WO2018021210A1 - 三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法 - Google Patents

三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法 Download PDF

Info

Publication number
WO2018021210A1
WO2018021210A1 PCT/JP2017/026605 JP2017026605W WO2018021210A1 WO 2018021210 A1 WO2018021210 A1 WO 2018021210A1 JP 2017026605 W JP2017026605 W JP 2017026605W WO 2018021210 A1 WO2018021210 A1 WO 2018021210A1
Authority
WO
WIPO (PCT)
Prior art keywords
surface roughness
data
dimensional surface
dimensional
axis direction
Prior art date
Application number
PCT/JP2017/026605
Other languages
English (en)
French (fr)
Inventor
紘央 三重野
Original Assignee
中国塗料株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国塗料株式会社 filed Critical 中国塗料株式会社
Priority to JP2018529864A priority Critical patent/JPWO2018021210A1/ja
Priority to SG11201900642VA priority patent/SG11201900642VA/en
Priority to CN201780045996.XA priority patent/CN109477712A/zh
Priority to US16/320,833 priority patent/US11162786B2/en
Priority to EP17834216.8A priority patent/EP3492862B1/en
Priority to KR1020197004507A priority patent/KR102073803B1/ko
Publication of WO2018021210A1 publication Critical patent/WO2018021210A1/ja
Priority to JP2022018712A priority patent/JP2022062213A/ja
Priority to JP2023205471A priority patent/JP2024026279A/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/303Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces using photoelectric detection means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • G01B11/306Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces for measuring evenness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/002Measuring arrangements characterised by the use of optical techniques for measuring two or more coordinates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/02Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness
    • G01B11/022Measuring arrangements characterised by the use of optical techniques for measuring length, width or thickness by means of tv-camera scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D1/00Measuring arrangements giving results other than momentary value of variable, of general application
    • G01D1/02Measuring arrangements giving results other than momentary value of variable, of general application giving mean values, e.g. root means square values
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/347Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infrared, visible, or ultraviolet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells using displacement encoding scales
    • G01D5/3473Circular or rotary encoders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J1/00Photometry, e.g. photographic exposure meter
    • G01J1/02Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined

Definitions

  • the present invention relates to a three-dimensional surface roughness evaluation apparatus that acquires surface roughness parameters related to three-dimensional surface roughness of objects and structures that cannot be transported. Specifically, a three-dimensional surface roughness evaluation apparatus, a three-dimensional surface roughness evaluation method, and three-dimensional surface roughness data capable of directly acquiring surface roughness parameters quickly, continuously, in large quantities, and directly.
  • the present invention relates to an acquisition device and a three-dimensional surface roughness data acquisition method.
  • the surface roughness shape of the object is important for grasping the friction characteristics of the surface.
  • the importance of measuring shape parameters including not only the height of roughness but also the wavelength or the like has been shown in grasping the water friction characteristics of the object surface.
  • Non-Patent Document 1 describes the evaluation of the surface roughness (coating surface roughness) of the hull. To evaluate the surface roughness of an object or structure that cannot be transported, such as a hull, It is shown that it is necessary to measure a sufficient number of shape parameters in a vast range.
  • Non-Patent Document 1 in order to solve this, a roughness replica of the hull surface is made using a thermoplastic resin, and in the laboratory, a roughness replica is obtained by a point laser displacement meter mounted on an XY stage. The surface roughness of the hull is measured by surface analysis.
  • Patent Document 1 proposes a device using a shadow image recording device as a non-contact roughness measuring device for non-transportable objects and structures.
  • Non-Patent Document 1 has a problem that an excessive amount of labor is required to evaluate a large area because there is a limit to the area that can be replicated by the roughness replica. Further, the technique disclosed in Patent Document 1 is suitable for measuring the shape parameter of a relatively smooth surface with high accuracy because the roughness is measured based on a shadow image taken by irradiating a light source. Not.
  • the laser type optical displacement meter should be traversed by XY stage etc. and measured with the highest accuracy by ensuring the mechanical accuracy. Can do.
  • the present invention was invented to solve the problems in the prior art as described above, and the three-dimensional surface roughness evaluation apparatus of the present invention
  • a two-dimensional laser displacement meter A moving mechanism for moving the two-dimensional laser displacement meter in the X-axis direction;
  • a moving distance reader for reading the moving distance in the X-axis direction of the two-dimensional laser displacement meter;
  • an arithmetic device Based on the displacement data acquired by the two-dimensional laser displacement meter and the movement distance data acquired by the movement distance reading device, an arithmetic device that generates the three-dimensional surface roughness data of the measurement object;
  • a three-dimensional surface roughness evaluation apparatus comprising: The two-dimensional laser displacement meter is arranged so that the width direction of the two-dimensional laser displacement meter coincides with the Y-axis direction so that the displacement data of the coordinate in the Y-axis direction can be read at regular intervals.
  • the measurement width of the two-dimensional laser displacement meter is at least twice the average length RSm of the element to be measured;
  • the arithmetic unit is: The displacement data acquired at regular intervals in the X-axis direction by the two-dimensional laser displacement meter is averaged in the Y-axis direction to generate reference plane data for each coordinate, The reference plane data of each coordinate is subtracted from the displacement data of each XY plane coordinate to generate the three-dimensional surface roughness data of the measurement target.
  • the moving distance reading device is a device that reads the moving distance by a scale sensor using a circular scale interlocked with the moving mechanism, or the rotation number is read by a rotary encoder and the moving distance is calculated. It can be set as a device.
  • a portable battery can be further provided.
  • a three-dimensional surface roughness evaluation method for generating three-dimensional surface roughness data of a measurement object Displacement data is obtained by measuring displacement at regular intervals in the X-axis direction with a two-dimensional laser displacement meter having a measurement width of at least twice the average length RSm of the element to be measured, The displacement data is averaged in the Y-axis direction to generate reference plane data for each coordinate, The three-dimensional surface roughness data of the measurement target is generated by subtracting the reference plane data of each coordinate from the displacement data of each XY plane coordinate.
  • the three-dimensional surface roughness data acquisition device of the present invention is A two-dimensional laser displacement meter, A moving mechanism for moving the two-dimensional laser displacement meter in the X-axis direction; A moving distance reader for reading the moving distance in the X-axis direction of the two-dimensional laser displacement meter; A three-dimensional surface roughness data acquisition device comprising: The two-dimensional laser displacement meter is arranged so that the width direction of the two-dimensional laser displacement meter coincides with the Y-axis direction so that the displacement data of the coordinate in the Y-axis direction can be read at regular intervals.
  • the measurement width of the two-dimensional laser displacement meter is at least twice the average length RSm of the element to be measured.
  • the moving distance reading device is a device that reads the moving distance with a scale sensor using a circular scale interlocked with the moving mechanism, or the rotation number is read with a rotary encoder. It can be set as the apparatus which calculates.
  • a portable battery can be further provided.
  • the surface roughness parameter can be acquired quickly, continuously, in large quantities, and directly from the surface of the object to be measured. Is possible.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of the three-dimensional surface roughness evaluation apparatus in the present embodiment.
  • FIG. 2 is a schematic configuration diagram for explaining the configuration of the three-dimensional surface roughness data acquisition apparatus.
  • FIG. 3 shows the displacement data of the XY plane coordinates when the surface of the metal plate as a measurement object is coated with a paint (covered with a dry coating film; the same applies hereinafter) measured on the coated plate 1. is there.
  • FIG. 4 shows reference plane data of each coordinate generated by averaging the displacement data of the XY plane coordinates in FIG. 3 in the Y-axis direction.
  • FIG. 5 shows reference plane data obtained by correcting the slope of the reference plane data shown in FIG. 4 by the least square method.
  • FIG. 6 is three-dimensional surface roughness data obtained by subtracting the reference plane data shown in FIG. 4 from the displacement data shown in FIG.
  • FIG. 7 is a graph showing the analysis result of the surface roughness parameter obtained from the three-dimensional surface roughness data of FIG.
  • FIG. 8 is a graph of the analysis result of the surface roughness parameter obtained by the laser displacement meter attached to the XY stage for the coated plate 1 as a measurement target.
  • FIG. 9 is a comparative example of the displacement data of the XY plane coordinates when measuring the range of 7.5 mm from the end in the Y-axis direction for the coated plate 1 as a measurement target.
  • FIG. 10 shows reference plane data for each coordinate generated by averaging the displacement data of the XY plane coordinates in FIG.
  • FIG. 11 shows reference plane data obtained by correcting the slope of the reference plane data shown in FIG. 10 by the least square method.
  • FIG. 12 shows three-dimensional surface roughness data obtained by subtracting the reference plane data shown in FIG. 10 from the displacement data shown in FIG.
  • FIG. 13 is a graph showing the analysis result of the surface roughness parameter obtained from the three-dimensional surface roughness data of FIG.
  • FIG. 14 shows the ratio of the measured width to the average length RSm of the elements with a measured width of 32 mm and the ratio of Rz at each measured width with respect to the maximum height roughness Rz with the measured width of 32 mm for the coated plates 2 to 6. %).
  • FIG. 15 is a histogram showing the distribution of the surface roughness parameter when measuring the three-dimensional surface roughness of the hull as a measurement target using the three-dimensional surface roughness evaluation apparatus of the present embodiment.
  • FIG. 1 is a schematic configuration diagram for explaining the configuration of a three-dimensional surface roughness evaluation apparatus according to the present embodiment.
  • FIG. 1 (a) is a schematic configuration diagram viewed from the side, and FIG. FIG.
  • the three-dimensional surface roughness evaluation apparatus 10 of the present embodiment includes a two-dimensional laser displacement meter 12, a moving mechanism 14, a moving distance reading device 16, a computing device 18, and a two-dimensional laser displacement.
  • a total battery 12, a moving distance reading device 16, and a portable battery 20 for operating the arithmetic device 18 are provided.
  • the displacement data acquired by the two-dimensional laser displacement meter 12 or the movement distance acquired by the movement distance reader 16 as shown in FIG. Data is stored in a storage device 32 such as a hard disk drive or a flash memory, or is transmitted to an external terminal as will be described later using the communication means 34, etc., thereby obtaining three-dimensional surface roughness data. It can also be used as the device 30.
  • the device configuration at the measurement site can be simplified, and the acquired data can be obtained from an external computation such as a personal computer. It is also possible to perform the calculation by the apparatus and display the calculation result.
  • the two-dimensional laser displacement meter 12 is not particularly limited.
  • LJ-V7080 laser width 32 mm at a reference distance
  • the width direction of the two-dimensional laser displacement meter 12 is the moving direction (X-axis direction) of the two-dimensional laser displacement meter 12 so that the displacement data of the coordinate in the Y-axis direction can be read at a certain interval at a time.
  • the vertical direction that is, to coincide with the Y-axis direction.
  • the moving mechanism 14 has two pairs of wheels (that is, four wheels) that can move only in a predetermined direction (X-axis direction).
  • a crawler may be used.
  • a rotary encoder is used as the moving distance reading device 16, and the moving distance is calculated based on the circumference of the wheel and the rotating speed by reading the rotating speed of the wheel that is the moving mechanism 14. is doing.
  • the moving distance reading device 16 is not limited to this, and may be a device that reads the moving distance with a scale sensor using, for example, a circular scale interlocked with the moving mechanism 14.
  • the calculation device 18 can calculate a surface roughness parameter and the like based on the displacement data acquired by the two-dimensional laser displacement meter 12 and the movement distance data acquired by the movement distance reading device 16. If it is a thing, it will not specifically limit. For example, it can be configured such that displacement data and movement distance data are transmitted to an external terminal such as a tablet computer, a smart phone, or a personal computer, calculation processing is performed, and the calculation result is displayed on the external terminal.
  • an external terminal such as a tablet computer, a smart phone, or a personal computer
  • calculation device 18 When the calculation device 18 is built in the three-dimensional surface roughness evaluation device 10, display means for displaying calculation results such as surface roughness parameters may be provided, or data output means may be provided, for example, the above-mentioned external
  • the calculation result can be transmitted to the terminal and the calculation result can be displayed on the external terminal.
  • the portable battery 20 is not particularly limited, and for example, an existing secondary battery such as a lead storage battery, a nickel hydride secondary battery, or a lithium ion secondary battery can be used.
  • an existing secondary battery such as a lead storage battery, a nickel hydride secondary battery, or a lithium ion secondary battery can be used.
  • the portable battery 20 is mounted, so that the three-dimensional surface roughness evaluation apparatus 10 that is easy to carry is used. It can also be configured to be supplied from a commercial power source or the like.
  • Example 1 A specific example of the surface roughness evaluation of the measuring object 22 by the three-dimensional surface roughness evaluation apparatus 10 of the present embodiment configured as described above will be shown below.
  • the movement mechanism 14 by moving the three-dimensional surface roughness evaluation apparatus 10 on the surface of the measurement object 22 by the movement mechanism 14, the movement distance data based on the movement distance obtained by the movement distance reading apparatus 16 at a predetermined interval, and the two-dimensional Displacement data obtained by the laser displacement meter 12 is recorded in the arithmetic unit 18.
  • FIG. 3 shows XY plane coordinate displacement data measured for the coated plate 1 in a state where the surface of the metal plate is painted with the paint as the measurement target 22.
  • the displacement data shown in FIG. 3 is obtained by measuring the 30 mm ⁇ 30 mm measurement range of the coated plate 1 with a 250 ⁇ m pitch 121 ⁇ 121 (both in the X-axis direction and the Y-axis direction) by the three-dimensional surface roughness evaluation apparatus 10 of this example. 121 points) Data was acquired. In this example, such measurement was completed within 1 second.
  • the arithmetic unit 18 averaged the displacement data of the XY plane coordinates in the Y-axis direction to generate the reference plane data of each coordinate as shown in FIG.
  • FIG. 5 shows reference plane data obtained by correcting the slope of the reference plane data shown in FIG. 4 by the least square method.
  • the vertical axis is enlarged to ⁇ 30 ⁇ m.
  • the reference plane data includes about ⁇ 30 ⁇ m of the eccentricity of the wheel that is the moving mechanism 14.
  • the displacement data shown in FIG. 3 includes, in addition to the surface roughness, the inclination of the measuring object 22 and the eccentricity caused by rolling the wheel as the moving mechanism 14, and is suitable for the evaluation of the surface roughness. Absent. Therefore, the calculation device 18 subtracts the reference plane data shown in FIG. 4 from the displacement data shown in FIG. 3 to remove the inclination included in the displacement data and the eccentricity caused by rolling the wheel as the moving mechanism 14. Thus, more accurate three-dimensional surface roughness data can be acquired.
  • FIG. 7 shows the surface roughness parameters Rz (maximum height roughness), RSm (element average length), Rzjis (ten-point average roughness), Ra based on the three-dimensional surface roughness data shown in FIG. (Arithmetic mean roughness), Rq (root mean square roughness), Rc (average height of roughness curve), Rsk (skewness), Rku (kurtosis) were calculated and plotted with the minimum point of displacement as zero. Is.
  • Rz of the coated plate 1 is 78.9 ⁇ m
  • RSm is 3466 ⁇ m
  • Rzjis is 45.1 ⁇ m
  • Ra is 14.2 ⁇ m
  • Rq is 17.6 ⁇ m
  • Rc is 29.9 ⁇ m
  • Rsk is 0.08
  • Rku is 2.7. there were.
  • FIG. 8 shows the surface roughness parameters Rz (maximum height roughness), RSm (mean length of elements) obtained by a laser displacement meter attached to the XY stage for the coated plate 1 in Example 1.
  • Rzjis ten point average roughness
  • Ra arithmetic average roughness
  • Rq root mean square roughness
  • Rc average height of roughness curve
  • Rsk skewness
  • Rku kurtosis
  • Rz of the coated plate 1 measured by a laser displacement meter is 78.1 ⁇ m
  • RSm is 3561 ⁇ m
  • Rzjis is 50.5 ⁇ m
  • Ra is 13.1 ⁇ m
  • Rq is 16.3 ⁇ m
  • Rc is 35.2 ⁇ m
  • Rsk is ⁇ 0.11.
  • Rku was 2.8, and a result equivalent to the surface roughness parameter obtained using the three-dimensional surface roughness evaluation apparatus 10 of Example 1 was obtained.
  • FIG. 9 shows the displacement of the XY plane coordinates obtained for 121 ⁇ 31 (121 points in the X-axis direction, 31 points in the Y-axis direction) data with a measurement range of 30 mm ⁇ 7.5 mm at a pitch of 250 ⁇ m for the coated plate 1. It is data.
  • Example 2 In the same manner as in Example 1, the displacement data of the XY plane coordinates were averaged in the Y-axis direction to generate the reference plane data of each coordinate shown in FIG. FIG. 11 is obtained by correcting the inclination of the reference plane data by the least square method. As in FIG. 5, the eccentricity of the wheel, which is the moving mechanism 14, can be confirmed, but the width of the displacement is larger than that in FIG. 5.
  • FIG. 12 shows three-dimensional surface roughness data obtained by subtracting the reference plane data shown in FIG. 10 from the displacement data shown in FIG. 9 to remove the tilt included in the displacement data and the eccentricity caused by rolling the wheel as the moving mechanism 14. It is.
  • FIG. 13 shows the surface roughness parameters Rz (maximum height roughness), RSm (element average length), Rzjis (ten-point average roughness), Ra based on the three-dimensional surface roughness data shown in FIG. (Arithmetic mean roughness), Rq (root mean square roughness), Rc (average height of roughness curve), Rsk (skewness), Rku (kurtosis) were calculated and plotted with the minimum point of displacement as zero. Is.
  • Rz of the coated plate 1 measured in Comparative Example 2 is 56.3 ⁇ m, RSm is 3900 ⁇ m, Rzjis is 34.9 ⁇ m, Ra is 10 ⁇ m, Rq is 12.4 ⁇ m, Rc is 24.9 ⁇ m, Rsk is 0.09, Rku is 2.8.
  • the surface roughness parameters related to the roughness height such as Rz, Rzjis, Ra, Rq, and Rc are smaller than those in Example 1 and Comparative Example 1. This is because the surface roughness shape is included in the reference plane data averaged in the width direction (Y-axis direction) of the two-dimensional laser.
  • the length in the Y-axis direction to be averaged (measurement width of the two-dimensional laser displacement meter 12) is at least twice the RSm of the measurement target 22.
  • Table 1 shows the measurement of the coated plate 2 in a state where the surface of the metal plate is painted with a paint as the measurement object 22, and the measurement width of the two-dimensional laser displacement meter 12 is 0.5 mm, 1 mm, 2 mm, 4 mm, 16 mm, and 32 mm.
  • Each surface roughness parameter obtained by changing and correcting with reference plane data averaged in the width direction (Y-axis direction) of the two-dimensional laser at each measurement width.
  • Table 2 shows the magnification of each measurement width in Table 1 with respect to RSm (3325 ⁇ m) at a measurement width of 32 mm, and the ratio of each surface roughness parameter at each measurement width in Table 1 to each surface roughness parameter at a measurement width of 32 mm. Is shown.
  • the ratio of Rz in each measurement width to Rz in the measurement width 32 mm is 33.7% when the magnification of the measurement width with respect to RSm at the measurement width 32 mm is 0.2 times, 57.7% when 0.3 times, 0 .6x is 81.7%, 1.2x is 95.2%, 2.4x is 101.2%, and 4.8x is 104.4%. As it grows, the tendency to converge to 100% is obvious. In particular, the measurement width is about twice that of RSm, which is almost 100%.
  • the measurement width of the two-dimensional laser displacement meter 12 is varied in this way, and the range of the measurement width in which the variation of each surface roughness parameter is small is effective. It can also be selected as a safe measurement width.
  • the measurement is performed in the same manner on the coated plates 3 to 6 in which the surface of the metal plate is painted with the paint as the measurement object 22, and the measurement width of the two-dimensional laser displacement meter 12 is 0.5 mm, 1 mm, 2 mm, 4 mm, 16 mm, Tables 3, 5, 7, and 9 show the roughness evaluation results obtained by correcting with reference plane data averaged in the width direction (Y-axis direction) of the two-dimensional laser at each measurement width. Respectively.
  • the maximum height roughness Rz of the painted plate 3 at a measurement width of 32 mm is 60.4 ⁇ m
  • the average length RSm of the element is 1820 ⁇ m
  • the maximum height roughness Rz of the painted plate 4 at a measurement width of 32 mm is 146.3 ⁇ m
  • the element The average length RSm of the paint plate 5 is 2200 ⁇ m
  • the maximum height roughness Rz at the measurement width 32 mm of the paint plate 5 is 76.5 ⁇ m
  • the average length RSm of the element is 4150 ⁇ m
  • the thickness Rz was 112.3 ⁇ m
  • the average element length RSm was 5001 ⁇ m.
  • Table 4 shows the magnification of each measurement width in Table 3 with respect to RSm (3325 ⁇ m) at a measurement width of 32 mm, and the ratio of each surface roughness parameter at each measurement width in Table 3 to each surface roughness parameter at the measurement width of 32 mm.
  • Table 6 is in Table 5
  • Table 8 is in Table 7
  • Table 10 is in Table 9.
  • the roughness evaluation results for any of the coated plates 3 to 6 tend to converge to 100% as the magnification of the measurement width with respect to RSm increases, and in particular, the measurement width is about 100 when the measurement width is about twice that of RSm. It is clear that it will converge to%.
  • FIG. 14 shows the ratio of the measured width to the average length RSm of the elements with a measured width of 32 mm and the ratio of Rz at each measured width with respect to the maximum height roughness Rz with the measured width of 32 mm for the coated plates 2 to 6. %).
  • the measurement width of the two-dimensional laser displacement meter 12 is at least twice the average length RSm of the elements of the measurement object 22, the reference plane averaged in the width direction (Y-axis direction) of the two-dimensional laser It became clear that the possibility of the surface roughness shape being included in the data was reduced and accuracy could be secured.
  • the measurement width of the two-dimensional laser displacement meter 12 is changed so that each surface roughness parameter does not vary greatly.
  • Example 3 The three-dimensional surface roughness of the hull was measured as the measurement object 22 using the three-dimensional surface roughness data acquisition device 30 and the arithmetic device 18 which is an external terminal.
  • the configuration of the three-dimensional surface roughness data acquisition device 30 according to the third embodiment is the same as that of the three-dimensional surface roughness evaluation device 10 according to the first embodiment in which the arithmetic device 18 is omitted.
  • FIG. 15A shows the distribution of Rz (maximum height roughness) and RSm (mean length of elements), which are surface roughness parameters of the hull measured using the three-dimensional surface roughness data acquisition device 30.
  • FIG. 15B is a three-dimensional histogram
  • FIG. 15B is a histogram showing the distribution of the RSm component of FIG. 15A
  • FIG. 15C is a histogram showing the distribution of the Rz component of FIG.
  • the 3D surface roughness data acquisition device 30 is used to scan 27 cm in the X-axis direction and repeatedly acquire 9 points of 30 mm x 30 mm data, and measure 100 points throughout the hull. 900 points of data were acquired.
  • the measurement at 100 locations was completed in about 2 hours.
  • the effective data excluding measurement errors is 620 points, and as a result of calculation processing by the calculation device 18 which is an external terminal based on the acquired data, the surface roughness parameter Rz (maximum)
  • the height roughness was 50.7 ⁇ m
  • RSm average element length
  • the Rz distribution in the three-dimensional histogram shown in FIG. 15 was 20 ⁇ m to 140 ⁇ m, and the RSm distribution was 1750 ⁇ m to 7500 ⁇ m.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

二次元レーザー変位計と、二次元レーザー変位計をX軸方向に移動させる移動機構と、二次元 レーザー変位計のX軸方向の移動距離を読み取る移動距離読取装置と、二次元レーザー変位計により取得された変位データと、移動距離読取装置により取得された移動距離データとに基づき、測定対象の三次元表面粗度データを生成する演算装置とを備える三次元表面粗度評価装置であって、二次元レーザー変位計は、一定間隔毎にY軸方向の座標の変位データを読み取り可能となるように、該二次元レーザー変位計の幅方向がY軸方向と一致するように配置され、二次元レーザー変位計の計測幅が、測定対象の要素の平均長さRSmの少なくとも2倍以上であり、演算装置は、二次元レーザー変位計によりX軸方向の一定間隔毎に取得された変位データを、Y軸方向に平均化して、各座標の基準面データを生成し、各X-Y平面座標の変位データから、各座標の基準面データを減算して、測定対象の三次元表面粗度データを生成するように構成する。

Description

三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法
 本発明は、運搬不可能な物体や構造物などの三次元表面粗度に関する表面粗度パラメーターを取得する三次元表面粗度評価装置に関する。具体的には、表面粗度パラメーターを、迅速に、連続的に、大量に、且つ直接取得することができる三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法に関する。
 物体の表面粗度形状は、その表面の摩擦特性を把握する上で重要である。近年では、非特許文献1に示すように、物体表面の水流摩擦特性の把握には、粗度高さだけではなく、波長等を含めた形状パラメーターの測定の重要性が示されている。
 非特許文献1では、船体の表面粗度(塗膜表面粗度)に関する評価について述べられており、船体のように運搬不可能な物体や構造物などの表面粗度を評価するには、非常に広大な範囲において、十分な点数の形状パラメーターを測定する必要があることが示されている。
 また、従来の粗度測定器である「BSRA HULL ROUGHNESS ANALIZER」を用いた場合、船体表面粗度の精密測定並びにパラメーター解析が出来ない問題が指摘されている。非特許文献1では、これを解決するため、熱可塑性樹脂を用いて船体表面の粗度レプリカを作成し、実験室内において、X-Yステージに搭載された点状レーザー変位計により、粗度レプリカの表面解析をすることによって船体の表面粗度を計測している。
 特許文献1では、運搬不可能な物体や構造物などの非接触粗度測定装置として、陰影画像記録装置を用いたものが提案されている。
特開昭61-292509号公報
三重野 紘央、増田 宏、「船底塗料の塗膜表面粗度による抵抗増加について-船底外板塗料による船体抵抗低減」、日本マリンエンジニアリング学会誌、第48巻、第 3 号(2013)、p300-307
 非特許文献1に開示されている手法では、粗度レプリカにより複製できる面積に限りがあるため、広大な面積を評価するには過度な労力を必要とするといった問題があった。また、特許文献1に開示されている手法では、光源を照射して撮影した陰影画像を基に、粗度を測定するため、比較的平滑な表面の形状パラメーターを精度良く測定することには適していない。
 また、マイクロメートルオーダーの微細粗度の粗度パラメーターの測定において、レーザー型の光学式変位計をX-Yステージ等によりトラバースし、機械的精度を確保して行うことにより最も精度良く測定することができる。
 しかしながら、このような方法で、例えば、船体のように広い範囲を測定する必要がある場合には、トラバース装置が大型化し、トラバース装置の重量が増大することとなり、加工や塗装などの現場における取り扱いが困難となる。また、大型化したとしても、トラバース装置の動作範囲や計測範囲は限られてしまう技術的制約がある。
 また、X-Yステージを用いる場合には、X-Y方向に精密動作をさせるため、精密ステージとステッピングモーターとを用いる必要がある。また、このようなX-Yステージを制御するX-Yステージコントローラーと、レーザー変位計のコントローラーなども備える必要がある。このため、測定装置として重量が大きくなり、また、消費電力も大きくなるため、測定装置の持ち運びには適さない。
 本発明では、このような現状を鑑み、運搬不可能な物体や構造物などの三次元表面粗度に関する表面粗度パラメーターを、迅速に、連続的に、大量に、且つ直接取得することができる三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法を提供することを目的とする。
 本発明は、前述するような従来技術における課題を解決するために発明されたものであって、本発明の三次元表面粗度評価装置は、
 二次元レーザー変位計と、
 前記二次元レーザー変位計をX軸方向に移動させる移動機構と、
 前記二次元レーザー変位計のX軸方向の移動距離を読み取る移動距離読取装置と、
 前記二次元レーザー変位計により取得された変位データと、前記移動距離読取装置により取得された移動距離データとに基づき、測定対象の三次元表面粗度データを生成する演算装置と、
を備える三次元表面粗度評価装置であって、
 前記二次元レーザー変位計は、一定間隔毎にY軸方向の座標の変位データを読み取り可能となるように、該二次元レーザー変位計の幅方向がY軸方向と一致するように配置され、
 前記二次元レーザー変位計の計測幅が、測定対象の要素の平均長さRSmの少なくとも2倍以上であり、
 前記演算装置は、
 前記二次元レーザー変位計によりX軸方向の一定間隔毎に取得された前記変位データを、Y軸方向に平均化して、各座標の基準面データを生成し、
 各X-Y平面座標の前記変位データから、前記各座標の基準面データを減算して、前記測定対象の三次元表面粗度データを生成するように構成されていることを特徴とする。
 このような三次元表面粗度評価装置では、前記移動距離読取装置を、前記移動機構と連動した円形スケールにより移動距離をスケールセンサーで読み取る装置、または、ロータリーエンコーダーにより回転数を読み取り移動距離を算出する装置とすることができる。
 また、可搬型バッテリーをさらに備えることもできる。
 また、本発明の三次元表面粗度評価方法は、
 測定対象の三次元表面粗度データを生成する三次元表面粗度評価方法であって、
 測定対象の要素の平均長さRSmの少なくとも2倍以上の計測幅を有する二次元レーザー変位計によって、X軸方向の一定間隔毎に変位を測定することにより変位データを取得し、
 前記変位データを、Y軸方向に平均化して、各座標の基準面データを生成し、
 各X-Y平面座標の前記変位データから、前記各座標の基準面データを減算して、前記測定対象の三次元表面粗度データを生成することを特徴とする。
 また、本発明の三次元表面粗度データ取得装置は、
 二次元レーザー変位計と、
 前記二次元レーザー変位計をX軸方向に移動させる移動機構と、
 前記二次元レーザー変位計のX軸方向の移動距離を読み取る移動距離読取装置と、
を備える三次元表面粗度データ取得装置であって、
 前記二次元レーザー変位計は、一定間隔毎にY軸方向の座標の変位データを読み取り可能となるように、該二次元レーザー変位計の幅方向がY軸方向と一致するように配置され、
 前記二次元レーザー変位計の計測幅が、測定対象の要素の平均長さRSmの少なくとも2倍以上であることを特徴とする。
 このような三次元表面粗度データ取得装置では、前記移動距離読取装置を、前記移動機構と連動した円形スケールにより移動距離をスケールセンサーで読み取る装置、または、ロータリーエンコーダーにより回転数を読み取り移動距離を算出する装置とすることができる。
 また、可搬型バッテリーをさらに備えることもできる。
 また、本発明の三次元表面粗度データ取得方法は、
 測定対象の三次元表面粗度データを取得する三次元表面粗度データ取得方法であって、
 測定対象の要素の平均長さRSmの少なくとも2倍以上の計測幅を有する二次元レーザー変位計によって、X軸方向の一定間隔毎に変位を測定することにより変位データを取得することを特徴とする。
 本発明によれば、測定対象が運搬不可能な物体や構造物などであったとしても、測定対象の表面から表面粗度パラメーターを、迅速に、連続的に、大量に、且つ直接取得することが可能となる。
図1は、本実施例における三次元表面粗度評価装置の構成を説明するための概略構成図である。 図2は、三次元表面粗度データ取得装置の構成を説明するための概略構成図である。 図3は、測定対象として金属板の表面を塗料により塗装した状態(乾燥塗膜で被覆された状態。以下同様。)の塗装板1について測定した場合の、X-Y平面座標の変位データである。 図4は、図3のX-Y平面座標の変位データを、Y軸方向に平均化して生成した各座標の基準面データである。 図5は、図4に示す基準面データの傾きを最小二乗法により補正した基準面データである。 図6は、図3に示す変位データから、図4に示す基準面データを減算して得られた三次元表面粗度データである。 図7は、図6の三次元表面粗度データから得られた表面粗度パラメーターの解析結果をグラフ化したものである。 図8は、測定対象として塗装板1について、X-Yステージに取り付けたレーザー変位計により取得した表面粗度パラメーターの解析結果をグラフ化したものである。 図9は、測定対象として塗装板1について、Y軸方向の端から7.5mmの範囲について測定した場合の、X-Y平面座標の変位データの比較例である。 図10は、図9のX-Y平面座標の変位データを、Y軸方向に平均化して生成した各座標の基準面データである。 図11は、図10に示す基準面データの傾きを最小二乗法により補正した基準面データである。 図12は、図9に示す変位データから、図10に示す基準面データを減算して得られた三次元表面粗度データである。 図13は、図12の三次元表面粗度データから得られた表面粗度パラメーターの解析結果をグラフ化したものである。 図14は、塗装板2~6について、計測幅32mmでの要素の平均長さRSmに対する計測幅の倍率と、計測幅32mmでの最大高さ粗さRzに対する各計測幅でのRzの割合(%)との関係を示すグラフである。 図15は、本実施例の三次元表面粗度評価装置を用いて、測定対象として船体の三次元表面粗度を測定した際の表面粗度パラメーターの分布を示すヒストグラムである。
 以下、本発明の実施の形態(実施例)を図面に基づいてより詳細に説明する。
 図1は、本実施例における三次元表面粗度評価装置の構成を説明するための概略構成図であり、図1(a)は側面から見た概略構成図、図1(b)は正面から見た概略構成図である。
 図1に示すように、本実施例の三次元表面粗度評価装置10は、二次元レーザー変位計12と、移動機構14と、移動距離読取装置16と、演算装置18と、二次元レーザー変位計12、移動距離読取装置16、演算装置18を動作させるための可搬型バッテリー20とを備えている。
 なお、測定現場での演算結果の確認が不要である場合には、図2に示すように、二次元レーザー変位計12により取得される変位データや、移動距離読取装置16により取得される移動距離データを、例えば、ハードディスクドライブやフラッシュメモリなどの記憶装置32に記憶したり、通信手段34などを用いて後述するような外部端末に送信するように構成することで、三次元表面粗度データ取得装置30として用いることもできる。
 このように演算装置18を切り離して、外部端末を演算装置18として使用することで、測定現場での装置構成を簡略化することができ、取得したデータは、例えば、パーソナルコンピューターなどといった外部の演算装置によって演算し、演算結果を表示するように構成することもできる。
 なお、二次元レーザー変位計12としては、特に限定されるものではないが、例えば、キーエンス社製LJ-V7080(基準距離におけるレーザー幅32mm)などを用いることができる。
 また、二次元レーザー変位計12は、一定間隔毎にY軸方向の座標の変位データを一度に読み取れるように、二次元レーザー変位計12の幅方向が、移動機構14の移動方向(X軸方向)と垂直、すなわち、Y軸方向と一致するように配置されている。
 また、本実施例において、移動機構14は、所定方向(X軸方向)のみに移動可能な二対の車輪(すなわち、四輪)としているが、所定方向のみに移動可能な機構であれば特に限定されるものではなく、例えば、クローラーなどであってもよい。
 また、本実施例では、移動距離読取装置16として、ロータリーエンコーダーを用いており、移動機構14である車輪の回転数を読み取ることにより、車輪の周長と回転数とに基づいて移動距離を算出している。
 なお、移動距離読取装置16は、これに限らず、例えば、移動機構14と連動した円形スケールにより移動距離をスケールセンサーで読み取るような装置とすることもできる。
 また、演算装置18は、後述するように、二次元レーザー変位計12により取得される変位データや、移動距離読取装置16により取得される移動距離データに基づき、表面粗度パラメーターなどを算出可能なものであれば特に限定されるものではない。例えば、タブレットコンピューターやスマートフォン、パーソナルコンピューターなどの外部端末に変位データと移動距離データとを送信して、演算処理を実施し、演算結果を外部端末に表示するように構成することができる。
 演算装置18を三次元表面粗度評価装置10に内蔵する場合は、表面粗度パラメーターなどの演算結果を表示する表示手段を設けてもよいし、データ出力手段を設けて、例えば、上述の外部端末に演算結果を送信し、外部端末に演算結果を表示するように構成することもできる。
 また、可搬型バッテリー20としては、特に限定されるものではなく、例えば、鉛蓄電池やニッケル水素二次電池、リチウムイオン二次電池など、既存の二次電池を用いることができる。
 なお、本実施例では可搬型バッテリー20を搭載することにより、持ち運び容易な三次元表面粗度評価装置10としているが、二次元レーザー変位計12や演算装置18などの電源を、例えば、外部バッテリーや商用電源などから供給するように構成することも可能である。
 [実施例1]
 このように構成される本実施例の三次元表面粗度評価装置10による測定対象22の表面粗度評価の具体例を以下に示す。
 まず、三次元表面粗度評価装置10を移動機構14により測定対象22の表面上で移動させることにより、一定間隔毎に移動距離読取装置16により得られる移動距離に基づく移動距離データと、二次元レーザー変位計12により得られる変位データを演算装置18に記録する。
 図3は、測定対象22として金属板の表面を塗料により塗装した状態の塗装板1について測定した、X-Y平面座標の変位データである。
 なお、図3に示す変位データは、本実施例の三次元表面粗度評価装置10により、塗装板1の30mm×30mmの測定範囲を250μmピッチで121×121(X軸方向、Y軸方向ともに121点)データを取得したものである。本実施例では、このような計測が1秒以内に完了した。
 次いで、演算装置18は、X-Y平面座標の変位データを、Y軸方向に平均化して、図4に示すような、各座標の基準面データを生成した。
 図4に示す基準面データの傾きを、最小二乗法により補正した基準面データを図5に示す。なお、図5は、縦軸を±30μmに拡大している。図5により、基準面データには、移動機構14である車輪の偏心が±30μm程度含まれていることがわかる。
 このように、図3に示す変位データには、表面粗度に加えて、測定対象22の傾きや移動機構14である車輪を転がしたことによる偏心を含んでおり、表面粗度評価には適さない。そこで、演算装置18により、図4に示す基準面データを、図3に示す変位データから減算することにより、変位データに含まれる傾きと移動機構14である車輪を転がしたことによる偏心とを除去し、より正確な三次元表面粗度データを取得することができる。
 このようにして得られた三次元表面粗度データを図6に示す。
 図7は、図6に示す三次元表面粗度データより、表面粗度パラメーターであるRz(最大高さ粗さ)、RSm(要素の平均長さ)、Rzjis(十点平均粗さ)、Ra(算術平均粗さ)、Rq(二乗平均平方根粗さ)、Rc(粗さ曲線の平均高さ)、Rsk(スキューネス)、Rku(クルトシス)を算出し、変位の最小点をゼロとしてグラフ化したものである。
 塗装板1のRzは78.9μm、RSmは3466μm、Rzjisは45.1μm、Raは14.2μm、Rqは17.6μm、Rcは29.9μm、Rskは0.08、Rkuは2.7であった。
 [比較例1]
 本実施例の三次元表面粗度評価装置10により得られた表面粗度パラメーターの妥当性を検証するため、X-Yステージに取り付けたレーザー変位計(点状レーザー型変位計)により、実施例1における塗装板1の測定範囲と同一の範囲の表面粗度パラメーターを測定した。
 X-Yステージに取り付けたレーザー変位計により、実施例1と同様に、測定対象22の30mm×30mmの測定範囲を250μmピッチで測定する場合、X軸方向に250μmピッチで121点測定した後、Y軸方向に250μm移動させ、再度X軸方向に250μmピッチで121点測定するということを繰り返し行う必要がある。このため、本比較例では、このような計測に5分程度の時間を要した。
 図8は、実施例1における塗装板1について、X-Yステージに取り付けたレーザー変位計により取得した表面粗度パラメーターであるRz(最大高さ粗さ)、RSm(要素の平均長さ)、Rzjis(十点平均粗さ)、Ra(算術平均粗さ)、Rq(二乗平均平方根粗さ)、Rc(粗さ曲線の平均高さ)、Rsk(スキューネス)、Rku(クルトシス)を算出し、グラフ化したものである。
 レーザー変位計により測定した塗装板1のRzは78.1μm、RSmは3561μm、Rzjisは50.5μm、Raは13.1μm、Rqは16.3μm、Rcは35.2μm、Rskは-0.11、Rkuは2.8であり、実施例1の三次元表面粗度評価装置10を用いて得られた表面粗度パラメーターと同等の結果が得られた。
 [比較例2]
 二次元レーザー変位計12として、レーザー幅7.5mmの二次元レーザー変位計を用いたケースをシミュレーションするため、実施例1における塗装板1の測定範囲の内、Y軸方向の端から7.5mmの範囲の表面粗度パラメーターを測定した。なお、二次元レーザー変位計12のレーザー幅以外の構成は、実施例1の三次元表面粗度評価装置10と同様のものを使用した。
 図9は、塗装板1について、30mm×7.5mmの測定範囲を250μmピッチで121×31(X軸方向に121点、Y軸方向に31点)データを取得したX-Y平面座標の変位データである。
 実施例1と同様に、X-Y平面座標の変位データを、Y軸方向に平均化して、図10に示す各座標の基準面データを生成した。図11は、基準面データの傾きを最小二乗法により補正したものである。図5と同様に、移動機構14である車輪の偏心を確認できるが、図5と比較して、その変位の幅は大きい。
 図12は、図9に示す変位データから図10に示す基準面データを減算し、変位データに含まれる傾きと移動機構14である車輪を転がしたことによる偏心を除去した三次元表面粗度データである。
 図13は、図12に示す三次元表面粗度データより、表面粗度パラメーターであるRz(最大高さ粗さ)、RSm(要素の平均長さ)、Rzjis(十点平均粗さ)、Ra(算術平均粗さ)、Rq(二乗平均平方根粗さ)、Rc(粗さ曲線の平均高さ)、Rsk(スキューネス)、Rku(クルトシス)を算出し、変位の最小点をゼロとしてグラフ化したものである。
 比較例2で測定した塗装板1のRzは56.3μm、RSmは3900μm、Rzjisは34.9μm、Raは10μm、Rqは12.4μm、Rcは24.9μm、Rskは0.09、Rkuは2.8であった。
 比較例2は、実施例1や比較例1と比べ、Rz、Rzjis、Ra、Rq、Rcといった粗度高さに関わる表面粗度パラメーターが小さくなっている。これは、二次元レーザーの幅方向(Y軸方向)に平均化した基準面データに、表面粗度形状が含まれていることに起因する。
 また、測定対象22のRSm(要素の平均長さ)(比較例2では、3900μm=3.9mm)に対して、平均化するY軸方向の長さである二次元レーザー変位計12の計測幅(比較例2では、レーザー幅である7.5mm)が小さすぎると、粗度高さを過小評価してしまうためであると考えられる。
 粗度高さを適切に評価するためには、平均化するY軸方向の長さ(二次元レーザー変位計12の計測幅)を、測定対象22のRSmの2倍以上とすることが好ましい。以下に、二次元レーザー変位計12の計測幅と、測定対象22の要素の平均長さRSmとの関係について検討した。
 [実施例2]
 表1は、測定対象22として金属板の表面を塗料により塗装した状態の塗装板2について測定し、二次元レーザー変位計12の計測幅を0.5mm、1mm、2mm、4mm、16mm、32mmと変化させて、各計測幅で二次元レーザーの幅方向(Y軸方向)に平均化した基準面データにより補正して得た各表面粗度パラメーターである。
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、計測幅が小さくなるに従って、粗度高さに関わる表面パラメーターであるRz、Rzjis、Ra、Rq、Rcが小さくなっている。これは、計測幅が小さくなるほど、二次元レーザー変位計12の幅方向(Y軸方向)に平均化した基準面データに、表面粗度形状の含まれる量が増えることに起因する。
 また、計測幅が大きくなるにしたがって、粗度高さに関わる表面パラメーターであるRz、Rzjis、Ra、Rq、Rcは、いずれも真値に収れんしていく傾向が明らかとなった。これは、計測幅がRSmより十分に大きくなると、二次元レーザーの幅方向(Y軸方向)に平均化した基準面データに、表面粗度形状が含まれなくなることに起因する。
 なお、計測幅32mmでの最大高さ粗さRzは111.8μm、要素の平均長さRSmは3325μmである。
 表2は、計測幅32mmでのRSm(3325μm)に対する表1における各計測幅の倍率と、計測幅32mmでの各表面粗度パラメーターに対する表1における各計測幅での各表面粗度パラメーターの割合を示している。
Figure JPOXMLDOC01-appb-T000002
 計測幅32mmでのRzに対する各計測幅でのRzの割合は、計測幅32mmでのRSmに対する計測幅の倍率が0.2倍では33.7%、0.3倍では57.7%、0.6倍では81.7%、1.2倍では95.2%、2.4倍では101.2%、4.8倍では104.4%となっており、RSmに対する計測幅の倍率が大きくなるにしたがって、100%に収れんする傾向は明らかである。特に、計測幅がRSmの2倍程度でほぼ100%に収れんしている。
 測定対象22として、表面粗度形状が未知のものを計測する場合、このように二次元レーザー変位計12の計測幅を変動させて、各表面粗度パラメーターの変動が少ない計測幅の範囲を有効な計測幅として選択することもできる。
 以下、測定対象22として金属板の表面を塗料により塗装した状態の塗装板3~6について同様に測定し、二次元レーザー変位計12の計測幅を0.5mm、1mm、2mm、4mm、16mm、32mmと変化させて、各計測幅で二次元レーザーの幅方向(Y軸方向)に平均化した基準面データにより補正して得た粗度評価結果を表3、表5、表7、表9にそれぞれ示す。
 塗装板3の計測幅32mmでの最大高さ粗さRzは60.4μm、要素の平均長さRSmは1820μm、塗装板4の計測幅32mmでの最大高さ粗さRzは146.3μm、要素の平均長さRSmは2200μm、塗装板5の計測幅32mmでの最大高さ粗さRzは76.5μm、要素の平均長さRSmは4150μm、塗装板6の計測幅32mmでの最大高さ粗さRzは112.3μm、要素の平均長さRSmは5001μmであった。
 表4は、計測幅32mmでのRSm(3325μm)に対する表3における各計測幅の倍率と、計測幅32mmでの各表面粗度パラメーターに対する表3における各計測幅での各表面粗度パラメーターの割合を示しており、同様に、表6は表5、表8は表7、表10は表9におけるものである。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
 いずれの塗装板3~6における粗度評価結果も、RSmに対する計測幅の倍率が大きくなるにしたがって、100%に収れんする傾向は明らかであり、特に、計測幅がRSmの2倍程度でほぼ100%に収れんすることは明らかである。
 図14は、塗装板2~6について、計測幅32mmでの要素の平均長さRSmに対する計測幅の倍率と、計測幅32mmでの最大高さ粗さRzに対する各計測幅でのRzの割合(%)との関係を示すグラフである。
 図14に示すように、いずれの塗装板2~6においても、計測幅をRSmの2倍程度以上にすると、Rzの割合が100%に収れんし、大きく変動しないことが明らかになった。
 これにより、二次元レーザー変位計12の計測幅が、測定対象22の要素の平均長さRSmの少なくとも2倍以上であれば、二次元レーザーの幅方向(Y軸方向)に平均化した基準面データに、表面粗度形状が含まれる可能性が減少し、精度を確保できることが明らかになった。
 なお、本発明の三次元表面粗度評価装置10を用いて、未知の粗度を有する測定対象22の表面粗度パラメーターを測定する場合には、例えば、前述するような従来技術による方法を用いて、測定対象22の要素の平均長さRSmを事前に評価しておくことも有効である。
 また、測定対象22の要素の平均長さRSmを事前に評価できない場合には、前述するように、二次元レーザー変位計12の計測幅を変化させて、各表面粗度パラメーターに大きな変動がない範囲を有効計測幅範囲とすることで、精度の高い表面粗度評価を行うことができる。
 [実施例3]
 三次元表面粗度データ取得装置30と外部端末である演算装置18を用いて、測定対象22として船体の三次元表面粗度を測定した。なお、実施例3の三次元表面粗度データ取得装置30の構成は、実施例1の三次元表面粗度評価装置10から演算装置18を省いたものと同様である。
 図15(a)は、三次元表面粗度データ取得装置30を用いて測定した船体の表面粗度パラメーターであるRz(最大高さ粗さ)、RSm(要素の平均長さ)の分布を示す三次元ヒストグラム、図15(b)は、図15(a)のRSm成分の分布を示すヒストグラム、図15(c)は、図15(a)のRz成分の分布を示すヒストグラムである。
 船体塗装の完了後、三次元表面粗度データ取得装置30を用いてX軸方向に27cm走査し、30mm×30mmのデータを9点取得することを繰り返し、船体全体で100ヶ所の測定を実施して、900点のデータを取得した。
 なお、100カ所の測定は2時間程度で完了した。全測定点900点中、測定エラー等を除いた有効データは620点であり、取得したデータを基に、外部端末である演算装置18で演算処理した結果、表面粗度パラメーターであるRz(最大高さ粗さ)は50.7μm、RSm(要素の平均長さ)は3187μmであった。
 また、図15に示す三次元ヒストグラムにおけるRz分布は20μmから140μm、RSm分布は1750μmから7500μmであった。
10   三次元表面粗度評価装置
12   二次元レーザー変位計
14   移動機構
16   移動距離読取装置
18   演算装置
20   可搬型バッテリー
22   測定対象
30   三次元表面粗度データ取得装置
32   記憶装置
34   通信手段

Claims (8)

  1.  二次元レーザー変位計と、
     前記二次元レーザー変位計をX軸方向に移動させる移動機構と、
     前記二次元レーザー変位計のX軸方向の移動距離を読み取る移動距離読取装置と、
     前記二次元レーザー変位計により取得された変位データと、前記移動距離読取装置により取得された移動距離データとに基づき、測定対象の三次元表面粗度データを生成する演算装置と、
    を備える三次元表面粗度評価装置であって、
     前記二次元レーザー変位計は、一定間隔毎にY軸方向の座標の変位データを読み取り可能となるように、該二次元レーザー変位計の幅方向がY軸方向と一致するように配置され、
     前記二次元レーザー変位計の計測幅が、測定対象の要素の平均長さRSmの少なくとも2倍以上であり、
     前記演算装置は、
     前記二次元レーザー変位計によりX軸方向の一定間隔毎に取得された前記変位データを、Y軸方向に平均化して、各座標の基準面データを生成し、
     各X-Y平面座標の前記変位データから、前記各座標の基準面データを減算して、前記測定対象の三次元表面粗度データを生成するように構成されていることを特徴とする三次元表面粗度評価装置。
  2.  前記移動距離読取装置が、前記移動機構と連動した円形スケールにより移動距離をスケールセンサーで読み取る装置、または、ロータリーエンコーダーにより回転数を読み取り移動距離を算出する装置であることを特徴とする請求項1に記載の三次元表面粗度評価装置。
  3.  可搬型バッテリーをさらに備えることを特徴とする請求項1または2に記載の三次元表面粗度評価装置。
  4.  測定対象の三次元表面粗度データを生成する三次元表面粗度評価方法であって、
     測定対象の要素の平均長さRSmの少なくとも2倍以上の計測幅を有する二次元レーザー変位計によって、X軸方向の一定間隔毎に変位を測定することにより変位データを取得し、
     前記変位データを、Y軸方向に平均化して、各座標の基準面データを生成し、
     各X-Y平面座標の前記変位データから、前記各座標の基準面データを減算して、前記測定対象の三次元表面粗度データを生成することを特徴とする三次元表面粗度評価方法。
  5.  二次元レーザー変位計と、
     前記二次元レーザー変位計をX軸方向に移動させる移動機構と、
     前記二次元レーザー変位計のX軸方向の移動距離を読み取る移動距離読取装置と、
    を備える三次元表面粗度データ取得装置であって、
     前記二次元レーザー変位計は、一定間隔毎にY軸方向の座標の変位データを読み取り可能となるように、該二次元レーザー変位計の幅方向がY軸方向と一致するように配置され、
     前記二次元レーザー変位計の計測幅が、測定対象の要素の平均長さRSmの少なくとも2倍以上であることを特徴とする三次元表面粗度データ取得装置。
  6.  前記移動距離読取装置が、前記移動機構と連動した円形スケールにより移動距離をスケールセンサーで読み取る装置、または、ロータリーエンコーダーにより回転数を読み取り移動距離を算出する装置であることを特徴とする請求項5に記載の三次元表面粗度データ取得装置。
  7.  可搬型バッテリーをさらに備えることを特徴とする請求項5または6に記載の三次元表面粗度データ取得装置。
  8.  測定対象の三次元表面粗度データを取得する三次元表面粗度データ取得方法であって、
     測定対象の要素の平均長さRSmの少なくとも2倍以上の計測幅を有する二次元レーザー変位計によって、X軸方向の一定間隔毎に変位を測定することにより変位データを取得することを特徴とする三次元表面粗度データ取得方法。
PCT/JP2017/026605 2016-07-27 2017-07-24 三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法 WO2018021210A1 (ja)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2018529864A JPWO2018021210A1 (ja) 2016-07-27 2017-07-24 三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法
SG11201900642VA SG11201900642VA (en) 2016-07-27 2017-07-24 Three-dimensional surface roughness evaluating device, three-dimensional surface roughness evaluating method, three-dimensional surface roughness data acquiring device, and three-dimensional surface roughness data acquiring method
CN201780045996.XA CN109477712A (zh) 2016-07-27 2017-07-24 三维表面粗糙度评价装置、三维表面粗糙度评价方法、三维表面粗糙度数据获取装置和三维表面粗糙度数据获取方法
US16/320,833 US11162786B2 (en) 2016-07-27 2017-07-24 Three-dimensional surface roughness evaluating device, three-dimensional surface roughness evaluating method, three-dimensional surface roughness data acquiring device, and three-dimensional surface roughness data acquiring method
EP17834216.8A EP3492862B1 (en) 2016-07-27 2017-07-24 Device and method for evaluating three-dimensional surface roughness
KR1020197004507A KR102073803B1 (ko) 2016-07-27 2017-07-24 3차원 표면조도 평가장치, 3차원 표면조도 평가방법, 3차원 표면조도 데이터 취득장치 및 3차원 표면조도 데이터 취득방법
JP2022018712A JP2022062213A (ja) 2016-07-27 2022-02-09 三次元表面粗度評価装置及び三次元表面粗度評価方法
JP2023205471A JP2024026279A (ja) 2016-07-27 2023-12-05 三次元表面粗度評価方法及び三次元表面粗度評価装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016147605 2016-07-27
JP2016-147605 2016-07-27

Publications (1)

Publication Number Publication Date
WO2018021210A1 true WO2018021210A1 (ja) 2018-02-01

Family

ID=61016331

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026605 WO2018021210A1 (ja) 2016-07-27 2017-07-24 三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法

Country Status (7)

Country Link
US (1) US11162786B2 (ja)
EP (1) EP3492862B1 (ja)
JP (3) JPWO2018021210A1 (ja)
KR (1) KR102073803B1 (ja)
CN (1) CN109477712A (ja)
SG (1) SG11201900642VA (ja)
WO (1) WO2018021210A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148656A (ja) * 2019-03-14 2020-09-17 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
JP2020148655A (ja) * 2019-03-14 2020-09-17 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
WO2020183836A1 (ja) * 2019-03-14 2020-09-17 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
CN112747677A (zh) * 2020-12-29 2021-05-04 广州艾目易科技有限公司 一种多个处理器的光学定位方法及系统
CN112800554A (zh) * 2021-01-14 2021-05-14 中国人民解放军空军工程大学 一种叶片表面粗糙度变化影响压气机稳定性的仿真方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112747698A (zh) * 2019-10-29 2021-05-04 复盛应用科技股份有限公司 高尔夫球杆头测量方法
CN110969695B (zh) * 2019-12-17 2022-09-23 厦门理工学院 一种确定钻孔表面粗糙度的三维建模方法及装置
CN111998794B (zh) * 2020-09-08 2021-04-27 中国民用航空飞行学院 一种通航飞机复合材料维修胶接表面形貌度量评价方法
CN114396897A (zh) * 2022-01-19 2022-04-26 成都理工大学 一种岩石结构面粗糙度高精度测绘装置及其测绘方法
CN114799776B (zh) * 2022-06-29 2022-09-13 中国空气动力研究与发展中心超高速空气动力研究所 一种提高轴对称喷管内型面表面粗糙度和硬度的工艺方法
KR102532759B1 (ko) * 2022-08-11 2023-05-16 주식회사 뉴월드 바닥평탄도 측정로봇
KR102532760B1 (ko) * 2022-08-11 2023-05-16 주식회사 뉴월드 평탄도 데이터를 활용한 바닥 공사 공정 및 품질관리 방법

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780510A (en) * 1980-11-10 1982-05-20 Komatsu Ltd Vehicle for measuring shape of road surface
JPS61292509A (ja) 1985-06-20 1986-12-23 Nippon Oil & Fats Co Ltd 非接触式粗度測定装置
JPS62231110A (ja) * 1986-03-31 1987-10-09 Shibaura Eng Works Co Ltd レ−ルの波状摩耗検測装置
US6556945B1 (en) * 1997-05-26 2003-04-29 Stn Atlas Elektronik Gmbh Measurement of grooves and long waves on rails with a longitudinal streak of light
JP2012242186A (ja) * 2011-05-17 2012-12-10 Sharp Corp タイヤの欠陥検出方法
JP2015093543A (ja) * 2013-11-11 2015-05-18 公益財団法人鉄道総合技術研究所 レール凹凸測定装置
JP2015227834A (ja) * 2014-06-02 2015-12-17 日本信号株式会社 軌道検査装置

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63177008A (ja) * 1987-01-19 1988-07-21 Railway Technical Res Inst レ−ル踏面凹凸測定装置
JPH0611331A (ja) * 1991-12-26 1994-01-21 Tokimec Inc レ−ル波状摩耗測定装置及びレ−ル波状摩耗測定方法
JPH11192656A (ja) * 1997-12-29 1999-07-21 Nihon Yamamura Glass Co Ltd 多層プリフォーム、その成形方法及び多層ボトル
DE19856510C2 (de) * 1998-02-20 2002-10-24 Cegelec Anlagen Und Automatisi Verfahren und System zur Ermittlung von Unebenheiten und Schadstellen in der Oberfläche einer Verkehrsfläche
JP4770055B2 (ja) * 2001-04-27 2011-09-07 凸版印刷株式会社 二軸延伸ブロー成形ボトル
KR100636000B1 (ko) 2004-11-24 2006-10-18 손호웅 암반 불연속면의 레이저스캐닝에 의한 원격 거칠기 측정방법 및 시스템
EP2067695A1 (de) * 2007-12-07 2009-06-10 Becker Marine Systems GmbH & Co. KG System und Verfahren zum Untersuchen und/oder zum Bestimmen der Beschaffenheit oder des Zustandes eines Schiffsrumpfes
CN102216728B (zh) * 2008-11-20 2013-03-27 三菱重工业株式会社 用于锅炉中的蒸发管的检查装置和检查方法
JP2011163852A (ja) * 2010-02-08 2011-08-25 Kobe Steel Ltd 外観検査装置
JP2012114742A (ja) * 2010-11-25 2012-06-14 Kddi R & D Laboratories Inc 無線通信装置および通信方法
CN102180187B (zh) * 2011-04-12 2013-04-10 中国航空工业第六一八研究所 一种铁路轨道高低高精度检测装置和检测方法
CN202153131U (zh) * 2011-07-19 2012-02-29 武汉点线科技有限公司 一种自动测量钢板平直度的装置
CN202320395U (zh) * 2011-08-04 2012-07-11 大连民族学院 一种钢轨磨损检测装置
CN202229737U (zh) * 2011-08-09 2012-05-23 上海理工大学 便携式砂轮三维形貌测量分析装置
CN103424084A (zh) * 2012-06-25 2013-12-04 上海理工大学 基于二维激光位移传感器的砂轮三维形貌测量方法
CN102706880B (zh) 2012-06-26 2014-04-02 哈尔滨工业大学 基于二维图像和深度信息的路面信息提取装置及使用该装置实现路面裂纹信息的检测方法
CN202885785U (zh) 2012-09-24 2013-04-17 同济大学 一种用于测量钢轨横纵断面轮廓的自动激光非接触测量装置
JP6123135B2 (ja) * 2013-05-13 2017-05-10 パナソニックIpマネジメント株式会社 厚み検査方法および厚み検査装置
KR102221036B1 (ko) * 2014-09-15 2021-02-26 엘지전자 주식회사 이동단말기 및 그 제어방법
CN105241392B (zh) * 2015-09-24 2017-08-08 杭州汉振科技有限公司 一种复杂柱状工件的全表面三维测量设备及其测量方法
CN105783779B (zh) * 2016-04-28 2018-02-02 湖南大学 基于三层匹配的钢轨轮廓实时形态识别与失真校准方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5780510A (en) * 1980-11-10 1982-05-20 Komatsu Ltd Vehicle for measuring shape of road surface
JPS61292509A (ja) 1985-06-20 1986-12-23 Nippon Oil & Fats Co Ltd 非接触式粗度測定装置
JPS62231110A (ja) * 1986-03-31 1987-10-09 Shibaura Eng Works Co Ltd レ−ルの波状摩耗検測装置
US6556945B1 (en) * 1997-05-26 2003-04-29 Stn Atlas Elektronik Gmbh Measurement of grooves and long waves on rails with a longitudinal streak of light
JP2012242186A (ja) * 2011-05-17 2012-12-10 Sharp Corp タイヤの欠陥検出方法
JP2015093543A (ja) * 2013-11-11 2015-05-18 公益財団法人鉄道総合技術研究所 レール凹凸測定装置
JP2015227834A (ja) * 2014-06-02 2015-12-17 日本信号株式会社 軌道検査装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROHISA MIENO ET AL.: "Friction Increase due to Roughness of Ship Hull Paint", JOURNAL OF THE JAPAN INSTITUTE OF MARINE ENGINEERING, vol. 48, no. 3, 2013, pages 300 - 307, XP055476883 *
HIROHISA MIENO; HIROSHI MASUDA: "Friction Increase due to Roughness of Ship Hull Paint - Reduction of Hull Resistance by Painting on Outer Plate of Ship Bottom", JOURNAL OF THE JAPAN INSTITUTION OF MARINE ENGINEERING, vol. 48, no. 3, 2013, pages 300 - 307

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020148656A (ja) * 2019-03-14 2020-09-17 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
JP2020148655A (ja) * 2019-03-14 2020-09-17 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
WO2020183836A1 (ja) * 2019-03-14 2020-09-17 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
JP7152972B2 (ja) 2019-03-14 2022-10-13 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
JP7152973B2 (ja) 2019-03-14 2022-10-13 株式会社Screenホールディングス 検査条件作成支援装置、検査条件作成支援方法、検査条件作成支援プログラムおよび記録媒体
CN112747677A (zh) * 2020-12-29 2021-05-04 广州艾目易科技有限公司 一种多个处理器的光学定位方法及系统
CN112800554A (zh) * 2021-01-14 2021-05-14 中国人民解放军空军工程大学 一种叶片表面粗糙度变化影响压气机稳定性的仿真方法
CN112800554B (zh) * 2021-01-14 2023-07-07 中国人民解放军空军工程大学 一种叶片表面粗糙度变化影响压气机稳定性的仿真方法

Also Published As

Publication number Publication date
KR20190028527A (ko) 2019-03-18
EP3492862B1 (en) 2022-02-23
EP3492862A1 (en) 2019-06-05
US11162786B2 (en) 2021-11-02
US20190162530A1 (en) 2019-05-30
KR102073803B1 (ko) 2020-02-05
JP2024026279A (ja) 2024-02-28
JP2022062213A (ja) 2022-04-19
JPWO2018021210A1 (ja) 2019-04-04
CN109477712A (zh) 2019-03-15
EP3492862A4 (en) 2020-04-01
SG11201900642VA (en) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2018021210A1 (ja) 三次元表面粗度評価装置及び三次元表面粗度評価方法並びに三次元表面粗度データ取得装置及び三次元表面粗度データ取得方法
CN104024795B (zh) 距离计测装置
Manske et al. Recent developments and challenges of nanopositioning and nanomeasuring technology
CN109737884B (zh) 一种轴类零件静动态形变量在线监测装置及方法
CN105486289B (zh) 一种激光摄影测量系统及相机标定方法
Costa Optical triangulation-based microtopographic inspection of surfaces
CN101782374A (zh) 基于模板近场光投影扫描的齿轮和成型结构轮廓测量方法
CN104655050A (zh) 校准方法以及形状测定装置
CN109514351A (zh) 一种五轴机床的标定方法
Yandayan et al. Calibration of high-resolution electronic autocollimators with demanded low uncertainties using single reading head angle encoders
Galantucci et al. Multistack close range photogrammetry for low cost submillimeter metrology
CN105051486B (zh) 形状检查装置
Weckenmann et al. Assessment of measurement uncertainty caused in the preparation of measurements using computed tomography
Wang et al. 3D measurement of structured specular surfaces using stereo direct phase measurement deflectometry
JP4890188B2 (ja) 運動誤差測定基準体及び運動誤差測定装置
Tsukada et al. A three-dimensional measuring technique for surface asperities
CN108844469A (zh) 一种基于激光测试工件台阶高度的方法及系统
JP7186109B2 (ja) 粗度断面曲線評価方法、粗度解析装置及び粗度解析プログラム並びに粗度計測方法及び粗度計測装置
CN214121260U (zh) 电涡流传感器的校验装置
Zhang et al. 3D double-vision inspection based on structured light
CN207280477U (zh) 一种星载扫描机构大范围动态测角精度检测装置
JP5310310B2 (ja) 超精密形状測定方法
TWI239385B (en) A kind of apparatus using transmission grating to measure rotation axis errors
TWI270659B (en) Optical device using a reflection principle to measure levelness
Yang et al. Design of a Roll Angle Measuring Sensor

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018529864

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17834216

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004507

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017834216

Country of ref document: EP

Effective date: 20190227