WO2018016518A1 - 調圧弁の制御装置 - Google Patents

調圧弁の制御装置 Download PDF

Info

Publication number
WO2018016518A1
WO2018016518A1 PCT/JP2017/026064 JP2017026064W WO2018016518A1 WO 2018016518 A1 WO2018016518 A1 WO 2018016518A1 JP 2017026064 W JP2017026064 W JP 2017026064W WO 2018016518 A1 WO2018016518 A1 WO 2018016518A1
Authority
WO
WIPO (PCT)
Prior art keywords
pressure
regulating valve
solenoid
pressure regulating
control
Prior art date
Application number
PCT/JP2017/026064
Other languages
English (en)
French (fr)
Inventor
昭暎 李
創 田坂
紅官 朴
浩介 阿部
智之 諏訪部
Original Assignee
ジヤトコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社 filed Critical ジヤトコ株式会社
Priority to JP2018528826A priority Critical patent/JP6653761B2/ja
Priority to CN201780043630.9A priority patent/CN109477569B/zh
Priority to KR1020197004397A priority patent/KR102122370B1/ko
Priority to US16/319,045 priority patent/US10677349B2/en
Publication of WO2018016518A1 publication Critical patent/WO2018016518A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0251Elements specially adapted for electric control units, e.g. valves for converting electrical signals to fluid signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0262Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being hydraulic
    • F16H61/0276Elements specially adapted for hydraulic control units, e.g. valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H2061/0043Cleaning of hydraulic parts, e.g. removal of an orifice clogging
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/126Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is the controller
    • F16H2061/1264Hydraulic parts of the controller, e.g. a sticking valve or clogged channel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members

Definitions

  • the present invention relates to a control device for a pressure regulating valve provided with a pressure regulating valve having a solenoid and a spool valve.
  • a pressure regulating valve for controlling a hydraulic pressure supplied to a clutch is known in a vehicle control device.
  • the vehicle control device detects a decrease in the clutch pressure (hydraulic pressure) controlled by the pressure regulating valve during traveling or stopping, an instruction from the solenoid to the pressure regulating valve in the stopped state (stopped)
  • the pressure (signal pressure) is changed and the spool valve provided in the pressure regulating valve is moved (foreign matter removal control).
  • contamination abbreviation of “contamination” mixed in the pressure regulating valve can be discharged.
  • the spool is moved while the vehicle is stopped, and the contamination is discharged.
  • the contamination is mixed into the pressure regulating valve during traveling, so that the clutch pressure decreases.
  • the conventional foreign matter removal control is performed during traveling, for example, when the spool valve is moved to the side where the discharge pressure of the pressure regulating valve decreases, the hydraulic pressure downstream from the pressure regulating valve decreases, and the clutch or This will affect the running state such as insufficient hydraulic pressure supplied to the belt.
  • the clutch pressure decreases during traveling, it is not possible to prevent a decrease in the clutch pressure during traveling without affecting the traveling state. There is.
  • An object of the present invention is to provide a control device for a pressure regulating valve.
  • the present invention includes a pressure regulating valve and a controller.
  • the pressure regulating valve has a solenoid and a spool valve.
  • the controller controls the hydraulic pressure by operating the spool valve with the command pressure generated by controlling the current command value to the solenoid.
  • the controller includes an abnormality control unit. When a decrease in hydraulic pressure is detected during traveling, the abnormal-time control unit executes abnormal-time control that increases the command pressure from the solenoid to the spool valve during travel when compared with the command pressure when a decrease in hydraulic pressure is detected. To do.
  • an abnormal-time control that increases the command pressure from the solenoid to the spool valve during travel is greater than the command pressure when a decrease in hydraulic pressure is detected. Is executed.
  • the command pressure is increased from the command pressure when a decrease in hydraulic pressure is detected during traveling, so that the spool valve moves in one direction.
  • the hydraulic pressure increases, it is possible to suppress a decrease in the hydraulic pressure downstream from the pressure regulating valve. For this reason, it is suppressed that hydraulic pressure falls in another site
  • FIG. 1 It is a schematic block diagram which shows a belt-type continuously variable transmission provided with the hydraulic control valve unit to which the control apparatus of the pressure regulation valve of Example 1 was applied. It is a flowchart which shows the flow of the control process at the time of abnormality at the time of the secondary pressure fall detection performed by the control part at the time of abnormality of Example 1.
  • FIG. It is a time chart of the control at the time of abnormality in driving
  • the control device for the pressure regulating valve in the first embodiment is applied to a belt-type continuously variable transmission including a hydraulic control valve unit.
  • the belt type continuously variable transmission is mounted on a vehicle such as an engine vehicle or a hybrid vehicle, for example.
  • the configuration of the control device according to the first embodiment will be described by dividing it into “overall configuration” and “abnormal control processing configuration”.
  • FIG. 1 is a schematic configuration diagram of a belt-type continuously variable transmission including a hydraulic control valve unit to which a control device for a pressure regulating valve according to a first embodiment is applied.
  • the belt type continuously variable transmission CVT includes a forward clutch FC, a reverse brake RB, a hydraulic control valve unit 3, an oil pump O / P (oil supply source), a CVT control unit 8 (CVT CU, controller), Have
  • the belt type continuously variable transmission CVT is a belt type continuously variable transmission having a primary pulley Pri, a secondary pulley Sec, and a pulley belt V stretched between the primary pulley Pri and the secondary pulley Sec.
  • the primary pulley Pri and the secondary pulley Sec change the pulley width while holding the pulley belt V by supplying hydraulic pressure to the primary pressure chamber 1 and the secondary pressure chamber 2, and the diameter of the surface holding the pulley belt V To change the gear ratio (pulley ratio) freely.
  • the forward clutch FC and the reverse brake RB are friction engagement elements.
  • the forward clutch FC and the reverse brake RB are composed of a wet multi-plate friction clutch / brake that is hydraulically operated.
  • the forward clutch FC is engaged during forward travel, and the reverse brake RB is engaged during reverse travel.
  • the hydraulic control valve unit 3 generates a control hydraulic pressure based on a control command from the CVT control unit 8. This control hydraulic pressure controls the belt type continuously variable transmission CVT, the forward clutch FC, the reverse brake RB and the like.
  • the hydraulic control valve unit 3 includes a line pressure regulating valve 4 (pressure regulating valve), a primary pressure regulating valve 5, a forward clutch pressure regulating valve 6, and a reverse brake pressure regulating valve 7.
  • the line pressure regulating valve 4 regulates the line pressure PL supplied to the belt type continuously variable transmission CVT, the forward clutch FC, and the reverse brake RB based on the pump discharge pressure from the oil pump O / P.
  • the line pressure PL is the same as the secondary pressure Psec.
  • the single pressure control method is used in which the secondary pressure Psec is the line pressure PL.
  • the line pressure regulating valve 4 has a line pressure solenoid 41 (solenoid) and a line pressure spool valve 42 (spool valve).
  • the line pressure solenoid 41 generates a solenoid pressure Psol (indicated pressure, signal pressure) to the line pressure spool valve 42 by applying a current with a pilot pressure Pp (constant pressure) as a source pressure.
  • the applied current is based on the current instruction value I from the CVT control unit 8.
  • the line pressure spool valve 42 is operated by the solenoid pressure Psol.
  • the solenoid pressure Psol increases as the current instruction value I applied to the line pressure solenoid 41 decreases, and decreases as the current instruction value I applied to the line pressure solenoid 41 increases. That is, the solenoid pressure Psol output with the minimum current command value I is maximized, and the solenoid pressure Psol output with the maximum current command value I is minimized.
  • the line pressure spool valve 42 operates based on the solenoid pressure Psol and regulates the line pressure PL.
  • the solenoid pressure Psol acts on one end side of the line pressure spool valve 42, and the spring force and the PL feedback pressure F / B (regulated line pressure feedback pressure) act on the other end side of the line pressure spool valve 42.
  • the solenoid pressure Psol changes and the force from one end of the line pressure spool valve 42 is larger than the force from the other end, the line pressure spool valve 42 moves in the A direction (one direction, the direction in which the hydraulic pressure increases). To do. As a result, the line pressure PL increases.
  • the line pressure spool valve 42 moves in the B direction opposite to the A direction (the opposite direction, Move in the direction of decreasing oil pressure). For this reason, surplus oil is drained. As a result, the line pressure PL decreases. By such movement of the line pressure spool valve 42, the line pressure PL is regulated.
  • the primary pressure regulating valve 5 regulates the primary pressure Ppri led to the primary pressure chamber 1 using the line pressure PL as a source pressure.
  • the primary pressure Ppri is the line pressure PL
  • the lower the gear ratio is, the lower the gear ratio is.
  • the forward clutch pressure regulating valve 6 regulates the forward clutch pressure Pfc supplied to the forward clutch FC using the line pressure PL as the original pressure. For example, when the forward clutch FC is engaged (forward travel), the forward clutch pressure Pfc is high, and when the forward clutch FC is released, the forward clutch pressure Pfc is low.
  • the reverse brake pressure regulating valve 7 regulates the reverse brake pressure Prb supplied to the reverse brake RB using the line pressure PL as the original pressure. For example, when the reverse brake RB is engaged (during reverse travel), the reverse brake pressure Prb is high, and when the reverse brake RB is released, the reverse brake pressure Prb is low.
  • the CVT control unit 8 performs gear ratio control of the belt type continuously variable transmission CVT.
  • an inhibitor switch 11 As input sensors to the CVT control unit 8, an inhibitor switch 11, a CVT oil temperature sensor 12, an accelerator opening sensor 13, a CVT input rotation speed sensor 14, a vehicle speed sensor 15, a primary pressure sensor 16, a secondary pressure sensor 17, and the like are provided. ing. Further, information necessary for control is provided to the CVT control unit 8 from another in-vehicle controller 18 via the CAN communication line 19.
  • the CVT control unit 8 controls the current instruction value I to the line pressure solenoid 41 based on the information of these sensors and the like, and the line pressure spool valve 42 with the solenoid pressure Psol generated by the control of the current instruction value I. Is operated to control the line pressure PL (hydraulic pressure).
  • the CVT control unit 8 includes an abnormal time control unit 81.
  • the abnormal time control unit 81 controls the line pressure regulating valve 4 when a decrease in the secondary pressure Psec input from the secondary pressure sensor 17 is detected.
  • FIG. 2 is a flowchart illustrating a flow of an abnormal time control process performed when the secondary pressure Psec drop is detected, which is executed by the abnormal time control unit 81 of the first embodiment (abnormal time control).
  • FIG. 3 is an abnormality control during traveling of the current instruction value I executed during traveling by the abnormality control unit 81 of the first embodiment.
  • FIG. 4 is a time chart of the abnormal time control during stopping of the current instruction value I executed while the vehicle is stopped by the abnormal time control unit 81 according to the first embodiment.
  • SEC pressure secondary pressure
  • YES whether or not a decrease in the secondary pressure Psec is detected during traveling is determined as “YES” when the following two conditions are satisfied.
  • One condition is when the value obtained by subtracting the actual pressure from the command oil pressure is equal to or greater than the threshold value (command oil pressure ⁇ actual pressure ⁇ threshold value).
  • “Actual pressure” is input from the secondary pressure sensor 17.
  • the “threshold value” is a value in consideration of an allowable control error or the like.
  • Another condition is a case where the actual pressure falls below a necessary pressure at which the belt type continuously variable transmission CVT can transmit power without causing slippage.
  • the “necessary pressure” is obtained in advance by experiments or the like.
  • “control during abnormal running” controls the current instruction value I as shown in FIG. That is, the current instruction value I is raised or lowered.
  • time t1 is the time when the control in step S5 is started.
  • the current instruction value I is reduced from the original current (current) to a constant (value in the minimum range).
  • time t2 the current instruction value I is increased from a constant to the original current (time t1 to t3 is one cycle (charge current cycle)).
  • the current instruction value I is similarly changed by one cycle.
  • the solenoid pressure Psol and the line pressure PL are the original pressure values (the current instruction value I is the original current).
  • the solenoid pressure Psol and the line pressure PL are decreased from the maximum value to the original pressure value.
  • the line pressure spool valve 42 is operated with the maximum movement distance of the line pressure spool valve 42 in the A direction. .
  • the moving direction of the line pressure spool valve 42 is switched between the A direction and the B direction, and the line pressure spool valve 42 is repeatedly and forcibly operated.
  • the current instruction value I is used as the original current.
  • the current instruction value I is changed similarly to time t1 to t6.
  • the “constant” is obtained in advance by an experiment or the like from the moving distance of the line pressure spool valve 42 or the like. Note that there is one set from time t1 to t6, and time t1 to t11 is about 10 sec, for example.
  • whether or not the vehicle is stopped is determined from the range position (D range position, R range position, N range position, L range, etc.) input from the inhibitor switch 11, the vehicle speed input from the vehicle speed sensor 15, or the like. .
  • step S8 following the determination of “stopped” in step S7, control during stoppage abnormality (clean charge, control during abnormality) is executed, and the process proceeds to step S9.
  • “control during abnormalities during stopping” controls the current instruction value I as shown in FIG. That is, the current instruction value I is raised or lowered.
  • time t21 is the time when the control in step S8 is started.
  • the current instruction value I is increased from the original current (current) to the maximum value (MAX, maximum range value, for example, 1A).
  • MAX maximum range value
  • the current instruction value I is decreased from the maximum value to the minimum value (minimum range value, 0 A).
  • the current instruction value I is increased from zero to the original current. (Times t21 to t23 are one cycle (charge current cycle)).
  • the current instruction value is similarly increased from the original current to the maximum value, decreased from the maximum value to the minimum value, and increased from the minimum value to the original current.
  • the solenoid pressure Psol and the line pressure PL are decreased to the minimum value (minimum range value).
  • the solenoid pressure Psol and the line pressure PL increase to the maximum value (maximum value).
  • the moving direction of the line pressure spool valve 42 is switched between the A direction and the B direction, and the line pressure spool valve 42 is repeatedly and forcibly operated.
  • the current instruction value I is used as the original current.
  • the current instruction value I is changed in the same manner as at time t21 to t26. Note that one set is from time t21 to t26, and time t21 to t31 is, for example, about 10 sec.
  • DTC code failure code
  • “output the fault code” is displayed with a symbol, an identification mark, or the like on a vehicle information display device on which a tachometer or the like is displayed, for example. When repaired, the fault code is not output and the flag is reset from 3 to zero.
  • step S13 following the determination that “a decrease in the secondary pressure Psec is not detected during travel”, the flag is reset to zero, and the process proceeds to step S1.
  • control processing operation during abnormality “control operation during abnormality”
  • control operation during abnormality “control operation during abnormality”
  • characteristic operation of the control device for pressure regulating valve “control processing operation during abnormality”
  • step S1 “NO” When it is determined that “a decrease in the secondary pressure Psec is not detected during traveling”, the process proceeds from step S1 “NO” to step S13 in the flowchart of FIG. 2, and the flag is reset to zero in step S13.
  • step S1 “NO” the flow of step S1 “NO” ⁇ step S13 is repeated.
  • step S5 control during abnormalities during traveling is executed. Then, the process proceeds from step S5 to step S6.
  • step S6 the flag is set from zero to 1, and the process proceeds from step S6 to step S1.
  • step S1 “YES” ⁇ step in the flowchart of FIG.
  • the process proceeds from S2 “NO” to step S3 “NO” to step S4 “YES” to step S7. If it is determined in step S7 that the vehicle is “running”, the process proceeds from step S7 “NO” to step S1, step S1 “YES” ⁇ step S2 “NO” ⁇ step S3 “NO” ⁇ step S4 “YES”. ⁇ The flow of step S7 “NO” is repeated. If it is determined in step S7 that the vehicle is “stopped”, the process proceeds from step S7 “YES” to step S8. In step S8, control during abnormalities during stoppage is executed. Then, the process proceeds from step S8 to step S9. In step S9, the flag is set from 1 to 2, and the process proceeds from step S9 to step S1.
  • step S5 when the abnormal control during traveling in step S5 is executed and the abnormal control during stopping in step S8 is executed, it is determined that “a decrease in the secondary pressure Psec is detected during traveling”.
  • step S10 the abnormality control during traveling is executed as in step S5.
  • step S11 the flag is set from 2 to 3, and the process proceeds from step S11 to step S1.
  • step S12 it is determined that the decrease in the secondary pressure Psec during traveling is a failure, and a failure code is output. Then, the process proceeds from step S12 to the end.
  • step S1 “secondary during traveling If it is determined that “a decrease in pressure Psec is not detected”, the process proceeds from step S1 “NO” to step S13, and the flag is reset to zero in step S13.
  • step S1 the flow of step S1 “NO” ⁇ step S13 is repeated. That is, if “NO” is determined in step S1 after execution of the abnormal time control, it means that the normal state is restored from the abnormal state that is a reversible failure due to contamination.
  • FIG. 5 shows an operation example of the foreign matter removal control of the comparative example.
  • FIG. 6 shows an operation example of the abnormal time control of the first embodiment.
  • an operation example of the foreign matter removal control of the comparative example will be described first, and an operation example of the abnormality time control of the first embodiment will be described later.
  • each step of the control process at the time of abnormality will be described based on the time chart of FIG.
  • the hydraulic pressure supplied to the clutch is controlled by a pressure regulating valve.
  • a pressure regulating valve When the vehicle control device detects a decrease in the clutch pressure (hydraulic pressure) controlled by the pressure regulating valve during running or stopping, a signal from the solenoid to the pressure regulating valve in the stopped state (stopped) The pressure is changed, and the spool valve provided in the pressure regulating valve is moved (foreign matter removal control).
  • the foreign matter removal control in the stop state will be described based on the time chart of FIG.
  • the foreign matter removal control is finished and the vehicle starts to travel. Then, a decrease in clutch pressure is detected while the vehicle is traveling. Further, since the vehicle is running between times t54 and t56, the foreign matter removal control is not executed as in the times t51 to t53.
  • the vehicle is stopped and the foreign matter removal control is started again. Further, after time t56, the foreign matter removal control is executed in the same manner as between time t53 and t54. That is, in the comparative example, when a decrease in the clutch pressure is detected, the foreign matter removal control is not executed during traveling, and the foreign matter removal control is executed while the vehicle is stopped.
  • the foreign matter removal control that is, the movement of the spool is performed in the stopped state.
  • the operating direction of the spool may be on the side where the clutch pressure decreases or on the side where it increases.
  • contamination abbreviation of “contamination”
  • the reason why the foreign matter removal control is executed in the stopped state as in the comparative example is that, for example, even if the clutch is released due to a decrease in the clutch pressure, or even if the clutch surface pressure becomes excessive due to an increase in the clutch pressure. This is because there is no influence on driving.
  • the vehicle starts running from a stopped state.
  • the flowchart of FIG. 2 is started.
  • a decrease in the secondary pressure Psec is not detected during traveling.
  • “F 0”, which corresponds to the repetition of step S1 “NO” ⁇ step S13 in the flowchart of FIG.
  • step S1 “YES” ⁇ step S2 “NO” ⁇ step S3 “NO” ⁇ step S4 “NO” ⁇ step S5 in the flowchart of FIG.
  • step S5 the period from time t61 to t62 corresponds to step S5.
  • step S5 ⁇ step S6 ⁇ step S1 “YES” ⁇ step S2 “NO” ⁇ step S3 “NO” ⁇ step S4 “YES” ⁇ step S7 “NO”.
  • step S5 ⁇ step S6 ⁇ step S1 “YES” ⁇ step S2 “NO” ⁇ step S3 “NO” ⁇ step S4 “YES” ⁇ step S7 “NO”.
  • step S5 ⁇ step S6 ⁇ step S1 “YES” ⁇ step S2 “NO” ⁇ step S3 “NO” ⁇ step S4 “YES” ⁇ step S7 “NO”.
  • step S1 “YES” ⁇ step S2 “NO” ⁇ step S3 “NO” ⁇ step S4 “YES” ⁇ step S7 “YES” ⁇ step S8 in the flowchart of FIG.
  • step S8 the period from time t63 to t64 corresponds to step S8.
  • This time t64 corresponds to step S8 ⁇ step S9 ⁇ step S1 “YES” ⁇ step S2 “NO” ⁇ step S3 “YES” ⁇ step S10 in the flowchart of FIG. Further, the period from time t64 to t65 corresponds to step S10.
  • This time t65 corresponds to step S10 ⁇ step S11 ⁇ step S1 “YES” ⁇ step S2 “YES” ⁇ step S12 ⁇ end in the flowchart of FIG.
  • the operation example of FIG. 6 even if the vehicle is stopped after the time t65 or the vehicle stops at the time t66 in the operation example of FIG. Control is not performed.
  • the abnormal time control of the first embodiment is executed during traveling, unlike the foreign matter removal control of the comparative example. For this reason, even if it is a case where the fall of the secondary pressure Psec is detected during driving
  • the travel direction of the line pressure spool valve 42 is set between the A direction and the B direction (direction to the original position) during traveling. And the line pressure spool valve 42 is moved repeatedly. This promotes the discharge of contaminants during traveling.
  • the abnormality control unit 81 detects a decrease in the secondary pressure Psec during traveling (step S1 in FIG. 2, time t61 in FIG. 6, etc.), the line pressure solenoid is traveling. Abnormal control is performed to increase the solenoid pressure Psol from 41 to the line pressure spool valve 42 above the solenoid pressure Psol when a decrease in the secondary pressure Psec is detected (steps S5 and S10 in FIG. 2, FIG. 3). Time t1 to t2, time t3 to t4, time t6 to t7, time t8 to t9, and time t61 to t62 and time t64 to t65 in FIG. 6) (FIGS. 2 to 3 and 6).
  • the solenoid pressure Psol is increased during the traveling from the solenoid pressure Psol when the decrease in the secondary pressure Psec is detected. 42 moves in the A direction.
  • oil pressure for example, primary pressure Ppri etc.
  • hydraulic pressure for example, primary pressure Ppri etc.
  • the solenoid pressure Psol is increased during the traveling from the solenoid pressure Psol when the decrease in the secondary pressure Psec is detected. It is possible to discharge the contamination mixed in the pressure valve 4.
  • the abnormality control unit 81 sets the solenoid pressure Psol from the line pressure solenoid 41 to the line pressure spool valve 42 to a maximum value (steps S5 and S10 in FIG. 2, time t1 in FIG. 3). T2, time t3 to t4, time t6 to t7, time t8 to t9, and time t61 to t62 and time t64 to t65 of FIG. 6) (FIGS. 2 to 3 and 6). That is, since the solenoid pressure Psol is set to the maximum value, the movement distance of the line pressure spool valve 42 in the A direction becomes the maximum value. Therefore, the contamination mixed in the line pressure regulating valve 4 is reliably discharged during traveling.
  • the hydraulic pressure downstream from the line pressure regulating valve 4 (for example, the primary pressure Ppri or the like) does not decrease and affects the running state. Can be suppressed.
  • the abnormality control unit 81 repeatedly increases and decreases the solenoid pressure Psol from the line pressure solenoid 41 to the line pressure spool valve 42 during traveling (time t1 to t5 and time t6 to t6 in FIG. 3). t10) configuration (FIGS. 2 to 3 and FIG. 6). That is, the moving direction of the line pressure spool valve 42 is switched between the A direction and the B direction (returning to the original position), and the line pressure spool valve 42 is repeatedly moved. Therefore, the discharge of contamination is further promoted during traveling.
  • the abnormality control unit 81 executes the abnormality control during traveling (step S5 in FIG. 2 and times t61 to t62 in FIG. 6), and then the secondary pressure Psec controlled by the line pressure regulating valve 4 is adjusted.
  • a decrease is detected (step S1 in FIG. 2 and time t62 in FIG. 6)
  • a decrease in the secondary pressure Psec is detected in the solenoid pressure Psol from the line pressure solenoid 41 to the line pressure spool valve 42 in the stopped state.
  • Step S8 in FIG. 2 times t21 to t22 and times t23 to t24, times t26 to t27, times t28 to t29, and times t63 to t64 in FIG. 6).
  • the solenoid pressure Psol cannot be reduced below the solenoid pressure Psol when a decrease in the secondary pressure Psec is detected. For this reason, it is possible to move the line pressure spool valve 42 during traveling by lowering the solenoid pressure Psol below the solenoid pressure Psol when a decrease in the secondary pressure Psec is detected in a stationary state with little influence on the traveling state. It is moved to the completed area (area in the B direction from the original position). Accordingly, it is possible to discharge the contamination that could not be discharged by the movement of the line pressure spool valve 42 in the A direction during traveling in the stopped state.
  • the abnormality control unit 81 sets the solenoid pressure Psol from the line pressure solenoid 41 to the line pressure spool valve 42 to a minimum value (step S8 in FIG. 2, times t21 to t22 in FIG. 4). Time t23 to t24, time t26 to t27, time t28 to t29, and time t63 to t64 in FIG. 6) (FIGS. 2, 4 and 6). That is, since the solenoid pressure Psol is set to the minimum value, the movement distance of the line pressure spool valve 42 in the B direction is set to the maximum value. Therefore, the contamination mixed in the line pressure regulating valve 4 is reliably discharged in the stop state.
  • the abnormality control unit 81 repeatedly increases and decreases the solenoid pressure Psol from the line pressure solenoid 41 to the line pressure spool valve 42 when the vehicle is stopped (time t21 to t25 and time t26 to t in FIG. 4).
  • t30) configuration (FIGS. 2, 4 and 6). That is, the moving direction of the line pressure spool valve 42 is switched between the A direction and the B direction, and the line pressure spool valve 42 is repeatedly moved. Therefore, the discharge of contamination is further promoted when the vehicle is stopped.
  • the control unit 81 at the time of abnormality is subjected to the control at the time of abnormality during stopping so that the solenoid pressure Psol from the line pressure solenoid 41 to the line pressure spool valve 42 is lowered in the stopped state (step S8 in FIG. 2 and FIG. 2).
  • 6 time t63 to t64
  • step S1 in FIG. 2 and time t65 in FIG. 6 it is determined that there is a failure
  • Step S12 and time t65 in FIG. 6) (FIGS. 2 and 6).
  • the pressure regulating valve is the line pressure regulating valve 4 provided in the hydraulic control valve unit 3 of the belt type continuously variable transmission CVT.
  • the line pressure regulating valve 4 includes a line pressure solenoid 41 and a line pressure spool valve 42. Moreover, it has the secondary pulley Sec which uses the line pressure PL regulated by the line pressure regulating valve 4 as the secondary pressure Psec. And when the fall of the secondary pressure Psec of the secondary pulley Sec was detected by the abnormal time control part 81, it was set as the structure which controls the line pressure regulating valve 4 (FIG. 1). That is, by controlling the line pressure regulating valve 4, even when a decrease in the secondary pressure Psec is detected, the decrease in the secondary pressure Psec is suppressed. Therefore, in addition to suppressing the decrease in the secondary pressure Psec, a decrease in hydraulic pressure downstream of the line pressure regulating valve 4 is also suppressed.
  • a pressure regulating valve (line pressure regulating valve 4) having a solenoid (line pressure solenoid 41) and a spool valve (line pressure spool valve 42);
  • the spool valve (line pressure spool valve 42) is operated by the command pressure (solenoid pressure Psol) generated by controlling the current command value I to the solenoid (line pressure solenoid 41) to control the hydraulic pressure (secondary pressure Psec).
  • An abnormal-time control unit 81 is provided that performs abnormal-time control that increases (solenoid pressure Psol) from the command pressure (solenoid pressure Psol) when a decrease in hydraulic pressure (secondary pressure Psec) is detected.
  • the abnormal time control unit 81 sets the indicated pressure (solenoid pressure Psol) from the solenoid (line pressure solenoid 41) to the spool valve (line pressure spool valve 42) as a maximum value. For this reason, in addition to the effect of (1), the contamination mixed in the pressure regulating valve (line pressure regulating valve 4) during traveling can be reliably discharged.
  • the controller 81 at the time of abnormality repeatedly increases and decreases the command pressure (solenoid pressure Psol) from the solenoid (line pressure solenoid 41) to the spool valve (line pressure spool valve 42) during traveling. For this reason, in addition to the effect of (1) or (2), the discharge of contamination can be further promoted during traveling.
  • the abnormal-time control unit 81 sets the command pressure (solenoid pressure Psol) from the solenoid (line pressure solenoid 41) to the spool valve (line pressure spool valve 42) as a minimum value. For this reason, in addition to the effect of (4), the contamination mixed in the pressure regulating valve (line pressure regulating valve 4) can be surely discharged in the stopped state.
  • the abnormal time control unit 81 repeatedly increases and decreases the command pressure (solenoid pressure Psol) from the solenoid (line pressure solenoid 41) to the spool valve (line pressure spool valve 42) in a stopped state. For this reason, in addition to the effect of (4) or (5), the discharge of contamination can be further promoted in a stopped state.
  • the pressure regulating valve is a line pressure regulating valve 4 provided in the hydraulic control valve unit 3 of the continuously variable transmission (belt type continuously variable transmission CVT).
  • the line pressure regulating valve 4 has a line pressure solenoid 41 and a line pressure spool valve 42, A secondary pulley Sec having the secondary pressure Psec as the line pressure PL regulated by the line pressure regulating valve 4;
  • the abnormal time control unit 81 controls the line pressure regulating valve 4 when a decrease in the secondary pressure Psec of the secondary pulley Sec is detected. Therefore, in addition to the effects (1) to (7), it is possible to suppress a decrease in hydraulic pressure downstream of the line pressure regulating valve 4.
  • Example 1 As mentioned above, although the control apparatus of the pressure regulation valve of this invention has been demonstrated based on Example 1, it is not restricted to Example 1 about a concrete structure, The summary of the invention which concerns on each claim of a claim As long as they do not deviate, design changes and additions are permitted.
  • the increase and decrease of the solenoid pressure Psol are repeated in the abnormal control during traveling and the abnormal control during stopping.
  • the increase and decrease of the solenoid pressure Psol are not repeated, and at time t1, the current instruction value I is decreased from the original current to a constant, and the current instruction value I is maintained at a constant between times t1 and t10. You may do it.
  • the current instruction value I is returned from the constant to the original current. That is, the increase in solenoid pressure Psol may be maintained between times t1 and t10.
  • FIG. 3 the increase and decrease of the solenoid pressure Psol are not repeated, and at time t1, the current instruction value I is decreased from the original current to a constant, and the current instruction value I is maintained at a constant between times t1 and t10. You may do it.
  • the current instruction value I is returned from the constant to the original current. That is, the increase in solenoid pressure Psol may be maintained between times t1 and t10.
  • the current instruction value I may be maintained at the maximum value between times t21 and t30 without repeating the increase and decrease of the solenoid pressure Psol.
  • the current instruction value I is returned from the maximum value to the original current. That is, the decrease in the solenoid pressure Psol may be maintained between times t21 and t30.
  • the solenoid pressure Psol from the line pressure solenoid 41 to the line pressure spool valve 42 is reduced when the secondary pressure Psec is stopped. What is necessary is just to make it lower than the solenoid pressure Psol at the time of being detected.
  • Example 1 shows an example in which the current instruction value I is decreased from the original current to a constant, and the solenoid pressure Psol is increased to a maximum value in the abnormal control during traveling.
  • the current instruction value I may be decreased from the original current to the minimum value (0 A), and the solenoid pressure Psol may be increased to the maximum value.
  • Example 1 shows an example in which the current instruction value I is increased from the original current to the maximum value and the solenoid pressure Psol is decreased to the minimum value in the abnormal control during stopping. Further, an example has been shown in which the current instruction value I is decreased from the maximum value to the minimum value, and the solenoid pressure Psol is increased to the maximum value. However, it is not limited to this. For example, the current instruction value I may be increased from the original current to the maximum value, and the solenoid pressure Psol may be decreased to the minimum value. Further, the current instruction value I may be decreased from the maximum value to the minimum value, and the solenoid pressure Psol may be increased to the maximum value.
  • the increase and decrease of the solenoid pressure Psol are repeated twice, and this is set as one set, and the abnormal control during traveling or the abnormal control during stopping is performed once.
  • An example in which two sets are executed in each of the above is shown. However, it is not limited to this.
  • the increase and decrease of the solenoid pressure Psol is repeated once or three times or more, and this is set as one set, and one set or three or more sets are executed in each of the abnormal control during traveling and the abnormal control during stopping. May be.
  • the abnormal control during traveling is executed once before and after the abnormal control during stopping.
  • the abnormal control during traveling may not be executed after the abnormal control during stopping.
  • Example 1 shows an example in which the hydraulic pressure at which a decrease is detected is set to the secondary pressure Psec.
  • the hydraulic pressure at which a decrease is detected may be used as the primary pressure Ppri.
  • the abnormal time control unit 81 may control both the line pressure regulating valve 4 and the primary pressure regulating valve 5 that regulate the primary pressure Ppri during the abnormal time.
  • all of the upstream pressure regulating valves that regulate the hydraulic pressure at which a decrease is detected may be controlled by the abnormality control unit 81.
  • Example 1 shows an example in which the pressure regulating valve is a line pressure regulating valve 4 that regulates the line pressure PL.
  • the pressure regulating valve may be each pressure regulating valve that regulates primary pressure Ppri, secondary pressure Psec, pilot pressure Pp, clutch pressure, brake pressure, or the like.
  • Example 1 shows an example of a single pressure control method in which the secondary pressure Psec is the line pressure PL.
  • the present invention is not limited to this, and a double pressure adjustment method of adjusting the primary pressure Ppri and the secondary pressure Psec may be employed. That is, as with the primary pressure regulating valve 5, a secondary pressure regulating valve may be provided.
  • Example 1 shows an example in which the control device for a pressure regulating valve of the present invention is applied to a belt-type continuously variable transmission CVT including a hydraulic control valve unit 3.
  • the control device for the pressure regulating valve of the present invention can also be applied to an automatic transmission called a step AT including a hydraulic control valve unit and other continuously variable transmissions.
  • the control device for the pressure regulating valve of the present invention can be applied to a hydraulic device having the pressure regulating valve.
  • the control device for a pressure regulating valve according to the present invention can be applied to a 4WD clutch, an LSD (Limited Slip Differential) clutch, and the like provided in a drive system.
  • Example 1 shows an example in which the actual pressure of the secondary pressure Psec is increased by discharging the contamination according to the solenoid pressure Psol on the premise that a decrease in the secondary pressure Psec due to the contamination is detected.
  • the increase and decrease in the solenoid pressure Psol to the spool valve in the abnormal control according to the present invention is for the purpose of moving the spool valve in the pressure regulating valve, and the hydraulic pressure regulated by the pressure regulating valve (for example, the line There is no need to increase / decrease the actual pressure of the pressure, secondary pressure, primary pressure, clutch pressure, brake pressure, etc.
  • the actual pressure of the hydraulic pressure regulated by the pressure regulating valve is allowed to increase / decrease.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

ライン圧ソレノイド(41)とライン圧スプールバルブ(42)を有するライン圧調圧弁(4)と、ライン圧ソレノイド(41)への電流指示値(I)を制御することにより作り出されるソレノイド圧(Psol)でライン圧スプールバルブ(42)を動作させて、セカンダリ圧(Psec)を制御するCVTコントロールユニット(8)と、を備える調圧弁の制御装置である。CVTコントロールユニット(8)は、異常時制御部(81)を有する。異常時制御部(81)は、走行中にセカンダリ圧(Psec)の低下が検知された場合、走行中、ライン圧ソレノイド(41)からライン圧スプールバルブ(42)へのソレノイド圧(Psol)を、セカンダリ圧(Psec)の低下が検知された際のソレノイド圧(Psol)より増大させる異常時制御を実行する。これにより、走行中に油圧の低下が検知された場合であっても、走行への影響代を低減しつつ、走行中、油圧の低下を抑制することができる。

Description

調圧弁の制御装置
 本発明は、ソレノイドとスプールバルブを有する調圧弁を備えた調圧弁の制御装置に関する。
 従来、車両の制御装置において、クラッチへの供給油圧を制御する調圧弁が知られている。その車両の制御装置において、走行中または停車中に、この調圧弁により制御されるクラッチ圧(油圧)の低下を検知した場合、停車状態(停車中)にて、ソレノイドからの調圧弁への指示圧(信号圧)を変化させ、調圧弁内に設けられたスプールバルブを移動させる(異物除去制御)。これにより、調圧弁に混入したコンタミ(「コンタミネーション」の略称)を排出することが可能である。(例えば、特許文献1参照)。
 しかしながら、従来の車両の制御装置にあっては、停車状態にてスプールを移動してコンタミを排出しているため、例えば、走行中に調圧弁内にコンタミが混入したことにより、クラッチ圧が低下した場合、走行中に、走行中のクラッチ圧の低下を防止することができない。また、仮に、従来の異物除去制御を走行中に行うと、例えば、調圧弁の吐出圧が低下する側にスプールバルブを移動させた場合、調圧弁より下流の油圧が低下してしまい、クラッチやベルト等への供給油圧が不足するといった、走行状態に影響を及ぼすことになる。このように、従来の車両の制御装置にあっては、走行中にクラッチ圧が低下した場合、走行状態に影響を及ぼすことなく、走行中のクラッチ圧の低下を防止することができない、という問題がある。
特開2009-216228号公報
 本発明は、上記問題に着目してなされたもので、走行中に油圧の低下が検知された場合であっても、走行への影響代を低減しつつ、走行中、油圧の低下を抑制することができる調圧弁の制御装置を提供することを目的とする。
 上記目的を達成するため、本発明は、調圧弁と、コントローラと、を備える。調圧弁は、ソレノイドとスプールバルブを有する。コントローラは、ソレノイドへの電流指示値を制御することにより作り出される指示圧でスプールバルブを動作させて、油圧を制御する。この調圧弁の制御装置において、コントローラは、異常時制御部を有する。異常時制御部は、走行中に油圧の低下が検知された場合、走行中、ソレノイドからスプールバルブへの指示圧を、油圧の低下が検知された際の指示圧より増大させる異常時制御を実行する。
 よって、異常時制御部により、走行中に油圧の低下が検知された場合、走行中、ソレノイドからスプールバルブへの指示圧を、油圧の低下が検知された際の指示圧より増大させる異常時制御が実行される。即ち、走行中に油圧の低下が検知された場合であっても、走行中、指示圧を油圧の低下が検知された際の指示圧より増大させるので、スプールバルブが一方向へ移動する。これにより、油圧が増大するので、調圧弁より下流の油圧が低下することを抑制することができる。このため、他の部位において油圧が低下して走行状態に影響を及ぼすことが抑制される。この結果、走行中に油圧の低下が検知された場合であっても、走行への影響代を低減しつつ、走行中、油圧の低下を抑制することができる。
実施例1の調圧弁の制御装置が適用された油圧コントロールバルブユニットを備えるベルト式無段変速機を示す概略構成図である。 実施例1の異常時制御部にて実行されるセカンダリ圧低下検知時の異常時制御処理の流れを示すフローチャートである。 実施例1の異常時制御部にて走行中に実行される電流指示値の走行中異常時制御のタイムチャートである。 実施例1の異常時制御部にて停車中に実行される電流指示値の停車中異常時制御のタイムチャートである。 比較例の異物除去制御の動作例であって、比較例の異物除去制御装置において車速、油圧低下検知、異物除去制御を示すタイムチャートである。 実施例1の異常時制御の動作例であって、実施例1の異常時制御部において車速、走行中異常時制御、停車中異常時制御、セカンダリ圧Psec低下検知フラグ、故障コードの出力を示すタイムチャートである。
 以下、本発明の調圧弁の制御装置を実現する最良の形態を、図面に示す実施例1に基づいて説明する。
 まず、構成を説明する。
 実施例1における調圧弁の制御装置は、油圧コントロールバルブユニットを備えるベルト式無段変速機に適用したものである。なお、ベルト式無段変速機は、例えば、エンジン車やハイブリッド車等の車両に搭載される。以下、実施例1の制御装置の構成を、「全体構成」と[異常時制御処理構成]に分けて説明する。
 [全体構成]
 図1は、実施例1の調圧弁の制御装置が適用された油圧コントロールバルブユニットを備えるベルト式無段変速機の概略構成図示す。以下、図1に基づいて、油圧コントロールバルブユニットを備えるベルト式無段変速機の全体構成を説明する。
 ベルト式無段変速機CVTは、前進クラッチFCと、後退ブレーキRBと、油圧コントロールバルブユニット3と、オイルポンプO/P(オイル供給源)と、CVTコントロールユニット8(CVT CU、コントローラ)と、を有する。
 前記ベルト式無段変速機CVTは、プライマリプーリPriと、セカンダリプーリSecと、このプライマリプーリPriとセカンダリプーリSecの間に掛け渡されたプーリベルトVを有するベルト式無段変速機である。プライマリプーリPriとセカンダリプーリSecは、それぞれのプライマリ圧室1及びセカンダリ圧室2へ油圧が供給されることでプーリベルトVを挟持しつつプーリ幅を変更し、プーリベルトVを挟持する面の径を変更して変速比(プーリ比)を自在に制御する。
 前記前進クラッチFCと前記後退ブレーキRBは、摩擦締結要素である。前進クラッチFCと後退ブレーキRBは、ここでは油圧作動による湿式の多板摩擦クラッチ/ブレーキから構成される。前進走行時には、前進クラッチFCが締結され、後退走行時には、後退ブレーキRBが締結される。
 前記油圧コントロールバルブユニット3は、CVTコントロールユニット8からの制御指令に基づき、制御油圧を作り出す。この制御油圧により、ベルト式無段変速機CVTや前進クラッチFCや後退ブレーキRB等が制御される。この油圧コントロールバルブユニット3は、ライン圧調圧弁4(調圧弁)と、プライマリ圧調圧弁5と、前進クラッチ圧調圧弁6と、後退ブレーキ圧調圧弁7と、を有する。
 前記ライン圧調圧弁4は、オイルポンプO/Pからのポンプ吐出圧に基づき、ベルト式無段変速機CVTと前進クラッチFCと後退ブレーキRBへ供給するライン圧PLを調圧する。実施例1では、セカンダリ圧調圧弁を有さないので、ライン圧PLは、セカンダリ圧Psecと同圧になる。そのため、実施例1では、セカンダリ圧Psecをライン圧PLとする片調圧方式となっている。また、ライン圧調圧弁4は、ライン圧ソレノイド41(ソレノイド)と、ライン圧スプールバルブ42(スプールバルブ)を有する。
 前記ライン圧ソレノイド41は、パイロット圧Pp(一定圧)を元圧とし、電流の印加によりライン圧スプールバルブ42へのソレノイド圧Psol(指示圧、信号圧)を作り出す。印加される電流は、CVTコントロールユニット8からの電流指示値Iに基づく。このソレノイド圧Psolにより、ライン圧スプールバルブ42が動作される。また、ソレノイド圧Psolは、ライン圧ソレノイド41に印加される電流指示値Iが小さいほど大きくなり、ライン圧ソレノイド41に印加される電流指示値Iが大きいほど小さくなる形態である。即ち、電流指示値Iが最小で出力されるソレノイド圧Psolが最大になり、電流指示値Iが最大で出力されるソレノイド圧Psolが最小になる形態である。
 前記ライン圧スプールバルブ42は、ソレノイド圧Psolに基づき動作し、ライン圧PLを調圧する。ライン圧スプールバルブ42の一端側に、ソレノイド圧Psolが作用し、ライン圧スプールバルブ42の他端側に、スプリング力とPLフィードバック圧F/B(調圧されたライン圧のフィードバック圧)が作用する。ソレノイド圧Psolが変化し、ライン圧スプールバルブ42の一端側からの力が他端側からの力よりも大きいとき、ライン圧スプールバルブ42はA方向(一方向、油圧が増大する方向)へ移動する。これにより、ライン圧PLが増大する。また、ソレノイド圧Psolが変化し、ライン圧スプールバルブ42の他端側からの力が一端側からの力よりも大きいとき、ライン圧スプールバルブ42はA方向とは反対のB方向(反対方向、油圧が低下する方向)へ移動する。このため、余剰オイルがドレーンされる。これにより、ライン圧PLが低下する。このようなライン圧スプールバルブ42の移動により、ライン圧PLが調圧される。
 前記プライマリ圧調圧弁5は、ライン圧PLを元圧とし、プライマリ圧室1へ導くプライマリ圧Ppriを調圧する。例えば、最ハイ変速比のとき、プライマリ圧Ppriは、ライン圧PLとされ、ロー変速比側へ移行するほど低圧の変速圧とされる。
 前記前進クラッチ圧調圧弁6は、ライン圧PLを元圧とし、前進クラッチFCに供給される前進クラッチ圧Pfcを調圧する。例えば、前進クラッチFCを締結するとき(前進走行時)、前進クラッチ圧Pfcは高圧とされ、前進クラッチFCを解放するとき、前進クラッチ圧Pfcは低圧とされる。
 前記後退ブレーキ圧調圧弁7は、ライン圧PLを元圧とし、後退ブレーキRBに供給される後退ブレーキ圧Prbを調圧する。例えば、後退ブレーキRBを締結するとき(後退走行時)、後退ブレーキ圧Prbは高圧とされ、後退ブレーキRBを解放するとき、後退ブレーキ圧Prbは低圧とされる。
 前記CVTコントロールユニット8は、ベルト式無段変速機CVTの変速比制御等を行う。このCVTコントロールユニット8への入力センサとして、インヒビタースイッチ11、CVT油温センサ12、アクセル開度センサ13、CVT入力回転数センサ14、車速センサ15、プライマリ圧センサ16、セカンダリ圧センサ17等を備えている。さらに、CVTコントロールユニット8へは、他の車載コントローラ18からCAN通信線19を介して、制御に必要な情報がもたらされる。また、これらのセンサ等の情報に基づき、CVTコントロールユニット8は、ライン圧ソレノイド41への電流指示値Iを制御し、この電流指示値Iの制御により作り出されるソレノイド圧Psolでライン圧スプールバルブ42を動作させて、ライン圧PL(油圧)を制御する。このCVTコントロールユニット8は、異常時制御部81を有する。前記異常時制御部81は、セカンダリ圧センサ17から入力されるセカンダリ圧Psecの低下が検知された場合、ライン圧調圧弁4を制御する。
 [異常時制御処理構成]
 図2は、実施例1の異常時制御部81にて実行されるセカンダリ圧Psec低下検知時の異常時制御処理の流れを示すフローチャートである(異常時制御)。図3は、実施例1の異常時制御部81にて走行中に実行される電流指示値Iの走行中異常時制御である。図4は、実施例1の異常時制御部81にて停車中に実行される電流指示値Iの停車中異常時制御のタイムチャートである。以下、セカンダリ圧Psec低下検知時の異常時制御処理構成をあらわす図2の各ステップについて説明する。なお、この制御処理は、所定の制御周期(例えば、10msec)で繰り返し実行される。また、「セカンダリ圧Psecの低下が検知されていない場合(初期)」、フラグ(F)はゼロである(F=0)。
 ステップS1では、スタートでの「F=0」、ステップS6での「F=1」の設定、ステップS7での「走行中」との判断、ステップS9での「F=2」の設定、ステップS11での「F=3」の設定、或いは、ステップS13での「F=0」の設定に続き、走行中にセカンダリ圧Psec(SEC圧)の低下が検知されたか否かを判断する。YES(走行中にセカンダリ圧Psecの低下が検知されたと判断された場合)はステップS2へ進み、NO(走行中にセカンダリ圧Psecの低下が検知されないと判断された場合)はステップS13へ進む。なお、フラグがゼロより大きければ、YESと判断される。
 ここで、走行中にセカンダリ圧Psecの低下が検知されたか否かは、下記の2つの条件を満たす場合に、「YES」と判断される。まず1つの条件は、指示油圧から実圧を引いた値が閾値以上の場合である(指示油圧-実圧≧閾値)。「実圧」は、セカンダリ圧センサ17から入力される。「閾値」とは、許容される制御誤差等が考慮された値である。もう1つの条件は、実圧が、ベルト式無段変速機CVTが滑りを発生せずに動力伝達可能な必要圧を下回った場合である。「必要圧」は、実験等により予め求めておく。
 ステップS2では、ステップS1での「走行中にセカンダリ圧Psecの低下が検知された」との判断に続き、フラグが3か否かを判断する。YES(F=3)の場合はステップS12へ進み、NO(F≠3)の場合はステップS3へ進む。
 ステップS3では、ステップS2での「F≠3」であるとの判断に続き、フラグが2か否かを判断する。YES(F=2)の場合はステップS10へ進み、NO(F≠2)の場合はステップS4へ進む。
 ステップS4では、ステップS3での「F≠2」であるとの判断に続き、フラグが1か否かを判断する。YES(F=1)の場合はステップS7へ進み、NO(F≠1)の場合はステップS5へ進む。
 ステップS5では、ステップS4での「F≠1」(即ち「F=0」)であるとの判断に続き、走行中異常時制御(キックチャージ、異常時制御)を実行し、ステップS6へ進む。
 ここで、「走行中異常時制御」とは、図3に示すように、電流指示値Iを制御する。即ち、電流指示値Iを上下させる。
 図3について説明すると、時刻t1がステップS5の制御を開始する時である。その時刻t1では、電流指示値Iを、元電流(現在)から定数(最小域の値)まで低下させる。次いで、時刻t2では、電流指示値Iを、定数から元電流に上昇させる(時刻t1~t3が1周期(チャージ電流周期))。次いで、時刻t3~t5では、同様に電流指示値Iを1周期変化させる。この電流指示値Iの変化により、電流指示値Iを元電流から定数(最小域の値)まで低下させると、ソレノイド圧Psol及びライン圧PLが元圧の値(電流指示値Iが元電流のときの値)から最大域の値まで上昇し、電流指示値Iを定数から元電流まで上昇させると、ソレノイド圧Psol及びライン圧PLが最大域の値から元圧の値まで低下する。つまり、ソレノイド圧Psol及びライン圧PLが元圧の値から最大域の値まで上昇すると、A方向へのライン圧スプールバルブ42の移動距離が最大域の値で、ライン圧スプールバルブ42を動作させる。このように、ライン圧スプールバルブ42の移動方向をA方向とB方向に切り替え、ライン圧スプールバルブ42を繰り返し強制的に動作させる。続いて、時刻t5~t6(チャージ間隔)では、電流指示値Iを元電流とする。この間で、ライン圧PLの変化により変速ショック等の影響が出ていないか確認する。次いで、時刻t6~t11では、時刻t1~t6と同様に電流指示値Iを変化させる。
 ここで、「定数」とは、ライン圧スプールバルブ42の移動距離等から、実験等により予め求めておく。なお、時刻t1~t6までが1セットであり、時刻t1~t11が例えば約10secである。
 ステップS6では、ステップS5での走行中異常時制御の実行に続き、フラグをゼロから1に設定し(F=1)、ステップS1へ進む。
 ステップS7では、ステップS4での「F=1」であるとの判断に続き、停車中(停車状態)か否かを判断する。YES(停車中)の場合にはステップS8へ進み、NO(走行中)の場合にはステップS1へ進む。
 ここで、停車中か否かは、インヒビタースイッチ11から入力されるレンジ位置(Dレンジ位置やRレンジ位置やNレンジ位置やLレンジ等)や、車速センサ15から入力される車速等から判断する。
 ステップS8では、ステップS7での「停車中」との判断に続き、停車中異常時制御(クリーンチャージ、異常時制御)を実行し、ステップS9へ進む。
 ここで、「停車中異常時制御」とは、図4に示すように、電流指示値Iを制御する。即ち、電流指示値Iを上下させる。
 図4について説明すると、時刻t21がステップS8の制御を開始する時である。その時刻t21では、電流指示値Iを、元電流(現在)から最大値(MAX、最大域の値、例えば1A)まで上昇させる。次いで、時刻t22では、電流指示値Iを、最大値から最小値(最小域の値、0A)まで低下させる。次いで、時刻t23では、電流指示値Iを、ゼロから元電流まで上昇させる。(時刻t21~t23が1周期(チャージ電流周期))。次いで、時刻t23~t25では、同様に電流指示値を、元電流から最大値まで上昇させ、最大値から最小値まで低下させ、最小値から元電流まで上昇させる。この電流指示値Iの変化により、電流指示値Iを最大値まで上昇させると、ソレノイド圧Psol及びライン圧PLが最小値(最小域の値)まで低下する。電流指示値Iを最小値まで低下させると、ソレノイド圧Psol及びライン圧PLが最大値(最大域の値)まで上昇する。つまり、ソレノイド圧Psol及びライン圧PLが最小値まで低下すると、B方向へのライン圧スプールバルブ42の移動距離が最大値(最大域の値)となる。一方、ソレノイド圧Psol及びライン圧PLが最大値まで上昇すると、A方向へのライン圧スプールバルブ42の移動距離が最大値(最大域の値)となる。言い換えると、ライン圧スプールバルブ42の移動(動作)距離が、A方向及びB方向の両方向ともに最大値(最大域の値)となるので、フルストロークでライン圧スプールバルブ42を移動させることができる。このように、ライン圧スプールバルブ42の移動方向をA方向とB方向に切り替え、ライン圧スプールバルブ42を繰り返し強制的に動作させる。続いて、時刻t25~t26(チャージ間隔)では、電流指示値Iを元電流とする。この間で、ライン圧PLの変化により変速ショック等の影響が出ていないか確認する。次いで、時刻t26~t31では、時刻t21~t26と同様に電流指示値Iを変化させる。なお、時刻t21~t26までが1セットであり、時刻t21~t31が例えば約10secである。
 ステップS9では、ステップS8での停車中異常時制御の実行に続き、フラグを1から2に設定し(F=2)、ステップS1へ進む。
 ステップS10では、ステップS3での「F=2」であるとの判断に続き、走行中異常時制御(キックチャージ、異常時制御)を実行し、ステップS11へ進む。走行中異常時制御は、ステップS5の走行中異常時制御と同様であるので、説明を省略する。
 ステップS11では、ステップS10での走行中異常時制御の実行に続き、フラグを2から3に設定し(F=3)、ステップS1へ進む。
 ステップS12では、ステップS2での「F=3」であるとの判断に続き、走行中のセカンダリ圧Psecの低下は異常(故障)であると確定(判定)して、故障コード(DTCコード)を出力(セット)し、エンドへ進む。
 ここで、「故障コードを出力する」とは、例えば、タコメータ等が表示される車両用情報表示装置に記号や識別マーク等で表示される。なお、修理されると、故障コードは出力されなくなり、フラグが3からゼロにリセットされる。
 ステップS13では、「走行中にセカンダリ圧Psecの低下が検知されない」との判断に続き、フラグをゼロにリセットし、ステップS1へ進む。
 次に作用を説明する。
 実施例1における調圧弁の制御装置における作用を、「異常時制御処理作用」と、「異常時制御作用」と、「調圧弁の制御装置の特徴作用」に分けて説明する。
 [異常時制御処理作用]
 実施例1の異常時制御処理作用を、図2に示すフローチャートに基づき説明する。
 「走行中にセカンダリ圧Psecの低下が検知されない」と判断される場合は、図2のフローチャートにおいて、ステップS1「NO」からステップS13へ進み、ステップS13でフラグがゼロにリセットされる。そして、ステップS1において「NO」と判断される場合は、ステップS1「NO」→ステップS13の流れが繰り返される。
 「F=0」(走行中にセカンダリ圧Psecの低下が検知されていない状態)で、「走行中にセカンダリ圧Psecの低下が検知された」と判断される場合は、図2のフローチャートにおいて、ステップS1「YES」→ステップS2「NO」→ステップS3「NO」→ステップS4「NO」→ステップS5へと進む。ステップS5では、走行中異常時制御が実行される。そして、ステップS5→ステップS6へ進み、ステップS6では、フラグがゼロから1に設定され、ステップS6からステップS1へと進む。
 次いで、ステップS5の走行中異常時制御が実行されても、「走行中にセカンダリ圧Psecの低下が検知された」と判断される場合は、図2のフローチャートにおいて、ステップS1「YES」→ステップS2「NO」→ステップS3「NO」→ステップS4「YES」→ステップS7へと進む。ステップS7において、「走行中」と判断される場合には、ステップS7「NO」からステップS1へ進み、ステップS1「YES」→ステップS2「NO」→ステップS3「NO」→ステップS4「YES」→ステップS7「NO」の流れが繰り返される。そして、ステップS7において、「停車中」と判断される場合、ステップS7「YES」からステップS8へ進む。ステップS8では、停車中異常時制御が実行される。そして、ステップS8→ステップS9へと進み、ステップS9では、フラグが1から2に設定され、ステップS9からステップS1へ進む。
 次いで、ステップS5の走行中異常時制御が実行されると共に、ステップS8の停車中異常時制御が実行されても、「走行中にセカンダリ圧Psecの低下が検知された」と判断される場合は、図2のフローチャートにおいて、ステップS1「YES」→ステップS2「NO」→ステップS3「YES」→ステップS10へと進む。ステップS10では、ステップS5と同様の走行中異常時制御が実行される。そして、ステップS10→ステップS11へ進み、ステップS11では、フラグが2から3に設定され、ステップS11からステップS1へと進む。
 続いて、ステップS5とステップS8の異常時制御が実行されると共に、ステップS10の走行中異常時制御が実行されても、「走行中にセカンダリ圧Psecの低下が検知された」と判断される場合は、図2のフローチャートにおいて、ステップS1「YES」→ステップS2「YES」→ステップS12へ進む。ステップS12では、走行中のセカンダリ圧Psecの低下は故障であると判定すると共に、故障コードを出力する。そして、ステップS12からエンドへ進む。
 ここで、ステップS5の走行中異常時制御の実行後、ステップS8の停車中異常時制御の実行後、または、ステップS10の走行中異常時制御の実行後に、ステップS1において、「走行中にセカンダリ圧Psecの低下が検知されない」と判断される場合には、ステップS1「NO」からステップS13へ進み、ステップS13でフラグがゼロにリセットされる。そして、ステップS1において「NO」と判断される場合は、ステップS1「NO」→ステップS13の流れが繰り返される。つまり、異常時制御の実行後に、ステップS1において「NO」と判断される場合は、コンタミによる可逆故障である異常状態から正常状態に復帰したことを意味する。
 [異常時制御作用]
 図5は、比較例の異物除去制御の動作例を示す。図6は、実施例1の異常時制御の動作例を示す。以下、先に、比較例の異物除去制御の動作例を説明し、後に実施例1の異常時制御の動作例を説明する。また、図6のタイムチャートに基づき、異常時制御処理構成の各ステップについて説明する。
 (比較例の異物除去制御の動作例)
 比較例の車両の制御装置においては、クラッチへの供給油圧を調圧弁で制御する。その車両の制御装置において、走行中または停車中に、この調圧弁により制御されるクラッチ圧(油圧)の低下を検知した場合、停車状態(停車中)にて、ソレノイドからの調圧弁への信号圧を変化させ、調圧弁内に設けられたスプールバルブを移動させる(異物除去制御)。この停車状態における異物除去制御について、以下、図5のタイムチャートに基づき説明する。
 時刻t50のとき、車両が停車状態から走行を開始する。この時刻t50のとき及び時刻t50~t51の間において、クラッチ圧の低下が検知されない。
 時刻t51のとき、走行中に、クラッチ圧の低下が検知される。しかしながら、比較例では、走行中には、異物除去制御が実行されない。また、時刻t51~t53の間、走行中であるので、異物除去制御が実行されない。このため、走行中に、クラッチ圧の低下を防止することができない。
 時刻t53のとき、車両が停止され、異物除去制御が開始される。また、時刻t53~t54の間は、異物除去制御が実行される。
 時刻t54のとき、異物除去制御が終了されると共に、車両の走行が開始される。そして、車両走行中に、クラッチ圧の低下が検知される。また、時刻t54~t56の間は、走行中であるため、時刻t51~t53の間と同様に、異物除去制御が実行されない。
 時刻t56のとき、車両が停止され、再び異物除去制御が開始される。また、時刻t56より後は、時刻t53~t54の間と同様に、異物除去制御が実行される。即ち、比較例では、クラッチ圧の低下が検知されると、走行中には異物除去制御が実行されず、停車中に異物除去制御が実行される。
 このように、比較例では、異物除去制御、すなわち、スプールの移動を停車状態にて行っている。このため、スプールの動作方向は、クラッチ圧が低下する側であっても、増大する側であってもよい。これにより、調圧弁に混入したコンタミ(「コンタミネーション」の略称)を排出することが可能である。また、比較例のように停車状態で異物除去制御が実行される理由は、例えば、クラッチ圧の低下によりクラッチが解放されても、また、クラッチ圧の増大によりクラッチ面圧が過大となっても、走行への影響がないからである。
 (実施例1の異常時制御の動作例)
 次に、図6のタイムチャートに示す動作例に基づき、実施例1の異常時制御の動作例を説明する。
 時刻t60のとき、車両が停車状態から走行を開始する。例えば、この時刻t60のときに、図2のフローチャートが開始される。この時刻t60のとき及び時刻t60~t61の間において、図6に示すように、走行中にセカンダリ圧Psecの低下が検知されない。この時刻t60のとき及び時刻t60~t61の間は、「F=0」であり、図2のフローチャートにおいて、ステップS1「NO」→ステップS13の繰り返しに相当する。
 時刻t61のとき、「F=0」で、「走行中にセカンダリ圧Psecの低下が検知された」と判断される。このため、時刻t61のとき、走行中異常時制御が開始され、時刻t61~t62の間は、走行中異常時制御が実行される。この時刻t61のときは、図2のフローチャートにおいて、ステップS1「YES」→ステップS2「NO」→ステップS3「NO」→ステップS4「NO」→ステップS5に相当する。また、時刻t61~t62の間は、ステップS5に相当する。
 時刻t62のとき、走行中異常時制御が終了され、フラグがゼロから1に設定される。そして、車両が走行中に、「F=1」で、再び「走行中にセカンダリ圧Psecの低下が検知された」と判断される。この時刻t62のときは、図2のフローチャートにおいて、ステップS5→ステップS6→ステップS1「YES」→ステップS2「NO」→ステップS3「NO」→ステップS4「YES」→ステップS7「NO」に相当する。また、時刻t62~t63の間は、車両が走行中である。このため、時刻t62~t63の間は、図2のフローチャートにおいて、ステップS1「YES」→ステップS2「NO」→ステップS3「NO」→ステップS4「YES」→ステップS7「NO」の繰り返しに相当する。
 時刻t63のとき、車両が停止され、「走行中にセカンダリ圧Psecの低下が検知された」と判断されているので、停車中異常時制御が開始される。また、時刻t63~t64の間は、停車中異常時制御が実行される。この時刻t63のときは、図2のフローチャートにおいて、ステップS1「YES」→ステップS2「NO」→ステップS3「NO」→ステップS4「YES」→ステップS7「YES」→ステップS8に相当する。また、時刻t63~t64の間は、ステップS8に相当する。
 時刻t64のとき、停車中異常時制御が終了されると共に、車両の走行が開始され、フラグが1から2に設定される。そして、車両走行中に、「F=2」で、再び「走行中にセカンダリ圧Psecの低下が検知された」と判断される。このため、時刻t64のとき、走行中異常時制御が開始され、時刻t64~t65の間は、走行中異常時制御が実行される。この時刻t64のときは、図2のフローチャートにおいて、ステップS8→ステップS9→ステップS1「YES」→ステップS2「NO」→ステップS3「YES」→ステップS10に相当する。また、時刻t64~t65の間は、ステップS10に相当する。
 時刻t65のとき、走行中異常時制御が終了され、フラグが2から3に設定される。そして、車両走行中に、「F=3」で、再び「走行中にセカンダリ圧Psecの低下が検知された」と判断される。このため、時刻t65のとき、走行中のセカンダリ圧Psecの低下は故障であると判定されると共に、故障コードが出力される。この時刻t65のときは、図2のフローチャートにおいて、ステップS10→ステップS11→ステップS1「YES」→ステップS2「YES」→ステップS12→エンドに相当する。なお、故障コードが出力されたことにより、図6の動作例において、時刻t65より後は、走行中であっても、時刻t66のときに車両が停車しても、走行中/停車中異常時制御は実行されない。
 このように、実施例1の異常時制御では、比較例の異物除去制御と異なり、走行中に、異常時制御が実行される。このため、走行中にセカンダリ圧Psecの低下が検知された場合であっても、走行中、ソレノイド圧Psolをセカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより増大させることができる。これにより、実施例1の異常時制御では、走行中に、走行中のセカンダリ圧Psecの低下を抑制することができる。また、実施例1の異常時制御では、比較例の異物除去制御と異なり、走行中に、ライン圧スプールバルブ42の移動方向を、A方向とB方向(元の位置への方向)との間で切り替え、繰り返しライン圧スプールバルブ42を移動させる。これにより、走行中に、コンタミの排出が促される。
 [調圧弁の制御装置の特徴作用]
 比較例の車両の制御装置にあっては、停車状態にてスプールを移動してコンタミを排出している(図5の時刻t53~t54)ため、例えば、走行中に調圧弁内にコンタミが混入したことにより、クラッチ圧が低下した場合、走行中に、走行中のクラッチ圧の低下を防止することができない。また、仮に、比較例の異物除去制御を走行中に行うと、例えば、調圧弁の吐出圧が低下する側にスプールを移動させた場合、調圧弁より下流の油圧が低下してしまい、クラッチやベルト等への供給油圧が不足するといった、走行状態に影響を及ぼすことになる。このように、比較例の車両の制御装置にあっては、走行中にクラッチ圧が低下した場合、走行状態に影響を及ぼすことなく、走行中のクラッチ圧の低下を防止することができない、という課題がある。
 これに対し、実施例1では、異常時制御部81により、走行中にセカンダリ圧Psecの低下が検知された場合(図2のステップS1や図6の時刻t61等)、走行中、ライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolを、セカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより増大させる異常時制御が実行される(図2のステップS5とステップS10、図3の時刻t1~t2と時刻t3~t4、時刻t6~t7、時刻t8~t9、及び、図6の時刻t61~t62と時刻t64~t65)構成とした(図2~図3と図6)。
 即ち、走行中にセカンダリ圧Psecの低下が検知された場合であっても、走行中、ソレノイド圧Psolをセカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより増大させるので、ライン圧スプールバルブ42がA方向へ移動する。これにより、セカンダリ圧Psecが増大するので、ライン圧調圧弁4より下流の油圧(例えば、プライマリ圧Ppri等)が低下することを抑制することができる。このため、他の部位において油圧(例えば、プライマリ圧Ppri等)が低下して走行状態に影響を及ぼすことが抑制される。
 この結果、走行中にセカンダリ圧Psecの低下が検知された場合であっても、走行への影響代が低減されつつ、走行中、セカンダリ圧Psecの低下が抑制される。加えて、走行中にセカンダリ圧Psecの低下が検知された場合であっても、走行中、ソレノイド圧Psolをセカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより増大させるので、ライン圧調圧弁4内に混入したコンタミを排出することが可能である。
 実施例1では、異常時制御部81により、ライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolを、最大域の値とする(図2のステップS5とステップS10、図3の時刻t1~t2と時刻t3~t4、時刻t6~t7、時刻t8~t9、及び、図6の時刻t61~t62と時刻t64~t65)構成とした(図2~図3と図6)。
 即ち、ソレノイド圧Psolが最大域の値とされるので、ライン圧スプールバルブ42のA方向への移動距離が最大域の値となる。
 従って、走行中、ライン圧調圧弁4内に混入したコンタミが確実に排出される。加えて、ライン圧スプールバルブ42へのソレノイド圧Psolを最大域の値としても、ライン圧調圧弁4より下流の油圧(例えば、プライマリ圧Ppri等)は低下することはなく、走行状態に影響を及ぼすことを抑制することができる。
 実施例1では、異常時制御部81により、走行中にて、ライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolの増大と低下を繰り返す(図3の時刻t1~t5と時刻t6~t10)構成とした(図2~図3と図6)。
 即ち、ライン圧スプールバルブ42の移動方向が、A方向とB方向(元の位置へ戻る)との間で切り替えられ、繰り返しライン圧スプールバルブ42を移動させる。
 従って、走行中に、コンタミの排出が、より促進される。
 実施例1では、異常時制御部81により、走行中における異常時制御の実行後(図2のステップS5及び図6の時刻t61~t62)、ライン圧調圧弁4により制御されるセカンダリ圧Psecの低下が検知された場合(図2のステップS1及び図6の時刻t62)、停車状態にて、ライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolを、セカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより低下させる(図2のステップS8、図4の時刻t21~t22と時刻t23~t24、時刻t26~t27、時刻t28~t29、及び、図6の時刻t63~t64)構成とした(図2と図4と図6)。
 即ち、走行中には、走行状態に影響を及ぼすおそれがあったので、ソレノイド圧Psolをセカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより低下させられなかった。このため、走行状態への影響が少ない停車状態にて、ソレノイド圧Psolをセカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより低下させ、走行中にライン圧スプールバルブ42を移動させることができなった領域(元の位置よりもB方向の領域)へ移動させる。
 従って、停車状態にて、走行中におけるライン圧スプールバルブ42のA方向への移動にて排出することができなかったコンタミを排出することが可能である。
 実施例1では、異常時制御部81により、ライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolを、最小域の値とする(図2のステップS8、図4の時刻t21~t22と時刻t23~t24、時刻t26~t27、時刻t28~t29、及び、図6の時刻t63~t64)構成とした(図2と図4と図6)。
 即ち、ソレノイド圧Psolが最小域の値とされるので、ライン圧スプールバルブ42のB方向への移動距離が最大域の値となる。
 従って、停車状態にて、ライン圧調圧弁4内に混入したコンタミが確実に排出される。
 実施例1では、異常時制御部81により、停車状態にて、ライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolの増大と低下を繰り返す(図4の時刻t21~t25と時刻t26~t30)構成とした(図2と図4と図6)。
 即ち、ライン圧スプールバルブ42の移動方向が、A方向とB方向との間で切り替えられ、繰り返しライン圧スプールバルブ42を移動させる。
 従って、停車状態にて、コンタミの排出が、より促進される。
 実施例1では、異常時制御部81により、停車状態にてライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolを低下する停車中異常時制御の実施後(図2のステップS8及び図6の時刻t63~t64)、ライン圧調圧弁4により制御されるセカンダリ圧Psecの低下が検知された場合(図2のステップS1及び図6の時刻t65)、故障であると判定する(図2のステップS12及び図6の時刻t65)構成とした(図2と図6)。
 即ち、セカンダリ圧Psecの低下の原因がライン圧調圧弁4内に混入したコンタミによるものではない、と判定される。
 従って、セカンダリ圧Psecの低下は故障であると判定される。加えて、故障コードが出力されるので、故障コードが出力されない場合よりも、原因分析が容易となる。
 実施例1では、調圧弁は、ベルト式無段変速機CVTの油圧コントロールバルブユニット3に備えられるライン圧調圧弁4である。このライン圧調圧弁4は、ライン圧ソレノイド41とライン圧スプールバルブ42を有する。また、ライン圧調圧弁4によって調圧されたライン圧PLをセカンダリ圧PsecとするセカンダリプーリSecを有する。そして、異常時制御部81により、セカンダリプーリSecのセカンダリ圧Psecの低下が検知された場合、ライン圧調圧弁4を制御する構成とした(図1)。
 即ち、ライン圧調圧弁4が制御されることにより、セカンダリ圧Psecの低下が検知された場合であっても、セカンダリ圧Psecの低下が抑制される。
 従って、セカンダリ圧Psecの低下の抑制に加え、ライン圧調圧弁4よりも下流の油圧低下も抑制される。
 次に、効果を説明する。
 実施例1の調圧弁の制御装置にあっては、下記に列挙する効果を得ることができる。
 (1)ソレノイド(ライン圧ソレノイド41)とスプールバルブ(ライン圧スプールバルブ42)を有する調圧弁(ライン圧調圧弁4)と、
 ソレノイド(ライン圧ソレノイド41)への電流指示値Iを制御することにより作り出される指示圧(ソレノイド圧Psol)でスプールバルブ(ライン圧スプールバルブ42)を動作させて、油圧(セカンダリ圧Psec)を制御するコントローラ(CVTコントロールユニット8)と、
 を備える調圧弁の制御装置において、
 コントローラ(CVTコントロールユニット8)は、走行中に油圧(セカンダリ圧Psec)の低下が検知された場合、走行中、ソレノイド(ライン圧ソレノイド41)からスプールバルブ(ライン圧スプールバルブ42)への指示圧(ソレノイド圧Psol)を、油圧(セカンダリ圧Psec)の低下が検知された際の指示圧(ソレノイド圧Psol)より増大させる異常時制御を実行する異常時制御部81を有する。
 このため、走行中に油圧(セカンダリ圧Psec)の低下が検知された場合であっても、走行への影響代を低減しつつ、走行中、油圧(セカンダリ圧Psec)の低下を抑制することができる調圧弁の制御装置を提供することができる。
 (2)異常時制御部81は、ソレノイド(ライン圧ソレノイド41)からスプールバルブ(ライン圧スプールバルブ42)への指示圧(ソレノイド圧Psol)を、最大域の値とする。
 このため、(1)の効果に加え、走行中、調圧弁(ライン圧調圧弁4)内に混入したコンタミを確実に排出することができる。
 (3)異常時制御部81は、走行中にて、ソレノイド(ライン圧ソレノイド41)からスプールバルブ(ライン圧スプールバルブ42)への指示圧(ソレノイド圧Psol)の増大と低下を繰り返す。
 このため、(1)または(2)の効果に加え、走行中に、コンタミの排出を、より促進することができる
 (4)異常時制御部81は、走行中における異常時制御の実行後、調圧弁(ライン圧調圧弁4)により制御される油圧(セカンダリ圧Psec)の低下が検知された場合、停車状態にて、ソレノイド(ライン圧ソレノイド41)からスプールバルブ(ライン圧スプールバルブ42)への指示圧(ソレノイド圧Psol)を、油圧(セカンダリ圧Psec)の低下が検知された際の指示圧(ソレノイド圧Psol)より低下させる。
 このため、(1)~(3)の効果に加え、停車状態にて、走行中におけるスプールバルブ(ライン圧スプールバルブ42)の一方向(A方向)への移動にて排出することができなかったコンタミを排出することが可能である。
 (5)異常時制御部81は、ソレノイド(ライン圧ソレノイド41)からスプールバルブ(ライン圧スプールバルブ42)への指示圧(ソレノイド圧Psol)を、最小域の値とする。
 このため、(4)の効果に加え、停車状態にて、調圧弁(ライン圧調圧弁4)内に混入したコンタミを確実に排出することができる。
 (6)異常時制御部81は、停車状態にて、ソレノイド(ライン圧ソレノイド41)からスプールバルブ(ライン圧スプールバルブ42)への指示圧(ソレノイド圧Psol)の増大と低下を繰り返す。
 このため、(4)または(5)の効果に加え、停車状態にて、コンタミの排出を、より促進することができる。
 (7)異常時制御部81は、停車状態にてソレノイド(ライン圧ソレノイド41)からスプールバルブ(ライン圧スプールバルブ42)への指示圧(ソレノイド圧Psol)を低下する異常時制御の実施後、調圧弁(ライン圧調圧弁4)により制御される油圧(セカンダリ圧Psec)の低下が検知された場合、故障であると判定する。
 このため、(4)~(6)の効果に加え、油圧(セカンダリ圧Psec)の低下は故障であると判定することができる。
 (8)調圧弁は、無段変速機(ベルト式無段変速機CVT)の油圧コントロールバルブユニット3に備えられるライン圧調圧弁4であり、
 ライン圧調圧弁4は、ライン圧ソレノイド41とライン圧スプールバルブ42を有し、
ライン圧調圧弁4によって調圧されたライン圧PLをセカンダリ圧PsecとするセカンダリプーリSecを有し、
 異常時制御部81は、セカンダリプーリSecのセカンダリ圧Psecの低下が検知された場合、ライン圧調圧弁4を制御する。
 このため、(1)~(7)の効果に加え、ライン圧調圧弁4よりも下流の油圧低下を抑制することができる。
 以上、本発明の調圧弁の制御装置を実施例1に基づき説明してきたが、具体的な構成については、実施例1に限られるものではなく、請求の範囲の各請求項に係る発明の要旨を逸脱しない限り、設計の変更や追加等は許容される。
 実施例1では、走行中異常時制御と停車中異常時制御において、ソレノイド圧Psolの増大と低下を繰り返す例を示した。しかし、これに限られない。例えば、図3において、ソレノイド圧Psolの増大と低下を繰り返さず、時刻t1のとき、電流指示値Iを元電流から定数まで低下させ、時刻t1~t10の間、電流指示値Iを定数に維持しても良い。そして、時刻t10のとき、電流指示値Iを定数から元電流へ戻す。即ち、時刻t1~t10の間、ソレノイド圧Psolの増大を維持しても良い。
 また、図4において、ソレノイド圧Psolの増大と低下を繰り返さず、時刻t21~t30の間、電流指示値Iを最大域の値に維持しても良い。そして、時刻t30のとき、電流指示値Iを最大値から元電流へ戻す。即ち、時刻t21~t30の間、ソレノイド圧Psolの低下を維持しても良い。
 要するに、走行中にセカンダリ圧Psecの低下が検知された場合、セカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより増大させれば良い。また、ライン圧調圧弁4により制御されるセカンダリ圧Psecの低下が検知された場合、停車状態にて、ライン圧ソレノイド41からライン圧スプールバルブ42へのソレノイド圧Psolを、セカンダリ圧Psecの低下が検知された際のソレノイド圧Psolより低下させれば良い。
 実施例1では、走行中異常時制御において、電流指示値Iを元電流から定数まで低下させ、ソレノイド圧Psolを最大域の値にまで増大させる例を示した。しかし、これに限られない。例えば、電流指示値Iを元電流から最小値(0A)まで低下させ、ソレノイド圧Psolを最大値にまで増大させても良い。
 実施例1では、停車中異常時制御において、電流指示値Iを元電流から最大値まで上昇させ、ソレノイド圧Psolを最小値に低下させる例を示した。また、電流指示値Iを最大値から最小値まで低下させ、ソレノイド圧Psolを最大値に増大させる例を示した。しかし、これに限られない。例えば、電流指示値Iを元電流から最大域の値まで上昇させ、ソレノイド圧Psolを最小域の値に低下させても良い。また、電流指示値Iを最大域の値から最小域の値まで低下させ、ソレノイド圧Psolを最大域の値に増大させても良い。
 実施例1では、走行中異常時制御と停車中異常時制御において、ソレノイド圧Psolの増大と低下を2回ほど繰り返し、これを1セットとし、一度の走行中異常時制御または停車中異常時制御のそれぞれにおいて2セット実行する例を示した。しかし、これに限られない。例えば、ソレノイド圧Psolの増大と低下の繰り返しを1回または3回以上繰り返し、これを1セットとし、一度の走行中異常時制御または停車中異常時制御のそれぞれにおいて1セットまたは3セット以上実行しても良い。
 実施例1では、走行中異常時制御を、停車中異常時制御の前後で1回ずつ実行する例を示した。しかし、これに限られない。例えば、停車中異常時制御の実行後に、走行中異常時制御を実行しなくても良い。
 実施例1では、低下が検知された油圧を、セカンダリ圧Psecとする例を示した。しかし、これに限られない。例えば、低下が検知された油圧を、プライマリ圧Ppriとしても良い。この場合、異常時制御部81により、プライマリ圧Ppriを調圧しているライン圧調圧弁4及びプライマリ圧調圧弁5の両方を、異常時制御すれば良い。要するに、低下が検知された油圧を調圧している上流の調圧弁全てを、異常時制御部81により異常時制御にすれば良い。
 実施例1では、調圧弁を、ライン圧PLを調圧するライン圧調圧弁4とする例を示した。しかし、これに限られない。例えば、調圧弁を、プライマリ圧Ppriやセカンダリ圧Psecやパイロット圧Ppやクラッチ圧やブレーキ圧等を調圧する各調圧弁としても良い。
 実施例1では、セカンダリ圧Psecをライン圧PLとする片調圧方式の例を示した。しかし、これに限られず、プライマリ圧Ppriとセカンダリ圧Psecを調圧する両調圧方式としても良い。即ち、プライマリ圧調圧弁5と同様に、セカンダリ圧調圧弁を設けるようにしても良い。
 実施例1では、本発明の調圧弁の制御装置を、油圧コントロールバルブユニット3を備えるベルト式無段変速機CVTに適用する例を示した。しかし、本発明の調圧弁の制御装置は、油圧コントロールバルブユニットを備えるステップATと呼ばれる自動変速機やその他の無段変速機に対しても適用することができる。要するに、本発明の調圧弁の制御装置は、調圧弁を有する油圧機器に対して適用することができる。例えば、本発明の調圧弁の制御装置は、駆動系に設けられる4WDクラッチやLSD(Limited Slip Differential)クラッチ等に対しても適用することができる。
 実施例1では、コンタミを原因とするセカンダリ圧Psecの低下が検知されたことを前提とし、ソレノイド圧Psolに従ってコンタミが排出されることにより、セカンダリ圧Psecの実圧が増大する例を示した。しかし、本発明の異常時制御におけるスプールバルブへのソレノイド圧Psolの増大と低下は、調圧弁内のスプールバルブを移動させることが目的であって、調圧弁により調圧される油圧(例えば、ライン圧やセカンダリ圧やプライマリ圧やクラッチ圧やブレーキ圧等)の実圧を増大・低下させる必要はない。本発明の異常時制御の結果、調圧弁により調圧される油圧の実圧が増加・低下してしまうことは許容される。

Claims (8)

  1.  ソレノイドとスプールバルブを有する調圧弁と、
     前記ソレノイドへの電流指示値を制御することにより作り出される指示圧で前記スプールバルブを動作させて、油圧を制御するコントローラと、
     を備える調圧弁の制御装置において、
     前記コントローラは、走行中に前記油圧の低下が検知された場合、走行中、前記ソレノイドから前記スプールバルブへの指示圧を、前記油圧の低下が検知された際の指示圧より増大させる異常時制御を実行する異常時制御部を有するものである調圧弁の制御装置。
  2.  請求項1に記載された調圧弁の制御装置において、
     前記異常時制御部は、前記ソレノイドから前記スプールバルブへの指示圧を、最大域の値とするものである調圧弁の制御装置。
  3.  請求項1又は2に記載された調圧弁の制御装置において、
     前記異常時制御部は、走行中にて、前記ソレノイドから前記スプールバルブへの指示圧の増大と低下を繰り返すものである調圧弁の制御装置。
  4.  請求項1~3の何れか一項に記載された調圧弁の制御装置において、
     前記異常時制御部は、走行中における前記異常時制御の実行後、前記調圧弁により制御される油圧の低下が検知された場合、停車状態にて、前記ソレノイドから前記スプールバルブへの指示圧を、油圧の低下が検知された際の指示圧より低下させるものである調圧弁の制御装置。
  5.  請求項4に記載された調圧弁の制御装置において、
     前記異常時制御部は、前記ソレノイドから前記スプールバルブへの指示圧を、最小域の値とするものである調圧弁の制御装置。
  6.  請求項4または5に記載された調圧弁の制御装置において、
     前記異常時制御部は、停車状態にて、前記ソレノイドから前記スプールバルブへの指示圧の増大と低下を繰り返すものである調圧弁の制御装置。
  7.  請求項4~6の何れか一項に記載された調圧弁の制御装置において、
     前記異常時制御部は、停車状態にて前記ソレノイドから前記スプールバルブへの指示圧を低下する前記異常時制御の実施後、前記調圧弁により制御される油圧の低下が検知された場合、故障であると判定するものである調圧弁の制御装置。
  8.  請求項1~7の何れか一項に記載された調圧弁の制御装置において、
     前記調圧弁は、無段変速機の油圧コントロールバルブユニットに備えられるライン圧調圧弁であり、
     前記ライン圧調圧弁は、ライン圧ソレノイドとライン圧スプールバルブを有し、
     前記ライン圧調圧弁によって調圧されたライン圧をセカンダリ圧とするセカンダリプーリを有し、
     前記異常時制御部は、前記セカンダリプーリの前記セカンダリ圧の低下が検知された場合、前記ライン圧調圧弁を制御するものである調圧弁の制御装置。
PCT/JP2017/026064 2016-07-19 2017-07-19 調圧弁の制御装置 WO2018016518A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018528826A JP6653761B2 (ja) 2016-07-19 2017-07-19 調圧弁の制御装置
CN201780043630.9A CN109477569B (zh) 2016-07-19 2017-07-19 调压阀的控制装置
KR1020197004397A KR102122370B1 (ko) 2016-07-19 2017-07-19 압력 조절 밸브의 제어 장치
US16/319,045 US10677349B2 (en) 2016-07-19 2017-07-19 Pressure regulation valve control device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016141248 2016-07-19
JP2016-141248 2016-07-19

Publications (1)

Publication Number Publication Date
WO2018016518A1 true WO2018016518A1 (ja) 2018-01-25

Family

ID=60992458

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/026064 WO2018016518A1 (ja) 2016-07-19 2017-07-19 調圧弁の制御装置

Country Status (5)

Country Link
US (1) US10677349B2 (ja)
JP (1) JP6653761B2 (ja)
KR (1) KR102122370B1 (ja)
CN (1) CN109477569B (ja)
WO (1) WO2018016518A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044947A1 (ja) * 2018-08-30 2020-03-05 ジヤトコ株式会社 バルブ検査装置及びバルブ検査方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022204126A1 (de) * 2022-04-28 2023-11-02 Psa Automobiles Sa Verfahren zum Betreiben eines Fluidspeichersystems sowie Fluidspeichersystem das mit einem derartigen Verfahren betreibbar ist

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213763A (ja) * 1990-01-18 1991-09-19 Fuji Heavy Ind Ltd 無段変速機の制御装置
JPH06207662A (ja) * 1993-01-12 1994-07-26 Mitsubishi Motors Corp ベルト式無段変速機の制御装置
JP2001065684A (ja) * 1999-08-25 2001-03-16 Mitsubishi Motors Corp ベルト式無段変速機の油圧回路
JP2007046621A (ja) * 2005-08-05 2007-02-22 Toyota Motor Corp 油圧制御装置
JP2008101632A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp 車両用自動変速機の制御装置
JP2008215533A (ja) * 2007-03-06 2008-09-18 Toyota Motor Corp 油圧制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100507485B1 (ko) * 2003-05-27 2005-08-17 현대자동차주식회사 자동 변속기의 솔레노이드 플런저 보정 제어장치 및 방법
JP4550912B2 (ja) 2008-03-13 2010-09-22 ジヤトコ株式会社 ソレノイドバルブ制御装置
JP5769025B2 (ja) * 2011-12-19 2015-08-26 ジヤトコ株式会社 車両用ライン圧制御装置
DE112015000258T5 (de) * 2014-02-12 2016-09-08 Aisin Aw Co., Ltd. Hydrauliksteuervorrichtung für ein automatisches Getriebe
JP6184913B2 (ja) * 2014-07-16 2017-08-23 本田技研工業株式会社 自動変速機の故障判定装置
JP6267250B2 (ja) * 2016-02-25 2018-01-24 株式会社Subaru 油圧回路の異常検知装置、及び、油圧回路の異常検知方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03213763A (ja) * 1990-01-18 1991-09-19 Fuji Heavy Ind Ltd 無段変速機の制御装置
JPH06207662A (ja) * 1993-01-12 1994-07-26 Mitsubishi Motors Corp ベルト式無段変速機の制御装置
JP2001065684A (ja) * 1999-08-25 2001-03-16 Mitsubishi Motors Corp ベルト式無段変速機の油圧回路
JP2007046621A (ja) * 2005-08-05 2007-02-22 Toyota Motor Corp 油圧制御装置
JP2008101632A (ja) * 2006-10-17 2008-05-01 Toyota Motor Corp 車両用自動変速機の制御装置
JP2008215533A (ja) * 2007-03-06 2008-09-18 Toyota Motor Corp 油圧制御装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020044947A1 (ja) * 2018-08-30 2020-03-05 ジヤトコ株式会社 バルブ検査装置及びバルブ検査方法

Also Published As

Publication number Publication date
US20200025289A1 (en) 2020-01-23
KR102122370B1 (ko) 2020-06-12
US10677349B2 (en) 2020-06-09
CN109477569B (zh) 2020-08-25
KR20190027910A (ko) 2019-03-15
JPWO2018016518A1 (ja) 2019-03-28
JP6653761B2 (ja) 2020-02-26
CN109477569A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
JP4939915B2 (ja) 無段変速機の制御装置
JP4678036B2 (ja) 車両用無段変速機の制御装置および制御プログラム
CN110296214B (zh) 用于车辆的控制器或动力传递系统
KR20160148467A (ko) 동력 전달 장치의 제어 장치
EP3054198A1 (en) Hydraulic switch malfunction assessment device
CN109690142B (zh) 无级变速器的控制装置
WO2018016518A1 (ja) 調圧弁の制御装置
EP3348875A1 (en) Continuously variable transmission and malfunction determination method therefor
JP6520895B2 (ja) 車両用動力伝達装置の制御装置
KR101806671B1 (ko) 하이브리드 차량의 라인압 제어방법
WO2016152290A1 (ja) 変速機の制御装置及び変速機の制御方法
JP2017067227A (ja) 油圧回路の制御装置及び油圧回路の制御方法
JP6152494B1 (ja) 自動変速機の制御装置及び自動変速機の制御方法
JP2009264475A (ja) 車両用無段変速機の制御装置
WO2016152285A1 (ja) 車両用自動変速機の制御装置
CN110770478B (zh) 车辆的控制装置及车辆的控制方法
JP2017227273A (ja) 車両用動力伝達装置の制御装置
JP2017082817A (ja) 車両用動力伝達装置の制御装置
JP6313909B2 (ja) 自動変速機の制御装置及び自動変速機の制御方法
JP2016200250A (ja) 動力伝達装置の制御装置
WO2020032010A1 (ja) 車両用無段変速機の制御装置及び車両用無段変速機の制御方法
JP2017002987A (ja) 動力伝達装置の制御装置
WO2016152291A1 (ja) 変速機の制御装置及び変速機の制御方法
JP2017160944A (ja) 車両用動力伝達装置の制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17831034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018528826

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197004397

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17831034

Country of ref document: EP

Kind code of ref document: A1