟持部を有しており、一対の挟持部が電極板63を挟持することで、金属部材166、167と電極板63とが固着されている。金属部材166、167は、例えば、外側の長軸が8mm、短軸が2mmで厚さが0.4mmの楕円状の断面を有し、長さが6mmのパイプ状に形成され、電極板63は、例えば、幅6mm、厚さ0.6mmで形成されている。そして、金属部材166、167を熱圧着して電極板63に固着させている。
 図15に示すように、金属部材166、167は、平面視で半導体素子21、22の表面電極33、34の外周より内側に位置している。また、金属部材166、167は、平面視で半導体素子21、22の表面電極33、34より面積が小さくなっている。金属部材166と半導体素子21の表面電極33とがはんだで接合され、金属部材167と半導体素子22の表面電極34とがはんだで接合されることで、第1のリードフレーム60が半導体素子21、22に電気的に接続される。半導体装置400は、実施の形態1で説明した半導体装置と同様、半導体素子21、22の表面電極と金属部材166、167との間に必要な量のはんだが確保されるため強固で信頼性の高い接合が得られる。
 また、本実施の形態5で説明したように、電極板63と固着させる金属部材が、対向して設けられた一対の挟持部により電極板63を挟持する構成としたので、電工ペンチのような簡易な工具を用いた工法によっても、はんだが濡れないアルミニウムまたはアルミニウム合金からなる電極板63に、はんだの濡れ性が良い金属部材を固着させることができ、半導体装置の製造コストを低減することができる。なお、本実施の形態5では、金属部材を金属管で構成し電極板に被せられる形状としたが、金属部材は電極板を挟持する形状であれば金属管に限らず、例えば、折り曲げられてU字状の断面形状を有するように形成された金属板で構成してもよい。
 なお、本実施の形態5では、金属部材を銅または銅合金などのはんだが濡れる金属からなるとしたが、金属部材には、内径側がアルミニウムで形成され外径側が銅で形成されたクラッドパイプを用いてもよい。すなわち、金属部材が、外形側の第1の金属層が銅で形成され、第1の金属層の内径側に積層された第2の金属層がアルミニウムで形成されたクラッドパイプであってもよい。このようなアルミニウムと銅とで構成されたクラッドパイプで金属部材を形成することにより、内径側のアルミニウムにより電極板と金属部材との接合性を良好にすることができ、外径側の銅により半導体素子の表面電極とのはんだ接合を行うことができる。
実施の形態6.
 図16は、本発明の実施の形態6における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。なお、図16では、実施の形態4で示した図12と同様、半導体素子22と金属部材62とのはんだ接合部の構成について示しているが、半導体素子21と金属部材61とのはんだ接合部についても同様の構成となっている。図16において、図12と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。実施の形態で示した図12とは、第1のリードフレーム60を構成する金属部材62が、かしめリング形状に構成されている点が相違している。
 図16に示すように、金属部材62はリング状の部材615である。リング状の部材615は銅からなっている。リング状の部材615は中央に開口部が設けられている。リング状の部材615は開口部に対してかしめによって挿入固定されている。つまり、リング状の部材615は、電極板63の開口部に挿入された後にかしめ加工によって固定されている。リング状の部材615は電極板65の両面でつぶれて電極板63の開口部よりも大きく広がっている。また、金属部材62と電極板63との間の少なくとも一部に、金属拡散を伴った接合部が形成されていてもよい。
 リング状の部材615が電極板65の両面でつぶれて電極板63の開口部よりも大きく広がっていることによって、電極板63に対する金属部材62の接合面積を大きく確保することができる。さらに、リング状の部材615の中央の開口部は余剰はんだを調整する機能を有している。また、熱処理等によって部材間の金属拡散を促進することによって、機械的強度を増大させるなどの効果を得ることも可能である。
実施の形態7.
 図17は、本発明の実施の形態7における半導体装置の第1のリードフレームと半導体素子の表面電極とのはんだ接合部の構成を示す部分断面図である。図17において、実施の形態5に示す図14と同じ符号を付けたものは、同一または対応する構成を示しており、その説明を省略する。本発明の実施の形態5に示す図14とは、金属管の構造が相違している。
 図18は、金属管からなる金属部材165の構成を示す斜視図である。金属管のうち、半導体素子21、22の表面電極33、34に面する部分の一部がバネ性を有するように構成されている。金属部材62の一部がエッチングやプレス加工によってパイプ部分とは独立したバネ性を有する突起部616を形成している。突起部616はパイプ部分の短軸方向に弾性変形可能に構成されている。
 金属管のうち、半導体素子21、22の表面電極33、34に面する部分の一部がバネ性を有することにより、電極板63の加工精度が乏しい場合でもはんだ付けを容易にすることができる。これにより、はんだ接合部にかかる応力を低減することが可能となる。
 次に、図19~図22を参照して、図2、図8、図10、図14の各々に示される各金属部材が複数の金属層から構成されている場合について説明する。図19~図22の各々は、図2、図8、図10、図14の各々にそれぞれ対応している。図19~図22の各々は、特に言及しない限り、図2、図8、図10、図14の各々とそれぞれ同様の構成を備えている。
 図19に示すように、金属部材61は、第1の金属層611と第1の金属層611に積層された第2の金属層612とで構成されている。第2の金属層612は第1の金属層611よりも絶縁基板10側に配置されている。金属部材62は、第1の金属層621と第1の金属層621に積層された第2の金属層622とで構成されている。第2の金属層622は第1の金属層621よりも絶縁基板10側に配置されている。
 図20に示すように、金属部材62は、第1の金属層621と第1の金属層621に積層された第2の金属層622とで構成されている。第2の金属層622は第1の金属層621よりも絶縁基板10側に配置されている。
 図21に示すように、金属部材62は、第1の金属層621と第1の金属層621に積層された第2の金属層622とで構成されている。第2の金属層622は第1の金属層621よりも絶縁基板10側に配置されている。
 図22に示すように金属部材165は第1の金属層1651と第1の金属層1651に積層された第2の金属層1652とで構成されている。第2の金属層1652は第1の金属層1651の内側に配置されている。
 21、22 半導体素子
 31、32 はんだ
 33、34 表面電極
 60 第1のリードフレーム
 61、62、161、162、163、164、165、166、167 金属部材
 63 電極板
 162a 挿入部、162b 接合部
 163a 凹部
 165a、165b 挟持部
 100、200、300、400 半導体装置

Claims (14)

  1.  表面電極を有する半導体素子と、
     平面視で前記半導体素子の前記表面電極より面積が大きく、アルミニウムまたはアルミニウム合金からなる電極板と、
     前記半導体素子の前記表面電極に接合材で接合された接合面を有し、平面視で前記半導体素子の前記表面電極より面積が小さく、前記電極板とは異なる金属からなり、前記電極板に固着され、前記半導体素子の前記表面電極と前記電極板とを電気的に接続した金属部材と、
    を備えた半導体装置。
  2.  前記金属部材は、前記電極板の表面から突出した突出部を有し、
     前記突出部は、前記半導体素子の前記表面電極に対向した底面と、前記底面と前記電極板との間に設けられた側面とを有し、
     前記接合面が前記底面および前記側面で構成され、前記接合材が前記底面および前記側面に設けられた請求項1に記載の半導体装置。
  3.  前記金属部材は、前記接合面を有する第1の金属層のみで構成された請求項1または2に記載の半導体装置。
  4.  前記金属部材は、積層された複数の金属層で構成され、
     前記複数の金属層は、前記接合面を有する第1の金属層と、前記第1の金属層とは異なる金属からなる第2の金属層とを含む請求項1または2に記載の半導体装置。
  5.  前記金属部材の前記第1の金属層は、銅または銅合金からなる請求項3または4に記載の半導体装置。
  6.  前記金属部材の前記第1の金属層の厚さは、10μm以上である請求項3から5のいずれか1項に記載の半導体装置。
  7.  前記金属部材の前記接合面に凹部が設けられ、
     前記凹部内に前記接合材が設けられた請求項1から6のいずれか1項に記載の半導体装置。
  8.  前記電極板には開口部が設けられ、前記金属部材が前記開口部に挿入された請求項1から7のいずれか1項に記載の半導体装置。
  9.  平面視で、前記金属部材の前記接合面の面積は、前記電極板の前記開口部の面積より大きい請求項8に記載の半導体装置。
  10.  前記金属部材は、対向して設けられた一対の挟持部を有し、
     前記電極板は、前記金属部材の前記挟持部に挟持された請求項1から7のいずれか1項に記載の半導体装置。
  11.  前記金属部材は金属管で構成され、前記挟持部は前記金属管の管壁で構成された請求項10に記載の半導体装置。
  12.  前記金属管のうち、前記半導体素子の前記表面電極に面する部分の一部がバネ性を有することを特徴とする請求項11に記載の半導体装置。
  13.  前記金属部材がリング状の部材であり、前記開口部に対してかしめによって挿入固定されることを特徴とする請求項9に記載の半導体装置。
  14.  前記金属部材と前記電極板との間の少なくとも一部に、金属拡散を伴った接合部が形成されていることを特徴とする請求項1から7のいずれか1項に記載の半導体装置。
PCT/JP2017/026893 2016-07-26 2017-07-25 半導体装置 WO2018021322A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780044550.5A CN109478521B (zh) 2016-07-26 2017-07-25 半导体装置
JP2018529918A JP6602480B2 (ja) 2016-07-26 2017-07-25 半導体装置
US16/301,893 US10727163B2 (en) 2016-07-26 2017-07-25 Semiconductor device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016145992 2016-07-26
JP2016-145992 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018021322A1 true WO2018021322A1 (ja) 2018-02-01

Family

ID=61016633

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026893 WO2018021322A1 (ja) 2016-07-26 2017-07-25 半導体装置

Country Status (4)

Country Link
US (1) US10727163B2 (ja)
JP (1) JP6602480B2 (ja)
CN (1) CN109478521B (ja)
WO (1) WO2018021322A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180914A1 (ja) * 2018-03-23 2019-09-26 三菱マテリアル株式会社 電子部品実装モジュール
JP2019212808A (ja) * 2018-06-06 2019-12-12 トヨタ自動車株式会社 半導体装置の製造方法
TWI692072B (zh) * 2018-04-05 2020-04-21 日商三菱電機股份有限公司 半導體模組及其製造方法
CN112136210A (zh) * 2018-05-15 2020-12-25 罗伯特·博世有限公司 由三个堆叠的接合副构成的复合组件
WO2020262259A1 (ja) 2019-06-28 2020-12-30 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
KR20210008804A (ko) * 2019-07-15 2021-01-25 제엠제코(주) 반도체 패키지
JP2021034638A (ja) * 2019-08-28 2021-03-01 三菱電機株式会社 半導体装置
WO2021145206A1 (ja) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 半導体装置
WO2021187171A1 (ja) * 2020-03-19 2021-09-23 株式会社オートネットワーク技術研究所 回路構成体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7119399B2 (ja) * 2018-02-06 2022-08-17 株式会社デンソー 半導体装置
JP7346178B2 (ja) * 2019-09-05 2023-09-19 株式会社東芝 半導体装置
US11600547B2 (en) * 2019-12-02 2023-03-07 Infineon Technologies Austria Ag Semiconductor package with expanded heat spreader
JP2022165097A (ja) * 2021-04-19 2022-10-31 三菱電機株式会社 半導体装置および半導体装置の製造方法
US11948809B2 (en) * 2021-09-14 2024-04-02 Delphi Technologies Ip Limited Method for underfilling using spacers
DE102022211788A1 (de) 2022-11-08 2024-05-08 Zf Friedrichshafen Ag Leistungsmodul

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129136U (ja) * 1984-02-03 1985-08-30 新電元工業株式会社 半導体装置
JP2007288013A (ja) * 2006-04-19 2007-11-01 Nec Electronics Corp 半導体装置の製造方法
JP2010010173A (ja) * 2008-06-24 2010-01-14 Denso Corp 電子装置およびその製造方法
WO2011064817A1 (ja) * 2009-11-26 2011-06-03 パナソニック株式会社 半導体装置とその製造方法
WO2012157584A1 (ja) * 2011-05-13 2012-11-22 富士電機株式会社 半導体装置とその製造方法
JP2013021371A (ja) * 2012-10-29 2013-01-31 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2013239486A (ja) * 2012-05-11 2013-11-28 Hitachi Ltd 半導体装置及びその製造方法
JP2014022580A (ja) * 2012-07-19 2014-02-03 Rohm Co Ltd パワーモジュール半導体装置
JP2016134540A (ja) * 2015-01-21 2016-07-25 三菱電機株式会社 電力用半導体装置

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3879150B2 (ja) 1996-08-12 2007-02-07 株式会社デンソー 半導体装置
US5804880A (en) * 1996-11-04 1998-09-08 National Semiconductor Corporation Solder isolating lead frame
JP4244760B2 (ja) 2003-07-29 2009-03-25 富士電機デバイステクノロジー株式会社 半導体装置
JP5273922B2 (ja) * 2006-12-28 2013-08-28 株式会社アライドマテリアル 放熱部材および半導体装置
CN101295695A (zh) * 2007-04-29 2008-10-29 飞思卡尔半导体(中国)有限公司 具有焊料流动控制的引线框架
US20090230519A1 (en) * 2008-03-14 2009-09-17 Infineon Technologies Ag Semiconductor Device
CN101404274B (zh) * 2008-11-13 2010-08-18 佛山市蓝箭电子有限公司 三引脚电子器件封装用引线框架、封装结构及其封装方法
JP4865829B2 (ja) * 2009-03-31 2012-02-01 シャープ株式会社 半導体装置およびその製造方法
JP2011014678A (ja) 2009-07-01 2011-01-20 Nissan Motor Co Ltd 半導体装置
JP5414644B2 (ja) 2010-09-29 2014-02-12 三菱電機株式会社 半導体装置
US9219030B2 (en) * 2012-04-16 2015-12-22 Taiwan Semiconductor Manufacturing Co., Ltd. Package on package structures and methods for forming the same
CN102760702A (zh) * 2012-07-18 2012-10-31 西安永电电气有限责任公司 基板及应用该基板的电子器件
DE112012006875T5 (de) * 2012-09-04 2015-06-03 Mitsubishi Electric Corporation Halbleitervorrichtung und Herstellungsverfahren für eine Halbleitervorrichtung
JP2014116531A (ja) 2012-12-12 2014-06-26 Panasonic Corp 半導体装置
US9530766B2 (en) * 2013-08-23 2016-12-27 Mitsubishi Electric Corporation Semiconductor device
US9659843B2 (en) * 2014-11-05 2017-05-23 Infineon Technologies Ag Lead frame strip with molding compound channels
DE102015104990B4 (de) * 2015-03-31 2020-06-04 Infineon Technologies Austria Ag Verbindungshalbleitervorrichtung mit einem Abtastlead
JP2017168596A (ja) * 2016-03-15 2017-09-21 株式会社東芝 半導体装置
US10130302B2 (en) * 2016-06-29 2018-11-20 International Business Machines Corporation Via and trench filling using injection molded soldering

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60129136U (ja) * 1984-02-03 1985-08-30 新電元工業株式会社 半導体装置
JP2007288013A (ja) * 2006-04-19 2007-11-01 Nec Electronics Corp 半導体装置の製造方法
JP2010010173A (ja) * 2008-06-24 2010-01-14 Denso Corp 電子装置およびその製造方法
WO2011064817A1 (ja) * 2009-11-26 2011-06-03 パナソニック株式会社 半導体装置とその製造方法
WO2012157584A1 (ja) * 2011-05-13 2012-11-22 富士電機株式会社 半導体装置とその製造方法
JP2013239486A (ja) * 2012-05-11 2013-11-28 Hitachi Ltd 半導体装置及びその製造方法
JP2014022580A (ja) * 2012-07-19 2014-02-03 Rohm Co Ltd パワーモジュール半導体装置
JP2013021371A (ja) * 2012-10-29 2013-01-31 Okutekku:Kk 半導体装置及び半導体装置の製造方法
JP2016134540A (ja) * 2015-01-21 2016-07-25 三菱電機株式会社 電力用半導体装置

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019180914A1 (ja) * 2018-03-23 2019-09-26 三菱マテリアル株式会社 電子部品実装モジュール
EP3770960A4 (en) * 2018-03-23 2022-10-19 Mitsubishi Materials Corporation MODULE MOUNTED ON AN ELECTRONIC COMPONENT
US11315868B2 (en) 2018-03-23 2022-04-26 Mitsubishi Materials Corporation Electronic-component-mounted module design to reduce linear expansion coefficient mismatches
TWI692072B (zh) * 2018-04-05 2020-04-21 日商三菱電機股份有限公司 半導體模組及其製造方法
CN112136210A (zh) * 2018-05-15 2020-12-25 罗伯特·博世有限公司 由三个堆叠的接合副构成的复合组件
JP2019212808A (ja) * 2018-06-06 2019-12-12 トヨタ自動車株式会社 半導体装置の製造方法
WO2020262259A1 (ja) 2019-06-28 2020-12-30 富士フイルム株式会社 ペプチド化合物の製造方法、保護基形成用試薬、及び、縮合多環化合物
KR102332716B1 (ko) * 2019-07-15 2021-11-30 제엠제코(주) 반도체 패키지
KR20210008804A (ko) * 2019-07-15 2021-01-25 제엠제코(주) 반도체 패키지
JP2021034638A (ja) * 2019-08-28 2021-03-01 三菱電機株式会社 半導体装置
JP7292155B2 (ja) 2019-08-28 2023-06-16 三菱電機株式会社 半導体装置
WO2021145206A1 (ja) * 2020-01-17 2021-07-22 パナソニックIpマネジメント株式会社 半導体装置
WO2021187171A1 (ja) * 2020-03-19 2021-09-23 株式会社オートネットワーク技術研究所 回路構成体
JP7452146B2 (ja) 2020-03-19 2024-03-19 株式会社オートネットワーク技術研究所 回路構成体

Also Published As

Publication number Publication date
CN109478521B (zh) 2022-10-11
JPWO2018021322A1 (ja) 2019-03-14
US10727163B2 (en) 2020-07-28
US20190189537A1 (en) 2019-06-20
CN109478521A (zh) 2019-03-15
JP6602480B2 (ja) 2019-11-06

Similar Documents

Publication Publication Date Title
JP6602480B2 (ja) 半導体装置
US9899345B2 (en) Electrode terminal, semiconductor device for electrical power, and method for manufacturing semiconductor device for electrical power
JP4635564B2 (ja) 半導体装置
JP4438489B2 (ja) 半導体装置
US8563364B2 (en) Method for producing a power semiconductor arrangement
WO2016136457A1 (ja) パワーモジュール
JP5445344B2 (ja) 電力用半導体装置
EP2533275A1 (en) Method for manufacturing semiconductor device and semiconductor device
JP6206494B2 (ja) 半導体装置
WO2011040313A1 (ja) 半導体モジュールおよびその製造方法
JP2016134540A (ja) 電力用半導体装置
WO2023221970A1 (zh) 功率模块、电源系统、车辆及光伏系统
JP6697944B2 (ja) 電力用半導体装置
JP2017174927A (ja) パワーモジュール及びその製造方法
JP5233853B2 (ja) 半導体装置
JP5218009B2 (ja) 半導体装置
JP2019079905A (ja) 半導体装置および半導体装置の製造方法
US20210407954A1 (en) Semiconductor device
JP4038173B2 (ja) 電力用半導体装置
JP2009147123A (ja) 半導体装置及びその製造方法
US11302670B2 (en) Semiconductor device including conductive post with offset
US20190356098A1 (en) Method for Bonding an Electrically Conductive Element to a Bonding Partner
CN111354709A (zh) 半导体装置及其制造方法
US20170323801A1 (en) Method of generating a power semiconductor module
JP2022152193A (ja) 半導体装置の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529918

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834324

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17834324

Country of ref document: EP

Kind code of ref document: A1