WO2016152285A1 - 車両用自動変速機の制御装置 - Google Patents

車両用自動変速機の制御装置 Download PDF

Info

Publication number
WO2016152285A1
WO2016152285A1 PCT/JP2016/053728 JP2016053728W WO2016152285A1 WO 2016152285 A1 WO2016152285 A1 WO 2016152285A1 JP 2016053728 W JP2016053728 W JP 2016053728W WO 2016152285 A1 WO2016152285 A1 WO 2016152285A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear ratio
valve
hydraulic pressure
hydraulic
pressure
Prior art date
Application number
PCT/JP2016/053728
Other languages
English (en)
French (fr)
Inventor
濱野 正宏
洋次 伊藤
尚典 飯塚
倫平 天野
Original Assignee
ジヤトコ株式会社
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ジヤトコ株式会社, 日産自動車株式会社 filed Critical ジヤトコ株式会社
Publication of WO2016152285A1 publication Critical patent/WO2016152285A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/12Detecting malfunction or potential malfunction, e.g. fail safe; Circumventing or fixing failures

Definitions

  • the present invention relates to a control device for an automatic transmission for a vehicle.
  • a gear is shifted by switching between engagement and release of a plurality of friction engagement elements.
  • engagement and release of each friction engagement element is performed by supplying hydraulic pressure to each friction engagement element. Is controlled according to the target hydraulic pressure by each solenoid valve.
  • Patent Document 1 discloses a method for detecting a failure of the hydraulic sensor based on the difference between the indicated pressure and the actual hydraulic pressure. It is shown.
  • a control device for an automatic transmission for a vehicle includes a transmission mechanism that achieves a desired gear ratio by engaging or releasing a friction engagement element, and the friction engagement element. And a hydraulic pressure sensor for detecting the hydraulic pressure supplied to the friction engagement element, wherein the output value of the hydraulic sensor is An actual pressure detecting means for detecting the pressure, a command pressure control means for controlling a command pressure value of the hydraulic pressure to the solenoid valve, a gear ratio deviation judging means for judging a gear ratio deviation of the transmission mechanism, and the output value.
  • fail-safe control means for performing fail-safe control on the solenoid valve or the hydraulic sensor according to the determination result by the fail determination means.
  • the fail location can be specified from the presence or absence of a gear ratio deviation even while the vehicle is traveling, it is possible to immediately switch to the fail-safe mode while the vehicle is traveling.
  • FIG. 1 is a configuration diagram showing a drive system of a vehicle equipped with an automatic transmission for a vehicle and a control device thereof according to an embodiment of the present invention.
  • 1 is a hydraulic circuit diagram showing a configuration of a part of a hydraulic circuit of an automatic transmission for a vehicle according to an embodiment of the present invention. It is the determination map explaining the determination process by the control apparatus concerning one Embodiment of this invention, (a) is related with a low brake, (h) is related with a high clutch. It is a flowchart explaining the determination process by the control apparatus concerning one Embodiment of this invention.
  • FIG. 1 is a block diagram showing a drive system of a vehicle equipped with a control device including an automatic transmission for a vehicle and a failure determination device according to the present embodiment.
  • this vehicle includes an engine 1 as a power source.
  • the output rotation of the engine 1 includes a torque converter with a lock-up clutch, a gear train (drive counter gear, driven counter gear), a continuously variable transmission (hereinafter also simply referred to as a transmission), a final reduction gear, and a differential. It is transmitted to a driving wheel (not shown) via the mechanism 6.
  • the final speed reduction device 5 is provided with a parking mechanism 8 that mechanically locks the output shaft of the transmission 4 during parking.
  • the vehicle includes an oil pump 10 that is driven using a part of the power of the engine 1, and a control valve unit (C that supplies hydraulic pressure from the oil pump 10 to each part of the transmission 4. / V, hydraulic control circuit) 11 and an automatic transmission control unit (ATCU) 12 for controlling the control valve unit 11 are provided.
  • a control valve unit C that supplies hydraulic pressure from the oil pump 10 to each part of the transmission 4.
  • V, hydraulic control circuit hydraulic control circuit
  • ATCU automatic transmission control unit
  • the transmission 4 includes a belt-type continuously variable transmission mechanism (also simply referred to as CVT) 20 and a sub-transmission mechanism 30 from the engine 1 to drive wheels (not shown). Are provided in series.
  • CVT continuously variable transmission mechanism
  • the CVT 20 includes a primary pulley 21, a secondary pulley 22, and a V belt 23 that is wound around these pulleys 21 and 22.
  • Each of the pulleys 21 and 22 is provided on a fixed sheave, a movable sheave having a sheave surface opposed to the fixed sheave, and forming a V-groove between the fixed sheave and a back surface of the movable sheave. And hydraulic cylinders 21a and 22a for displacing the movable sheave in the axial direction.
  • control valve unit 11 is provided with a primary valve 21V and a secondary valve 22V in order to supply hydraulic pressure to the hydraulic cylinder 21a of the primary pulley 21 and the hydraulic cylinder 22a of the secondary pulley 22.
  • the primary valve 21V and the secondary valve 22V are both solenoid valves, the primary valve 21V is driven by a primary solenoid (Pri SOL) 21S, and the secondary valve 22 is driven by a V secondary solenoid (Sec SOL) 22S.
  • the sub-transmission mechanism 30 is a two-forward / one-reverse transmission mechanism, and includes a Ravigneaux planetary gear mechanism 31 in which two planetary gear carriers are connected, and a plurality of rotating elements constituting the Ravigneaux planetary gear mechanism 31.
  • a plurality of friction engagement elements [low brake (L / B) 32, high clutch (H / C) 33, reverse brake (R / B) 34] that are connected and change their linkage state.
  • the low brake (L / B) 32, the high clutch (H / C) 33, and the reverse brake (R / B) 34 are engaged (released) and released as shown in Table 1 below.
  • the forward (first) (low), second (high) and reverse (reverse) gears and neutral (neutral) can be selected by combining (x).
  • the subtransmission mechanism 30 when all of the low brake (L / B) 32, the high clutch (H / C) 33, and the reverse brake (R / B) 34 are released, the subtransmission mechanism 30 is in a neutral state in which no power is transmitted.
  • the low brake (L / B) 32 When the low brake (L / B) 32 is engaged, the subtransmission mechanism 30 enters the first forward speed selection (deceleration) state, and when the high clutch (H / C) 33 is engaged, the subtransmission mechanism 30 moves the second forward speed.
  • the subtransmission mechanism 30 When the speed is selected (directly connected) and the reverse brake (R / B) 34 is engaged, the subtransmission mechanism 30 enters the reverse selection (reverse) state.
  • the L / B valve 32V and the H & R valve 33V are both solenoid valves, and the L / B valve 32V is driven by a low brake solenoid (L / B SOL, hereinafter also referred to as L / B solenoid) 32S, and the H & R valve 33V. Is driven by a high clutch / reverse brake solenoid (H / C & R / BSOL, hereinafter also referred to as H / C & R / B solenoid or H & R solenoid) 33S.
  • L / B SOL low brake solenoid
  • H / B solenoid low brake solenoid
  • H / R / BSOL high clutch / reverse brake solenoid
  • control valve unit 11 is provided with a lockup valve 2V for supplying hydraulic pressure for engagement to the lockup clutch 2LC of the torque converter 2.
  • This lockup valve 2V is also a solenoid valve, and is a lockup solenoid. It is driven by (L / U SOL) 2S.
  • the ATCU 12 includes a CPU, a storage device including a RAM / ROM, an input interface, an output interface, and a bus that interconnects them.
  • a primary rotational speed sensor 41 for detecting the rotational speed of the primary pulley 21 (primary rotational speed Npri) and the rotational speed of the secondary pulley 22 (secondary rotational speed Nsec).
  • Secondary rotation speed sensor 42 for detecting the output, and an output rotation sensor (vehicle speed sensor) for detecting the rotation speed (corresponding to the output rotation speed and the traveling speed of the vehicle (vehicle speed Vsp)) input to the differential mechanism 6 and output to the drive wheels.
  • the storage device stores a shift control program for the transmission 4 and a shift map (not shown) used in the shift control program.
  • the CPU reads and executes the shift control program stored in the storage device, performs various arithmetic processes on various signals input via the input interface to generate a shift control signal, and generates the shift control signal Is output to the control valve unit 11 via the output interface.
  • Various values used by the CPU in the calculation process and the calculation results are appropriately stored in the storage device.
  • the control valve unit 11 includes a plurality of flow paths and a plurality of hydraulic control valves such as the solenoid valves 21V, 22V, 32V, 33V, and 2V.
  • the control valve unit 11 controls a plurality of hydraulic control valves on the basis of a shift control signal from the ATCU 12, switches the hydraulic pressure supply path, adjusts the required hydraulic pressure from the hydraulic pressure generated by the oil pump 10, and shifts the speed. Supply to each part of the machine 4. As a result, the gear ratio Ratio of the CVT 20 and the gear position of the auxiliary transmission mechanism 30 are changed, and the transmission 4 is shifted.
  • the sub-transmission mechanism 30 includes a low brake 32, a high clutch 33, and a reverse brake 34, and a hydraulic circuit as shown in FIG. 2 is configured to supply engagement hydraulic pressure to these friction engagement elements 32-34. ing.
  • the hydraulic circuit for supplying the hydraulic pressure for engagement to the friction engagement elements 32 to 34 includes a manual valve 46, a switch valve 35, a low brake valve 32V, and a high clutch / reverse brake valve 33V. ing.
  • the hydraulic oil output from the oil pump 10 (see FIG. 1) and adjusted to the line pressure by the pressure regulator valve (not shown) is supplied to the manual valve 46 to the oil passage P1.
  • the manual valve 46 strokes mechanically or electrically linked to the operation of the driver's select lever 44.
  • the manual valve 46 outputs the line pressure of the line pressure oil passage P1 to the drive range oil passage P2 if a forward range (drive range or the like) is selected according to the range position of the selected select lever 44, When the reverse range is selected, the output is output to the reverse range oil passage P3, and when the non-travel range is selected, the output is stopped.
  • a forward range drive range or the like
  • the hydraulic pressure supplied to the oil passage P2 is switched to the low brake 32 via the L / B valve 32V, and a switch valve 35 for shutting off the hydraulic pressure supply to the high clutch 33 in the non-traveling range or the reverse range. And supply to the high clutch 33 via the H / C valve 33V.
  • the manual valve 46 and the switch valve 35 are machines that mechanically stop the hydraulic pressure supply to the forward friction engagement elements (low brake 32, high clutch 33) when the non-traveling range or the reverse traveling range is selected. It functions as a hydraulic control means.
  • the manual valve 46 communicates the line pressure oil passage P1 and the drive range oil passage P2, and the reverse range oil passage P3 and the drain circuit. (See “X”).
  • the line pressure can be supplied to the low brake 32 or the high clutch 33, and the hydraulic pressure supplied to the reverse brake 34 is discharged.
  • the manual valve 46 communicates the line pressure oil path P1 and the reverse range oil path P3, and communicates the drive range oil path P2 and the drain circuit.
  • the line pressure can be supplied to the reverse brake 34, and the hydraulic pressure supplied to the low brake 32 or the high clutch 33 is discharged.
  • the drive range oil passage P2 is branched into a low brake supply oil passage P21 and a high clutch supply oil passage P24.
  • the low-brake supply oil passage P21 permits oil pressure from the manual valve 46 side and the out-side orifice 36a that slows down the discharge speed as oil passage resistance when the hydraulic pressure is discharged, while the hydraulic pressure from the low brake 32 side.
  • a check valve 37a for prohibiting discharge is interposed in parallel.
  • An L / B valve 32V driven by an L / B solenoid 32S is provided downstream of the low brake supply oil passage P21.
  • the L / B valve 32V adjusts the hydraulic pressure supplied from the low brake supply oil passage P21 to the oil passage P22 by changing the opening thereof, and the excess hydraulic pressure is discharged from the drain circuit (see x). To do.
  • An L / B solenoid 32S is provided at one end of the L / B valve 32V, and the L / B valve 32V is applied with a pressing force in the right direction in FIG. 2 by the electromagnetic force of the L / B solenoid 32S.
  • the other end of the L / B valve 32V is provided with a feedback pressure from a feedback oil passage P23 branched from an oil passage P22 to which a hydraulic pressure adjusted by the L / B valve 32V is supplied, and a coil spring 32CS. Power is acting.
  • the feedback oil passage P23 is provided with an orifice 36c to suppress vibration of the control system.
  • the L / B valve 32V adjusts the opening degree according to the balance between the electromagnetic force generated in the L / B solenoid 32S, the feedback pressure, and the coil spring force, and supplies a desired hydraulic pressure to the low brake 32. To do.
  • the L / B valve 32V connects the low brake supply oil passage P21 and the oil passage P22 when energized (therefore, the low brake hydraulic pressure becomes high), and when not energized, the low brake supply oil passage P21 and the drain circuit. (Refer to the x mark) is connected (therefore, the low brake hydraulic pressure is lowered).
  • the oil passage P22 is provided with an in-side orifice 36d for suppressing hydraulic vibration and oil hammer, an accumulator 38 for forming a shelf pressure when the hydraulic pressure is supplied and discharged, and a low brake pressure sensor (L / B pressure sensor) 55 is provided.
  • the reverse range oil passage P3 connected to the manual valve 46 is branched into a main oil passage P31 and a reverse brake switching oil passage P32.
  • the main oil passage P31 is connected to the switch valve 35, and the reverse brake switching oil passage P32 acts on the left end of the switch valve 35 in FIG.
  • the switch valve 35 has a coil spring 35CS at a position opposed to the high clutch switching oil passage P26, and the coil spring 35CS always urges the switch valve 35 to one side. Accordingly, the high clutch switching oil passage P26 and the reverse brake switching oil passage P32 are connected to positions facing each other with the switch valve 35 interposed therebetween.
  • This H & R valve 33V adjusts the hydraulic pressure supplied from the oil passage P33 to the oil passage P34 by changing its opening, and the excess hydraulic pressure is discharged from the drain circuit (refer to the x mark).
  • An H & R solenoid 33S is provided at one end of the H & R valve 33V, and the H & R valve 33V is acted on by a pressing force in the right direction in FIG. 2 by the electromagnetic force of the H & R solenoid 33S.
  • the urging force of the coil spring 32CS acts on the other end of the H & R valve 33V.
  • the H & R valve 33V adjusts the opening according to the balance between the electromagnetic force generated in the H & R solenoid 33S and the coil spring force, and supplies a desired hydraulic pressure to the high clutch 33 or the reverse brake 34.
  • the H & R valve 33V connects the oil path P33 and the oil path P34 when energized (therefore, the hydraulic pressure becomes higher), and connects the oil path P33 and the drain circuit (refer to x) when energized (therefore, therefore) This is a normally open valve.
  • the oil passage P34 is again connected to the switch valve 35, and the hydraulic oil is supplied from the oil passage P34 through the switch valve 35 to the high clutch oil passage P35 or the reverse brake oil passage P36 connected to the switch valve 35. Is done.
  • the hydraulic pressure supplied to the drive range oil passage P2 acts on the switch valve 35 via the high clutch switching oil passage P26, and the switch valve 35 moves to the left in FIG. Then, the hydraulic pressure is supplied to the high clutch 33 through the main oil path P31, the oil path P33, the H & R valve 33V, the oil path P34, and the high clutch oil path P35 in this order.
  • an orifice 36e is provided, and a high clutch pressure sensor (H / C pressure sensor) 54 is further provided.
  • the reverse brake oil passage P36 is allowed to supply from the out-side orifice 36b that functions as an oil passage resistance and slows down the discharge speed when the hydraulic pressure is discharged, and the manual valve 46 side, while from the reverse brake 34 side.
  • a check valve 37b that prohibits discharge of the exhaust gas is provided in parallel, and a reverse brake pressure sensor (R / B pressure sensor) 56 is further provided.
  • the L / B solenoid 32S opens the L / B valve 32V when the ATCU 12 issues the first speed selection command, and sets the line pressure PL as the low brake pressure to the low brake 32.
  • the first speed selection command is realized by supplying hydraulic pressure and engaging the low brake 32.
  • the H & R solenoid 33S switches the line pressure PL to the high clutch pressure or the reverse brake pressure via the manual shaft 45 by operating the select lever 44 when the ATCU 12 issues the second speed selection command or the reverse selection command.
  • the manual valve 46 is supplied to the switch valve 35.
  • the manual valve 46 is positioned in the forward travel range, and the switch valve 35 supplies the line pressure PL from the H & R valve 33V by the operation of the H & R solenoid 33S to the high clutch 33 as the high clutch pressure.
  • the second speed selection command is realized by engaging the high clutch 33.
  • the failure determination device includes an actual pressure detection unit (actual pressure detection means) 121 that detects output values of the hydraulic pressure sensors 54 to 56 applied to the sub-transmission 30 as actual hydraulic pressure values, and solenoid valves 32V and 33V.
  • a command pressure control unit (command pressure control unit) 122 that controls the command pressure value of the hydraulic pressure to the gear
  • a gear ratio shift determination unit that determines a gear ratio shift of the auxiliary transmission mechanism 40
  • a solenoid A failure determination unit (failure determination means) 124 that determines that the valves 32V and 33V or the hydraulic pressure sensors 54 to 56 have failed.
  • the actual pressure detection unit 121 detects the output values of the input hydraulic sensors 54 to 56 as actual pressure values of hydraulic oil pressure.
  • the command pressure control unit 122 controls the command pressure value of the hydraulic pressure to the solenoids 32S and 33S of the solenoid valves 32V and 33V. That is, for each of the low brake 32, the high clutch 33, and the reverse brake 34, the instruction pressure value is set according to whether the engagement is released or the release brake is engaged, or if the engagement is the complete engagement or the slip engagement.
  • the solenoid valves 32S and 33S are controlled.
  • the gear ratio deviation determination unit 123 determines the gear ratio deviation based on whether or not the difference between the input and output rotational speeds is greater than or equal to a predetermined value based on the currently set shift speed (gear ratio to be achieved) during forward traveling.
  • the actual transmission ratio (actual gear ratio) is obtained from the input / output rotation information of the auxiliary transmission mechanism 30 (detection information of the secondary rotation speed sensor 42 and the output rotation sensor 43), and the transmission ratio (instructed gear) according to the instructed gear stage is obtained. Ratio) and the actual transmission ratio may be determined.
  • the gear ratio deviation determination unit 123 determines that a gear ratio deviation has occurred when the difference in the input / output rotational speed is greater than or equal to a predetermined value, or when the indicated gear ratio and the actual gear ratio are different from each other by a certain value. judge.
  • the fail determination unit 124 calculates, for each solenoid valve 32S, 33S, the difference between the actual pressure value (output value) detected by the actual pressure detection unit 121 and the command pressure value set by the command pressure control unit 122, If the absolute value of this difference is greater than or equal to the set value, it is determined that the determination target solenoid valve or the hydraulic pressure sensor of the oil passage that supplies hydraulic pressure to the determination target solenoid valve has failed.
  • the fail determination unit 124 determines that the determination target solenoid valve is failing when the gear ratio deviation is determined by the gear ratio deviation determination unit 123 during the failure determination, and the gear ratio deviation determination unit 123 is determined. If the gear ratio deviation is not determined by the above, it is determined that the determination target hydraulic sensor has failed.
  • FIGS. 3A and 3B are diagrams for explaining determination by the fail determination unit 124.
  • FIG. 3A is a determination regarding the low brake (L / B)
  • FIG. 3B is a determination regarding the high clutch (H / C). Are shown respectively.
  • the L / B valve 32V that supplies hydraulic oil to the low brake 32 is a normally closed valve. Therefore, when increasing the indicated pressure, the L / B valve that drives the L / B valve 32V is used. The power supply to the solenoid 32S is increased.
  • the failure of the L / B valve 32V is an open failure in which the open state is maintained, the actual pressure value and the indicated pressure value may enter the failure determination region 1 indicated by a diagonal line in the upper part of the figure. If the B valve 32V is in a closed failure in which the closed state is maintained, the actual pressure value and the indicated pressure value may enter the failure determination region 2 indicated by a diagonal line in the lower part of the figure.
  • the H & R valve 33V that supplies hydraulic oil to the high clutch 32 is a normally open valve. Therefore, when increasing the indicated pressure, the L / B solenoid 32S that drives the L / B valve 32V is used. Reduce power supply to
  • the areas where the absolute value of the difference between the actual pressure value and the indicated pressure value is greater than or equal to the set value include a failure determination area 3 and a failure determination area 4 indicated by hatching in the drawing.
  • the failure of the H & R valve 33V is an open failure that maintains the open state
  • the actual pressure value and the indicated pressure value may enter the failure determination region 3, and the closed failure that keeps the H & R valve 33V in the closed state. If so, the actual pressure value and the indicated pressure value may enter the area of the fail determination area 4.
  • the sub-transmission 30 enters the neutral state, and the actual speed ratio (actual gear ratio) of the sub-transmission mechanism 30 is indefinite. In this state, there is a deviation from the gear ratio (indicated gear ratio) by the instructed second speed.
  • the ATCU 12 is provided with a fail-safe control unit (control means) 130 that performs fail-safe control on the solenoid valve or the hydraulic sensor according to the determination result by the fail determination device.
  • a fail-safe control unit control means 130 that performs fail-safe control on the solenoid valve or the hydraulic sensor according to the determination result by the fail determination device.
  • the above-described processing by the fail determination unit 124 is during traveling in which the traveling range is selected, and when the non-traveling range or the reverse range is selected, the manual valve 46 and the switch valve 35 are connected to the low brake 32 and The hydraulic oil supply to the high clutch 33 is mechanically stopped.
  • the failure determination unit 124 determines that the cause of the failure determination based on the actual pressure value and the indicated pressure value is the hydraulic pressure. Confirm that the sensor has failed.
  • the fail determination device for an automatic transmission (continuously variable transmission) according to an embodiment of the present invention is configured as described above. Therefore, for example, as shown in the flowchart of FIG. Fail determination processing can be performed.
  • the actual hydraulic pressure value is fetched from the actual pressure detecting unit 121, and the commanded hydraulic pressure value is fetched from the commanded pressure control unit 122 (step S10).
  • the fail determination unit 124 calculates the difference between the actual pressure value and the command pressure value, and determines whether or not the absolute value of this difference is greater than or equal to the set value (step S20). If the absolute value of this difference is not greater than or equal to the set value, the process waits for the next control cycle.
  • step S30 it is determined whether the gear ratio deviation is determined by the gear ratio deviation determining unit 123 (step S30). If the gear ratio deviation is determined, the determination target is determined. It is determined that the solenoid valve has failed (step S40). If the gear ratio deviation has not been determined, it is determined that the determination target hydraulic sensor has failed (step S50).
  • this fail determination device when a difference between the actual pressure value and the indicated pressure value is caused due to a failure of the solenoid valve, an erroneous failure diagnosis is made that this is a failure of the hydraulic sensor. Can be prevented, and accurate fault diagnosis can be performed.
  • the failure determination unit 124 can determine that the cause of the failure determination based on the actual pressure value and the command pressure value is the failure of the hydraulic sensor, and can increase the determination frequency of the failure determination of the hydraulic sensor.
  • the shift speed is achieved by a combination of disengagement of the friction engagement elements, but an electric abnormality occurs in the solenoid of the shift valve that disengages any friction engagement element. Then, since a specific state such as a gear ratio shift state occurs at the time of commanding a certain gear position, it is possible to determine whether the solenoid valve is abnormal.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Transmission Device (AREA)

Abstract

 実圧検知手段(121)と、指示圧制御手段(122)と、ギヤ比ずれ判定手段(123)と、出力値と指示圧値との差の絶対値が設定値以上であると、ソレノイドバルブ又は油圧センサがフェールしているとフェール判定するフェール判定手段(124)と、を有する。フェール判定手段(124)は、フェール判定時に、ギヤ比ずれが判定された場合にはソレノイドバルブがフェールしていると判定し、ギヤ比ずれが判定されない場合には油圧センサがフェールしていると判定する。

Description

車両用自動変速機の制御装置
 本発明は、車両用自動変速機の制御装置に関するものである。
 車両用自動変速機では、複数の摩擦係合要素の係合と解放とを切り替えて変速を行うが、このとき、各摩擦係合要素の係合や解放は各摩擦係合要素への供給油圧を各ソレノイドバルブにより目標油圧に応じて制御する。
 各摩擦係合要素への供給油圧の制御を、フィードバック制御を用いて行う場合などには、各摩擦係合要素への実油圧を検出する必要があり、油圧検出装置として、油圧センサが用いられる。
 油圧制御の信頼性を向上させるためには、この油圧センサについて、故障診断をする必要があり、例えば特許文献1には、指示圧と実油圧の差により、油圧センサの故障を検知する方式が示されている。
 特許文献1の技術は、電源投入後の最初には、油圧系統にエアが混入していて、ソレノイドバルブが正常に動作しても油圧が適正に制御されないため、停止レンジから走行レンジへのセレクトを検出したら、所定のソレノイドバルブを作動させて故障診断用のプリチャージを行わせ、このプリチャージ後に油圧検出装置の故障診断を許可するようにして、故障診断の精度の向上を図っている。
特開2000-266176号公報
 しかしながら、指示圧と実油圧の差圧による故障診断のみでは、油圧センサ以外の要因、例えばソレノイドバルブの故障による差圧の発生を油圧センサの故障と誤認してしまう場合がある。
 本発明はこのような課題に鑑み創案されたもので、精度良い故障診断を行なうことができるようにした、車両用自動変速機の制御装置を提供することを目的とする。
 (1)上述の目的を達成するため、本発明の車両用自動変速機の制御装置は、摩擦係合要素の係合または解放により所望のギヤ比を達成する変速機構と、前記摩擦係合要素に供給される油圧を制御するソレノイドバルブと、前記摩擦係合要素に供給される油圧を検知する油圧センサと、を有する車両用自動変速機のフェール判定装置であって、前記油圧センサの出力値を検知する実圧検知手段と、前記ソレノイドバルブへの油圧の指示圧値を制御する指示圧制御手段と、前記変速機構のギヤ比のずれを判定するギヤ比ずれ判定手段と、前記出力値と前記指示圧値との差の絶対値が設定値以上であると、前記ソレノイドバルブ又は前記油圧センサがフェールしているとフェール判定するフェール判定手段と、を有し、前記フェール判定手段は、前記フェール判定時に、前記ギヤ比ずれが判定された場合には前記ソレノイドバルブがフェールしていると判定し、前記ギヤ比ずれが判定されない場合には前記油圧センサがフェールしていると判定することを特徴としている。
 (2)前記ギヤ比ずれ判定手段は、達成されるべきギヤ比に応じて、入出力回転数の差が所定以上になっているか否かによってギヤ比ずれを判定することができる。例えば、設定変速段のギヤ比が1であれば、入出力回転数の差は0か、0に近い値になるはずであるが、この差が所定以上ずれているとギヤ比ずれが生じていると判定することができる。あるいは、達成されるべきギヤ比に対して実際の入出力回転数から算出した実ギヤ比(=実入力回転/実出力回転)が所定以上ずれているか否かを判断することにより直接ギヤ比ずれを判定することもできる。
 (3)非走行レンジ又は後進レンジが選択されているときに前記摩擦係合要素への油圧供給を機械的に停止する機械的油圧制御手段を有し、前記フェール判定手段は、前記フェール判定時に、前記非走行レンジ又は前記後進レンジが選択されている場合には、前記油圧センサがフェールしていると判定することが好ましい。
 (4)本前記フェール判定手段による判定結果に応じて前記ソレノイドバルブ又は前記油圧センサにかかるフェールセーフ制御を行なうフェールセーフ制御手段を備えていることが好ましい。
 本発明によれば、摩擦係合要素を係合させる油圧の出力値と指示圧値との差の絶対値が設定値以上であると、ソレノイドバルブ又は油圧センサがフェールしているとフェール判定し、更に、ギヤ比ずれの有無により、フェール箇所がソレノイドバルブであるか油圧センサであるかを特定するので、精度良い故障診断を行なうことができる。
 また、車両走行中においてもギヤ比ずれの有無からフェール箇所の特定を行うことができるので、車両走行中に即座にフェールセーフモードに切り替えることができる。
本発明の一実施形態にかかる車両用自動変速機及びその制御装置を搭載した車両の駆動系を示す構成図である。 本発明の一実施形態にかかる車両用自動変速機の油圧回路の一部の構成を示す油圧回路図である。 本発明の一実施形態にかかる制御装置による判定処理を説明する判定マップであり、(a)はローブレーキに関し、(h)はハイクラッチに関する。 本発明の一実施形態にかかる制御装置による判定処理を説明するフローチャートである。
 以下、図面を参照して本発明の実施の形態を説明する。
 なお、本実施形態では、ソレノイドバルブの操作により係合,解放する摩擦係合要素を有する自動変速機として、ベルト式無段変速機構(単に、CVTともいう)の出力側に装備された有段副変速機構を例に挙げて説明する。なお、回転速度に関しては回転数(即ち、単位時間当たり回転数)と表現する。
 〔1.車両の駆動系の構成〕
 図1は本実施形態にかかる車両用自動変速機及びそのフェール判定装置を含む制御装置を搭載した車両の駆動系を示す構成図である。
 図1に示すように、この車両は動力源としてエンジン1を備えている。エンジン1の出力回転は、ロックアップクラッチ付きトルクコンバータ2,ギヤ列(ドライブカウンタギヤ、ドリブンカウンタギヤ)3,無段変速機(以下、単に変速機ともいう)4,終減速装置5,差動機構6を介して図示しない駆動輪へと伝達される。終減速装置5には駐車時に変速機4の出力軸を機械的に回転不能にロックするパーキング機構8が設けられている。
 また、この車両には、エンジン1の動力の一部を利用して駆動されるオイルポンプ10と、オイルポンプ10からの油圧を調圧して変速機4の各部位に供給するコントロールバルブユニット(C/V,油圧制御回路)11と、コントロールバルブユニット11を制御する自動変速機コントロールユニット(ATCU)12とが設けられている。
 各構成について説明すると、変速機4は、ベルト式無段変速機構(単に、CVTともいう)20と、副変速機構30とが、エンジン1から駆動輪(図示略)に至るまでの動力伝達経路において直列に設けられている。
 CVT20は、プライマリプーリ21と、セカンダリプーリ22と、これらのプーリ21,22の間に掛け回されるVベルト23とを備える。
 プーリ21,22は、それぞれ固定シーブと、この固定シーブに対してシーブ面を対向させた状態で配置され固定シーブとの間にV溝を形成する可動シーブと、この可動シーブの背面に設けられて可動シーブを軸方向に変位させる油圧シリンダ21a,22aとを備える。
 油圧シリンダ21a,22aに供給される油圧を調整すると、V溝の幅が変化してVベルト23と各プーリ21,22との接触半径が変化し、CVT20の変速比Ratioが無段階に変化する。
 このため、コントロールバルブユニット11には、プライマリプーリ21の油圧シリンダ21a及びセカンダリプーリ22の油圧シリンダ22aに油圧を供給するために、プライマリバルブ21V及びセカンダリバルブ22Vが備えられる。
 プライマリバルブ21V及びセカンダリバルブ22Vは、何れもソレノイドバルブであり、プライマリバルブ21Vはプライマリソレノイド(Pri SOL)21Sにより駆動され、セカンダリバルブ22はVセカンダリソレノイド(Sec SOL)22Sにより駆動される。
 副変速機構30は、前進2段・後進1段の変速機構であり、2つの遊星歯車のキャリアを連結したラビニヨ型遊星歯車機構31と、ラビニヨ型遊星歯車機構31を構成する複数の回転要素に接続され、それらの連係状態を変更する複数の摩擦係合要素〔ローブレーキ(L/B)32,ハイクラッチ(H/C)33,リバースブレーキ(R/B)34〕とを備える。
 副変速機構30では、これらのローブレーキ(L/B)32,ハイクラッチ(H/C)33,リバースブレーキ(R/B)34を、下記の表1に示す係合(○印)及び解放(×印)の組み合わせで、前進の第1速(ロー),第2速(ハイ)及び後退(リバース)の各変速段、並びに中立(ニュートラル)を選択することができる。
Figure JPOXMLDOC01-appb-T000001
 つまり、ローブレーキ(L/B)32,ハイクラッチ(H/C)33,リバースブレーキ(R/B)34を全て解放すると、副変速機構30は動力伝達を行わない中立状態となり、この状態でローブレーキ(L/B)32を係合すると、副変速機構30は前進第1速選択(減速)状態となり、ハイクラッチ(H/C)33を係合すると、副変速機構30は前進第2速選択(直結)状態となり、リバースブレーキ(R/B)34を係合すると、副変速機構30は後退選択(逆転)状態となる。
 コントロールバルブユニット11には、ローブレーキ32に係合用の油圧を供給するためのシフトバルブとして、ローブレーキバルブ(以下、L/Bバルブとも称する)32Vが備えられ、ハイクラッチ33及びリバースブレーキ34に係合用の油圧を供給するためのシフトバルブとして、ハイクラッチ・リバースブレーキバルブ(以下、H/C&R/Bバルブ、又はH&Rバルブとも称する)33Vが備えられる。
 L/Bバルブ32V及びH&Rバルブ33Vは、何れもソレノイドバルブであり、L/Bバルブ32Vはローブレーキソレノイド(L/B SOL、以下、L/Bソレノイドとも称する)32Sにより駆動され、H&Rバルブ33Vはハイクラッチ・リバースブレーキソレノイド(H/C&R/BSOL、以下、H/C&R/Bソレノイド、又はH&Rソレノイドとも称する)33Sにより駆動される。
 また、コントロールバルブユニット11には、トルクコンバータ2のロックアップクラッチ2LCに係合用の油圧を供給するためのロックアップバルブ2Vが備えられ、このロックアップバルブ2Vもソレノイドバルブであって、ロックアップソレノイド(L/U SOL)2Sにより駆動される。
 ATCU12は、図示しないが、CPUと、RAM・ROMからなる記憶装置と、入力インターフェースと、出力インターフェースと、これらを相互に接続するバス等から構成される。
 入力インターフェースには、特に、コントロールバルブユニット11にかかる出力信号として、プライマリプーリ21の回転数(プライマリ回転数Npri)を検出するプライマリ回転数センサ41、セカンダリプーリ22の回転数(セカンダリ回転数Nsec)を検出するセカンダリ回転数センサ42、差動機構6に入力され駆動輪に出力される回転数〔出力回転数、車両の走行速度(車速Vsp)に対応する〕を検出する出力回転センサ(車速センサ)43の各速度センサからの出力信号、セレクトレバーの位置を検出するインヒビタスイッチ47の出力信号、油温センサ48,ライン圧センサ51,プライマリ圧センサ52,セカンダリ圧センサ53,ハイクラッチ圧センサ54,ローブレーキ圧センサ55,リバースブレーキ圧センサ56の各油圧センサからの出力信号や、エンジンコントロールユニット(ECU)9からのエンジン情報などが入力される。
 記憶装置には、変速機4の変速制御プログラム、及びこの変速制御プログラムで用いる変速マップ(図示略)が格納されている。CPUは、記憶装置に格納されている変速制御プログラムを読み出して実行し、入力インターフェースを介して入力される各種信号に対して各種演算処理を施して変速制御信号を生成し、生成した変速制御信号を、出力インターフェースを介してコントロールバルブユニット11に出力する。CPUが演算処理で使用する各種値、その演算結果は記憶装置に適宜格納される。
 コントロールバルブユニット11は複数の流路及び前記ソレノイドバルブ21V,22V,32V,33V,2Vなどの複数の油圧制御弁で構成される。このコントロールバルブユニット11は、ATCU12からの変速制御信号に基づき、複数の油圧制御弁を制御して油圧の供給経路を切り換えるとともにオイルポンプ10で発生した油圧から必要な油圧を調整し、これを変速機4の各部位に供給する。これにより、CVT20の変速比Ratio、副変速機構30の変速段が変更され、変速機4の変速が行われる。
 〔副変速機構の油圧回路〕
 ここで、図2を参照して、副変速機構30の油圧回路を説明する。
 副変速機構30は、ローブレーキ32,ハイクラッチ33,リバースブレーキ34を備え、これらの摩擦係合要素32~34に係合用油圧を供給するために、図2に示すような油圧回路が構成されている。
 摩擦係合要素32~34に係合用油圧を供給する油圧回路は、図2に示すように、マニュアル弁46と、スイッチバルブ35と、ローブレーキバルブ32V及びハイクラッチ・リバースブレーキバルブ33Vとを備えている。
 マニュアル弁46には、オイルポンプ10(図1参照)から出力されプレッシャレギュレータバルブ(図示略)によりライン圧に調圧された作動油が油路P1に供給される。マニュアル弁46は、運転者のセレクトレバー44の操作と機械的もしくは電気的にリンクしてストロークする。
 マニュアル弁46は、ライン圧油路P1のライン圧を、選択されたセレクトレバー44のレンジ位置に応じて、前進レンジ(ドライブレンジ等)が選択されればドライブレンジ用油路P2に出力し、後進レンジが選択されればリバースレンジ用油路P3に出力し、非走行レンジが選択されれば出力を停止する。
 また、油路P2に供給された油圧は、L/Bバルブ32Vを介してローブレーキ32へ、また非走行レンジまたは後進レンジにおいてハイクラッチ33への油圧供給を遮断するスイッチバルブ35(詳細後述)とH/Cバルブ33Vとを介してハイクラッチ33へ、供給可能とである。
 したがって、マニュアル弁46及びスイッチバルブ35は、非走行レンジ又は後進レンジが選択されているときには前進用の摩擦係合要素(ローブレーキ32、ハイクラッチ33)への油圧供給を機械的に停止する機械的油圧制御手段として機能する。
 セレクトレバー44の操作によって、前進レンジであるドライブレンジが選択されると、マニュアル弁46は、ライン圧油路P1とドライブレンジ用油路P2とを連通し、リバースレンジ用油路P3とドレン回路(×印参照)とを連通する。
 これにより、ライン圧をローブレーキ32又はハイクラッチ33に供給可能とし、リバースブレーキ34に供給されていた油圧を排出する。
 一方、後退レンジであるリバースレンジが選択されると、マニュアル弁46は、ライン圧油路P1とリバースレンジ用油路P3とを連通し、ドライブレンジ用油路P2とドレン回路とを連通する。
 これにより、ライン圧をリバースブレーキ34に供給可能とし、ローブレーキ32又はハイクラッチ33に供給されていた油圧を排出する。
 ドライブレンジ用油路P2は、ローブレーキ供給用油路P21と、ハイクラッチ供給用油路P24に分岐している。
 ローブレーキ供給用油路P21には、油圧排出時に油路抵抗となって排出速度を遅くさせるアウト側オリフィス36aと、マニュアル弁46側からの油圧供給を許可する一方、ローブレーキ32側からの油圧排出を禁止する逆止弁37aとが並列に介装される。
 これにより、ローブレーキ32への油圧供給時にあっては、アウト側オリフィス36aは抵抗が高いため逆止弁37aを経由して積極的に供給され、ローブレーキ32からの油圧排出時にあっては、油が逆止弁37aを通ることができないため、全てアウト側オリフィス36aを経由してゆっくりと排出される。
 ローブレーキ供給用油路P21の下流には、L/Bソレノイド32Sで駆動されるL/Bバルブ32Vが設けられている。このL/Bバルブ32Vは、その開度を変更することにより、ローブレーキ供給用油路P21から油路P22へ供給される油圧を調整し、過剰な油圧はドレン回路(×印参照)から排出する。
 L/Bバルブ32Vの一端部には、L/Bソレノイド32Sが設けられ、L/Bバルブ32Vは、L/Bソレノイド32Sの電磁力によって図2中右方向への押し付け力を加えられる。
 L/Bバルブ32Vの他端部には、L/Bバルブ32Vにより調圧された後の油圧が供給される油路P22から分岐したフィードバック油路P23からのフィードバック圧と、コイルスプリング32CSの付勢力が作用する。フィードバック油路P23にはオリフィス36cが設けられ、制御系の振動を抑制する。
 L/Bバルブ32Vは、このような構成によって、L/Bソレノイド32Sに発生する電磁力と、フィードバック圧及びコイルスプリング力とのバランスによって開度調整を行い、ローブレーキ32に所望の油圧を供給する。
 なお、L/Bバルブ32Vは、通電時にローブレーキ供給用油路P21と油路P22とを接続し(したがって、ローブレーキ油圧が高くなる)、非通電時にはローブレーキ供給用油路P21とドレン回路(×印参照)とを接続する(したがって、ローブレーキ油圧が低くなる)ノーマルクローズバルブである。
 また、油路P22には、油圧振動や油撃を抑制するためのイン側オリフィス36dと、油圧供給及び排出時に棚圧を形成するアキュムレータ38とが設けられ、さらに、ローブレーキ圧センサ(L/B圧センサ)55が設けられている。
 ハイクラッチ供給用油路P24は、メイン油路P25とハイクラッチ切換用油路P26に分岐している。メイン油路P25はスイッチバルブ35と接続され、ハイクラッチ切換用油路P26はスイッチバルブ35の図2中右側端部に作用する。
 同様に、マニュアルバルブ46に接続されたリバースレンジ用油路P3は、メイン油路P31とリバースブレーキ切換用油路P32とに分岐している。メイン油路P31はスイッチバルブ35と接続され、リバースブレーキ切換用油路P32はスイッチバルブ35の図3中左側端部に作用する。
 スイッチバルブ35にはハイクラッチ切換用油路P26に対抗する位置にコイルスプリング35CSを有し、コイルスプリング35CSは、常時、スイッチバルブ35を一方側に付勢している。したがって、ハイクラッチ切換用油路P26とリバースブレーキ切換用油路P32とは、スイッチバルブ35を挟んで対抗する位置に接続されている。
 そして、スイッチバルブ35に接続された油路P33の下流には、H&Rソレノイド33Sで駆動されるH&Rバルブ33Vが設けられている。
 このH&Rバルブ33Vは、その開度を変更することにより、油路P33から油路P34へ供給される油圧を調整し、過剰な油圧はドレン回路(×印参照)から排出する。
 H&Rバルブ33Vの一端部には、H&Rソレノイド33Sが設けられ、H&Rバルブ33Vは、H&Rソレノイド33Sの電磁力によって図2中右方向への押し付け力が作用する。H&Rバルブ33Vの他端部には、コイルスプリング32CSの付勢力が作用する。
 H&Rバルブ33Vは、このような構成によって、H&Rソレノイド33Sに発生する電磁力と、コイルスプリング力とのバランスによって開度調整を行い、ハイクラッチ33又はリバースブレーキ34に所望の油圧を供給する。
 なお、H&Rバルブ33Vは、非通電時に油路P33と油路P34とを接続し(したがって、油圧が高くなる)、通電時には油路P33とドレン回路(×印参照)とを接続する(したがって、油圧が低くなる)ノーマルオープンバルブである。
 油路P34は、再度、スイッチバルブ35に接続され、作動油は、油路P34からスイッチバルブ35を経てスイッチバルブ35に接続されたハイクラッチ用油路P35又はリバースブレーキ用油路P36へと供給される。
 マニュアル弁46においてドライブレンジが選択されると、ドライブレンジ用油路P2に供給される油圧がハイクラッチ切換用油路P26を経てスイッチバルブ35に作用しスイッチバルブ35が図2中左方に移動して、メイン油路P31,油路P33,H&Rバルブ33V,油路P34,ハイクラッチ用油路P35を順に経由してハイクラッチ33に油圧供給がなされる。
 一方、マニュアル弁46においてリバースレンジが選択されると、リバースレンジ用油路P3に供給される油圧がリバースブレーキ切換用油路P32を経て作用しスイッチバルブ35が図2中右方に移動し、メイン油路P31,油路P33,H&Rバルブ33V,油路P34,リバースブレーキ用油路P36を順に経由してリバースブレーキ34に油圧供給がなされる。
 したがって、H&Rバルブ33Vは、マニュアル弁46においてドライブレンジが選択されているときはハイクラッチ33の係合圧制御用バルブとして機能し、マニュアル弁46においてリバースレンジが選択されているときはリバースブレーキ34の係合圧制御用バルブとして機能することになる。
 ハイクラッチ用油路P35にはオリフィス36eが設けられ、さらに、ハイクラッチ圧センサ(H/C圧センサ)54が設けられている。
 リバースブレーキ用油路P36には、油圧排出時に油路抵抗となって排出速度が遅くなるように機能するアウト側オリフィス36bと、マニュアルバルブ46側からの供給を許可する一方、リバースブレーキ34側からの排出を禁止する逆止弁37bとが並列に設けられ、さらに、リバースブレーキ圧センサ(R/B圧センサ)56が設けられている。
 すなわち、リバースブレーキ34への油圧供給時にあっては、アウト側オリフィス36bは抵抗が高いことから逆止弁37bを経由して積極的に作動油が供給される。一方、リバースブレーキ34からの油圧排出時にあっては、作動油が逆止弁37bを通ることができないため、全てアウト側オリフィス36bを経由してゆっくりと排出される。
 したがって、副変速機構30では、L/Bソレノイド32Sは、ATCU12が第1速選択指令を発しているときに、L/Bバルブ32Vを開放し、ライン圧PLをローブレーキ圧としてローブレーキ32に油圧を供給し、ローブレーキ32を係合することで、第1速選択指令を実現する。
 また、H&Rソレノイド33Sは、ATCU12が第2速選択指令又は後退選択指令を発しているとき、ライン圧PLをハイクラッチ圧またはリバースブレーキ圧とし、セレクトレバー44の操作でマニュアルシャフト45を介して切り替えられるマニュアル弁46によってスイッチバルブ35に供給する。
 第2速選択指令時は、マニュアル弁46が前進走行レンジに位置し、スイッチバルブ35が、H&Rソレノイド33Sの作動によるH&Rバルブ33Vからのライン圧PLをハイクラッチ圧としてハイクラッチ33に向け供給し、ハイクラッチ33を係合することで第2速選択指令を実現する。
 後退選択指令時は、スマニュアル弁46が後退走行レンジに位置し、スイッチバルブ35が、H&Rソレノイド33Sの作動によるH&Rバルブ33Vからのライン圧PLをリバースブレーキ圧としてリバースブレーキ34に向け供給し、リバースブレーキ34を係合することで後退選択指令を実現する。
 〔自動変速機(無段変速機)のフェール判定装置及び制御装置〕
 ここで、本実施形態にかかる自動変速機(無段変速機)のフェール判定装置及びこれを備えた制御装置を説明する。
 本実施形態のフェール判定装置は、副変速機30にかかる油圧センサ54~56の出力値を油圧の実圧値として検知する実圧検知部(実圧検知手段)121と、ソレノイドバルブ32V,33Vへの油圧の指示圧値を制御する指示圧制御部(指示圧制御手段)122と、副変速機構40のギヤ比ずれを判定するギヤ比ずれ判定部(ギヤ比ずれ判定手段)123と、ソレノイドバルブ32V,33V又は油圧センサ54~56がフェールしていることを判定するフェール判定部(フェール判定手段)124と、を備えている。
 ここでは、これらの実圧検知部121,指示圧制御部122,ギヤ比ずれ判定部123,フェール判定部124は、ATCU12内に装備されたハードウェア及びソフトウェア及びATCU12に付設されたハードウェアによって構成されるが、ATCU12とは別の専用のハードウェア及びソフトウェアによって構成されてもよい。
 実圧検知部121は、入力された各油圧センサ54~56の出力値を作動油の油圧の実圧値として検知する。
 指示圧制御部122は、各ソレノイドバルブ32V,33Vのソレノイド32S,33Sへの油圧の指示圧値を制御する。つまり、ローブレーキ32,ハイクラッチ33,リバースブレーキ34のそれぞれについて、係合させるか解放させるか、係合させるのであれば完全係合かスリップ係合かに応じて、指示圧値を設定し、各ソレノイドバルブ32S,33Sを制御する。
 ギヤ比ずれ判定部123は、前進走行時に、現在の設定変速段(達成されるべきギヤ比)を踏まえて、入出力回転数の差が所定以上になっているか否かによってギヤ比ずれを判定できるが、副変速機構30の入出力回転情報(セカンダリ回転数センサ42及び出力回転センサ43の検出情報)から実変速比(実ギヤ比)を求めて、指示した変速段による変速比(指示ギヤ比)と実変速比を比較することにより判定してもよい。すなわち、指示した変速段における指示ギヤ比と、実際の入出力回転数から算出した実ギヤ比(=実入力回転/実出力回転)と、を比較して、所定以上ずれているか否かを判断することによりギヤ比ずれを判定することもできる。
 したがって、ギヤ比ずれ判定部123は、入出力回転数の差が所定以上になっている場合、又は、指示ギヤ比と実ギヤ比とが一定以上異なる場合には、ギヤ比ずれが発生したと判定する。
 ここでは、前進第1速では回転を減速させるので、指示変速段が第1速であればそのギヤ比は減速比に相当する1よりも大きいギヤ比となり、前進第2速では直結状態とするので、指示変速段が第2速であればそのギヤ比は1となる。
 フェール判定部124は、各ソレノイドバルブ32S,33Sについて、実圧検知部121により検知された実圧値(出力値)と指示圧制御部122により設定された指示圧値との差を演算し、この差の絶対値が設定値以上であると、判定対象のソレノイドバルブ又は判定対象のソレノイドバルブに油圧を供給する油路の油圧センサがフェールしているとフェール判定する。
 フェール判定部124は、このフェール判定時において、ギヤ比ずれ判定部123によってギヤ比ずれが判定された場合には、判定対象のソレノイドバルブがフェールしていると判定し、ギヤ比ずれ判定部123によってギヤ比ずれが判定されない場合には、判定対象の油圧センサがフェールしていると判定する。
 図3は、このフェール判定部124による判定を説明する図であり、図3(a)はローブレーキ(L/B)に関する判定を、図3(b)はハイクラッチ(H/C)に関する判定を、それぞれ示す。
 図3(a)に示すように、ローブレーキ32に作動油を供給するL/Bバルブ32Vは、ノーマルクローズバルブなので、指示圧を増大させる際にはL/Bバルブ32Vを駆動するL/Bソレノイド32Sへの電力供給を増大させる。
 このとき、実圧値と指示圧値との差の絶対値が設定値以上である領域には、フェール判定領域1とフェール判定領域2とがある.
 L/Bバルブ32Vの故障が、開状態を保持する開故障であれば、実圧値と指示圧値とは図中上方に斜線で示すフェール判定領域1の領域に入る場合があり、L/Bバルブ32Vが閉状態を保持する閉故障であれば、実圧値と指示圧値とは図中下方に斜線で示すフェール判定領域2の領域に入る場合がある。
 L/Bバルブ32Vが閉故障すると、第1速段を指示しても第1速段は達成されず、副変速機30はニュートラル状態となり、副変速機構30の実変速比(実ギヤ比)は不定の状態となって、指示した第1速段による変速比(指示ギヤ比)とずれを生じる。
 L/Bバルブ32Vが開故障すると、第2速段を指示してもローブレーキ32の係合またはスリップ係合が保持されるため第2速段は達成されず、指示した第2速段による変速比(指示ギヤ比)とずれを生じる。
 図3(b)に示すように、ハイクラッチ32に作動油を供給するH&Rバルブ33Vは、ノーマルオープンバルブなので、指示圧を増大させる際にはL/Bバルブ32Vを駆動するL/Bソレノイド32Sへの電力供給を減少させる。
 このとき、実圧値と指示圧値との差の絶対値が設定値以上である領域には、図中に斜線で示すフェール判定領域3とフェール判定領域4とがある。
 H&Rバルブ33Vの故障が、開状態を保持する開故障であれば、実圧値と指示圧値とはフェール判定領域3の領域に入る場合があり、H&Rバルブ33Vが閉状態を保持する閉故障であれば、実圧値と指示圧値とはフェール判定領域4の領域に入る場合がある。
 H&Rバルブ33Vが閉故障すると、第2速段を指示しても第2速段は達成されず、副変速機30はニュートラル状態となり、副変速機構30の実変速比(実ギヤ比)は不定の状態となって、指示した第2速段による変速比(指示ギヤ比)とずれを生じる。
 H&Rバルブ33Vが開故障すると、第1速段を指示してもハイクラッチ33の係合またはスリップ係合が保持されるため第1速段は達成されず、指示した第1速段による変速比(指示ギヤ比)とずれを生じる。
 したがって、フェール判定部124では、ギヤ比ずれが判定された場合には、判定対象のソレノイドバルブがフェールしていると判定し、そうでなければ、判定対象の油圧センサがフェールしていると判定する。
 また、ATCU12内には、フェール判定装置による判定結果に応じてソレノイドバルブ又は油圧センサにかかるフェールセーフ制御を行なうフェールセーフ制御部(制御手段)130が備えられている。
 なお、フェール判定部124による上記の処理は、走行レンジが選択されている走行中であり、非走行レンジ又は後進レンジが選択されているときに、マニュアル弁46及びスイッチバルブ35はローブレーキ32及びハイクラッチ33への作動油供給を機械的に停止する。
 したがって、非走行レンジ又は後進レンジが選択されているときには、ローブレーキ32及びハイクラッチ33への油圧供給はないので、フェール判定部124は、実圧値と指示圧値によるフェール判定の原因が油圧センサのフェールであると確定する。
 〔作用及び効果〕
 本発明の一実施形態にかかる自動変速機(無段変速機)のフェール判定装置は、上述のように構成されているので、車両の走行中には、例えば、図4のフローチャートに示すようにフェール判定処理を行なうことができる。
 なお、図4のフローチャートは、判定対象の油圧センサやソレノイドバルブのそれぞれに対して実施され、判定確定まで、所定の制御周期で繰り返される。
 図4に示すように、実圧検知部121から油圧の実圧値を取り込み、指示圧制御部122から油圧の指示圧値を取り込む(ステップS10)。
 フェール判定部124は、実圧値と指示圧値との差を演算し、この差の絶対値が設定値以上であるか否かを判定する(ステップS20)。この差の絶対値が設定値以上でなければ次の制御周期の処理に待機する。
 差の絶対値が設定値以上であれば、ギヤ比ずれ判定部123によってギヤ比ずれが判定されているか否かを判定し(ステップS30)、ギヤ比ずれが判定されていれば、判定対象のソレノイドバルブがフェールしていると判定し(ステップS40)、ギヤ比ずれが判定されていなければ、判定対象の油圧センサがフェールしていると判定する(ステップS50)。
 したがって、本フェール判定装置によれば、ソレノイドバルブの故障に起因して実圧値と指示圧値との差が生じた場合において、これを油圧センサのフェールであると誤った故障診断を行なうことが防止され、精度良い故障診断を行なうことができるようになる。
 また、車両走行中においてもフェール箇所が油圧センサであるかソレノイドバルブであるかを特定することができるので、車両走行中に即座にフェールセーフモードに切り替えることができる。
 また、非走行レンジ又は後進レンジが選択されているときには、マニュアル弁46やスイッチバルブ35といった機械的油圧制御手段により、機械的に摩擦係合要素(ローブレーキ32、ハイクラッチ33)への油圧供給はなくなるので、フェール判定部124は、実圧値と指示圧値によるフェール判定の原因が油圧センサのフェールであると確定することができ、油圧センサのフェール確定の判定頻度を増やすことができる。
 〔その他〕
 以上、本発明の実施形態について説明したが、本発明は上述の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々変形して実施することができる。
 例えば、上記実施形態では、変速機構として、前進2段の比較的シンプルな副変速機構を例に説明したが、本発明は、一般的な有段変速機など車両用自動変速機に広く適用できるものである。
 多くの有段変速機の場合、摩擦係合要素の係合解放の組み合わせで変速段が達成されるが、何れかの摩擦係合要素を係合解放操作するシフトバルブのソレノイドに電気異常が生じれば、ある変速段の指令時に、ギヤ比ずれ状態といった特定状態が生じるので、ソレノイドバルブの異常判定を実施できる。

Claims (4)

  1.  摩擦係合要素の係合または解放により所望のギヤ比を達成する変速機構と、
     前記摩擦係合要素に供給される油圧を制御するソレノイドバルブと、
     前記摩擦係合要素に供給される油圧を検知する油圧センサと、を有する車両用自動変速機の制御装置であって、
     前記油圧センサの出力値を検知する実圧検知手段と、
     前記ソレノイドバルブへの油圧の指示圧値を制御する指示圧制御手段と、
     前記変速機構のギヤ比のずれを判定するギヤ比ずれ判定手段と、
     前記出力値と前記指示圧値との差の絶対値が設定値以上であると、前記ソレノイドバルブ又は前記油圧センサがフェールしているとフェール判定するフェール判定手段と、を有し、
     前記フェール判定手段は、前記フェール判定時に、前記ギヤ比ずれが判定された場合には前記ソレノイドバルブがフェールしていると判定し、前記ギヤ比ずれが判定されない場合には前記油圧センサがフェールしていると判定する
    、車両用自動変速機の制御装置。
  2.  前記ギヤ比ずれ判定手段は、達成されるべきギヤ比に応じて、入出力回転数の差又は比が所定以上になっているか否かによって、又は、達成されるべきギヤ比に対して実際の入出力回転数から算出した実ギヤ比が所定以上ずれているか否かによって、ギヤ比ずれを判定する
    、請求項1記載の車両用自動変速機の制御装置。
  3.  非走行レンジ又は後進レンジが選択されているときに前記摩擦係合要素への油圧供給を機械的に停止する機械的油圧制御手段を有し、
     前記フェール判定手段は、前記フェール判定時に、前記非走行レンジ又は前記後進レンジが選択されている場合には、前記油圧センサがフェールしていると判定する
    、請求項1又は2記載の車両用自動変速機の制御装置。
  4.  前記フェール判定手段による判定結果に応じて前記ソレノイドバルブ又は前記油圧センサにかかるフェールセーフ制御を行なうフェールセーフ制御手段を備えている
    、請求項1~3の何れか1項に記載の車両用自動変速機の制御装置。
PCT/JP2016/053728 2015-03-23 2016-02-09 車両用自動変速機の制御装置 WO2016152285A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015059731A JP2018100674A (ja) 2015-03-23 2015-03-23 車両用自動変速機の制御装置
JP2015-059731 2015-03-23

Publications (1)

Publication Number Publication Date
WO2016152285A1 true WO2016152285A1 (ja) 2016-09-29

Family

ID=56977965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/053728 WO2016152285A1 (ja) 2015-03-23 2016-02-09 車両用自動変速機の制御装置

Country Status (2)

Country Link
JP (1) JP2018100674A (ja)
WO (1) WO2016152285A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7188334B2 (ja) * 2019-09-18 2022-12-13 トヨタ自動車株式会社 変速比制御装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266176A (ja) * 1999-03-19 2000-09-26 Unisia Jecs Corp 油圧検出装置の故障診断装置
JP2005195042A (ja) * 2003-12-26 2005-07-21 Denso Corp 自動変速機の制御方法並びに制御装置
JP2010138936A (ja) * 2008-12-09 2010-06-24 Toyota Motor Corp 自動変速機の制御装置
JP2013072479A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp 車両用無段変速機の制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000266176A (ja) * 1999-03-19 2000-09-26 Unisia Jecs Corp 油圧検出装置の故障診断装置
JP2005195042A (ja) * 2003-12-26 2005-07-21 Denso Corp 自動変速機の制御方法並びに制御装置
JP2010138936A (ja) * 2008-12-09 2010-06-24 Toyota Motor Corp 自動変速機の制御装置
JP2013072479A (ja) * 2011-09-27 2013-04-22 Toyota Motor Corp 車両用無段変速機の制御装置

Also Published As

Publication number Publication date
JP2018100674A (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
JP4857004B2 (ja) 無段変速機の制御装置
JP5605504B2 (ja) 車両用駆動装置の制御装置
JP6356335B2 (ja) 車両用自動変速機のフェール判定装置及び車両用自動変速機の制御装置
JP6554545B2 (ja) ベルト無段変速機及びその故障判断方法
EP3348876A1 (en) Continuously variable transmission and malfunction determination method therefor
KR102004634B1 (ko) 변속기의 제어 장치 및 변속기의 제어 방법
KR101928685B1 (ko) 변속기의 제어 장치 및 변속기의 제어 방법
WO2016152285A1 (ja) 車両用自動変速機の制御装置
JP4680615B2 (ja) 無段変速機の変速制御装置
JP6364541B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6364542B2 (ja) 変速機の制御装置及び変速機の制御方法
JP6152494B1 (ja) 自動変速機の制御装置及び自動変速機の制御方法
JP6543540B2 (ja) ベルト無段変速機及びその故障判断方法
WO2019044789A1 (ja) 自動変速機のセレクトソレノイド弁異常診断装置および異常診断方法
JP6313909B2 (ja) 自動変速機の制御装置及び自動変速機の制御方法
JP7155572B2 (ja) 車両用油圧制御装置
JP2017002987A (ja) 動力伝達装置の制御装置
JP2016169799A (ja) 自動変速機及び自動変速機の制御方法
JP2019173821A (ja) 車両用油圧制御装置
JP2019184011A (ja) 車両用油圧制御装置
JP2005164002A (ja) 無段変速機の制御装置
JP2016169800A (ja) 自動変速機及び自動変速機の制御方法

Legal Events

Date Code Title Description
DPE2 Request for preliminary examination filed before expiration of 19th month from priority date (pct application filed from 20040101)
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16768188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16768188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP