WO2016152291A1 - 変速機の制御装置及び変速機の制御方法 - Google Patents

変速機の制御装置及び変速機の制御方法 Download PDF

Info

Publication number
WO2016152291A1
WO2016152291A1 PCT/JP2016/053849 JP2016053849W WO2016152291A1 WO 2016152291 A1 WO2016152291 A1 WO 2016152291A1 JP 2016053849 W JP2016053849 W JP 2016053849W WO 2016152291 A1 WO2016152291 A1 WO 2016152291A1
Authority
WO
WIPO (PCT)
Prior art keywords
variator
control
pressure
hydraulic pressure
speed
Prior art date
Application number
PCT/JP2016/053849
Other languages
English (en)
French (fr)
Inventor
青加 大園
濱野 正宏
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Priority to EP16768194.9A priority Critical patent/EP3273106A4/en
Priority to KR1020177025759A priority patent/KR101939526B1/ko
Priority to JP2017507578A priority patent/JP6379280B2/ja
Priority to CN201680016030.9A priority patent/CN107429832B/zh
Priority to US15/558,907 priority patent/US10371255B2/en
Publication of WO2016152291A1 publication Critical patent/WO2016152291A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H61/662Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/101Infinitely variable gearings
    • B60W10/107Infinitely variable gearings with endless flexible members
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/36Inputs being a function of speed
    • F16H59/38Inputs being a function of speed of gearing elements
    • F16H59/40Output shaft speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/70Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements
    • F16H61/702Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for change-speed gearing in group arrangement, i.e. with separate change-speed gear trains arranged in series, e.g. range or overdrive-type gearing arrangements using electric or electrohydraulic control means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/40Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism comprising signals other than signals for actuating the final output mechanisms
    • F16H63/50Signals to an engine or motor
    • F16H63/502Signals to an engine or motor for smoothing gear shifts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1005Transmission ratio engaged
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1077Change speed gearings fluid pressure, e.g. oil pressure
    • B60W2710/1083Change speed gearings fluid pressure, e.g. oil pressure pressure of control fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/10Change speed gearings
    • B60W2710/1077Change speed gearings fluid pressure, e.g. oil pressure
    • B60W2710/1088Change speed gearings fluid pressure, e.g. oil pressure pressure of working fluid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1232Bringing the control into a predefined state, e.g. giving priority to particular actuators or gear ratios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1244Keeping the current state
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures
    • F16H2061/1256Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected
    • F16H2061/1284Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures characterised by the parts or units where malfunctioning was assumed or detected the failing part is a sensor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/66Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing specially adapted for continuously variable gearings
    • F16H2061/6604Special control features generally applicable to continuously variable gearings
    • F16H2061/6614Control of ratio during dual or multiple pass shifting for enlarged ration coverage

Definitions

  • the present invention relates to a transmission control device and a transmission control method.
  • JP 5-46465B discloses a technique for performing fail-safe operation when a rotation speed sensor of a secondary pulley of a continuously variable transmission fails.
  • the transmission gear ratio is fixed to the maximum transmission gear ratio, that is, the lowest transmission gear ratio.
  • the present invention has been made in view of such a technical problem, and a transmission control device and a transmission control method capable of reducing a sense of incongruity caused by control after a failure of a variator output side rotation sensor.
  • the purpose is to provide.
  • a transmission control apparatus includes a variator and a sub-transmission that is disposed on the output side of the variator and has a first gear and a second gear that has a smaller gear ratio than the first gear.
  • a transmission having a mechanism and a variator output side rotation sensor for detecting a rotation speed on the output side of the variator and on the input side of the auxiliary transmission mechanism is controlled in a transmission mounted on the vehicle.
  • the transmission control device variably controls a fail determination unit that determines a failure of the variator output-side rotation sensor and a speed ratio of the variator. On the other hand, when the failure is determined, the transmission of the variator is changed.
  • a transmission ratio control unit that executes a first control for limiting the range and a shift speed of the auxiliary transmission mechanism are variably controlled. On the other hand, if the failure is determined, the shift speed of the auxiliary transmission mechanism is set to the first shift speed.
  • a shift speed control unit that executes a second control to be fixed to one shift speed. The shift speed control unit executes the second control at a timing different from that of the first control when the shift speed of the auxiliary transmission mechanism when the failure is determined is the second shift speed.
  • a sub-transmission mechanism having a variator, a first shift stage disposed on the output side of the variator, and a second shift stage having a smaller speed ratio than the first shift stage, And a variator output side rotation sensor for detecting a rotation speed on the output side of the variator and on the input side of the auxiliary transmission mechanism, and a transmission control method for performing control in a transmission mounted on a vehicle. Determining the failure of the variator output-side rotation sensor, and variably controlling the transmission ratio of the variator, and, if the failure is determined, performing a first control for limiting a shift range of the variator.
  • a transmission control method for variably controlling the shift speed of the sub-transmission mechanism and fixing the shift speed of the sub-transmission mechanism to the first shift speed when the failure is determined. And executing the second control at a timing different from the first control when the shift stage of the auxiliary transmission mechanism when the failure is determined is the second shift stage.
  • the second control is executed at a timing different from that of the first control, so that the uncomfortable feeling given at once by the control after the failure is reduced. can do. Therefore, the uncomfortable feeling caused by the control after the failure can be reduced.
  • FIG. 1 is a diagram illustrating a main part of a vehicle including a transmission.
  • FIG. 2 is a flowchart illustrating an example of control performed by the controller.
  • FIG. 3A is a first diagram illustrating a comparative example of the pressure regulation method.
  • FIG. 3B is a second diagram illustrating a comparative example of the pressure regulation method.
  • FIG. 3C is a third diagram illustrating a comparative example of the pressure regulation method.
  • FIG. 4A is a first diagram illustrating both pressure regulation methods.
  • FIG. 4B is a second diagram illustrating the dual pressure regulation method.
  • FIG. 5A is a first diagram illustrating a single pressure regulation method in a variator for both pressure regulation methods.
  • FIG. 5B is a second diagram illustrating a single pressure regulation method in a variator for both pressure regulation methods.
  • FIG. 1 is a diagram showing a main part of a vehicle including a transmission 100.
  • the vehicle includes an engine 1, a torque converter 2, a variator 20, an auxiliary transmission mechanism 30, an axle 4, and drive wheels 5.
  • Engine 1 constitutes the power source of the vehicle.
  • the torque converter 2 transmits power through the fluid.
  • the power transmission efficiency can be increased by fastening the lockup clutch 2a.
  • the variator 20 and the auxiliary transmission mechanism 30 output the input rotational speed at a rotational speed corresponding to the gear ratio.
  • the gear ratio is a value obtained by dividing the input rotation speed by the output rotation speed.
  • the axle 4 is a drive axle composed of a reduction gear and a differential device. The power of the engine 1 is transmitted to the drive wheels 5 through the torque converter 2, the variator 20, the auxiliary transmission mechanism 30 and the axle 4.
  • the variator 20 is a continuously variable transmission mechanism, and includes a primary pulley 21, a secondary pulley 22, and a belt 23.
  • the primary pulley 21 is also simply referred to as the pulley 21
  • the secondary pulley 22 is also simply referred to as the pulley 22.
  • the primary pulley 21 includes a fixed conical plate, a movable conical plate, and a hydraulic cylinder 21a.
  • the secondary pulley 22 includes a fixed conical plate, a movable conical plate, and a hydraulic cylinder 22a.
  • the fixed conical plate and the movable conical plate are arranged with the sheave surfaces facing each other, and form a V-groove.
  • the pulley 21 has a hydraulic cylinder 21a
  • the pulley 22 has a hydraulic cylinder 22a on the back surface of the movable conical plate, which displaces the movable conical plate in the axial direction.
  • the belt 23 is wound around the pulley 21 and the pulley 22. A V-belt can be used as the belt 23.
  • the first hydraulic pressure acts on the hydraulic cylinder 21a.
  • the width of the V-groove is controlled by the first hydraulic pressure.
  • the second hydraulic pressure acts on the hydraulic cylinder 22a.
  • the pulley 22 has a V-groove width controlled by the second hydraulic pressure.
  • the contact radius between the pulley 21 and the belt 23 changes by adjusting the first hydraulic pressure and changing the width of the V groove of the pulley 21.
  • the contact radius between the pulley 22 and the belt 23 is changed by adjusting the second hydraulic pressure and changing the width of the V groove of the pulley 22.
  • the transmission gear ratio of the variator 20 can be controlled steplessly by controlling the width of the V groove of the pulley 21 or the pulley 22.
  • the auxiliary transmission mechanism 30 is a stepped transmission mechanism and has two forward speeds and one reverse speed.
  • the subtransmission mechanism 30 has a first speed and a second speed having a smaller gear ratio than the first speed as a forward gear.
  • the auxiliary transmission mechanism 30 is provided in series on the output side of the variator 20 in the power transmission path from the engine 1 to the drive wheels 5.
  • the subtransmission mechanism 30 may be directly connected to the variator 20 or may be indirectly connected to the variator 20 through another configuration such as a gear train.
  • the gear ratio is changed in each of the variator 20 and the auxiliary transmission mechanism 30. For this reason, in the vehicle, a speed change according to a through speed ratio which is a speed ratio of the variator 20 and the subtransmission mechanism 30 as a whole obtained by multiplying the speed ratio of the variator 20 by the speed ratio of the subtransmission mechanism 30 is performed.
  • the variator 20 and the auxiliary transmission mechanism 30 constitute an automatic transmission mechanism 3.
  • the variator 20 and the auxiliary transmission mechanism 30 may be configured as separate transmission mechanisms in structure.
  • the vehicle further includes an oil pump 10, a hydraulic control circuit 11, and a controller 12.
  • Oil pump 10 generates hydraulic pressure.
  • the hydraulic control circuit 11 adjusts the hydraulic pressure generated by the oil pump 10 by supplying oil and transmits the hydraulic pressure to each part of the variator 20 and the auxiliary transmission mechanism 30.
  • the hydraulic control circuit 11 includes a line pressure adjusting unit 11s, a first hydraulic adjusting unit 11a, and a second hydraulic adjusting unit 11b.
  • the line pressure adjusting unit 11s adjusts the hydraulic pressure generated by the oil pump 10 by supplying oil to generate the line pressure.
  • the line pressure is a hydraulic pressure that is a source pressure of the first hydraulic pressure and the second hydraulic pressure, and is set so that the belt 23 does not slip.
  • the first hydraulic pressure adjusting unit 11a generates a first hydraulic pressure from the line pressure.
  • the second hydraulic pressure adjustment unit 11b generates the second hydraulic pressure from the line pressure.
  • a hydraulic regulator can be used for the line pressure adjusting unit 11s, the first hydraulic pressure adjusting unit 11a, and the second hydraulic pressure adjusting unit 11b.
  • the hydraulic control circuit 11 further includes a hydraulic circuit unit 11 c for controlling the gear position of the auxiliary transmission mechanism 30.
  • the controller 12 controls the hydraulic control circuit 11. Output signals from the rotation sensor 41, the rotation sensor 42, and the rotation sensor 43 are input to the controller 12.
  • the rotation sensor 41 is a sensor corresponding to a variator input side rotation sensor for detecting the rotation speed on the input side of the variator 20.
  • the rotation sensor 42 is a sensor corresponding to a variator output side rotation sensor for detecting the rotation speed on the output side of the variator 20. Specifically, the rotation sensor 42 detects the rotation speed on the output side of the variator 20 and on the input side of the auxiliary transmission mechanism 30.
  • the rotation sensor 43 is a sensor corresponding to an auxiliary transmission mechanism output side rotation sensor for detecting the output side rotation speed of the auxiliary transmission mechanism 30.
  • the rotation speed on the input side of the variator 20 is specifically the rotation speed of the input shaft of the variator 20.
  • the rotational speed on the input side of the variator 20 may be, for example, the rotational speed at a position where the gear train is sandwiched between the variator 20 in the power transmission path described above. The same applies to the rotational speed on the output side of the variator 20 and the rotational speed on the output side of the auxiliary transmission mechanism 30.
  • the controller 12 receives output signals from the accelerator opening sensor 44, the inhibitor switch 45, the engine rotation sensor 46, and the like.
  • the accelerator opening sensor 44 detects an accelerator opening APO that represents an operation amount of the accelerator pedal.
  • the inhibitor switch 45 detects the position of the select lever.
  • the engine rotation sensor 46 detects the rotation speed Ne of the engine 1.
  • the controller 12 can detect the vehicle speed VSP based on the output signal of the rotation sensor 43.
  • the controller 12 generates a shift control signal based on these signals, and outputs the generated shift control signal to the hydraulic control circuit 11.
  • the hydraulic control circuit 11 controls the line pressure, the first hydraulic pressure, and the second hydraulic pressure based on the shift control signal from the controller 12, and performs switching of the hydraulic path.
  • the hydraulic pressure is transmitted from the hydraulic control circuit 11 to each part of the variator 20 and the auxiliary transmission mechanism 30 according to the shift control signal.
  • the gear ratios of the variator 20 and the auxiliary transmission mechanism 30 are changed to the gear ratio corresponding to the gear shift control signal, that is, the target gear ratio.
  • the transmission 100 is an automatic transmission, and includes a variator 20, an auxiliary transmission mechanism 30, a rotation sensor 41, a rotation sensor 42, and a rotation sensor 43 in addition to the hydraulic control circuit 11 and the controller 12 that control the transmission ratio in this way. Configured.
  • the hydraulic control circuit 11 and the controller 12 constitute a transmission control device 50 that controls the transmission 100 mounted on the vehicle.
  • the transmission control device 50 is simply referred to as a control device 50.
  • FIG. 2 is a flowchart illustrating an example of the control performed by the controller 12.
  • the controller 12 can repeatedly execute the processing shown in this flowchart every minute time.
  • the controller 12 determines whether or not the rotation sensor 42 is abnormal in step S1.
  • step S1 the controller 12 can determine whether or not the rotation sensor 42 is disconnected, or can determine whether or not the output signal of the rotation sensor 42 is out of the normal range. For determining whether or not the rotation sensor 42 is abnormal, an appropriate technique may be applied in addition to a known technique.
  • step S1 If a negative determination is made in step S1, it is determined that the rotation sensor 42 is normal. In this case, the controller 12 variably controls the line pressure as shown in step S2 by the line pressure adjusting unit 11s. Further, as shown in step S3, the gear ratio of the variator 20 is variably controlled by the two pressure regulation methods.
  • step S3 the controller 12 also variably controls the gear position of the auxiliary transmission mechanism 30. That is, in step S3, the subtransmission mechanism 30 is also appropriately shifted according to the shift control signal.
  • the controller 12 performs cooperative shift control.
  • the cooperative shift control is a control for changing the gear ratio of the variator 20 in the direction opposite to the gear ratio change of the sub-transmission mechanism 30 during the shift of the sub-transmission mechanism 30.
  • the transmission ratio of the variator 20 is controlled so that the through transmission ratio is constant.
  • At least the output of the rotation sensor 42 is used for cooperative shift control. For this reason, cooperative shift control cannot be performed when the rotation sensor 42 fails. As a result, a shift shock can occur when the subtransmission mechanism 30 shifts.
  • the output of the rotation sensor 41 and the output of the rotation sensor 43 are also used for cooperative shift control.
  • the output of the rotation sensor 41, the output of the rotation sensor 42, and the output of the rotation sensor 43 can be used to detect the actual transmission ratio of the variator 20 and the actual transmission ratio of the auxiliary transmission mechanism 30. After step S3, this flowchart is temporarily terminated.
  • step S1 a failure of the rotation sensor 42 is determined.
  • the controller 12 fixes the line pressure to a value ⁇ that is greater than or equal to a predetermined value, as shown in step S4, by the line pressure adjusting unit 11s.
  • “Fixing the line pressure to a value ⁇ that is greater than or equal to a predetermined value” means that the line pressure is maintained at a value ⁇ that is greater than or equal to a predetermined value until the failure is canceled by repair or the like.
  • the maximum set pressure of the line pressure is applied to the value ⁇ that is not less than a predetermined value.
  • the value ⁇ not less than the predetermined value may be a value that does not cause the belt 23 to slip when the input torque to the variator 20 becomes maximum.
  • the controller 12 executes the first control for limiting the speed change range of the variator 20 by fixing the second hydraulic pressure to the line pressure in step S5. Further, the controller 12 controls the first hydraulic pressure in accordance with the vehicle speed VSP in step S6. As a result, the gear ratio of the variator 20 is variably controlled by the single pressure adjustment method that fixes the second hydraulic pressure to the line pressure.
  • the single pressure adjustment method is a pressure adjustment method in which the magnitude relationship between the first hydraulic pressure and the second hydraulic pressure does not interchange. Therefore, in the single pressure adjustment method, the magnitude relationship between the first hydraulic pressure and the second hydraulic pressure remains as follows: first hydraulic pressure ⁇ second hydraulic pressure, or first hydraulic pressure ⁇ second hydraulic pressure.
  • the first control is grasped as a control that further includes a change in the gear ratio of the variator 20, specifically, a change in the gear ratio of the variator 20 performed in step S6 in accordance with the switching from the double pressure control method to the single pressure control method. May be. The details of the single pressure adjustment method and the first control will be described later.
  • step S6 the controller 12 can control the first hydraulic pressure according to the vehicle speed VSP by controlling the first hydraulic pressure using at least the output of the rotation sensor 43.
  • the controller 12 may control the first hydraulic pressure without using the output of the rotation sensor 41 or the output of the rotation sensor 42.
  • the gear ratio of the variator 20 can be controlled according to the vehicle speed VSP while avoiding the influence of the failure.
  • the output of the rotation sensor 43 can be used to generate a shift control signal including a gear ratio control command of the variator 20 at the time of failure.
  • step S6 the controller 12 may control the first hydraulic pressure by further using parameters other than the outputs of the rotation sensor 41, the rotation sensor 42, and the rotation sensor 43.
  • the shift control signal at the time of failure may be generated by further using the other parameter.
  • Controller 12 may fix the first hydraulic pressure to the line pressure in step S5 and control the second hydraulic pressure in accordance with vehicle speed VSP in step S6.
  • the controller 12 can variably control the speed ratio of the variator 20 by a single pressure adjustment method that fixes the first hydraulic pressure to the line pressure.
  • step S7 the controller 12 determines whether or not the gear position of the auxiliary transmission mechanism 30 is the second speed. Whether or not the gear position of the subtransmission mechanism 30 is the second speed can be determined based on, for example, the output of a sensor that can detect the gear position of the subtransmission mechanism 30.
  • step S7 If the determination in step S7 is affirmative, the controller 12 changes the gear position of the auxiliary transmission mechanism 30 from the second speed to the first speed in step S8. Further, the controller 12 executes the second control for fixing the gear position of the auxiliary transmission mechanism 30 to the first speed in step S9. Fixing the gear position of the subtransmission mechanism 30 at the first speed means maintaining the gear stage of the subtransmission mechanism 30 at the first speed until the failure is canceled by repair or the like.
  • step S7 the controller 12 executes the second control in step S9.
  • the second control When the shift stage of the subtransmission mechanism 30 when the failure of the rotation sensor 42 is determined is the second speed, the second control performs the process shown in step S8, that is, the shift stage of the subtransmission mechanism 30 is changed from the second speed to the first speed. It may be grasped as control further including changing.
  • step S5 After executing the first control in step S5, the controller 12 executes the second control in steps S8 and S9, thereby executing the second control at a timing different from the first control.
  • step S9 the process of this flowchart is once ended.
  • step S8 the controller 12 preferably changes the gear position of the auxiliary transmission mechanism 30 from the second speed to the first speed while the vehicle is stopped. As a result, the shift of the auxiliary transmission mechanism 30 can be made difficult to be detected by the driver.
  • the control in step S8 may be executed when a predetermined time has elapsed after the execution of the first control, for example. A predetermined value can be used for the predetermined time.
  • the failure determination unit is realized by the controller 12, specifically, a part of the controller 12 that is functionally grasped as a part for performing the determination in step S1.
  • the gear ratio control unit includes a controller 12 and a hydraulic control circuit 11, specifically, a part of the controller 12 that is functionally grasped as a part that performs the processes of steps S 3, S 5, and S 6, and the hydraulic control circuit 11. This is realized by the first hydraulic pressure adjusting unit 11a and the second hydraulic pressure adjusting unit 11b which are a part.
  • the gear position control unit includes a controller 12 and a hydraulic control circuit 11, specifically, a part of the controller 12 that is functionally grasped as a part that performs the processes of steps S ⁇ b> 8 and S ⁇ b> 9, and a part of the hydraulic control circuit 11.
  • a hydraulic circuit section 11c which is a section.
  • the line pressure control unit includes the controller 12 and the hydraulic control circuit 11, specifically, a part of the controller that is functionally grasped as a part that performs the processing of step S 2 and step S 4, and a part of the hydraulic control circuit 11. This is realized by the line pressure adjusting unit 11s.
  • FIG. 3A, 3B, and 3C are explanatory diagrams of a comparative example of the pressure regulating method, and specifically, are explanatory diagrams of the single pressure regulating method in the variator for the single pressure regulating method.
  • FIG. 3A shows the Pri pressure and the Sec pressure when the input torque to the variator is T1, according to the gear ratio of the variator.
  • FIG. 3B shows the Pri pressure and the Sec pressure when the input torque to the variator is T2 according to the gear ratio of the variator.
  • FIG. 3C shows the Pri pressure and the Sec pressure when the line pressure is fixed to the maximum set pressure according to the gear ratio of the variator.
  • the Pri pressure is a hydraulic pressure equivalent to the first hydraulic pressure, and indicates the control hydraulic pressure of the primary pulley in the variator for the single pressure regulation method.
  • the Sec pressure is a hydraulic pressure equivalent to the second hydraulic pressure, and indicates the control hydraulic pressure of the secondary pulley in the variator for the single pressure regulation method.
  • the relationship between the gear ratio, the Pri pressure, and the Sec pressure shown in FIGS. 3A to 3C can be said to be the relationship between the target gear ratio and the Pri pressure and the Sec pressure corresponding to the target gear ratio.
  • T1 and T2 indicate input torques satisfying the magnitude relationship of T1 ⁇ T2.
  • 3A to 3C show a case where the Sec pressure is fixed to the line pressure.
  • the Sec pressure is changed to the line pressure in the entire gear ratio range, and the line pressure is changed according to the input torque, so that the belt slip To prevent. Further, the pressure receiving areas of the primary pulley and the secondary pulley are set so that the gear ratio becomes High when the Pri pressure and the Sec pressure are equal.
  • the pressure receiving area of the primary pulley is set larger than the pressure receiving area of the secondary pulley.
  • the pressure receiving area of the primary pulley is about twice the pressure receiving area of the secondary pulley.
  • the pressure receiving area of the primary pulley can be effectively increased by adopting a double piston structure for the primary pulley.
  • the Pri pressure and the Sec pressure are set as shown in FIG. 3C regardless of the input torque.
  • the Pri pressure and the Sec pressure are set in a range over the entire gear ratio region.
  • FIG. 4A and 4B are explanatory diagrams of both pressure regulation methods.
  • FIG. 4A the first hydraulic pressure and the second hydraulic pressure when the input torque to the variator 20 is T1 are shown according to the gear ratio of the variator 20.
  • FIG. 4B the first hydraulic pressure and the second hydraulic pressure when the input torque to the variator 20 is T2 are shown according to the gear ratio of the variator 20.
  • the lowest gear ratio is the maximum gear ratio, and the highest gear ratio is the smallest gear ratio.
  • the Mid gear ratio is an intermediate gear ratio and is a gear ratio at which the first hydraulic pressure and the second hydraulic pressure are equal.
  • the relationship between the gear ratio shown in FIGS. 4A and 4B and the first and second hydraulic pressures can be said to be the relationship between the target gear ratio and the first and second hydraulic pressures corresponding thereto. The same applies to FIGS. 5A and 5B described later.
  • the first hydraulic pressure and the second hydraulic pressure are set so that the magnitude relationship between the first hydraulic pressure and the second hydraulic pressure is switched according to the transmission ratio of the variator 20. Is done. Further, the transmission ratio of the variator 20 is variably controlled in the range from the lowest transmission ratio to the highest transmission ratio.
  • first hydraulic pressure and the second hydraulic pressure are set such that the second hydraulic pressure is greater than the first hydraulic pressure in the gear ratio region that is greater than or equal to the lowest gear ratio and less than the Mid gear ratio.
  • first hydraulic pressure and the second hydraulic pressure are set so that the first hydraulic pressure and the second hydraulic pressure are equal.
  • first hydraulic pressure and the second hydraulic pressure are set such that the first hydraulic pressure is larger than the second hydraulic pressure in the gear ratio region that is higher than the Mid gear ratio and less than or equal to the highest High gear ratio.
  • the line pressure is used for the larger hydraulic pressure of the first hydraulic pressure and the second hydraulic pressure set as described above.
  • the second hydraulic pressure becomes the line pressure in the gear ratio region that is greater than or equal to the lowest gear ratio and less than the Mid gear ratio.
  • the first hydraulic pressure becomes the line pressure in a gear ratio region that is larger than the Mid gear ratio and less than or equal to the highest High gear ratio. In the Mid gear ratio, the first hydraulic pressure and the second hydraulic pressure become the line pressure.
  • the line pressure can be lowered by setting the first hydraulic pressure and the second hydraulic pressure as described above, when the gear ratio is near the Mid gear ratio. Therefore, when the gear ratio is in the vicinity of the Mid gear ratio, fuel efficiency can be improved by reducing the load on the oil pump 10.
  • both the first hydraulic pressure and the second hydraulic pressure are made variable when shifting.
  • both the first hydraulic pressure and the second hydraulic pressure can be made variable at least under the condition that the input torque to the variator 20 is constant.
  • both the first hydraulic pressure and the second hydraulic pressure can be made variable according to the target gear ratio.
  • the belt 23 may slip. Since the pulley pressure cannot be greater than the line pressure, it is necessary to change the line pressure according to the input torque in order to obtain a pulley pressure that does not cause the belt 23 to slip. For this reason, as shown in FIG. 4A and FIG. 4B, in the pressure regulation method, the line pressure is changed according to the input torque by the line pressure adjusting unit 11s. Specifically, the line pressure is increased as the input torque is increased. Thereby, the occurrence of slipping of the belt 23 can be suppressed.
  • the pressure receiving area of the primary pulley 21 and the pressure receiving area of the secondary pulley 22 are set to be equal.
  • the gear ratio can be set to “1” by the Mid gear ratio.
  • the mid speed ratio does not need to be “1”, for example, a value deviated from “1” by the amount of thrust of the return spring that biases the movable conical plate of the secondary pulley 22.
  • FIG. 5A and FIG. 5B are explanatory diagrams of a single pressure adjustment method in the variator 20 for both pressure adjustment methods.
  • FIG. 5A the first hydraulic pressure and the second hydraulic pressure when the first hydraulic pressure is fixed to the line pressure are shown according to the gear ratio of the variator 20.
  • FIG. 5B the first hydraulic pressure and the second hydraulic pressure when the second hydraulic pressure is fixed to the line pressure are shown according to the gear ratio of the variator 20.
  • the gear ratio region is limited to a range not less than the Mid gear ratio and not more than the highest High gear ratio. Therefore, it is possible to shift only in a gear ratio region that is greater than or equal to the Mid gear ratio and less than or equal to the highest High gear ratio.
  • the gear ratio region is limited to a range not less than the lowest gear ratio and not more than the mid gear ratio. Shifting is possible only in the speed ratio region that is greater than or equal to the lowest speed ratio and less than or equal to the Mid speed ratio.
  • the pressure receiving area of the primary pulley 21 and the pressure receiving area of the secondary pulley 22 are set to be equal, and the first hydraulic pressure and the second pressure are set at the Mid speed ratio. This is because the hydraulic pressure becomes equal.
  • the controller 12 can execute the first control for limiting the shift range of the variator 20 as shown in FIG. 5A by fixing the first hydraulic pressure to the line pressure. Further, by fixing the second hydraulic pressure to the line pressure, it is possible to execute the first control for limiting the speed change range of the variator 20 as shown in FIG. 5B.
  • the occurrence of slippage of the belt 23 is suppressed to the maximum by fixing the line pressure to the maximum set pressure.
  • control device 50 Next, main functions and effects of the control device 50 will be described.
  • the speed range of the variator 20 is limited in the first control, if the speed ratio of the variator 20 immediately before the failure is outside the speed ratio area after the execution of the first control, the speed ratio of the variator 20 is set to fail. Later, it will be controlled within the gear ratio range. As a result, unintentional deceleration or speed increase may give a sense of incongruity.
  • the shift speed of the subtransmission mechanism 30 is fixed to the first speed. Therefore, when the shift speed immediately before the failure is the second speed, the shift speed of the subtransmission mechanism 30 is changed from the second speed to the first speed after the failure. It will be changed to speed. As a result, there may be a sense of incongruity due to a shift shock caused mainly by an unintended shift during vehicle travel.
  • the control device 50 includes the variator 20, the auxiliary transmission mechanism 30, and the rotation sensor 42, and controls the transmission 100 that is mounted on the vehicle.
  • the control device 50 includes a hydraulic control circuit 11 and a controller 12.
  • the controller 12 determines the failure of the rotation sensor 42.
  • the hydraulic pressure control circuit 11 and the controller 12 variably control the gear ratio of the variator 20, while executing a first control when a failure is determined.
  • the hydraulic control circuit 11 and the controller 12 variably control the shift speed of the subtransmission mechanism 30, while executing a second control when a failure is determined.
  • the hydraulic control circuit 11 and the controller 12 execute the second control at a timing different from that of the first control when the shift speed of the auxiliary transmission mechanism 30 when the failure is determined is the second speed.
  • the control device 50 having such a configuration, when the subtransmission mechanism 30 is shifted according to the second control, the second control is executed at a timing different from the first control. Uncomfortable feeling given every time can be reduced. Therefore, the uncomfortable feeling caused by the control after the failure can be reduced.
  • the variator 20 may be a toroidal continuously variable transmission mechanism. Even in this case, the control device 50 can achieve the same effects.
  • the hydraulic control circuit 11 and the controller 12 further variably control the line pressure.
  • the line pressure is fixed to a value ⁇ that is equal to or greater than a predetermined value.
  • the variator 20 includes a primary pulley 21, a secondary pulley 22, and a belt 23.
  • the hydraulic control circuit 11 and the controller 12 variably control the speed ratio of the variator 20 by both pressure adjustment methods, and when a failure is determined, one of the first hydraulic pressure and the second hydraulic pressure is fixed to the line pressure.
  • the gear ratio of the variator 20 is variably controlled by the single pressure control method.
  • one of the first hydraulic pressure and the second hydraulic pressure is fixed to a line pressure having a value ⁇ equal to or greater than a predetermined value.
  • the hydraulic pressure can be increased.
  • the other hydraulic pressure is raised by raising the one hydraulic pressure, the first hydraulic pressure and the second hydraulic pressure can be increased.
  • the gear ratio of the variator 20 is variably controlled by the one-pressure adjustment system that fixes the one hydraulic pressure to the line pressure.
  • the gear ratio can be changed within a possible range according to the operating state of the vehicle. For this reason, it is possible to suppress the deterioration of fuel consumption as compared with the case where the gear ratio of the variator 20 is fixed to the maximum gear ratio, that is, the lowest gear ratio at the time of failure.
  • the hydraulic control circuit 11 and the controller 12 variably control the gear ratio of the variator 20 in the range from the lowest gear ratio to the highest gear ratio by both pressure adjustment methods, while a failure is determined.
  • the gear ratio of the variator 20 is variably controlled in the range from the lowest gear ratio to the intermediate gear ratio by a single pressure regulation system in which the second hydraulic pressure is fixed to the line pressure.
  • the speed ratio of the variator 20 is variably controlled within the range from the lowest speed ratio to the mid speed ratio, so that the driving force at the start of the vehicle is reduced. Can be secured.
  • a value ⁇ greater than a predetermined value is the maximum set pressure of the line pressure. In this case, the occurrence of slipping of the belt 23 can be suppressed to the maximum.

Abstract

 変速機の制御装置において、コントローラは、回転センサのフェールを判定する。油圧制御回路及びコントローラは、バリエータの変速比を可変に制御する一方、フェールが判定された場合には、バリエータの変速範囲を制限する第1制御を実行する。また、油圧制御回路及びコントローラは、副変速機構の変速段を可変に制御する一方、フェールが判定された場合には、副変速機構の変速段を1速に固定する第2制御を実行する。また、油圧制御回路及びコントローラは、フェールが判定されたときの副変速機構の変速段が2速である場合、第2制御を第1制御と異なるタイミングで実行する。

Description

変速機の制御装置及び変速機の制御方法
 本発明は、変速機の制御装置及び変速機の制御方法に関する。
 無段変速機のセカンダリプーリの回転速度センサ故障時のフェールセーフを行う技術が、JP5-46465Bで開示されている。この技術では、セカンダリプーリの回転速度センサ故障時に、変速比を最大変速比、すなわち最Low変速比に固定する。
 JP5-46465Bの技術では、プライマリプーリ、セカンダリプーリ及びベルトを有して構成されるバリエータの変速比が例えば、フェール直前に最小変速比、すなわち最High変速比である場合でも、フェール直後に最Low変速比に固定される。結果、意図しない減速によって車両の運転者に違和感を与えることになる。
 このように、フェールセーフは少なからず運転者に違和感を与えることがある。このため、バリエータの出力側にさらに副変速機構が配置されている場合には、フェール後にバリエータと副変速機構とに対して制御が行われる結果、違和感が増大する虞がある。
 本発明は、このような技術的課題に鑑みてなされたもので、バリエータ出力側回転センサのフェール後の制御に起因する違和感を低減することが可能な変速機の制御装置及び変速機の制御方法を提供することを目的とする。
 本発明のある態様の変速機の制御装置は、バリエータと、前記バリエータの出力側に配置され、第1変速段と前記第1変速段よりも変速比が小さい第2変速段とを有する副変速機構と、前記バリエータの出力側且つ前記副変速機構の入力側の回転速度を検出するためのバリエータ出力側回転センサと、を有し車両に搭載される変速機において制御を行う。当該変速機の制御装置は、前記バリエータ出力側回転センサのフェールを判定するフェール判定部と、前記バリエータの変速比を可変に制御する一方、前記フェールが判定された場合には、前記バリエータの変速範囲を制限する第1制御を実行する変速比制御部と、前記副変速機構の変速段を可変に制御する一方、前記フェールが判定された場合には、前記副変速機構の変速段を前記第1変速段に固定する第2制御を実行する変速段制御部と、を有する。前記変速段制御部は、前記フェールが判定されたときの前記副変速機構の変速段が前記第2変速段である場合、前記第2制御を前記第1制御と異なるタイミングで実行する。
 本発明の別の態様によれば、バリエータと、前記バリエータの出力側に配置され第1変速段と前記第1変速段よりも変速比が小さい第2変速段とを有する副変速機構と、前記バリエータの出力側且つ前記副変速機構の入力側の回転速度を検出するためのバリエータ出力側回転センサと、を有し車両に搭載される変速機において制御を行うための変速機の制御方法であって、前記バリエータ出力側回転センサのフェールを判定することと、前記バリエータの変速比を可変に制御する一方、前記フェールが判定された場合には、前記バリエータの変速範囲を制限する第1制御を実行することと、前記副変速機構の変速段を可変に制御する一方、前記フェールが判定された場合には、前記副変速機構の変速段を前記第1変速段に固定する第2制御を実行することと、前記フェールが判定されたときの前記副変速機構の変速段が前記第2変速段である場合、前記第2制御を前記第1制御と異なるタイミングで実行することと、を含む変速機の制御方法が提供される。
 これらの態様によれば、第2制御に応じて副変速機構が変速される場合に、第2制御を第1制御と異なるタイミングで実行するので、フェール後の制御によって1度に与える違和感を低減することができる。したがって、フェール後の制御に起因する違和感を低減することができる。
図1は、変速機を含む車両の要部を示す図である。 図2は、コントローラが行う制御の一例をフローチャートで示す図である。 図3Aは、調圧方式の比較例の説明図の第1の図である。 図3Bは、調圧方式の比較例の説明図の第2の図である。 図3Cは、調圧方式の比較例の説明図の第3の図である。 図4Aは、両調圧方式の説明図の第1の図である。 図4Bは、両調圧方式の説明図の第2の図である。 図5Aは、両調圧方式用のバリエータにおける片調圧方式の説明図の第1の図である。 図5Bは、両調圧方式用のバリエータにおける片調圧方式の説明図の第2の図である。
 以下、添付図面を参照しながら本発明の実施形態について説明する。
 図1は、変速機100を含む車両の要部を示す図である。車両は、エンジン1と、トルクコンバータ2と、バリエータ20と、副変速機構30と、車軸4と、駆動輪5と、を備える。
 エンジン1は、車両の動力源を構成する。トルクコンバータ2は、流体を介して動力を伝達する。トルクコンバータ2では、ロックアップクラッチ2aを締結することで、動力伝達効率を高めることができる。バリエータ20と副変速機構30とは、入力された回転速度を変速比に応じた回転速度で出力する。変速比は、入力回転速度を出力回転速度で割って得られる値である。車軸4は、減速ギヤや差動装置で構成される駆動車軸である。エンジン1の動力は、トルクコンバータ2、バリエータ20、副変速機構30及び車軸4を介して駆動輪5に伝達される。
 バリエータ20は無段変速機構であり、プライマリプーリ21と、セカンダリプーリ22と、ベルト23と、を備える。以下では、プライマリプーリ21を単にプーリ21とも称し、セカンダリプーリ22を単にプーリ22とも称す。
 プライマリプーリ21は、固定円錐板と、可動円錐板と、油圧シリンダ21aと、を備える。セカンダリプーリ22は、固定円錐板と、可動円錐板と、油圧シリンダ22aと、を備える。プーリ21、22それぞれにおいて、固定円錐板と可動円錐板とは、シーブ面を互いに対向させた状態で配置され、V溝を形成する。プーリ21では油圧シリンダ21aが、プーリ22では油圧シリンダ22aが、可動円錐板の背面に設けられ、可動円錐板を軸方向に変位させる。ベルト23は、プーリ21とプーリ22とに巻きかけられる。ベルト23にはVベルトを用いることができる。
 油圧シリンダ21aには第1油圧が作用する。プーリ21は、第1油圧によってV溝の幅が制御される。油圧シリンダ22aには第2油圧が作用する。プーリ22は、第2油圧によってV溝の幅が制御される。
 第1油圧を調整し、プーリ21のV溝の幅を変化させることで、プーリ21とベルト23との接触半径が変化する。第2油圧を調整し、プーリ22のV溝の幅を変化させることで、プーリ22とベルト23との接触半径が変化する。このため、プーリ21やプーリ22のV溝の幅を制御することで、バリエータ20の変速比を無段階に制御することができる。
 副変速機構30は有段変速機構であり、前進2段、後進1段の変速段を有する。副変速機構30は、前進用変速段として、1速と、1速よりも変速比が小さい2速を有する。副変速機構30は、エンジン1から駆動輪5に至るまでの動力伝達経路において、バリエータ20の出力側に直列に設けられる。副変速機構30は、バリエータ20に直接接続されてもよく、ギヤ列など他の構成を介してバリエータ20に間接的に接続されてもよい。
 車両では、バリエータ20及び副変速機構30それぞれにおいて、変速比が変更される。このため、車両ではバリエータ20の変速比に副変速機構30の変速比を掛けて得られるバリエータ20及び副変速機構30全体の変速比であるスルー変速比に応じた変速が行われる。
 バリエータ20は副変速機構30とともに、自動変速機構3を構成する。バリエータ20と副変速機構30とは構造上、個別の変速機構として構成されてもよい。
 車両は、オイルポンプ10と、油圧制御回路11と、コントローラ12と、をさらに備える。
 オイルポンプ10は、油圧を発生させる。オイルポンプ10には、エンジン1の動力で駆動する機械式のオイルポンプを用いることができる。
 油圧制御回路11は、オイルポンプ10がオイル供給によって発生させる油圧を調整してバリエータ20や副変速機構30の各部位に伝達する。油圧制御回路11は、ライン圧調整部11s、第1油圧調整部11a及び第2油圧調整部11bを含む。
 ライン圧調整部11sは、オイルポンプ10がオイル供給によって発生させる油圧を調整してライン圧を生成する。ライン圧は、第1油圧及び第2油圧の元圧となる油圧であり、ベルト23の滑りが発生しないように設定される。第1油圧調整部11aは、ライン圧から第1油圧を生成する。第2油圧調整部11bは、ライン圧から第2油圧を生成する。ライン圧調整部11sや、第1油圧調整部11aや、第2油圧調整部11bには、油圧レギュレータを用いることができる。油圧制御回路11はさらに、副変速機構30の変速段を制御するための油圧回路部11cを有して構成されている。
 コントローラ12は、油圧制御回路11を制御する。コントローラ12には、回転センサ41や、回転センサ42や、回転センサ43の出力信号が入力される。回転センサ41は、バリエータ20の入力側の回転速度を検出するためのバリエータ入力側回転センサに相当するセンサである。回転センサ42は、バリエータ20の出力側の回転速度を検出するためのバリエータ出力側回転センサに相当するセンサである。回転センサ42は具体的には、バリエータ20の出力側且つ副変速機構30の入力側の回転速度を検出する。回転センサ43は、副変速機構30の出力側の回転速度を検出するための副変速機構出力側回転センサに相当するセンサである。
 バリエータ20の入力側の回転速度は具体的には、バリエータ20の入力軸の回転速度である。バリエータ20の入力側の回転速度は、前述の動力伝達経路において、例えばギヤ列をバリエータ20との間に挟んだ位置の回転速度であってもよい。バリエータ20の出力側の回転速度や、副変速機構30の出力側の回転速度についても同様である。
 コントローラ12には、このほかアクセル開度センサ44や、インヒビタスイッチ45や、エンジン回転センサ46などの出力信号が入力される。アクセル開度センサ44は、アクセルペダルの操作量を表すアクセル開度APOを検出する。インヒビタスイッチ45は、セレクトレバーの位置を検出する。エンジン回転センサ46は、エンジン1の回転速度Neを検出する。コントローラ12は、回転センサ43の出力信号に基づき車速VSPを検出することができる。
 コントローラ12は、これらの信号に基づき変速制御信号を生成し、生成した変速制御信号を油圧制御回路11に出力する。油圧制御回路11は、コントローラ12からの変速制御信号に基づき、ライン圧や第1油圧や第2油圧を制御するほか、油圧経路の切り換えなどを行う。
 これにより、油圧制御回路11からバリエータ20や副変速機構30の各部位に変速制御信号に応じた油圧の伝達が行われる。結果、バリエータ20や副変速機構30の変速比が、変速制御信号に応じた変速比すなわち目標変速比に変更される。
 変速機100は自動変速機であり、このようにして変速比を制御する油圧制御回路11及びコントローラ12のほか、バリエータ20、副変速機構30、回転センサ41、回転センサ42及び回転センサ43を有して構成されている。油圧制御回路11及びコントローラ12は、車両に搭載される変速機100において制御を行う変速機の制御装置50を構成する。以下では、変速機の制御装置50を単に制御装置50と称す。
 図2は、コントローラ12が行う制御の一例をフローチャートで示す図である。コントローラ12は、本フローチャートに示す処理を微小時間毎に繰り返し実行することができる。コントローラ12は、ステップS1で回転センサ42が異常であるか否かを判定する。
 ステップS1で、コントローラ12は例えば、回転センサ42が断線しているか否かを判定したり、回転センサ42の出力信号が正常範囲を外れているか否かを判定したりすることができる。回転センサ42が異常であるか否かの判定には、公知技術のほか適宜の技術が適用されてよい。
 ステップS1で否定判定であれば、回転センサ42が正常であると判定される。この場合、コントローラ12は、ライン圧調整部11sによってステップS2に示すように、ライン圧を可変に制御する。また、ステップS3に示すように両調圧方式によりバリエータ20の変速比を可変に制御する。
 両調圧方式は、第1油圧と第2油圧との大小関係が入れ替わる調圧方式である。したがって、両調圧方式では、第1油圧と第2油圧との大小関係が、第1油圧>第2油圧となる場合と、第1油圧=第2油圧となる場合と、第1油圧<第2油圧となる場合がある。両調圧方式につき、詳しくは後述する。
 ステップS3で、コントローラ12は、副変速機構30の変速段も可変に制御する。すなわち、ステップS3では、副変速機構30も変速制御信号に応じて適宜変速される。副変速機構30が変速される場合、コントローラ12は協調変速制御を行う。協調変速制御は、副変速機構30の変速時において、バリエータ20の変速比を副変速機構30の変速比変化と逆の方向に変化させる制御である。協調変速制御では具体的には、スルー変速比が一定になるようにバリエータ20の変速比を制御する。協調変速制御を行うことで、副変速機構30変速時の変速ショックが抑制される。
 協調変速制御には、少なくとも回転センサ42の出力が用いられる。このため、回転センサ42のフェール時には協調変速制御を行うことができなくなる。結果、副変速機構30変速時に変速ショックが発生し得る。
 協調変速制御には、回転センサ41の出力及び回転センサ43の出力も用いられる。回転センサ41の出力、回転センサ42の出力及び回転センサ43の出力は、バリエータ20の実変速比及び副変速機構30の実変速比を検出するために用いることができる。ステップS3の後には、本フローチャートを一旦終了する。
 ステップS1で肯定判定であれば、回転センサ42のフェールが判定される。この場合、コントローラ12は、ライン圧調整部11sによってステップS4に示すように、ライン圧を所定以上の値αに固定する。ライン圧を所定以上の値αに固定する、とは、修理等によってフェールが解除されるまでの間、ライン圧を所定以上の値αに維持することを意味する。所定以上の値αには、例えばライン圧の最大設定圧が適用される。所定以上の値αは、バリエータ20への入力トルクが最大になったときにベルト23に滑りが生じない値であればよい。
 さらにコントローラ12は、ステップS5で第2油圧をライン圧に固定することで、バリエータ20の変速範囲を制限する第1制御を実行する。また、コントローラ12は、ステップS6で車速VSPに応じて第1油圧を制御する。これにより、第2油圧をライン圧に固定する片調圧方式によりバリエータ20の変速比が可変に制御される。
 片調圧方式は、第1油圧と第2油圧との大小関係が入れ替わらない調圧方式である。したがって、片調圧方式では、第1油圧と第2油圧との大小関係は、第1油圧≧第2油圧のまま、或いは第1油圧≦第2油圧のままとなる。
 第1制御は、バリエータ20の変速比の変更、具体的には両調圧方式から片調圧方式への切替に応じてステップS6で行われるバリエータ20の変速比の変更をさらに含む制御として把握されてもよい。片調圧方式及び第1制御につき、詳しくは後述する。
 ステップS6で、コントローラ12は、少なくとも回転センサ43の出力を用いて第1油圧を制御することで、車速VSPに応じて第1油圧を制御することができる。この場合、コントローラ12は、回転センサ41の出力や回転センサ42の出力を用いることなく、第1油圧を制御してよい。
 これにより、フェールの影響を回避しながら車速VSPに応じてバリエータ20の変速比を制御することができる。回転センサ43の出力は、フェール時のバリエータ20の変速比制御指令を含む変速制御信号を生成するのに用いることができる。
 ステップS6で、コントローラ12は、回転センサ41、回転センサ42及び回転センサ43の出力以外の他のパラメータをさらに用いて第1油圧を制御してよい。すなわち、フェール時の変速制御信号は、当該他のパラメータをさらに用いて生成されてよい。
 コントローラ12は、ステップS5で第1油圧をライン圧に固定し、ステップS6で車速VSPに応じて第2油圧を制御してもよい。この場合、コントローラ12は、第1油圧をライン圧に固定する片調圧方式によりバリエータ20の変速比を可変に制御することができる。
 ステップS7で、コントローラ12は、副変速機構30の変速段が2速であるか否かを判定する。副変速機構30の変速段が2速であるか否かは例えば、副変速機構30の変速段を検出可能なセンサの出力に基づき判定することができる。
 ステップS7で肯定判定であれば、コントローラ12は、ステップS8で副変速機構30の変速段を2速から1速に変更する。また、コントローラ12は、ステップS9で副変速機構30の変速段を1速に固定する第2制御を実行する。副変速機構30の変速段を1速に固定する、とは、修理等によってフェールが解除されるまでの間、副変速機構30の変速段を1速に維持することを意味する。
 これにより、車両発進性を確保するとともに、その後の変速ショックの発生を防止することができる。コントローラ12は、ステップS7で否定判定であった場合にも、ステップS9で第2制御を実行する。
 回転センサ42のフェールが判定されたときの副変速機構30の変速段が2速である場合、第2制御はステップS8に示す処理、すなわち副変速機構30の変速段を2速から1速に変更することをさらに含む制御として把握されてもよい。
 この場合、コントローラ12は、ステップS5で第1制御を実行した後、ステップS8及びステップS9で第2制御を実行することで、第2制御を第1制御と異なるタイミングで実行する。ステップS9の後には、本フローチャートの処理を一旦終了する。
 ステップS8で、コントローラ12は、停車中に副変速機構30の変速段を2速から1速に変更することが好ましい。これにより、副変速機構30の変速を運転者に感知され難くすることができる。ステップS8の制御は例えば、第1制御実行後、所定時間が経過した場合に実行されてもよい。所定時間には予め設定した値を用いることができる。
 本実施形態において、フェール判定部はコントローラ12、具体的にはステップS1の判定を行う部分として機能的に把握されるコントローラ12の一部により実現されている。また、変速比制御部は、コントローラ12及び油圧制御回路11、具体的にはステップS3、S5及びS6の処理を行う部分として機能的に把握されるコントローラ12の一部、及び油圧制御回路11の一部である第1油圧調整部11aと第2油圧調整部11bとにより実現されている。また、変速段制御部は、コントローラ12及び油圧制御回路11、具体的にはステップS8及びステップS9の処理を行う部分として機能的に把握されるコントローラ12の一部、及び油圧制御回路11の一部である油圧回路部11cにより実現されている。また、ライン圧制御部は、コントローラ12及び油圧制御回路11、具体的にはステップS2及びステップS4の処理を行う部分として機能的に把握されるコントローラの一部、及び油圧制御回路11の一部であるライン圧調整部11sにより実現されている。
 次に、調圧方式について説明する。
 図3A、図3B及び図3Cは、調圧方式の比較例の説明図であり、具体的には片調圧方式用のバリエータにおける片調圧方式の説明図である。図3Aは、当該バリエータへの入力トルクがT1である場合のPri圧及びSec圧を当該バリエータの変速比に応じて示す。図3Bは、当該バリエータへの入力トルクがT2である場合のPri圧及びSec圧を当該バリエータの変速比に応じて示す。図3Cは、ライン圧を最大設定圧に固定した場合のPri圧及びSec圧を当該バリエータの変速比に応じて示す。
 Pri圧は第1油圧相当の油圧であり、片調圧方式用のバリエータにおけるプライマリプーリの制御油圧を示す。Sec圧は第2油圧相当の油圧であり、片調圧方式用のバリエータにおけるセカンダリプーリの制御油圧を示す。図3Aから図3Cに示す変速比とPri圧及びSec圧との関係は、換言すれば目標変速比とこれに応じたPri圧及びSec圧との関係ということができる。T1及びT2は、T1<T2の大小関係を満たす入力トルクを示す。図3Aから図3Cでは、Sec圧をライン圧に固定する場合を示す。
 図3A、図3Bに示すように、片調圧方式用のバリエータで変速を行う場合、全変速比領域においてSec圧をライン圧にし、入力トルクに応じてライン圧を変更することで、ベルト滑りを防止する。また、Pri圧とSec圧とが等しくなった場合に、変速比がHighになるようにプライマリプーリ及びセカンダリプーリの受圧面積が設定される。
 この場合、プライマリプーリの受圧面積はセカンダリプーリの受圧面積よりも大きく設定される。例えば、プライマリプーリの受圧面積はセカンダリプーリの受圧面積の約2倍である。プライマリプーリの受圧面積は、プライマリプーリをダブルピストン構造にすることで、実効的に増やすことができる。
 このような片調圧方式用のバリエータに対し、ライン圧を最大設定圧に固定すると、Pri圧とSec圧とは、入力トルクに関わらず、図3Cに示すように設定される。このとき、Pri圧及びSec圧は、全変速比領域に亘る範囲で設定される。
 図4A及び図4Bは、両調圧方式の説明図である。図4Aでは、バリエータ20への入力トルクがT1である場合の第1油圧及び第2油圧をバリエータ20の変速比に応じて示す。図4Bでは、バリエータ20への入力トルクがT2である場合の第1油圧及び第2油圧をバリエータ20の変速比に応じて示す。
 最Low変速比は最大変速比であり、最High変速比は最小変速比である。Mid変速比は中間変速比であり、第1油圧と第2油圧とが等しくなる変速比である。図4A及び図4Bに示す変速比と第1油圧及び第2油圧との関係は、換言すれば目標変速比とこれに応じた第1油圧及び第2油圧との関係ということができる。後述する図5A及び図5Bについても同様である。
 図4A及び図4Bそれぞれに示すように、両調圧方式では、バリエータ20の変速比に応じて、第1油圧と第2油圧との大小関係が入れ替わるように第1油圧及び第2油圧が設定される。また、バリエータ20の変速比が最Low変速比から最High変速比までの範囲で可変に制御される。
 具体的には、最Low変速比以上且つMid変速比未満の変速比領域では、第2油圧が第1油圧よりも大きくなるように第1油圧及び第2油圧が設定される。また、Mid変速比では、第1油圧と第2油圧とが等しくなるように第1油圧及び第2油圧が設定される。さらに、Mid変速比よりも高く且つ最High変速比以下の変速比領域では、第1油圧が第2油圧よりも大きくなるように第1油圧及び第2油圧が設定される。
 両調圧方式では、さらに上述のように設定した第1油圧及び第2油圧のうち大きい方の油圧にライン圧を用いる。
 このため、最Low変速比以上且つMid変速比未満の変速比領域では、第2油圧がライン圧になる。また、Mid変速比よりも大きく且つ最High変速比以下の変速比領域では、第1油圧がライン圧になる。Mid変速比では、第1油圧及び第2油圧がライン圧になる。
 両調圧方式では、上述のように第1油圧及び第2油圧を設定することで、変速比がMid変速比付近である場合に、ライン圧を下げることができる。したがって、変速比がMid変速比付近である場合に、オイルポンプ10の負荷軽減による燃費向上を図ることができる。
 図4A及び図4Bそれぞれに示すように、両調圧方式では、変速を行う場合に第1油圧及び第2油圧の双方を可変にする。両調圧方式では、少なくともバリエータ20への入力トルクが一定という条件下で、第1油圧及び第2油圧の双方を可変にすることができる。換言すれば、目標変速比に応じて第1油圧及び第2油圧の双方を可変にすることができる。
 バリエータ20への入力トルクに対してプーリ圧が不十分であると、ベルト23の滑りが発生する場合がある。プーリ圧をライン圧より大きくすることはできないので、ベルト23の滑りが発生しないようなプーリ圧とするためには、入力トルクに応じてライン圧を変更する必要がある。このため、図4A及び図4Bに示すように、両調圧方式では、さらにライン圧調整部11sによって入力トルクに応じてライン圧を変更する。具体的には、入力トルクが大きい場合ほどライン圧を大きくする。これにより、ベルト23の滑り発生を抑制することができる。
 両調圧方式で変速を行うバリエータ20では、プライマリプーリ21の受圧面積とセカンダリプーリ22の受圧面積とが等しくなるように設定される。このため、バリエータ20では、Mid変速比で変速比を「1」にすることができる。Mid変速比は、例えばセカンダリプーリ22の可動円錐板を付勢するリターンスプリングの推力分だけ「1」からずれた値になるなど、「1」にならなくてもよい。
 図5A及び図5Bは、両調圧方式用のバリエータ20における片調圧方式の説明図である。図5Aでは、第1油圧をライン圧に固定する場合の第1油圧及び第2油圧をバリエータ20の変速比に応じて示す。図5Bでは、第2油圧をライン圧に固定する場合の第1油圧及び第2油圧をバリエータ20の変速比に応じて示す。
 図5Aに示すように、第1油圧をライン圧に固定する場合、変速比領域はMid変速比以上且つ最High変速比以下の範囲に制限される。したがって、Mid変速比以上且つ最High変速比以下の変速比領域でのみ変速が可能になる。
 図5Bに示すように、第2油圧をライン圧に固定する場合、変速比領域は最Low変速比以上且つMid変速比以下の範囲に制限される。最Low変速比以上且つMid変速比以下の変速比領域でのみ変速が可能になる。
 理由は次の通りである。すなわち、両調圧方式用のバリエータ20では、前述した通り、プライマリプーリ21の受圧面積とセカンダリプーリ22の受圧面積とが等しくなるように設定されており、Mid変速比で第1油圧と第2油圧とが等しくなるためである。
 したがって、コントローラ12は、第1油圧をライン圧に固定することで、バリエータ20の変速範囲を図5Aに示すように制限する第1制御を実行することができる。また、第2油圧をライン圧に固定することで、バリエータ20の変速範囲を図5Bに示すように制限する第1制御を実行することができる。
 図5A及び図5Bの場合ともに、ライン圧を最大設定圧に固定することで、ベルト23の滑りの発生は最大限に抑制される。
 次に、制御装置50の主な作用効果について説明する。
 ここで、第1制御ではバリエータ20の変速範囲が制限されるので、フェール直前のバリエータ20の変速比が第1制御実行後の変速比領域外にある場合には、バリエータ20の変速比はフェール後に当該変速比領域内に制御されることになる。結果、意図しない減速又は増速によって違和感を与える場合がある。
 また、第2制御では副変速機構30の変速段を1速に固定するので、フェール直前の変速段が2速であった場合には、副変速機構30の変速段はフェール後に2速から1速に変更されることになる。結果、主に車両走行中に意図しない変速に起因する変速ショックによって違和感を与える場合がある。
 このため、第1制御と第2制御とを同時に実行しようとすると、2つの違和感が重なって生じる場合がある。結果、違和感が増大する場合がある。
 このような事情に鑑み、制御装置50は、バリエータ20と、副変速機構30と、回転センサ42と、を有し車両に搭載される変速機100において制御を行う。制御装置50は、油圧制御回路11と、コントローラ12と、を有する。コントローラ12は、回転センサ42のフェールを判定する。油圧制御回路11及びコントローラ12は、バリエータ20の変速比を可変に制御する一方、フェールが判定された場合には、第1制御を実行する。また、油圧制御回路11及びコントローラ12は、副変速機構30の変速段を可変に制御する一方、フェールが判定された場合には、第2制御を実行する。油圧制御回路11及びコントローラ12は、フェールが判定されたときの副変速機構30の変速段が2速である場合、第2制御を第1制御と異なるタイミングで実行する。
 このような構成の制御装置50によれば、第2制御に応じて副変速機構30が変速される場合に、第2制御を第1制御と異なるタイミングで実行するので、フェール後の制御によって1度に与える違和感を低減することができる。したがって、フェール後の制御に起因する違和感を低減することができる。
 このような構成において、バリエータ20はトロイダル型の無段変速機構であってもよい。この場合でも、制御装置50は同様の作用効果を奏することができる。
 制御装置50では、油圧制御回路11及びコントローラ12はさらに、ライン圧を可変制御する一方、フェールが判定された場合には、ライン圧を所定以上の値αに固定する。バリエータ20は、プライマリプーリ21と、セカンダリプーリ22と、ベルト23と、を有する。油圧制御回路11及びコントローラ12は、両調圧方式によりバリエータ20の変速比を可変に制御する一方、フェールが判定された場合には、第1油圧及び第2油圧のうち一方をライン圧に固定する片調圧方式によりバリエータ20の変速比を可変に制御する。
 このような構成の制御装置50によれば、フェールが判定された場合に、第1油圧及び第2油圧のうち一方の油圧が所定以上の値αのライン圧に固定されるので、当該一方の油圧を高めることができる。また、当該一方の油圧を高めることで、他方の油圧も底上げされるので、第1油圧及び第2油圧を高めることができる。結果、回転センサ42のフェール時に、ベルト滑りを防止するフェールセーフを行うことができる。
 また、このような構成の制御装置50によれば、フェールが判定された場合に、上記一方の油圧をライン圧に固定する片調圧方式によりバリエータ20の変速比を可変に制御するので、車両の運転状態等に応じて変速比を可能な範囲内で変更することができる。このため、フェール時にバリエータ20の変速比を最大変速比、すなわち最Low変速比等に固定にする場合と比較して、燃費の悪化を抑制することもできる。
 制御装置50では、油圧制御回路11及びコントローラ12は、両調圧方式によりバリエータ20の変速比を最Low変速比から最High変速比までの範囲で可変に制御する一方、フェールが判定された場合に、第2油圧をライン圧に固定する片調圧方式によりバリエータ20の変速比を最Low変速比から中間変速比までの範囲で可変に制御する。
 上記構成の制御装置50によれば、フェールが判定された場合には、バリエータ20の変速比を最Low変速比からMid変速比までの範囲で可変に制御するので、車両発進時の駆動力を確保することができる。
 制御装置50において、所定以上の値αはライン圧の最大設定圧である。この場合、ベルト23の滑りの発生を最大限抑制することができる。
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したものに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。
 本願は2015年3月20日に日本国特許庁に出願された特願2015-57905に基づく優先権を主張し、この出願のすべての内容は参照により本明細書に組み込まれる。

Claims (5)

  1.  バリエータと、
     前記バリエータの出力側に配置され、第1変速段と前記第1変速段よりも変速比が小さい第2変速段とを有する副変速機構と、
     前記バリエータの出力側且つ前記副変速機構の入力側の回転速度を検出するためのバリエータ出力側回転センサと、
    を有し車両に搭載される変速機において制御を行う変速機の制御装置であって、
     前記バリエータ出力側回転センサのフェールを判定するフェール判定部と、
     前記バリエータの変速比を可変に制御する一方、前記フェールが判定された場合には、前記バリエータの変速範囲を制限する第1制御を実行する変速比制御部と、
     前記副変速機構の変速段を可変に制御する一方、前記フェールが判定された場合には、前記副変速機構の変速段を前記第1変速段に固定する第2制御を実行する変速段制御部と、
    を有し、
     前記変速段制御部は、前記フェールが判定されたときの前記副変速機構の変速段が前記第2変速段である場合、前記第2制御を前記第1制御と異なるタイミングで実行する、
    変速機の制御装置。
  2.  請求項1に記載の変速機の制御装置であって、
     第1油圧及び第2油圧の元圧となるライン圧を可変制御する一方、前記フェールが判定された場合には、前記ライン圧を所定以上の値に固定するライン圧制御部をさらに有し、
     前記バリエータは、前記第1油圧により溝幅が制御されるプライマリプーリと、前記第2油圧により溝幅が制御されるセカンダリプーリと、前記プライマリプーリと前記セカンダリプーリとに巻きかけられたベルトと、を有し、
     前記変速比制御部は、前記第1油圧及び前記第2油圧の双方を可変とする両調圧方式により前記バリエータの変速比を可変に制御する一方、前記フェールが判定された場合には、前記第1油圧及び前記第2油圧のうち一方を前記ライン圧に固定する片調圧方式により前記バリエータの変速比を可変に制御する、
    変速機の制御装置。
  3.  請求項2に記載の変速比の制御装置であって、
     前記変速比制御部は、前記第1油圧及び前記第2油圧の双方を可変とする前記両調圧方式により前記バリエータの変速比を最Low変速比から最High変速比までの範囲で可変に制御する一方、前記フェールが判定された場合には、前記第2油圧を前記ライン圧に固定する前記片調圧方式により前記バリエータの変速比を最Low変速比から中間変速比までの範囲で可変に制御する、
    変速機の制御装置。
  4.  請求項2又は3に記載の変速機の制御装置であって、
     前記所定以上の値は、前記ライン圧の最大設定圧である、
    変速機の制御装置。
  5.  バリエータと、前記バリエータの出力側に配置され第1変速段と前記第1変速段よりも変速比が小さい第2変速段とを有する副変速機構と、前記バリエータの出力側且つ前記副変速機構の入力側の回転速度を検出するためのバリエータ出力側回転センサと、を有し車両に搭載される変速機において制御を行うための変速機の制御方法であって、
     前記バリエータ出力側回転センサのフェールを判定することと、
     前記バリエータの変速比を可変に制御する一方、前記フェールが判定された場合には、前記バリエータの変速範囲を制限する第1制御を実行することと、
     前記副変速機構の変速段を可変に制御する一方、前記フェールが判定された場合には、前記副変速機構の変速段を前記第1変速段に固定する第2制御を実行することと、
     前記フェールが判定されたときの前記副変速機構の変速段が前記第2変速段である場合、前記第2制御を前記第1制御と異なるタイミングで実行することと、
    を含む変速機の制御方法。
PCT/JP2016/053849 2015-03-20 2016-02-09 変速機の制御装置及び変速機の制御方法 WO2016152291A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP16768194.9A EP3273106A4 (en) 2015-03-20 2016-02-09 Transmission control device and transmission control method
KR1020177025759A KR101939526B1 (ko) 2015-03-20 2016-02-09 변속기의 제어 장치 및 변속기의 제어 방법
JP2017507578A JP6379280B2 (ja) 2015-03-20 2016-02-09 変速機の制御装置及び変速機の制御方法
CN201680016030.9A CN107429832B (zh) 2015-03-20 2016-02-09 变速器的控制装置及变速器的控制方法
US15/558,907 US10371255B2 (en) 2015-03-20 2016-02-09 Transmission control device and transmission control method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-057905 2015-03-20
JP2015057905 2015-03-20

Publications (1)

Publication Number Publication Date
WO2016152291A1 true WO2016152291A1 (ja) 2016-09-29

Family

ID=56978453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053849 WO2016152291A1 (ja) 2015-03-20 2016-02-09 変速機の制御装置及び変速機の制御方法

Country Status (6)

Country Link
US (1) US10371255B2 (ja)
EP (1) EP3273106A4 (ja)
JP (1) JP6379280B2 (ja)
KR (1) KR101939526B1 (ja)
CN (1) CN107429832B (ja)
WO (1) WO2016152291A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211838A (ja) * 2003-01-07 2004-07-29 Suzuki Motor Corp 無段変速機の変速制御装置
JP2008020055A (ja) * 2006-06-15 2008-01-31 Toyota Motor Corp ベルト式無段変速機の制御装置
JP2012154434A (ja) * 2011-01-26 2012-08-16 Toyota Motor Corp 車両用ベルト式無段変速機の制御装置
JP2013096450A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp 車両用無段変速機の制御装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61109957A (ja) * 1984-11-02 1986-05-28 Toyota Motor Corp フエイルセ−フ機能を備えた車両用無段変速機の変速比制御装置
JPS6253248A (ja) * 1985-08-30 1987-03-07 Fuji Heavy Ind Ltd 無段変速機の制御装置
JPH0678784B2 (ja) * 1986-07-01 1994-10-05 日産自動車株式会社 無段変速機の制御装置
CN107429830B (zh) * 2015-03-20 2019-05-21 加特可株式会社 变速器的控制装置及变速器的控制方法
EP3273109A4 (en) * 2015-03-20 2018-11-14 Jatco Ltd. Transmission control device and transmission control method
JP6353971B2 (ja) * 2015-03-20 2018-07-04 ジヤトコ株式会社 変速機の制御装置及び変速機の制御方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004211838A (ja) * 2003-01-07 2004-07-29 Suzuki Motor Corp 無段変速機の変速制御装置
JP2008020055A (ja) * 2006-06-15 2008-01-31 Toyota Motor Corp ベルト式無段変速機の制御装置
JP2012154434A (ja) * 2011-01-26 2012-08-16 Toyota Motor Corp 車両用ベルト式無段変速機の制御装置
JP2013096450A (ja) * 2011-10-28 2013-05-20 Toyota Motor Corp 車両用無段変速機の制御装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3273106A4 *

Also Published As

Publication number Publication date
KR101939526B1 (ko) 2019-01-16
KR20170118139A (ko) 2017-10-24
US20180066751A1 (en) 2018-03-08
CN107429832A (zh) 2017-12-01
CN107429832B (zh) 2019-05-21
JPWO2016152291A1 (ja) 2017-12-28
EP3273106A1 (en) 2018-01-24
EP3273106A4 (en) 2018-04-18
US10371255B2 (en) 2019-08-06
JP6379280B2 (ja) 2018-08-22

Similar Documents

Publication Publication Date Title
JP6353971B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6379279B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6446122B2 (ja) 変速機の制御装置及び変速機の制御方法
JP2005291395A (ja) 車両用ベルト式無段変速機の油圧制御装置
JP6364542B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6379280B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6364541B2 (ja) 変速機の制御装置及び変速機の制御方法
WO2013132899A1 (ja) 無段変速機の変速制御装置及び変速制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768194

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017507578

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016768194

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20177025759

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15558907

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE