WO2018020940A1 - 透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法 - Google Patents

透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法 Download PDF

Info

Publication number
WO2018020940A1
WO2018020940A1 PCT/JP2017/023720 JP2017023720W WO2018020940A1 WO 2018020940 A1 WO2018020940 A1 WO 2018020940A1 JP 2017023720 W JP2017023720 W JP 2017023720W WO 2018020940 A1 WO2018020940 A1 WO 2018020940A1
Authority
WO
WIPO (PCT)
Prior art keywords
main surface
layer
transparent
metal layer
transparent electrode
Prior art date
Application number
PCT/JP2017/023720
Other languages
English (en)
French (fr)
Inventor
桑原 真
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to US16/318,695 priority Critical patent/US10691276B2/en
Priority to KR1020197001994A priority patent/KR20190038803A/ko
Priority to JP2018529454A priority patent/JP6883765B2/ja
Priority to CN201780045453.8A priority patent/CN109564796B/zh
Publication of WO2018020940A1 publication Critical patent/WO2018020940A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/09Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/20Layered products comprising a layer of metal comprising aluminium or copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/02Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using non-aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23FNON-MECHANICAL REMOVAL OF METALLIC MATERIAL FROM SURFACE; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL; MULTI-STEP PROCESSES FOR SURFACE TREATMENT OF METALLIC MATERIAL INVOLVING AT LEAST ONE PROCESS PROVIDED FOR IN CLASS C23 AND AT LEAST ONE PROCESS COVERED BY SUBCLASS C21D OR C22F OR CLASS C25
    • C23F3/00Brightening metals by chemical means
    • C23F3/04Heavy metals
    • C23F3/06Heavy metals with acidic solutions
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D1/00Electroforming
    • C25D1/04Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/10Electroplating with more than one layer of the same or of different metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/34Pretreatment of metallic surfaces to be electroplated
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/60Electroplating characterised by the structure or texture of the layers
    • C25D5/605Surface topography of the layers, e.g. rough, dendritic or nodular layers
    • C25D5/611Smooth layers
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D5/00Electroplating characterised by the process; Pretreatment or after-treatment of workpieces
    • C25D5/627Electroplating characterised by the visual appearance of the layers, e.g. colour, brightness or mat appearance
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/06Wires; Strips; Foils
    • C25D7/0614Strips or foils
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25FPROCESSES FOR THE ELECTROLYTIC REMOVAL OF MATERIALS FROM OBJECTS; APPARATUS THEREFOR
    • C25F3/00Electrolytic etching or polishing
    • C25F3/16Polishing
    • C25F3/22Polishing of heavy metals
    • C25F3/24Polishing of heavy metals of iron or steel
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0445Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using two or more layers of sensing electrodes, e.g. using two layers of electrodes separated by a dielectric layer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0448Details of the electrode shape, e.g. for enhancing the detection of touches, for generating specific electric field shapes, for enhancing display quality
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/412Transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/20Displays, e.g. liquid crystal displays, plasma displays
    • B32B2457/208Touch screens
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2222/00Aspects relating to chemical surface treatment of metallic material by reaction of the surface with a reactive medium
    • C23C2222/20Use of solutions containing silanes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04103Manufacturing, i.e. details related to manufacturing processes specially suited for touch sensitive devices
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04112Electrode mesh in capacitive digitiser: electrode for touch sensing is formed of a mesh of very fine, normally metallic, interconnected lines that are almost invisible to see. This provides a quite large but transparent electrode surface, without need for ITO or similar transparent conductive material

Definitions

  • the present disclosure relates to a transparent electrode laminate, a transparent electrode material, a device having the transparent electrode material, and a method of manufacturing the transparent electrode laminate.
  • the etching time to the substrate surface becomes longer, the verticality of the side wall of the circuit pattern layer is disrupted, and the circuit to be formed When the line width of the pattern layer is narrow, disconnection may occur. For this reason, the thickness of the metal layer for fine pattern use is required to be 9 ⁇ m or less.
  • an ultrathin copper foil with a support in which an ultrathin copper foil is electrodeposited through a release layer on a carrier (support) made of a thick electrolytic copper foil is used. It has been.
  • Patent Documents 1 to 3 disclose metal vapor deposited films in which a metal layer is formed directly on the surface of a transparent substrate by physical vapor deposition. ing.
  • the transparent electrode laminate according to the first aspect of the present disclosure includes a transparent base material and a metal layer provided on at least one of both surfaces of the transparent base material. It has a first surface facing the material and a second surface opposite to the first surface, and the kurtosis (Rku) of the second surface is 1.00 or more and 3.10 or less.
  • the metal layer provided on at least one surface of both surfaces of the transparent substrate includes a case where another layer such as a transparent adhesive layer is interposed between the transparent substrate and the metal layer.
  • the perspective electrode material according to the second aspect of the present disclosure includes a circuit pattern layer in which a part of the metal layer of the transparent electrode laminate includes an opening.
  • a device includes the above-described transparent electrode material and a control circuit electrically connected to the circuit pattern layer.
  • the manufacturing method of the transparent electrode laminate according to the fourth aspect of the present disclosure has a first main surface and a second main surface, and the kurtosis (Rku) of the first main surface is 1.00.
  • the method includes the first step of preparing a transparent base material of 3.10 or less and the second step of forming a metal layer on the first main surface by physical vapor deposition.
  • the manufacturing method of the perspective electrode laminate according to the fifth aspect of the present disclosure has a first main surface and a second main surface, and the kurtosis (Rku) of the first main surface is 1.00.
  • 1st which prepares the support body which is 3.10 or less above, forms a peeling layer in the 1st main surface, forms a metal layer on a peeling layer by an electroplating method, and produces a metal layer with a support body
  • the manufacturing method of the transparent electrode laminate according to the sixth aspect of the present disclosure has a first main surface and a second main surface, and the kurtosis (Rku) of the first main surface is 1.00.
  • a support body of 3.10 or less is prepared, a release layer is formed on the first main surface, a metal layer is formed on the release layer by a physical vapor deposition method, and a metal layer with a support is manufactured.
  • FIG. 1A is a cross-sectional view in the thickness direction of the transparent electrode laminate according to the first embodiment.
  • FIG. 1B is a schematic explanatory diagram for explaining a first manufacturing method of the second laminated board according to the first embodiment.
  • FIG. 1C is an enlarged cross-sectional view of a Q portion in FIG. 1B.
  • FIG. 2 is a cross-sectional view in the thickness direction of the perspective electrode material according to the first embodiment.
  • FIG. 3 is an exploded cross-sectional view of the device according to the first embodiment.
  • FIG. 4A is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4B is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4A is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4B is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode
  • FIG. 4C is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4D is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4E is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4F is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4G is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 4H is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the first embodiment.
  • FIG. 5A is a schematic cross-sectional view for explaining a method for producing an electrolytic metal foil by an electrolysis method using an electrodeposition drum.
  • FIG. 5B is an enlarged cross-sectional view of the electrolytic metal foil in a portion E in FIG. 5A.
  • FIG. 6A is a schematic explanatory diagram for explaining a second manufacturing method of the second laminated board according to the first embodiment.
  • FIG. 6B is an enlarged cross-sectional view of an R portion in FIG. 6A.
  • FIG. 7 is a cross-sectional view in the thickness direction of the transparent electrode laminate according to the second embodiment.
  • FIG. 8 is a cross-sectional view in the thickness direction of the perspective electrode material according to the second embodiment.
  • FIG. 9A is a schematic explanatory diagram for explaining a method of manufacturing a transparent electrode laminate according to the second embodiment.
  • FIG. 9B is a schematic explanatory diagram for explaining a method of manufacturing a transparent electrode laminate according to the second embodiment.
  • FIG. 9C is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the second embodiment.
  • FIG. 9D is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the second embodiment.
  • FIG. 9E is a schematic explanatory diagram for explaining a method of manufacturing the transparent electrode laminate according to the second embodiment.
  • FIG. 9F is a schematic explanatory diagram for explaining a method of manufacturing a transparent electrode laminate according to the second embodiment.
  • FIG. 9G is a schematic explanatory diagram for explaining a method of manufacturing a transparent electrode laminate according to the second embodiment.
  • FIG. 9H is a schematic explanatory diagram for explaining a method of manufacturing a transparent electrode laminate according to the second embodiment.
  • FIG. 9I is a schematic explanatory diagram for explaining a method of manufacturing a transparent electrode laminate according to the second embodiment.
  • FIG. 10 is a cross-sectional view in the thickness direction of the transparent electrode laminate according to the third embodiment.
  • FIG. 11 is a cross-sectional view in the thickness direction of the perspective electrode material according to the third embodiment.
  • 12A is a front view of a single-sided transparent electrode material obtained by forming a circuit on the first metal layer of the single-sided transparent electrode laminate obtained in Example 1.
  • FIG. 10 is a cross-sectional view in the thickness direction of the transparent electrode laminate according to the third embodiment.
  • FIG. 11 is a cross-sectional view in the thickness direction of the perspective electrode material according to the third embodiment.
  • 12A is
  • FIG. 12B is an enlarged front view of a D portion in FIG. 12A.
  • FIG. 13A is a front view showing a state in which a transparent electrode material is placed on a metal rod.
  • 13B is a schematic cross-sectional view of the transparent electrode material and the metal rod cut along the line EE ′ in FIG. 13A.
  • FIG. 13C is a schematic cross-sectional view showing the transparent electrode material in a loaded state for explaining the disconnection resistance test.
  • FIG. 14A is a schematic cross-sectional view of a transparent electrode material for a touch panel sensor produced using a conventional ultrathin copper foil with a support.
  • FIG. 14B is an enlarged cross-sectional view of the transparent electrode material cut along the line II ′ in FIG. 14A.
  • FIG. 15A is a schematic cross-sectional view for explaining a method for producing an electrolytic metal foil by an electrolysis method using an electrodeposition drum.
  • FIG. 15B is an enlarged cross-sectional view of the electrolytic metal foil at a portion J in FIG. 15A.
  • FIG. 16A is a schematic explanatory diagram for explaining a method for producing an ultrathin copper foil with a support.
  • FIG. 16B is an enlarged cross-sectional view of the support-attached ultrathin copper foil at portion K in FIG. 16A.
  • FIG. 17A is a schematic explanatory diagram for explaining a method of manufacturing a transparent electrode laminate.
  • FIG. 17B is a schematic explanatory diagram for explaining a method for manufacturing a transparent electrode laminate.
  • FIG. 17C is a schematic explanatory diagram for explaining a method for manufacturing a transparent electrode laminate.
  • FIG. 14A is a schematic cross-sectional view of a transparent electrode material 1 for a touch panel sensor produced using a conventional ultrathin copper foil with a support.
  • 14B is an enlarged cross-sectional view of the transparent electrode material 1 cut along the line II ′ in FIG. 14A.
  • 1 is a transparent electrode material for a touch panel sensor
  • 2 is a transparent substrate
  • 3 is a transparent adhesive layer
  • 4 is a circuit pattern layer.
  • FIG. 15A is a schematic cross-sectional view for explaining a method for producing an electrolytic metal foil 81 by an electrolysis method using an electrodeposition drum 82.
  • FIG. 16A is a schematic explanatory diagram for explaining a method of manufacturing the support-attached ultrathin copper foil 80.
  • FIG. 16B is an enlarged cross-sectional view of the support-attached ultrathin copper foil 80 at a portion K in FIG. 16A. In FIG. 16A and FIG.
  • FIGS. 17A to 17C are schematic explanatory views for explaining a method of manufacturing the transparent electrode laminate 88.
  • reference numeral 88 denotes a transparent electrode laminate.
  • an ultrathin copper foil 80 with a support is generally used.
  • An example of the production procedure of the ultrathin copper foil with support 80 is shown in FIGS. 15A to 17C.
  • an electrolytic metal foil 81 to be a support is prepared. Specifically, as shown in FIG. 15A, the electrodeposition drum 82 is used as a cathode, and a cross-section arcuate frame (not shown) facing the electrodeposition drum 82 is used as an anode, and the electrodeposition drum 82 is placed in the electrolyte bath 83. Immerse. Next, an electrolytic metal foil 81 is electrodeposited to a predetermined thickness on the surface of the electrodeposition drum 82 by passing an electric current between the anode and the cathode while rotating the electrodeposition drum 82. Next, the electrolytic metal foil 81 is continuously produced by peeling the electrolytic metal foil 81 from the electrodeposition drum 82.
  • polishing marks on the surface of the electrodeposition drum 82 remain on the first main surface 81 A of the electrolytic metal foil 81.
  • This polishing mark is provided mainly for peeling the electrolytic metal foil 81 from the surface of the electrodeposition drum 82.
  • a release layer 84 is formed on the first main surface 81A, and immersed in the electrolytic solution tank 85 using the electrolytic metal foil 81 as a cathode as shown in FIG. 16A.
  • the electrolytic metal foil 81 is electrodeposited to a predetermined thickness on the surface on the first main surface 81A side (the surface of the release layer 84), thereby forming an ultrathin copper foil. 86 is formed. Thereby, the ultra-thin copper foil 80 with a support body is obtained.
  • the sharpness of the surface 84A opposite to the side facing the electrolytic metal foil 81 of the release layer 84 formed on the first main surface 81A is such that the release layer 84 is a very thin layer. Is substantially the same as the sharpness of the main surface 81A.
  • the sharpness of the surface 86A (hereinafter referred to as the first surface 86A) opposite to the side facing the electrolytic metal foil 81 of the ultrathin copper foil 86 formed on the release layer 84 is the same as that of the ultrathin copper foil 86. Since it is a very thin foil, it can be evaluated that it is the same as the sharpness of the surface 86B of the ultrathin copper foil 86 on the side facing the electrolytic metal foil 81. Therefore, the sharpness of the first surface 86A is substantially the same as the sharpness of the first main surface 81A, and the polishing marks of the electrodeposition drum 82 remain as they are.
  • the surface 80A of the ultrathin copper foil 86 of the produced ultrathin copper foil with support 80 is opposed to the main surface 2A of the transparent substrate 2, and as shown in FIG. Bonding is performed through the transparent adhesive layer 3 and the pressure-annealing curing is performed.
  • the electrolytic metal foil 81 as a support is peeled and removed. Thereby, the transparent electrode laminate 88 shown in FIG. 17C is obtained.
  • the present disclosure provides a transparent electrode laminate, a transparent electrode material, a device, and a method for manufacturing a transparent electrode laminate that are difficult to be disconnected even after being bent after a circuit is formed.
  • the transparent electrode laminate described below is premised on forming electrodes on both sides, but it may be used only on one side.
  • FIG. 1A is a cross-sectional view in the thickness direction of a perspective electrode laminate 100 (hereinafter referred to as a first perspective electrode laminate 100) according to the first embodiment.
  • FIG. 2 is a cross-sectional view in the thickness direction of the perspective electrode material 101 according to the first embodiment (hereinafter referred to as the first perspective electrode material 101).
  • 100 is a first transparent electrode laminate
  • 110 is a first transparent substrate
  • 120 is a first transparent adhesive layer
  • 130 is a first reflection reduction layer
  • 140 is a first metal layer.
  • 150 is a second transparent adhesive layer
  • 160 is a second reflection reduction layer
  • 170 is a second metal layer.
  • 101 is a first transparent electrode material
  • 101C is an opening
  • 120C is a first outer surface corresponding to the opening 101C of the first transparent adhesive layer 120
  • 150C is a second transparent adhesive layer 150.
  • a second outer surface portion corresponding to the opening portion 101C, 141 is a first circuit pattern layer
  • 171 is a second circuit pattern layer.
  • a first transparent electrode laminate 100 includes a first transparent substrate 110, a first transparent adhesive layer 120, a first reflection reduction layer 130, and a first metal.
  • a layer 140, a second transparent adhesive layer 150, a second reflection reduction layer 160, and a second metal layer 170 are provided.
  • the first transparent substrate 110 has a first main surface 110A and a second main surface 110B.
  • the first transparent adhesive layer 120, the first reflection reduction layer 130, and the first metal layer 140 are laminated on the first main surface 110A of the first transparent substrate 110 in this order.
  • the 2nd transparent contact bonding layer 150, the 2nd reflection reduction layer 160, and the 2nd metal layer 170 are laminated
  • first main surface 110A and the second main surface 110B may be simply referred to as main surfaces 110A and 110B.
  • the first transparent adhesive layer 120 and the second transparent adhesive layer 150 may be simply referred to as transparent adhesive layers 120 and 150.
  • the first outer surface portion 120C and the second outer surface portion 150C may be simply referred to as outer surface portions 120C and 150C.
  • the first reflection reduction layer 130 and the second reflection reduction layer 160 may be simply referred to as reflection reduction layers 130 and 160.
  • the first metal layer 140 and the second metal layer 170 may be referred to as metal layers 140 and 170 in some cases.
  • the first circuit pattern layer 141 and the second circuit pattern layer 171 may be referred to as circuit pattern layers 141 and 171.
  • the kurtosis (Rku) of the surface 140A (hereinafter sometimes referred to as the first main surface 140A) of the first metal layer 140 opposite to the side facing the first transparent substrate 110. Is 1.00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.00 or more and 3.00 or less. Further, the kurtosis (Rku) of the surface 170A of the second metal layer 170 opposite to the side facing the first transparent substrate 110 (hereinafter sometimes referred to as the first main surface 170A) is 1. It is 00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.00 or more and 3.00 or less.
  • the first main surface 140A and the kurtosis (Rku) of the first main surface 170A protrude. There are few convex parts (mountains) or concave parts (valleys), and the roughness curve (JIS B 0601: 2001) is relatively rounded. Therefore, even if the first transparent electrode material 101 is repeatedly bent after the metal layers 140 and 170 are formed into a circuit to form the circuit pattern layers 141 and 171 shown in FIG. Less stress is applied. As a result, even if the first transparent electrode material 101 is bent, the circuit pattern layers 141 and 171 are not easily disconnected.
  • the kurtosis (Rku) is a value measured by the same measurement method as the measurement of the kurtosis (Rku) described in the examples.
  • Kurtosis (Rku) is a parameter defined in JIS B 0601: 2001, and the mean square of Z (x) at the reference length made dimensionless by the square of the root mean square height (Zq) Is expressed by the following formula. If the distribution is normal, the kurtosis (Rku) is 3.
  • kurtosis is a measure of the sharpness of the surface and characterizes the spread of Z (x) (height distribution).
  • the kurtosis (Rku) is more than 3.0, the height distribution is sharp.
  • a kurtosis (Rku) of less than 3 indicates that the height distribution is gentle.
  • the upper limit of the numerical range of the kurtosis (Rku) of the first main surface 140A and the kurtosis (Rku) of the first main surface 170A is set to 3.10 as an experiment. However, the disconnection did not occur until 3.10.
  • the surface properties of the first main surface 140A of the first metal layer 140 and the first main surface 170A of the second metal layer 170 are defined by kurtosis (Rku) from the past. Whether or not the circuit pattern layers 141 and 171 are disconnected when the first transparent electrode material 101 is bent, as compared with the case defined by the surface roughness (Rz) that has been used as the evaluation index of the surface properties. It is because it can grasp
  • the surface roughness (Rz) means the ten-point average roughness specified in JIS B0601 (1994).
  • the first transparent substrate 110 is a sheet-like material having main surfaces 110A and 110B. What is necessary is just to select suitably as a material which comprises the 1st transparent base material 110 according to the use application of the 1st seeing-through type electrode laminate 100, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN). Transparent resins such as polycarbonate (PC) and polymethyl methacrylate (PMMA) can be used.
  • the first transparent substrate 110 may contain an additive type or reactive type flame retardant such as tetrabromobisphenol A.
  • the thickness of the first transparent substrate 110 may be appropriately selected according to the use application of the first transparent electrode laminate 100, preferably 24 ⁇ m or more and 300 ⁇ m or less, more preferably 35 ⁇ m or more and 260 ⁇ m or less. It is. If the thickness of the 1st transparent base material 110 is in the said range, it will be difficult to wrinkle, it will be easy to handle, and it will be excellent in transparency.
  • the transparent adhesive layers 120 and 150 are formed on the main surfaces 110A and 110B of the first transparent substrate 110.
  • the first transparent adhesive layer 120 and the second transparent adhesive layer 150 may have the same configuration or different configurations.
  • the transparent adhesive layers 120 and 150 are obtained by curing a transparent adhesive.
  • a material constituting the transparent adhesive for example, an acrylic resin, an epoxy resin, a urethane resin, or a mixed resin thereof is preferably included.
  • an acrylic resin, a urethane resin, or a mixed resin thereof is excellent in transparency and optically useful.
  • the hardness of the transparent adhesive layer 120, 150 is preferably 1.0 N / mm 2 or more, 200 N / mm 2 or less, more preferably 4.0 N / mm 2 or more and 175 N / mm 2 or less. If the hardness of the transparent adhesive layers 120 and 150 is within the above range, the elongation of the pressure-sensitive adhesive material that causes one of the disconnections can be suppressed.
  • the hardness of the transparent adhesive layers 120 and 150 is a value measured by a nanoindentation apparatus.
  • the thickness of the transparent adhesive layers 120 and 150 is preferably 0.5 ⁇ m or more and 10.00 ⁇ m or less, more preferably 1.0 ⁇ m or more and 8.00 ⁇ m or less.
  • the elastic modulus at 25 ° C. of the transparent adhesive layers 120 and 150 is preferably 0.01 GPa or more and 1000.0 GPa or less, more preferably 0.1 GPa or more and 100.0 GPa or less, further preferably 0.6 GPa or more and 60.0 GPa. Hereinafter, it is particularly preferably 10.0 GPa or less. If the elastic modulus at 25 ° C. of the transparent adhesive layers 120 and 150 is within the above range, when the first transparent electrode material 101 is bent, the transparent adhesive layers 120 and 150 relieve stress on the circuit pattern layers 141 and 171. It becomes easy to function as a layer.
  • a commercially available measuring device used for measurement of flexural modulus (JIS K7171) and tensile elastic modulus (JIS K7162) can be used.
  • JIS K7171 flexural modulus
  • JIS K7162 tensile elastic modulus
  • a Vickers hardness meter or a micro Vickers hardness meter can be used.
  • each of the transparent adhesive layers 120 and 150 to be measured is applied with a quadrangular pyramid indenter (or measuring head) of a micro Vickers hardness tester under a microscope, with a predetermined pressure (for example, a micro hardness tester manufactured by Mitutoyo Corporation “ In the case of “HM-211”, the test force generation range is pressed at 0.4903 mN or more and 19610 mN or less, and the obtained measurement value is a rubber sheet for elastic modulus evaluation having a thickness of 1 mm or more prepared for comparison (for example, commercially available)
  • the elastic modulus of the rubber sheet for elastic modulus evaluation can be used as it is as the elastic modulus of the transparent adhesive layers 120 and 150.
  • the glass transition temperature (Tg) of the transparent adhesive layers 120 and 150 is preferably equal to or lower than the glass transition temperature (Tg) of the first transparent substrate 110. Accordingly, when the first transparent electrode material 101 is bent, the transparent adhesive layers 120 and 150 easily function as a kind of stress relaxation layer. Moreover, the glass transition temperature (Tg) of the transparent adhesive layers 120 and 150 is preferably 150 ° C. or lower, more preferably 100 ° C. or lower. If the glass transition temperature (Tg) of the transparent adhesive layers 120 and 150 is within the above range, the elastic modulus of the transparent adhesive layers 120 and 150 near room temperature can be reduced, and the transparent adhesive layers 120 and 150 are stress relaxation layers. It becomes easy to function as.
  • the reflection reducing layers 130 and 160 are formed on the surface 140B (hereinafter, second main surface 140B) of the first metal layer 140 on the side facing the first transparent substrate 110 and on the first transparent substrate 110. It is formed on a surface 170B (hereinafter, second surface 170B) of the second metal layer 170 on the facing side. That is, the second main surface 140B of the first metal layer 140 on the side facing the first transparent substrate 110 and the second of the second metal layer 170 on the side facing the first transparent substrate 110.
  • the surface 170B is blackened. Thereby, in the first transparent electrode material 101, scattered light due to external light that passes through the outer surface portions 120C and 150C and enters the reflection reduction layers 130 and 160 can be significantly reduced.
  • the first reflection reduction layer 130 and the second reflection reduction layer 160 may have the same configuration or different configurations.
  • the reflection reduction layers 130 and 160 are the first transparent base 110 side surface 130A of the first reflection reduction layer 130 (hereinafter referred to as first main surface 130A) and the second reflection reduction layer 160 first transparent.
  • the surface property of the surface 160A on the substrate 110 side (hereinafter, the first main surface 160A) is formed so as to follow the surface properties of the second main surface 140B and the second main surface 170B. Further, when the thickness of the metal layer 140 is within a range described later, the first main surface 140A is a surface that follows the second main surface 140B because the metal layer 140 is a very thin foil.
  • the kurtosis (Rku) of the first main surface 130A and the second main surface 130B (hereinafter referred to as main surfaces 130A and 130B) of the first reflection reduction layer 130 and the first main layer 130B It can be evaluated that the kurtosis (Rku) of the main surface 140A and the second main surface 140B (hereinafter, main surfaces 140A and 140B) is the same. Furthermore, the kurtosis (Rku) of the first main surface 160A and the second main surface 160B (hereinafter referred to as main surfaces 160A and 160B) of the second reflection reducing layer 160 and the first main surface 160B of the second metal layer 170.
  • the kurtosis (Rku) of main surface 170A and second main surface 170B can be evaluated as the same.
  • the thickness of the reflection reducing layers 130 and 160 is preferably 0.001 ⁇ m or more and 0.50 ⁇ m or less, more preferably 0.01 ⁇ m or more and 0.30 ⁇ m or less.
  • the reflectance of light in the visible light region (380 nm or more and 780 nm or less) of the reflection reducing layers 130 and 160 is preferably 20% or less, more preferably 15% or less, still more preferably 10% or less, and particularly preferably 5%. It is as follows.
  • the reflectance of light in the visible light region is a value measured by a method in accordance with “JIS Plastic 7375 Plastic—How to Obtain Total Light Transmittance and Total Light Reflectance”.
  • the reflection reducing layers 130 and 160 for example, metals such as copper, nickel, cobalt, tungsten, and aluminum can be used, and further, sulfur or the like may be included. If the material constituting the reflection reduction layers 130 and 160 is a metal, the wiring resistance of the circuit pattern layers 141 and 171 can be lowered. In particular, when copper is used as the material for the metal layers 140 and 170, the reflection reducing layers 130 and 160 each include at least one selected from the group consisting of sulfur, nickel, cobalt, tungsten, and aluminum at a rate of 0.00 per unit area. The content is preferably 1% or more and 10.0% or less.
  • the high reflectance at a wavelength of 550 nm or more and 780 nm or less which is a characteristic of the surface of the metal layers 140 and 170 made of copper, can be suppressed, and the flat reflectance is obtained over the entire range of 380 nm or more and 780 nm or less. Can do. Therefore, in the first perspective electrode material 101, it is possible to suppress the surface flickering of the circuit pattern layers 141 and 171 and increase the contrast ratio.
  • the sulfur content is preferably within 10%. If the sulfur content is within the above range, the resistance values of the circuit pattern layers 141 and 171 themselves made of copper can be made difficult to increase.
  • the material constituting the reflection reducing layers 130 and 160 is a conductive metal such as nickel, cobalt, tungsten, or aluminum
  • the first main surface 140A of the first metal layer 140 and the second metal layer The entire first main surface 170A of 170 may be covered with these metals.
  • WDS wavelength dispersive X-ray spectrometer
  • the reflection reduction layers 130 and 160 are provided, but the present disclosure is not limited to this, and the reflection reduction layers 130 and 160 may not be provided.
  • Metal layers 140, 170 are formed on the reflection reducing layers 130 and 160.
  • the first metal layer 140 and the second metal layer 170 may have the same configuration or different configurations.
  • the metal layers 140 and 170 for example, copper, stainless steel, aluminum, nickel, titanium, tungsten, tin, lead, iron, silver, chromium, or an alloy thereof can be used. Especially, it is preferable that the metal layers 140 and 170 contain at least one selected from the group consisting of copper, nickel, aluminum, and silver. These metals have low specific resistance, excellent malleability and flexibility, and can provide sufficient conduction even with thin wires having a line width of 0.5 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the metal layers 140 and 170 is preferably 0.1 ⁇ m or more and 9.0 ⁇ m or less, more preferably 0.3 ⁇ m or more and 5.0 ⁇ m or less.
  • the thicknesses of the metal layers 140 and 170 are within the above range, the finely patterned circuit pattern layers 141 and 171 can be formed. Thereby, in the first perspective electrode material 101, the opening 101C can be further widened, and the light transmittance of the first perspective electrode material 101 can be further improved.
  • the thickness of the metal layers 140 and 170 is a value measured based on the measurement of the thickness described in the examples.
  • the kurtosis (Rku) of the second main surface 140B is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less.
  • the kurtosis (Rku) of the second main surface 170B is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less. If the kurtosis (Rku) of the second main surface 140B is within the above range, the first perspective surface type 120C of the first perspective electrode material 101 has almost no white turbidity and is excellent in transparency.
  • the electrode material 101 can be used.
  • the first outer surface portion 120C shown in FIG. 2 is formed by removing the metal layer 140 and the first reflection reducing layer 130 by etching or the like.
  • the surface properties of the second main surface 140B of the first metal layer 140 are transferred to the first outer surface portion 120C.
  • the second outer surface portion 150C of the first perspective electrode material 101 has almost no white turbidity and is excellent in transparency.
  • the transparent electrode material 101 can be obtained.
  • the surface roughness (Rz) of the main surfaces 140A and 140B is preferably 0.01 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less.
  • the surface roughness (Rz) of main surfaces 170A and 170B is preferably 0.01 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less. If main surface 140A, 170A is in the said range, it can be set as the 1st see-through type electrode laminated plate 100 which is hard to be disconnected even if it bends after circuit formation. Moreover, if the main surfaces 140B and 170B are in the said range, it can be set as the 1st see-through type electrode laminated plate 100 which is more excellent in seeability.
  • a rust prevention treatment layer On the main surfaces 140A and 140B and the main surfaces 170A and 170B of the metal layers 140 and 170, a rust prevention treatment layer, a silane coupling treatment layer, and the like may be formed. If the rust prevention treatment layer is formed, discoloration of the metal layers 140 and 170 can be prevented. Moreover, when the silane coupling treatment layer is formed, the adhesive strength between the transparent adhesive layers 120 and 150 and the metal layers 140 and 170 can be improved.
  • the rust prevention treatment layer for example, zinc plating, zinc alloy plating, tin plating, tin alloy plating, nickel plating, chromate, or the like can be used.
  • the thickness of the antirust treatment layer is preferably 0.001 ⁇ m or more and 0.50 ⁇ m or less.
  • silane coupling agent constituting the silane coupling treatment layer examples include 3- (2-aminoethyl) aminopropyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3 -Mercaptopropyltrimethoxysilane, 3-phenylaminopropyltrimethoxysilane and the like can be used.
  • the thickness of the silane coupling treatment layer is preferably 0.001 ⁇ m or more and 0.50 ⁇ m or less.
  • a reflection reducing layer may be formed on the first main surface 140A and the first main surface 170A. That is, the first main surface 140A of the first metal layer 140 and the first main surface 170A of the second metal layer 170 may be blackened. Thereby, even if a metal with a high reflectance is used for the material constituting the metal layers 140 and 170, the circuit pattern layers 141 and 171 can be made the first transparent electrode material 101 that is not easily visible.
  • the material constituting the reflection reduction layer the same materials as those exemplified as the material constituting the reflection reduction layers 130 and 160 can be used.
  • the first see-through electrode material 101 is the first see-through electrode laminate except that part of the metal layers 140 and 170 includes circuit pattern layers 141 and 171 having openings 101C.
  • the configuration is the same as that of the plate 100.
  • the circuit pattern layers 141 and 171 are, for example, see-through electric circuits in which the metal layers 140 and 170 are partially removed by etching or the like, and a gap that becomes the opening 101C is formed in the metal layers 140 and 170.
  • the pattern shape of the circuit pattern layers 141 and 171 may be adjusted as appropriate according to the intended use of the first transparent electrode material 101. Examples thereof include a mesh shape, a parallel fine line pattern shape, and a comb blade shape.
  • the opening 101C is a part where the metal layers 140 and 170 and the reflection reducing layers 130 and 160 are removed by etching or the like.
  • the line width W of the circuit pattern layers 141 and 171 may be appropriately adjusted according to the use application of the first transparent electrode material 101.
  • the line width W is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, more preferably 1.0 ⁇ m or more and 8.0 ⁇ m or less. If the line width W is within the above range, the opening 101C can be enlarged widely, and the transparency of the first perspective electrode material 101 can be further improved.
  • the kurtosis (Rku) of the first outer surface portion 120C is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less.
  • the kurtosis (Rku) of the second outer surface portion 150C is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less. If the kurtosis (Rku) of the first outer surface portion 120C and the kurtosis (Rku) of the second outer surface portion 150C are within the above ranges, the turbidity (haze) of the transparent adhesive layers 120, 150 in the outer surface portions 120C, 150C. ) Can be 20% or less, and the first transparent electrode material 101 can be made more excellent in transparency. Turbidity (haze) is a value measured by a haze meter.
  • the sheet resistance of the first transparent electrode material 101 is preferably 0.01 ⁇ / sq or more and 50 ⁇ / sq or less, more preferably 0.05 ⁇ / sq or more and 10 ⁇ / sq or less, and further preferably 0.1 ⁇ / sq. It is 5 ⁇ / sq or less.
  • the total light transmittance of the first transparent electrode material 101 is preferably 60% or more, more preferably 65% or more, and still more preferably 70% in a mesh-like circuit having a line width of 3 ⁇ m and a line spacing of 500 ⁇ m. That's it. If the total light transmittance of the first fluoroscopic electrode material 101 is within the above range, the first fluoroscopic electrode material 101 can be suitably used for a touch panel sensor or the like.
  • the first transparent electrode material 101 is suitably used for, for example, a touch panel sensor, an electromagnetic wave absorbing sheet, an in-vehicle antenna, and the like.
  • FIG. 3 is an exploded cross-sectional view of the device 102 (hereinafter also referred to as the first device 102) according to the first embodiment.
  • the transparent adhesive layers 120 and 150 and the reflection reducing layers 130 and 160 are omitted.
  • the first device 102 is a mutual capacitive touch panel sensor which is a kind of projected capacitive method. As illustrated in FIG. 3, the first device 102 includes a first transparent electrode material 101, a control circuit 180, and a cover 190.
  • the control circuit 180 is electrically connected to the circuit pattern layers 141 and 171.
  • the cover 190 is attached to the surface of the first perspective electrode material 101 on the first circuit pattern layer 141 side.
  • the first device 102 displays the image display device 5 such that the surface of the first perspective electrode material 101 on the second circuit pattern layer 171 side is the image display device 5 side. It is used by being arranged on the front side of the surface 5A.
  • the image display device 5 for example, a known image display device such as a liquid crystal display panel, a plasma image display panel, an electroluminescence panel, electronic paper, or a cathode ray tube can be used.
  • the first circuit pattern layer 141 is a receiving electrode (hereinafter may be referred to as a receiving electrode 141), and the second circuit pattern layer 171 (hereinafter may be referred to as a transmitting electrode 171) is a transmitting electrode.
  • Functions as an electrode That is, when the first device 102 brings an indicator close to the surface of the cover 190, the capacitance of the capacitor formed at the intersection of the reception electrode 141 and the transmission electrode 171 changes, and this change in capacitance is controlled. By detecting the circuit 180, it is possible to specify the position where the pointing object is approached.
  • the indicator include conductors such as a user's fingertip, stylus, and indicator bar.
  • the detection method of the first device 102 is a mutual capacitance method
  • the present disclosure is not limited to this, and may be a detection method of a self-capacitance method or a combination of a self-capacitance method and a mutual capacitance method. It may be a method.
  • FIG. 1A to FIG. 1A are schematic explanatory views for explaining a manufacturing method of the fluoroscopic electrode laminate 100 according to the first embodiment (hereinafter referred to as the first manufacturing method of the fluoroscopic electrode laminate 100). is there. 4A to 4H, the same components as those of the first transparent electrode laminate 100 shown in FIG. 1A are denoted by the same reference numerals, and description thereof is omitted.
  • the manufacturing method of the 1st transparent electrode laminated plate 100 produces the 1st process (a1) which produces the metal layer 14 with a 1st support body, and the transparent base material 16 with a 1st transparent adhesive layer.
  • a second step (a2) and a third step (a3) for peeling the first support 10 and the first release layer 11 from the first metal layer 140 are included.
  • the first embodiment for example, by performing the first step (a1), the second step (a2), and the third step (a3) in this order, the first single-sided transparent electrode laminate shown in FIG. 18 is obtained.
  • the same steps as the first step (a1), the second step (a2) and the third step (a3) are performed on the second main surface 110B of the first single-sided transparent electrode laminate 18. By doing so, the first transparent electrode laminate 100 is obtained.
  • 1st embodiment includes a process (a14), this indication is not limited to this and does not need to include a process (a14).
  • step (a11) As shown in FIG. 4A, a first support 10 having a first main surface 10A and a second main surface 10B is prepared.
  • the first support 10 functions as a reinforcing material (carrier) that backs up the first metal layer 140 having a small thickness and low mechanical strength until the first metal layer 140 is bonded to the first transparent substrate 110.
  • the kurtosis (Rku) of the first main surface 10A of the first support 10 is 1.00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.05 or more, It is 3.00 or less. If the kurtosis (Rku) of the first main surface 10A of the first support 10 is within the above range, the kurtosis of the first main surfaces 140A and 140B of the first metal layer 140 will be described later. (Rku) can be set to 1.00 or more and 3.10 or less.
  • the first support 10 As a material constituting the first support 10, for example, copper, aluminum, stainless steel, iron, titanium, or an alloy thereof can be used. Especially, it is preferable to use copper from a viewpoint of cost.
  • As the first support 10 using copper for example, an electrolytic copper foil, an electrolytic copper alloy foil, a rolled copper foil, a rolled copper alloy foil, or the like can be used.
  • the thickness of the 1st support body 10 will not be specifically limited if it is the thickness which functions as a carrier.
  • FIG. 5A is a schematic cross-sectional view for explaining a method for producing the electrolytic metal foil 51 by an electrolysis method using the electrodeposition drum 50.
  • FIG. 5B is an enlarged cross-sectional view of the electrolytic metal foil 51 at the E portion in FIG. 5A.
  • the first main surface 51 ⁇ / b> A on the side in contact with the electrodeposition drum 50 and the side not in contact with the electrodeposition drum 50 are used.
  • Electrolytic metal foil 51 having a second main surface 51B is prepared, and the first main surface 51A of the electrolytic metal foil 51 is smoothed to produce the first support 10 (a110); electrodeposition An electrolytic metal foil 51 in which the second main surface 51B is smoothed is prepared by an electrolytic method using the drum 50 using a predetermined electrolytic solution tank to which an additive or the like is added, and the first support 10 The method (a120) etc. which produce are mentioned.
  • the first main surface 51A of the electrolytic metal foil 51 corresponds to the first main surface 10A of the support 10, and the second main surface 51B of the electrolytic metal layer 51 is the first main surface of the support 10. This corresponds to the second main surface 10B.
  • the first main surface 51A of the electrolytic metal foil 51 corresponds to the second main surface 10B of the support 10
  • the second main surface 51B of the electrolytic metal layer 51 is the first main surface of the support 10. This corresponds to one main surface 10A.
  • an electrodeposition drum 50 is used as a cathode, and a cross-section arcuate base (not shown) facing the electrodeposition drum 50 is used as an anode.
  • the electrolytic metal foil 51 has a predetermined thickness on the surface of the electrodeposition drum 50. And the like, and a continuous production method by peeling the electrolytic metal foil 51 from the electrodeposition drum 50.
  • the kurtosis (Rku) of the first main surface 51A of the electrolytic metal foil 51 is usually more than 3.10. This is because the electrolytic metal layer 51 is electrodeposited directly on the surface of the electrodeposition drum 50, so that the surface properties of the electrodeposition drum 50 are transferred to the first main surface 51A of the electrodeposition metal layer 51; In order to peel the metal foil 51 from the surface of the electrodeposition drum 50, the surface of the electrodeposition drum 50 is polished to leave polishing marks.
  • the kurtosis (Rku) of the electrodeposited drum 50 whose surface is thus polished is usually more than 3.10. Further, the kurtosis (Rku) of the first main surface 51A of the electrolytic metal foil 51 is usually smaller than the kurtosis (Rku) of the second main surface 51B of the electrolytic metal foil 51.
  • the material of the electrolytic metal foil 51 for example, copper can be used.
  • a material constituting the electrodeposition drum 50 for example, titanium or the like can be used.
  • the electrolytic solution in the electrolytic solution tank 52 when the material of the electrolytic metal foil 51 is copper, a copper sulfate solution or the like can be used.
  • the electrolysis conditions are not particularly limited as long as the first support 10 is obtained by subjecting the first main surface 51A and the second main surface 51B of the electrolytic metal foil 51 to a smoothing process.
  • Examples of a method for smoothing the electrolytic metal foil 51 include a method by an electrolytic plating method (a111), a method by electrochemical polishing (a112), a method by chemical polishing (a113), a method by mechanical polishing, and the like. Is mentioned.
  • the electroplating film is electrodeposited on the first main surface 51A of the electrolytic metal foil 51 produced by the method (a110) by the electrolytic plating method.
  • an electrolytic metal foil 51 is disposed as a cathode (cathode) in an electrolytic solution, a conductive plate is disposed as an anode (anode), and each is electrically connected to a power source.
  • the method of making a metal adhere to the surface of the 1st principal surface 51A by flowing current etc. is mentioned.
  • the electrolytic solution may be appropriately selected according to the material constituting the electrolytic metal foil as long as it is a solution capable of electrodepositing a metal having the same purity as the electrolytic metal foil 51.
  • the material constituting the electrolytic metal foil 51 is copper, for example, a copper sulfate solution can be used.
  • the kurtosis (Rku) of the first main surface 10A of the first support 10 (corresponding to the first main surface 51A of the electrolytic metal foil 51 produced by the method (a110)) is set within the above range.
  • the surface condition of the first main surface 51A of the electrolytic metal foil 51 may be adjusted by appropriately adjusting the processing conditions depending on the type of the processing liquid.
  • a commercially available additive generally used as a brightener can be used, but a brightener containing sulfur is preferably used, and a brightener having a mercapto group is most preferred.
  • the brightener having a mercapto group for example, 3-mercapto-1-propanesulfonic acid can be used.
  • organic compounds or linear polymers having a plurality of hydroxyl groups to the brightening agent, the effect of the brightening agent can be improved, and a smooth, glossy surface with no abnormal protrusions can be formed. can do.
  • the compound or linear polymer having a plurality of hydroxyl groups for example, polyethylene glycol having an average molecular weight (weight average) of 500 or more and 5,000,000 or less can be used.
  • the method of electrochemical polishing is, for example, by disposing the electrolytic metal foil 51 as a cathode (cathode) in an electrolytic polishing liquid and using the conductive plate as an anode (anode) as a first main surface 51A of the electrolytic metal foil 51.
  • a dissolution current easily flows through the convex portions, and the convex portions can be preferentially dissolved.
  • the electrolytic polishing liquid may be appropriately adjusted according to the material constituting the electrolytic metal foil 51, and includes, for example, an acidic liquid containing sulfuric acid, hydrochloric acid, phosphoric acid, nitric acid, cyanide, sodium hydroxide, potassium hydroxide, An alkaline liquid containing pyrophosphoric acid or the like can be used.
  • the kurtosis (Rku) of the first main surface 10A of the first support 10 (corresponding to the first main surface 51A of the electrolytic metal foil 51 produced by the method (a110)) is set within the above range.
  • the processing conditions may be appropriately adjusted depending on the surface state of the first main surface 51A, the type of electrolytic polishing liquid, and the like. For example, in sulfuric acid having an appropriate concentration of 20% or less, the current density is 10 A / dm 2 or less. Acid etching may be performed while an electric current is applied with the anode and cathode of electrolytic plating reversed by setting an appropriate current value.
  • the first main surface 51A of the electrolytic metal foil 51 is immersed in a treatment liquid, and the surface of the first main surface 51A is dissolved by a chemical reaction.
  • the treatment liquid may be appropriately adjusted according to the material constituting the electrolytic metal foil 51.
  • An alkaline liquid containing an acid or the like can be used.
  • the kurtosis (Rku) of the first main surface 10A of the first support 10 (corresponding to the first main surface 51A of the electrolytic metal foil 51 produced by the method (a110)) is set within the above range.
  • the processing conditions may be adjusted as appropriate depending on the surface state of the first main surface 10A, the type of the processing solution, and the like, for example, acid etching may be performed with stirring in sulfuric acid having an appropriate concentration of 20% or less.
  • the method (a120) by the electroplating method is the same as the method for preparing the electrolytic metal foil 51 of the above method (a110) except that an additive for the electrolytic solution tank 52 is added at the time of electrodeposition on the electrodeposition drum 50. .
  • an additive for the electrolytic solution tank 52 is added at the time of electrodeposition on the electrodeposition drum 50.
  • the second main surface 51B of the electrolytic metal foil 51 (corresponding to the first main surface 10A of the first support 10) is supported.
  • Kurtosis (Rku) of 3.10 or less.
  • the additive for example, ethylene glycol or the like can be used.
  • Step (a12) ⁇ In the step (a12), as shown in FIG. 4B, the first release layer 11 is formed on the first main surface 10A. Thereby, the 1st laminated board 12 is obtained.
  • the first release layer 11 for example, nickel, molybdenum, chromium, iron, titanium, tungsten, phosphorus, alloys thereof, or the like can be used.
  • the surface property of the main surface 11A on the side where the first metal layer 140 of the first release layer 11 is formed follows the surface property of the first main surface 10A of the first support 10. That is, the kurtosis (Rku) of the main surface 11A of the first release layer 11 on the side where the first metal layer 140 is formed and the kurtosis (Rku) of the first main surface 10A of the first support 10. ) Can be evaluated as the same.
  • the adhesion amount of the metal constituting the first release layer 11 is preferably 0.001 ⁇ m or more and 0.50 ⁇ m or less.
  • Examples of the method for forming the release layer include an electrolytic plating method.
  • FIG. 1B is a schematic explanatory view for explaining a first manufacturing method of the second laminated board according to the first embodiment
  • FIG. 1C is an enlarged cross-sectional view of a Q portion in FIG. 1B
  • FIG. 6A is a schematic explanatory view for explaining a second manufacturing method of the second laminated board according to the first embodiment
  • FIG. 6B is an enlarged cross-sectional view of an R portion in FIG. 6A.
  • 61 is a conveyance roll.
  • step (a13) as shown in FIG. 4C, the first metal layer 140 is formed on the first release layer 11 by an electrolytic plating method. Thereby, the 2nd laminated board 13 is obtained. Thus, the first metal layer 140 is formed directly on the first release layer 11. Therefore, the kurtosis (Rku) of the first main surface 140A of the first metal layer 140 and the kurtosis (Rku) of the main surface 11A on the side where the first metal layer 140 of the first release layer 11 is formed. ) Can be evaluated as the same. In other words, it is evaluated that the kurtosis (Rku) of the first main surface 140A of the first metal layer 140 and the kurtosis (Rku) of the first main surface 10A of the first support 10 are the same. Can do.
  • the first metal layer 140 As a method of forming the first metal layer 140, for example, when the electrolytic metal foil 51 is produced by the method (a110) (the first main surface 51A is a smooth surface), as shown in FIG.
  • the first laminated plate 12 is immersed in the electrolyte bath 60 using the foil 51 (first support 10) as a cathode, and a current is passed between the anode and the cathode, whereby the first of the electrolytic metal foil 51 is obtained.
  • the metal foil 51 is produced (the second main surface 51B is a smooth surface), as shown in FIG.
  • the electrolytic metal foil 51 (first support 10) is used as the cathode and the first in the electrolyte bath 60.
  • the laminate plate 12 is dipped, and a current is passed between the anode and the cathode, whereby the second electrolytic metal foil 51 is How to electrodepositing a first metal layer 140 on the surface 51B (first principal surface 10A of the first support member 10) side of the surface (surface of the release layer 11); and the like.
  • the electrolyte bath 60 may be appropriately adjusted according to the material constituting the first metal layer 140.
  • a copper sulfate plating bath When copper is used as the material constituting the first metal layer 140, a copper sulfate plating bath, copper cyanide is used.
  • a plating bath, a copper fluoride fluoride plating bath, a copper pyrophosphate plating bath, a copper sulfamate plating bath, or the like can be used.
  • a strike copper plating layer is formed on the first release layer 11 by electrolytic plating, and the first copper layer is further formed on the strike copper plating layer. It is preferable to form the metal layer 140. Thereby, more uniform plating can be performed on the first release layer 11, and the number of pinholes in the first metal layer 140 can be significantly reduced.
  • a plating bath for forming the strike copper plating layer a pyrophosphoric acid copper plating bath or a copper cyanide plating can be used.
  • Examples of the plating bath for forming the first metal layer 140 on the strike copper plating layer include a copper sulfate plating bath, a copper fluoride plating bath, a copper pyrophosphate plating bath, a copper sulfamate plating bath, and a copper cyanide plating.
  • a bath can be used.
  • the thickness of the strike copper plating layer is preferably 0.001 ⁇ m or more and 1 ⁇ m or less.
  • the surface property of the second main surface 140B of the first metal layer 140 follows the surface property of the first main surface 11A of the first release layer 11. That is, the surface property of the second main surface 140B of the first metal layer 140 follows the surface property of the first surface 10A of the first support 10. Thereby, the kurtosis (Rku) of the first main surface 140A of the first metal layer 140 is in the range of 1.00 or more and 3.10 or less.
  • Step (a14) ⁇ the first reflection reducing layer 130 is formed on the second main surface 140B of the first metal layer 140. That is, a blackening process is performed on the first metal layer 140 formed on the first release layer 11. Thereby, the metal layer 14 with a 1st support body is obtained.
  • Examples of the method of forming the first reflection reduction layer 130 include an electrolytic plating method. What is necessary is just to adjust suitably according to the material which comprises the 1st reflection reduction layer 130 as a plating bath used for this electrolytic plating method, for example, a nickel citrate bath etc. can be used.
  • the first transparent substrate 110 is prepared, and the first transparent adhesive layer 15 is applied to the first main surface 110A of the first transparent substrate 110. Form. Thereby, the transparent base material 16 with a 1st transparent adhesive layer is produced. Note that the first transparent adhesive layer 120 is obtained by curing the first transparent adhesive layer 15.
  • Examples of the method of forming the first transparent adhesive layer 15 include a method of applying the above-described transparent adhesive to the first main surface 110A.
  • step (a3) In the third step (a3), the step (a31) of laminating the first support-attached metal layer 14 and the first transparent adhesive layer-attached transparent substrate 16, the first support 10 and the first step. A step (a32) of peeling one release layer 11 from the first metal layer 140. As a result, the first single-sided transparent electrode laminate 18 is obtained.
  • step (a31) the surface 14A on the first metal layer 140 side of the metal layer 14 with the first support (hereinafter referred to as the first main surface 14A) and the transparent base material 16 with the first transparent adhesive layer.
  • the surface 16A on the first transparent adhesive layer 15 side (hereinafter referred to as the first main surface 16A) is bonded. Thereby, the 3rd laminated board 17 shown to FIG. 4G is obtained.
  • the first main surface 14A of the first support-attached metal layer 14 and the first transparent base material 16 with the first transparent adhesive layer 16 are provided.
  • the first transparent adhesive layer 15 may be cured. Thereby, the first transparent adhesive layer 15 is cured and becomes the first transparent adhesive layer 120.
  • the method for curing the first transparent adhesive layer 15 may be adjusted as appropriate according to the transparent adhesive constituting the first transparent adhesive layer 15. For example, a predetermined pressure is applied using a press machine or the like. And a method of heating in a normal pressure or low pressure environment.
  • FIG. 7 is a cross-sectional view in the thickness direction of a perspective electrode laminate 200 (hereinafter referred to as a second perspective electrode laminate 200) according to the second embodiment.
  • FIG. 8 is a cross-sectional view in the thickness direction of a perspective electrode material 201 (hereinafter, second perspective electrode material 201) according to the second embodiment.
  • the same components as those of the first perspective electrode laminate 100 shown in FIG. 1A are denoted by the same reference numerals, and the description thereof is omitted.
  • reference numeral 200 denotes a second transparent electrode laminate
  • 230 denotes a first heat-resistant layer
  • 240 denotes a third metal layer
  • 260 denotes a second heat-resistant layer
  • 270 denotes a fourth metal layer.
  • 230C is a third outer surface corresponding to the opening 101C of the first heat resistant layer 230
  • 260C is a second outer surface corresponding to the opening 101C of the second heat resistant layer 260
  • 241 is
  • a third circuit pattern layer 271 is a fourth circuit pattern layer.
  • the second transparent electrode laminate 200 includes a first transparent substrate 110, a first transparent adhesive layer 120, a first heat-resistant layer 230, and a third metal.
  • the first transparent adhesive layer 120, the first heat resistant layer 230, and the third metal layer 240 are laminated on the first main surface 110A of the first transparent substrate 110 in this order.
  • the second transparent adhesive layer 150, the second heat resistant layer 260, and the fourth metal layer 270 are laminated on the first main surface 110B of the first transparent substrate 110 in this order.
  • first heat resistant layer 230 and the second heat resistant layer 260 may be simply referred to as heat resistant layers 230 and 260.
  • the third metal layer 240 and the fourth metal layer 270 may be referred to as metal layers 240 and 270 in some cases.
  • the third circuit pattern layer 241 and the second circuit pattern layer 271 may be referred to as circuit pattern layers 241 and 271.
  • the kurtosis (Rku) of the surface 240A (hereinafter sometimes referred to as the first main surface 240A) of the third metal layer 240 opposite to the side facing the first transparent substrate 110 Is 1.00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.00 or more and 3.00 or less.
  • the kurtosis (Rku) of the surface 270A of the fourth metal layer 270 opposite to the side facing the first transparent substrate 110 (hereinafter sometimes referred to as the first main surface 270A) is 1. It is 00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.00 or more and 3.00 or less.
  • the circuit pattern layer can be obtained even if the second perspective electrode material 201 is bent. 241 and 271 are hard to be disconnected.
  • Heat resistant layers 230, 260 are formed on the second main surface 240B opposite to the first main surface 240A of the third metal layer 240 and the first main surface 270A of the fourth metal layer 270. It is formed on the second main surface 270B on the opposite side. Thereby, generation
  • the first heat resistant layer 230 and the second heat resistant layer 260 may have the same configuration or different configurations.
  • the heat-resistant layers 230 and 260 are a surface of the first heat-resistant layer 230 on the first transparent substrate 110 side (hereinafter referred to as a first main surface 230A) and a first transparent group of the second heat-resistant layer 260.
  • the surface property of the material 110 side surface (hereinafter referred to as the first main surface 260A) is formed so as to follow the surface properties of the second main surface 240B and the second main surface 270B. That is, it is evaluated that the kurtosis (Rku) of the first main surface 230A of the first heat-resistant layer 230 and the kurtosis (Rku) of the second main surface 240B of the third metal layer 240 are the same. Can do.
  • the kurtosis (Rku) of the first main surface 260A of the second heat-resistant layer 260 and the kurtosis (Rku) of the second main surface 270B of the fourth metal layer 270 are evaluated to be the same. be able to.
  • the thickness of the heat resistant layers 230 and 260 is preferably 0.001 ⁇ m or more and 3 ⁇ m or less, more preferably 0.001 ⁇ m or more and 0.5 ⁇ m or less.
  • the kurtosis (Rku) of the surface 230B of the first heat-resistant layer 230 opposite to the first transparent substrate 110 side is 1.00 or more and 3.10 or less, Preferably they are 2.00 or more and 3.05 or less, More preferably, they are 2.00 or more and 3.00 or less.
  • the kurtosis (Rku) of the surface 260B of the second heat-resistant layer 260 opposite to the first transparent substrate 110 side is 1.00 or more and 3.10 or less, Preferably they are 2.00 or more and 3.05 or less, More preferably, they are 2.00 or more and 3.00 or less.
  • the second fluoroscopic electrode material 201 having almost no white turbidity in the outer surface portion 230C of the second fluoroscopic electrode material 201 and excellent in transparency. It can be.
  • the second outer surface portion 260C of the second perspective electrode material 201 has almost no white turbidity and is excellent in transparency.
  • the transparent electrode material 201 can be obtained.
  • a curable resin such as a two-component reactive resin, a thermosetting resin, or an ionizing radiation curable resin can be used.
  • the two-component reactive resin preferably contains, for example, an isocyanate compound and an isocyanate-reactive resin having a hydroxyl group that reacts with the isocyanate compound.
  • the isocyanate compound and the isocyanate-reactive resin react to become a cured product.
  • the isocyanate compound for example, tolylene diisocyanate, 4,4′-diphenylmethane diisocyanate, xylylene diisocyanate, 1,5-naphthylene diisocyanate and the like can be used.
  • an isocyanate-reactive resin for example, an isocyanate-reactive cellulose resin, an isocyanate-reactive acetal resin, an isocyanate-reactive vinyl resin, an isocyanate-reactive acrylic resin, an isocyanate-reactive phenoxy resin, or an isocyanate-reactive styrene resin can be used. .
  • the heat resistant layers 230 and 260 are provided, but the present disclosure is not limited to this, and the heat resistant layers 230 and 260 may not be provided.
  • Metal layers 240, 270 are formed on the heat resistant layers 230 and 260.
  • the third metal layer 240 and the fourth metal layer 270 may have the same configuration or different configurations.
  • the third metal layer 240 has a first main surface 240A and a second main surface 240B opposite to the first main surface 240A.
  • the fourth metal layer 270 has a first main surface 270A and a second main surface 270B opposite to the first main surface 270A.
  • the metal layers 240 and 270 are formed by physical vapor deposition.
  • a material constituting the metal layers 240 and 270 for example, copper, stainless steel, aluminum, nickel, silver, gold, chromium, cobalt, tin, zinc, brass, or an alloy thereof can be used.
  • the metal layers 240 and 270 contain at least one selected from the group consisting of copper, nickel, aluminum, and silver.
  • the thickness of the metal layers 240 and 270 is preferably 0.1 ⁇ m or more and 9.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, and further preferably 0.2 ⁇ m or more and 1.0 ⁇ m or less. If the thickness of the metal layers 240 and 270 is within the above range, the circuit pattern layers 241 and 271 can be made into fine patterns. Thereby, in the 2nd see-through type electrode material 201, 101C of opening parts can be expanded more, and the light transmittance of the 2nd see-through type electrode material 201 can be improved more.
  • the kurtosis (Rku) of the second main surface 240B is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less.
  • the kurtosis (Rku) of the second main surface 270B is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less.
  • the surface roughness (Rz) of the first main surface 240A and the second main surface 240B is preferably 0.01 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less.
  • the surface roughness (Rz) of the first main surface 270A and the second main surface 270B is preferably 0.01 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 1.5 ⁇ m or less. If the main surfaces 240A and 270A are within the above range, it is possible to provide the second transparent electrode laminate 200 that is less likely to be broken even when bent after the circuit is formed. If the 2nd main surface 240B and the 2nd main surface 270B are in the said range, it can be set as the 2nd see-through
  • a reflection reducing layer may be formed on the first main surface 240A and the first main surface 270A. That is, the first main surface 240A of the third metal layer 240 and the first main surface 270A of the fourth metal layer 270 may be blackened. Thereby, even if a metal with a high reflectance is used for the material constituting the metal layers 240 and 270, the circuit pattern layers 241 and 271 can be made difficult to be visually recognized as the second transparent electrode material 201.
  • the material constituting the reflection reduction layer the same materials as those exemplified as the material constituting the reflection reduction layers 130 and 160 can be used.
  • the second see-through electrode material 201 is a second see-through electrode laminate except that part of the metal layers 240 and 270 includes circuit pattern layers 241 and 271 having openings 101C.
  • the configuration is the same as that of the plate 200.
  • the circuit pattern layers 241 and 271 are see-through electric circuits in which, for example, the metal layers 240 and 270 are partially removed by etching or the like, and a gap that becomes the opening 101C is formed in the metal layers 240 and 270.
  • the pattern shape of the circuit pattern layers 241 and 271 may be appropriately adjusted according to the use application of the second perspective electrode material 201, and examples thereof include a mesh shape, a parallel fine line pattern shape, and a comb blade shape.
  • the sheet resistance of the second transparent electrode material 201 is preferably 0.01 ⁇ / sq or more and 50 ⁇ / sq or less, more preferably 0.05 ⁇ / sq or more and 10 ⁇ / sq or less, and further preferably 0.1 ⁇ / sq. It is 5 ⁇ / sq or less.
  • the total light transmittance of the second transparent electrode material 201 is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more. If the total light transmittance of the second transparent electrode material 201 is within the above range, the second transparent electrode material 201 can be suitably used for a touch panel sensor or the like.
  • the total light transmittance is a value measured by a haze meter.
  • the second transparent electrode material 201 is suitably used for, for example, a touch panel sensor, an electromagnetic wave absorbing sheet, an in-vehicle antenna, and the like.
  • FIG. 9A to FIG. 9I are schematic explanatory views for explaining a manufacturing method of the perspective electrode laminate 200 according to the second embodiment (hereinafter referred to as a second manufacturing method of the perspective electrode laminate 200). is there. 9A to 9I, the same members as those shown in FIGS. 4A to 4H are denoted by the same reference numerals, and description thereof is omitted.
  • mold electrodes is the 1st process (b1) which produces the metal layer 26 with a support body, and the 2nd process (b2) which produces the transparent base material 16 with a transparent adhesive layer.
  • the first step (b1), the second step (b2), and the third step (b3) are performed in this order, whereby the second single-sided transparent electrode laminate shown in FIG. 9I. 28 is obtained.
  • the same process as the first process (b1), the second process (b2), and the third process (b3) is performed on the second main surface 110B of the second single-sided transparent electrode laminate 28. By doing so, a second transparent electrode laminate 200 is obtained.
  • First step (b1) In the first step (b1), a step (b11) for preparing the second support 20, a step (b12) for forming the third heat-resistant layer 21, and a step for forming the second release layer 23 ( b13), a step (b14) of forming the third metal layer 240, and a step (b15) of forming the first heat-resistant layer 230.
  • the 2nd metal layer 26 with a support shown in Drawing 9E is obtained.
  • 2nd embodiment includes a process (b15), this indication is not limited to this, It is not necessary to include a process (b15).
  • a second support 20 having a first main surface 20A and a second main surface 20B is prepared.
  • the second support 20 functions as a reinforcing material (carrier) that backs up the thin third metal layer 240 until it is adhered to the first transparent substrate 110.
  • the kurtosis (Rku) of the first main surface 20A of the second support 20 is 1.00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.00 or more, It is 3.00 or less. If the kurtosis (Rku) of the first main surface 20A of the second support 20 is within the above range, the kurtosis (Rku) of the first main surface 240A of the third metal layer 240 will be described later. ) Can be 1.00 or more and 3.10 or less.
  • Examples of the material constituting the second support 20 include polyethylene terephthalate, 1,4-polycyclohexylenedimethylene terephthalate, polyethylene naphthalate, polyphenylene sulfide, polystyrene, polypropylene, polysulfone, aramid, polycarbonate, polyvinyl alcohol, cellophane. Cellulose derivatives such as cellulose acetate, resins such as polyethylene, polyvinyl chloride, nylon, polyimide, and ionomer can be used.
  • the thickness of the 2nd support body 20 will not be specifically limited if it is the thickness which functions as a carrier.
  • Examples of the method for preparing the second support 20 include a method of preparing the second support 20 by performing a curing process on the surface of a sheet-like material made of the material constituting the second support 20. .
  • Examples of the method for curing the sheet-like material include a method in which an acrylic hard coat material is thin-film coated by gravure coating and cured by ultraviolet rays.
  • Step (b12) ⁇ In the step (b12), as shown in FIG. 9B, the third heat-resistant layer 21 is formed on the first main surface 20A. Thereby, the 4th laminated board 22 is obtained.
  • the same materials as those exemplified as the material constituting the heat-resistant layers 230 and 260 can be used.
  • the method for forming the third heat resistant layer 21 include a method in which a heat resistant layer coating solution is applied on the first main surface 20A and dried.
  • the coating method include a gravure printing method, a screen printing method, a reverse roll coating method using a gravure plate, and the like.
  • the surface property of the surface 21 ⁇ / b> A on the side where the second release layer 23 of the third heat-resistant layer 21 is formed (hereinafter referred to as the first main surface 21 ⁇ / b> A) is the first main surface of the second support 20.
  • the coating amount of the third heat-resistant layer 21 is preferably 0.001 ⁇ m or more and 3 ⁇ m or less, more preferably 0.001 ⁇ m or more and 0.5 ⁇ m or less in a dry state.
  • Step (b13) ⁇ In the step (b13), as shown in FIG. 9C, the second release layer 23 is formed on the third heat-resistant layer 21. Thereby, the fifth laminated plate 24 is obtained.
  • Examples of the material constituting the second release layer 23 include acrylic resin, polyester resin, cellulose derivative resin, polyvinyl acetal resin, polyvinyl butyral resin, vinyl chloride-vinyl acetate copolymer, chlorinated polyolefin, and these resins. Resins such as group copolymers can be used.
  • Examples of the method for forming the second release layer 23 include a method in which a release layer coating solution containing the resin is applied to the third heat-resistant layer 21 and dried. Examples of the coating method include a gravure printing method, a screen printing method, a reverse roll coating method using a gravure plate, and the like.
  • the surface property of the surface 23 ⁇ / b> A on the side where the third metal layer 240 of the second release layer 23 is formed (hereinafter referred to as the first main surface 23 ⁇ / b> A) is the first main surface of the third heat-resistant layer 21.
  • the surface properties of 21A That is, it is evaluated that the kurtosis (Rku) of the first main surface 23A of the second release layer 23 and the kurtosis (Rku) of the first main surface 21A of the third heat-resistant layer 21 are the same. Can do.
  • the coating amount of the second release layer 23 is in a dry state, preferably 0.01 g / m 2 or more, 5.0 g / m 2 or less, more preferably 0.05 g / m 2 or more, 3.0 g / m 2 or less It is.
  • step (b14) As shown in FIG. 9D, a third metal layer 240 is formed on the second release layer 23 by physical vapor deposition. Thereby, the sixth laminated plate 25 is obtained. Thus, the third metal layer 240 is formed directly on the second release layer 23. Therefore, the kurtosis (Rku) of the first main surface 240A of the third metal layer 240 and the kurtosis (Rku) of the first main surface 23A of the second release layer 23 can be evaluated to be the same.
  • the kurtosis (Rku) of the first main surface 240A of the third metal layer 240 and the kurtosis (Rku) of the first main surface 20A of the first support 20 are the same.
  • the physical vapor deposition method for example, metal vapor deposition, sputtering, ion plating, or the like can be used.
  • the surface property of the second main surface 240B of the third metal layer 240 follows the surface property of the first main surface 23A of the second release layer 23. Thereby, the kurtosis (Rku) of the second main surface 240B of the third metal layer 240 is within the above-described range.
  • Step (b15) In the step (b15), the first heat resistant layer 230 is formed on the third metal layer 240. Thereby, the 2nd metal layer 26 with a support shown in Drawing 9E is obtained.
  • Examples of the method for forming the first heat-resistant layer 230 include a method in which a heat-resistant layer coating liquid is applied on the second main surface 240B of the third metal layer 240 and dried. It is done.
  • Examples of the coating method include a gravure printing method, a screen printing method, a reverse roll coating method using a gravure plate, and the like.
  • the surface property of the first main surface 230A of the first heat resistant layer 230 follows the surface property of the second main surface 240B of the third metal layer 240. That is, it is evaluated that the kurtosis (Rku) of the first main surface 230A of the first heat-resistant layer 230 and the kurtosis (Rku) of the second main surface 240B of the third metal layer 240 are the same. Can do.
  • the first heat-resistant layer 230 is directly formed on the second main surface 240B of the third metal layer 240. Therefore, the kurtosis (Rku) of the second main surface 230B of the first heat resistant layer 230 and the kurtosis (Rku) of the second main surface 240B of the third metal layer 240 can be evaluated to be the same.
  • the first transparent substrate 110 is prepared in the same manner as in the first embodiment, and the first main surface 110A of the first transparent substrate 110 is prepared.
  • the first transparent adhesive layer 15 is formed. Thereby, the transparent base material 16 with a 1st transparent adhesive layer is produced.
  • the first main surface 26A of the second support-attached metal layer 26 and the first transparent base material 16 with the first transparent adhesive layer 16 are provided. After facing the main surface 16A, the first transparent adhesive layer 15 may be cured. Thereby, the first transparent adhesive layer 15 is cured and becomes the first transparent adhesive layer 120.
  • FIG. 10 is a cross-sectional view in the thickness direction of a perspective electrode laminate 300 according to the third embodiment (hereinafter sometimes referred to as a third perspective electrode laminate 300).
  • FIG. 11 is a cross-sectional view in the thickness direction of a perspective electrode material 301 (hereinafter sometimes referred to as a third perspective electrode material 301) according to the third embodiment.
  • 300 is a third transparent electrode laminate
  • 310 is a second transparent substrate
  • 340 is a fifth metal layer
  • 370 is a sixth metal layer.
  • 341 is a fifth circuit pattern layer
  • 371 is a sixth circuit pattern layer.
  • the third perspective electrode laminate 300 includes a second transparent substrate 310, a fifth metal layer 340, and a sixth metal layer 370.
  • the second transparent substrate 310 has a first main surface 310A and a second main surface 310B.
  • the fifth metal layer 340 is provided on the first main surface 310 ⁇ / b> A of the second transparent substrate 310. That is, the fifth metal layer 340 is directly formed on the first main surface 310 ⁇ / b> A of the second transparent substrate 310.
  • the sixth metal layer 370 is provided on the second main surface 310 ⁇ / b> B of the second transparent substrate 310. That is, the sixth metal layer 370 is directly formed on the second main surface 310B of the second transparent substrate 310.
  • first main surface 310A and the second main surface 310B may be simply referred to as main surfaces 310A and 310B.
  • the fifth metal layer 340 and the sixth metal layer 370 may be referred to as metal layers 340 and 370.
  • the fifth circuit pattern layer 341 and the sixth circuit pattern layer 371 may be referred to as circuit pattern layers 341 and 371.
  • the kurtosis (Rku) of the surface 340A (hereinafter sometimes referred to as the first main surface 340A) of the fifth metal layer 340 opposite to the side facing the second transparent substrate 310. Is 1.00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.00 or more and 3.00 or less.
  • the kurtosis (Rku) of the main surface 370A of the sixth metal layer 370 opposite to the side facing the second transparent base material 310 (hereinafter sometimes referred to as the first main surface 370A) is 1 It is 0.00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2.00 or more and 3.00 or less.
  • the circuit pattern layers 341 and 371 are not easily disconnected.
  • the second transparent substrate 310 is a sheet-like material having a first main surface 310A and a second main surface 310B.
  • a material constituting the second transparent base material 310 the same material as that exemplified as the first transparent base material 110 can be used.
  • the thickness of the second transparent substrate 310 may be appropriately selected according to the use application of the third transparent electrode laminate 300, preferably 24 ⁇ m or more and 300 ⁇ m or less, more preferably 35 ⁇ m or more and 260 ⁇ m or less. It is. If the thickness of the second transparent substrate 310 is within the above range, wrinkles are difficult to enter, handling is easy, and transparency is excellent.
  • the kurtosis (Rku) of the first main surface 310A of the second transparent substrate 310 is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less, and still more preferably. It is 2.00 or more and 3.00 or less. Furthermore, the kurtosis (Rku) of the second main surface 310B of the second transparent substrate 310 is 1.00 or more and 3.10 or less, preferably 2.00 or more and 3.05 or less, more preferably 2. It is 0.00 or more and 3.00 or less.
  • the kurtosis (Rku) of the main surfaces 310A, 310B of the second transparent substrate 310 is within the above range, the kurtosis (Rku) of the first main surface 340A of the fifth metal layer 340 and the sixth The kurtosis (Rku) of the first main surface 370A of the metal layer 370 is easily set within the above range.
  • the kurtosis (Rku) of the third outer surface portion 310C corresponding to the opening portion 101C of the second transparent base material 310 is within the above range, so that the transparency is excellent.
  • the third perspective electrode material 301 can be obtained.
  • Metal layers 340, 370 are formed on the main surfaces 310A and 310B of the second transparent substrate 310.
  • the fifth metal layer 340 and the sixth metal layer 370 may have the same configuration or different configurations.
  • the fifth metal layer 340 has a first main surface 340A and a second main surface 340B opposite to the first main surface 340A.
  • the sixth metal layer 370 has a first main surface 370A and a second main surface 370B opposite to the first main surface 370A.
  • the metal layers 340 and 370 are formed by physical vapor deposition.
  • the metal layers 340 and 370 are made of aluminum, zinc, copper, silver, gold, tin, nickel, chromium, cobalt, zinc, brass, alloys thereof, indium tin oxide (ITO: Indium Tin ⁇ ⁇ ⁇ ⁇ Oxide), stainless steel Etc. can be used.
  • ITO Indium Tin ⁇ ⁇ ⁇ ⁇ ⁇ Oxide
  • stainless steel Etc can be used.
  • the metal layers 340 and 370 contain at least one selected from the group consisting of copper, nickel, aluminum, and silver.
  • the thickness of the metal layers 340 and 370 is preferably 0.1 ⁇ m or more and 9.0 ⁇ m or less, more preferably 0.1 ⁇ m or more and 3.0 ⁇ m or less, and further preferably 0.2 ⁇ m or more and 1.0 ⁇ m or less. If the thicknesses of the metal layers 340 and 370 are within the above ranges, the finely patterned circuit pattern layers 341 and 371 can be formed. Thereby, in the third perspective electrode material 301, the opening 101C can be widened, and the light transmittance of the third perspective electrode material 301 can be improved.
  • the kurtosis (Rku) of the second main surface 340B is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less.
  • the kurtosis (Rku) of the second main surface 370B is preferably 1.00 or more and 3.10 or less, more preferably 2.00 or more and 3.05 or less.
  • the surface roughness (Rz) of the first main surface 340A is preferably 0.01 ⁇ m or more and 2.00 ⁇ m or less, more preferably 0.10 ⁇ m or more and 1.50 ⁇ m or less.
  • the surface roughness (Rz) of the first main surface 370A is preferably 0.01 ⁇ m or more and 2.00 ⁇ m or less, more preferably 0.10 ⁇ m or more and 1.50 ⁇ m or less. If the main surfaces 340A and 370A are within the above range, it is possible to provide the third transparent electrode laminate 300 that is less likely to be disconnected even after bending after circuit formation.
  • a reflection reducing layer may be formed on the first main surface 340A and the first main surface 370A.
  • the first main surface 340A of the fifth metal layer 340 and the first main surface 370A of the sixth metal layer 370 may be subjected to blackening treatment.
  • the circuit pattern layers 341 and 371 can be made the third transparent electrode material 301 that is difficult to be visually recognized.
  • the material constituting the reflection reduction layer the same materials as those exemplified as the material constituting the reflection reduction layers 130 and 160 can be used.
  • the third see-through electrode material 301 is a third see-through electrode laminate except that part of the metal layers 340 and 370 includes circuit pattern layers 341 and 371 having openings 101C.
  • the configuration is the same as that of the plate 300.
  • the circuit pattern layers 341 and 371 are see-through electric circuits in which, for example, the metal layers 340 and 370 are partially removed by etching or the like, and a gap that becomes the opening 101C is formed in the metal layers 340 and 370.
  • the pattern shape of the circuit pattern layers 341 and 371 may be appropriately adjusted according to the use application of the third transparent electrode material 301, and examples thereof include a mesh shape, a parallel fine line pattern shape, and a comb blade shape.
  • the sheet resistance of the third transparent electrode material 301 is preferably 0.01 ⁇ / sq or more and 50 ⁇ / sq or less, more preferably 0.05 ⁇ / sq or more and 10 ⁇ / sq or less, further preferably 0.1 ⁇ / sq. It is 5 ⁇ / sq or less.
  • the total light transmittance of the third transparent electrode material 301 is preferably 60% or more, more preferably 65% or more, and further preferably 70% or more. If the total light transmittance of the third transparent electrode material 301 is within the above range, the third transparent electrode material 301 can be suitably used for a touch panel sensor or the like.
  • the total light transmittance is a value measured by a haze meter.
  • the third transparent electrode material 301 is suitably used for, for example, a touch panel sensor, an electromagnetic wave absorbing sheet, a printed wiring board, a transparent antenna, and the like.
  • the manufacturing method of the perspective electrode laminate 300 according to the third embodiment includes the first step of preparing the second transparent substrate 310. And a second step of forming the first metal layers 340 and 370 on the first main surface 310A and the second main surface 310B by physical vapor deposition.
  • the second transparent surface has the first main surface 310A and the second main surface 310B, and the first main surface 310A has a kurtosis (Rku) of 1.00 or more and 3.10 or less.
  • a substrate 310 is prepared.
  • the surface is a film produced by a casting method or a biaxial stretching method using a smooth mold. A kurtosis (Rku) of 1.00 or more and 3.10 or less may be used.
  • metal layers 340 and 370 are formed on the first main surface 310A and the second main surface 310B by physical vapor deposition. As a result, the third transparent electrode laminate 300 is obtained.
  • the surface property of the first main surface 340A of the fifth metal layer 340 follows the surface property of the first main surface 310A of the second transparent substrate 310. Thereby, the kurtosis (Rku) of the first main surface 340A of the fifth metal layer 340 falls within the range of 1.00 or more and 3.10 or less.
  • the fifth metal layer 340 is directly formed on the first main surface 340A. Therefore, it can be evaluated that the kurtosis (Rku) of the second main surface 340B of the fifth metal layer 340 and the kurtosis (Rku) of the first main surface 310A of the second transparent substrate 310 are the same.
  • the surface texture of the first major surface 370 ⁇ / b> A of the sixth metal layer 370 follows the surface texture of the second major surface 310 ⁇ / b> B of the second transparent substrate 310.
  • the kurtosis (Rku) of the first main surface 370A of the sixth metal layer 370 is in the range of 1.00 or more and 3.10 or less.
  • the sixth metal layer 370 is directly formed on the second main surface 370B. Therefore, the kurtosis (Rku) of the second main surface 370B of the sixth metal layer 370 and the kurtosis (Rku) of the second main surface 310B of the second transparent base material 310 can be evaluated as the same.
  • the physical vapor deposition method for example, metal vapor deposition, sputtering, ion plating and the like can be used.
  • the metal layers 340 and 370 are formed on the first main surface 310A and the second main surface 310B by a physical vapor deposition method, but the present disclosure is not limited to this and the second step.
  • the first metal layer 340 may be formed only on the first main surface 310A by physical vapor deposition.
  • the thickness of the metal layer was calculated by measuring the weight of a copper foil cut into a 10 cm square and converting it from a copper density of 8.96 g / cm 3 .
  • Example 1 [Preparation of Metal Layer 14 with First Support]
  • the surface properties of the first main surface 10A of the first support 10 were a surface roughness (Rz) of 0.98 ⁇ m and a kurtosis (Rku) of 2.70.
  • the surface roughness (Rz) was 0.98 ⁇ m and the kurtosis (Rku) was 3.51.
  • This first support 10 was cleaned by cathodic treatment in 10% sulfuric acid under conditions of temperature: 30 ° C., current density: 5 A / dm 2 , treatment time: 20 seconds, and washed with pure water for 20 seconds.
  • electrolysis was performed under the following conditions in an electrolyte solution for forming a release layer prepared with the following composition.
  • the 1st peeling layer 11 was formed on 10 A of 1st main surfaces, and the 1st laminated board 12 shown to FIG. 4B was obtained.
  • the first laminate 12 was washed with running water for 20 seconds.
  • Nickel sulfate hexahydrate 30 g / l Na 2 MoO 4 dihydrate: 3 g / l ⁇ Sodium citrate: 40 g / l (Conditions for electrolysis when forming the first release layer 11) ⁇ Temperature: 30 °C ⁇ PH: 6 Current density: 2 A / dm 2 Treatment time: 20 seconds Next, the first laminate 12 was immersed in a copper pyrophosphate plating bath prepared with the following composition, the cathode treatment was performed under the following conditions, and the plate was washed with pure water for 20 seconds.
  • composition of electrolyte solution for forming ultrathin copper foil layer -Copper sulfate pentahydrate: 150 g / l ⁇ Sulfuric acid: 100 g / l ⁇ 3-Mercapto-1-propansulfonic Acid Sodium Salt (MPS): 5 ppm
  • Polyethylene glycol weight average molecular weight 2000
  • Chlorine ion 10ppm
  • Temperature 40 °C ⁇ PH: 7 Current density: 7 A / dm 2
  • Treatment time 60 seconds After the second laminate 13 was washed with running water for 20 seconds, a rust prevention treatment and a silane coupling agent treatment were performed under the following conditions.
  • Nickel citrate plating bath Nickel sulfate: 280 g / l Nickel chloride: 45g / l Citric acid: 21 g / l (Conditions for electrolysis when forming the first reflection reduction layer 130) ⁇ Temperature: 50 °C ⁇ PH: 5 Current density: 3.0 A / dm 2 Processing time: 5 seconds As for the surface properties of the first main surface 130A of the first reflection reducing layer 130, the surface roughness (Rz) was 0.94 ⁇ m and the kurtosis (RKu) was 2.75.
  • a 100 ⁇ m thick highly transparent PET film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd.) was prepared.
  • a transparent adhesive (urethane resin) prepared with the following composition is applied at a coating amount of 3 g / m 2 and is placed in an environment of 100 ° C. for 5 minutes. Hold and dry. This formed the 7-micrometer-thick 1st transparent adhesive layer 15, and produced the 1st transparent base material 16 with a transparent adhesive layer shown to FIG. 4E.
  • the surface properties of the first main surface 140A of the first metal layer 140 were a surface roughness (Rz) of 0.98 ⁇ m and a kurtosis (Rku) of 2.73.
  • FIG. 12A is a front view of a single-sided transparent electrode material obtained by forming a circuit on the first metal layer of the single-sided transparent electrode laminate 18 obtained in Example 1.
  • FIG. 12B is an enlarged front view of a D portion in FIG. 12A.
  • 30 is a single-sided transparent electrode material
  • 31 is a solid first circuit pattern portion
  • 32 is a solid second circuit pattern portion
  • 33 is a mesh-like third circuit pattern portion.
  • 30D are center lines in the X direction of the single-sided transparent electrode material.
  • the first metal layer 140 of the first single-sided transparent electrode laminate 18 was etched to obtain the single-sided transparent electrode material 30 shown in FIGS. 12A and 12B.
  • the single-sided transparent electrode material 30 includes a solid first circuit pattern portion 31 (hereinafter referred to as a first solid portion 31) extending along the Y direction and a solid first electrode pattern extending along the Y direction. It has the 2nd circuit pattern part 32 (henceforth the 2nd solid part 32), and the mesh-shaped 3rd circuit pattern part 33 (henceforth the 3rd pattern part 33).
  • the first solid part 31 is formed at one end of the single-sided transparent electrode material 30 in the X direction
  • the second solid part 32 is formed at the other end of the single-sided transparent electrode material 30 in the X direction.
  • the third pattern portion 33 is formed between the first solid portion 31 and the second solid portion 32 in the X direction.
  • the single-sided transparent electrode material 30 had a length in the X direction of 10 cm and a length in the Y direction of 2 cm.
  • the first solid portion 31 and the second solid portion 32 (hereinafter sometimes referred to as solid portions 31, 32) have a length in the X direction of 0.5 cm and a length in the Y direction.
  • the third pattern portion 33 as shown in FIG. 12B, the line width of the fine wire 33A was 7 ⁇ m, and the pitch between the adjacent fine wires 33A and 33A was 300 ⁇ m.
  • FIG. 13A is a front view showing a state in which the transparent electrode material 30 is placed on the metal rod 40.
  • 13B is a schematic cross-sectional view of the transparent electrode material 30 and the metal rod 40 cut along the line EE ′ in FIG. 13A.
  • FIG. 13C is a schematic cross-sectional view illustrating the transparent electrode material 30 in a loaded state for explaining the disconnection resistance test.
  • reference numeral 40 denotes a metal rod
  • 41 denotes a line contact portion between the transparent electrode material 30 and the metal rod 40.
  • one tester bar of the tester was applied to the first solid part 31 and the other tester bar was applied to the second solid part 32, and the conduction of the third pattern part 33 was confirmed.
  • the single-sided transparent electrode material is formed so that the first circuit pattern layer 141 faces upward, that is, the first main surface 110A of the first transparent substrate 110 faces upward.
  • 30 was placed on a metal rod 40 having a diameter of 1 mm.
  • the single-sided transparent electrode material so that the line contact portion 41 between the metal rod 40 and the transparent electrode material 30 and the center line 30D in the X direction of the single-sided transparent electrode material 30 shown in FIGS. 12A and 12B overlap. 30 was placed.
  • one tester bar of the tester is applied to the first solid part 31 and the other tester bar is applied to the second solid part 32 of the single-sided transparent electrode material 30 subjected to the bending process for 400 cycles, and the continuity is measured. As a result, the measured value was less than 1 ⁇ . From this result, it was found that the conduction of the third pattern portion 33 could be confirmed, and the third pattern portion 33 was not disconnected. That is, since the kurtosis (Rku) of the first main surface 140A of the first metal layer 140 is in the range of 1.00 or more and 3.10 or less, even if the circuit is formed and then bent, it is broken. It was confirmed that it was difficult to do.
  • the third pattern portion 33 is conductive. If the measured value of continuity exceeds 1 ⁇ , the third pattern portion 33 is disconnected. It was judged.
  • Example 2 [Production of First Transparent Electrode Laminate 100] On the second main surface 110B of the first transparent substrate 110 of the first single-sided transparent electrode laminate 18 obtained in Example 1, the second transparent adhesion is performed in the same manner as in Example 1. The layer 150, the second reflection reduction layer 160, and the second metal layer 170 were formed in this order, and the first transparent electrode laminate 100 shown in FIG. 1A was obtained. In the obtained first transparent electrode laminate 100, the transparent adhesive layers 120 and 150, the reflection reducing layers 130 and 160, and the metal layers 140 and 170 had the same configuration.
  • the surface properties of the first main surface 170A of the second metal layer 170 were a surface roughness (Rz) of 0.98 ⁇ m and a kurtosis (Rku) of 2.70.
  • Example 1 is the same as Example 1 except that the first transparent electrode material 101 is placed on the metal rod 40 so that the second main surface 110B of the first transparent substrate 110 faces upward.
  • the wire breakage resistance test was performed in the same manner as the wire breakage resistance test described in 1), the measured value was less than 1 ⁇ . From this result, it was found that the third pattern portion 33 formed on the second main surface 110B side of the first transparent substrate 110 was not disconnected.
  • the kurtosis (Rku) of the first main surface 140A of the first metal layer 140 and the kurtosis (Rku) of the first main surface 170A of the second metal layer 170 are 1.00 or more. Since it was within the range of 10 or less, it was confirmed that it was difficult to be disconnected even if it was bent after circuit formation on both sides.
  • Example 3 Preparation of second support-attached metal layer 26
  • a 50 ⁇ m thick highly transparent PET film (“Cosmo Shine A4300” manufactured by Toyobo Co., Ltd.) was prepared as the second support 20.
  • the surface roughness (Rz) was 0.89 ⁇ m and the kurtosis (Rku) was 2.66.
  • the coating amount for the heat-resistant layer prepared with the following composition is dried on the first main surface 20A of the second support 20 with a gravure coater to a coating amount of 1.0 g / m 2. Was applied and dried.
  • the third heat-resistant layer 21 was formed on the first main surface 20A, and the fourth laminated plate 22 shown in FIG. 9B was obtained.
  • the layer structure of the second metal layer with support 26 is as follows: first heat resistant layer 230 / third metal layer 240 / second release layer 23 / third heat resistant layer. 21 / second support 20.
  • the second support 20 was peeled from the seventh laminate 27 to obtain a second single-sided transparent electrode laminate 28.
  • the third heat-resistant layer 21 and the second release layer 23 were peeled off together with the second support 20.
  • the surface properties of the first main surface 240A of the third metal layer 240 were a surface roughness (Rz) of 0.89 ⁇ m and a kurtosis (Rku) of 2.66.
  • the third metal layer 240 of the second single-sided transparent electrode laminate 28 was etched to obtain a single-sided transparent electrode material in which the circuit pattern shown in FIGS. 12A and 12B was formed on one side.
  • Example 1 [Production of fluoroscopic electrode material] A transparent electrode laminate was obtained in the same manner as in Example 1 except that the first metal layer 140 was formed only on the second main surface 10B side of the first support 10, and then the transparent electrode material was used. Obtained.
  • the surface properties of the second main surface 10B of the first support 10 were a surface roughness (Rz) of 0.98 ⁇ m and a kurtosis (Rku) of 3.51.
  • the surface properties of the first main surface 130A of the first reflection reduction layer 130 of this transparent electrode laminate were a surface roughness (Rz) of 0.98 ⁇ m and a kurtosis (RKu) of 3.51.
  • the surface roughness (Rz) was 0.97 ⁇ m and the kurtosis (Rku) was 3.53.
  • the laminated sheet for perspective electrodes and the perspective electrode material of the present disclosure can be used for electronic devices such as a fine pattern touch panel sensor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • General Chemical & Material Sciences (AREA)
  • Quality & Reliability (AREA)
  • Laminated Bodies (AREA)
  • Electroplating Methods And Accessories (AREA)
  • ing And Chemical Polishing (AREA)
  • Non-Insulated Conductors (AREA)

Abstract

透視型電極用積層板は、透明基材と、この透明基材の両面の少なくとも1面上に設けられた金属層とを有する。金属層は、透明基材に対向する第1面と、第1面の反対側の第2面を有し、第2面の尖度(Rku)は、1.00以上、3.10以下である。

Description

透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法
 本開示は、透視型電極用積層板、透視型電極素材、透視型電極素材を有するデバイス及び透視型電極用積層板の製造方法に関する。
 近年のタッチパネルセンサーの大型化、高感度化のニーズの増大に伴い、微細化(以下、ファインパターン化)された回路パターン層で構成されたメッシュ構造を有する透視性電極を備えたタッチパネルセンサーの開発が進んでいる。
 このようなファインパターン化された回路パターン層を作製する材料に厚い金属層を用いると、基材表面に至るまでのエッチング時間が長くなり、回路パターン層の側壁の垂直性が崩れ、形成する回路パターン層の線幅が狭い場合には断線が発生するおそれがある。このため、ファインパターン用途の金属層の厚みは9μm以下が要望される。
 このようなファインパターン用途の金属層の材料として、厚みのある電解銅箔からなるキャリア(支持体)に剥離層を介して極薄銅箔を電着させた支持体付極薄銅箔が用いられている。
 また、ファインパターン用途に適した厚みの金属層を有する材料として、特許文献1~3には、物理的蒸着法により、透明基材の表面に直接、金属層を形成した金属蒸着フィルムが開示されている。
特開2008-129708号公報 特開2012-194644号公報 特開2013-124377号公報
 本開示の第一の側面に係る透視型電極用積層板は、透明基材と、この透明基材の両面の少なくとも1面上に設けられた金属層とを有し、金属層は、透明基材に対向する第1面と、第1面の反対側の第2面を有し、第2面の尖度(Rku)は、1.00以上、3.10以下である。
 ここで、「透明基材の両面の少なくとも1面上に設けられた金属層」とは、透明基材と金属層との間に透明接着層等の他の層が介在している場合も含む。
 本開示の第二の側面に係る透視型電極素材は、上記透視型電極用積層板の金属層の一部が、開口部を有する回路パターン層を備える。
 本開示の第三の側面に係るデバイスは、上記透視型電極素材と、回路パターン層に電気的に接続された制御回路と、を有する。
 本開示の第四の側面に係る透視型電極用積層板の製造方法は、第一の主面及び第二の主面を有し、第一の主面の尖度(Rku)が1.00以上、3.10以下である透明基材を準備する第一工程と、物理的蒸着法により第一の主面に金属層を形成する第二工程とを含む。
 本開示の第五の側面に係る透視型電極用積層板の製造方法は、第一の主面及び第二の主面を有し、第一の主面の尖度(Rku)が1.00以上、3.10以下である支持体を準備し、第一の主面に剥離層を形成し、電解めっき法により剥離層上に金属層を形成し、支持体付き金属層を作製する第一工程と、透明基材を準備し、透明基材の両面の少なくとも1面上に透明接着剤層を形成し、透明接着剤層付き透明基材を作製する第二工程と、支持体付き金属層の金属層が設けられた面と、透明接着剤層付き透明基材の透明接着剤層が設けられた面とを貼合し、支持体及び剥離層を金属層から剥離する第三工程と、を含む。
 本開示の第六の側面に係る透視型電極用積層板の製造方法は、第一の主面及び第二の主面を有し、第一の主面の尖度(Rku)が1.00以上、3.10以下である支持体を準備し、第一の主面に剥離層を形成し、剥離層上に物理的蒸着法により金属層を形成し、支持体付き金属層を作製する第一工程と、透明基材を準備し、透明基材の両面の少なくとも1面上に透明接着剤層を形成し、透明接着剤層付き透明基材を作製する第二工程と、支持体付き金属層の金属層が設けられた面と、透明接着剤層付き透明基材の透明接着剤層が設けられた面とを貼合し、支持体及び剥離層を金属箔から剥離する第三工程と、を含む。
 本開示によれば、回路形成した後、屈曲しても断線しにくい。
図1Aは、第一実施形態に係る透視型電極用積層板の厚み方向における断面図である。 図1Bは、第一実施形態に係る第二の積層板の第一の製造方法を説明するための概略説明図である。 図1Cは、図1B中のQ部の拡大断面図である。 図2は、第一実施形態に係る透視型電極素材の厚み方向における断面図である。 図3は、第一実施形態に係るデバイスの分解断面図である。 図4Aは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図4Bは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図4Cは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図4Dは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図4Eは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図4Fは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図4Gは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図4Hは、第一実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図5Aは、電着ドラムを用いた電解法による電解金属箔の製造方法を説明するための概略断面図である。 図5Bは、図5A中のE部における電解金属箔の拡大断面図である。 図6Aは、第一実施形態に係る第二の積層板の第二の製造方法を説明するための概略説明図である。 図6Bは、図6A中のR部の拡大断面図である。 図7は、第二実施形態に係る透視型電極用積層板の厚み方向における断面図である。 図8は、第二実施形態に係る透視型電極素材の厚み方向における断面図である。 図9Aは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Bは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Cは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Dは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Eは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Fは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Gは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Hは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図9Iは、第二実施形態に係る透視型電極用積層板の製造方法を説明するための概略説明図である。 図10は、第三実施形態に係る透視型電極用積層板の厚み方向における断面図である。 図11は、第三実施形態に係る透視型電極素材の厚み方向における断面図である。 図12Aは、実施例1で得られた片面透視型電極用積層板の第一の金属層を回路形成して得られた片面透視型電極素材の正面図である。 図12Bは、図12A中のD部の拡大正面図である。 図13Aは、透視型電極素材を金属棒上に載置した状態を示す正面図である。 図13Bは、図13A中のE-E´線で切断した透視型電極素材及び金属棒の概略断面図である。 図13Cは、断線耐性試験を説明するための、負荷が掛けられた状態の透視型電極素材を示す概略断面図である。 図14Aは、従来の支持体付極薄銅箔を用いて作製したタッチパネルセンサー用透視型電極素材の概略断面図である。 図14Bは、図14A中のI-I´線で切断した透視型電極素材の拡大断面図である。 図15Aは、電着ドラムを用いた電解法による電解金属箔の製造方法を説明するための概略断面図である。 図15Bは、図15A中のJ部における電解金属箔の拡大断面図である。 図16Aは、支持体付極薄銅箔の製造方法を説明するための概略説明図である。 図16Bは、図16A中のK部における支持体付極薄銅箔の拡大断面図である。 図17Aは、透視型電極用積層板の製造方法を説明するための概略説明図である。 図17Bは、透視型電極用積層板の製造方法を説明するための概略説明図である。 図17Cは、透視型電極用積層板の製造方法を説明するための概略説明図である。
 本開示の実施の形態の説明に先立ち、従来技術における問題点を簡単に説明する。図14Aは、従来の支持体付極薄銅箔を用いて作製したタッチパネルセンサー用透視型電極素材1の概略断面図である。図14Bは、図14A中のI-I´線で切断した透視型電極素材1の拡大断面図である。図14A及び図14B中、1はタッチパネルセンサー用透視型電極素材、2は透明基板、3は透明接着層、4は回路パターン層である。図15Aは、電着ドラム82を用いた電解法による電解金属箔81の製造方法を説明するための概略断面図である。図15Bは、図15A中のJ部における電解金属箔81の拡大断面図である。図15A及び図15B中、81は電解金属箔、82は電着ドラム、83は電解液槽、81Aは電着ドラム82に接する側の第一の主面、81Bは電着ドラム82に接しない側の第二の主面である。図16Aは、支持体付極薄銅箔80の製造方法を説明するための概略説明図である。図16Bは、図16A中のK部における支持体付極薄銅箔80の拡大断面図である。図16A及び図16B中、84は剥離層、85は電解液槽、86は極薄銅箔(以下、電解金属層という場合もある)、87は搬送ロールである。図17A~図17Cは、透視型電極用積層板88の製造方法を説明するための概略説明図である。図17A~図17C中、88は透視型電極用積層板である。
 従来の透視型電極素材1を作製する場合、支持体付極薄銅箔80を一般的に使用する。支持体付極薄銅箔80の作製手順の一例を図15A~図17Cに示す。
 まず支持体となる電解金属箔81を準備する。具体的に、図15Aに示すように電着ドラム82を陰極とし、電着ドラム82に対向する断面円弧状の架台(図示せず)を陽極として、電解液槽83中に電着ドラム82を浸漬する。次いで、電着ドラム82を回転させながら陽極と陰極との間に電流を流すことにより、電着ドラム82の表面上に所定厚さに電解金属箔81を電着させる。次いで、電着ドラム82から電解金属箔81を剥離することにより、連続的に電解金属箔81を作製する。このとき、電着ドラム82の表面の研磨痕が電解金属箔81の第一の主面81Aに残る。この研磨痕は主に電着ドラム82の表面から電解金属箔81を剥離するために設けられる。
 次にこの第一の主面81A上に剥離層84を形成し、図16Aに示すように電解金属箔81を陰極として、電解液槽85中に浸漬する。次いで、陽極と陰極との間に電流を流すことにより、電解金属箔81の第一の主面81A側の表面(剥離層84の表面)上に所定厚さに電着させて極薄銅箔86を形成する。これにより、支持体付極薄銅箔80が得られる。
 このとき、第一の主面81A上に形成した剥離層84の電解金属箔81に面する側と反対側の面84Aの尖り度は、剥離層84が非常に薄い層であるため、第一の主面81Aの尖り度とほぼ同一になる。同様に、剥離層84上に形成した極薄銅箔86の電解金属箔81に面する側と反対側の面86A(以下、第一の面86A)の尖り度は、極薄銅箔86が非常に薄い箔であるため、極薄銅箔86の電解金属箔81に面する側の面86Bの尖り度と同一と評価できる。そのため、第一の面86Aの尖り度は、第一の主面81Aの尖り度とほぼ同一になり、電着ドラム82の研磨痕もそのまま残存する。
 次に、図17Aに示すように、作製した支持体付極薄銅箔80の極薄銅箔86の面80Aと、透明基板2の主面2Aとを対向させ、図17Bに示すように、透明接着層3を介して貼り合わせて圧着-アニーリング硬化させる。次いで、支持体である電解金属箔81を剥離除去する。これにより、図17Cに示す透視型電極用積層板88が得られる。
 その後、極薄銅箔86の一部をエッチングなどで除去して、回路パターン層4を形成し、透視型電極素材1を作製する。
 しかしながら、このようにして得られる透視型電極素材1を屈曲すると、図14Bに示すように、回路パターン層4の透明基板2側と反対面の電着ドラム82の研磨痕に起因する凹部4Aに局所的に応力がかかりやすくなる。これにより、この凹部4Aが起点となって、回路パターン層4にクラックが発生しやすくなる。その結果、回路パターン層4が裂け、断線するおそれがあった。また、特許文献1~3に記載の金属蒸着フィルムを用いたタッチパネルセンサー用透視型電極素材でも同様の問題があった。
 そこで、本開示は、回路形成した後、屈曲しても断線しにくい透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法を提供する。
 以下、本開示の実施形態を説明する。
 下記で説明する透視型電極用積層板は両面に電極を形成することを前提にしているが、片側だけの形成で使用してもよい。
 [第一実施形態に係る透視型電極用積層板100]
 図1Aは、第一実施形態に係る透視型電極用積層板100(以下、第一の透視型電極用積層板100という)の厚み方向における断面図である。図2は、第一実施形態に係る透視型電極素材101(以下、第一の透視型電極素材101という)の厚み方向における断面図である。図2において、図1Aに示す第一の透視型電極用積層板100の構成部材と同一の構成部材には同一符号を付している。図1A中、100は第一の透視型電極用積層板、110は第一の透明基材、120は第一の透明接着層、130は第一の反射低減層、140は第一の金属層、150は第二の透明接着層、160は第二の反射低減層、170は第二の金属層である。図2中、101は第一の透視型電極素材、101Cは開口部、120Cは第一の透明接着層120の開口部101Cに対応する第一の外表部、150Cは第二の透明接着層150の開口部101Cに対応する第二の外表部、141は第一の回路パターン層、171は第二の回路パターン層である。
 第一の透視型電極用積層板100は、図1Aに示すように、第一の透明基材110と、第一の透明接着層120と、第一の反射低減層130と、第一の金属層140と、第二の透明接着層150と、第二の反射低減層160と、第二の金属層170とを備える。第一の透明基材110は、第一の主面110A及び第二の主面110Bを有する。第一の透明接着層120、第一の反射低減層130及び第一の金属層140は、この順で第一の透明基材110の第一の主面110A上に積層されている。第二の透明接着層150、第二の反射低減層160及び第二の金属層170は、この順で第一の透明基材110の第二の主面110B上に積層されている。以下、第一の主面110A及び第二の主面110Bを単に主面110A,110Bという場合がある。第一の透明接着層120及び第二の透明接着層150を単に透明接着層120,150という場合がある。第一の外表部120C及び第二の外表部150Cを単に外表部120C,150Cという場合がある。第一の反射低減層130及び第二の反射低減層160を単に反射低減層130,160という場合がある。第一の金属層140及び第二の金属層170を金属層140,170という場合がある。第一の回路パターン層141及び第二の回路パターン層171を回路パターン層141,171という場合がある。
 第一実施形態において、第一の透明基材110に面する側と反対側の第一の金属層140の面140A(以下、第一の主面140Aという場合がある)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。さらに、第一の透明基材110に面する側と反対側の第二の金属層170の面170A(以下、第一の主面170Aという場合がある)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。第一の主面140Aの尖度(Rku)及び第一の主面170Aの尖度(Rku)が上記範囲内であれば、第一の主面140A及び第一の主面170Aには突出した凸部(山)又は凹部(谷)が少なく、粗さ曲線(JIS B 0601:2001)が比較的丸まっている。そのため、金属層140,170を回路成形して、図2に示す回路パターン層141,171を形成した後に、第一の透視型電極素材101を繰り返し屈曲しても、特定の部位に局所的に応力がかかりにくくなる。その結果、第一の透視型電極素材101を屈曲しても、回路パターン層141,171が断線しにくくなる。ここで、尖度(Rku)は、実施例に記載の尖度(Rku)の測定と同一の測定方法により測定された値である。
 尖度(Rku)とは、JIS B 0601:2001で規定されるパラメータであって、二乗平均平方根高さ(Zq)の四乗によって無次元化した基準長さにおけるZ(x)の四乗平均を表したものであり、次式で表される。正規分布なら尖度(Rku)は3になる。
Figure JPOXMLDOC01-appb-M000001
 すなわち、尖度(Rku)は、表面の鋭さの尺度でZ(x)(高さ分布)の広がりを特徴づけるものである。尖度(Rku)が3.0超のときは、高さ分布が尖っていることを示す。尖度(Rku)が3未満のときは高さ分布がなだらかであることを示す。第一実施形態において、第一の主面140Aの尖度(Rku)及び第一の主面170Aの尖度(Rku)の数値範囲の上限を3.10に設定しているのは、実験したところ、3.10までは断線が発生しなかったためである。
 第一実施形態において、第一の金属層140の第一の主面140A及び第二の金属層170の第一の主面170Aの表面性状を尖度(Rku)で規定したのは、従来から表面性状の評価指標として用いられてきた表面粗さ(Rz)で規定する場合よりも、第一の透視型電極素材101を屈曲した際に回路パターン層141,171の断線が発生するか否かをより正確に把握できるからである。表面粗さ(Rz)では、後述する実施例及び比較例の結果から明らかなように、測定値が同じであっても、第一の透視型電極素材101を屈曲すると、回路パターン層141,171の断線が発生する場合と、発生しない場合とがあり、断線の発生を的確に把握することができない。ここで、表面粗さ(Rz)とは、JIS B0601(1994)に規定の十点平均粗さを意味する。
 (第一の透明基材110)
 第一の透明基材110は、主面110A,110Bを有するシート状物である。第一の透明基材110を構成する材質としては、第一の透視型電極用積層板100の使用用途に応じて適宜選択すればよく、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリカーボネート(PC)、ポリメチルメタクリレート(PMMA)などの透明樹脂を用いることができる。第一の透明基材110は、テトラブロモビスフェノールAなどの添加型や反応型の難燃剤を含有してもよい。第一の透明基材110の厚さは、第一の透視型電極用積層板100の使用用途に応じて適宜選択すればよく、好ましくは24μm以上、300μm以下、より好ましくは35μm以上、260μm以下である。第一の透明基材110の厚さが上記範囲内であれば、シワが入りにくく、取扱いが容易で、透明性に優れる。
 〔透明接着層120,150〕
 透明接着層120,150は、第一の透明基材110の主面110A,110B上に形成されている。第一の透明接着層120と、第二の透明接着層150とは、同一の構成であってもよいし、互いに異なる構成であってもよい。
 透明接着層120,150は、透明接着剤を硬化させたものである。透明接着剤を構成する材質としては、例えば、アクリル樹脂、エポキシ樹脂、ウレタン樹脂又はこれらの混合樹脂を含むことが好ましい。特にアクリル樹脂、ウレタン樹脂又はこれら混合樹脂は、透明性に優れ、光学的にも有用である。
 透明接着層120,150の硬さは、好ましくは1.0N/mm以上、200N/mm以下、より好ましくは4.0N/mm以上、175N/mm以下である。透明接着層120,150の硬さが上記範囲内であれば、断線の原因の1つとなる粘着材の伸びを抑えることができる。ここで、透明接着層120,150の硬さは、ナノインデンテーション装置により測定された値である。
 透明接着層120,150の厚さは、好ましくは0.5μm以上、10.00μm以下、より好ましくは1.0μm以上、8.00μm以下である。
 透明接着層120,150の25℃における弾性率は、好ましくは0.01GPa以上、1000.0GPa以下、より好ましくは0.1GPa以上、100.0GPa以下、さらに好ましくは0.6GPa以上、60.0GPa以下、特に好ましくは10.0GPa以下である。透明接着層120,150の25℃における弾性率が上記範囲内であれば、第一の透視型電極素材101を屈曲した際、透明接着層120,150は、回路パターン層141,171に対する応力緩和層として機能しやすくなる。
 弾性率の測定には、曲げ弾性率(JIS K7171)や引張弾性率(JIS K7162)の測定に使われる市販の測定装置を用いることができる。透明接着層120,150の厚みが10μm以下であり、透明接着層120,150の弾性率の直接的な測定が難しい場合には、ビッカース硬度計、またはマイクロビッカース硬度計を用いることができる。また、被測定物となる透明接着層120,150に、顕微鏡下でそれぞれマイクロビッカース硬度計の四角錐圧子(あるいは測定ヘッド)を、所定圧力(例えば、株式会社ミツトヨ製の微小硬さ試験機「HM-211」の場合、試験力発生範囲が0.4903mN以上、19610mN以下)で押し当て、得られた測定値を、比較用に用意した厚み1mm以上の弾性率評価用ゴムシート(例えば、市販のシリコンゴムシート等)での測定値と置き換え、この弾性率評価用ゴムシートの弾性率を、そのまま透明接着層120,150の弾性率とすることもできる。
 透明接着層120,150のガラス転移温度(Tg)は、第一の透明基材110のガラス転移温度(Tg)以下であることが好ましい。これにより、第一の透視型電極素材101を屈曲した際、透明接着層120,150は一種の応力緩和層として機能しやすくなる。また、透明接着層120,150のガラス転移温度(Tg)は、好ましくは150℃以下、より好ましくは100℃以下である。透明接着層120,150のガラス転移温度(Tg)が上記範囲内であれば、室温付近における透明接着層120,150の弾性率を小さくすることができ、透明接着層120,150は応力緩和層として機能しやすくなる。
 〔反射低減層130,160〕
 反射低減層130,160は、第一の透明基材110に面する側の第一の金属層140の面140B(以下、第二の主面140B)上、及び第一の透明基材110に面する側の第二の金属層170の面170B(以下、第二の面170B)上に形成されている。すなわち、第一の透明基材110に面する側の第一の金属層140の第二の主面140B、及び第一の透明基材110に面する側の第二の金属層170の第二の面170Bには、黒色化処理が施されている。これにより、第一の透視型電極素材101において、外表部120C,150Cを通過し、反射低減層130,160に入射する外光による散乱光を大幅に低減することができる。第一の反射低減層130と、第二の反射低減層160とは、同一の構成であってもよいし、互いに異なる構成であってもよい。
 反射低減層130,160は、第一の反射低減層130の第一の透明基材110側の面130A(以下、第一の主面130A)及び第二の反射低減層160の第一の透明基材110側の面160A(以下、第一の主面160A)の表面性状が,第二の主面140B及び第二の主面170Bの表面性状に追従するように形成されている。また第一の主面140Aは、金属層140の厚みが後述する範囲内である場合、金属層140は非常に薄い箔であるため、第二の主面140Bを追随した表面となる。すなわち、第一の反射低減層130の第一の主面130A及び第二の主面130B(以下、主面130A,130B)の尖度(Rku)と、第一の金属層140の第一の主面140A及び第二の主面140B(以下、主面140A,140B)の尖度(Rku)とは同一と評価することができる。さらに、第二の反射低減層160の第一の主面160Aおよび第二の主面160B(以下、主面160A,160B)の尖度(Rku)と、第二の金属層170の第一の主面170Aおよび第二の主面170B(以下、主面170A,170B)の尖度(Rku)とは、同一と評価することができる。反射低減層130,160の厚さは、好ましくは0.001μm以上、0.50μm以下、より好ましくは0.01μm以上、0.30μm以下である。
 反射低減層130,160の、可視光域(380nm以上、780nm以下)における光の反射率は、好ましくは20%以下、より好ましくは15%以下、さらに好ましくは10%以下、特に好ましくは5%以下である。可視光領域での光の反射率は、「JIS K 7375のプラスチック-全光線透過率及び全光線反射率の求め方」に準拠する方法により測定された値である。
 反射低減層130,160を構成する材質としては、例えば、銅、ニッケル、コバルト、タングステン、アルミニウムなどの金属などを用いることができ、さらに硫黄などを含んでいてもよい。反射低減層130,160を構成する材質が金属であれば、回路パターン層141,171の配線抵抗を下げることができる。なかでも、金属層140,170の材質として銅を用いる場合、反射低減層130,160は、硫黄、ニッケル、コバルト、タングステン及びアルミニウムからなる群より選ばれる少なくとも1種以上を、単位面積当たり0.1%以上、10.0%以下の含有率で含有することが好ましい。これにより、銅からなる金属層140,170の表面の特徴である波長550nm以上、780nm以下での高い反射率を抑えることができ、380nm以上、780nm以下の全範囲にわたってフラットな反射率にすることができる。そのため、第一の透視型電極素材101において、回路パターン層141,171の表面のちらつきを押さえ、コントラスト比を大きくすることができる。この場合、硫黄の含有率は、10%以内であることが好ましい。硫黄の含有率が上記範囲内であれば、銅からなる回路パターン層141,171自体の抵抗値が高くなりにくくすることができる。また、反射低減層130,160を構成する材質がニッケル、コバルト、タングステン、アルミニウムなどの導電性のある金属である場合、第一の金属層140の第一の主面140A及び第二の金属層170の第一の主面170Aの全面がこれらの金属で覆われていてもよい。なお、単位面積当たりの硫黄の含有率は、市販のエネルギー分散型X線分光器(EDS)または市販の波長分散型X線分光器(WDS)に付属している解析装置(パソコンによるマッピング結果)により解析された値(%)である。
 第一実施形態では、反射低減層130,160を備えるが、本開示はこれに限定されず、反射低減層130,160を備えなくてもよい。
 〔金属層140,170〕
 金属層140,170は、反射低減層130,160上に形成されている。第一の金属層140と、第二の金属層170とは、同一の構成であってもよいし、互いに異なる構成であってもよい。
 金属層140,170を構成する材質としては、例えば、銅、ステンレス、アルミニウム、ニッケル、チタン、タングステン、錫、鉛、鉄、銀、クロム又はこれらの合金等を用いることができる。なかでも、金属層140,170は、銅、ニッケル、アルミニウム及び銀からなる群より選ばれる少なくとも1種を含むことが好ましい。これら金属は比抵抗が低く、展性および屈曲性に優れ、0.5μm以上、10μm以下の線幅の細線でも充分な導通を得ることが出来る。金属層140,170の厚みは、好ましくは0.1μm以上、9.0μm以下、より好ましくは0.3μm以上、5.0μm以下である。金属層140,170の厚みが上記範囲内であれば、ファインパターン化された回路パターン層141,171を形成することができる。これにより、第一の透視型電極素材101において、開口部101Cをより広げることができ、第一の透視型電極素材101の光透過性をより向上させることができる。金属層140,170の厚みは、実施例に記載の厚みの測定に準拠して測定した値である。
 第二の主面140Bの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。第二の主面170Bの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。第二の主面140Bの尖度(Rku)が上記範囲内であれば、第一の透視型電極素材101の第一の外表部120Cにおいて白濁がほとんどなく、透視性に優れる第一の透視型電極素材101とすることができる。図2に示す、第一の外表部120Cは、金属層140及び第一の反射低減層130がエッチングなどにより除去されて形成される。これにより、第一の外表部120Cには、第一の金属層140の第二の主面140Bの表面性状が転写されているためである。第二の主面170Bの尖度(Rku)が上記範囲内である場合も同様に、第一の透視型電極素材101の第二の外表部150Cにおいて白濁がほとんどなく、透視性に優れる第一の透視型電極素材101とすることができる。
 主面140A,140Bの表面粗さ(Rz)は、好ましくは0.01μm以上、2.0μm以下、より好ましくは0.1μm以上、1.5μm以下である。主面170A,170Bの表面粗さ(Rz)は、好ましくは0.01μm以上、2.0μm以下、より好ましくは0.1μm以上、1.5μm以下である。主面140A,170Aが上記範囲内であれば、回路形成した後、屈曲してもより断線しにくい第一の透視型電極用積層板100とすることができる。また、主面140B,170Bが上記範囲内であれば、透視性により優れる第一の透視型電極用積層板100とすることができる。
 金属層140,170の主面140A,140B、主面170A,170B上には、防錆処理層、シランカップリング処理層などが形成されていてもよい。防錆処理層が形成されていると、金属層140,170の変色を防止することができる。また、シランカップリング処理層が形成されていると、透明接着層120,150と、金属層140,170との接着強度を向上させることができる。
 防錆処理層を構成する材質としては、例えば、亜鉛めっき、亜鉛合金めっき、スズめっき、スズ合金めっき、ニッケルめっき、クロム酸塩などを用いることができる。防錆処理層の厚みは、好ましくは0.001μm以上、0.50μm以下である。
 シランカップリング処理層を構成するシランカップリング剤としては、例えば、3-(2-アミノエチル)アミノプロピルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトリメトキシシラン、3-フェニルアミノプロピルトリメトキシシランなどを用いることができる。シランカップリング処理層の厚みは、好ましくは0.001μm以上、0.50μm以下である。
 また、第一の主面140A上、及び第一の主面170A上には、反射低減層が形成されていてもよい。すなわち、第一の金属層140の第一の主面140A、及び第二の金属層170の第一の主面170Aには、黒色化処理が施されていてもよい。これにより、金属層140,170を構成する材質に反射率の高い金属を用いても、回路パターン層141,171が視認されにくい第一の透視型電極素材101とすることができる。この反射低減層を構成する材料としては、反射低減層130,160を構成する材質として例示したものと同様のものを用いることができる。
 [第一実施形態に係る透視型電極素材101]
 第一の透視型電極素材101は、図2に示すように、金属層140,170の一部が開口部101Cを有する回路パターン層141,171を備える他は、第一の透視型電極用積層板100と同様の構成である。図2において、図1Aに示す第一の透視型電極用積層板100の構成部材と同一の構成部材には同一符号を付して説明を省略する。
 回路パターン層141,171は、例えば、金属層140,170が部分的にエッチングなどで除去され、金属層140,170に開口部101Cとなる隙間が形成された、透視可能な電気回路である。回路パターン層141,171のパターン形状は、第一の透視型電極素材101の使用用途に応じて適宜調整すればよく、例えば、メッシュ形状、平行細線パターン形状、櫛刃形状などが挙げられる。
 開口部101Cは、金属層140,170及び反射低減層130,160がエッチングなどにより除去された部位である。
 回路パターン層141,171の線幅Wは、第一の透視型電極素材101の使用用途に応じて適宜調整すればよい。第一の透視型電極素材101をタッチパネルセンサーに用いる場合、線幅Wは、好ましくは0.5μm以上、10μm以下、より好ましくは1.0μm以上、8.0μm以下である。線幅Wが上記範囲内であれば、開口部101Cを広く大きくすることができ、第一の透視型電極素材101の透過性をより向上させることができる。
 第一の外表部120Cの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。第二の外表部150Cの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。第一の外表部120Cの尖度(Rku)及び第二の外表部150Cの尖度(Rku)が上記範囲内であれば、外表部120C,150Cにおける透明接着層120,150の濁度(ヘイズ)を20%以下とすることができ、透視性により優れる第一の透視型電極素材101とすることができる。濁度(ヘイズ)はヘイズメーターにより測定される値である。
 第一の透視型電極素材101のシート抵抗は、好ましくは0.01Ω/sq以上、50Ω/sq以下、より好ましくは0.05Ω/sq以上、10Ω/sq以下、さらに好ましくは0.1Ω/sq以上、5Ω/sq以下である。
 第一の透視型電極素材101の全光線透過率は、線幅3μm、線間ピッチ500μmのメッシュ(格子)状回路において、好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上である。第一の透視型電極素材101の全光線透過率が上記範囲内であれば、第一の透視型電極素材101をタッチパネルセンサーなどに好適に用いることができる。
 第一の透視型電極素材101は、例えば、タッチパネルセンサー、電磁波吸収シート、車載用アンテナなどに好適に用いられる。
 [第一実施形態に係るデバイス102]
 図3は、第一実施形態に係るデバイス102(以下、第一のデバイス102という場合がある)の分解断面図である。図3において、図2に示す第一の透視型電極素材101の構成部材と同一の構成部材には同一符号を付して説明を省略する。なお、図3において、透明接着層120,150、反射低減層130,160は省略している。
 第一のデバイス102は、投影型静電容量方式の1種である相互容量方式のタッチパネルセンサーである。第一のデバイス102は、図3に示すように、第一の透視型電極素材101と、制御回路180と、カバー190と、を有する。制御回路180は、回路パターン層141,171に電気的に接続されている。カバー190は、第一の透視型電極素材101の第一の回路パターン層141側の面に取り付けられている。
 第一のデバイス102は、図3に示すように、第一の透視型電極素材101の第二の回路パターン層171側の面が画像表示装置5側となるように、画像表示装置5の表示面5Aの前側に配置されて使用される。画像表示装置5としては、例えば、液晶表示パネル、プラズマ画像表示パネル、電界発光(Electro Luminescence)パネル、電子ペーパー、ブラウン管などの公知の画像表示装置を用いることができる。
 第一のデバイス102において、第一の回路パターン層141は受信電極(以下、受信電極141という場合がある)として、第二の回路パターン層171(以下、送信電極171という場合がある)は送信電極として機能する。すなわち、第一のデバイス102は、カバー190表面に指示物を近づけると、受信電極141及び送信電極171との交点に形成されるコンデンサの静電容量が変化し、この静電容量の変化を制御回路180が検知することで、指示物を近づけた位置を特定することができる。指示物としては、例えば、ユーザーの指先、スタイラス、指示棒などの導電体が挙げられる。
 第一のデバイス102の検出方式は相互容量方式であるが、本開示はこれに限定されず、自己容量方式の検出方式であってもよいし、自己容量方式と相互容量方式とを組み合わせた検出方式であってもよい。
 [第一実施形態に係る透視型電極用積層板100の製造方法]
 図4A~図4Hは、第一実施形態に係る透視型電極用積層板100の製造方法(以下、第一の透視型電極用積層板100の製造方法という)を説明するための概略説明図である。図4A~図4Hにおいて、図1Aに示す第一の透視型電極用積層板100の構成部材と同一の構成部材には同一符号を付して説明を省略する。
 第一の透視型電極用積層板100の製造方法は、第一の支持体付き金属層14を作製する第一工程(a1)と、第一の透明接着剤層付き透明基材16を作製する第二工程(a2)と、第一の支持体10及び第一の剥離層11を第一の金属層140から剥離する第三工程(a3)と、を含む。第一実施形態では、例えば、第一工程(a1)、第二工程(a2)及び第三工程(a3)をこの順で行うことにより、図4Hに示す第一の片面透視型電極用積層板18が得られる。次いで、この第一の片面透視型電極用積層板18の第二の主面110Bに対して、第一工程(a1)、第二工程(a2)及び第三工程(a3)と同様の工程を行うことにより、第一の透視型電極用積層板100が得られる。
 〔第一工程(a1)〕
 第一工程(a1)では、第一の支持体10を準備する工程(a11)と、第一の剥離層11を形成する工程(a12)と、第一の金属層140を形成する工程(a13)と、第一の反射低減層130を形成する工程(a14)とを含む。これにより、図4Dに示す第一の支持体付き金属層14が得られる。
 なお、第一実施形態では工程(a14)を含むが、本開示はこれに限定されず、工程(a14)を含まなくてもよい。
 {工程(a11)}
 工程(a11)では、図4Aに示すように、第一の主面10A及び第二の主面10Bを有する第一の支持体10を準備する。第一の支持体10は、厚みが薄く、機械的強度が低い第一の金属層140を第一の透明基材110に接着するまでバックアップする補強材(キャリア)として機能する。
 第一の支持体10の第一の主面10Aの尖度(Rku)は1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.05以上、3.00以下である。第一の支持体10の第一の主面10Aの尖度(Rku)が上記範囲内であれば、後述するように、第一の金属層140の第一の主面140A,140Bの尖度(Rku)を1.00以上、3.10以下とすることができる。
 第一の支持体10を構成する材質としては、例えば、銅、アルミニウム、ステンレス、鉄、チタン、これらの合金などを用いることができる。なかでも、コストの観点から、銅を用いることが好ましい。銅を用いた第一の支持体10としては、例えば、電解銅箔、電解銅合金箔、圧延銅箔、圧延銅合金箔などを用いることができる。第一の支持体10の厚みは、キャリアとして機能する厚さであれば特に限定されない。
 図5Aは、電着ドラム50を用いた電解法による電解金属箔51の製造方法を説明するための概略断面図である。図5Bは、図5A中のE部における電解金属箔51の拡大断面図である。
 第一の支持体10を準備する方法としては、例えば、電着ドラム50を用いる電解法により、電着ドラム50に接する側の第一の主面51A、及び電着ドラム50に接しない側の第二の主面51Bを有する電解金属箔51を準備し、電解金属箔51の第一の主面51Aに平滑化処理を施し、第一の支持体10を作製する方法(a110);電着ドラム50を用いる電解法により、添加剤等が添加された所定の電解液槽を用いて、第二の主面51Bが平滑化されている電解金属箔51を準備し、第一の支持体10を作製する方法(a120)などが挙げられる。上記方法(a110)では、電解金属箔51の第一の主面51Aは支持体10の第一の主面10Aに対応し、電解金属層51の第二の主面51Bは支持体10の第二の主面10Bに対応する。上記方法(a120)では、電解金属箔51の第一の主面51Aは支持体10の第二の主面10Bに対応し、電解金属層51の第二の主面51Bは支持体10の第一の主面10Aに対応する。
 <第一の支持体10を作製する方法(a110)>
 電解金属箔51を準備する方法としては、例えば、図5Aに示すように、電着ドラム50を陰極とし、電着ドラム50に対向する断面円弧状の架台(図示せず)を陽極として、電解液槽52中に電着ドラム50を浸漬し、電着ドラム50を回転させながら陽極と陰極との間に電流を流すことにより、電着ドラム50の表面上に所定厚さに電解金属箔51を電着させ、電着ドラム50から電解金属箔51を剥離することにより連続的に作製する方法などが挙げられる。
 電解金属箔51の第一の主面51Aの尖度(Rku)は、通常3.10超である。これは、電解金属層51は電着ドラム50の表面に直接電着するため、電解金属層51の第一の主面51Aは電着ドラム50の表面性状が転写されること;電着した電解金属箔51を電着ドラム50の表面から剥離するために、電着ドラム50の表面は研磨され研磨痕が残っていることなどによる。このように表面が研磨された電着ドラム50の尖度(Rku)は、通常3.10超である。また、電解金属箔51の第一の主面51Aの尖度(Rku)は、通常、電解金属箔51の第二の主面51Bの尖度(Rku)よりも小さい。
 電解金属箔51の材質としては、例えば、銅などを用いることができる。電着ドラム50を構成する材質としては、例えば、チタンなどを用いることができる。電解液槽52中の電解液としては、電解金属箔51の材質が銅の場合、硫酸銅溶液などを用いることができる。電気分解の条件は、電解金属箔51の第一の主面51Aおよび第二の主面51Bに平滑化処理を施すことにより第一の支持体10が得られれば特に限定されない。
 電解金属箔51に平滑化処理を施す方法としては、例えば、電解めっき法による方法(a111)、電気化学的研磨による方法(a112)、化学的研磨による方法(a113)、機械的研磨による方法などが挙げられる。
 (電解めっき法による方法(a111))
 電解めっき法による方法(a111)では、電解めっき法により、上記方法(a110)にて作製した電解金属箔51の第一の主面51Aに電気めっき皮膜を電着させる。
 電解めっき法による方法としては、例えば、電解液中に、電解金属箔51を陰極(カソード)として配置し、導電性板を陽極(アノード)として配置し、それぞれを電源に電気的に接続して、電流を流すことで、第一の主面51Aの表面に金属を付着させる方法などが挙げられる。
 導電性板としては、TDK株式会社製の「K-500」などを用いることができる。電解液としては、電解金属箔51と同等の純度をもつ金属を電着させることができる溶液であれば、電解金属箔を構成する材料に応じて適宜選択すればよい。電解金属箔51を構成する材料が銅である場合は例えば硫酸銅溶液などを用いることができる。
 第一の支持体10の第一の主面10A(上記方法(a110)にて作製した電解金属箔51の第一の主面51Aに対応)の尖度(Rku)を上記範囲内にするには、処理液の種類などにより処理条件を適宜調整して電解金属箔51の第一の主面51Aの表面状態を調整すればよい。例えば、一般的に光沢剤として用いられる市販の添加剤が使用できるが、硫黄を含む光沢剤が好適に用いられ、特にメルカプト基を有する光沢剤がもっとも好適である。メルカプト基を有する光沢剤としては、例えば、3-メルカプト-1-プロパンスルホン酸などを用いることができる。また、複数の水酸基を有する有機化合物ないし線状重合体を光沢剤に添加することにより、光沢剤の作用を向上させることができ、さらに平滑で光沢に優れ、異常な突起部がない表面を形成することができる。複数の水酸基を有する化合物ないし線状重合体としては、例えば平均分子量(重量平均)が500以上、5,000,000以下のポリエチレングリコールなどを用いることができる。
 (電気化学的研磨による方法(a112))
 電気化学的研磨による方法(a112)では、電気化学的研磨により、上記方法(a110)にて作製した電解金属箔51の第一の主面51Aを研磨する。
 電気化学的研磨をする方法は、例えば、電解研磨液中に、電解金属箔51を陰極(カソード)として配置し、導電性板を陽極(アノード)として電解金属箔51の第一の主面51Aに対面するように配置し、それぞれ電源に電気的に接続して、電流を流すことで、第一の主面51Aの表面を溶解する方法などが挙げられる。この方法では、アノードである電解金属箔51の表面に凹凸があるため、その凸部に溶解電流が流れ易く、優先的に凸部を溶解することができる。
 導電性板を構成する材質としては、例えば、白金、チタン、ステンレス鋼材(SUS)などを用いることができる。電解研磨液としては、電解金属箔51を構成する材質に応じて適宜調整すればよく、例えば、硫酸、塩酸、リン酸、硝酸などを含有する酸性液;シアン、水酸化ナトリウム、水酸化カリウム、ピロリン酸などを含有するアルカリ性液などを用いることができる。
 第一の支持体10の第一の主面10A(上記方法(a110)にて作製した電解金属箔51の第一の主面51Aに対応)の尖度(Rku)を上記範囲内にするには、第一の主面51Aの表面状態、電解研磨液の種類などにより処理条件を適宜調整すればよく、例えば、20%以下の適切な濃度の硫酸中、電流密度:10A/dm以下の適切な電流値に設定して電解メッキの陽極と陰極を逆にして電流を流しながら、酸エッチングすればよい。
 (化学的研磨による方法(a113))
 化学的研磨による方法(a113)では、化学的研磨により、上記方法(a110)にて作製した電解金属箔51の第一の主面51Aを研磨する。
 化学的研磨をする方法は、電解金属箔51の第一の主面51Aを処理液に浸し、化学反応によって、第一の主面51Aの表面を溶解する。処理液としては、電解金属箔51を構成する材質に応じて適宜調整すればよく、例えば、硫酸、塩酸、リン酸、硝酸などを含有する酸性液;シアン、水酸化ナトリウム、水酸化カリウム、ピロリン酸などを含有するアルカリ性液などを用いることができる。
 第一の支持体10の第一の主面10A(上記方法(a110)にて作製した電解金属箔51の第一の主面51Aに対応)の尖度(Rku)を上記範囲内にするには、第一の主面10Aの表面状態、処理液の種類などにより処理条件を適宜調整すればよく、例えば、20%以下の適切な濃度の硫酸中、攪拌しながら酸エッチングすればよい。
 <第一の支持体10を作製する方法(a120)>
 電解めっき法による方法(a120)は、電着ドラム50への電着時に電解液槽52添加剤等を添加する他は、上記方法(a110)の電解金属箔51を準備する方法と同様である。電着ドラム50への電着時に電解液槽52に添加剤等を添加することで、電解金属箔51の第二の主面51B(第一の支持体10の第一の主面10Aに対応)の尖度(Rku)を3.10以下にすることができる。添加剤としては、例えば、エチレングリコール等を用いることができる。
 {工程(a12)}
 工程(a12)では、図4Bに示すように、第一の主面10Aに第一の剥離層11を形成する。これにより、第一の積層板12が得られる。
 第一の剥離層11を構成する材質としては、例えば、ニッケル、モリブデン、クロム、鉄、チタン、タングステン、リン、これらの合金などを用いることができる。
 第一の剥離層11の第一の金属層140が形成される側の主面11Aの表面性状は、第一の支持体10の第一の主面10Aの表面性状に追従する。すなわち、第一の剥離層11の第一の金属層140が形成される側の主面11Aの尖度(Rku)と、第一の支持体10の第一の主面10Aの尖度(Rku)とは同一と評価することができる。第一の剥離層11を構成する金属の付着量は、好ましく0.001μm以上、0.50μm以下である。
 剥離層を形成する方法としては、電解めっき法などが挙げられる。
 {工程(a13)}
 図1Bは第一実施形態に係る第二の積層板の第一の製造方法を説明するための概略説明図であり、図1Cは図1B中のQ部の拡大断面図である。図6Aは第一実施形態に係る第二の積層板の第二の製造方法を説明するための概略説明図であり、図6Bは図6A中のR部の拡大断面図である。図1B及び図6A中、61は搬送ロールである。
 工程(a13)では、図4Cに示すように、電解めっき法により第一の剥離層11上に第一の金属層140を形成する。これにより、第二の積層板13が得られる。このように第一の金属層140は第一の剥離層11上に直接形成される。そのため、第一の金属層140の第一の主面140Aの尖度(Rku)と、第一の剥離層11の第一の金属層140が形成される側の主面11Aの尖度(Rku)とは同一と評価できる。言い換えると、第一の金属層140の第一の主面140Aの尖度(Rku)と、第一の支持体10の第一の主面10Aの尖度(Rku)とは同一と評価することができる。
 第一の金属層140を形成する方法としては、例えば、方法(a110)にて電解金属箔51を作製した場合(第一の主面51Aが平滑面)、図1Bに示すように、電解金属箔51(第一の支持体10)を陰極として、電解液槽60中に第一の積層板12を浸漬し、陽極と陰極との間に電流を流すことにより、電解金属箔51の第一の主面51A(第一の支持体10の第一の主面10A)側の表面(剥離層11の表面)上に第一の金属層140を電着する方法;方法(a120)にて電解金属箔51を作製した場合(第二の主面51Bが平滑面)、図6Aに示すように、電解金属箔51(第一の支持体10)を陰極として、電解液槽60中に第一の積層板12を浸漬し、陽極と陰極との間に電流を流すことにより、電解金属箔51の第二の主面51B(第一の支持体10の第一の主面10A)側の表面(剥離層11の表面)上に第一の金属層140を電着する方法;などが挙げられる。
 電解液槽60としては、第一の金属層140を構成する材質に応じて適宜調整すればよく、第一の金属層140を構成する材質に銅を用いる場合、硫酸銅めっき浴、シアン化銅めっき浴、ほうフッ化銅めっき浴、ピロリン酸銅めっき浴、スルファミン酸銅めっき浴などを用いることができる。
 また、第一の金属層140を構成する材質に銅を用いる場合、電解めっき法により、第一の剥離層11上にストライク銅めっき層を形成し、さらにこのストライク銅めっき層上に第一の金属層140を形成することが好ましい。これにより、第一の剥離層11上により均一なめっきを施すことができ、第一の金属層140のピンホールの数を著しく減少させることができる。ストライク銅めっき層を形成するめっき浴としては、ピロリン酸銅めっき浴、シアン化銅めっきを用いることができる。ストライク銅めっき層上の第一の金属層140を形成するめっき浴としては、例えば、硫酸銅めっき浴、ほうフッ化銅めっき浴、ピロリン酸銅めっき浴、スルファミン酸銅めっき浴、シアン化銅めっき浴を用いることができる。ストライク銅めっき層の厚さは、好ましくは0.001μm以上、1μm以下である。
 第一の金属層140の第二の主面140Bの表面性状は、第一の剥離層11の第一の主面11Aの表面性状に追従する。すなわち、第一の金属層140の第二の主面140Bの表面性状は、第一の支持体10の第一の面10Aの表面性状に追従する。これにより、第一の金属層140の第一の主面140Aの尖度(Rku)は、1.00以上、3.10以下の範囲内となる。
 {工程(a14)}
 工程(a14)では、図4Dに示すように、第一の金属層140の第二の主面140B上に第一の反射低減層130を形成する。すなわち、第一の剥離層11上に形成した第一の金属層140上に黒色化処理を施す。これにより、第一の支持体付き金属層14が得られる。
 第一の反射低減層130を形成する方法としては、例えば、電解めっき法などが挙げられる。この電解めっき法に用いるめっき浴としては、第一の反射低減層130を構成する材質に応じて適宜調整すればよく、例えば、クエン酸ニッケル浴などを用いることができる。
 〔第二工程(a2)〕
 第二工程(a2)では、図4Eに示すように、第一の透明基材110を準備し、第一の透明基材110の第一の主面110Aに第一の透明接着剤層15を形成する。これにより、第一の透明接着剤層付き透明基材16を作製する。なお、第一の透明接着剤層15を硬化させると、第一の透明接着層120となる。
 第一の透明接着剤層15を形成する方法としては、上述した透明接着剤を第一の主面110Aに塗布する方法などが挙げられる。
 〔第三工程(a3)〕
 第三工程(a3)では、第一の支持体付き金属層14と、第一の透明接着剤層付き透明基材16とを貼合する工程(a31)と、第一の支持体10及び第一の剥離層11を第一の金属層140から剥離する工程(a32)とを含む。これにより、第一の片面透視型電極用積層板18が得られる。
 {工程(a31)}
 工程(a31)では、第一の支持体付き金属層14の第一の金属層140側の面14A(以下、第一の主面14A)と、第一の透明接着剤層付き透明基材16の第一の透明接着剤層15側の面16A(以下、第一の主面16A)とを貼合する。これにより、図4Gに示す第三の積層板17が得られる。
 貼合する方法としては、例えば、図4Fに示すように、第一の支持体付き金属層14の第一の主面14Aと、第一の透明接着剤層付き透明基材16の第一の主面16Aとを対向させた後、第一の透明接着剤層15を硬化させればよい。これにより、第一の透明接着剤層15は硬化して、第一の透明接着層120となる。
 第一の透明接着剤層15を硬化させる方法は、第一の透明接着剤層15を構成する透明接着剤に応じて適宜調整すればよく、例えば、プレス機などを用いて所定の圧力を掛けながら加熱する方法、常圧又は低圧の環境下で加熱する方法などが挙げられる。
 {工程(a32)}
 工程(a32)では、図4Gに示す、第一の支持体付き金属層14と、第一の透明接着剤層付き透明基材16とを貼合させた第三の積層板17において、第一の支持体10及び第一の剥離層11を第一の金属層140から剥離する。この際、第一の支持体10を剥離すると、第一の剥離層11は第一の支持体10とともに第一の金属層140から剥離する。これにより、図4Hに示す、第一の片面透視型電極用積層板18が得られる。
 [第二実施形態に係る透視型電極用積層板200]
 図7は、第二実施形態に係る透視型電極用積層板200(以下、第二の透視型電極用積層板200という)の厚み方向における断面図である。図8は、第二実施形態に係る透視型電極素材201(以下、第二の透視型電極素材201)の厚み方向における断面図である。図7において、図1Aに示した第一の透視型電極用積層板100の構成部材と同一の構成部材には同一符号を付して説明を省略する。図8において、図7に示す第二の透視型電極素材201の構成部材と同一の構成部材には同一符号を付して説明を省略する。
 図7中、200は第二の透視型電極用積層板、230は第一の耐熱性層、240は第三の金属層、260は第二の耐熱性層、270は第四の金属層である。図8中、230Cは第一の耐熱性層230の開口部101Cに対応する第三の外表部、260Cは第二の耐熱性層260の開口部101Cに対応する第二の外表部、241は第三の回路パターン層、271は第四の回路パターン層である。
 第二の透視型電極用積層板200は、図7に示すように、第一の透明基材110と、第一の透明接着層120と、第一の耐熱性層230と、第三の金属層240と、第二の透明接着層150と、第二の耐熱性層260と、第四の金属層270とを備える。第一の透明接着層120、第一の耐熱性層230及び第三の金属層240は、この順で第一の透明基材110の第一の主面110A上に積層されている。第二の透明接着層150、第二の耐熱性層260及び第四の金属層270は、この順で第一の透明基材110の第一の主面110B上に積層されている。以下、第一の耐熱性層230及び第二の耐熱性層260を単に耐熱性層230,260という場合がある。第三の金属層240及び第四の金属層270を金属層240,270という場合がある。第三の回路パターン層241及び第二の回路パターン層271を回路パターン層241,271という場合がある。
 第二実施形態において、第一の透明基材110に面する側と反対側の第三の金属層240の面240A(以下、第一の主面240Aという場合がある)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。さらに、第一の透明基材110に面する側と反対側の第四の金属層270の面270A(以下、第一の主面270Aという場合がある)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。第一の主面240Aの尖度(Rku)及び第一の主面270Aの尖度(Rku)が上記範囲内であれば、第二の透視型電極素材201を屈曲しても、回路パターン層241,271が断線しにくい。
 〔耐熱性層230,260〕
 耐熱性層230,260は、第三の金属層240の第一の主面240Aとは反対側の第二の主面240B上、及び第四の金属層270の第一の主面270Aとは反対側の第二の主面270B上に形成されている。これにより、第二の透視型電極用積層板200の製造過程において、第二の支持体20(後述)の傷の発生を抑制することができる。第一の耐熱性層230と、第二の耐熱性層260とは、同一の構成であってもよいし、互いに異なる構成であってもよい。
 耐熱性層230,260は、第一の耐熱性層230の第一の透明基材110側の面(以下、第一の主面230A)及び第二の耐熱性層260の第一の透明基材110側の面(以下、第一の主面260A)の表面性状が,第二の主面240B及び第二の主面270Bの表面性状に追従するように形成されている。すなわち、第一の耐熱性層230の第一の主面230Aの尖度(Rku)と、第三の金属層240の第二の主面240Bの尖度(Rku)とは同一と評価することができる。さらに、第二の耐熱性層260の第一の主面260Aの尖度(Rku)と、第四の金属層270の第二の主面270Bの尖度(Rku)とは、同一と評価することができる。耐熱性層230,260の厚さは、好ましくは0.001μm以上、3μm以下、より好ましくは0.001μm以上、0.5μm以下である。
 第一の耐熱性層230の第一の透明基材110側と反対側の面230B(以下、第二の主面230B)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。第二の耐熱性層260の第一の透明基材110側と反対側の面260B(以下、第二の主面260B)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。第二の主面230Bの尖度(Rku)が上記範囲内であれば、第二の透視型電極素材201の外表部230Cにおいて白濁がほとんどなく、透視性に優れる第二の透視型電極素材201とすることができる。第二の主面270Bの尖度(Rku)が上記範囲内である場合も同様に、第二の透視型電極素材201の第三の外表部260Cにおいて白濁がほとんどなく、透視性に優れる第二の透視型電極素材201とすることができる。
 耐熱性層230,260を構成する材質としては、例えば、二液反応型樹脂、熱硬化型樹脂、電離放射線硬化型樹脂などの硬化型樹脂を用いることができる。
 二液反応型樹脂は、例えば、イソシアネート化合物と、このイソシアネート化合物と反応する水酸基を有するイソシアネート反応性樹脂とを含むことが好ましい。これにより、イソシアネート化合物と、イソシアネート反応性樹脂とが、反応して硬化物となる。イソシアネート化合物としては、例えば、トリレンジイソシアネート、4,4′-ジフェニルメタンジイソシアネート、キシリレンジイソシアネート、1,5-ナフチレンジイソシアネートなどを用いることができる。イソシアネート反応性樹脂としては、例えば、イソシアネート反応性セルロース樹脂、イソシアネート反応性アセタール樹脂、イソシアネート反応性ビニル樹脂、イソシアネート反応性アクリル樹脂、イソシアネート反応性フェノキシ樹脂、イソシアネート反応性スチロール樹脂などを用いることができる。
 第二実施形態では、耐熱性層230,260を備えるが、本開示はこれに限定されず、耐熱性層230,260を備えなくてもよい。
 〔金属層240,270〕
 金属層240,270は、耐熱性層230,260上に形成されている。第三の金属層240と、第四の金属層270とは、同一の構成であってもよいし、互いに異なる構成であってもよい。
 第三の金属層240は、第一の主面240Aと、第一の主面240Aとは反対側の第二の主面240Bを有する。第四の金属層270は、第一の主面270Aと、第一の主面270Aとは反対側の第二の主面270Bを有する。
 金属層240,270は物理的蒸着法により形成されるものである。金属層240,270を構成する材質としては、例えば、銅、ステンレス、アルミニウム、ニッケル、銀、金、クロム、コバルト、スズ、亜鉛、黄銅これらの合金等を用いることができる。なかでも、金属層240,270は、銅、ニッケル、アルミニウム及び銀からなる群より選ばれる少なくとも1種を含むことが好ましい。
 金属層240,270の厚みは、好ましくは0.1μm以上、9.0μm以下、より好ましくは0.1μm以上、3.0μm以下、さらに好ましくは0.2μm以上、1.0μm以下である。金属層240,270の厚みが上記範囲内であれば、ファインパターン化された回路パターン層241,271とすることができる。これにより、第二の透視型電極素材201において、開口部101Cをより広げることができ、第二の透視型電極素材201の光透過性をより向上させることができる。
 第二の主面240Bの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。第二の主面270Bの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。
 第一の主面240A及び第二の主面240Bの表面粗さ(Rz)は、好ましくは0.01μm以上、2.0μm以下、より好ましくは0.1μm以上、1.5μm以下である。第一の主面270A及び第二の主面270Bの表面粗さ(Rz)は、好ましくは0.01μm以上、2.0μm以下、より好ましくは0.1μm以上、1.5μm以下である。主面240A,270Aが上記範囲内であれば、回路形成した後、屈曲してもより断線しにくい第二の透視型電極用積層板200とすることができる。第二の主面240B及び第二の主面270Bが上記範囲内であれば、透視性により優れる第二の透視型電極用積層板200とすることができる。
 また、第一の主面240A上、及び第一の主面270A上には、反射低減層が形成されていてもよい。すなわち、第三の金属層240の第一の主面240A、及び第四の金属層270の第一の主面270Aには、黒色化処理が施されていてもよい。これにより、金属層240,270を構成する材質に反射率の高い金属を用いても、回路パターン層241,271が視認されにくい第二の透視型電極素材201とすることができる。この反射低減層を構成する材料としては、反射低減層130,160を構成する材質として例示したものと同様のものを用いることができる。
 [第二実施形態に係る透視型電極素材201]
 第二の透視型電極素材201は、図8に示すように、金属層240,270の一部が開口部101Cを有する回路パターン層241,271を備える他は、第二の透視型電極用積層板200と同様の構成である。図8において、図7に示す第二の透視型電極用積層板200の構成部材と同一の構成部材には同一符号を付して説明を省略する。
 回路パターン層241,271は、例えば、金属層240,270が部分的にエッチングなどで除去され、金属層240,270に開口部101Cとなる隙間が形成された、透視可能な電気回路である。回路パターン層241,271のパターン形状は、第二の透視型電極素材201の使用用途に応じて適宜調整すればよく、例えば、メッシュ形状、平行細線パターン形状、櫛刃形状などが挙げられる。
 第二の透視型電極素材201のシート抵抗は、好ましくは0.01Ω/sq以上、50Ω/sq以下、より好ましくは0.05Ω/sq以上、10Ω/sq以下、さらに好ましくは0.1Ω/sq以上、5Ω/sq以下である。
 第二の透視型電極素材201の全光線透過率は、好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上である。第二の透視型電極素材201の全光線透過率が上記範囲内であれば、第二の透視型電極素材201をタッチパネルセンサーなどに好適に用いることができる。全光線透過率はヘイズメーターにより測定される値である。
 第二の透視型電極素材201は、例えば、タッチパネルセンサー、電磁波吸収シート、車載用アンテナなどに好適に用いられる。
 [第二実施形態に係る第二の透視型電極用積層板200の製造方法]
 図9A~図9Iは、第二実施形態に係る透視型電極用積層板200の製造方法(以下、第二の透視型電極用積層板200の製造方法という)を説明するための概略説明図である。図9A~図9Iにおいて、図4A~図4Hに示す各部材と同一の部材には同一符号を付して説明を省略する。
 第二の透視型電極用積層板200の製造方法は、支持体付き金属層26を作製する第一工程(b1)と、透明接着剤層付き透明基材16を作製する第二工程(b2)と、第二の支持体20、第三の耐熱性層21及び第二の剥離層23を第三の金属層240から剥離する第三工程(b3)と、を含む。第二実施形態では、例えば、第一工程(b1)、第二工程(b2)及び第三工程(b3)をこの順で行うことにより、図9Iに示す第二の片面透視型電極用積層板28が得られる。次いで、この第二の片面透視型電極用積層板28の第二の主面110Bに対して、第一工程(b1)、第二工程(b2)及び第三工程(b3)と同様の工程を行うことにより、第二の透視型電極用積層板200が得られる。
 〔第一工程(b1)〕
 第一工程(b1)は、第二の支持体20を準備する工程(b11)と、第三の耐熱性層21を形成する工程(b12)と、第二の剥離層23を形成する工程(b13)と、第三の金属層240を形成する工程(b14)と、第一の耐熱性層230を形成する工程(b15)とを含む。これにより、図9Eに示す第二の支持体付き金属層26が得られる。なお、第二実施形態では工程(b15)を含むが、本開示はこれに限定されず、工程(b15)を含まなくてもよい。
 {工程(b11)}
 工程(b11)では、図9Aに示すように、第一の主面20A及び第二の主面20Bを有する第二の支持体20を準備する。第二の支持体20は、厚みが薄い第三の金属層240を第一の透明基材110に接着するまでバックアップする補強材(キャリア)として機能する。
 第二の支持体20の第一の主面20Aの尖度(Rku)は1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。第二の支持体20の第一の主面20Aの尖度(Rku)が上記範囲内であれば、後述するように、第三の金属層240の第一の主面240Aの尖度(Rku)を1.00以上、3.10以下とすることができる。
 第二の支持体20を構成する材質としては、例えば、ポリエチレンテレフタレート、1,4-ポリシクロヘキシレンジメチレンテレフタレート、ポリエチレンナフタレート、ポリフェニレンサルファイド、ポリスチレン、ポリプロピレン、ポリサルホン、アラミド、ポリカーボネート、ポリビニルアルコール、セロハン、酢酸セルロースなどのセルロース誘導体、ポリエチレン、ポリ塩化ビニル、ナイロン、ポリイミド、アイオノマーなどの樹脂などを用いることができる。第二の支持体20の厚みは、キャリアとして機能する厚さであれば特に限定されない。
 第二の支持体20を準備する方法としては、第二の支持体20を構成する材質からなるシート状物の表面に硬化処理を施し、第二の支持体20を作製する方法などが挙げられる。
 シート状物を硬化処理する方法としては、例えば、アクリル系ハードコート材をグラビア塗工で薄膜塗工し、紫外線により硬化させる方法などが挙げられる。
 {工程(b12)}
 工程(b12)では、図9Bに示すように、第一の主面20A上に第三の耐熱性層21を形成する。これにより、第四の積層板22が得られる。
 第三の耐熱性層21を構成する材質としては、耐熱性層230,260を構成する材質として例示したものと同一のものを用いることができる。第三の耐熱性層21を形成する方法としては、例えば、第一の主面20A上に、耐熱性層用塗工液を塗布して、乾燥する方法などが挙げられる。塗布方法としては、例えば、グラビア印刷法、スクリーン印刷法、グラビア版を用いたリバースロールコーティング法などが挙げられる。
 第三の耐熱性層21の第二の剥離層23が形成される側の面21A(以下、第一の主面21Aという)の表面性状は、第二の支持体20の第一の主面20Aの表面性状に追従する。すなわち、第三の耐熱性層21の第一の主面21Aの尖度(Rku)と、第二の支持体20の第一の主面20Aの尖度(Rku)とは同一と評価することができる。第三の耐熱層21の塗布量は、乾燥状態で、好ましく0.001μm以上、3μm以下、より好ましくは0.001μm以上、0.5μm以下である。
 {工程(b13)}
 工程(b13)では、図9Cに示すように、第三の耐熱性層21上に第二の剥離層23を形成する。これにより、第五の積層板24が得られる。
 第二の剥離層23を構成する材質としては、例えば、アクリル樹脂、ポリエステル樹脂、セルロース誘導体樹脂、ポリビニルアセタール樹脂、ポリビニルブチラール樹脂、塩化ビニル-酢酸ビニル共重合体、塩素化ポリオレフィン、及びこれらの樹脂群の共重合体などの樹脂を用いることができる。第二の剥離層23を形成する方法としては、例えば、第三の耐熱性層21上に、上記樹脂を含有する剥離層用塗工液を塗布して、乾燥する方法などが挙げられる。塗布方法としては、例えば、グラビア印刷法、スクリーン印刷法、グラビア版を用いたリバースロールコーティング法などが挙げられる。
 第二の剥離層23の第三の金属層240が形成される側の面23A(以下、第一の主面23Aという)の表面性状は、第三の耐熱性層21の第一の主面21Aの表面性状に追従する。すなわち、第二の剥離層23の第一の主面23Aの尖度(Rku)と、第三の耐熱性層21の第一の主面21Aの尖度(Rku)とは同一と評価することができる。第二の剥離層23の塗布量は、乾燥状態で、好ましく0.01g/m以上、5.0g/m以下、より好ましくは0.05g/m以上、3.0g/m以下である。
 {工程(b14)}
 工程(b14)では、図9Dに示すように、第二の剥離層23上に、物理的蒸着法により第三の金属層240を形成する。これにより、第六の積層板25が得られる。このように第三の金属層240は第二の剥離層23上に直接形成される。そのため、第三の金属層240の第一の主面240Aの尖度(Rku)と、第二の剥離層23の第一の主面23Aの尖度(Rku)とは同一と評価できる。言い換えると、第三の金属層240の第一の主面240Aの尖度(Rku)と、第一の支持体20の第一の主面20Aの尖度(Rku)とは同一と評価することができる。物理的蒸着法としては、例えば、金属蒸着、スパッタリング、イオンプレーティングなどを用いることができる。
 第三の金属層240の第二の主面240Bの表面性状は、第二の剥離層23の第一の主面23Aの表面性状に追従する。これにより、第三の金属層240の第二の主面240Bの尖度(Rku)は上述した範囲内となる。
 {工程(b15)}
 工程(b15)では、第三の金属層240上に第一の耐熱性層230を形成する。これにより、図9Eに示す第二の支持体付き金属層26が得られる。
 第一の耐熱性層230を形成する方法としては、例えば、第三の金属層240の第二の主面240B上に、耐熱性層用塗工液を塗布して、乾燥する方法などが挙げられる。塗布方法としては、例えば、グラビア印刷法、スクリーン印刷法、グラビア版を用いたリバースロールコーティング法などが挙げられる。
 第一の耐熱性層230の第一の主面230Aの表面性状は、第三の金属層240の第二の主面240Bの表面性状に追従する。すなわち、第一の耐熱性層230の第一の主面230Aの尖度(Rku)と、第三の金属層240の第二の主面240Bの尖度(Rku)とは同一と評価することができる。
 第一の耐熱性層230は第三の金属層240の第二の主面240B上に直接形成される。そのため、第一の耐熱性層230の第二の主面230Bの尖度(Rku)と、第三の金属層240の第二の主面240Bの尖度(Rku)とは同一と評価できる。
 〔第二工程(b2)〕
 第二工程(b2)では、図9Fに示すように、第一の実施形態と同様にして、第一の透明基材110を準備し、第一の透明基材110の第一の主面110Aに第一の透明接着剤層15を形成する。これにより、第一の透明接着剤層付き透明基材16を作製する。
 〔第三工程(b3)〕
 第三工程(b3)では、第二の支持体付き金属層26と、第一の透明接着剤層付き透明基材16とを貼合する工程(b31)と、第二の支持体20、第三の耐熱性層21及び第二の剥離層23を第三の金属層240から剥離する工程(b32)とを含む。これにより、第二の片面透視型電極用積層板28が得られる。
 {工程(b31)}
 工程(b31)では、第二の支持体付き金属層26の第三の金属層240側の面26A(以下、第一の主面26Aという)と、第一の透明接着剤層付き透明基材16の第一の主面16Aとを貼合する。これにより、第七の積層板27が得られる。
 貼合する方法としては、例えば、図9Gに示すように、第二の支持体付き金属層26の第一の主面26Aと、第一の透明接着剤層付き透明基材16の第一の主面16Aとを対向させた後、第一の透明接着剤層15を硬化させればよい。これにより、第一の透明接着剤層15は硬化して、第一の透明接着層120となる。
 {工程(b32)}
 工程(b32)では、図9Hに示すように、第二の支持体付き金属層26と、第一の透明接着剤層付き透明基材16とを貼合させた第七の積層板27において、第二の支持体20、第三の耐熱性層21及び第二の剥離層23を第三の金属層240から剥離する。この際、第二の支持体20を剥離すると、第三の耐熱性層21及び第二の剥離層23は第二の支持体20とともに第三の金属層240から剥離する。これにより、図9Iに示す、第二の片面透視型電極用積層板28が得られる。
 [第三実施形態に係る透視型電極用積層板300]
 図10は、第三実施形態に係る透視型電極用積層板300(以下、第三の透視型電極用積層板300という場合がある)の厚み方向における断面図である。図11は、第三実施形態に係る透視型電極素材301(以下、第三の透視型電極素材301という場合がある)の厚み方向における断面図である。図11において、図10に示す第三の透視型電極用積層板300の構成部材と同一の構成部材には同一符号を付している。図10中、300は第三の透視型電極用積層板、310は第二の透明基材、340は第五の金属層、370は第六の金属層である。図11中、341は第五の回路パターン層、371は第六の回路パターン層である。
 第三の透視型電極用積層板300は、図10に示すように、第二の透明基材310と、第五の金属層340と、第六の金属層370とを有する。第二の透明基材310は、第一の主面310A及び第二の主面310Bを有する。第五の金属層340は、第二の透明基材310の第一の主面310Aに設けられている。すなわち、第五の金属層340は、第二の透明基材310の第一の主面310A上に直接形成されている。また、第六の金属層370は、第二の透明基材310の第二の主面310Bに設けられている。すなわち、第六の金属層370は、第二の透明基材310の第二の主面310B上に直接形成されている。以下、第一の主面310A及び第二の主面310Bを単に主面310A,310Bという場合がある。第五の金属層340及び第六の金属層370を金属層340,370という場合がある。第五の回路パターン層341及び第六の回路パターン層371を回路パターン層341,371という場合がある。
 第三実施形態において、第二の透明基材310に面する側と反対側の第五の金属層340の面340A(以下、第一の主面340Aという場合がある)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。さらに、第二の透明基材310に面する側と反対側の第六の金属層370の主面370A(以下、第一の主面370Aという場合がある)の尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。第五の金属層340の第一の主面340Aの尖度(Rku)及び第六の金属層370の第一の主面370Aの尖度(Rku)が上記範囲内であれば、後述するように、第三の透視型電極素材301を屈曲しても、回路パターン層341,371が断線しにくくなる。
 〔第二の透明基材310〕
 第二の透明基材310は、第一の主面310A及び第二の主面310Bを有するシート状物である。第二の透明基材310を構成する材質としては、第一の透明基材110として例示した材質と同一の材質を用いることができる。第二の透明基材310の厚さは、第三の透視型電極用積層板300の使用用途に応じて適宜選択すればよく、好ましくは24μm以上、300μm以下、より好ましくは35μm以上、260μm以下である。第二の透明基材310の厚さが上記範囲内であれば、シワが入りにくく、取扱いが容易で、透明性に優れる。
 第二の透明基材310の第一の主面310Aの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下、さらに好ましくは2.00以上、3.00以下である。さらに、第二の透明基材310の第二の主面310Bの尖度(Rku)は、1.00以上、3.10以下、好ましくは2.00以上、3.05以下、より好ましくは2.00以上、3.00以下である。第二の透明基材310の主面310A,310Bの尖度(Rku)が上記範囲内であれば、第五の金属層340の第一の主面340Aの尖度(Rku)及び第六の金属層370の第一の主面370Aの尖度(Rku)を上記範囲内としやすくなる。さらに、第三の透視型電極素材301において、第二の透明基材310の開口部101Cに対応する第三の外表部310Cの尖度(Rku)が上記範囲内となるので、透視性により優れる第三の透視型電極素材301とすることができる。
 〔金属層340,370〕
 金属層340,370は、第二の透明基材310の主面310A,310B上に形成されている。第五の金属層340と、第六の金属層370とは、同一の構成であってもよいし、互いに異なる構成であってもよい。
 第五の金属層340は、第一の主面340Aと、第一の主面340Aとは反対側の第二の主面340Bを有する。第六の金属層370は、第一の主面370Aと、第一の主面370Aとは反対側の第二の主面370Bを有する。
 金属層340,370は物理的蒸着法により形成されるものである。金属層340,370を構成する材質としては、アルミニウム、亜鉛、銅、銀、金、錫、ニッケル、クロム、コバルト、亜鉛、黄銅、これらの合金、酸化インジウムスズ(ITO:Indium Tin Oxide)、ステンレスなどを用いることができる。なかでも、金属層340,370は、銅、ニッケル、アルミニウム及び銀からなる群より選ばれる少なくとも1種を含むことが好ましい。
 金属層340,370の厚みは、好ましくは0.1μm以上、9.0μm以下、より好ましくは0.1μm以上、3.0μm以下、さらに好ましくは0.2μm以上、1.0μm以下である。金属層340,370の厚みが上記範囲内であれば、ファインパターン化された回路パターン層341,371を形成することができる。これにより、第三の透視型電極素材301において、開口部101Cを広げることができ、第三の透視型電極素材301の光透過性を向上させることができる。
 第二の主面340Bの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。第二の主面370Bの尖度(Rku)は、好ましくは1.00以上、3.10以下、より好ましくは2.00以上、3.05以下である。
 第一の主面340Aの表面粗さ(Rz)は、好ましくは0.01μm以上、2.00μm以下、より好ましくは0.10μm以上、1.50μm以下である。第一の主面370Aの表面粗さ(Rz)は、好ましくは0.01μm以上、2.00μm以下、より好ましくは0.10μm以上、1.50μm以下である。主面340A,370Aが上記範囲内であれば、回路形成した後、屈曲してもより断線しにくい第三の透視型電極用積層板300とすることができる。
 また、第一の主面340A上、及び第一の主面370A上には、反射低減層が形成されていてもよい。すなわち、第五の金属層340の第一の主面340A、及び第六の金属層370の第一の主面370Aには、黒色化処理が施されていてもよい。これにより、金属層340,370を構成する材質に反射率の高い金属を用いても、回路パターン層341,371が視認されにくい第三の透視型電極素材301とすることができる。この反射低減層を構成する材料としては、反射低減層130,160を構成する材質として例示したものと同様のものを用いることができる。
 [第三実施形態に係る透視型電極素材301]
 第三の透視型電極素材301は、図11に示すように、金属層340,370の一部が開口部101Cを有する回路パターン層341,371を備える他は、第三の透視型電極用積層板300と同様の構成である。図11において、図10に示した第三の透視型電極用積層板300の構成部材と同一の構成部材には同一符号を付して説明を省略する。
 回路パターン層341,371は、例えば、金属層340,370が部分的にエッチングなどで除去され、金属層340,370に開口部101Cとなる隙間が形成された、透視可能な電気回路である。回路パターン層341,371のパターン形状は、第三の透視型電極素材301の使用用途に応じて適宜調整すればよく、例えば、メッシュ形状、平行細線パターン形状、櫛刃形状などが挙げられる。
 第三の透視型電極素材301のシート抵抗は、好ましくは0.01Ω/sq以上、50Ω/sq以下、より好ましくは0.05Ω/sq以上、10Ω/sq以下、さらに好ましくは0.1Ω/sq以上、5Ω/sq以下である。
 第三の透視型電極素材301の全光線透過率は、好ましくは60%以上、より好ましくは65%以上、さらに好ましくは70%以上である。第三の透視型電極素材301の全光線透過率が上記範囲内であれば、第三の透視型電極素材301をタッチパネルセンサーなどに好適に用いることができる。全光線透過率はヘイズメーターにより測定される値である。
 第三の透視型電極素材301は、例えば、タッチパネルセンサー、電磁波吸収シート、プリント配線板、透視性アンテナなどに好適に用いられる。
 [第三実施形態に係る透視型電極用積層板300の製造方法]
 第三実施形態に係る透視型電極用積層板300の製造方法(以下、第三の透視型電極用積層板300の製造方法という)は、第二の透明基材310を準備する第一工程と、物理的蒸着法により第一の主面310A及び第二の主面310Bに第一の金属層340,370を形成する第二工程とを含む。
 第一工程では、第一の主面310A及び第二の主面310Bを有し、第一の主面310Aの尖度(Rku)が1.00以上、3.10以下である第二の透明基材310を準備する。第二の透明基材310の第一の主面310Aの尖度(Rku)を上記範囲内にするには、平滑な型を使ったキャスト法もしくは二軸延伸法にて作製したフィルムで、表面の尖度(Rku)が1.00以上、3.10以下のものを使用すればよい。
 第二工程では、物理的蒸着法により第一の主面310A及び第二の主面310Bに金属層340,370を形成する。これにより、第三の透視型電極用積層板300が得られる。
 第五の金属層340の第一の主面340Aの表面性状は、第二の透明基材310の第一の主面310Aの表面性状に追従する。これにより、第五の金属層340の第一の主面340Aの尖度(Rku)は、1.00以上、3.10以下の範囲内となる。また、第五の金属層340は第一の主面340A上に直接形成される。そのため、第五の金属層340の第二の主面340Bの尖度(Rku)と、第二の透明基材310の第一の主面310Aの尖度(Rku)とは同一と評価できる。同様に、第六の金属層370の第一の主面370Aの表面性状は、第二の透明基材310の第二の主面310Bの表面性状に追従する。これにより、第六の金属層370の第一の主面370Aの尖度(Rku)は、1.00以上、3.10以下の範囲内となる。また、第六の金属層370は第二の主面370B上に直接形成される。そのため、第六の金属層370の第二の主面370Bの尖度(Rku)と、第二の透明基材310の第二の主面310Bの尖度(Rku)とは同一と評価できる。
 物理的蒸着法としては、例えば、金属蒸着、スパッタリング、イオンプレーティングなどを用いることができる。
 第三実施形態では、第二工程において、物理的蒸着法により第一の主面310A及び第二の主面310Bに金属層340,370を形成するが、本開示はこれに限定されず第二工程において、物理的蒸着法により第一の主面310Aのみに第一の金属層340を形成するようしてもよい。
 以下、本開示を実施例によって具体的に説明する。
 実施例において、表面粗さ(Rz)、尖度(Rku)及び金属層の厚みの測定方法は下記のとおりである。
 (表面粗さ(Rz)の測定)
 表面粗さ計測器(株式会社東京精密製の「SURFCOM1500SD」)を用いて、触針法によりJIS B 0651(1996)及びJIS B 0601(1994)に従い、触針2μmにて表面粗さ(Rz)を測定した。
 (尖度(Rku)の測定)
 レーザー顕微鏡(株式会社キーエンス製の「VK-X100」)を用いて、JIS B 0601:2001に準拠し、50倍レンズで測定プログラムにて表面を測定した。次に解析プログラムで JISB 0601(2001)による表面粗さ:全領域モード測定を実施して尖度(Rku)を求めた。
 (金属層の厚みの測定)
 金属層の厚みは10cm角に切り出した銅箔の重量を測定し、銅の密度8.96g/cmから換算して厚みを算出した。
 [実施例1]
 〔第一の支持体付き金属層14の作製〕
 図4Aに示す第一の支持体10として、厚さ18μmの電解銅箔を準備した。この第一の支持体10の第一の主面10Aの表面性状は、表面粗さ(Rz)が0.98μm、尖度(Rku)が2.70であった。この第一の支持体10の第二の主面10Bの表面性状は、表面粗さ(Rz)が0.98μm、尖度(Rku)が3.51であった。
 この第一の支持体10を10%硫酸中、温度:30℃、電流密度:5A/dm、処理時間:20秒の条件で陰極処理により表面を清浄し、純水で20秒間洗浄した。
 次いで、下記の組成で調製した剥離層形成用電解液中で、電気分解を下記の条件で行った。これにより、第一の主面10A上に第一の剥離層11を形成し、図4Bに示す第一の積層板12を得た。次いで、この第一の積層板12を流水で20秒間洗浄した。
 (剥離層形成用電解液の組成)
・硫酸ニッケル6水和物:30g/l
・NaMoO2水和物:3g/l
・クエン酸ナトリウム:40g/l
 (第一の剥離層11を形成する際の電気分解の条件)
・温度:30℃
・pH:6
・電流密度:2A/dm
・処理時間:20秒
 次いで、下記の組成で調製したピロリン酸銅めっき浴中に第一の積層板12を浸漬し、陰極処理を下記の条件で行い、純水で20秒間洗浄した。
 (ピロリン酸銅めっき浴の組成)
・ピロリン酸銅:80g/l
・ピロリン酸カリウム:320g/l
・アンモニア水:2ml/l
 (陰極処理の条件)
・温度:40℃
・pH:8.5
・電流密度:2.0A/dm
・処理時間:20秒
 次いで、下記の組成で調製した極薄銅箔層形成用電解液中に第一の積層板12を浸漬し、電気分解を下記の条件で行った。これにより、第一の剥離層11上に、第一の金属層140として2μmの極薄銅箔層を形成し、図4Cに示す第二の積層板13を得た。
 (極薄銅箔層形成用電解液の組成)
・硫酸銅5水和物:150g/l
・硫酸:100g/l
・3-Mercapto-1-propansulfonic Acid Sodium Salt(MPS):5ppm
・ポリエチレングリコール(重量平均分子量2000):15ppm
・塩素イオン:10ppm
 (極薄銅箔層(第一の金属層140)を形成する際の電気分解の条件)
・温度:40℃
・pH:7
・電流密度:7A/dm
・処理時間:60秒
 流水で第二の積層板13を20秒間洗浄した後、下記の条件で防錆処理とシランカップリング剤処理を行った。
 (防錆処理に用いる処理液の組成)
・メチルベンゾトリアゾール:8g/l
 (防錆処理の条件)
・処理温度:30℃
・処理(浸漬)時間:10秒
・乾燥温度:120℃
・乾燥時間:10秒
 (シランカップリング処理に用いるシランカップリング剤の組成)
・3-アミノプロピルトリメトキシシラン水溶液(水溶液濃度:5g/l)
 (シランカップリング処理の条件)
・処理温度:25℃
・処理時間:3秒間シャワーリング
・乾燥温度:120℃
・乾燥時間:10秒
 次いで、下記の組成で調整したクエン酸ニッケルめっき浴中に第二の積層板13を浸漬し、電気分解を下記の条件で行った。これにより、第一の金属層140の第二の表面140B上に第一の反射低減層130として薄Ni層を形成し、図4Dに示す第一の支持体付き金属層14を得た。
 (クエン酸ニッケルめっき浴の組成)
・硫酸ニッケル:280g/l
・塩化ニッケル:45g/l
・クエン酸:21g/l
 (第一の反射低減層130を形成する際の電気分解の条件)
・温度:50℃
・pH:5
・電流密度:3.0A/dm
・処理時間:5秒
 この第一の反射低減層130の第一の主面130Aの表面性状は、表面粗さ(Rz)が0.94μm、尖度(RKu)が2.75であった。
 〔第一の透明接着剤層付き透明基材16の作製〕
 第一の透明基材110として、100μm厚高透明PETフィルム(東洋紡株式会社製の「コスモシャインA4300」)を準備した。この第一の透明基材110の第一の主面110A上に下記の組成で調製した透明接着剤(ウレタン樹脂)を3g/mの塗布量で塗布し、100℃の環境下で5分間保持して乾燥させた。これにより、厚さ7μmの第一の透明接着剤層15を形成し、図4Eに示す第一の透明接着剤層付き透明基材16を作製した。
 (透明接着剤の組成)
 主剤:東洋インキ製造株式会社製の「ダイナレオ VA-3020」
 硬化剤:東洋インキ製造株式会社製の「ダイナレオ HD-701」
 質量比:主剤/硬化剤=100/7
 〔第一の片面透視型電極用積層板18の作製〕
 次いで、第一の透明接着剤層付き透明基材16の透明接着剤層15と、第一の支持体付き金属層14の第一の反射低減層130とを図4Fに示すように対向させて、第一の透明接着剤層付き透明基材16及び第一の支持体付き金属層14を重ね合わせて貼合した。この貼合した状態を60℃の環境下で5日間保持し、図4Gに示す第三の積層板17を得た。この後、この第三の積層板17から第一の支持体10及び第一の剥離層11を剥離し、図4Hに示す第一の片面透視型電極用積層板18を得た。この際、第一の支持体10を剥離すると、第一の剥離層11は第一の支持体10とともに第一の金属層140から剥離した。
 この第一の金属層140の第一の主面140Aの表面性状は、表面粗さ(Rz)が0.98μm、尖度(Rku)が2.73であった。
 〔片面透視型電極素材30の作製〕
 図12Aは、実施例1で得られた片面透視型電極用積層板18の第一の金属層を回路形成して得られた片面透視型電極素材の正面図である。図12Bは、図12A中のD部の拡大正面図である。図12A及び図12B中、30は片面透視型電極素材、31はベタ状の第一の回路パターン部、32はベタ状の第二の回路パターン部、33はメッシュ状の第三の回路パターン部、30Dは片面透視型電極素材のX方向の中心線である。
 第一の片面透視型電極用積層板18の第一の金属層140をエッチングし、図12A及び図12Bに示す片面透視型電極素材30を得た。
 片面透視型電極素材30は、Y方向に沿って延在したベタ状の第一の回路パターン部31(以下、第一のベタ部31)と、Y方向に沿って延在したベタ状の第二の回路パターン部32(以下、第二のベタ部32)と、メッシュ状の第三の回路パターン部33(以下、第三のパターン部33)とを有する。
 第一のベタ部31は片面透視型電極素材30のX方向の一端部に形成され、第二のベタ部32は片面透視型電極素材30のX方向の他端部に形成されている。第三のパターン部33は、X方向において第一のベタ部31及び第二のベタ部32の間に形成されている。
 片面透視型電極素材30は、図12Aに示すように、X方向の長さが10cm、Y方向の長さが2cmであった。第一のベタ部31及び第二のベタ部32(以下、ベタ部31,32という場合がある)は、図12Aに示すように、X方向の長さが0.5cm、Y方向の長さが2cmであった。第三のパターン部33は、図12Bに示すように細線33Aの線幅が7μm、隣接する細線33A,33Aの間のピッチが300μmであった。
 〔断線耐性試験〕
 図13Aは、透視型電極素材30を金属棒40上に載置した状態を示す正面図である。図13Bは、図13A中のE-E´線で切断した透視型電極素材30及び金属棒40の概略断面図である。図13Cは、断線耐性試験を説明するための、負荷が掛けられた状態の透視型電極素材30を示す概略断面図である。図13A、図13B及び図13C中、40は金属棒、41は透視型電極素材30と金属棒40との線接触部である。
 まず、テスターの一方のテスター棒を第一のベタ部31に、他方のテスター棒を第二のベタ部32にそれぞれ当てて、第三のパターン部33の導通を確認した。
 次いで、図13Aに示すように、第一の回路パターン層141が上向きとなるように、すなわち第一の透明基材110の第一の主面110Aが上向きとなるように、片面透視型電極素材30を直径1mmの金属棒40上に載せた。次いで、金属棒40と透視型電極素材30との線接触部41と、図12A及び図12Bに示す片面透視型電極素材30のX方向の中央線30Dとが重なり合うように、片面透視型電極素材30を配置した。
 次いで、片面透視型電極素材30のX方向の両端部に図13Bに示す方向Gに負荷を掛け、図13Cに示すように、金属棒40を支点にして片面透視型電極素材30を屈曲させて、片面透視型電極素材30の両端部を接触させた後、負荷を解放して、元の状態に戻す操作を1サイクルとする屈曲処理を、400サイクル行った。
 次いで、屈曲処理を400サイクル行った片面透視型電極素材30の第一のベタ部31にテスターの一方のテスター棒を、第二のベタ部32に他方のテスター棒をそれぞれ当てて、導通を測定したところ、測定値は1Ω未満であった。この結果から、第三のパターン部33の導通を確認でき、第三のパターン部33は断線していないことがわかった。すなわち、第一の金属層140の第一の主面140Aの尖度(Rku)が、1.00以上、3.10以下の範囲内であったので、回路形成した後、屈曲しても断線しにくいことが確認できた。
 なお、導通の測定値が1Ω未満の場合、第三のパターン部33は導通していると判断し、導通の測定値が1Ωを超えている場合、第三のパターン部33は断線していると判断した。
 [実施例2]
 〔第一の透視型電極用積層板100の作製〕
 実施例1で得られた第一の片面透視型電極用積層板18の第一の透明基材110の第二の主面110B上に、実施例1と同様の方法で、第二の透明接着層150、第二の反射低減層160及び第二の金属層170をこの順に形成し、図1Aに示す第一の透視型電極用積層板100を得た。得られた第一の透視型電極用積層板100において、透明接着層120,150、反射低減層130,160、金属層140,170はそれぞれ同一の構成であった。
 第二の金属層170の第一の主面170Aの表面性状は、表面粗さ(Rz)が0.98μm、尖度(Rku)が2.70であった。
 〔両面透視型電極素材2の作製〕
 実施例1と同様の方法で、第一の透視型電極用積層板100の金属層140,170をエッチングし、図12A及び図12Bに示す回路パターンが両面に形成された第一の透視型電極素材101を得た。
 〔断線耐性試験〕
 実施例1と同様にして断線耐性試験を行ったところ、測定値は1Ω未満であった。この結果から、第一の透明基材110の第一の主面110A側に形成された第三のパターン部33は断線していないことがわかった。
 また、これとは別に、第一の透明基材110の第二の主面110Bが上向きとなるように、第一の透視型電極素材101を金属棒40上に載せた他は、実施例1に記載の断線耐性試験と同様に断線耐性試験を行ったところ、測定値は1Ω未満であった。この結果から、第一の透明基材110の第二の主面110B側に形成された第三のパターン部33も断線していないことがわかった。
 すなわち、第一の金属層140の第一の主面140Aの尖度(Rku)及び第二の金属層170の第一の主面170Aの尖度(Rku)が、1.00以上、3.10以下の範囲内であったので、両面について、回路形成した後、屈曲しても断線しにくいことが確認できた。
 [実施例3]
 〔第二の支持体付き金属層26の作製〕
 図9Aに示すように、第二の支持体20として、50μm厚高透明PETフィルム(東洋紡株式会社製の「コスモシャインA4300」)を準備した。この第二の支持体20の第一の主面20Aの表面性状は、表面粗さ(Rz)が0.89μm、尖度(Rku)が2.66であった。
 次いで、この第二の支持体20の第一の主面20A上にグラビアコーターにより、下記の組成で調製した耐熱性層用塗工液を乾燥状態で塗布量が1.0g/mとなるように塗布、乾燥した。これにより、第三の耐熱性層21を第一の主面20A上に形成し、図9Bに示す第四の積層板22を得た。
 <耐熱性層用塗工液の組成>
・アクリル系樹脂(アクリル樹脂/メタクリル酸メチル=97/3) 1.25質量部
・トリレンジイソシアネート 1.875質量部
・メチルエチルケトン 0.2質量部
・トルエン 1.8質量部
 次いで、第四の積層板22の第三の耐熱性層21上に、グラビアコーターにより、下記の組成で調製した剥離層用塗工液を用いて、固形分換算で塗布量が0.4g/mとなるように塗布、乾燥した。これにより、第二の剥離層23を第三の耐熱性層21上に形成し、図9Cに示す第五の積層板24を得た。
 <剥離層用塗工液の組成>
・アクリル樹脂(ダイヤナールBR83、三菱レイヨン(株)製) 13.50質量部
・塩化ビニル-酢酸ビニル共重合体樹脂 1.50質量部
(ソルバインC、日信化学工業(株)製)
・ポリエステル樹脂(バイロン200、東洋紡績(株)製) 0.09質量部
・アモルフォスシリカ 3.00質量部
・メチルエチルケトン 70.09質量部
・トルエン 18.12質量部
 次いで、第五の積層板24の第二の剥離層23上に、アルミニウムを真空蒸着法により蒸着させ、5000Åの厚さの第三の金属層240を形成した。これにより、図9Dに示す第六の積層板25を得た。
 この第六の積層板25の第三の金属層240の第二の主面240B上に、上記で使用した耐熱性層用塗工液を用いて、グラビアコーターにより、乾燥状態で1.0g/mの割合で塗布、乾燥した。これにより、第一の耐熱性層230を第三の金属層240上に形成し、図9Eに示す第二の支持体付き金属層26を得た。
 この第二の支持体付き金属層26の層構成は、図9Eに示すように、第一の耐熱性層230/第三の金属層240/第二の剥離層23/第三の耐熱性層21/第二の支持体20であった。
 〔第一の透明接着剤層付き透明基材16の作製〕
 実施例1と同様にして、図9Fに示す透明接着剤層付き透明基材16を得た。
 〔第二の片面透視型電極用積層板28の作製〕
 次いで、第一の透明接着剤層付き透明基材16の透明接着剤層15と、第二の支持体付き金属層26の第一の耐熱性層230とを図9Gに示すように対向させて、第一の透明接着剤層付き透明基材16及び第二の支持体付き金属層26を重ね合わせて貼合した。この貼合した状態を60℃の環境下で5日間保持し、図9Hに示す第七の積層板27を得た。
 この後、この第七の積層板27から第二の支持体20を剥離し、第二の片面透視型電極用積層板28を得た。この第二の支持体20を剥離した際、第三の耐熱性層21及び第二の剥離層23は第二の支持体20とともに剥離した。
 第三の金属層240の第一の主面240Aの表面性状は、表面粗さ(Rz)が0.89μm、尖度(Rku)が2.66であった。
 〔片面透視型電極素材の作製〕
 第二の片面透視型電極用積層板28の第三の金属層240をエッチングし、図12A及び図12Bに示す回路パターンが片面に形成された片面透視型電極素材を得た。
 〔断線耐性試験〕
 屈曲処理を300回行った他は実施例1と同様にして断線耐性試験を行ったところ、測定値は1Ω未満であった。この結果から、第一の透明基材110の第一の主面110A側に形成された第三のパターン部は断線していないことがわかった。すなわち、第三の金属層240の第一の主面240Aの尖度(Rku)が、1.00以上、3.10以下の範囲内であったので、回路形成した後、屈曲しても断線しにくいことが確認できた。
 [比較例1]
 〔透視型電極素材の作製〕
 第一の支持体10の第二の主面10B側のみに、第一の金属層140を形成した他は実施例1と同様にして透視型電極用積層板を得、次いで透視型電極素材を得た。
 この第一の支持体10の第二の主面10Bの表面性状は、表面粗さ(Rz)が0.98μm、尖度(Rku)が3.51であった。この透視型電極用積層板の第一の反射低減層130の第一の主面130Aの表面性状は、表面粗さ(Rz)が0.98μm、尖度(RKu)が3.51であった。この第一の金属層140の第一の主面140Aの表面性状は、表面粗さ(Rz)が0.97μm、尖度(Rku)が3.53であった。
 〔断線耐熱性試験〕
 得られた透視型電極素材について屈曲処理を205回行った他は実施例1と同様にして断線耐性試験を行ったところ、測定値は1Ω超であった。この結果から、第三のパターン部の導通を確認できず、第三のパターン部は断線していることがわかった。すなわち、第一の金属層140の第一の主面140Aの尖度(Rku)が、1.00以上、3.10以下の範囲外であったので、回路形成した後、屈曲すると断線することが確認できた。
 本開示の透視型電極用積層板、透視型電極素材は、ファインパターンのタッチパネルセンサー等の電子デバイスに利用することができる。
 88,100,200,300 透視型電極用積層板
 1,30,101,201,301 透視型電極素材
 110,310 透明基材
 3,120,150 透明接着層
 130,160 反射低減層
 140,240,340,170,270,370 金属層
 4,141,241,341,171,271,371 回路パターン層
 14,26 支持体付き金属層
 16 透明接着剤層付き透明基材

Claims (19)

  1.  透明基材と、前記透明基材の両面の少なくとも1面上に設けられた金属層とを有し、
     前記金属層は、前記透明基材に対向する第1面と、前記第1面の反対側の第2面を有し、前記第2面の尖度(Rku)は、1.00以上、3.10以下である、透視型電極用積層板。
  2.  前記透明基材と前記金属層との間に透明接着層を有する、請求項1に記載の透視型電極用積層板。
  3.  前記透明接着層は、アクリル樹脂、エポキシ樹脂、ウレタン樹脂又はこれらの混合樹脂を含む、請求項2に記載の透視型電極用積層板。
  4.  前記透明接着層の硬さが、1.0N/mm以上、200N/mm以下である、請求項2又は3に記載の透視型電極用積層板。
  5.  前記金属層は、銅、ニッケル、アルミニウム及び銀からなる群より選ばれる少なくとも1種を含む、請求項1~4のいずれか1項に記載の透視型電極用積層板。
  6.  前記金属層の前記第2面は、黒色化処理が施されている、請求項1~5のいずれか1項に記載の透視型電極用積層板。
  7.  請求項1~6のいずれか1項に記載の透視型電極用積層板の前記金属層の一部が、開口部を有する回路パターン層を備える、透視型電極素材。
  8.  シート抵抗が0.01Ω/sq以上、50Ω/sq以下である、請求項7に記載の透視型電極素材。
  9.  全光線透過率が60%以上である、請求項7又は8に記載の透視型電極素材。
  10.  請求項7~9のいずれか1項に記載の透視型電極素材と、
     前記回路パターン層に電気的に接続された制御回路と、を有するデバイス。
  11.  第一の主面及び第二の主面を有し、前記第一の主面の尖度(Rku)が1.00以上、3.10以下である透明基材を準備する第一工程と、
     物理的蒸着法により前記第一の主面に金属層を形成する第二工程とを含む、透視型電極用積層板の製造方法。
  12.  前記第二の主面の尖度(Rku)が1.00以上、3.10以下である、請求項11に記載の透視型電極用積層板の製造方法。
  13.  第一の主面及び第二の主面を有し、前記第一の主面の尖度(Rku)が1.00以上、3.10以下である支持体を準備し、前記第一の主面に剥離層を形成し、電解めっき法により前記剥離層上に金属層を形成し、支持体付き金属層を作製する第一工程と、
     透明基材を準備し、前記透明基材の両面の少なくとも1面上に透明接着剤層を形成し、透明接着剤層付き透明基材を作製する第二工程と、
     前記支持体付き金属層の前記金属層が設けられた面と、前記透明接着剤層付き透明基材の前記透明接着剤層が設けられた面とを貼合し、前記支持体及び前記剥離層を前記金属層から剥離する第三工程と、を含む、透視型電極用積層板の製造方法。
  14.  前記第一工程において、
     前記剥離層上に形成した前記金属層に黒色化処理を施す、請求項13に記載の透視型電極用積層板の製造方法。
  15.  前記第一工程において、
     電着ドラムを用いる電解法により、前記電着ドラムに接する側の第一の主面、及び前記電着ドラムに接しない側の第二の主面を有する電解金属箔を準備し、
     前記電解金属箔の前記第一の主面に平滑化処理を施し、
     前記平滑化処理した電解金属箔にて前記支持体を作製する、請求項13又は14に記載の透視型電極用積層板の製造方法。
  16.  前記平滑化処理は、電解めっき法により、前記電解金属箔の前記第一の主面に電気めっき皮膜を電着させる、請求項15に記載の透視型電極用積層板の製造方法。
  17.  前記平滑化処理は、電気化学的研磨により、前記電解金属箔の前記第一の主面を研磨する、請求項15に記載の透視型電極用積層板の製造方法。
  18.  前記平滑化処理は、化学的研磨により、前記電解金属箔の前記第一の主面を研磨する、請求項15に記載の透視型電極用積層板の製造方法。
  19.  第一の主面及び第二の主面を有し、前記第一の主面の尖度(Rku)が1.00以上、3.10以下である支持体を準備し、前記第一の主面に剥離層を形成し、前記剥離層上に物理的蒸着法により金属層を形成し、支持体付き金属層を作製する第一工程と、
     透明基材を準備し、前記透明基材の両面の少なくとも1面上に透明接着剤層を形成し、透明接着剤層付き透明基材を作製する第二工程と、
     前記支持体付き金属層の前記金属層が設けられた面と、前記透明接着剤層付き透明基材の前記透明接着剤層が設けられた面とを貼合し、前記支持体及び前記剥離層を前記金属箔から剥離する第三工程と、を含む、透視型電極用積層板の製造方法。
PCT/JP2017/023720 2016-07-26 2017-06-28 透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法 WO2018020940A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/318,695 US10691276B2 (en) 2016-07-26 2017-06-28 Laminate for see-through electrodes, see-through electrode material, device and method for producing laminate for see-through electrodes
KR1020197001994A KR20190038803A (ko) 2016-07-26 2017-06-28 투시형 전극용 적층판, 투시형 전극 소재, 디바이스 및 투시형 전극용 적층판의 제조 방법
JP2018529454A JP6883765B2 (ja) 2016-07-26 2017-06-28 透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法
CN201780045453.8A CN109564796B (zh) 2016-07-26 2017-06-28 透视型电极用层叠板、透视型电极原材料、器件及透视型电极用层叠板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-146696 2016-07-26
JP2016146696 2016-07-26

Publications (1)

Publication Number Publication Date
WO2018020940A1 true WO2018020940A1 (ja) 2018-02-01

Family

ID=61017360

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/023720 WO2018020940A1 (ja) 2016-07-26 2017-06-28 透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法

Country Status (6)

Country Link
US (1) US10691276B2 (ja)
JP (1) JP6883765B2 (ja)
KR (1) KR20190038803A (ja)
CN (1) CN109564796B (ja)
TW (1) TWI732892B (ja)
WO (1) WO2018020940A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014623A (ja) * 2019-07-12 2021-02-12 パナソニックIpマネジメント株式会社 金属基材付薄膜金属箔、金属張透明基材材料、透視型電極用積層板、及び透視型電極素材

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102312260B1 (ko) * 2015-01-09 2021-10-13 삼성디스플레이 주식회사 플렉서블 터치 패널 및 플렉서블 표시 장치
US11035043B2 (en) * 2017-01-09 2021-06-15 Astroseal Products Mfg. Corporation Non-chromatic conversion coating system and method
CN107785503B (zh) * 2017-10-24 2019-03-08 京东方科技集团股份有限公司 金属封装结构及制备方法、显示面板的封装方法、显示装置
WO2019097888A1 (ja) * 2017-11-15 2019-05-23 富士フイルム株式会社 タッチセンサ及びタッチパネル
CN111403937A (zh) * 2020-03-24 2020-07-10 东莞立德精密工业有限公司 金属端子及其制作方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186797A (ja) * 2007-02-15 2007-07-26 Furukawa Circuit Foil Kk キャリア付き極薄銅箔の製造方法、及び該製造方法で製造された極薄銅箔、該極薄銅箔を使用したプリント配線板、多層プリント配線板、チップオンフィルム用配線基板
JP2011009267A (ja) * 2009-06-23 2011-01-13 Hitachi Cable Ltd プリント配線板用銅箔およびその製造方法
WO2012081471A1 (ja) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 透明面電極、有機エレクトロニクス素子及び透明面電極の製造方法
WO2014081041A1 (ja) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 表面処理電解銅箔、積層板、及びプリント配線板
WO2014156489A1 (ja) * 2013-03-26 2014-10-02 株式会社カネカ 導電性フィルム基板、透明導電性フィルムおよびその製造方法、ならびにタッチパネル
JP2014216175A (ja) * 2013-04-25 2014-11-17 リンテック株式会社 透明導電性積層体の製造方法及び透明導電性積層体
JP2015034955A (ja) * 2013-08-09 2015-02-19 大日本印刷株式会社 透明導電性積層体、タッチパネル及びタッチパネル用中間積層体
WO2016017773A1 (ja) * 2014-07-31 2016-02-04 住友金属鉱山株式会社 タッチパネル用導電性基板、タッチパネル用導電性基板の製造方法
JP2016173674A (ja) * 2015-03-16 2016-09-29 大日本印刷株式会社 導電性パターンシートの製造方法、導電性パターンシート、タッチパネルセンサおよび画像表示装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3977790B2 (ja) 2003-09-01 2007-09-19 古河サーキットフォイル株式会社 キャリア付き極薄銅箔の製造方法、及び該製造方法で製造された極薄銅箔、該極薄銅箔を使用したプリント配線板、多層プリント配線板、チップオンフィルム用配線基板
CN101522767B (zh) * 2006-10-06 2012-08-22 东丽株式会社 硬涂膜、其制造方法及防反射膜
JP2008129708A (ja) 2006-11-17 2008-06-05 Alps Electric Co Ltd 透明タッチパネル及びその製造方法
JP2008238646A (ja) * 2007-03-28 2008-10-09 Toray Ind Inc ハードコートフィルムおよび反射防止フィルム
JP5098571B2 (ja) * 2007-10-25 2012-12-12 大日本印刷株式会社 光学積層体、偏光板及び画像表示装置
JP2012194644A (ja) 2011-03-15 2012-10-11 Nissha Printing Co Ltd 静電センサ用片面導電膜付フィルムの製造方法
JP5873705B2 (ja) 2011-12-13 2016-03-01 三菱伸銅株式会社 金属蒸着フィルムの製造方法
CN103245981B (zh) * 2012-02-14 2017-03-01 大日本印刷株式会社 光学层叠体、偏振片和图像显示装置
SG11201600591VA (en) * 2013-07-31 2016-02-26 3M Innovative Properties Co Bonding electronic components to patterned nanowire transparent conductors
JP2015205481A (ja) * 2014-04-22 2015-11-19 Jx日鉱日石金属株式会社 キャリア付銅箔、銅張積層板、プリント配線板、電子機器及びプリント配線板の製造方法
WO2016009829A1 (ja) * 2014-07-16 2016-01-21 富士フイルム株式会社 タッチパネルセンサー用導電性フィルム、タッチパネルセンサー、タッチパネル

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007186797A (ja) * 2007-02-15 2007-07-26 Furukawa Circuit Foil Kk キャリア付き極薄銅箔の製造方法、及び該製造方法で製造された極薄銅箔、該極薄銅箔を使用したプリント配線板、多層プリント配線板、チップオンフィルム用配線基板
JP2011009267A (ja) * 2009-06-23 2011-01-13 Hitachi Cable Ltd プリント配線板用銅箔およびその製造方法
WO2012081471A1 (ja) * 2010-12-13 2012-06-21 コニカミノルタホールディングス株式会社 透明面電極、有機エレクトロニクス素子及び透明面電極の製造方法
WO2014081041A1 (ja) * 2012-11-26 2014-05-30 Jx日鉱日石金属株式会社 表面処理電解銅箔、積層板、及びプリント配線板
WO2014156489A1 (ja) * 2013-03-26 2014-10-02 株式会社カネカ 導電性フィルム基板、透明導電性フィルムおよびその製造方法、ならびにタッチパネル
JP2014216175A (ja) * 2013-04-25 2014-11-17 リンテック株式会社 透明導電性積層体の製造方法及び透明導電性積層体
JP2015034955A (ja) * 2013-08-09 2015-02-19 大日本印刷株式会社 透明導電性積層体、タッチパネル及びタッチパネル用中間積層体
WO2016017773A1 (ja) * 2014-07-31 2016-02-04 住友金属鉱山株式会社 タッチパネル用導電性基板、タッチパネル用導電性基板の製造方法
JP2016173674A (ja) * 2015-03-16 2016-09-29 大日本印刷株式会社 導電性パターンシートの製造方法、導電性パターンシート、タッチパネルセンサおよび画像表示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021014623A (ja) * 2019-07-12 2021-02-12 パナソニックIpマネジメント株式会社 金属基材付薄膜金属箔、金属張透明基材材料、透視型電極用積層板、及び透視型電極素材

Also Published As

Publication number Publication date
TW201804304A (zh) 2018-02-01
US10691276B2 (en) 2020-06-23
US20190187841A1 (en) 2019-06-20
CN109564796B (zh) 2021-01-05
CN109564796A (zh) 2019-04-02
KR20190038803A (ko) 2019-04-09
TWI732892B (zh) 2021-07-11
JPWO2018020940A1 (ja) 2019-06-27
JP6883765B2 (ja) 2021-06-09

Similar Documents

Publication Publication Date Title
WO2018020940A1 (ja) 透視型電極用積層板、透視型電極素材、デバイス及び透視型電極用積層板の製造方法
JP6942826B2 (ja) 表面処理銅箔
US10168842B2 (en) Conductive substrate, conductive substrate laminate, method for producing conductive substrate, and method for producing conductive substrate laminate
US9258900B2 (en) Copper foil structure having blackened ultra-thin foil and manufacturing method thereof
US20160303829A1 (en) Surface Treated Copper Foil, Copper Clad Laminate, Printed Wiring Board, Electronic Apparatus and Method for Manufacturing Printed Wiring Board
CN103918355B (zh) 表面处理铜箔和使用它的层叠板
CN104271813B (zh) 表面处理铜箔及使用其的积层板、铜箔、印刷配线板、电子机器、以及印刷配线板的制造方法
TW201224903A (en) Touch panel
WO2020105289A1 (ja) 表面処理銅箔、キャリア付銅箔、銅張積層板及びプリント配線板
WO2018116477A1 (ja) 多層配線板の製造方法
TW201942370A (zh) 粗化處理銅箔、附載體銅箔、覆銅積層板及印刷配線板
JP2015157392A (ja) 透視型電極用積層体とその製造方法、透視型電極素材とデバイス
JP7122675B2 (ja) 金属基材付薄膜金属箔、金属張透明基材材料、透視型電極用積層板、透視型電極素材、及びデバイス
US9099229B2 (en) Metal foil having electrical resistance layer, and manufacturing method for same
JP2019019351A (ja) 剥離金属基材付薄膜銅箔及びその製造方法
CN108699714A (zh) 黑化镀液和导电性基板的制造方法
CN109696999A (zh) 带金属基材的薄膜金属箔、覆金属透明基材材料、透视型电极用层叠板、电极原材及器件
JP5628106B2 (ja) 複合金属箔及びその製造方法並びにプリント配線板
JP2021091949A (ja) 電解銅箔、電解銅箔を含む電極および電解銅箔を含む銅張積層板
JP2021014623A (ja) 金属基材付薄膜金属箔、金属張透明基材材料、透視型電極用積層板、及び透視型電極素材
JP7512848B2 (ja) 積層体および積層体の製造方法
JPWO2018193940A1 (ja) 導電性基板
KR20180035811A (ko) 도전성 기판
TWI411707B (zh) Ultra - low copper foil as the carrier of ultra - thin copper foil and its use
TWI791427B (zh) 黑化鍍液、導電性基板之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17833949

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20197001994

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018529454

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17833949

Country of ref document: EP

Kind code of ref document: A1