WO2018003416A1 - 位相差フィルム - Google Patents

位相差フィルム Download PDF

Info

Publication number
WO2018003416A1
WO2018003416A1 PCT/JP2017/020797 JP2017020797W WO2018003416A1 WO 2018003416 A1 WO2018003416 A1 WO 2018003416A1 JP 2017020797 W JP2017020797 W JP 2017020797W WO 2018003416 A1 WO2018003416 A1 WO 2018003416A1
Authority
WO
WIPO (PCT)
Prior art keywords
retardation
film
retardation layer
layer
group
Prior art date
Application number
PCT/JP2017/020797
Other languages
English (en)
French (fr)
Inventor
伸行 幡中
辰昌 葛西
健次 松野
白石 貴志
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Priority to CN201780040410.0A priority Critical patent/CN109416426A/zh
Priority to JP2018524989A priority patent/JP7055099B2/ja
Priority to KR1020197001201A priority patent/KR102453716B1/ko
Publication of WO2018003416A1 publication Critical patent/WO2018003416A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/04Liquid crystal materials characterised by the chemical structure of the liquid crystal components, e.g. by a specific unit
    • C09K19/38Polymers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details

Definitions

  • the present invention relates to a retardation film.
  • a flat panel display members including an optical film such as a polarizing plate and a retardation plate are used.
  • an optical film an optical film manufactured by applying a composition containing a polymerizable liquid crystal to a substrate is known.
  • Patent Document 1 describes the optical film exhibiting reverse wavelength dispersion.
  • the present invention includes the following inventions.
  • a retardation film having at least two retardation layers and having a first retardation layer and a second retardation layer The first retardation layer is Having optical properties represented by formula (1), formula (3) and formula (4);
  • the second retardation layer is Having optical properties represented by formula (2), formula (3) and formula (4);
  • the retardation film is A retardation film having optical properties represented by formula (2), formula (3), and formula (4).
  • Nx represents the main refractive index in a direction parallel to the film plane in the refractive index ellipsoid formed by the retardation layer
  • ny represents the refractive index ellipsoid formed by the retardation layer in relation to the film plane.
  • nz represents a refractive index in a direction perpendicular to the film plane in the refractive index ellipsoid formed by the retardation layer.
  • a first retardation layer is formed on the substrate with or without an alignment film, and the second retardation layer is formed on or without the alignment film on the first retardation layer.
  • a second retardation layer is formed on the substrate with or without an alignment film, and the first retardation layer is formed on or without the alignment film on the second retardation layer.
  • a first retardation layer is formed on one surface of the substrate with or without an alignment film, and a second phase is formed on the other surface of the substrate with or without an alignment film.
  • the base material has the optical properties of the first retardation layer, and the second retardation layer is formed on the base material with or without an alignment film.
  • the retardation film of any one of. [13]
  • the base material has the optical characteristics of the second retardation layer, and the first retardation layer is formed on the base material with or without an alignment film. ]
  • a circularly polarizing plate comprising the retardation film according to any one of [1] to [15] and a polarizing plate.
  • FIG. 1 is a schematic cross-sectional view of an organic EL display device including a circularly polarizing plate of the present invention.
  • the retardation film of the present invention (hereinafter sometimes referred to as the present retardation film) has a first retardation layer and a second retardation layer. Moreover, you may have a 3rd phase difference layer.
  • the first retardation layer, the second retardation layer, and the third retardation layer are retardation layers having certain optical characteristics, and the first retardation layer, the second retardation layer, and the third retardation layer.
  • Each of the retardation layers may be composed of two or more layers.
  • the retardation film is an optical film having at least two retardation layers, and preferably has optical characteristics represented by the formulas (6) and (7). By having such optical characteristics, a retardation film having excellent transparency in the visible light region can be obtained, and coloring can be suppressed simultaneously with light leakage during black display.
  • a * and b * represent color coordinates in the L * a * b * color system.
  • the chromaticities a * and b * in the ranges represented by the formulas (6) and (7) are greatly influenced by the optical characteristics of the retardation layer in the retardation film. As will be described later, in the case where these retardation layers are formed by polymerizing a polymerizable liquid crystal, if the retardation layer is colored, the values of a * and b * increase.
  • the values of a * and b * increase when the absorption wavelength of the resin forming the stretched film reaches the visible range.
  • the polymerizable liquid crystal and the resin side chain are as far as possible in the visible range. What is necessary is just to adjust so that the material which does not absorb may be used and transparency may be maintained also at the time of film forming.
  • a * is preferably ⁇ 1.5 or more and 0.5 or less, more preferably ⁇ 1.0 or more and 0.5 or less.
  • b * is preferably ⁇ 0.5 or more and 4.0 or less, and more preferably ⁇ 0.5 or more and 3.0 or less.
  • the retardation film has optical characteristics represented by the formulas (3) and (4), and the first retardation layer and the second retardation layer are also represented by the formulas (3) and (4). It has the optical properties represented. In order for this retardation film to have such optical characteristics, the first retardation layer and the second retardation layer have the optical characteristics represented by the formulas (3) and (4), and The retardation layer only has to exhibit the optical characteristics represented by the formula (1) and the second retardation layer represented by the formula (2).
  • Re (450) / Re (550) [Formula (3)] of the retardation film is preferably 0.90 or less, more preferably 0.85 or less, and usually 0.60 or more, preferably 0. .70 or more.
  • Re (650) / Re (550) [Formula (4)] of the retardation film is preferably 1.02 or more, more preferably 1.04 or more, and usually 1.40 or less, preferably Is 1.30 or less.
  • Re (450) represents an in-plane retardation value at a wavelength of 450 nm
  • Re (550) represents an in-plane retardation value at a wavelength of 550 nm
  • Re (650) represents an in-plane position at a wavelength of 650 nm. Represents the phase difference value.
  • retardation layer examples include a layer formed by polymerizing polymerizable liquid crystal and a stretched film.
  • the optical characteristics of the retardation layer can be adjusted by the alignment state of the polymerizable liquid crystal or the stretching method of the stretched film.
  • horizontal alignment means that the optical axis of the polymerizable liquid crystal is aligned horizontally with respect to the substrate plane
  • vertical alignment means that the optical axis of the polymerizable liquid crystal is aligned perpendicular to the substrate plane.
  • the optical axis means a direction in which a cross section cut out in a direction perpendicular to the optical axis is a circle in the refractive index ellipsoid formed by the orientation of the polymerizable liquid crystal, that is, a direction in which all three refractive indexes are equal.
  • Examples of the polymerizable liquid crystal include a rod-shaped polymerizable liquid crystal and a disk-shaped polymerizable liquid crystal.
  • the rod-like polymerizable liquid crystal is aligned horizontally or vertically with respect to the substrate, the optical axis of the polymerizable liquid crystal coincides with the major axis direction of the polymerizable liquid crystal.
  • the disk-shaped polymerizable liquid crystal is aligned, the optical axis of the polymerizable liquid crystal exists in a direction orthogonal to the disk surface of the polymerizable liquid crystal.
  • the slow axis direction of the stretched film varies depending on the stretching method, and the slow axis and the optical axis are determined according to the stretching method, such as uniaxial, biaxial or oblique stretching.
  • the polymerizable liquid crystal may be aligned in a suitable direction.
  • an in-plane retardation is developed by aligning the optical axis of the polymerizable liquid crystal horizontally with respect to the substrate plane.
  • the optical axis direction and the slow axis direction are Match.
  • an in-plane retardation is developed by aligning the optical axis of the polymerizable liquid crystal horizontally with respect to the substrate plane.
  • the optical axis and the slow axis are orthogonal to each other. To do.
  • the alignment state of the polymerizable liquid crystal can be adjusted by a combination of the alignment film and the polymerizable liquid crystal.
  • the in-plane retardation value of the retardation layer can be adjusted by the thickness of the retardation layer. Since the in-plane retardation value is determined by Equation (10), ⁇ n ( ⁇ ) and film thickness d may be adjusted in order to obtain a desired in-plane retardation value (Re ( ⁇ )).
  • Re ( ⁇ ) d ⁇ ⁇ n ( ⁇ ) (10)
  • Re ( ⁇ ) represents an in-plane retardation value at a wavelength ⁇ nm
  • d represents a film thickness
  • ⁇ n ( ⁇ ) represents a birefringence at a wavelength ⁇ nm.
  • the birefringence ⁇ n ( ⁇ ) is obtained by measuring the in-plane retardation value and dividing by the thickness of the retardation layer. Specific measurement methods are shown in the Examples, but at this time, by measuring a film formed on a base material such as a glass substrate that has no in-plane retardation in the base material itself, The properties of the retardation layer can be measured.
  • the refractive indexes in three directions in the refractive index ellipsoid formed by orientation of the polymerizable liquid crystal or stretching of the film are represented as nx, ny and nz.
  • nx represents the main refractive index in the direction parallel to the film plane in the refractive index ellipsoid formed by the retardation layer.
  • ny represents a refractive index in a direction parallel to the film plane and perpendicular to the direction of nx in the refractive index ellipsoid formed by the retardation layer.
  • nz represents the refractive index in the direction perpendicular to the film plane in the refractive index ellipsoid formed by the retardation layer.
  • the refractive index relationship of the obtained retardation layer is nx> ny ⁇ nz (positive A plate), and the refractive index ellipsoid
  • the axis in the nx direction coincides with the slow axis.
  • the refractive index relationship of the obtained retardation layer is nx ⁇ ny ⁇ nz (negative A plate), and the refractive index.
  • the axis in the ny direction in the ellipsoid coincides with the slow axis.
  • the polymerizable liquid crystal may be aligned in a suitable direction.
  • expression of a retardation in the thickness direction is defined as a characteristic in which Rth (a retardation value in the thickness direction) is negative in formula (20).
  • Rth can be calculated from the phase difference value (R 40 ) measured by inclining 40 degrees with the in-plane fast axis as the tilt axis and the in-plane phase difference value (Re). That is, Rth is obtained from the following formulas (21) to (23) from Re, R 40 , d (thickness of retardation layer), and n0 (average refractive index of retardation layer).
  • the thickness direction retardation is developed by aligning the optical axis of the polymerizable liquid crystal perpendicularly to the substrate plane.
  • the thickness direction retardation is developed by aligning the optical axis of the polymerizable liquid crystal horizontally with respect to the substrate plane.
  • the thickness is fixed, so Rth is uniquely determined.
  • adjusting Rth without changing Re by adjusting the thickness of the retardation layer Can do.
  • the refractive index relationship of the obtained retardation layer is nx ⁇ ny ⁇ nz (positive C plate), and the refractive index ellipsoid
  • the axis in the direction of nz coincides with the slow axis direction.
  • the refractive index relationship of the obtained retardation layer is nx ⁇ ny ⁇ nz (negative A plate), and the refractive index.
  • the axis in the ny direction in the ellipsoid coincides with the slow axis direction.
  • the polymerizable liquid crystal is a compound having a polymerizable group and having liquid crystallinity (hereinafter referred to as a polymerizable liquid crystal compound).
  • the polymerizable group means a group involved in the polymerization reaction, and is preferably a photopolymerizable functional group.
  • the photopolymerizable functional group refers to a group that can participate in a polymerization reaction by an active radical or an acid generated from a photopolymerization initiator.
  • the photopolymerizable functional group examples include a vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, oxiranyl group, and oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • the thermic liquid crystal may be either a thermotropic liquid crystal or a lyotropic liquid crystal, but the thermotropic liquid crystal is preferred in terms of enabling precise film thickness control.
  • the phase order structure in the thermotropic liquid crystal may be a nematic liquid crystal or a smectic liquid crystal.
  • the polymerizable liquid crystal compound is particularly preferably the structure of the following formula (I) from the viewpoint of exhibiting the above-described reverse wavelength dispersion.
  • Ar represents a divalent aromatic group which may have a substituent.
  • the aromatic group referred to here is a group having a planar structure having a planarity, and the number of ⁇ electrons of the ring structure is [4n + 2] according to the Hückel rule.
  • n represents an integer.
  • a ring structure is formed including a heteroatom such as —N ⁇ or —S—, the case where the Huckel's rule is satisfied including the non-covalent electron pair on the heteroatom and the aromatic structure is included.
  • the divalent aromatic group preferably contains at least one of a nitrogen atom, an oxygen atom and a sulfur atom.
  • G 1 and G 2 each independently represents a divalent aromatic group or a divalent alicyclic hydrocarbon group.
  • the hydrogen atom contained in the divalent aromatic group or divalent alicyclic hydrocarbon group is a halogen atom, an alkyl group having 1 to 4 carbon atoms, a fluoroalkyl group having 1 to 4 carbon atoms, or a carbon atom.
  • the carbon atom constituting the divalent aromatic group or divalent alicyclic hydrocarbon group which may be substituted with an alkoxy group, cyano group or nitro group of formulas 1 to 4 is an oxygen atom, a sulfur atom Alternatively, it may be substituted with a nitrogen atom.
  • L 1 , L 2 , B 1 and B 2 are each independently a single bond or a divalent linking group.
  • k and l each independently represent an integer of 0 to 3, and satisfy the relationship of 1 ⁇ k + 1.
  • B 1 and B 2 G 1 and G 2 may be the same or different from each other.
  • E 1 and E 2 each independently represents an alkanediyl group having 1 to 17 carbon atoms, wherein a hydrogen atom contained in the alkanediyl group may be substituted with a halogen atom, The —CH 2 — contained may be substituted with —O—, —S—, or —Si—.
  • P 1 and P 2 each independently represent a polymerizable group or a hydrogen atom, and at least one is a polymerizable group.
  • G 1 and G 2 are each independently preferably a 1,4-phenylenediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms 1,4-cyclohexanediyl group optionally substituted with at least one substituent selected from the group consisting of a halogen atom and an alkyl group having 1 to 4 carbon atoms, more preferably 1 substituted with a methyl group , 4-phenylenediyl group, unsubstituted 1,4-phenylenediyl group, or unsubstituted 1,4-trans-cyclohexanediyl group, particularly preferably unsubstituted 1,4-phenylenediyl group or Substituted 1,4-trans-cyclohexanediyl group.
  • At least one of a plurality of G 1 and G 2 is preferably a divalent alicyclic hydrocarbon group, and at least one of G 1 and G 2 bonded to L 1 or L 2 More preferably, it is a divalent alicyclic hydrocarbon group.
  • L 1 and L 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a1 OR a2 —, —R a3 COOR a4 —, —R a5 OCOR a6 —, R a7 OC ⁇ OOR a8 —, —N ⁇ N—, —CR c ⁇ CR d —, or —C ⁇ C—.
  • R a1 to R a8 each independently represents a single bond or an alkylene group having 1 to 4 carbon atoms
  • R c and R d each represents an alkyl group having 1 to 4 carbon atoms or a hydrogen atom.
  • L 1 and L 2 are each independently more preferably a single bond, —OR a2-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a4-1 —, or —OCOR a6-1 —. is there.
  • R a2-1 , R a4-1 , and R a6-1 each independently represent a single bond, —CH 2 —, or —CH 2 CH 2 —.
  • L 1 and L 2 are each independently a single bond, —O—, —CH 2 CH 2 —, —COO—, —COOCH 2 CH 2 —, or —OCO—.
  • B 1 and B 2 are each independently preferably a single bond, an alkylene group having 1 to 4 carbon atoms, —O—, —S—, —R a9 OR a10 —, —R a11 COOR a12 —, —R a13 OCOR a14 —, or R a15 OC ⁇ OOR a16 —.
  • R a9 to R a16 each independently represents a single bond or an alkylene group having 1 to 4 carbon atoms.
  • B 1 and B 2 are each independently more preferably a single bond, —OR a10-1 —, —CH 2 —, —CH 2 CH 2 —, —COOR a12-1 —, or —OCOR a14-1 —. is there.
  • R a10-1 , R a12-1 and R a14-1 each independently represents a single bond, —CH 2 — or —CH 2 CH 2 —.
  • B 1 and B 2 are each independently more preferably a single bond, -O -, - CH 2 CH 2 -, - COO -, - COOCH 2 CH 2 -, - OCO-, or -OCOCH 2 CH 2 -, It is.
  • E 1 and E 2 are each independently preferably an alkanediyl group having 1 to 17 carbon atoms, and more preferably an alkanediyl group having 4 to 12 carbon atoms.
  • Examples of the polymerizable group represented by P 1 or P 2 include epoxy group, vinyl group, vinyloxy group, 1-chlorovinyl group, isopropenyl group, 4-vinylphenyl group, acryloyloxy group, methacryloyloxy group, and oxiranyl group. And an oxetanyl group. Among them, acryloyloxy group, methacryloyloxy group, vinyloxy group, oxiranyl group and oxetanyl group are preferable, and acryloyloxy group is more preferable.
  • Ar preferably has at least one selected from an aromatic hydrocarbon ring which may have a substituent, an aromatic heterocyclic ring which may have a substituent, and an electron-withdrawing group.
  • aromatic hydrocarbon ring examples include a phenyl group, a naphthyl group, and an anthracenyl group, and a phenyl group and a naphthyl group are preferable.
  • aromatic heterocycle examples include furan ring, benzofuran ring, pyrrole ring, indole ring, thiophene ring, benzothiophene ring, pyridine ring, pyrazine ring, pyrimidine ring, triazole ring, triazine ring, pyrroline ring, imidazole ring, pyrazole ring. , Thiazole ring, benzothiazole ring, thienothiazole ring, oxazole ring, benzoxazole ring, phenanthrolin ring, and the like.
  • a thiazole ring, a benzothiazole ring, or a benzofuran ring is preferable, and a benzothiazole group is more preferable.
  • Ar includes a nitrogen atom
  • the nitrogen atom preferably has ⁇ electrons.
  • the total number N ⁇ of ⁇ electrons contained in the divalent aromatic group represented by Ar is preferably 8 or more, more preferably 10 or more, still more preferably 14 or more, particularly Preferably it is 16 or more. Moreover, Preferably it is 30 or less, More preferably, it is 26 or less, More preferably, it is 24 or less.
  • Examples of the aromatic group represented by Ar include the following groups.
  • Z 0 , Z 1 and Z 2 are each independently a hydrogen atom, a halogen atom, or an alkyl having 1 to 12 carbon atoms.
  • Q 1 , Q 2 and Q 3 each independently represents —CR 2 ′ R 3 ′ —, —S—, —NH—, —NR 2 ′ —, —CO— or —O—, and R 2 ′ And R 3 ′ each independently represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • J 1 and J 2 each independently represent a carbon atom or a nitrogen atom.
  • Y 1 , Y 2 and Y 3 each independently represents an optionally substituted aromatic hydrocarbon group or aromatic heterocyclic group.
  • W 1 and W 2 each independently represents a hydrogen atom, a cyano group, a methyl group or a halogen atom, and m represents an integer of 0 to 6.
  • Examples of the aromatic hydrocarbon group in Y 1 , Y 2 and Y 3 include aromatic hydrocarbon groups having 6 to 20 carbon atoms such as a phenyl group, a naphthyl group, an anthryl group, a phenanthryl group, and a biphenyl group.
  • a naphthyl group is preferred, and a phenyl group is more preferred.
  • the aromatic heterocyclic group has 4 to 20 carbon atoms and contains at least one hetero atom such as a nitrogen atom such as a furyl group, a pyrrolyl group, a thienyl group, a pyridinyl group, a thiazolyl group, or a benzothiazolyl group, an oxygen atom, or a sulfur atom.
  • a furyl group, a thienyl group, a pyridinyl group, a thiazolyl group, and a benzothiazolyl group are preferable.
  • Y 1 , Y 2 and Y 3 may each independently be an optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group.
  • the polycyclic aromatic hydrocarbon group refers to a condensed polycyclic aromatic hydrocarbon group or a group derived from an aggregate of aromatic rings.
  • the polycyclic aromatic heterocyclic group refers to a condensed polycyclic aromatic heterocyclic group or a group derived from an aromatic ring assembly.
  • Z 0 , Z 1 and Z 2 are each independently preferably a hydrogen atom, a halogen atom, an alkyl group having 1 to 6 carbon atoms, a cyano group, a nitro group, or an alkoxy group having 1 to 12 carbon atoms.
  • 0 is more preferably a hydrogen atom, an alkyl group having 1 to 12 carbon atoms, or a cyano group
  • Z 1 and Z 2 are more preferably a hydrogen atom, a fluorine atom, a chlorine atom, a methyl group, or a cyano group.
  • Q 1 , Q 2 and Q 3 are preferably —NH—, —S—, —NR 2 ′ — and —O—, and R 2 ′ is preferably a hydrogen atom.
  • R 2 ′ is preferably a hydrogen atom.
  • —S—, —O—, and —NH— are particularly preferable.
  • Y 1 may form an aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • the aromatic heterocyclic group include those described above as the aromatic heterocyclic ring that Ar may have, for example, pyrrole ring, imidazole ring, pyrroline ring, pyridine ring, pyrazine ring, pyrimidine ring, indole Ring, quinoline ring, isoquinoline ring, purine ring, pyrrolidine ring and the like.
  • This aromatic heterocyclic group may have a substituent.
  • Y 1 may be the above-described optionally substituted polycyclic aromatic hydrocarbon group or polycyclic aromatic heterocyclic group together with the nitrogen atom to which it is bonded and Z 0 .
  • a benzofuran ring, a benzothiazole ring, a benzoxazole ring, etc. are mentioned.
  • the total content of the polymerizable liquid crystal compound in the solid content of the optical anisotropic layer forming composition is usually 70 parts by mass to 99.5 parts by mass, preferably 80 parts by mass to 99 parts by mass. Parts by mass, more preferably 80 parts by mass to 94 parts by mass, and still more preferably 80 parts by mass to 90 parts by mass. If the total content is within the above range, the orientation of the obtained optical anisotropic layer tends to be high.
  • solid content means the total amount of the component remove
  • the retardation layer having optical properties represented by the formulas (3) and (4) is obtained when a polymerizable liquid crystal having a specific structure is polymerized or a polymer film having a specific structure is stretched.
  • the retardation film represented by the formula (3) and the formula (4) is obtained by combining the first retardation layer with the formula (1) and the second retardation layer with the relation of the formula (2). . 100 nm ⁇ Re (550) ⁇ 160 nm (1) 200 nm ⁇ Re (550) ⁇ 320 nm (2) Re (450) / Re (550) ⁇ 1.00 (3) 1.00 ⁇ Re (650) / Re (550) (4)
  • both the first retardation layer and the second retardation layer are represented by the formulas (3) and (4).
  • More uniform polarization conversion characteristics can be obtained for light of each wavelength in the visible light range, and light leakage during black display of a display device such as an organic EL display device can be obtained. Can be greatly suppressed.
  • Examples of the polymerizable liquid crystal having the specific structure include the polymerizable liquid crystal (I).
  • a retardation layer having optical characteristics represented by the formulas (1) and (2) is obtained.
  • a retardation layer having a desired in-plane retardation value such as optical characteristics represented by the equations (1) and (2) is obtained.
  • a stretched film is usually obtained by stretching a substrate.
  • a roll (winding body) in which the base material is wound on a roll is prepared, and the base material is continuously unwound from the winding body and unwound.
  • the substrate is conveyed to a heating furnace.
  • the set temperature of the heating furnace is in the range of the glass transition temperature of the substrate (° C.) to [glass transition temperature +100] (° C.), preferably near the glass transition temperature (° C.) to [glass transition temperature +50] (° C.). The range.
  • the transport direction and tension are adjusted and the uniaxial or biaxial heat stretching process is performed by inclining at an arbitrary angle.
  • the stretching ratio is usually 1.1 to 6 times, preferably 1.1 to 3.5 times.
  • the method of stretching in an oblique direction is not particularly limited as long as the orientation axis can be continuously inclined to a desired angle, and a known stretching method can be employed. Examples of such a stretching method include the methods described in JP-A-50-83482 and JP-A-2-113920.
  • the thickness after stretching is determined by the thickness before stretching and the stretching ratio.
  • Examples of the stretched film having a retardation in the thickness direction include a stretched film having a refractive index relationship of nx ⁇ ny ⁇ nz described in JP-A-2008-129465 and a known multilayer extruded film. Even a film having a refractive index relationship of nx ⁇ ny ⁇ nz can obtain an effect equivalent to nx ⁇ ny ⁇ nz because nz is relatively large.
  • the in-plane retardation value and the thickness direction retardation value of the stretched film can be adjusted by ⁇ n ( ⁇ ) and the film thickness d, similarly to the layer formed by polymerizing the polymerizable liquid crystal.
  • Examples of the stretched film obtained by stretching the polymer film having a specific structure having the optical properties represented by the formulas (3) and (4) include commercially available stretched films made of a polycarbonate resin. Specifically, “Pure Ace (registered trademark) WR” (manufactured by Teijin Ltd.) and the like can be mentioned.
  • the base material is usually a transparent base material.
  • the transparent substrate means a substrate having transparency capable of transmitting light, particularly visible light, and the transparency means a property that the transmittance for light having a wavelength of 380 to 780 nm is 80% or more.
  • the base material it is possible to control the base material to be colorless and colorless so that a * is within the range represented by Formula (6) and b * is within the range represented by Formula (7). It is easy and preferable.
  • the transparent substrate include translucent resin substrates.
  • the resin constituting the translucent resin base material include polyolefins such as polyethylene and polypropylene; cyclic olefin resins such as norbornene polymers; polyvinyl alcohol; polyethylene terephthalate; polymethacrylate esters; polyacrylate esters; Examples thereof include cellulose esters such as diacetylcellulose and cellulose acetate propionate; polyethylene naphthalate; polycarbonate; polysulfone; polyethersulfone; polyetherketone; polyphenylene sulfide and polyphenylene oxide. From the viewpoint of easy availability and transparency, polyethylene terephthalate, polymethacrylic acid ester, cellulose ester, cyclic olefin resin or polycarbonate is preferred.
  • Cellulose ester is obtained by esterifying a part or all of hydroxyl groups contained in cellulose and can be easily obtained from the market.
  • Cellulose ester base materials can also be easily obtained from the market. Examples of commercially available cellulose ester base materials include “Fujitac (registered trademark) film” (Fuji Photo Film Co., Ltd.); “KC8UX2M”, “KC8UY” and “KC4UY” (Konica Minolta Opto Co., Ltd.). It is done.
  • polymethacrylic acid ester and polyacrylic acid ester may be collectively referred to as (meth) acrylic resin. ) Is readily available from the market.
  • Examples of (meth) acrylic resins include methacrylic acid alkyl esters or homopolymers of acrylic acid alkyl esters, and copolymers of methacrylic acid alkyl esters and acrylic acid alkyl esters.
  • Specific examples of the methacrylic acid alkyl ester include methyl methacrylate, ethyl methacrylate, and propyl methacrylate
  • specific examples of the acrylic acid alkyl ester include methyl acrylate, ethyl acrylate, and propyl acrylate.
  • a (meth) acrylic resin a commercially available (meth) acrylic resin can be used.
  • As the (meth) acrylic resin a so-called impact resistant (meth) acrylic resin may be used.
  • the rubber particles are preferably acrylic.
  • the acrylic rubber particles have rubber elasticity obtained by polymerizing an acrylic monomer mainly composed of an alkyl acrylate ester such as butyl acrylate or 2-ethylhexyl acrylate in the presence of a polyfunctional monomer. Particles.
  • the acrylic rubber particles may be one in which such rubber elastic particles are formed as a single layer, or may be a multilayer structure having at least one rubber elastic layer.
  • the acrylic rubber particles having a multilayer structure particles having rubber elasticity as described above are used as cores, and the periphery thereof is covered with a hard alkyl methacrylate ester polymer, or a hard alkyl methacrylate ester polymer.
  • the core is covered with an acrylic polymer having rubber elasticity as described above, or the hard core is covered with a rubber elastic acrylic polymer, and the periphery thereof is hard alkyl methacrylate. Examples thereof include those covered with a polymer.
  • the rubber particles formed of the elastic layer usually have an average diameter in the range of about 50 to 400 nm.
  • the content of rubber particles in the (meth) acrylic resin is usually about 5 to 50 parts by mass per 100 parts by mass of the (meth) acrylic resin. Since the (meth) acrylic resin and acrylic rubber particles are commercially available in a state where they are mixed, commercially available products thereof can be used. Examples of commercially available (meth) acrylic resins containing acrylic rubber particles include “HT55X” and “Technoloy TM S001” sold by Sumitomo Chemical Co., Ltd. "Technoloy S001" is sold in the form of a film.
  • Cyclic olefin resin is easily available from the market.
  • Commercially available cyclic olefin resins include “Topas” (registered trademark) [Ticona (Germany)], “Arton” (registered trademark) [JSR Corporation], “ZEONOR” (registered trademark) [Japan].
  • Zeon Corporation “ZEONEX” (registered trademark) [Nippon Zeon Corporation]
  • Apel registered trademark
  • Such a cyclic olefin-based resin can be formed into a substrate by forming a film by a known means such as a solvent casting method or a melt extrusion method.
  • cyclic olefin resin base material marketed can also be used.
  • Commercially available cyclic olefin-based resin base materials include “Essina” (registered trademark) [Sekisui Chemical Co., Ltd.], “SCA40” (registered trademark) [Sekisui Chemical Co., Ltd.], “ZEONOR FILM” (registered trademark). ) [Optes Corporation] and “Arton Film” (registered trademark) [JSR Corporation].
  • the cyclic olefin-based resin is a copolymer of a cyclic olefin and an aromatic compound having a chain olefin or a vinyl group
  • the content ratio of the structural unit derived from the cyclic olefin is the total structural unit of the copolymer. On the other hand, it is usually 50 mol% or less, preferably in the range of 15 to 50 mol%.
  • chain olefins include ethylene and propylene
  • examples of aromatic compounds having a vinyl group include styrene, ⁇ -methylstyrene, and alkyl-substituted styrene.
  • the cyclic olefin-based resin is a ternary copolymer of a cyclic olefin, a chain olefin, and an aromatic compound having a vinyl group
  • the content ratio of the structural unit derived from the chain olefin is that of the copolymer.
  • the content of the structural unit derived from the aromatic compound having a vinyl group is usually 5 to 80 mol% based on the total structural unit, and the content of the structural unit derived from the aromatic compound having a vinyl group is usually 5 to 80 mol% based on the total structural unit of the copolymer. It is.
  • Such a terpolymer has the advantage that the amount of expensive cyclic olefin used can be relatively reduced in its production.
  • the first retardation layer is obtained by using, as a base material, a stretched film obtained by stretching a polymer film having a specific structure having the optical properties represented by the above formulas (3) and (4). Alternatively, it may also serve as the second retardation layer.
  • the first retardation layer preferably has an optical characteristic represented by the formula (1), the formula (3), and the formula (4), and more preferably has an optical characteristic represented by the formula (1-1). Have.
  • the in-plane retardation value Re (550) can be adjusted by the same method as the adjustment method of the in-plane retardation value of the retardation layer.
  • Re (450) / Re (550) [Formula (3)] of the first retardation layer is preferably 0.95 or less, more preferably 0.90 or less, and usually 0.60 or more. Yes, preferably 0.70 or more.
  • Re (650) / Re (550) [Formula (4)] of the first retardation layer is preferably 1.01 or more, usually 1.40 or less, preferably 1.30 or less.
  • the first retardation layer is preferably a coating layer formed by polymerizing one or more polymerizable liquid crystals.
  • This coating layer is composed of a polymer in which the polymerizable liquid crystal is polymerized in a state of being aligned in the in-plane direction of the coating layer, and the alignment is fixed. More preferably, the first retardation layer is a coating layer formed by polymerizing the polymerizable liquid crystal (I).
  • the thickness is usually 300 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness is usually 20 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 0.5 ⁇ m or more and 3 ⁇ m or less. is there.
  • the thickness of the first retardation layer can be determined by measurement using an interference film thickness meter, a laser microscope or a stylus thickness meter.
  • the second retardation layer has optical characteristics represented by the formulas (2), (3), and (4), and more preferably has the optical characteristics represented by the formula (2-1).
  • Re (450) / Re (550) [Formula (3)] of the second retardation layer is preferably 0.95 or less, more preferably 0.90 or less, and usually 0.60 or more. is there.
  • Re (650) / Re (550) [Formula (4)] of the second retardation layer is preferably 1.01 or more, and usually 1.40 or less, preferably 1.30 or less.
  • the second retardation layer is preferably a coating layer formed by polymerizing one or more polymerizable liquid crystals.
  • This coating layer is composed of a polymer in which the polymerizable liquid crystal is polymerized in a state of being aligned in the in-plane direction of the coating layer, and the alignment is fixed. More preferably, the second retardation layer is a coating layer formed by polymerizing the polymerizable liquid crystal (I).
  • the thickness is usually 300 ⁇ m or less, preferably 5 ⁇ m or more and 100 ⁇ m or less, more preferably 10 ⁇ m or more and 50 ⁇ m or less.
  • the thickness is usually 10 ⁇ m or less, preferably 5 ⁇ m or less, more preferably 0.3 ⁇ m or more and 3 ⁇ m or less. is there.
  • the thickness of the second retardation layer can be obtained by the same method as that for the first retardation layer.
  • the thicknesses of the first retardation layer and the second retardation layer are each preferably 5 ⁇ m or less.
  • the in-plane retardation value Re (550) of the third retardation layer is usually in the range of 0 to 10 nm, and preferably in the range of 0 to 5 nm.
  • the retardation value Rth in the thickness direction is usually in the range of ⁇ 10 to ⁇ 300 nm, preferably in the range of ⁇ 20 to ⁇ 200 nm.
  • the in-plane retardation value Re (550) and the thickness direction retardation value Rth can be adjusted in the same manner as the retardation layer.
  • the third retardation layer may have optical characteristics represented by the formulas (6) and (7). Such optical characteristics can be obtained by the same method as that for the retardation layer.
  • the third retardation layer is preferably a coating layer formed by polymerizing one or more polymerizable liquid crystals.
  • This coating layer is composed of a polymer in which the polymerizable liquid crystal is polymerized in a state of being oriented in a direction perpendicular to the layer and the orientation is fixed.
  • the third retardation layer has the optical properties represented by the formulas (6) and (7), it is not necessary to polymerize the polymerizable liquid crystal (I), and the polymerization is generally performed on the market.
  • a liquid crystal compound may be used.
  • the retardation film of the present invention preferably has a substrate.
  • Examples of the substrate include the same as described above.
  • a surface treatment is performed. May be applied.
  • Surface treatment methods include a method of treating the surface of the substrate with corona or plasma under vacuum or atmospheric pressure, a method of laser treating the surface of the substrate, a method of treating the substrate surface with ozone, and a surface of the substrate.
  • a method of performing a chemical treatment or a flame treatment of the substrate surface, a primer treatment method of applying a coupling agent to the substrate surface, a reactive monomer or a polymer having reactivity attached to the substrate surface, radiation examples include a graft polymerization method in which plasma or ultraviolet rays are irradiated to react. Among them, a method of corona or plasma treatment of the substrate surface under vacuum or atmospheric pressure is preferable.
  • a method of performing surface treatment of a substrate with corona or plasma a method of performing surface treatment of the substrate by installing a substrate between opposed electrodes and generating corona or plasma under a pressure near atmospheric pressure.
  • the surface treatment of the substrate by flowing a gas between the electrodes facing each other, plasmaizing the gas between the electrodes, and spraying the plasmad gas onto the substrate, and generating glow discharge plasma under low pressure conditions.
  • a method of performing a surface treatment of a substrate by setting a substrate between opposed electrodes under a pressure near atmospheric pressure and generating corona or plasma, or flowing a gas between the opposed electrodes, A method is preferred in which the gas is converted into plasma and the plasmaized gas is sprayed onto the substrate.
  • Such surface treatment with corona or plasma is usually performed by a commercially available surface treatment apparatus.
  • the substrate is preferably a substrate having high transparency and a small phase difference.
  • the base material is preferably colorless in that it is easy to control a * within the range represented by Formula (6) and b * within the range represented by Formula (7).
  • Examples of the base material having high transparency and small phase difference include cellulose ester films having no phase difference such as Zerotack (registered trademark) (Konica Minolta Opto Co., Ltd.), Z-tack (Fuji Film Co., Ltd.). Further, an unstretched cyclic olefin resin substrate is also preferable.
  • As a transparency index a substrate having a total light transmittance of 80% or more is preferable, and as a retardation value, a value of front retardation is preferably 10 nm or less.
  • the stretched film obtained by stretching a polymer film having a specific structure having the optical properties represented by the above formulas (3) and (4) is used as a base material. It may also serve as a retardation layer or a second retardation layer.
  • the first retardation layer or / and the second retardation layer of 5 ⁇ m or less are formed by peeling off the substrate and transferring and forming the first retardation layer or / and the second retardation layer. This is more preferable from the viewpoint of reducing the thickness.
  • the surface of the substrate on which the alignment film, the first retardation layer, the second retardation layer, and the third retardation layer are not formed may be subjected to a hard coat treatment, an antistatic treatment, or the like. Further, an additive such as an ultraviolet absorber may be included within a range not affecting the performance.
  • the thickness of the base material is usually 5 to 300 ⁇ m, preferably 10 to 200 ⁇ m, because if the thickness is too thin, the strength tends to decrease and the processability tends to be poor.
  • a layer (retardation layer) formed by polymerizing a polymerizable liquid crystal usually comprises a composition containing one or more polymerizable liquid crystals (hereinafter sometimes referred to as a polymerizable liquid crystal composition) as a substrate. It is formed by coating on the alignment film, protective layer or retardation layer and polymerizing the polymerizable liquid crystal in the obtained coating film.
  • the polymerizable liquid crystal composition usually contains a solvent, and the solvent is more preferably a solvent that can dissolve the polymerizable liquid crystal and is inert to the polymerization reaction of the polymerizable liquid crystal.
  • Specific solvents include alcohol solvents such as methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether, phenol; ester solvents such as ethyl acetate and butyl acetate; acetone, methyl ethyl ketone, Ketone solvents such as cyclopentanone, cyclohexanone, cycloheptanone, methyl amyl ketone, methyl isobutyl ketone, N-methyl-2-pyrrolidinone; non-chlorinated aliphatic hydrocarbon solvents such as pentane, hexane, heptane; toluene,
  • Non-chlorinated aromatic hydrocarbon solvents include nitrile solvents such as acetonitrile; ether solvents such as propylene glycol monomethyl ether, tetrahydrofuran and dimethoxyethane; And chloroform, chlorinated hydrocarbon solvents such as chlorobenzene; include. These other solvents may be used alone or in combination.
  • the content of the solvent in the polymerizable liquid crystal composition is preferably 10 parts by mass to 10,000 parts by mass, and more preferably 50 parts by mass to 5000 parts by mass with respect to 100 parts by mass of the solid content.
  • Solid content means the sum total of the component remove
  • Application of the polymerizable liquid crystal composition is usually performed by a spin coating method, an extrusion method, a gravure coating method, a die coating method, a slit coating method, a bar coating method, an applicator method, or a printing method such as a flexo method. It is carried out by a known method such as a method. After coating, a dry film is usually formed by removing the solvent under conditions where the polymerizable liquid crystal contained in the obtained coating film is not polymerized. Examples of the drying method include natural drying, ventilation drying, heat drying, and reduced pressure drying.
  • the alignment film in the present invention has an alignment regulating force for aligning a polymerizable liquid crystal in a desired direction.
  • the alignment film preferably has a solvent resistance that does not dissolve when the polymerizable liquid crystal composition is applied, and has heat resistance in heat treatment for removing the solvent or aligning the polymerizable liquid crystal.
  • Examples of such an alignment film include an alignment film containing an alignment polymer, a photo-alignment film, and a groove alignment film that forms an uneven pattern or a plurality of grooves on the surface and aligns the film.
  • orientation polymer examples include polyamides and gelatins having an amide bond in the molecule, polyimides having an imide bond in the molecule and hydrolyzates thereof, polyamic acid, polyvinyl alcohol, alkyl-modified polyvinyl alcohol, polyacrylamide, polyoxazole, Examples include polyethyleneimine, polystyrene, polyvinylpyrrolidone, polyacrylic acid and polyacrylic acid esters. Among these, polyvinyl alcohol is preferable. Two or more orientation polymers may be used in combination.
  • the alignment film containing the alignment polymer is usually applied to a substrate with a composition in which the alignment polymer is dissolved in a solvent (hereinafter sometimes referred to as an alignment polymer composition), and the solvent is removed or alignment. It is obtained by applying a functional polymer composition to a substrate, removing the solvent, and rubbing (rubbing method).
  • the solvent examples include water, methanol, ethanol, ethylene glycol, isopropyl alcohol, propylene glycol, methyl cellosolve, butyl cellosolve, propylene glycol monomethyl ether and other alcohol solvents, ethyl acetate, butyl acetate, ethylene glycol methyl ether acetate, ⁇ -butyrolactone, Propylene glycol methyl ether acetate, ester solvents such as ethyl lactate, ketone solvents such as acetone, methyl ethyl ketone, cyclopentanone, cyclohexanone, methyl amyl ketone, methyl isobutyl ketone, aliphatic hydrocarbon solvents such as pentane, hexane, heptane, toluene, Aromatic hydrocarbon solvents such as xylene, nitrile solvents such as acetonitrile, solvents such as tetrahydrofur
  • the concentration of the orienting polymer in the orienting polymer composition may be within the range in which the orienting polymer material can be completely dissolved in the solvent, but is preferably 0.1 to 20% in terms of solid content with respect to the solution, and 0 More preferably, it is about 1 to 10%.
  • a commercially available alignment film material may be used as it is as the alignment polymer composition.
  • Examples of commercially available alignment film materials include Sunever (registered trademark, manufactured by Nissan Chemical Industries, Ltd.), Optmer (registered trademark, manufactured by JSR).
  • Examples of methods for applying the alignment polymer composition to the substrate include spin coating, extrusion, gravure coating, die coating, slit coating, bar coating, applicator and other application methods, flexo methods And publicly known methods such as printing methods.
  • a printing method such as a gravure coating method, a die coating method, or a flexo method is usually employed as the coating method.
  • Examples of the method for removing the solvent contained in the oriented polymer composition include a natural drying method, a ventilation drying method, a heat drying method and a vacuum drying method.
  • rubbing can be performed as necessary (rubbing method).
  • a rubbing cloth was wound, and the orientation polymer composition was applied to the rotating rubbing roll and annealed and formed on the substrate surface.
  • membrane of an orientation polymer contact is mentioned.
  • photo-alignment In order to impart alignment regulating force to the alignment film, photo-alignment can be performed as necessary (photo-alignment method).
  • the photo-alignment film is usually obtained by applying a composition containing a polymer or monomer having a photoreactive group and a solvent (hereinafter sometimes referred to as “photo-alignment film-forming composition”) to a substrate, and applying light ( Preferably, it is obtained by irradiation with polarized UV).
  • the photo-alignment film is more preferable in that the direction of the alignment regulating force can be arbitrarily controlled by selecting the polarization direction of the irradiated light.
  • the photoreactive group refers to a group that produces liquid crystal alignment ability when irradiated with light.
  • groups involved in photoreactions that are the origin of liquid crystal alignment ability such as molecular orientation induction or isomerization reaction, dimerization reaction, photocrosslinking reaction or photodecomposition reaction caused by light irradiation.
  • a group involved in the dimerization reaction or the photocrosslinking reaction is preferable in terms of excellent orientation.
  • an unsaturated bond particularly a group having a double bond is preferable, and a carbon-carbon double bond (C ⁇ C bond), a carbon-nitrogen double bond (C ⁇ N bond), or a nitrogen-nitrogen two-bond.
  • a group having at least one selected from the group consisting of a heavy bond (N ⁇ N bond) and a carbon-oxygen double bond (C ⁇ O bond) is particularly preferred.
  • Examples of the photoreactive group having a C ⁇ C bond include a vinyl group, a polyene group, a stilbene group, a stilbazole group, a stilbazolium group, a chalcone group, and a cinnamoyl group.
  • Examples of the photoreactive group having a C ⁇ N bond include groups having a structure such as an aromatic Schiff base and an aromatic hydrazone.
  • Examples of the photoreactive group having an N ⁇ N bond include an azobenzene group, an azonaphthalene group, an aromatic heterocyclic azo group, a bisazo group, a formazan group, and a group having an azoxybenzene structure.
  • Examples of the photoreactive group having a C ⁇ O bond include a benzophenone group, a coumarin group, an anthraquinone group, and a maleimide group. These groups may have a substituent such as an alkyl group, an alkoxy group, an aryl group, an allyloxy group, a cyano group, an alkoxycarbonyl group, a hydroxyl group, a sulfonic acid group, and a halogenated alkyl group.
  • a photoreactive group involved in the photodimerization reaction is preferable, the amount of polarized light irradiation necessary for photoalignment is relatively small, and a photoalignment film excellent in thermal stability and temporal stability can be easily obtained.
  • a cinnamoyl group and a chalcone group are preferred.
  • the polymer having a photoreactive group a polymer having a cinnamoyl group in which the terminal portion of the polymer side chain has a cinnamic acid structure is particularly preferable.
  • a photo-alignment inducing layer can be formed on a substrate by applying the composition for forming a photo-alignment film on the substrate.
  • the solvent contained in the composition include the same solvents as those contained in the orientation polymer composition described above, and can be appropriately selected according to the solubility of the polymer or monomer having a photoreactive group. .
  • the content of the polymer or monomer having a photoreactive group in the composition for forming a photo-alignment film can be appropriately adjusted depending on the type of the polymer or monomer and the thickness of the target photo-alignment film, and is at least 0.2% by mass. The range is preferably 0.3 to 10% by mass. As long as the properties of the photo-alignment film are not significantly impaired, the composition for forming a photo-alignment film may contain a polymer material such as polyvinyl alcohol or polyimide, or a photosensitizer.
  • Examples of the method for applying the composition for forming a photo-alignment film to a substrate include the same methods as those for applying the alignment polymer composition to a substrate.
  • Examples of the method for removing the solvent from the applied composition for forming a photo-alignment film include the same method as the method for removing the solvent from the oriented polymer composition.
  • polarized light In order to irradiate polarized light, it is possible to irradiate polarized light from the substrate side and transmit the polarized light even in the form of irradiating polarized UV directly to the composition from which the solvent is removed from the composition for forming a photo-alignment film applied on the substrate. It is also possible to irradiate.
  • the polarized light is particularly preferably substantially parallel light.
  • the wavelength of the polarized light to be irradiated is preferably in a wavelength region where the photoreactive group of the polymer or monomer having a photoreactive group can absorb light energy. Specifically, UV (ultraviolet light) having a wavelength in the range of 250 to 400 nm is particularly preferable.
  • Examples of the light source used for the polarized light irradiation include xenon lamps, high pressure mercury lamps, ultra high pressure mercury lamps, metal halide lamps, ultraviolet lasers such as KrF and ArF, and the like. High pressure mercury lamps, ultra high pressure mercury lamps and metal halides. A lamp is more preferred. These lamps are preferable because of high emission intensity of ultraviolet rays having a wavelength of 313 nm.
  • a polarizing prism such as a polarizing filter, Glan-Thompson, or Granteller, or a wire grid type polarizer can be used.
  • a plurality of regions (patterns) having different directions of liquid crystal alignment can be formed by performing masking when performing rubbing or polarized light irradiation.
  • the glub alignment film is a film in which liquid crystal alignment is obtained by a concavo-convex pattern or a plurality of grooves on the film surface.
  • H. V. Kennel et al. Reported the fact that when liquid crystal molecules are placed on a substrate having a plurality of linear grooves (grooves) arranged at equal intervals, the liquid crystal molecules are aligned in the direction along the grooves ( Physical Review A24 (5), page 2713, 1981).
  • a method of forming a pattern a method of forming a UV curable resin layer on a plate-shaped master having a groove on the surface, transferring the resin layer to a base film, and then curing, a substrate film having a UV curable resin layer formed thereon being conveyed
  • a method of pressing a roll-shaped master having a plurality of grooves against the surface of the UV curable resin layer to form unevenness and then curing as described in JP-A Nos. 6-34976 and 2011-242743.
  • a method or the like can be used.
  • a method in which a roll-shaped master having a plurality of grooves is pressed against the surface of the UV curable resin layer to form unevenness and then cured is preferable.
  • the roll-shaped master stainless steel (SUS) steel can be used from the viewpoint of durability.
  • a polymer of a monofunctional acrylate, a polymer of a polyfunctional acrylate, or a polymer of a mixture thereof can be used.
  • the monofunctional acrylate is a group selected from the group consisting of an acryloyloxy group (CH2 ⁇ CH—COO—) and a methacryloyloxy group (CH2 ⁇ C (CH3) —COO—) (hereinafter referred to as a (meth) acryloyloxy group).
  • a compound having 1 in the molecule is a group selected from the group consisting of an acryloyloxy group (CH2 ⁇ CH—COO—) and a methacryloyloxy group (CH2 ⁇ C (CH3) —COO—) (hereinafter referred to as a (meth) acryloyloxy group).
  • Monofunctional acrylates having one (meth) acryloyloxy group include alkyl (meth) acrylates having 4 to 16 carbon atoms, ⁇ -carboxyalkyl (meth) acrylates having 2 to 14 carbon atoms, and alkylation having 2 to 14 carbon atoms. Examples include phenyl (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, phenoxypolyethylene glycol (meth) acrylate, and isobornyl (meth) acrylate.
  • the polyfunctional acrylate is usually a compound having 2 to 6 (meth) acryloyloxy groups in the molecule.
  • Bifunctional acrylates having two (meth) acryloyloxy groups include 1,3-butanediol di (meth) acrylate; 1,3-butanediol (meth) acrylate; 1,6-hexanediol di (meth) acrylate Ethylene glycol di (meth) acrylate; diethylene glycol di (meth) acrylate; neopentyl glycol di (meth) acrylate; triethylene glycol di (meth) acrylate; tetraethylene glycol di (meth) acrylate; polyethylene glycol diacrylate; bisphenol A Bis (acryloyloxyethyl) ether; ethoxylated bisphenol A di (meth) acrylate; propoxylated neopentyl glycol di (meth) acrylate; ethoxylated neopentylglyco Such distearate (meth) acrylate and 3-methyl-pentanedi
  • (meth) acrylate means an acrylate or a methacrylate.
  • the caprolactone modification means that a ring-opened product of caprolactone or a ring-opened polymer is introduced between the alcohol-derived site of the (meth) acrylate compound and the (meth) acryloyloxy group.
  • a commercial item can also be used for this polyfunctional acrylate.
  • Such commercial products include A-DOD-N, A-HD-N, A-NOD-N, APG-100, APG-200, APG-400, A-GLY-9E, A-GLY-20E, A- TMM-3, A-TMPT, AD-TMP, ATM-35E, A-TMMT, A-9550, A-DPH, HD-N, NOD-N, NPG, TMPT (manufactured by Shin-Nakamura Chemical Co., Ltd.), “ARONIX "M-220", “M-325”, “M-240", “M-270", “M-309", “M-310", “M-321”, “M-321” 350 ",” M-360 “,” M-305 “,” M-306 “,” M-450 “,” M-451 “,” M-408 “,” M-400 “ ], “M-402", “M-403”, “M-404", “M-” 05 ”,“ M-406 ”(
  • the width of the convex portion is preferably 0.05 to 5 ⁇ m
  • the width of the concave portion is preferably 0.1 to 5 ⁇ m
  • the depth of the uneven step is preferably 2 ⁇ m or less. Is preferably 0.01 to 1 ⁇ m or less. Within this range, it is possible to obtain liquid crystal alignment with little alignment disturbance.
  • the thickness of the alignment film is usually in the range of 10 nm to 10000 nm, preferably in the range of 10 nm to 1000 nm, more preferably 500 nm or less, and further preferably in the range of 10 nm to 500 nm.
  • the liquid crystal alignment of the polymerizable liquid crystal is controlled by the properties of the alignment film and the polymerizable liquid crystal.
  • the alignment film is a material that develops a horizontal alignment regulating force as an alignment regulating force
  • the polymerizable liquid crystal can form a horizontal alignment or a hybrid alignment
  • it is a material that develops a vertical alignment regulating force, it is polymerized.
  • the liquid crystal can form a vertical alignment or a tilted alignment.
  • the alignment regulating force can be arbitrarily adjusted depending on the surface state and rubbing conditions when the alignment film is formed of an alignment polymer, and polarized irradiation conditions when it is formed of a photo-alignment polymer. It is possible to adjust arbitrarily by such as.
  • the liquid crystal alignment can be controlled by selecting physical properties such as surface tension and liquid crystallinity of the polymerizable liquid crystal.
  • Polymerization of the polymerizable liquid crystal can be performed by a known method for polymerizing a compound having a polymerizable functional group. Specific examples include thermal polymerization and photopolymerization, and photopolymerization is preferred from the viewpoint of ease of polymerization.
  • a polymerizable liquid crystal composition containing a photopolymerization initiator is applied and dried, and after the polymerizable liquid crystal in the dried film obtained is brought into a liquid crystal phase, the liquid crystal state It is preferable to carry out photopolymerization while keeping
  • Photopolymerization is usually carried out by irradiating the dry film with light.
  • the light to be irradiated is appropriately selected according to the type of photopolymerization initiator contained in the dry film, the type of polymerizable liquid crystal (particularly, the type of photopolymerizable group possessed by the polymerizable liquid crystal) and the amount thereof. Examples include light selected from the group consisting of visible light, ultraviolet light, and laser light, and active electron beams. Among them, ultraviolet light is preferable in that it is easy to control the progress of the polymerization reaction and that a photopolymerization apparatus widely used in this field can be used, so that photopolymerization can be performed by ultraviolet light.
  • the polymerization temperature can be controlled by irradiating light while cooling the dry film by an appropriate cooling means.
  • a cooling means By adopting such a cooling means, if a polymerizable liquid crystal is polymerized at a lower temperature, a retardation layer can be appropriately formed even if a substrate having a relatively low heat resistance is used.
  • a patterned retardation layer can be obtained by masking or developing.
  • the polymerizable liquid crystal composition preferably contains one or more leveling agents.
  • the leveling agent has a function of adjusting the fluidity of the polymerizable liquid crystal composition and flattening a coating film obtained by applying the polymerizable liquid crystal composition. Specifically, a surfactant is mentioned. It is done.
  • the leveling agent is preferably at least one selected from the group consisting of a leveling agent based on a polyacrylate compound, a leveling agent based on a fluorine atom-containing compound, and a leveling agent based on a silicone compound.
  • a leveling agent mainly composed of a polyacrylate compound and a leveling agent mainly composed of a fluorine atom-containing compound are preferred.
  • leveling agents mainly composed of polyacrylate compounds “BYK-350”, “BYK-352”, “BYK-353”, “BYK-354”, “BYK-355”, “BYK-358N”, “ BYK-361N ”,“ BYK-380 ”,“ BYK-381 ”and“ BYK-392 ”[BYK Chemie].
  • Leveling agents mainly composed of a fluorine atom-containing compound include “Megafac (registered trademark) R-08”, “R-30”, “R-90”, “F-410”, and “F”. -411 ",” F-443 “,” F-445 “,” F-470 “,” F-471 “,” F-477 “,” F-479 “,” F- 482 “and” F-483 "[DIC Corporation];” Surflon (registered trademark) S-382 “,” S-382 “,” S-383 “,” S-393 “,” “SC-101”, “SC-105”, “KH-40” and “SA-100” [AGC Seimi Chemical Co., Ltd.]; “E1830”, “E5844” [Daikin Fine Chemical Laboratory Co., Ltd.]; F-top EF301, F-top EF303, F-top E 351 “and” F-top EF352 "[Mitsubishi Materials electronic Kasei Co., Ltd.] and the like.
  • the content thereof is preferably 0.01 parts by mass or more and 5 parts by mass or less, and 0.05 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal. The following is more preferable, and 0.05 parts by mass or more and 3 parts by mass or less is more preferable.
  • the content of the leveling agent is within the above range, it is easy to horizontally align the polymerizable liquid crystal, and the obtained polarizing layer tends to be smoother.
  • the content of the leveling agent with respect to the polymerizable liquid crystal is within the above range, unevenness tends not to occur in the obtained retardation layer.
  • the polymerizable liquid crystal composition preferably contains one or more polymerization initiators.
  • the polymerization initiator is a compound capable of initiating a polymerization reaction of the polymerizable liquid crystal, and a photopolymerization initiator is preferable in that the polymerization reaction can be initiated under a lower temperature condition.
  • Specific examples include photopolymerization initiators that can generate active radicals or acids by the action of light. Among these, photopolymerization initiators that generate radicals by the action of light are preferred.
  • polymerization initiator examples include benzoin compounds, benzophenone compounds, alkylphenone compounds, acylphosphine oxide compounds, triazine compounds, iodonium salts, and sulfonium salts.
  • benzoin compound examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, and benzoin isobutyl ether.
  • benzophenone compounds include benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4′-methyldiphenyl sulfide, 3,3 ′, 4,4′-tetra (tert-butylperoxycarbonyl) benzophenone And 2,4,6-trimethylbenzophenone.
  • alkylphenone compound examples include diethoxyacetophenone, 2-methyl-2-morpholino-1- (4-methylthiophenyl) propan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) butane.
  • -1-one 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1,2-diphenyl-2,2-dimethoxyethane-1-one, 2-hydroxy-2-methyl-1- [ 4- (2-hydroxyethoxy) phenyl] propan-1-one, 1-hydroxycyclohexyl phenyl ketone and 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] propan-1-one
  • An oligomer is mentioned.
  • acylphosphine oxide compound examples include 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide.
  • triazine compounds examples include 2,4-bis (trichloromethyl) -6- (4-methoxyphenyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (4-methoxynaphthyl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- (4-methoxystyryl) -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2 -(5-methylfuran-2-yl) ethenyl] -1,3,5-triazine, 2,4-bis (trichloromethyl) -6- [2- (furan-2-yl) ethenyl] -1,3 , 5-triazine, 2,4-bis (trichloromethyl) -6- [2- (4-diethylamino-2-methylphenyl) ethenyl] -1,3,5-triazine and 2,
  • a commercially available polymerization initiator can be used.
  • Commercially available polymerization initiators include “Irgacure (registered trademark) 907”, “Irgacure (registered trademark) 184”, “Irgacure (registered trademark) 651”, “Irgacure (registered trademark) 819”, “Irgacure ( (Registered trademark) 250 ",” Irgacure (registered trademark) 369 "(Ciba Japan Co., Ltd.);” Sequor (registered trademark) BZ "," Sequor (registered trademark) Z “,” Sequor (registered trademark) BEE “( “Kayacure (registered trademark) BP100” (Nippon Kayaku Co., Ltd.); “Kayacure (registered trademark) UVI-6992” (manufactured by Dow); “Adekaoptomer SP-152 “Adekaoptomer SP-170” (ADEKA); “TAZ-
  • the content can be appropriately adjusted according to the type and amount of the polymerizable liquid crystal contained in the composition, but with respect to 100 parts by mass of the polymerizable liquid crystal. 0.1 to 30 parts by mass is preferable, 0.5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is even more preferable.
  • the content of the polymerizable initiator is within this range, the polymerization can be performed without disturbing the alignment of the polymerizable liquid crystal.
  • the content of the polymerization initiator is small, so that coloring caused by the decomposition product of the polymerization initiator is suppressed, and a * is in the range of the formula (6), and b * is in the range of the formula (7). Is easy and preferable.
  • the composition may further contain a photosensitizer.
  • the photosensitizer include xanthone compounds such as xanthone and thioxanthone (for example, 2,4-diethylthioxanthone and 2-isopropylthioxanthone); anthracene compounds such as anthracene and alkoxy group-containing anthracene (for example, dibutoxyanthracene); And phenothiazine and rubrene.
  • the polymerizable liquid crystal composition contains a photopolymerization initiator and a photosensitizer
  • the polymerization reaction of the polymerizable liquid crystal contained in the composition can be further accelerated.
  • the amount of the photosensitizer used can be appropriately adjusted according to the type and amount of the photopolymerization initiator and the polymerizable liquid crystal, and is preferably 0.1 to 30 parts by mass with respect to 100 parts by mass of the polymerizable liquid crystal. 0.5 to 10 parts by mass is more preferable, and 0.5 to 8 parts by mass is even more preferable.
  • the polymerizable liquid crystal composition may contain an appropriate amount of a polymerization inhibitor, which makes it easy to control the degree of progress of the polymerization reaction of the polymerizable liquid crystal. Become.
  • Polymerization inhibitors include radical scavengers such as hydroquinone, alkoxy group-containing hydroquinone, alkoxy group-containing catechol (eg, butyl catechol), pyrogallol, 2,2,6,6-tetramethyl-1-piperidinyloxy radical, etc. Thiophenols; ⁇ -naphthylamines and ⁇ -naphthols.
  • the content can be appropriately adjusted according to the type and amount of the polymerizable liquid crystal, the amount of the photosensitizer used, and the like. Is preferably 0.1 to 30 parts by mass, more preferably 0.5 to 10 parts by mass, and still more preferably 0.5 to 8 parts by mass. When the content of the polymerization inhibitor is within this range, the polymerization can be performed without disturbing the alignment of the polymerizable liquid crystal.
  • the order of forming the first retardation layer, the second retardation layer, and the third retardation layer is arbitrary.
  • a first retardation layer is formed on a substrate with or without an alignment film, and a second retardation layer is formed on or without the alignment film on the first retardation layer. May be formed.
  • the retardation film includes a first retardation layer on the substrate with or without an alignment film, and the alignment film is disposed on the first retardation layer. Or without an alignment film, the second retardation layer is provided.
  • a protective layer may be provided between the first retardation layer and the second retardation layer.
  • a second retardation layer is formed on the substrate with or without an alignment film, and the first retardation layer is formed on or without the alignment film on the second retardation layer. May be formed.
  • the retardation film includes a second retardation layer on the base material via the alignment film or without the alignment film, and the alignment film is provided on the second retardation layer.
  • the first retardation layer is provided through or without an alignment film.
  • a protective layer may be provided between the first retardation layer and the second retardation layer.
  • a first retardation layer is formed on one surface of the substrate with or without an alignment film, and a second phase is formed on or without the alignment film on the first retardation layer.
  • a retardation layer may be formed.
  • the retardation film includes a first retardation layer on one surface of the base material via the alignment film or without the alignment film, and the alignment film on the first retardation layer. It becomes the structure provided with the 2nd phase difference layer through this, or without going through an alignment film.
  • a second retardation layer is formed on one surface of the substrate with or without an alignment film, and the first retardation layer is formed on or without the alignment film on the second retardation layer.
  • a retardation layer may be formed, and the second retardation layer may be formed on the other surface of the base material with or without an alignment film.
  • the retardation film includes a second retardation layer on one surface of the base material via the alignment film or without the alignment film, and the alignment film is aligned on the second retardation layer.
  • a first retardation layer is provided via a film or without an alignment film, and the second retardation is provided on the other surface of the substrate via an alignment film or without an alignment film. It becomes the structure provided with the layer.
  • first retardation layer and the second retardation layer produced may be transferred and formed on the substrate to be transferred using an adhesive or an adhesive, and the adhesive is applied to the polarizing plate via an adhesive or an adhesive. It can be said that it is a preferable form in that a very thin and high-performance circularly polarizing plate can be produced by forming the first retardation layer and further forming the second retardation layer via an adhesive or an adhesive.
  • the thickness of the layer including at least the first retardation layer and the second retardation layer in the present invention is preferably 60 ⁇ m or less, more preferably 40 ⁇ m or less, More preferably, it is 20 ⁇ m or less.
  • the protective layer is usually an acrylic oligomer or polymer comprising polyfunctional acrylate (methacrylate), urethane acrylate, polyester acrylate, epoxy acrylate, etc., polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl pyrrolidone, starches, methylcellulose, carboxy It is preferably formed from a protective layer-forming composition containing a water-soluble polymer such as methylcellulose or sodium alginate and a solvent.
  • a water-soluble polymer such as methylcellulose or sodium alginate and a solvent.
  • Examples of the solvent contained in the protective layer-forming composition include the same solvents as described above, and among them, at least one solvent selected from the group consisting of water, alcohol solvents and ether solvents forms the protective layer. This is preferable in that the layer is not dissolved.
  • the alcohol solvent include methanol, ethanol, butanol, ethylene glycol, isopropyl alcohol, propylene glycol, ethylene glycol methyl ether, ethylene glycol butyl ether, and propylene glycol monomethyl ether.
  • Examples of the ether solvent include ethylene glycol monomethyl ether acetate and propylene glycol monomethyl ether acetate. Of these, ethanol, isopropyl alcohol, propylene glycol monomethyl ether and propylene glycol monomethyl ether acetate are preferable.
  • the thickness of the protective layer is usually 20 ⁇ m or less.
  • the thickness of the protective layer is preferably 0.5 ⁇ m or more and 10 ⁇ m or less, and more preferably 1 ⁇ m or more and 5 ⁇ m or less.
  • the thickness of the protective layer can be usually determined by measurement using an interference film thickness meter, a laser microscope or a stylus thickness meter.
  • this retardation film continuously is demonstrated.
  • a suitable method for continuously producing the retardation film as described above there is a method using a Roll to Roll format.
  • a method for producing a retardation layer formed by polymerizing a polymerizable liquid crystal will be described.
  • a retardation layer made of a stretched film is used instead of the retardation layer formed by polymerizing a polymerizable liquid crystal.
  • “Coating a polymerizable liquid crystal composition” in the following production process may be read as “Laminating a stretched film”.
  • the manufacturing method of a typical structure is illustrated below, the other structure should just implement according to the following manufacturing method.
  • a step of preparing a roll in which the base material is wound around the core (2) a step of continuously feeding the base material from the roll; (3) a step of continuously forming an alignment film on the substrate; (4) A step of applying a polymerizable liquid crystal composition on the alignment film and continuously forming a first retardation layer; (5) A step of continuously forming a protective layer on the first retardation layer obtained in (4), (6) A step of continuously forming an alignment film on the protective layer obtained in (5), (7) A step of applying a polymerizable liquid crystal composition on the alignment film obtained in (6) to continuously form a second retardation layer, (8) The method of winding the retardation film obtained continuously on the 2nd core and performing the process of obtaining a 2nd roll in order is mentioned.
  • Steps (3), (5) and (6) may be omitted as necessary.
  • “on the alignment film” in step (4) is “on the substrate”.
  • the “protective layer obtained in the step (5)” in the step (6) is “the first retardation layer”, and the “alignment film obtained in the step (6)” in the step (7) is “ The term “first retardation layer” or “protective layer obtained in the above (5)” is read.
  • a protective film may be bonded during film conveyance in each step.
  • Forming step, (7a) A step of applying a polymerizable liquid crystal composition on the alignment film obtained in (6a) to continuously form a first retardation layer, (8a) The method of winding up the retardation film obtained continuously on the 2nd core and performing the process of obtaining a 2nd roll in order is also mentioned.
  • Steps (3a), (5a) and (6a) may be omitted as necessary.
  • “on the alignment film” in step (4a) is “on the substrate”.
  • the “protective layer obtained in (5a)” in the step (6a) is “the second retardation layer”
  • the “alignment film obtained in (6a)” in the step (7a) is “ The term “second retardation layer” or “protective layer obtained in (5a)” is read.
  • a protective film may be bonded during film conveyance in each step.
  • Steps (3b) and (5b) may be omitted as necessary.
  • “on the alignment film” in step (4b) is replaced with “on the substrate” in step (6b).
  • “On the alignment film obtained in (5b)” is read as "the substrate surface opposite to the first retardation layer obtained in (4b)".
  • a protective film may be bonded during film conveyance in each step.
  • (1c) a step of preparing a roll in which the transparent substrate is wound around the core; (2c) a step of continuously feeding the transparent substrate from the roll; (3c) a step of continuously forming an alignment film on the transparent substrate; (4c) applying a polymerizable liquid crystal composition on the alignment film and continuously forming a second retardation layer; (5c) A step of continuously forming an alignment film on the substrate surface opposite to the second retardation layer obtained in (4c), (6c) A step of applying a polymerizable liquid crystal composition on the alignment film obtained in (5c) to continuously form a first retardation layer, (7c) The method of winding up the retardation film obtained continuously on the 2nd core and performing the process of obtaining a 2nd roll in order is also mentioned.
  • Steps (3c) and (5c) may be omitted as necessary.
  • “on the alignment film” in step (4c) is replaced with “on the substrate” in step (6c).
  • “On the alignment film obtained in (5c)” is read as “the substrate surface opposite to the second retardation layer obtained in (4c)”.
  • a protective film may be bonded during film conveyance in each step.
  • Forming step (7e) A step of applying a polymerizable liquid crystal composition on the alignment film obtained in (6e) to continuously form a second retardation layer, (8e) A step of continuously forming an alignment film on the substrate surface opposite to the first retardation layer obtained in (4e), (9e) A step of applying a polymerizable liquid crystal composition on the alignment film obtained in (8e) and continuously forming a third retardation layer, (10e)
  • the method of winding the retardation film obtained continuously on the 2nd core and performing the process of obtaining a 2nd roll in order is also mentioned.
  • Steps (3e), (5e) and (8e) may be omitted as necessary.
  • step (4e) On the alignment film” in step (4e) is “on the substrate”, and “the protective layer obtained in (5e)” in step (6e) is “the first layer obtained in (4e)”.
  • the protective layer obtained in (5e)” in step (6e) is “the first layer obtained in (4e)”.
  • the protective layer obtained in (5e)” in step (6e) is “the first layer obtained in (4e)”.
  • the protective film obtained in (8e)” in the step (9e) is “the substrate surface opposite to the first retardation layer obtained in (4e)” To "”.
  • a protective film may be bonded during film conveyance in each step.
  • a protective film may be bonded during film conveyance in each step.
  • An adhesive may be used for bonding the first retardation layer, the second retardation layer, the polarizing plate, and the like.
  • the adhesive include an adhesive, an aqueous adhesive, and an active energy ray curable adhesive.
  • the pressure-sensitive adhesive is obtained by radical polymerization of an acrylic monomer mixture containing (meth) acrylic acid ester as a main component and a small amount of a (meth) acrylic monomer having a functional group in the presence of a polymerization initiator.
  • An acrylic pressure-sensitive adhesive containing an acrylic resin having a glass transition temperature Tg of 0 ° C. or less and a crosslinking agent is preferably used.
  • alkyl acrylates are preferable, and n-butyl acrylate, 2-methoxyethyl acrylate and ethoxymethyl acrylate are particularly preferable.
  • the (meth) acrylic monomer having a functional group that is another monomer component constituting the acrylic resin has one (meth) acryloyl group that is an olefinic double bond in the molecule, a hydroxyl group, a carboxyl group, A compound having a polar functional group such as an amide group, an amino group, or an epoxy group in the same molecule.
  • an acrylic monomer in which the acryloyl group is an olefinic double bond is preferable.
  • acrylic monomers having such a functional group 2-hydroxyethyl acrylate is preferable as a hydroxyl group, and acrylic acid is preferable as a carboxyl group.
  • the acrylic monomer mixture used as the raw material for the acrylic resin further contains a monomer other than the above (meth) acrylic acid ester and the (meth) acrylic monomer having a functional group (hereinafter sometimes referred to as “third monomer”). May be.
  • a monomer having one olefinic double bond and at least one aromatic ring in the molecule include a monomer having one olefinic double bond and at least one aromatic ring in the molecule, a styrene monomer, a (meth) acrylic acid ester having an alicyclic structure in the molecule, and a vinyl monomer. And monomers having a plurality of (meth) acryloyl groups in the molecule.
  • a monomer having one olefinic double bond and at least one aromatic ring in the molecule is one of the preferred ones.
  • 2-phenoxyethyl (meth) acrylate, 2- (2-phenoxyethoxy) ethyl (meth) acrylate, (meth) acrylate of ethylene oxide-modified nonylphenol, 2- (o-phenylphenoxy) ethyl (meth) acrylate Preferably.
  • 2-phenoxyethyl acrylate is more preferable.
  • the monomer (third monomer) other than the (meth) acrylic acid ester and the (meth) acrylic monomer having a functional group may be used alone, or a plurality of different types may be used in combination.
  • the structural unit derived from these third monomers can usually be present in the range of 0 to 20% by weight, preferably 0 to 10% by weight, based on the entire acrylic resin.
  • the acrylic resin constituting the acrylic adhesive preferably has a weight average molecular weight Mw ⁇ in terms of standard polystyrene as measured by gel permeation chromatography (GPC) in the range of 1,000,000 to 2,000,000.
  • GPC gel permeation chromatography
  • the weight average molecular weight Mw is 1 million or more, the adhesiveness under high temperature and high humidity is improved, and the possibility of floating or peeling between the glass substrate constituting the liquid crystal cell and the pressure-sensitive adhesive layer is small. This is preferable because the reworkability tends to be improved.
  • the weight average molecular weight Mw ⁇ of the acrylic resin is 2 million or less, even if the size of the polarizing plate changes, the pressure-sensitive adhesive layer fluctuates following the change in size. This is preferable because unevenness tends to be suppressed.
  • the molecular weight distribution represented by the ratio Mw / Mn between the weight average molecular weight Mw and the number average molecular weight Mn is preferably in the range of 3-7.
  • the acrylic resin contained in the acrylic pressure-sensitive adhesive can be composed only of a relatively high molecular weight as described above, but can also be composed of a mixture with a different acrylic resin.
  • acrylic resins that can be used as a mixture include a structural unit derived from the (meth) acrylic acid ester represented by the above formula (I) as a main component, and a weight average molecular weight of 50,000 to 300,000. Some are in range.
  • the acrylic resin constituting the acrylic pressure-sensitive adhesive can be produced by various known methods such as a solution polymerization method, an emulsion polymerization method, a bulk polymerization method, and a suspension polymerization method.
  • a polymerization initiator is usually used.
  • the polymerization initiator include azo compounds, organic peroxides, inorganic peroxides, redox initiators using a combination of peroxide and a reducing agent. Of these, 2,2'-azobisisobutyronitrile, benzoyl peroxide, ammonium persulfate and the like are preferably used.
  • the polymerization initiator is usually used at a ratio of about 0.001 to 5 parts by mass with respect to 100 parts by mass of the total amount of monomers as raw materials for the acrylic resin.
  • the acrylic resin thus obtained is mixed with a crosslinking agent to form an adhesive.
  • the crosslinking agent is a compound having at least two functional groups in the molecule that can undergo a crosslinking reaction with a structural unit derived from a monomer having a polar functional group in an acrylic resin.
  • isocyanate compounds are preferably used.
  • Isocyanate compounds may be used in the form of compounds having at least two isocyanato groups (—NCO) in the molecule, adducts obtained by reacting them with polyols, dimers, trimers thereof, and the like. it can.
  • Specific examples include tolylene diisocyanate, adducts obtained by reacting tolylene diisocyanate with polyol, tolylene diisocyanate dimer, tolylene diisocyanate trimer, hexamethylene diisocyanate, hexamethylene diisocyanate with polyol.
  • the crosslinking agent is usually blended at a ratio of about 0.01 to 5 parts by mass with respect to 100 parts by mass of the acrylic resin, especially 0.1 to 5 parts by mass, more preferably 0.2 to 3 parts by mass. It is preferable to mix. If the blending amount of the crosslinking agent with respect to 100 parts by mass of the acrylic resin is set to 0.01 parts by mass or more, particularly 0.1 parts by mass or more, the durability of the pressure-sensitive adhesive layer tends to be improved.
  • conductive fine particles such as metal fine particles, metal oxide fine particles, or fine particles coated with metal, ion conductive compositions, ionic compounds having organic cations or anions, silane Examples include coupling agents, crosslinking catalysts, weathering stabilizers, tackifiers, plasticizers, softeners, dyes, pigments, inorganic fillers, resins other than the above acrylic resins, and light diffusing fine particles such as organic beads. It is also useful to blend a UV curable compound with the pressure-sensitive adhesive and form a pressure-sensitive adhesive layer, and then cure it by irradiating with ultraviolet rays to form a harder pressure-sensitive adhesive layer.
  • Each of these components constituting the pressure-sensitive adhesive is usually used as a pressure-sensitive adhesive composition in a state dissolved in a suitable solvent such as ethyl acetate.
  • An adhesive layer is obtained by apply
  • a release film is used as a substrate, the pressure-sensitive adhesive composition is applied to form the pressure-sensitive adhesive layer, and the resulting pressure-sensitive adhesive layer is formed by the present optical system.
  • a method of transferring to the surface of the film, a method of forming the pressure-sensitive adhesive layer by directly applying the pressure-sensitive adhesive composition to the surface of the retardation film, and the like are employed.
  • another release film can be further bonded onto the adhesive layer to form a double-sided separator type adhesive sheet.
  • Such a double-sided separator-type pressure-sensitive adhesive sheet is peeled off from one side of the release film at a necessary time and bonded onto the retardation film.
  • a commercial item of a double-sided separator type pressure-sensitive adhesive sheet for example, there are a non-carrier pressure-sensitive adhesive film and a non-carrier pressure-sensitive adhesive sheet sold by Lintec Corporation and Nitto Denko Corporation.
  • the release film is made of, for example, a film made of various resins such as polyethylene terephthalate, polybutylene terephthalate, polycarbonate, polyarylate, polypropylene, or polyethylene, and a silicone treatment is performed on the bonding surface with the adhesive layer of the substrate. Such a mold release treatment as described above can be performed. Such a release film is also called a separate film or a separator.
  • the thickness of the pressure-sensitive adhesive layer is preferably 5 to 50 ⁇ m, and more preferably 5 to 30 ⁇ m.
  • the thickness of the pressure-sensitive adhesive layer 30 ⁇ m or less By making the thickness of the pressure-sensitive adhesive layer 30 ⁇ m or less, the adhesiveness under high temperature and high humidity is improved, and the possibility of occurrence of floating or peeling between the display and the pressure-sensitive adhesive layer tends to be reduced. Reworkability also tends to improve.
  • the thickness by setting the thickness to 5 ⁇ m or more, even if the size of the polarizing plate bonded thereto changes, the pressure-sensitive adhesive layer fluctuates following the dimensional change. improves.
  • aqueous adhesive for example, a polyvinyl alcohol resin or a urethane resin is used as a main component, and in order to improve adhesiveness, a composition containing a crosslinking agent or a curable compound such as an isocyanate compound or an epoxy compound, and It is common to do.
  • a crosslinking agent or a curable compound such as an isocyanate compound or an epoxy compound
  • polyvinyl alcohol resin is used as the main component of the water-based adhesive, in addition to partially saponified polyvinyl alcohol and fully saponified polyvinyl alcohol, carboxyl group-modified polyvinyl alcohol, acetoacetyl group-modified polyvinyl alcohol, methylol group-modified polyvinyl alcohol, and amino
  • a modified polyvinyl alcohol-based resin such as group-modified polyvinyl alcohol may be used.
  • Such an aqueous solution of polyvinyl alcohol resin is used as an aqueous adhesive, and the concentration of the polyvinyl alcohol resin in the aqueous adhesive is usually 1 to 10 parts by mass, preferably 100 parts by mass of water. 1 to 5 parts by mass.
  • the water-based adhesive comprising an aqueous solution of a polyvinyl alcohol-based resin is cured such as a polyhydric aldehyde, a water-soluble epoxy resin, a melamine-based compound, a zirconia-based compound, and a zinc compound in order to improve adhesiveness.
  • An active compound can be blended.
  • water-soluble epoxy resins include water-soluble products obtained by reacting epichlorohydrin with polyamide polyamines obtained by reacting polyalkylene polyamines such as diethylenetriamine and triethylenetetramine with dicarboxylic acids such as adipic acid. There is a characteristic polyamide epoxy resin.
  • Examples of such commercially available polyamide epoxy resins include “Smiles Resin 650” and “Smiles Resin 675” sold by Sumika Chemtex Co., Ltd., and “WS-525” sold by Japan PMC Co., Ltd. There is.
  • the amount added is usually about 1 to 100 parts by weight, preferably 1 to 50 parts by weight, with respect to 100 parts by weight of the polyvinyl alcohol resin.
  • polyester ionomer type urethane resin when used as the main component of the aqueous adhesive, it is effective to use a polyester ionomer type urethane resin as the main component of the aqueous adhesive.
  • the polyester-based ionomer type urethane resin here is a urethane resin having a polyester skeleton, into which a small amount of an ionic component (hydrophilic component) is introduced.
  • an ionomer type urethane resin is directly emulsified in water without using an emulsifier to form an emulsion, so that it can be used as an aqueous adhesive.
  • polyester ionomer type urethane resin When using a polyester ionomer type urethane resin, it is effective to blend a water-soluble epoxy compound as a crosslinking agent.
  • a polyester ionomer type urethane resin as an adhesive for a polarizing plate is described in, for example, JP-A Nos. 2005-70140 and 2005-208456.
  • the components constituting the water-based adhesive are usually used in a state dissolved in water.
  • An adhesive layer is obtained by applying a water-based adhesive on a suitable substrate and drying it.
  • the component that does not dissolve in water may be dispersed in the system.
  • Examples of the method for forming the adhesive layer on the retardation film include a method of directly applying the adhesive composition on the surface of the retardation film to form an adhesive layer.
  • the thickness of the adhesive layer is usually about 0.001 to 5 ⁇ m, preferably 0.01 ⁇ m or more, preferably 4 ⁇ m or less, more preferably 3 ⁇ m or less. If the adhesive layer is too thick, the appearance of the polarizing plate tends to be poor.
  • the obtained aqueous adhesive is injected between the polarizing plate and the retardation film, and then heated to evaporate the water while allowing the thermal crosslinking reaction to proceed, thereby providing sufficient adhesiveness to both. Can do.
  • the active energy ray-curable adhesive is not particularly limited as long as it is cured by irradiation with active energy rays and can bond the polarizing plate and the retardation film with a strength sufficient for practical use.
  • a cationic polymerizable active energy ray curable adhesive containing an epoxy compound and a cationic polymerization initiator
  • a radical polymerizable active energy ray curable adhesive containing an acrylic curing component and a radical polymerization initiator
  • an epoxy compound An active energy ray-curable adhesive containing both a cationic polymerizable curing component such as a radical polymerization curing component such as an acrylic compound, and a cationic polymerization initiator and a radical polymerization initiator incorporated therein, And an electron beam curable adhesive that is cured by irradiating the active energy ray curable adhesive containing no initiator with an electron beam.
  • it is a radical polymerizable active energy ray-curable adhesive containing an acrylic curing component and a radical polymerization initiator.
  • a cationic polymerizable active energy ray-curable adhesive containing an epoxy compound and a cationic polymerization initiator that can be used substantially in a solvent-free manner is preferable.
  • the active energy ray-curable adhesive blended with the polymerization initiator can eliminate the drying equipment usually required in the step of bonding the polarizer and the transparent protective film in the polarizing plate production equipment. In addition, by irradiating with an appropriate active energy dose, the curing rate can be accelerated and the production rate can be improved.
  • Epoxy compounds used for such adhesives include, for example, aromatic compounds having a hydroxyl group or glycidyl etherified compounds of chain compounds, glycidyl aminated compounds having amino groups, and chain compounds having a CC double bond.
  • These epoxy compounds may be used alone or in combination with a plurality of different types. Among these, alicyclic epoxy compounds are preferably used because they are excellent in cationic polymerizability.
  • a glycidyl etherified product of an aromatic compound or a chain compound having a hydroxyl group can be produced, for example, by a method in which epichlorohydrin is addition-condensed to the hydroxyl group of these aromatic compound or chain compound under basic conditions.
  • Such glycidyl etherified products of aromatic compounds or chain compounds having a hydroxyl group include diglycidyl ethers of bisphenols, polyaromatic epoxy resins, alkylene glycols or diglycidyl ethers of polyalkylene glycols, and the like. .
  • diglycidyl ethers of bisphenols include, for example, glycidyl etherified products of bisphenol A and oligomers thereof, glycidyl etherified products of bisphenol F and oligomers thereof, 3,3 ′, 5,5′-tetramethyl-4,4′- Examples include glycidyl etherified products of biphenol and oligomers thereof.
  • polyaromatic epoxy resins examples include glycidyl etherified products of phenol novolac resins, glycidyl etherified products of cresol novolac resins, glycidyl etherified products of phenol aralkyl resins, glycidyl etherified products of naphthol aralkyl resins, and glycidyl ethers of phenol dicyclopentadiene resins. And the like. Further, glycidyl etherified products of trisphenols and oligomers thereof belong to the polyaromatic epoxy resin.
  • Examples of the diglycidyl ether of alkylene glycol or polyalkylene glycol include glycidyl etherification product of ethylene glycol, glycidyl etherification product of diethylene glycol, glycidyl etherification product of 1,4-butanediol, glycidyl etherification product of 1,6-hexanediol, etc. Can be mentioned.
  • a glycidyl aminated product of a compound having an amino group can be produced, for example, by a method in which epichlorohydrin is addition-condensed to the amino group of the compound under basic conditions.
  • the compound having an amino group may have a hydroxyl group at the same time.
  • Such glycidyl amination products of compounds having an amino group include glycidyl amination products of 1,3-phenylenediamine and oligomers thereof, glycidyl amination products of 1,4-phenylenediamine and oligomers thereof, 3-aminophenol Glycidyl amination and glycidyl etherification product and oligomers thereof, glycidyl amination and glycidyl etherification product of 4-aminophenol and oligomers thereof, and the like are included.
  • An epoxidized product of a chain compound having a C—C double bond can be produced by a method of epoxidizing a C—C double bond of the chain compound with a peroxide under basic conditions.
  • the chain compound having a C—C double bond include butadiene, polybutadiene, isoprene, pentadiene, hexadiene and the like.
  • terpenes having a double bond can also be used as an epoxidation raw material, and examples of acyclic monoterpenes include linalool.
  • the peroxide used for epoxidation can be, for example, hydrogen peroxide, peracetic acid, tert-butyl hydroperoxide, and the like.
  • An alicyclic epoxy compound in which a glycidyloxy group or an epoxyethyl group is bonded to a saturated carbocycle directly or via an alkylene is an aromatic ring of an aromatic compound having a hydroxyl group, typically a bisphenol.
  • examples thereof include a glycidyl etherified product of a hydrogenated polyhydroxy compound obtained by hydrogenation, a glycidyl etherified product of a cycloalkane compound having a hydroxyl group, and an epoxidized product of a cycloalkane compound having a vinyl group.
  • the epoxy compounds described above can be easily obtained as commercial products.
  • “jER” series sold by Mitsubishi Chemical Corporation and “Epicron” sold by DIC Corporation respectively, under the trade names.
  • Dow Epoxy sold by Dow Chemical Company
  • Tepic registered trademark
  • an alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbocycle has a basic structure in which a CC double bond of a non-aromatic cyclic compound having a CC double bond in the ring is basic. It can be produced by a method of epoxidation with a peroxide under conditions.
  • the non-aromatic cyclic compound having a C—C double bond in the ring include, for example, a compound having a cyclopentene ring, a compound having a cyclohexene ring, a cyclopentene ring or a cyclohexene ring and at least two carbon atoms bonded thereto.
  • Examples include polycyclic compounds forming an additional ring.
  • the non-aromatic cyclic compound having a C—C double bond in the ring may have another CC double bond outside the ring.
  • Examples of non-aromatic cyclic compounds having a C—C double bond in the ring include cyclohexene, 4-vinylcyclohexene, limonene and ⁇ -pinene, which are monocyclic monoterpenes.
  • An alicyclic epoxy compound in which an epoxy group is directly bonded to a saturated carbocyclic ring has an alicyclic structure having an epoxy group directly bonded to the ring as described above in the molecule through an appropriate linking group. It may be a compound in which at least two are formed. Examples of the linking group herein include an ester bond, an ether bond, and an alkylene bond.
  • alicyclic epoxy compounds in which an epoxy group is directly bonded to a saturated carbocyclic ring include the following. 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate, 1,2-epoxy-4-vinylcyclohexane, 1,2-epoxy-4-epoxyethylcyclohexane, 1,2-epoxy-1-methyl-4- (1-methylepoxyethyl) cyclohexane, 3,4-epoxycyclohexylmethyl (meth) acrylate, An adduct of 2,2-bis (hydroxymethyl) -1-butanol and 4-epoxyethyl-1,2-epoxycyclohexane, Ethylene bis (3,4-epoxycyclohexanecarboxylate), Oxydiethylene bis (3,4-epoxycyclohexanecarboxylate), 1,4-cyclohexanedimethyl bis (3,4-
  • the alicyclic epoxy compound in which the epoxy group is directly bonded to the saturated carbocyclic ring described above can also be easily obtained as a commercial product.
  • each product is sold by Daicel Corporation under the trade name.
  • Examples include the “Celoxide” series and “Cyclomer” and the “Syracure IV UVR” series sold by Dow Chemical.
  • the curable adhesive containing the epoxy compound may further contain an active energy ray-curable compound other than the epoxy compound.
  • the active energy ray-curable compound other than the epoxy compound include an oxetane compound and an acrylic compound. Especially, since there exists a possibility that a cure rate can be accelerated
  • the oxetane compound is a compound having a 4-membered ring ether in the molecule, and examples thereof include the following. 1,4-bis [(3-ethyloxetane-3-yl) methoxymethyl] benzene, 3-ethyl-3- (2-ethylhexyloxymethyl) oxetane, Bis (3-ethyl-3-oxetanylmethyl) ether, 3-ethyl-3- (phenoxymethyl) oxetane, 3-ethyl-3- (cyclohexyloxymethyl) oxetane, Phenol novolac oxetane, 1,3-bis [(3-ethyloxetane-3-yl) methoxy] benzene and the like.
  • Oxetane compounds can also be easily obtained as commercial products.
  • “ETERNACOLL (registered trademark)” series and the like are examples of “Aron Oxetane (registered trademark)” series sold by Toagosei Co., Ltd. and Ube Industries, Ltd.
  • ETERNACOLL registered trademark
  • a curable compound including an epoxy compound or an oxetane compound that is not diluted with an organic solvent or the like in order to make the adhesive containing these compounds solvent-free.
  • other components constituting the adhesive including a small amount of components including a cationic polymerization initiator and a sensitizer described later, the organic solvent removed and dried than those dissolved in the organic solvent. It is preferable to use a powder or liquid of the compound alone.
  • the cationic polymerization initiator is a compound that generates a cationic species when irradiated with active energy rays, for example, ultraviolet rays.
  • Any adhesive may be used as long as it provides the adhesive strength and curing rate required for the blended adhesive, such as aromatic diazonium salts; onium salts such as aromatic iodonium salts and aromatic sulfonium salts; iron-arene complexes. Etc.
  • These cationic polymerization initiators may be used alone or in combination with a plurality of different types.
  • aromatic diazonium salt examples include the following. Benzenediazonium hexafluoroantimonate, Benzenediazonium hexafluorophosphate, Benzenediazonium hexafluoroborate, etc.
  • aromatic iodonium salts include the following. Diphenyliodonium tetrakis (pentafluorophenyl) borate, Diphenyliodonium hexafluorophosphate, Diphenyliodonium hexafluoroantimonate, Bis (4-nonylphenyl) iodonium hexafluorophosphate, etc.
  • aromatic sulfonium salt examples include the following. Triphenylsulfonium hexafluorophosphate, Triphenylsulfonium hexafluoroantimonate, Triphenylsulfonium tetrakis (pentafluorophenyl) borate, Diphenyl (4-phenylthiophenyl) sulfonium hexafluoroantimonate, 4,4′-bis (diphenylsulfonio) diphenyl sulfide bishexafluorophosphate, 4,4′-bis [di ( ⁇ -hydroxyethoxyphenyl) sulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4′-bis [di ( ⁇ -hydroxyethoxyphenyl) sulfonio] diphenyl sulfide bishexafluoroantimonate, 4,4′-bis [di ( ⁇ -
  • iron-arene complex examples include the following. Xylene-cyclopentadienyl iron (II) hexafluoroantimonate, Cumene-cyclopentadienyl iron (II) hexafluorophosphate, Xylene-cyclopentadienyl iron (II) tris (trifluoromethylsulfonyl) methanide.
  • the aromatic sulfonium salt has an ultraviolet absorption property even in a wavelength region of 300 nm or more, and therefore can provide an adhesive layer having excellent curability and good mechanical strength and adhesive strength. Therefore, it is preferably used.
  • Cationic polymerization initiators can also be easily obtained from commercial products.
  • Adekaoptomer” series sold by ADEKA Corporation, "RHODORSIL (registered trademark)” sold by Rhodia, and the like.
  • the cationic polymerization initiator is usually blended in a proportion of 0.5 to 20 parts by mass, preferably 1 to 15 parts per 100 parts by mass of the total amount of the active energy ray curable adhesive. Part by mass. If the amount is too small, curing may be insufficient and the mechanical strength and adhesive strength of the adhesive layer may be reduced. Moreover, when there is too much the quantity, the ionic substance in an adhesive bond layer will increase, the hygroscopic property of an adhesive bond layer will become high, and the durable performance of the polarizing plate obtained may be reduced.
  • the active energy ray curable adhesive is used in an electron beam curable type, it is not particularly necessary to include a photopolymerization initiator in the composition, but when used in an ultraviolet curable type, a photo radical generator is used. It is preferable.
  • the photo radical generator include a hydrogen abstraction type photo radical generator and a cleavage type photo radical generator.
  • Examples of the hydrogen abstraction type photo radical generator include 1-methylnaphthalene, 2-methylnaphthalene, 1-fluoronaphthalene, 1-chloronaphthalene, 2-chloronaphthalene, 1-bromonaphthalene, 2-bromonaphthalene, 1-iodonaphthalene.
  • Carbazole derivatives benzophenone, 4-phenylbenzophenone, 4,4'-bis (dimethoxy) benzophenone, 4,4'-bis (dimethylamino) benzophenone, 4,4'-bis (diethylamino) benzophenone, methyl 2-benzoylbenzoate Ester, 2 -Benzophenone derivatives such as methylbenzophenone, 3-methylbenzophenone, 4-methylbenzophenone, 3,3'-dimethyl-4-methoxybenzophenone, 2,4,6-trimethylbenzophenone, aromatic carbonyl compounds, [4- (4- Methylphenylthio) phenyl] -phenylmethanone, xanthone, thioxanthone, 2-chlorothioxanthone, 4-chlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-dimethylthioxanthone
  • the cleavage type photo radical generator is a type of photo radical generator that generates radicals by cleavage of the compound upon irradiation with active energy rays.
  • Specific examples thereof include arylalkyls such as benzoin ether derivatives and acetophenone derivatives. Examples include, but are not limited to, ketones, oxime ketones, acylphosphine oxides, thiobenzoic acid S-phenyls, titanocenes, and derivatives obtained by increasing the molecular weight thereof.
  • cleavage type photo radical generators include 1- (4-dodecylbenzoyl) -1-hydroxy-1-methylethane, 1- (4-isopropylbenzoyl) -1-hydroxy-1-methylethane, 1-benzoyl.
  • any of the photo radical generators included in the electron beam curable type that is, hydrogen abstraction type or cleavage type photo radical generators can be used alone.
  • a plurality of them may be used in combination, but more preferable is a combination of one or more cleavage type photoradical generators in terms of stability and curability of the photoradical generator alone.
  • acylphosphine oxides are preferable.
  • trimethylbenzoyldiphenylphosphine oxide (trade name “DAROCUREUTPO”; Ciba Japan Co., Ltd.), bis (2,6-dimethoxy-) Benzoyl)-(2,4,4-trimethyl-pentyl) -phosphine oxide (trade name “CGI 403”; Ciba Japan Ltd.) or bis (2,4,6-trimethylbenzoyl) -2,4- Dipentoxyphenylphosphine oxide (trade name “Irgacure 819”; Ciba Japan Co., Ltd.) is preferred.
  • the active energy ray-curable adhesive can contain a sensitizer as necessary.
  • a sensitizer By using a sensitizer, the reactivity is improved, and the mechanical strength and adhesive strength of the adhesive layer can be further improved.
  • the sensitizer those described above can be appropriately applied.
  • the blending amount is preferably in the range of 0.1 to 20 parts by mass with respect to 100 parts by mass of the total amount of the active energy ray-curable adhesive.
  • the active energy ray-curable adhesive can be blended with various additives as long as the effect is not impaired.
  • additives include ion trapping agents, antioxidants, chain transfer agents, tackifiers, thermoplastic resins, fillers, flow regulators, plasticizers, and antifoaming agents.
  • the active energy ray-curable adhesive are usually used in a state dissolved in a solvent.
  • the active energy ray curable adhesive contains a solvent
  • the active energy ray curable adhesive is applied onto a suitable substrate and dried to obtain an adhesive layer.
  • the component that does not dissolve in the solvent may be dispersed in the system.
  • Examples of the method of forming the adhesive layer on the retardation film include a method of directly applying the adhesive composition on the surface of the retardation film to form an adhesive layer.
  • the thickness of the adhesive layer is usually about 0.001 to 5 ⁇ m, preferably 0.01 ⁇ m or more, preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less. If the adhesive layer is too thick, the appearance of the polarizing plate tends to be poor.
  • the active energy ray-curable adhesive can be applied to the film by the above-described coating method.
  • the viscosity of the active energy ray-curable adhesive may be any as long as it has a viscosity that can be applied by various methods, but the viscosity at a temperature of 25 ° C. is in the range of 10 to 30,000 mPa ⁇ sec. It is preferably in the range of 50 to 6,000 mPa ⁇ sec. If the viscosity is too small, it tends to be difficult to obtain a uniform coating without unevenness. On the other hand, when the viscosity is too large, it tends to be difficult to flow, and it is difficult to obtain a uniform coating film with no unevenness.
  • the viscosity here is a value measured at 60 rpm after adjusting the temperature of the adhesive to 25 ° C. using a B-type viscometer.
  • the active energy ray curable adhesive can be used in an electron beam curable type or an ultraviolet curable type.
  • the active energy ray of the present invention is defined as an energy ray that can generate an active species by decomposing a compound that generates an active species. Examples of such active energy rays include visible light, ultraviolet rays, infrared rays, X-rays, ⁇ rays, ⁇ rays, ⁇ rays, and electron beams.
  • the acceleration voltage is preferably 5 kV to 300 kV, and more preferably 10 kV to 250 kV. If the acceleration voltage is less than 5 kV, the electron beam may not reach the adhesive and may be insufficiently cured. If the acceleration voltage exceeds 300 kV, the penetration force through the sample is too strong and the electron beam rebounds, There is a risk of damaging the polarizer.
  • the irradiation dose is 5 to 100 kGy, more preferably 10 to 75 kGy.
  • the adhesive becomes insufficiently cured, and when it exceeds 100 kGy, the transparent protective film and the polarizer are damaged, resulting in a decrease in mechanical strength and yellowing to obtain desired optical characteristics. I can't.
  • the electron beam irradiation is usually performed in an inert gas, but if necessary, it may be performed in the atmosphere or under a condition where a little oxygen is introduced. Depending on the material of the transparent protective film, by appropriately introducing oxygen, the transparent protective film surface where the electron beam first hits can be obstructed to prevent oxygen damage and prevent damage to the transparent protective film. An electron beam can be irradiated efficiently.
  • the light irradiation intensity of the active energy ray curable adhesive is determined for each composition of the adhesive and is not particularly limited, but is preferably 10 to 5000 mW / cm 2 .
  • the reaction time becomes too long, and when it exceeds 5000 mW / cm 2 , adhesion occurs due to heat radiated from the light source and heat generated during polymerization of the composition. It may cause yellowing of the constituent material of the agent and deterioration of the polarizer.
  • the irradiation intensity is preferably an intensity in a wavelength region effective for activation of the photocationic polymerization initiator, more preferably an intensity in a wavelength region of a wavelength of 400 nm or less, and further preferably a wavelength region of a wavelength of 280 to 320 nm. Strength.
  • the integrated light quantity 10 mJ / cm 2 or more preferably is preferably set to be 10 ⁇ 5,000mJ / cm 2.
  • the integrated light quantity exceeds 5,000 mJ / cm 2 , the irradiation time becomes very long, which is disadvantageous for improving productivity.
  • the integrated light amount in which wavelength region (UVA (320 to 390 nm), UVB (280 to 320 nm), etc.) is required differs depending on the combination of the film to be used and the type of adhesive.
  • the light source used for polymerizing and curing the adhesive by irradiation with active energy rays in the present invention is not particularly limited.
  • a low pressure mercury lamp, a medium pressure mercury lamp, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a xenon lamp, a halogen lamp, carbon Examples include arc lamps, tungsten lamps, gallium lamps, excimer lasers, LED light sources that emit light in the wavelength range of 380 to 440 nm, chemical lamps, black light lamps, microwave-excited mercury lamps, and metal halide lamps. From the viewpoint of energy stability and simplicity of the apparatus, an ultraviolet light source having a light emission distribution at a wavelength of 400 nm or less is preferable.
  • a circularly polarizing plate comprising the present retardation film and a polarizing plate (hereinafter sometimes referred to as the present circular polarizing plate) can be obtained.
  • the retardation film and the polarizing plate are usually bonded with an adhesive. It is preferable to set it to be substantially 15 ° with respect to the transmission axis or absorption axis of the polarizing plate with respect to the slow axis (optical axis) of the first retardation layer of the present optical film. Substantially 15 ° is usually in the range of 15 ° ⁇ 5 °.
  • the optical axis angles of the first retardation layer and the second retardation layer are set to 30 ° and ⁇ 30 with respect to the transmission axis or absorption axis of the polarizing plate. Since it is known that the function as a broadband ⁇ / 4 plate can be expressed even at 45 ° or 45 ° and ⁇ 45 °, the layers can be laminated by a desired method.
  • the polarizing plate used in this circularly polarizing plate may have a protective film on one side of the polarizer or may have a protective film on both sides of the polarizer.
  • the protective film in this case may use a substrate on which the first and second retardation layers of the present invention are formed.
  • the polymerizable liquid crystal composition may be directly coated on the polarizing plate to form a retardation layer, or the retardation layer may be bonded to the polarizer surface using an adhesive. The retardation layer may be bonded using an adhesive.
  • a base material having a functional group that forms a chemical bond with a retardation layer or an alignment film on the surface tends to form a chemical bond with the retardation layer or the alignment film and is difficult to remove. Therefore, when peeling and removing a base material, the base material with few surface functional groups is preferable, and the base material which has not performed the surface treatment which forms a functional group on the surface is preferable.
  • an alignment film having a functional group that forms a chemical bond with the base material tends to increase the adhesion between the base material and the alignment film.
  • An alignment film having a small number of functional groups to form is preferable.
  • a reagent that crosslinks the substrate and the alignment film is not included, and further, a component such as a solvent that dissolves the substrate in a solution such as an alignment polymer composition and a composition for forming a photoalignment film.
  • a component such as a solvent that dissolves the substrate in a solution such as an alignment polymer composition and a composition for forming a photoalignment film.
  • the alignment film having a functional group that forms a chemical bond with the retardation layer tends to increase the adhesion between the retardation layer and the alignment film. Therefore, when removing the alignment film together with the base material, an alignment film having few functional groups that form chemical bonds with the retardation layer is preferable.
  • the retardation layer and the alignment film do not contain a reagent that crosslinks the retardation layer and the alignment film.
  • the retardation layer having a functional group that forms a chemical bond with the alignment film tends to increase the adhesion between the alignment film and the retardation layer. Therefore, when removing a base material or when removing an alignment film with a base material, a retardation layer with few functional groups which form a chemical bond with a base material or an alignment film is preferable.
  • the polymerizable liquid crystal composition preferably does not contain a reagent that crosslinks the base material or alignment film and the retardation layer.
  • the polarizing plate may be a film having a polarizing function.
  • the film include a stretched film in which a dye having absorption anisotropy is adsorbed, or a film including a film coated with a dye having absorption anisotropy as a polarizer.
  • the dye having absorption anisotropy include a dichroic dye.
  • a film containing a stretched film adsorbed with a dye having absorption anisotropy as a polarizer is usually a step of uniaxially stretching a polyvinyl alcohol resin film, by dyeing the polyvinyl alcohol resin film with a dichroic dye, At least a polarizer manufactured through a step of adsorbing a dichroic dye, a step of treating a polyvinyl alcohol resin film adsorbed with a dichroic dye with an aqueous boric acid solution, and a step of washing with water after the treatment with the aqueous boric acid solution It is produced by sandwiching it with a transparent protective film via an adhesive on one surface.
  • the polyvinyl alcohol resin is obtained by saponifying a polyvinyl acetate resin.
  • a polyvinyl acetate resin in addition to polyvinyl acetate, which is a homopolymer of vinyl acetate, copolymers of vinyl acetate and other monomers copolymerizable therewith are used.
  • examples of other monomers copolymerizable with vinyl acetate include unsaturated carboxylic acids, olefins, vinyl ethers, unsaturated sulfonic acids, and acrylamides having an ammonium group.
  • the degree of saponification of the polyvinyl alcohol resin is usually about 85 to 100 mol%, preferably 98 mol% or more.
  • the polyvinyl alcohol resin may be modified, and for example, polyvinyl formal or polyvinyl acetal modified with aldehydes can also be used.
  • the degree of polymerization of the polyvinyl alcohol resin is usually about 1,000 to 10,000, and preferably in the range of 1,500 to 5,000.
  • a film made of such a polyvinyl alcohol resin is used as an original film of a polarizing plate.
  • the method for forming a polyvinyl alcohol-based resin is not particularly limited, and can be formed by a known method.
  • the film thickness of the polyvinyl alcohol-based raw film can be, for example, about 10 to 150 ⁇ m.
  • Uniaxial stretching of the polyvinyl alcohol-based resin film can be performed before dyeing with the dichroic dye, simultaneously with dyeing, or after dyeing.
  • the uniaxial stretching may be performed before boric acid treatment or during boric acid treatment.
  • it is also possible to perform uniaxial stretching in these several steps.
  • uniaxial stretching it may be uniaxially stretched between rolls having different peripheral speeds, or may be uniaxially stretched using a hot roll.
  • the uniaxial stretching may be dry stretching in which stretching is performed in the air, or may be wet stretching in which stretching is performed in a state where a solvent is used and a polyvinyl alcohol-based resin film is swollen.
  • the draw ratio is usually about 3 to 8 times.
  • the dyeing of the polyvinyl alcohol resin film with the dichroic dye is performed, for example, by a method of immersing the polyvinyl alcohol resin film in an aqueous solution containing the dichroic dye.
  • iodine or a dichroic organic dye is used as the dichroic dye.
  • the dichroic organic dye include dichroic direct dyes composed of disazo compounds such as C.I. DIRECT RED 39, and dichroic direct dyes composed of compounds such as trisazo and tetrakisazo.
  • the polyvinyl alcohol-based resin film is preferably subjected to an immersion treatment in water before the dyeing treatment.
  • iodine When iodine is used as the dichroic dye, a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing iodine and potassium iodide is usually employed.
  • the content of iodine in this aqueous solution is usually about 0.01 to 1 part by mass per 100 parts by mass of water.
  • the content of potassium iodide is usually about 0.5 to 20 parts by mass per 100 parts by mass of water.
  • the temperature of the aqueous solution used for dyeing is usually about 20 to 40 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 20 to 1,800 seconds.
  • a method of dyeing a polyvinyl alcohol-based resin film in an aqueous solution containing a water-soluble dichroic dye is usually employed.
  • the content of the dichroic organic dye in this aqueous solution is usually about 1 ⁇ 10 ⁇ 4 to 10 parts by mass, preferably 1 ⁇ 10 ⁇ 3 to 1 part by mass, more preferably 100 parts by mass of water. 1 ⁇ 10 ⁇ 3 to 1 ⁇ 10 ⁇ 2 parts by mass.
  • This aqueous solution may contain an inorganic salt such as sodium sulfate as a dyeing assistant.
  • the temperature of the aqueous dichroic dye solution used for dyeing is usually about 20 to 80 ° C.
  • the immersion time (dyeing time) in this aqueous solution is usually about 10 to 1,800 seconds.
  • the boric acid treatment after dyeing with a dichroic dye can usually be performed by a method in which a dyed polyvinyl alcohol resin film is immersed in an aqueous boric acid solution.
  • the boric acid content in this aqueous boric acid solution is usually about 2 to 15 parts by mass, preferably 5 to 12 parts by mass per 100 parts by mass of water.
  • this aqueous boric acid solution preferably contains potassium iodide.
  • the amount is about 15 parts by mass, preferably 5 to 12 parts by mass.
  • the immersion time in the boric acid aqueous solution is usually about 60 to 1,200 seconds, preferably 150 to 600 seconds, and more preferably 200 to 400 seconds.
  • the temperature of boric acid treatment is usually 50 ° C. or higher, preferably 50 to 85 ° C., more preferably 60 to 80 ° C.
  • the polyvinyl alcohol resin film after the boric acid treatment is usually washed with water.
  • the water washing treatment can be performed, for example, by a method of immersing a boric acid-treated polyvinyl alcohol resin film in water.
  • the temperature of water in the water washing treatment is usually about 5 to 40 ° C.
  • the immersion time is usually about 1 to 120 seconds.
  • a drying process is performed to obtain a polarizer.
  • the drying process can be performed using, for example, a hot air dryer or a far infrared heater.
  • the temperature for the drying treatment is usually about 30 to 100 ° C., preferably 50 to 80 ° C.
  • the drying treatment time is usually about 60 to 600 seconds, preferably 120 to 600 seconds.
  • the moisture content of the polarizer is reduced to a practical level.
  • the water content is usually about 5 to 20% by weight, preferably 8 to 15% by weight.
  • the moisture content is less than 5% by weight, the flexibility of the polarizer is lost, and the polarizer may be damaged or broken after drying.
  • the thermal stability of the polarizer may be deteriorated.
  • the thickness of the polarizer obtained by subjecting the polyvinyl alcohol resin film to uniaxial stretching, dyeing with a dichroic dye, boric acid treatment, washing with water and drying is preferably 5 to 40 ⁇ m.
  • Examples of the film coated with a dye having absorption anisotropy include a composition containing a dichroic dye having liquid crystallinity, or a film obtained by applying a composition containing a dichroic dye and a polymerizable liquid crystal. Can be mentioned.
  • the film preferably has a protective film on one side or both sides. Examples of the protective film include the same ones as described above.
  • the film coated with the pigment having absorption anisotropy is preferably thin, but if it is too thin, the strength is lowered and the processability tends to be inferior.
  • the thickness of the film is usually 20 ⁇ m or less, preferably 5 ⁇ m or less, and more preferably 0.5 ⁇ m or more and 3 ⁇ m or less.
  • film coated with the dye having absorption anisotropy include films described in JP 2012-33249 A and the like.
  • a polarizing plate is obtained by laminating a transparent protective film via an adhesive on at least one surface of the polarizer thus obtained.
  • a transparent protective film the transparent film similar to the base material mentioned above can be used preferably, and the retardation film of this invention can also be used.
  • the polarizing performance of the polarizing plate can be mainly expressed by numerical values called single transmittance and degree of polarization, and is defined by the following formulas.
  • Single transmittance ( ⁇ ) 0.5 ⁇ (Tp ( ⁇ ) + Tc ( ⁇ ))
  • Polarization degree ( ⁇ ) 100 ⁇ (Tp ( ⁇ ) ⁇ Tc ( ⁇ )) / (Tp ( ⁇ ) + Tc ( ⁇ ))
  • Tp ( ⁇ ) is the transmittance (%) of the polarizing plate or polarizing film measured in the relationship between the linearly polarized light having the incident wavelength ⁇ nm and the parallel Nicol
  • Tc ( ⁇ ) is the straight line having the incident wavelength ⁇ nm.
  • It is the transmittance (%) of the polarizing plate or polarizing film measured by the relationship between polarized light and crossed Nicol, both of which are measured values obtained by measuring the polarized UV-visible absorption spectrum with a spectrophotometer.
  • the single transmittance ( ⁇ ) and the degree of polarization ( ⁇ ) obtained for each wavelength are subjected to sensitivity correction called visibility correction, respectively, and the visibility correction single transmittance (Ty) and the visibility correction polarization, respectively. Called degrees (Py).
  • These Ty and Py values can be easily measured with, for example, an absorptiometer (model number: V7100) manufactured by JASCO Corporation.
  • the polarizing plate according to the present invention preferably has a visibility corrected single transmittance (Ty) of 42% or more, and a visibility corrected polarization degree (Py) of 99.9% or more.
  • the visibility corrected single transmittance is preferably 43% or more, and more preferably 44% or more.
  • the visibility correction polarization degree (Py) is preferably 99.9% or more, but may be 99.0% or more, more preferably 99.5% or more.
  • the transmission hue a of the polarizing plate is preferably ⁇ 3.0 or more and 1.5 or less, more preferably ⁇ 2.5 or more and 1.0 or less, and further preferably ⁇ 2.0 or more and 0.5 or less. is there.
  • b is preferably ⁇ 1.5 or more and 6.0 or less, more preferably ⁇ 1.0 or more and 5.5 or less, and further preferably ⁇ 0.5 or more and 5.0 or less.
  • the above transmission hue means the hue of light transmitted from the other surface when light is applied from one surface of the polarizing plate.
  • the hue here can be expressed by a value and b value in the Lab color system, and is measured using standard light.
  • the transmission hue of the polarizing film is actually measured in a state where a pressure-sensitive adhesive layer is provided on one side of the polarizing film and bonded to a glass plate on the pressure-sensitive adhesive layer side.
  • the Lab color system is represented by Hunter's lightness index L and hues a and b as described in “5.5 Accelerated weather resistance test” of “JIS K 5981: 2006“ Synthetic resin powder coating film ”. Is.
  • the hue a value and b value can indicate positions corresponding to saturation, and when the hue a value increases, the hue changes to red, and when the hue b value increases, the hue changes to yellow. Each changes. Also, the closer to 0, the closer to both achromatic colors.
  • the retardation film 100 is formed of a first retardation layer 1 and a second retardation layer 2 as shown in FIG. 1-1.
  • the first retardation layer 1 and / or the second retardation layer 2 may be formed on the substrate 3, and a protective layer 7 is provided between the first retardation layer 1 and the second retardation layer. You may do it.
  • the first phase layer 1 and the second phase difference layer 2 are continuously applied and formed on the substrate as shown in FIGS. 1-2, 1-3, 1-4, and 1
  • the 1st phase difference layer 1 and / or the 2nd phase difference layer 2 may have an orientation film between a base material or each layer.
  • the retardation film 100 shown in FIGS. 1-7, 1-8, and 1-9 combined with the third retardation layer 8 may be used.
  • the circularly polarizing plate 110 of the present invention includes the retardation film 100 of the present invention, and is obtained by forming the polarizing plate 6, the first retardation layer 1, and the second retardation layer 2 in this order. 2-5 and 2-6, in which a retardation film obtained by continuously coating and forming the first retardation layer 1 and the second retardation layer 2 on a substrate and a polarizing plate are integrated with an adhesive. 2-7 are preferable from the viewpoint of thinning.
  • FIGS. 2-8 and 2-9 in which the first retardation layer 1 and / or the second retardation layer 2 are peeled and transferred from the base material and integrated with the polarizing plate with an adhesive. It is preferable from the viewpoint of thinning.
  • a display device is a device having a display element, and includes a light-emitting element or a light-emitting device as a light-emitting source.
  • a liquid crystal display device As the display device, a liquid crystal display device, an organic electroluminescence (EL) display device, an inorganic electroluminescence (EL) display device, a touch panel display device, an electron emission display device (for example, a field emission display device (FED), a surface field emission display device) (SED)), electronic paper (display device using electronic ink or electrophoretic element, plasma display device, projection display device (eg, grating light valve (GLV) display device, display device having digital micromirror device (DMD))
  • the liquid crystal display device includes any of a transmissive liquid crystal display device, a transflective liquid crystal display device, a reflective liquid crystal display device, a direct view liquid crystal display device, and a projection liquid crystal display device.
  • the circular polarizing plate may be used effectively for an organic electroluminescence (EL) display device and an inorganic electroluminescence (EL) display device. Therefore, the present optical compensation polarizing plate can be effectively used for a liquid crystal display device and a touch panel display device.
  • EL organic electroluminescence
  • EL inorganic electroluminescence
  • FIG. 3 is a schematic diagram showing the organic EL display device 30.
  • the organic EL display device 30 shown in FIG. 3A includes the present circularly polarizing plate 31, and a light emitting layer 35 and a light emitting layer 35 on a substrate 32 on which a pixel electrode 34 is formed via an interlayer insulating film 33.
  • the cathode electrode 36 is laminated.
  • the circularly polarizing plate 31 is disposed on the side opposite to the light emitting layer 35 with the substrate 32 interposed therebetween.
  • the light emitting layer 35 includes an electron transport layer, a light emitting layer, a hole transport layer, and the like.
  • the light emitted from the light emitting layer 35 passes through the pixel electrode 34, the interlayer insulating film 33, the substrate 32, and the circular polarizing plate 31.
  • the thin film transistor 38 is formed in a desired shape on the substrate 32. Then, an interlayer insulating film 33 is formed, and then a pixel electrode 34 is formed by sputtering and patterned. Thereafter, the light emitting layer 35 is laminated.
  • the circularly polarizing plate 31 is provided on the surface of the substrate 32 opposite to the surface on which the thin film transistor 38 is provided.
  • the polarizing plate in the present circularly polarizing plate 31 is disposed so as to be on the outside (opposite side of the substrate 32).
  • the substrate 32 examples include a sapphire glass substrate, a quartz glass substrate, a soda glass substrate and a ceramic substrate such as alumina; a metal substrate such as copper; a plastic substrate.
  • a heat conductive film may be formed on the substrate 32.
  • the thermally conductive film include a diamond thin film (DLC or the like).
  • DLC diamond thin film
  • the pixel electrode 34 is of a reflective type, light is emitted in the direction opposite to the substrate 32. Therefore, not only a transparent material but also a non-permeable material such as stainless steel can be used.
  • a single substrate may be formed, or a plurality of substrates may be bonded together with an adhesive to form a laminated substrate. Further, these substrates are not limited to plate-like ones, and may be films.
  • the thin film transistor 38 for example, a polycrystalline silicon transistor may be used.
  • the thin film transistor 38 is provided at the end of the pixel electrode 34, and its size is about 10 to 30 ⁇ m.
  • the size of the pixel electrode 34 is about 20 ⁇ m ⁇ 20 ⁇ m to 300 ⁇ m ⁇ 300 ⁇ m.
  • a wiring electrode of the thin film transistor 38 is provided on the substrate 32.
  • the wiring electrode has a low resistance and has a function of being electrically connected to the pixel electrode 34 to suppress the resistance value.
  • the wiring electrode includes Al, Al and transition metals (except for Ti), Ti or One containing one or more of titanium nitride (TiN) is used.
  • An interlayer insulating film 33 is provided between the thin film transistor 38 and the pixel electrode 34.
  • the interlayer insulating film 33 is formed by sputtering or vacuum deposition of an inorganic material such as silicon oxide such as SiO 2 or silicon nitride, a silicon oxide layer formed by SOG (spin-on-glass), photoresist, polyimide. Any film may be used as long as it has insulating properties, such as a coating film of a resin material such as an acrylic resin.
  • a rib 39 is formed on the interlayer insulating film 33.
  • the rib 39 is disposed in the peripheral portion (between adjacent pixels) of the pixel electrode 34.
  • Examples of the material of the rib 39 include acrylic resin and polyimide resin.
  • the thickness of the rib 39 is preferably 1.0 ⁇ m or more and 3.5 ⁇ m, more preferably 1.5 ⁇ m or more and 2.5 ⁇ m or less.
  • Each of the light emitting layers 35 includes at least one hole transport layer and a light emitting layer, and sequentially includes, for example, an electron injection transport layer, a light emitting layer, a hole transport layer, and a hole injection layer.
  • Examples of the pixel electrode 34 include ITO (tin-doped indium oxide), IZO (zinc-doped indium oxide), IGZO, ZnO, SnO 2, and In 2 O 3. ITO and IZO are particularly preferable.
  • the pixel electrode 35 only needs to have a certain thickness that allows sufficient hole injection, and is preferably about 10 to 500 nm.
  • the pixel electrode 34 can be formed by a vapor deposition method (preferably a sputtering method).
  • the sputtering gas is not particularly limited, and an inert gas such as Ar, He, Ne, Kr and Xe, or a mixed gas thereof may be used.
  • metal elements such as K, Li, Na, Mg, La, Ce, Ca, Sr, Ba, Al, Ag, In, Sn, Zn, and Zr may be used.
  • metal elements such as K, Li, Na, Mg, La, Ce, Ca, Sr, Ba, Al, Ag, In, Sn, Zn, and Zr may be used.
  • a two-component or three-component alloy system selected from the exemplified metal elements.
  • alloy systems include Ag ⁇ Mg (Ag: 1 to 20 at%), Al ⁇ Li (Li: 0.3 to 14 at%), In ⁇ Mg (Mg: 50 to 80 at%), and Al ⁇ Ca (Ca: 5 to 20 at%) is preferable.
  • the cathode electrode 36 is formed by vapor deposition or sputtering.
  • the thickness of the cathode electrode 37 is 0.1 nm or more, preferably 1 to 500 nm or more.
  • the hole injection layer has a function of facilitating injection of holes from the pixel electrode 34, and the hole transport layer has a function of transporting holes and a function of blocking electrons. Also called transport layer.
  • the thickness of the light emitting layer, the combined thickness of the hole injecting layer and the hole transporting layer, and the thickness of the electron injecting and transporting layer are not particularly limited and may vary depending on the formation method, but should be about 5 to 100 nm. Is preferred.
  • Various organic compounds can be used for the hole injection layer and the hole transport layer.
  • a vacuum deposition method can be used in that a homogeneous thin film can be formed.
  • the light emitting layer 35 those using light emission (fluorescence) from singlet excitons, those using light emission (phosphorescence) from triplet excitons, and light emission (fluorescence) from singlet excitons. Including those using and light emission from triplet excitons (phosphorescence), those formed by organic matter, those including those formed by organic matter and those formed by inorganic matter, high A molecular material, a low molecular material, a material including a high molecular material and a low molecular material, or the like can be used. However, it is not limited to this, The light emitting layer 35 using various well-known things for EL elements can be used for the organic EL display device 30.
  • a desiccant (not shown) is disposed in the space between the cathode electrode 36 and the sealing layer 37. This is because the light emitting layer 35 is vulnerable to humidity. Water is absorbed by the desiccant to prevent the light emitting layer 35 from deteriorating.
  • the organic EL display device 30 of the present invention shown in FIG. 3B includes the circularly polarizing plate 31, and a light emitting layer is formed on a substrate 32 on which a pixel electrode 34 is formed via an interlayer insulating film 33. 35 and the cathode electrode 36 are laminated. A sealing layer 37 is formed on the cathode electrode, and the circularly polarizing plate 31 is disposed on the side opposite to the substrate 32. The light emitted from the light emitting layer 35 passes through the cathode electrode 36, the sealing layer 37, and the circular polarizing plate 31.
  • phase difference value was measured using KOBRA-WR manufactured by Oji Scientific Instruments.
  • the phase difference values at 450 nm and 550 nm were obtained from actual measurement values, and the phase difference values at 650 nm were obtained from Cauchy dispersion formulas obtained from the measurement results of other wavelengths.
  • the measurement of the reflectance Y value and the reflection hues a * and b * was performed using CM2600d manufactured by Konica Minolta.
  • the measurement light source was D65, and the light receiving optical system was determined by SCI (including specular reflection light).
  • Example 1 [Production of polarizing plate] A polyvinyl alcohol film having an average degree of polymerization of about 2,400 and a saponification degree of 99.9 mol% or more and a thickness of 75 ⁇ m is immersed in pure water at 30 ° C., and then the weight ratio of iodine / potassium iodide / water is set to be 0.00. Iodine dyeing was performed by immersing in an aqueous solution of 02/2/100 at 30 ° C. (iodine dyeing step).
  • the polyvinyl alcohol film which passed through the iodine dyeing process was immersed in an aqueous solution having a weight ratio of potassium iodide / boric acid / water of 12/5/100 at 56.5 ° C. to perform boric acid treatment (boric acid treatment process). ).
  • the polyvinyl alcohol film that had undergone the boric acid treatment step was washed with pure water at 8 ° C. and then dried at 65 ° C. to obtain a polarizer (thickness 27 ⁇ m after stretching) in which iodine was adsorbed and oriented on polyvinyl alcohol. . Under the present circumstances, it extended
  • the total draw ratio in such drawing was 5.3 times.
  • the obtained polarizer and a saponified triacetyl cellulose film (Konica Minolta KC4UYTAC 40 ⁇ m) were bonded together with a nip roll via an aqueous adhesive. While maintaining the tension of the obtained bonded product at 430 N / m, it was dried at 60 ° C. for 2 minutes to obtain a polarizing plate (1) having a triacetyl cellulose film as a protective film on one side.
  • the water-based adhesive is 100 parts of water, 3 parts of carboxyl group-modified polyvinyl alcohol (Kuraray Kuraray Poval KL318), and a water-soluble polyamide epoxy resin (Sumites Chemtex Sumirez Resin 650 aqueous solution with a solid content of 30%). Prepared by adding 1.5 parts.
  • the optical properties of the obtained polarizing plate were measured.
  • the measurement was performed with a spectrophotometer (V7100, manufactured by JASCO Corporation) using the polarizer surface of the polarizing plate obtained above as an incident surface.
  • the obtained visibility corrected single transmittance was 42.1%
  • the visibility corrected polarization degree was 99.996%
  • the single hue a was -1.1
  • the single hue b was 3.7.
  • UV-curable adhesive composition The following components were mixed to prepare an ultraviolet curable adhesive composition. 40 parts of 3,4-epoxycyclohexylmethyl 3,4-epoxycyclohexanecarboxylate 60 parts of diglycidyl ether of bisphenol A Diphenyl (4-phenylthiophenyl) sulfonium Hexafluoroantimonate (photo cationic polymerization initiator) 4 parts [Preparation of composition for forming photo-alignment film] The following components were mixed, and the resulting mixture was stirred at 80 ° C. for 1 hour to obtain a photoalignment film-forming composition (1). Photo-alignment material (2 parts): Solvent (98 parts): Cyclopentanone
  • Oriented Polymer Composition (1) An oriented polymer composition was obtained by adding 99 parts by weight of 2-butoxyethanol to 1 part by weight of a commercially available oriented polymer, Sunever SE-610 (manufactured by Nissan Chemical Industries, Ltd.). For SE-610, the solid content was converted from the concentration described in the delivery specification.
  • composition (A-1) Preparation of composition (A-1)
  • the following components were mixed, and the resulting mixture was stirred at 80 ° C. for 1 hour to obtain a composition (A-1).
  • the polymerizable liquid crystal A1 and the polymerizable liquid crystal A2 were synthesized by the method described in JP 2010-31223 A.
  • Polymerizable liquid crystal A1 80 parts:
  • Polymerization initiator (6 parts): 2-Dimethylamino-2-benzyl-1- (4-morpholinophenyl) butan-1-one (Irgacure 369; manufactured by Ciba Specialty Chemicals) Leveling agent (0.1 parts): polyacrylate compound (BYK-361N; manufactured by BYK-Chemie) Solvent: cyclopentanone (400 parts)
  • composition (B-1) The composition of composition (B-1) is shown in Table A. The components were mixed, and the resulting solution was stirred at 80 ° C. for 1 hour, and then cooled to room temperature to obtain a composition (B-1).
  • Table A The value in parentheses in Table A represents the content ratio of each component with respect to the total amount of the prepared composition.
  • LR9000 represents BASF Japan's Laromer (registered trademark) LR-9000
  • Irg907 represents BASF Japan's Irgacure (registered trademark) 907
  • BYK-361N represents a leveling agent manufactured by BYK-Chemie Japan.
  • LC242 represents a polymerizable liquid crystal produced by BASF, represented by the following formula
  • PGMEA represents propylene glycol 1-monomethyl ether 2-acetate.
  • first retardation layer (1-1) Rolled cycloolefin polymer film (COP) (ZF-14, manufactured by Nippon Zeon Co., Ltd. 23 ⁇ m) 500 mm width ⁇ 100 m while being transported at a speed of 4 m / min, once at a power of 0.4 kW using a plasma processing apparatus Processed.
  • the photo-alignment film-forming composition (1) is applied to the plasma-treated surface at a rate of 11.7 ml / min using a die coater in the range of 460 mm, dried at 100 ° C. for 2 minutes, and irradiated with polarized UV light.
  • polarized UV exposure was performed with an integrated light amount of 100 mJ / cm 2 (integrated light amount at a wavelength of 313 nm in an air atmosphere) in a direction of 15 ° with respect to the transport direction. It was 100 nm when the film thickness of the obtained alignment film was measured with the laser microscope (LEXT, Olympus Corporation make). Subsequently, the composition (A-1) was applied onto the alignment film at a rate of 39.2 ml / min using a die coater, dried at 120 ° C. for 2 minutes, and then irradiated with ultraviolet rays using a high-pressure mercury lamp.
  • Second Retardation Layer (2-1) Polarized UV irradiation to the photo-alignment film was applied at a direction of 75 ° with respect to the transport direction, and the composition (A-1) was applied onto the alignment film at a rate of 19.6 ml / min using a die coater.
  • a film having the second retardation layer (2-1) formed thereon was obtained in the same manner as in the production example of the first retardation layer (1-1) except for the above.
  • the thickness of the obtained second retardation layer (2-1) was confirmed by a laser microscope and found to be 2.1 ⁇ m.
  • phase difference values at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm of COP are substantially 0, the relationship between the in-plane retardation values is not affected.
  • the adhesive layer pressure sensitive adhesive 5 ⁇ m manufactured by Lintec
  • the adhesive layer is used to connect the retardation layer surface of the film formed with the first retardation layer and the COP surface of the film formed with the second retardation layer.
  • Roll to Roll was bonded to produce a retardation film (1).
  • the total thickness of the retardation film (1) was 57 ⁇ m.
  • Re (550) 143 nm.
  • the relationship between the in-plane retardation values at each wavelength is as follows.
  • the retardation film (1) had optical characteristics represented by the following formulas (2), (3) and (4).
  • the phase difference values at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm of COP are substantially 0, the relationship between the in-plane retardation values is not affected. 100 nm ⁇ Re (550) ⁇ 160 nm (2) Re (450) / Re (550) ⁇ 1.00 (3) 1.00 ⁇ Re (650) / Re (550) (4)
  • the retardation film (1) When a single transmission hue was measured for the retardation film (1) using a spectrophotometer (V7100, manufactured by JASCO Corporation), the hue a * was ⁇ 1.0 and the hue b * was 2.7. That is, the retardation film (1) exhibited optical characteristics represented by the following formulas (6) and (7). -2.0 ⁇ a * ⁇ 0.5 (6) -0.5 ⁇ b * ⁇ 5.0 (7)
  • Table 1 shows the measurement results of the optical properties of the first retardation layer, the second retardation layer, and the retardation film (1).
  • the COP surface on the first retardation layer side of the retardation film (1) is subjected to corona treatment, and an ultraviolet curable adhesive composition is applied thereon, and then the polarization of the polarizing plate is applied thereon. It piled up with the child face and integrated between two bonding rolls. At this time, since Roll to Roll bonding is performed, the angle formed by the absorption axis of the polarizing plate and the slow axis of the first retardation layer (1-1) is 15 °. Of the two bonding rolls, the first bonding roll uses a rubber roll whose surface is rubber, and the second bonding roll has a metal whose surface is chrome plated. I used a roll.
  • an ultraviolet irradiation device using a metal halide lamp as a light source is used to irradiate ultraviolet rays from the polarizing plate side so that the integrated light quantity at a wavelength of 320 to 400 nm is 200 mJ / cm 2.
  • the resulting adhesive layer was cured, and the retardation film (1) and the polarizer (1) were adhered to obtain a circularly polarizing plate (1) having a total thickness of 125 ⁇ m.
  • the ellipticity measurement results of this circularly polarizing plate (1) are shown in Table 2.
  • the surface on the second retardation layer side of the circularly polarizing plate (1) was bonded to a mirror using an adhesive, and the hue change was observed from all directions of the azimuth at an elevation angle of 60 ° from the front vertical direction.
  • Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large.
  • the circularly polarizing plate (1) was not colored when observed from any direction, and a good black display was obtained.
  • the reflectance Y value and reflection hue a *, b * were measured using CM2600d made from Konica Minolta. The obtained reflectance Y value was 5.3%, the reflected hue a * was 0.2, and the reflected hue b * was ⁇ 0.2.
  • Table 2 shows the thickness of the circularly polarizing plate (1), the elliptical polarization rate, the reflection characteristic measurement results, and the observation results.
  • Example 2 The surface on the first retardation layer side of the film in which the first retardation layer (1-1) is formed on the polarizing plate via an adhesive is bonded to Roll to Roll, and then the first retardation layer is bonded. While peeling the COP film of the film on which (1-1) was formed, the surface on the second retardation layer side of the film on which the second retardation layer (2-1) was formed was Roll-to-Roll bonded, By winding the COP film of the film on which the second retardation layer (2-1) is peeled off, the first retardation layer (1-1) and the second retardation layer (2-1) are wound on the polarizing plate. A very thin circularly polarizing plate (2) having a thickness of 83 ⁇ m was obtained.
  • a retardation film comprising a first retardation layer (1-1) of 5 ⁇ m or less and a second retardation layer (2-1) of 5 ⁇ m or less is pasted on the polarizing plate (2).
  • the ellipticity measurement results of this circularly polarizing plate (2) are shown in Table 2.
  • the surface on the second retardation layer side of the circularly polarizing plate (2) was bonded to a mirror using an adhesive, and the hue change from all directions of the azimuth at an elevation angle of 60 ° from the front vertical direction was observed.
  • Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large.
  • the circularly polarizing plate (2) was not colored when observed from any direction, and a good black display was obtained.
  • Example 3 A film having the first retardation layer (1-1) formed thereon was prepared in the same manner as in Example 1, the corona treatment was performed on the surface of the first retardation layer, and the ultraviolet curable adhesive composition was formed thereon.
  • Example 3 was coated with a microgravure coater, and an ultraviolet ray irradiation apparatus using a metal halide lamp as a light source was irradiated with ultraviolet rays so that the integrated light quantity at a wavelength of 320 to 400 nm was 200 mJ / cm 2 to form an intermediate layer having a thickness of 1 ⁇ m. Further, the intermediate layer was subjected to plasma treatment, and a second retardation layer (2-1) was formed in the same manner as in Example 1 to produce a retardation film (2).
  • Example 2 the surface by the side of the 2nd phase difference layer of a polarizing plate and retardation film (2) was bonded, and the circularly-polarizing plate (3) was obtained.
  • the ellipticity measurement results of this circularly polarizing plate (3) are shown in Table 2.
  • the surface of the circularly polarizing plate (3) on the COP side was bonded to a mirror using an adhesive, and the hue change from all directions of azimuth at a position of an elevation angle of 60 ° from the front vertical direction was observed.
  • Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large.
  • the circularly polarizing plate (3) was not colored when observed from any direction, and a good black display was obtained.
  • Example 4 A film having the first retardation layer (1-1) formed thereon was prepared in the same manner as in Example 1, and the film formed with the first retardation layer was formed on the surface opposite to the first retardation layer. In the same manner as in Example 1, a second retardation layer (2-1) was formed, and a retardation film (3) was produced. Subsequently, a circularly polarizing plate (4) is obtained by combining the polarizing plate and the retardation film (3) in the same manner as in Example 1 except that the first retardation layer surface is adhesively bonded to the polarizing plate via an adhesive. Got. The ellipticity measurement results of this circularly polarizing plate (4) are shown in Table 2.
  • the surface on the second retardation layer side of the circularly polarizing plate (4) was bonded to a mirror using an adhesive, and the hue change from all directions of the azimuth at an elevation angle of 60 ° from the front vertical direction was observed.
  • Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large.
  • the circularly polarizing plate (4) was not colored when observed from any direction, and a good black display was obtained.
  • Example 5 [Production of third retardation layer]
  • the alignment polymer composition was applied to the plasma-treated surface at a rate of 11.7 ml / min using a die coater within a width of 460 mm and dried at 90 ° C. for 1 minute to obtain an alignment film. . It was 50 nm when the film thickness of the obtained oriented film was measured with the laser microscope.
  • the composition (B-1) was applied onto the alignment film at a rate of 6.2 ml / min using a die coater, dried at 90 ° C. for 1 minute, and then irradiated with ultraviolet rays using a high-pressure mercury lamp.
  • the film which formed the 3rd phase difference layer was obtained by irradiating (integrated light quantity in wavelength 365nm under nitrogen atmosphere: 1000mJ / cm ⁇ 2 >).
  • the film thickness of the obtained third retardation layer was measured with a laser microscope, the film thickness was 550 nm.
  • the third retardation layer had optical characteristics represented by the following formula (5). Note that since the phase difference value of COP at a wavelength of 550 nm is substantially 0, the optical characteristics are not affected. nx ⁇ ny ⁇ nz (5)
  • the COP surface of the film on which the obtained third retardation layer is formed is the surface on the second retardation layer side of the retardation film (1) of Example 1 and an adhesive (pressure-sensitive adhesive 5 ⁇ m manufactured by Lintec). Then, Roll to Roll was laminated to prepare a retardation film (4).
  • the total thickness of the retardation film (4) was 86 ⁇ m.
  • Re (550) 144 nm.
  • Re (450) 110nm
  • Re (650) 157nm.
  • the relationship between the in-plane retardation values at each wavelength is as follows.
  • the retardation film (4) had optical characteristics represented by the following formulas (2), (3), (4) and (6).
  • the phase difference values at a wavelength of 450 nm, a wavelength of 550 nm, and a wavelength of 650 nm of COP are substantially 0, the relationship between the in-plane retardation values is not affected.
  • the circularly polarizing plate (5) was obtained by bonding the COP surface of the obtained retardation film (4) on the first retardation layer side to the polarizing plate in the same manner as in Example 1.
  • the ellipticity measurement results of this circularly polarizing plate (5) are shown in Table 2.
  • the surface on the third retardation layer side of the circularly polarizing plate (5) was bonded to a mirror using an adhesive, and the hue change from all directions of azimuth at an elevation angle of 60 ° from the front vertical direction was observed.
  • Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large.
  • the circularly polarizing plate (5) was not colored when observed from any direction, and a good black display was obtained.
  • Example 6 Except for using roll-type cycloolefin polymer film (COP) (ZF-14, manufactured by Nippon Zeon Co., Ltd., 23 ⁇ m), a single-wafer polycarbonate film (trade name “Pure Ace RM”, Teijin Limited, 50 ⁇ m) was used. In the same manner as in the production example of the first retardation layer (1-1) in Example 1, the first retardation layer (1-1) was formed, and the retardation film (5) was produced. In Example 6, since the polycarbonate film has a retardation, the polycarbonate film is used as the second retardation layer.
  • COP roll-type cycloolefin polymer film
  • Example 2 the 1st phase difference layer surface of the polarizing plate and retardation film (5) was bonded through the adhesive agent, and the circularly-polarizing plate (6) was obtained.
  • the ellipticity measurement results of this circularly polarizing plate (6) are shown in Table 2.
  • the polycarbonate film surface of the circularly polarizing plate (6) was bonded to a mirror using an adhesive, and the hue change from all directions of the azimuth angle at a position where the elevation angle was 60 ° from the front vertical direction was observed.
  • Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large.
  • the circularly polarizing plate (6) was not colored when observed from any direction, and a good black display was obtained.
  • Comparative Example 1 [Production of Second Retardation Layer (2-2)] A film having the second retardation layer (2-2) was produced in the same manner as in Example 1 except that the irradiation direction of the polarized UV was changed from 15 ° to 45 °.
  • Example 2 In the same manner as in Example 1, a film having the second retardation layer (2-2) and a polarizing plate were bonded together to obtain a circularly polarizing plate (7).
  • the ellipticity measurement result of this circularly polarizing plate (7) is shown in Table 2.
  • the ellipticity was lower than those of Examples 1 to 6, and the front reflection color was slightly purple.
  • the surface on the second retardation layer side of the circularly polarizing plate (7) was bonded to a mirror using an adhesive, and the hue change from all directions of the azimuth at an elevation angle of 60 ° from the front vertical direction was observed.
  • Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large.
  • Comparative Example 2 A film having the third retardation layer produced in Example 5 on the second retardation layer side surface of the circularly polarizing plate (7) produced in the same manner as in Comparative Example 1 was produced in the same manner as in Example 5.
  • a circularly polarizing plate (8) was obtained by pasting together. The ellipticity measurement results of this circularly polarizing plate (8) are shown in Table 2. The ellipticity was lower than those of Examples 1 to 6, and the front reflection color was slightly purple.
  • the third retardation layer surface of the circularly polarizing plate (8) was bonded to a mirror using an adhesive, and the hue change from all directions of azimuth at an elevation angle of 60 ° from the front vertical direction was observed. Table 2 shows the colors when viewed from two points in the direction where the hue change was particularly large. When the circularly polarizing plate (8) was observed from a specific direction, it was observed that the reflection color was blue-green and red.
  • Comparative Example 3 Example 1 except that a roll-shaped longitudinally uniaxially stretched cycloolefin polymer film (COP) (ZM-14, manufactured by Nippon Zeon Co., Ltd.) was used as the first retardation layer and the second retardation layer.
  • COP longitudinally uniaxially stretched cycloolefin polymer film
  • the circularly polarizing plates of the examples are useful because they have excellent antireflection properties in bright places when observed from all directions.
  • the retardation film of the present invention is useful as an optical film excellent in suppression of light leakage without coloring during black display.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Theoretical Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Polarising Elements (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

[課題]黒表示時の光漏れ抑制に優れる位相差フィルムを提供すること。 [解決手段]少なくとも2つの位相差層を有し、第一の位相差層と第二の位相差層とを有する位相差フィルムであって、 第一の位相差層が、 式(1)及び式(3)及び式(4)で表される光学特性を有し、 第二の位相差層が、 式(2)及び式(3)及び式(4)で表される光学特性を有し、 該位相差フィルムが、 式(2)及び式(3)及び式(4)で表される光学特性を有する位相差フィルム。 200nm<Re(550)<320nm (1) 100nm<Re(550)<160nm (2) Re(450)/Re(550)≦1.00 (3) 1.00≦Re(650)/Re(550) (4) (式中、Re(450)は波長450nmにおける面内位相差値を表し、Re(550)は波長550nmにおける面内位相差値を表し、Re(650)は波長650nmにおける面内位相差値を表す。)

Description

位相差フィルム
 本発明は、位相差フィルムに関する。
 フラットパネル表示装置(FPD)には、偏光板、位相差板などの、光学フィルムを含む部材が用いられている。このような光学フィルムとしては、重合性液晶を含む組成物を基材に塗布することにより製造される光学フィルムが知られている。例えば、特許文献1には、逆波長分散性を示す該光学フィルムについて記載されている。
特表2010-537955号公報
 しかしながら、太陽光のような強い光の下で使用するような場合には、反射光がわずかに着色した場合でも、画像の色彩に影響を与えることから、反射光の色をニュートラルな色相とすることが求められていた。
 本発明は以下の発明を含む。
〔1〕少なくとも2つの位相差層を有し、第一の位相差層と第二の位相差層とを有する位相差フィルムであって、
第一の位相差層が、
式(1)及び式(3)及び式(4)で表される光学特性を有し、
第二の位相差層が、
式(2)及び式(3)及び式(4)で表される光学特性を有し、
該位相差フィルムが、
式(2)及び式(3)及び式(4)で表される光学特性を有する位相差フィルム。
200nm<Re(550)<320nm      (1)
100nm<Re(550)<160nm      (2)
Re(450)/Re(550)≦1.00     (3)
1.00≦Re(650)/Re(550)     (4)
(式中、Re(450)は波長450nmにおける面内位相差値を表し、Re(550)は波長550nmにおける面内位相差値を表し、Re(650)は波長650nmにおける面内位相差値を表す。)
〔2〕さらに式(5)で表される第三の位相差層を有する〔1〕に記載の位相差フィルム。
 nx≒ny<nz    (5)
(nxは、位相差層が形成する屈折率楕円体において、フィルム平面に対して平行な方向の主屈折率を表し、nyは、位相差層が形成する屈折率楕円体において、フィルム平面に対して平行であり、且つ、該nxの方向に対して直交する方向の屈折率を表す。nzは、位相差層が形成する屈折率楕円体において、フィルム平面に対して垂直な方向の屈折率を表す。)
〔3〕〔1〕または〔2〕に記載の位相差フィルムであって、式(6)及び(7)で表される光学特性を有する位相差フィルム。
 -2.0≦ a* ≦0.5             (6)
 -0.5≦ b* ≦5.0             (7)
(式中、a*及びb*は、L*a*b*表色系における色座標を表す。)
〔4〕第一の位相差層が1以上の重合性液晶を重合させることにより形成されるコーティング層である〔1〕~〔3〕のいずれか1に記載の位相差フィルム。
〔5〕第二の位相差層が1以上の重合性液晶を重合させることにより形成されるコーティング層である〔1〕~〔4〕のいずれか1に記載の位相差フィルム。
〔6〕第一の位相差層の厚さが5μm以下である〔1〕~〔5〕のいずれか1に記載の位相差フィルム。
〔7〕第二の位相差層の厚さが5μm以下である〔1〕~〔6〕のいずれか1に記載の位相差フィルム。
〔8〕第一の位相差層及び第二の位相差層の厚さがそれぞれ5μm以下である〔1〕~〔7〕のいずれか1に記載の位相差フィルム。
〔9〕基材上に、配向膜を介するかまたは介さずに第一の位相差層が形成され、該第一の位相差層の上に、配向膜を介するかまたは介さずに第二の位相差層が形成されている〔1〕~〔8〕のいずれか1に記載の位相差フィルム。
〔10〕基材上に、配向膜を介するかまたは介さずに第二の位相差層が形成され、該第二の位相差層の上に、配向膜を介するかまたは介さずに第一の位相差層が形成されている〔1〕~〔9〕のいずれか1に記載の位相差フィルム。
〔11〕基材の一方の面に、配向膜を介するかまたは介さずに第一の位相差層が形成され、基材の他方の面に、配向膜を介するかまたは介さずに第二の位相差層が形成されている〔1〕~〔9〕のいずれか1に記載の位相差フィルム。
〔12〕基材が第一の位相差層の光学特性を有し、該基材上に配向膜を介するかまたは介さずに第二の位相差層が形成されている〔1〕~〔9〕のいずれか1に記載の位相差フィルム。
〔13〕基材が第二の位相差層の光学特性を有し、該基材上に配向膜を介するかまたは介さずに第一の位相差層が形成されている〔1〕~〔9〕のいずれか1に記載の位相差フィルム。
〔14〕第一の位相差層と第二の位相差層の光軸の為す角度が実質的に60°である〔1〕~〔9〕のいずれか1に記載の位相差フィルム。
〔15〕第一の位相差層と、第二の位相差層との間に保護層を有する〔7〕~〔12〕のいずれか1に記載の位相差フィルム。
〔16〕〔1〕~〔15〕のいずれかに記載の位相差フィルムと偏光板とを備える円偏光板。
〔17〕偏光板の吸収軸あるいは透過軸と第一の位相差層の光軸の為す角度θに対して、偏光板の吸収軸あるいは透過軸と第二の位相差層の光軸の為す角度が実質的に2θ+45°の関係である〔16〕記載の円偏光板。
〔18〕〔16〕または〔17〕に記載の円偏光板を備える有機EL表示装置。
〔19〕〔16〕または〔17〕に記載の円偏光板を備えるタッチパネル表示装置。
 本発明によれば、黒表示時の光漏れ抑制に優れる光学フィルムを提供することができる。
本発明の位相差フィルムの断面模式図である。 本発明の円偏光板の断面模式図である。 本発明の円偏光板を含む有機EL表示装置の断面模式図である。
 本発明の位相差フィルム(以下、本位相差フィルムということがある。)は第一の位相差層と第二の位相差層とを有する。また、第三の位相差層を有してもよい。第一の位相差層、第二の位相差層及び第三の位相差層とは一定の光学特性を有する位相差層であり、第一の位相差層、第二の位相差層及び第三の位相差層はそれぞれ2以上の層から成っていてもよい。
 本位相差フィルムは、少なくとも2つの位相差層を有する光学フィルムであって、式(6)及び(7)で表される光学特性を有することが好ましい。かかる光学特性を有することで、可視光領域における透明性に優れた位相差フィルムを得ることができ、黒表示時の光漏れと同時に着色も抑制することができる。
 -2.0≦ a* ≦0.5            (6)
 -0.5≦ b* ≦5.0            (7)
(式中、a*及びb*は、L*a*b*表色系における色座標を表す。)
 式(6)及び式(7)で表される範囲の色度a*及びb*は、本位相差フィルムにおいては、位相差層の光学特性に大きく影響される。後述するように、これらの位相差層が重合性液晶を重合させることにより形成される層の場合、位相差層に着色があると、a*及びb*の値は大きくなる。また、位相差層が延伸フィルムにより形成される場合は、延伸フィルムを形成する樹脂の吸収波長が可視域に達していると、a*及びb*の値が大きくなる。つまり、a*を式(6)で表される範囲に、b*を式(7)で表される範囲内にそれぞれ制御するためには、重合性液晶や樹脂側鎖が可視域でできる限り吸収しない材料を用い、かつ製膜時にも透明性を保つように調節すればよい。
 a*は、好ましくは-1.5以上0.5以下であり、より好ましくは-1.0以上0.5以下である。b*は、好ましくは-0.5以上4.0以下であり、より好ましくは-0.5以上3.0以下である。
 本位相差フィルムは、式(3)及び式(4)で表される光学特性を有し、かつ、第一の位相差層及び第二の位相差層も式(3)及び式(4)で表される光学特性を有する。本位相差フィルムがかかる光学特性を有するためには、第一の位相差層、第二の位相差層が式(3)及び式(4)で表される光学特性を有し、第一の位相差層が式(1)及び第二の位相差層が式(2)で表される光学特性を発現すればよい。
 200nm<Re(550)<320nm      (1)
 100nm<Re(550)<160nm      (2)
 Re(450)/Re(550)≦1.00     (3)
 1.00≦Re(650)/Re(550)     (4)
 本位相差フィルムのRe(450)/Re(550)〔式(3)〕は、好ましくは0.90以下であり、更に好ましくは0.85以下であり、通常は0.60以上、好ましくは0.70以上である。
 本位相差フィルムのRe(650)/Re(550)〔式(4)〕は、好ましくは1.02以上であり、さらに好ましくは1.04以上であり、通常は1.40以下であり、好ましくは1.30以下である。
 なお、本明細書において、Re(450)は波長450nmにおける面内位相差値を表し、Re(550)は波長550nmにおける面内位相差値を表し、Re(650)は波長650nmにおける面内位相差値を表す。
[位相差層]
 位相差層としては、例えば、重合性液晶を重合させることにより形成される層及び延伸フィルムが挙げられる。位相差層の光学特性は重合性液晶の配向状態または延伸フィルムの延伸方法により調節することができる。
<重合性液晶を重合させることにより形成される層>
 本発明においては、重合性液晶の光軸が基材平面に対して水平に配向したものを水平配向、重合性液晶の光軸が基材平面に対して垂直に配向したものを垂直配向と定義する。光軸とは、重合性液晶の配向により形成される屈折率楕円体において、光軸に直交する方向で切り出した断面が円となる方向、すなわち3方向の屈折率がすべて等しくなる方向を意味する。
 重合性液晶としては、棒状の重合性液晶および円盤状の重合性液晶が挙げられる。
 棒状の重合性液晶が基材に対して水平配向または垂直配向した場合は、該重合性液晶の光軸は、該重合性液晶の長軸方向と一致する。
 円盤状の重合性液晶が配向した場合は、該重合性液晶の光軸は、該重合性液晶の円盤面に対して直交する方向に存在する。
 延伸フィルムの遅相軸方向は延伸方法により異なり、一軸、二軸または斜め延伸等、その延伸方法に応じて遅相軸および光軸が決定される。
 重合性液晶を重合させることにより形成される層が面内位相差を発現するためには、重合性液晶を適した方向に配向させればよい。重合性液晶が棒状の場合は、該重合性液晶の光軸を基材平面に対して水平に配向させることで面内位相差が発現する、この場合、光軸方向と遅相軸方向とは一致する。重合性液晶が円盤状の場合は、該重合性液晶の光軸を基材平面に対して水平に配向させることで面内位相差が発現する、この場合、光軸と遅相軸とは直交する。重合性液晶の配向状態は、配向膜と重合性液晶との組み合わせにより調整することができる。
 位相差層の面内位相差値は、位相差層の厚みによって調整することができる。面内位相差値は式(10)によって決定されることから、所望の面内位相差値(Re(λ))を得るためには、Δn(λ)と膜厚dを調整すればよい。
 Re(λ)=d×Δn(λ)   (10)
式中、Re(λ)は、波長λnmにおける面内位相差値を表し、dは膜厚を表し、Δn(λ)は波長λnmにおける複屈折率を表わす。
 複屈折率Δn(λ)は、面内位相差値を測定して、位相差層の厚みで除することで得られる。具体的な測定方法は実施例に示すが、この際、ガラス基板のように基材自体に面内位相差が無いような基材上に製膜したものを測定することで、実質的な位相差層の特性を測定することができる。
 本発明では、重合性液晶の配向又はフィルムの延伸により形成される屈折率楕円体における3方向の屈折率を、nx、nyおよびnzとして表す。nxは、位相差層が形成する屈折率楕円体において、フィルム平面に対して平行な方向の主屈折率を表す。nyは、位相差層が形成する屈折率楕円体において、フィルム平面に対して平行であり、且つ、該nxの方向に対して直交する方向の屈折率を表す。nzは、位相差層が形成する屈折率楕円体において、フィルム平面に対して垂直な方向の屈折率を表す。
 棒状の重合性液晶の光軸が、基材平面に対して水平に配向した場合、得られる位相差層の屈折率関係は、nx>ny≒nz(ポジティブAプレート)となり、屈折率楕円体におけるnxの方向の軸と遅相軸が一致する。
 また、円盤状の重合性液晶の光軸が、基材平面に対して水平に配向した場合、得られる位相差層の屈折率関係は、nx<ny≒nz(ネガティブAプレート)となり、屈折率楕円体におけるnyの方向の軸と遅相軸が一致する。
 重合性液晶を重合させることにより形成される層が厚み方向の位相差を発現するためには、重合性液晶を適した方向に配向させればよい。本発明において、厚み方向の位相差を発現するとは、式(20)において、Rth(厚み方向の位相差値)が負となる特性を示すものと定義する。Rthは、面内の進相軸を傾斜軸として40度傾斜させて測定される位相差値(R40)と、面内の位相差値(Re)とから算出することができる。すなわち、Rthは、Re、R40、d(位相差層の厚み)、およびn0(位相差層の平均屈折率)から、以下の式(21)~(23)によりnx、ny及びnzを求め、これらを式(20)に代入することで算出することができる。
  Rth=[(nx+ny)/2-nz]×d   (20)
  Re =(nx-ny)×d            (21)
  R40=(nx-ny’)×d/cos(φ)    (22)
  (nx+ny+nz)/3=n0          (23)
ここで、
  φ=sin-1〔sin(40°)/n0〕
  ny'=ny×nz/〔ny2×sin2(φ)+nz2×cos2(φ)〕1/2
 また、nx、nyおよびnzは前述の定義と同じである。
 重合性液晶が棒状の場合は、該重合性液晶の光軸を基材平面に対して垂直に配向させることで厚み方向の位相差が発現する。重合性液晶が円盤状の場合は、該重合性液晶の光軸を基材平面に対して水平に配向させることで厚み方向の位相差が発現する。円盤状の重合性液晶の場合は、該重合性液晶の光軸が基材平面に対して平行であるため、Reを決めると、厚みが固定されるため、一義的にRthが決定されるが、棒状の重合性液晶の場合は、該重合性液晶の光軸が基材平面に対して垂直であるため、位相差層の厚みを調節することでReを変化させることなくRthを調節することができる。
 棒状の重合性液晶の光軸が、基材平面に対して垂直に配向した場合、得られる位相差層の屈折率関係は、nx≒ny<nz(ポジティブCプレート)となり、屈折率楕円体におけるnzの方向の軸と遅相軸方向が一致する。
 また、円盤状の重合性液晶の光軸が、基材平面に対して平行に配向した場合、得られる位相差層の屈折率関係は、nx<ny≒nz(ネガティブAプレート)となり、屈折率楕円体におけるnyの方向の軸と遅相軸方向が一致する。
<重合性液晶>
 重合性液晶とは、重合性基を有し、かつ、液晶性を有する化合物(以下、重合性液晶化合物と呼ぶ)である。重合性基とは、重合反応に関与する基を意味し、光重合性官能基であることが好ましい。光重合性官能基とは、光重合開始剤から発生した活性ラジカルや酸などによって重合反応に関与し得る基のことをいう。光重合性官能基としては、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、オキセタニル基等が挙げられる。中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。液晶性はサーモトロピック性液晶でもリオトロピック性液晶でもよいが、緻密な膜厚制御が可能な点でサーモトロピック性液晶が好ましい。また、サーモトロピック性液晶における相秩序構造としてはネマチック液晶でもスメクチック液晶でもよい。
 本発明において、重合性液晶化合物としては、前述した逆波長分散性を発現する点で下記式(I)の構造が特に好ましい。
Figure JPOXMLDOC01-appb-C000001
 式(I)中、Arは置換基を有していてもよい二価の芳香族基を表す。ここで言う芳香族基とは、平面性を有する環状構造の基であり、該環構造が有するπ電子数がヒュッケル則に従い[4n+2]個であるものをいう。ここでnは整数を表す。-N=や-S-等のヘテロ原子を含んで環構造を形成している場合、これらヘテロ原子上の非共有結合電子対を含めてヒュッケル則を満たし、芳香族性を有する場合も含む。該二価の芳香族基中には窒素原子、酸素原子、硫黄原子のうち少なくとも1つ以上が含まれることが好ましい。
 GおよびGはそれぞれ独立に、二価の芳香族基または二価の脂環式炭化水素基を表す。ここで、該二価の芳香族基または二価の脂環式炭化水素基に含まれる水素原子は、ハロゲン原子、炭素数1~4のアルキル基、炭素数1~4のフルオロアルキル基、炭素数1~4のアルコキシ基、シアノ基またはニトロ基に置換されていてもよく、該二価の芳香族基または二価の脂環式炭化水素基を構成する炭素原子が、酸素原子、硫黄原子または窒素原子に置換されていてもよい。
 L、L およびBはそれぞれ独立に、単結合または二価の連結基である。
 k、lは、それぞれ独立に0~3の整数を表し、1≦k+lの関係を満たす。ここで、2≦k+lである場合、BおよびB、GおよびGは、それぞれ互いに同一であってもよく、異なっていてもよい。
 EおよびEはそれぞれ独立に、炭素数1~17のアルカンジイル基を表し、ここで、アルカンジイル基に含まれる水素原子は、ハロゲン原子で置換されていてもよく、該アルカンジイル基に含まれる-CH-は、-O-、-S-、-Si-で置換されていてもよい。
 PおよびPは互いに独立に、重合性基または水素原子を表し、少なくとも1つは重合性基である。
 GおよびGは、それぞれ独立に、好ましくは、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-フェニレンジイル基、ハロゲン原子および炭素数1~4のアルキル基からなる群から選ばれる少なくとも1つの置換基で置換されていてもよい1,4-シクロヘキサンジイル基であり、より好ましくはメチル基で置換された1,4-フェニレンジイル基、無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロヘキサンジイル基であり、特に好ましくは無置換の1,4-フェニレンジイル基、または無置換の1,4-trans-シクロへキサンジイル基である。
 また、複数存在するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることが好ましく、また、LまたはLに結合するGおよびGのうち少なくとも1つは二価の脂環式炭化水素基であることがより好ましい。
 LおよびLはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra1ORa2-、-Ra3COORa4-、-Ra5OCORa6-、Ra7OC=OORa8-、-N=N-、-CR=CR-、または-C≡C-である。ここで、Ra1~Ra8はそれぞれ独立に単結合、または炭素数1~4のアルキレン基を表し、RおよびRは炭素数1~4のアルキル基または水素原子を表す。LおよびLはそれぞれ独立に、より好ましくは単結合、-ORa2-1-、-CH-、-CHCH-、-COORa4-1-、または-OCORa6-1-である。ここで、Ra2-1、Ra4-1、Ra6-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。LおよびLはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、または-OCO-である。
 BおよびBはそれぞれ独立に、好ましくは、単結合、炭素数1~4のアルキレン基、-O-、-S-、-Ra9ORa10-、-Ra11COORa12-、-Ra13OCORa14-、またはRa15OC=OORa16-である。ここで、Ra9~Ra16はそれぞれ独立に単結合、または炭素数1~4のアルキレン基を表す。BおよびBはそれぞれ独立に、より好ましくは単結合、-ORa10-1-、-CH-、-CHCH-、-COORa12-1-、または-OCORa14-1-である。ここで、Ra10-1、Ra12-1、Ra14-1はそれぞれ独立に単結合、-CH-、-CHCH-のいずれかを表す。BおよびBはそれぞれ独立に、さらに好ましくは単結合、-O-、-CHCH-、-COO-、-COOCHCH-、-OCO-、または-OCOCHCH-、である。
 kおよびlは、逆波長分散性発現の観点から2≦k+l≦6の範囲が好ましく、k+l=4であることが好ましく、k=2かつl=2であることがより好ましい。k=2かつl=2であると対称構造となるため好ましい。
 EおよびEはそれぞれ独立に、炭素数1~17のアルカンジイル基が好ましく、炭素数4~12のアルカンジイル基がより好ましい。
 PまたはPで表される重合性基としては、エポキシ基、ビニル基、ビニルオキシ基、1-クロロビニル基、イソプロペニル基、4-ビニルフェニル基、アクリロイルオキシ基、メタクリロイルオキシ基、オキシラニル基、およびオキセタニル基等が挙げられる。
中でも、アクリロイルオキシ基、メタクリロイルオキシ基、ビニルオキシ基、オキシラニル基およびオキセタニル基が好ましく、アクリロイルオキシ基がより好ましい。
 Arは置換基を有していてもよい芳香族炭化水素環、置換基を有していてもよい芳香族複素環、および電子吸引性基から選ばれる少なくとも一つを有することが好ましい。当該芳香族炭化水素環としては、例えば、フェニル基、ナフチル基、アントラセニル基等が挙げられ、フェニル基、ナフチル基が好ましい。当該芳香族複素環としては、フラン環、ベンゾフラン環、ピロール環、インドール環、チオフェン環、ベンゾチオフェン環、ピリジン環、ピラジン環、ピリミジン環、トリアゾール環、トリアジン環、ピロリン環、イミダゾール環、ピラゾール環、チアゾール環、ベンゾチアゾール環、チエノチアゾール環、オキサゾール環、ベンゾオキサゾール環、およびフェナンスロリン環等が挙げられる。なかでも、チアゾール環、ベンゾチアゾール環、またはベンゾフラン環を有することが好ましく、ベンゾチアゾール基を有することがさらに好ましい。また、Arに窒素原子が含まれる場合、当該窒素原子はπ電子を有することが好ましい。
 式(I)中、Arで表される2価の芳香族基に含まれるπ電子の合計数Nπは8以上が好ましく、より好ましくは10以上であり、さらに好ましくは14以上であり、特に好ましくは16以上である。また、好ましくは30以下であり、より好ましくは26以下であり、さらに好ましくは24以下である。
 Arで表される芳香族基としては、例えば以下の基が挙げられる。
Figure JPOXMLDOC01-appb-C000002
 式(Ar-1)~式(Ar-22)中、*印は連結部を表し、Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~12のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルキルスルフィニル基、炭素数1~12のアルキルスルホニル基、カルボキシル基、炭素数1~12のフルオロアルキル基、炭素数1~6のアルコキシ基、炭素数1~12のアルキルチオ基、炭素数1~12のN-アルキルアミノ基、炭素数2~12のN,N-ジアルキルアミノ基、炭素数1~12のN-アルキルスルファモイル基または炭素数2~12のN,N-ジアルキルスルファモイル基を表す。
 Q、QおよびQは、それぞれ独立に、-CR2’3’-、-S-、-NH-、-NR2’-、-CO-または-O-を表し、R2’およびR3’は、それぞれ独立に、水素原子または炭素数1~4のアルキル基を表す。
 J、およびJは、それぞれ独立に、炭素原子、または窒素原子を表す。
 Y、YおよびYは、それぞれ独立に、置換されていてもよい芳香族炭化水素基または芳香族複素環基を表す。
 WおよびWは、それぞれ独立に、水素原子、シアノ基、メチル基またはハロゲン原子を表し、mは0~6の整数を表す。
 Y、YおよびYにおける芳香族炭化水素基としては、フェニル基、ナフチル基、アンスリル基、フェナンスリル基、ビフェニル基等の炭素数6~20の芳香族炭化水素基が挙げられ、フェニル基、ナフチル基が好ましく、フェニル基がより好ましい。芳香族複素環基としては、フリル基、ピロリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基等の窒素原子、酸素原子、硫黄原子等のヘテロ原子を少なくとも1つ含む炭素数4~20の芳香族複素環基が挙げられ、フリル基、チエニル基、ピリジニル基、チアゾリル基、ベンゾチアゾリル基が好ましい。
 Y、YおよびYは、それぞれ独立に、置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。多環系芳香族炭化水素基は、縮合多環系芳香族炭化水素基、または芳香環集合に由来する基をいう。多環系芳香族複素環基は、縮合多環系芳香族複素環基、または芳香環集合に由来する基をいう。
 Z、ZおよびZは、それぞれ独立に、水素原子、ハロゲン原子、炭素数1~6のアルキル基、シアノ基、ニトロ基、炭素数1~12のアルコキシ基であることが好ましく、Zは、水素原子、炭素数1~12のアルキル基、シアノ基がさらに好ましく、ZおよびZは、水素原子、フッ素原子、塩素原子、メチル基、シアノ基がさらに好ましい。
 Q、QおよびQは、-NH-、-S-、-NR2’-、-O-が好ましく、R2’は水素原子が好ましい。中でも-S-、-O-、-NH-が特に好ましい。
 式(Ar-1)~(Ar-22)の中でも、式(Ar-6)および式(Ar-7)が分子の安定性の観点から好ましい。
 式(Ar-16)~(Ar-22)において、Yは、これが結合する窒素原子およびZと共に、芳香族複素環基を形成していてもよい。芳香族複素環基としては、Arが有していてもよい芳香族複素環として前記したものが挙げられるが、例えば、ピロール環、イミダゾール環、ピロリン環、ピリジン環、ピラジン環、ピリミジン環、インドール環、キノリン環、イソキノリン環、プリン環、ピロリジン環等が挙げられる。この芳香族複素環基は、置換基を有していてもよい。また、Yは、これが結合する窒素原子およびZと共に、前述した置換されていてもよい多環系芳香族炭化水素基または多環系芳香族複素環基であってもよい。例えば、ベンゾフラン環、ベンゾチアゾール環、ベンゾオキサゾール環等が挙げられる。
 上記光学異方層形成用組成物の固形分100質量部に占める、重合性液晶化合物の合計の含有量は、通常、70質量部~99.5質量部であり、好ましくは80質量部~99質量部であり、より好ましくは80質量部~94質量部であり、さらに好ましくは80質量部~90質量部である。上記合計の含有量が上記範囲内であれば、得られる光学異方層の配向性が高くなる傾向がある。ここで、固形分とは、組成物から溶剤を除いた成分の合計量のことをいう。
 式(3)および式(4)で表される光学特性を有する位相差層は、特定の構造を有する重合性液晶を重合させた場合、特定の構造を有する高分子フィルムを延伸した場合に得られ、第一の位相差層を式(1)かつ第二の位相差層を式(2)の関係で組み合わせることで式(3)および式(4)で表される位相差フィルムが得られる。
 100nm<Re(550)<160nm      (1)
 200nm<Re(550)<320nm      (2)
 Re(450)/Re(550)≦1.00    (3)
 1.00≦Re(650)/Re(550)    (4)
 第一の位相差層及び第二の位相差層が式(3)および式(4)を満たさずに、かつ、式(1)および式(2)で表される光学特性を有することでも、式(3)および式(4)で表される光学特性を有する本位相差フィルムを得ることができるが、第一の位相差層と第二の位相差層が共に式(3)および式(4)で表される光学特性を有すると、可視光域における各波長の光に対して、さらに一様な偏光変換の特性が得られ、有機EL表示装置等の表示装置の黒表示時の光漏れを大幅に抑制することができる。
 前記特定の構造を有する重合性液晶としては、例えば、前記重合性液晶(I)が挙げられる。重合性液晶(I)を、基材平面に対して光軸が水平となるように配向することで、式(1)及び式(2)で表される光学特性を有する位相差層が得られ、さらに、前記式(10)に従って膜厚を調節することで、例えば、式(1)および式(2)で表される光学特性等の所望の面内位相差値を有する位相差層を得ることができる。
 100nm<Re(550)<160nm      (1)
 200nm<Re(550)<320nm      (2)
<延伸フィルム>
 延伸フィルムは通常、基材を延伸することで得られる。基材を延伸する方法としては、例えば、基材がロールに巻き取られているロール(巻き取り体)を準備し、かかる巻き取り体から、基材を連続的に巻き出し、巻き出された基材を加熱炉へと搬送する。加熱炉の設定温度は、基材のガラス転移温度近傍(℃)~[ガラス転移温度+100](℃)の範囲、好ましくは、ガラス転移温度近傍(℃)~[ガラス転移温度+50](℃)の範囲とする。当該加熱炉においては、基材の進行方向へ、又は進行方向と直交する方向へ延伸する際に、搬送方向や張力を調整し任意の角度に傾斜をつけて一軸又は二軸の熱延伸処理を行う。延伸の倍率は、通常1.1~6倍であり、好ましくは1.1~3.5倍である。
 また、斜め方向に延伸する方法としては、連続的に配向軸を所望の角度に傾斜させることができるものであれば、特に限定されず、公知の延伸方法が採用できる。このような延伸方法は例えば、特開昭50-83482号公報や特開平2-113920号公報に記載された方法を挙げることができる。延伸することでフィルムに位相差性を付与する場合、延伸後の厚みは、延伸前の厚みや延伸倍率によって決定される。
 厚み方向の位相差を有する延伸フィルムとしては、例えば、特開2008-129465号公報に記載のnx<ny<nzの屈折率関係を有する延伸フィルムや、公知の多層押出フィルムを挙げることができる。nx<ny<nzの屈折率関係を有するフィルムであっても、相対的にnzが大きくなるため、nx≒ny<nzと同等の効果を得ることができる。
 延伸フィルムの面内位相差値及び、厚み方向の位相差値は、重合性液晶を重合させることにより形成される層と同様に、Δn(λ)及び膜厚dによって調整することができる。
 前記、式(3)および式(4)で表される光学特性を有する、特定の構造を有する高分子フィルムを延伸した延伸フィルムとしては、例えば、ポリカーネート系樹脂からなる市販の延伸フィルムが挙げられ、具体的には、「ピュアエース(登録商標)WR」(帝人株式会社製)等が挙げられる。
 前記基材は通常透明基材である。透明基材とは、光、特に可視光を透過し得る透明性を有する基材を意味し、透明性とは、波長380~780nmにわたる光線に対しての透過率が80%以上となる特性をいう。また、基材は、着色のない無色であることが、a*を式(6)で表される範囲内に、b*を式(7)で表される範囲内に、それぞれ制御することが容易となり、好ましい。
 具体的な透明基材としては、透光性樹脂基材が挙げられる。透光性樹脂基材を構成する樹脂としては、ポリエチレン、ポリプロピレンなどのポリオレフィン;ノルボルネン系ポリマーなどの環状オレフィン系樹脂;ポリビニルアルコール;ポリエチレンテレフタレート;ポリメタクリル酸エステル;ポリアクリル酸エステル;トリアセチルセルロース、ジアセチルセルロース、セルロースアセテートプロピオネートなどのセルロースエステル;ポリエチレンナフタレート;ポリカーボネート;ポリスルホン;ポリエーテルスルホン;ポリエーテルケトン;ポリフェニレンスルフィドおよびポリフェニレンオキシドが挙げられる。入手のしやすさや透明性の観点から、ポリエチレンテレフタレート、ポリメタクリル酸エステル、セルロースエステル、環状オレフィン系樹脂またはポリカーボネートが好ましい。
 セルロースエステルは、セルロースに含まれる水酸基の一部または全部が、エステル化されたものであり、市場から容易に入手することができる。また、セルロースエステル基材も市場から容易に入手することができる。市販のセルロースエステル基材としては、例えば、「フジタック(登録商標)フィルム」(富士写真フイルム(株));「KC8UX2M」、「KC8UY」及び「KC4UY」(コニカミノルタオプト(株))などが挙げられる。
 ポリメタクリル酸エステル及びポリアクリル酸エステル(以下、ポリメタクリル酸エステル及びポリアクリル酸エステルをまとめて(メタ)アクリル系樹脂ということがある。
)は、市場から容易に入手できる。
 (メタ)アクリル系樹脂としては、例えば、メタクリル酸アルキルエステル又はアクリル酸アルキルエステルの単独重合体や、メタクリル酸アルキルエステルとアクリル酸アルキルエステルとの共重合体などが挙げられる。メタクリル酸アルキルエステルとして具体的には、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレートなどが、またアクリル酸アルキルエステルとして具体的には、メチルアクリレート、エチルアクリレート、プロピルアクリレートなどがそれぞれ挙げられる。かかる(メタ)アクリル系樹脂には、汎用の(メタ)アクリル系樹脂として市販されているものが使用できる。(メタ)アクリル系樹脂として、耐衝撃(メタ)アクリル樹脂と呼ばれるものを使用してもよい。
 さらなる機械的強度向上のために、(メタ)アクリル系樹脂にゴム粒子を含有させることも好ましい。ゴム粒子は、アクリル系のものが好ましい。ここで、アクリル系ゴム粒子とは、ブチルアクリレートや2-エチルヘキシルアクリレートのようなアクリル酸アルキルエステルを主成分とするアクリル系モノマーを、多官能モノマーの存在下に重合させて得られるゴム弾性を有する粒子である。アクリル系ゴム粒子は、このようなゴム弾性を有する粒子が単層で形成されたものであってもよいし、ゴム弾性層を少なくとも一層有する多層構造体であってもよい。多層構造のアクリル系ゴム粒子としては、上記のようなゴム弾性を有する粒子を核とし、その周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったもの、硬質のメタクリル酸アルキルエステル系重合体を核とし、その周りを上記のようなゴム弾性を有するアクリル系重合体で覆ったもの、また硬質の核の周りをゴム弾性のアクリル系重合体で覆い、さらにその周りを硬質のメタクリル酸アルキルエステル系重合体で覆ったものなどが挙げられる。弾性層で形成されるゴム粒子は、その平均直径が通常50~400nm程度の範囲にある。
 (メタ)アクリル系樹脂におけるゴム粒子の含有量は、(メタ)アクリル系樹脂100質量部あたり、通常5~50質量部程度である。(メタ)アクリル系樹脂及びアクリル系ゴム粒子は、それらを混合した状態で市販されているので、その市販品を用いることができる。アクリル系ゴム粒子が配合された(メタ)アクリル系樹脂の市販品の例として、住友化学(株)から販売されている「HT55X」や「テクノロイ S001」などが挙げられる。「テクノロイ S001」は、フィルムの形で販売されている。
 環状オレフィン系樹脂は、市場から容易に入手できる。市販の環状オレフィン系樹脂としては、「Topas」(登録商標)[Ticona社(独)]、「アートン」(登録商標)[JSR(株)]、「ゼオノア(ZEONOR)」(登録商標)[日本ゼオン(株)]、「ゼオネックス(ZEONEX)」(登録商標)[日本ゼオン(株)]および「アペル」(登録商標)[三井化学(株)]が挙げられる。このような環状オレフィン系樹脂を、例えば、溶剤キャスト法、溶融押出法などの公知の手段により製膜して、基材とすることができる。また、市販されている環状オレフィン系樹脂基材を用いることもできる。市販の環状オレフィン系樹脂基材としては、「エスシーナ」(登録商標)[積水化学工業(株)]、「SCA40」(登録商標)[積水化学工業(株)]、「ゼオノアフィルム」(登録商標)[オプテス(株)]および「アートンフィルム」(登録商標)[JSR(株)]が挙げられる。
 環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンやビニル基を有する芳香族化合物との共重合体である場合、環状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常50モル%以下、好ましくは15~50モル%の範囲である。鎖状オレフィンとしては、エチレンおよびプロピレンが挙げられ、ビニル基を有する芳香族化合物としては、スチレン、α-メチルスチレンおよびアルキル置換スチレンが挙げられる。環状オレフィン系樹脂が、環状オレフィンと、鎖状オレフィンと、ビニル基を有する芳香族化合物との三元共重合体である場合、鎖状オレフィンに由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%であり、ビニル基を有する芳香族化合物に由来する構造単位の含有割合は、共重合体の全構造単位に対して、通常5~80モル%である。このような三元共重合体は、その製造において、高価な環状オレフィンの使用量を比較的少なくすることができるという利点がある。
 本発明においては、前記式(3)および式(4)で表される光学特性を有する、特定の構造を有する高分子フィルムを延伸した延伸フィルムを基材として用いることで第一の位相差層あるいは第二の位相差層を兼ねてもよい。
[第一の位相差層]
 第一の位相差層は、好ましくは式(1)及び式(3)及び式(4)で表される光学特性を有し、より好ましくは式(1-1)で表される光学特性を有する。面内位相差値Re(550)は、上記位相差層の面内位相差値の調整方法と同じ方法で調整することができる。
 200nm<Re(550)<320nm       (1)
 220nm<Re(550)<300nm       (1-1)
 Re(450)/Re(550)≦1.00      (3)
 1.00≦Re(650)/Re(550)      (4)
 第一の位相差層のRe(450)/Re(550)〔式(3)〕は、好ましくは0.95以下であり、さらに好ましくは0.90以下であり、通常は0.60以上であり、好ましくは0.70以上である。
 第一の位相差層のRe(650)/Re(550)〔式(4)〕は、好ましくは1.01以上であり、通常は1.40以下、好ましくは1.30以下である。
 第一の位相差層は、好ましくは1以上の重合性液晶を重合させることにより形成されるコーティング層である。このコーティング層は、重合性液晶がコーティング層の面内方向に配向した状態で重合して、配向が固定化された重合物から構成される。第一の位相差層は重合性液晶(I)を重合させることにより形成されるコーティング層であると更に好ましい。
 第一の位相差層が延伸フィルムの場合、その厚さは、通常300μm以下であり、好ましくは5μm以上100μm以下である。第一の位相差層が重合性液晶を重合させることにより形成される層の場合、その厚さは、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5μm以上3μm以下である。第一の位相差層の厚さは、干渉膜厚計、レーザー顕微鏡または触針式膜厚計による測定によって求めることができる。
[第二の位相差層]
 第二の位相差層は、式(2)及び式(3)及び式(4)で表される光学特性を有し、より好ましくは式(2-1)で表される光学特性を有する。
 100nm<Re(550)<160nm      (2)
 110nm<Re(550)<150nm      (2-1)
 Re(450)/Re(550)≦1.00     (3)
 1.00≦Re(650)/Re(550)     (4)
第二の位相差層のRe(450)/Re(550)〔式(3)〕は、好ましくは0.95以下であり、さらに好ましくは0.90以下であり、通常は0.60以上である。
第二の位相差層のRe(650)/Re(550)〔式(4)〕は、好ましくは1.01以上であり、通常は1.40以下、好ましくは1.30以下である。
 第二の位相差層は、好ましくは1以上の重合性液晶を重合させることにより形成されるコーティング層である。このコーティング層は、重合性液晶がコーティング層の面内方向に配向した状態で重合して、配向が固定化された重合物から構成される。第二の位相差層は重合性液晶(I)を重合させることにより形成されるコーティング層であるとさらに好ましい。
 第二の位相差層が延伸フィルムの場合、その厚さは、通常300μm以下であり、好ましくは5μm以上100μm以下であり、より好ましくは10μm以上50μm以下である。第二の位相差層が重合性液晶を重合させることにより形成される層の場合、その厚さは、通常10μm以下であり、好ましくは5μm以下であり、より好ましくは0.3μm以上3μm以下である。第二の位相差層の厚さは、第一の位相差層と同じ方法で求めることができる。また、第一の位相差層及び第二の位相差層の厚さは、それぞれ5μm以下であると好ましい。
[第三の位相差層]
 第三の位相差層の面内位相差値Re(550)は通常0~10nmの範囲であり、好ましくは0~5nmの範囲である。厚み方向の位相差値Rthは、通常-10~-300nmの範囲であり、好ましくは-20~-200nmの範囲である。かかる面内位相差値Re(550)及び厚み方向の位相差値Rthは、上記位相差層と同じ方法で調整することができる。
 また、第三の位相差層は、式(6)及び(7)で表される光学特性を有していてもよい。かかる光学特性は、上記位相差層と同様の方法で得ることができる。
 Re(450)/Re(550)≧1.00     (6)
 1.00≧Re(650)/Re(550)     (7)
 第三の位相差層は、好ましくは1以上の重合性液晶を重合することで形成されるコーティング層である。このコーティング層は、重合性液晶が層に対して垂直な方向に配向した状態で重合して、配向が固定化された重合物から構成される。第三の位相差層が式(6)及び(7)で表される光学特性を有する場合には、重合性液晶(I)を重合させる必要は無く、一般的に市販されているような重合性液晶化合物を用いればよい。
<基材>
 本発明の位相差フィルムは、好ましくは基材を有する。基材としては前記したものと同じものが挙げられる。
 配向膜、第一の位相差層、第二の位相差層及び第三の位相差層が形成される側の基材の面には、配向膜又は位相差層を形成する前に、表面処理を施してもよい。表面処理の方法としては、真空下又は大気圧下、コロナ又はプラズマで基材の表面を処理する方法、基材表面をレーザー処理する方法、基材表面をオゾン処理する方法、基材表面をケン化処理する方法又は基材表面を火炎処理する方法、基材表面にカップリング剤を塗布するプライマー処理する方法、反応性モノマーや反応性を有するポリマーを基材表面に付着させた後、放射線、プラズマ又は紫外線を照射して反応させるグラフト重合法等が挙げられる。中でも、真空下や大気圧下で、基材表面をコロナ又はプラズマ処理する方法が好ましい。
 コロナ又はプラズマで基材の表面処理を行う方法としては、大気圧近傍の圧力下で、対向した電極間に基材を設置し、コロナ又はプラズマを発生させて、基材の表面処理を行う方法、対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを基材に吹付ける方法、及び、低圧条件下で、グロー放電プラズマを発生させて、基材の表面処理を行う方法が挙げられる。
 中でも、大気圧近傍の圧力下で、対向した電極間に基材を設置し、コロナ又はプラズマを発生させて、基材の表面処理を行う方法、又は、対向した電極間にガスを流し、電極間でガスをプラズマ化し、プラズマ化したガスを基材に吹付ける方法が好ましい。かかるコロナ又はプラズマによる表面処理は、通常、市販の表面処理装置により行われる。
 基材は、透明性が高く位相差が小さい基材が好ましい。基材は無色であることが、a*を式(6)で示される範囲内に、またb*を式(7)で示される範囲内にそれぞれ制御することが容易となる点で好ましい。透明性が高く位相差が小さい基材としては、ゼロタック(登録商標)(コニカミノルタオプト(株))、Zタック(富士フィルム(株))などの位相差を有しないセルロースエステルフィルムが挙げられる。また、未延伸の環状オレフィン系樹脂基材も好ましい。透明性の指標としては、全光線透過率が80%以上の基材が好ましく、位相差値としては正面リタデーションの値が10nm以下であることが好ましい。
また、本発明においては、前記式(3)および式(4)で表される光学特性を有する、特定の構造を有する高分子フィルムを延伸した延伸フィルムを基材として用いることで第一の位相差層あるいは第二の位相差層を兼ねてもよい。
また、本発明の好ましい形態として、基材を剥がして第一の位相差層あるいは/及び第二の位相差層を転写形成させることで、5μm以下の第一の位相差層あるいは/及び第二の位相差層のみを適用できるため、薄型化の観点からより好ましい。
 また、配向膜、第一の位相差層、第二の位相差層及び第三の位相差層が形成されていない基材の面には、ハードコート処理、帯電防止処理等がなされてもよい。また、性能に影響しない範囲で、紫外線吸収剤などの添加剤を含んでいてもよい。
 基材の厚みは、薄すぎると強度が低下し、加工性に劣る傾向があるため、通常5~300μmであり、好ましくは10~200μmである。
<重合性液晶組成物>
 重合性液晶を重合させることにより形成される層(位相差層)は、通常、1以上の重合性液晶を含有する組成物(以下、重合性液晶組成物ということがある。)を、基材、配向膜、保護層又は位相差層の上に塗布し、得られた塗膜中の重合性液晶を重合させることにより形成される。
 重合性液晶組成物は、通常溶剤を含み、溶剤としては、重合性液晶を溶解し得る溶剤であって、且つ、重合性液晶の重合反応に不活性な溶剤がより好ましい。
 具体的な溶剤としては、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル、フェノール等のアルコール溶剤;酢酸エチル、酢酸ブチル等のエステル溶剤;アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、シクロヘプタノン、メチルアミルケトン、メチルイソブチルケトン、N-メチル-2-ピロリジノン等のケトン溶剤;ペンタン、ヘキサン、ヘプタン等の非塩素化脂肪族炭化水素溶剤;トルエン、キシレン等の非塩素化芳香族炭化水素溶剤;アセトニトリル等のニトリル溶剤;プロピレングリコールモノメチルエーテル、テトラヒドロフラン、ジメトキシエタン等のエーテル溶剤;およびクロロホルム、クロロベンゼン等の塩素化炭化水素溶剤;が挙げられる。これら他の溶剤は、単独で用いてもよいし、組み合わせてもよい。
 重合性液晶組成物における溶剤の含有量は、通常、固形分100質量部に対して、10質量部~10000質量部が好ましく、より好ましくは50質量部~5000質量部である。固形分とは、重合性液晶組成物から溶剤を除いた成分の合計を意味する。
 重合性液晶組成物の塗布は、通常、スピンコ-ティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、スリットコーティング法、バーコーティング法、アプリケータ法などの塗布法や、フレキソ法などの印刷法などの公知の方法によって行われる。塗布後、通常、得られた塗布膜中に含まれる重合性液晶が重合しない条件で溶剤を除去することにより、乾燥被膜が形成される。乾燥方法としては、自然乾燥法、通風乾燥法、加熱乾燥および減圧乾燥法が挙げられる。
<配向膜>
 本発明における配向膜とは、重合性液晶を所望の方向に液晶配向させる、配向規制力を有するものである。
 配向膜としては、重合性液晶組成物の塗布などにより溶解しない溶剤耐性を有し、また、溶剤の除去や重合性液晶の配向のための加熱処理における耐熱性を有するものが好ましい。かかる配向膜としては、配向性ポリマーを含む配向膜、光配向膜及び表面に凹凸パターンや複数の溝を形成し配向させるグルブ配向膜等が挙げられる。
 配向性ポリマーとしては、分子内にアミド結合を有するポリアミドやゼラチン類、分子内にイミド結合を有するポリイミドおよびその加水分解物であるポリアミック酸、ポリビニルアルコール、アルキル変性ポリビニルアルコール、ポリアクリルアミド、ポリオキサゾール、ポリエチレンイミン、ポリスチレン、ポリビニルピロリドン、ポリアクリル酸およびポリアクリル酸エステル類が挙げられる。中でも、ポリビニルアルコールが好ましい。2種以上の配向性ポリマーを組み合わせて用いてもよい。
 配向性ポリマーを含む配向膜は、通常、配向性ポリマーが溶剤に溶解した組成物(以下、配向性ポリマー組成物ということがある。)を基材に塗布し、溶剤を除去する、又は、配向性ポリマー組成物を基材に塗布し、溶剤を除去し、ラビングする(ラビング法)ことで得られる。
 前記溶剤としては、水、メタノール、エタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、メチルセロソルブ、ブチルセロソルブ、プロピレングリコールモノメチルエーテル等のアルコール溶剤、酢酸エチル、酢酸ブチル、エチレングリコールメチルエーテルアセテート、γ-ブチロラクトン、プロピレングリコールメチルエーテルアセテート、乳酸エチルなどのエステル溶剤、アセトン、メチルエチルケトン、シクロペンタノン、シクロヘキサノン、メチルアミルケトン、メチルイソブチルケトン等のケトン溶剤、ペンタン、ヘキサン、ヘプタン等の脂肪族炭化水素溶剤、トルエン、キシレン等の芳香族炭化水素溶剤、アセトニトリル等のニトリル溶剤、テトラヒドロフラン、ジメトキシエタン等のエーテル溶剤、および、クロロホルム、クロロベンゼン等の塩素化炭化水素溶剤が挙げられる。これら溶剤は、単独で用いてもよいし、二種以上を組み合わせて用いてもよい。
 配向性ポリマー組成物中の配向性ポリマーの濃度は、配向性ポリマー材料が、溶剤に完溶できる範囲であればよいが、溶液に対して固形分換算で0.1~20%が好ましく、0.1から10%程度がさらに好ましい。
 配向性ポリマー組成物として、市販の配向膜材料をそのまま使用してもよい。市販の配向膜材料としては、サンエバー(登録商標、日産化学工業(株)製)、オプトマー(登録商標、JSR(株)製)などが挙げられる。
 配向性ポリマー組成物を基材に塗布する方法としては、スピンコ-ティング法、エクストルージョン法、グラビアコーティング法、ダイコーティング法、スリットコーティング法、バーコーティング法、アプリケータ法などの塗布法、フレキソ法などの印刷法などの公知の方法が挙げられる。本位相差フィルムを、後述するRoll to Roll形式の連続的製造方法により製造する場合、当該塗布方法には通常、グラビアコーティング法、ダイコーティング法又はフレキソ法などの印刷法が採用される。
 配向性ポリマー組成物に含まれる溶剤を除去する方法としては、自然乾燥法、通風乾燥法、加熱乾燥及び減圧乾燥法等が挙げられる。
 配向膜に配向規制力を付与するために、必要に応じてラビングを行うことができる(ラビング法)。
 ラビング法により配向規制力を付与する方法としては、ラビング布が巻きつけられ、回転しているラビングロールに、配向性ポリマー組成物を基材に塗布しアニールすることで基材表面に形成された配向性ポリマーの膜を、接触させる方法が挙げられる。
 配向膜に配向規制力を付与するために、必要に応じて光配向を行うことができる(光配向法)。
 光配向膜は、通常、光反応性基を有するポリマー又はモノマーと溶剤とを含む組成物(以下、「光配向膜形成用組成物」ということがある。)を基材に塗布し、光(好ましくは、偏光UV)を照射することで得られる。光配向膜は、照射する光の偏光方向を選択することにより、配向規制力の方向を任意に制御できる点でより好ましい。
 光反応性基とは、光照射することにより液晶配向能を生じる基をいう。具体的には、光照射により生じる分子の配向誘起または異性化反応、二量化反応、光架橋反応もしくは光分解反応等の液晶配向能の起源となる光反応に関与する基が挙げられる。中でも、二量化反応または光架橋反応に関与する基が、配向性に優れる点で好ましい。光反応性基として、不飽和結合、特に二重結合を有する基が好ましく、炭素-炭素二重結合(C=C結合)、炭素-窒素二重結合(C=N結合)、窒素-窒素二重結合(N=N結合)および炭素-酸素二重結合(C=O結合)からなる群より選ばれる少なくとも一つを有する基が特に好ましい。
 C=C結合を有する光反応性基としては、ビニル基、ポリエン基、スチルベン基、スチルバゾ-ル基、スチルバゾリウム基、カルコン基およびシンナモイル基が挙げられる。C=N結合を有する光反応性基としては、芳香族シッフ塩基、芳香族ヒドラゾンなどの構造を有する基が挙げられる。N=N結合を有する光反応性基としては、アゾベンゼン基、アゾナフタレン基、芳香族複素環アゾ基、ビスアゾ基、ホルマザン基、および、アゾキシベンゼン構造を有する基が挙げられる。C=O結合を有する光反応性基としては、ベンゾフェノン基、クマリン基、アントラキノン基およびマレイミド基が挙げられる。これらの基は、アルキル基、アルコキシ基、アリ-ル基、アリルオキシ基、シアノ基、アルコキシカルボニル基、ヒドロキシル基、スルホン酸基、ハロゲン化アルキル基などの置換基を有していてもよい。
 中でも、光二量化反応に関与する光反応性基が好ましく、光配向に必要な偏光照射量が比較的少なく、かつ、熱安定性や経時安定性に優れる光配向膜が得られやすいという点で、シンナモイル基およびカルコン基が好ましい。光反応性基を有するポリマーとしては、当該ポリマー側鎖の末端部が桂皮酸構造となるようなシンナモイル基を有するものが特に好ましい。
 光配向膜形成用組成物を基材上に塗布することにより、基材上に光配向誘起層を形成することができる。該組成物に含まれる溶剤としては、上述の配向性ポリマー組成物に含まれる溶剤と同様のものが挙げられ、光反応性基を有するポリマーあるいはモノマーの溶解性に応じて適宜選択することができる。
 光配向膜形成用組成物中の光反応性基を有するポリマーまたはモノマーの含有量は、ポリマーまたはモノマーの種類や目的とする光配向膜の厚みによって適宜調節できるが、少なくとも0.2質量%とすることが好ましく、0.3~10質量%の範囲がより好ましい。光配向膜の特性が著しく損なわれない範囲で、光配向膜形成用組成物は、ポリビニルアルコ-ルやポリイミドなどの高分子材料や光増感剤を含んでいてもよい。
 光配向膜形成用組成物を基材に塗布する方法としては、配向性ポリマー組成物を基材に塗布する方法と同様の方法が挙げられる。塗布された光配向膜形成用組成物から、溶剤を除去する方法としては、例えば、配向性ポリマー組成物から溶剤を除去する方法と同じ方法が挙げられる。
 偏光を照射するには、基板上に塗布された光配向膜形成用組成物から、溶剤を除去したものに直接、偏光UVを照射する形式でも、基材側から偏光を照射し、偏光を透過させて照射する形式でもよい。また、当該偏光は、実質的に平行光であると特に好ましい。照射する偏光の波長は、光反応性基を有するポリマー又はモノマーの光反応性基が、光エネルギーを吸収し得る波長領域のものがよい。具体的には、波長250~400nmの範囲のUV(紫外線)が特に好ましい。当該偏光照射に用いる光源としては、キセノンランプ、高圧水銀ランプ、超高圧水銀ランプ、メタルハライドランプ、KrF、ArFなどの紫外光レ-ザ-などが挙げられ、高圧水銀ランプ、超高圧水銀ランプ及びメタルハライドランプがより好ましい。これらのランプは、波長313nmの紫外線の発光強度が大きいため好ましい。前記光源からの光を、適当な偏光子を通過して照射することにより、偏光UVを照射することができる。かかる偏光子としては、偏光フィルターやグラントムソン、グランテ-ラ-などの偏光プリズムやワイヤーグリッドタイプの偏光子を用いることができる。
 なお、ラビング又は偏光照射を行う時に、マスキングを行えば、液晶配向の方向が異なる複数の領域(パターン)を形成することもできる。
 グルブ配向膜は、膜表面の凹凸パターンまたは複数の溝によって、液晶配向が得られる膜である。H.V.ケネルらによって、複数の等間隔に並んだ直線状のグルブ(溝)を有する基材に液晶分子を置いた場合、その溝に沿った方向に液晶分子が配向するという事実が報告されている(Physical Review A24(5)、2713ページ、1981年)。
 グルブ配向膜を得る具体的な例としては、感光性ポリイミド表面に周期的なパターン形状のスリットを有する露光用マスクを介して露光後、現像およびリンス処理を行って不要なポリイミド膜を除去し凹凸パターンを形成する方法、表面に溝を有する板状の原盤にUV硬化樹脂層を形成し、樹脂層を基材フィルムへ移してから硬化する方法、UV硬化樹脂層を形成した基材フィルムを搬送し、複数の溝を有するロール状の原盤をUV硬化樹脂層表面に押し当てて凹凸を形成後硬化する方法等が挙げられ、特開平6-34976号公報、特開2011-242743号公報記載の方法等を用いることができる。
 上記方法の中でも、複数の溝を有するロール状の原盤をUV硬化樹脂層表面に押し当てて凹凸を形成後硬化する方法が好ましい。ロール状原盤としては、耐久性の観点からステンレス(SUS)鋼を用いることができる。
 UV硬化樹脂としては、単官能アクリレートの重合体、多官能アクリレートの重合体またはこれらの混合物の重合体を用いることができる。
 単官能アクリレートとは、アクリロイルオキシ基(CH2=CH-COO-)及びメタクリロイルオキシ基(CH2=C(CH3)-COO-)からなる群より選ばれる基(以下、(メタ)アクリロイルオキシ基と記すこともある。)を分子内に1個有する化合物である。
 (メタ)アクリロイルオキシ基を1個有する単官能アクリレートとしては、炭素数4から16のアルキル(メタ)アクリレート、炭素数2から14のβカルボキシアルキル(メタ)アクリレート、炭素数2から14のアルキル化フェニル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、フェノキシポリエチレングリコール(メタ)アクリレート及びイソボニル(メタ)アクリレートなどが挙げられる。
 多官能アクリレートとは、通常、(メタ)アクリロイルオキシ基を分子内に2個乃至6個有する化合物である。
 (メタ)アクリロイルオキシ基を2個有する2官能アクリレートとしては、1,3-ブタンジオールジ(メタ)アクリレート;1,3-ブタンジオール(メタ)アクリレート;1,6-ヘキサンジオールジ(メタ)アクリレート;エチレングリコールジ(メタ)アクリレート;ジエチレングリコールジ(メタ)アクリレート;ネオペンチルグリコールジ(メタ)アクリレート;トリエチレングリコールジ(メタ)アクリレート;テトラエチレングリコールジ(メタ)アクリレート;ポリエチレングリコールジアクリレート;ビスフェノールAのビス(アクリロイロキシエチル)エーテル;エトキシ化ビスフェノールAジ(メタ)アクリレート;プロポキシ化ネオペンチルグリコールジ(メタ)アクリレート;エトキシ化ネオペンチルグリコールジ(メタ)アクリレート及び3-メチルペンタンジオールジ(メタ)アクリレートなどが例示される。
 (メタ)アクリロイルオキシ基を3個乃至6個有する多官能アクリレートとしては、
 トリメチロールプロパントリ(メタ)アクリレート;ペンタエリスリトールトリ(メタ)アクリレート;トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート;エトキシ化トリメチロールプロパントリ(メタ)アクリレート;プロポキシ化トリメチロールプロパントリ(メタ)アクリレート;ペンタエリスリトールテトラ(メタ)アクリレート;ジペンタエリスリトールペンタ(メタ)アクリレート;ジペンタエリスリトールヘキサ(メタ)アクリレート;トリペンタエリスリトールテトラ(メタ)アクリレート;トリペンタエリスリトールペンタ(メタ)アクリレート;トリペンタエリスリトールヘキサ(メタ)アクリレート;トリペンタエリスリトールヘプタ(メタ)アクリレート;トリペンタエリスリトールオクタ(メタ)アクリレート;
 ペンタエリスリトールトリ(メタ)アクリレートと酸無水物との反応物;ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物;
トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物との反応物;
 カプロラクトン変性トリメチロールプロパントリ(メタ)アクリレート;カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレート;カプロラクトン変性トリス(2-ヒドロキシエチル)イソシアヌレートトリ(メタ)アクリレート;カプロラクトン変性ペンタエリスリトールテトラ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレート;カプロラクトン変性ジペンタエリスリトールヘキサ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールテトラ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールペンタ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールヘキサ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールヘプタ(メタ)アクリレート;カプロラクトン変性トリペンタエリスリトールオクタ(メタ)アクリレート;カプロラクトン変性ペンタエリスリトールトリ(メタ)アクリレートと酸無水物との反応物;カプロラクトン変性ジペンタエリスリトールペンタ(メタ)アクリレートと酸無水物との反応物、及びカプロラクトン変性トリペンタエリスリトールヘプタ(メタ)アクリレートと酸無水物などが挙げられる。なお、ここに示した多官能アクリレートの具体例において、(メタ)アクリレートとは、アクリレート又はメタクリレートを意味する。また、カプロラクトン変性とは、(メタ)アクリレート化合物のアルコール由来部位と(メタ)アクリロイルオキシ基との間に、カプロラクトンの開環体、又は、開環重合体が導入されていることを意味する。
 かかる多官能アクリレートには市販品を用いることもできる。
かかる市販品としては、A-DOD-N、A-HD-N、A-NOD-N、APG-100、APG-200、APG-400、A-GLY-9E、A-GLY-20E、A-TMM-3、A-TMPT、AD-TMP、ATM-35E、A-TMMT、A-9550、A-DPH、HD-N、NOD-N、NPG、TMPT(新中村化学株式会社製)、「ARONIX M-220」、同「M-325」、同「M-240」、同「M-270」同「M-309」、同「M-310」、同「M-321」、同「M-350」 、同「M-360」 、同「M-305」 、同「M-306」 、同「M-450」 、同「M-451」 、同「M-408」 、同「M-400」 、同「M-402」 、同「M-403」 、同「M-404」 、同「M-405」 、同「M-406」(東亜合成株式会社製)、「EBECRYL11」、同「145」 、同「150」 、同「40」 、同「140」 、同「180」 、DPGDA、HDDA、TPGDA、HPNDA、PETIA、PETRA、TMPTA、TMPEOTA、DPHA、EBECRYLシリーズ(ダイセル・サイテック株式会社製)などを挙げることができる。
 グルブ配向膜の凹凸としては、凸部の幅は0.05~5μmであることが好ましく、凹部の幅は0.1~5μmであることが好ましく、凹凸の段差の深さは2μm以下、好ましくは0.01~1μm以下であることが好ましい。この範囲であれば、配向乱れの小さな液晶配向を得ることができる。
 配向膜の厚さは、通常10nm~10000nmの範囲であり、好ましくは10nm~1000nmの範囲であり、より好ましくは500nm以下であり、さらに好ましくは10nm~500nmの範囲である。
 重合性液晶の液晶配向は、配向膜及び重合性液晶の性質によって制御される。
例えば、配向膜が配向規制力として水平配向規制力を発現させる材料であれば、重合性液晶は水平配向またはハイブリッド配向を形成することができ、垂直配向規制力を発現させる材料であれば、重合性液晶は垂直配向または傾斜配向を形成することができる。
 配向規制力は、配向膜が配向性ポリマーから形成されている場合は、表面状態やラビング条件によって任意に調整することが可能であり、光配向性ポリマーから形成されている場合は、偏光照射条件等によって任意に調整することが可能である。また、重合性液晶の、表面張力や液晶性等の物性を選択することにより、液晶配向を制御することもできる。
 重合性液晶の重合は、重合性官能基を有する化合物を重合させる公知の方法により行うことができる。具体的には、熱重合および光重合が挙げられ、重合の容易さの観点から、光重合が好ましい。光重合により重合性液晶を重合させる場合、光重合開始剤を含有した重合性液晶組成物を塗布し、乾燥して得られる乾燥被膜中の重合性液晶を液晶相状態にした後、該液晶状態を保持したまま、光重合させることが好ましい。
 光重合は、通常、乾燥被膜に光を照射することにより実施される。照射する光としては、乾燥被膜に含まれる光重合開始剤の種類、重合性液晶の種類(特に、重合性液晶が有する光重合基の種類)およびその量に応じて、適宜選択され、具体的には、可視光、紫外光およびレーザー光からなる群より選択される光、活性電子線が挙げられる。中でも、重合反応の進行を制御し易い点、および、光重合装置として当分野で広範に用いられているものが使用できるという点で、紫外光が好ましく、紫外光によって光重合可能なように、重合性液晶と光重合開始剤との種類を選択することが好ましい。また、重合時に、適切な冷却手段により乾燥被膜を冷却しながら、光照射することで、重合温度を制御することもできる。このような冷却手段の採用により、より低温で重合性液晶の重合を実施すれば、基材が比較的耐熱性が低いものを用いたとしても、適切に位相差層を形成できる。光重合の際、マスキングや現像を行うなどによって、パターニングされた位相差層を得ることもできる。
 重合性液晶組成物は、1種以上のレベリング剤を含有することが好ましい。レベリング剤は、重合性液晶組成物の流動性を調整し、重合性液晶組成物を塗布することにより得られる塗布膜をより平坦にする機能を有し、具体的には、界面活性剤が挙げられる。レベリング剤としては、ポリアクリレート化合物を主成分とするレベリング剤およびフッ素原子含有化合物を主成分とするレベリング剤およびシリコーン化合物を主成分とするレベリング剤からなる群から選ばれる少なくとも1種が好ましく、中でもポリアクリレート化合物を主成分とするレベリング剤およびフッ素原子含有化合物を主成分とするレベリング剤が好ましい。
 ポリアクリレート化合物を主成分とするレベリング剤としては、「BYK-350」、「BYK-352」、「BYK-353」、「BYK-354」、「BYK-355」、「BYK-358N」、「BYK-361N」、「BYK-380」、「BYK-381」および「BYK-392」[BYK Chemie社]が挙げられる。
 フッ素原子含有化合物を主成分とするレベリング剤としては、「メガファック(登録商標)R-08」、同「R-30」、同「R-90」、同「F-410」、同「F-411」、同「F-443」、同「F-445」、同「F-470」、同「F-471」、同「F-477」、同「F-479」、同「F-482」および同「F-483」[DIC(株)];「サーフロン(登録商標)S-381」、同「S-382」、同「S-383」、同「S-393」、同「SC-101」、同「SC-105」、「KH-40」および「SA-100」[AGCセイミケミカル(株)];「E1830」、「E5844」[(株)ダイキンファインケミカル研究所];「エフトップEF301」、「エフトップEF303」、「エフトップEF351」および「エフトップEF352」[三菱マテリアル電子化成(株)]が挙げられる。
 重合性液晶組成物がレベリング剤を含有する場合、その含有量は、重合性液晶100質量部に対して、0.01質量部以上5質量部以下が好ましく、0.05質量部以上5質量部以下がより好ましく、0.05質量部以上3質量部以下がさらに好ましい。レベリング剤の含有量が前記の範囲内であると、重合性液晶を水平配向させることが容易であり、かつ、得られる偏光層がより平滑となる傾向がある。重合性液晶に対するレベリング剤の含有量が前記の範囲内であると、得られる位相差層にムラが生じにくい傾向がある。
 重合性液晶組成物は、1種以上の重合開始剤を含有することが好ましい。重合開始剤は、重合性液晶の重合反応を開始し得る化合物であり、より低温条件下で、重合反応を開始できる点で、光重合開始剤が好ましい。具体的には、光の作用により活性ラジカルまたは酸を発生できる光重合開始剤が挙げられ、中でも、光の作用によりラジカルを発生する光重合開始剤が好ましい。
 重合開始剤としては、ベンゾイン化合物、ベンゾフェノン化合物、アルキルフェノン化合物、アシルホスフィンオキサイド化合物、トリアジン化合物、ヨードニウム塩およびスルホニウム塩が挙げられる。
 ベンゾイン化合物としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテルおよびベンゾインイソブチルエーテルが挙げられる。
 ベンゾフェノン化合物としては、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド、3,3’,4,4’-テトラ(tert-ブチルパーオキシカルボニル)ベンゾフェノンおよび2,4,6-トリメチルベンゾフェノンが挙げられる。
 アルキルフェノン化合物としては、ジエトキシアセトフェノン、2-メチル-2-モルホリノ-1-(4-メチルチオフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)ブタン-1-オン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1,2-ジフェニル-2,2-ジメトキシエタン-1-オン、2-ヒドロキシ-2-メチル-1-〔4-(2-ヒドロキシエトキシ)フェニル〕プロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトンおよび2-ヒドロキシ-2-メチル-1-〔4-(1-メチルビニル)フェニル〕プロパン-1-オンのオリゴマーが挙げられる。
 アシルホスフィンオキサイド化合物としては、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドおよびビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイドが挙げられる。
 トリアジン化合物としては、2,4-ビス(トリクロロメチル)-6-(4-メトキシフェニル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシナフチル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-(4-メトキシスチリル)-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(5-メチルフラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(フラン-2-イル)エテニル〕-1,3,5-トリアジン、2,4-ビス(トリクロロメチル)-6-〔2-(4-ジエチルアミノ-2-メチルフェニル)エテニル〕-1,3,5-トリアジンおよび2,4-ビス(トリクロロメチル)-6-〔2-(3,4-ジメトキシフェニル)エテニル〕-1,3,5-トリアジンが挙げられる。
 重合開始剤には、市販のものを用いることができる。市販の重合開始剤としては、「イルガキュア(Irgacure)(登録商標)907」、「イルガキュア(登録商標)184」、「イルガキュア(登録商標)651」、「イルガキュア(登録商標)819」、「イルガキュア(登録商標)250」、「イルガキュア(登録商標)369」(チバ・ジャパン(株));「セイクオール(登録商標)BZ」、「セイクオール(登録商標)Z」、「セイクオール(登録商標)BEE」(精工化学(株));「カヤキュアー(kayacure)(登録商標)BP100」(日本化薬(株));「カヤキュアー(登録商標)UVI-6992」(ダウ社製);「アデカオプトマーSP-152」、「アデカオプトマーSP-170」((株)ADEKA);「TAZ-A」、「TAZ-PP」(日本シイベルヘグナー社);および「TAZ-104」(三和ケミカル社)が挙げられる。
 重合性液晶組成物が重合開始剤を含有する場合、その含有量は、該組成物に含有される重合性液晶の種類およびその量に応じて適宜調節できるが、重合性液晶100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。重合性開始剤の含有量が、この範囲内であれば、重合性液晶の配向を乱すことなく重合させることができる。また、重合開始剤の含有量は少ないことが、重合開始剤の分解物に起因する着色を抑制し、a*を式(6)の範囲とし、b*を式(7)の範囲とすることが容易となり、好ましい。
 重合性液晶組成物が光重合開始剤を含有する場合、該組成物は光増感剤をさらに含有していてもよい。光増感剤としては、キサントン、チオキサントンなどのキサントン化合物(例えば、2,4-ジエチルチオキサントン、2-イソプロピルチオキサントンなど);アントラセン、アルコキシ基含有アントラセン(例えば、ジブトキシアントラセンなど)などのアントラセン化合物;フェノチアジンおよびルブレンが挙げられる。
 重合性液晶組成物が光重合開始剤および光増感剤を含有する場合、該組成物に含有される重合性液晶の重合反応をより促進することができる。光増感剤の使用量は、光重合開始剤および重合性液晶の種類およびその量に応じて適宜調節できるが、重合性液晶100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。また、光増感剤の含有量は少ないことが、光増感剤に起因する着色を抑制し、a*を式(6)の範囲とし、b*を式(7)の範囲とすることが容易となり、好ましい。
 重合性液晶の重合反応をより安定的に進行させるために、重合性液晶組成物は適量の重合禁止剤を含有してもよく、これにより、重合性液晶の重合反応の進行度合いを制御しやすくなる。
 重合禁止剤としては、ハイドロキノン、アルコキシ基含有ハイドロキノン、アルコキシ基含有カテコール(例えば、ブチルカテコールなど)、ピロガロール、2,2,6,6-テトラメチル-1-ピペリジニルオキシラジカルなどのラジカル捕捉剤;チオフェノール類;β-ナフチルアミン類およびβ-ナフトール類が挙げられる。
 重合性液晶組成物が重合禁止剤を含有する場合、その含有量は、重合性液晶の種類およびその量、並びに光増感剤の使用量などに応じて適宜調節できるが、重合性液晶100質量部に対して、0.1~30質量部が好ましく、0.5~10質量部がより好ましく、0.5~8質量部がさらに好ましい。重合禁止剤の含有量が、この範囲内であれば、重合性液晶の配向を乱すことなく重合させることができる。
 本位相差フィルムを製造する場合、第一の位相差層、第二の位相差層及び第三の位相差層を形成する順序は任意である。
 基材上に、配向膜を介するかまたは介さずに第一の位相差層を形成し、該第一の位相差層の上に、配向膜を介するかまたは介さずに第二の位相差層が形成してもよい。この場合、本位相差フィルムは、基材上に配向膜を介して、または配向膜を介することなく、第一の位相差層を備え、該第一の位相差層の上に、配向膜を介して、または配向膜を介することなく、第二の位相差層を備えた構成となる。この際、第一の位相差層と第二の位相差層の間に保護層があってもよい。
基材上に、配向膜を介するかまたは介さずに第二の位相差層を形成し、該第二の位相差層の上に、配向膜を介するかまたは介さずに第一の位相差層を形成してもよい。この場合、本位相差フィルムは、基材上に、配向膜を介して、または配向膜を介することなく、第二の位相差層を備え、該第二の位相差層の上に、配向膜を介して、または配向膜を介することなく、第一の位相差層を備えた構成となる。この際、第一の位相差層と第二の位相差層の間に保護層があってもよい。
 基材の一方の面に、配向膜を介するかまたは介さずに第一の位相差層を形成し、該第一の位相差層の上に、配向膜を介するかまたは介さずに第二の位相差層を形成してもよい。
この場合、本位相差フィルムは、基材の一方の面に、配向膜を介して、または配向膜を介することなく第一の位相差層を備え、該第一の位相差層の上に配向膜を介して、または配向膜を介することなく、第二の位相差層を備えた構成となる。
 基材の一方の面に、配向膜を介するかまたは介さずに第二の位相差層を形成し、該第二の位相差層の上に、配向膜を介するかまたは介さずに第一の位相差層を形成し、基材の他方の面に、配向膜を介するかまたは介さずに第二の位相差層を形成してもよい。この場合、本位相差フィルムは、基材の一方面に、配向膜を介して、または配向膜を介することなく、第二の位相差層を備え、該第二の位相差層の上に、配向膜を介して、または配向膜を介することなく、第一の位相差層を備え、前記基材の他方の面に、配向膜を介して、または配向膜を介することなく、第二の位相差層を備えた構成となる。
 また、それぞれ製造した第一の位相差層と第二の位相差層を被転写基材に粘着剤や接着剤を用いて転写形成してもよく、偏光板に粘着剤または接着剤を介して第一の位相差層を形成し、さらに粘着剤又は接着剤を介して第二の位相差層を形成することで非常に薄型かつ高性能の円偏光板を作製できる点で好ましい形態と言える。
 また、光学フィルム薄膜化の点から、本発明において少なくとも第一の位相差層と第二の位相差層を含む層の厚さは60μm以下であることが好ましく、より好ましくは40μm以下であり、更に好ましくは20μm以下である。
<保護層>
 保護層は、通常、多官能アクリレート(メタクリレート)、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート等からなるアクリル系オリゴマーあるいはポリマー、ポリビニルアルコール、エチレン-ビニルアルコール共重合体、ポリビニルピロリドン、デンプン類、メチルセルロース、カルボキシメチルセルロース、アルギン酸ナトリウム等の水溶性ポリマーと溶剤とを含有する保護層形成用組成物から形成されることが好ましい。
 保護層形成用組成物に含有される溶剤は、前記した溶剤と同様のものが挙げられ、中でも、水、アルコール溶剤およびエーテル溶剤からなる群より選ばれる少なくとも一つの溶剤が、保護層を形成する層を溶解させることがない点で、好ましい。アルコール溶剤としては、メタノール、エタノール、ブタノール、エチレングリコール、イソプロピルアルコール、プロピレングリコール、エチレングリコールメチルエーテル、エチレングリコールブチルエーテルおよびプロピレングリコールモノメチルエーテルが挙げられる。エーテル溶剤としては、エチレングリコールモノメチルエーテルアセテートおよびプロピレングリコールモノメチルエーテルアセテートが挙げられる。中でも、エタノール、イソプロピルアルコール、プロピレングリコールモノメチルエーテルおよびプロピレングリコールモノメチルエーテルアセテートが好ましい。
 保護層の厚さは、通常20μm以下である。保護層の厚さは、0.5μm以上10μm以下が好ましく、1μm以上5μm以下がより好ましい。保護層の厚さは、通常、干渉膜厚計、レーザー顕微鏡または触針式膜厚計による測定によって求めることができる。
 続いて、連続的に本位相差フィルムを製造する方法について説明する。このような連続的
に本位相差フィルムを製造する好適な方法として、Roll to Roll形式による方法
が挙げられる。ここでは、重合性液晶を重合させることにより形成される位相差層の製造方法について説明するが、重合性液晶を重合させることにより形成される位相差層にかえて、延伸フィルムからなる位相差層を用いてもよい、この場合、下記製造工程における「重合性液晶組成物を塗布し」を「延伸フィルムを積層し」に読み替えればよい。
 また、下記に代表的な構成の製造方法を例示するが、その他の構成は、下記製造方法に準じて実施すればよい。
(1)基材が巻芯に巻き取られているロールを準備する工程、
(2)該ロールから、該基材を連続的に送り出す工程、
(3)該基材上に配向膜を連続的に形成する工程、
(4)該配向膜上に重合性液晶組成物を塗布し、連続的に第一の位相差層を形成する工程、
(5)前記(4)で得られた第一の位相差層の上に保護層を連続的に形成する工程、
(6)前記(5)で得られた保護層の上に配向膜を連続的に形成する工程、
(7)前記(6)で得られた配向膜の上に重合性液晶組成物を塗布し、連続的に第二の位相差層を形成する工程、
(8)連続的に得られた位相差フィルムを第2の巻芯に巻き取り、第2ロールを得る工程を順に行う方法が挙げられる。なお、工程(3)、(5)及び(6)は、必要に応じて省略してもよく、この際、工程(4)における「該配向膜上」は、「該基材上」に、工程(6)における「前記(5)で得られた保護層」は、「該第一の位相差層」に、工程(7)における「前記(6)で得られた配向膜」は、「該第一の位相差層」又は「前記(5)で得られた保護層」に読み替える。また、搬送時のシワやカールを抑制するために、各工程におけるフィルム搬送時には、保護フィルムを貼合してもよい。
 また、
(1a)基材が巻芯に巻き取られているロールを準備する工程、
(2a)該ロールから、該基材を連続的に送り出す工程、
(3a)該基材上に配向膜を連続的に形成する工程、
(4a)該配向膜上に重合性液晶組成物を塗布し、連続的に第二の位相差層を形成する工程、
(5a)前記(4a)で得られた第二の位相差層の上に保護層を連続的に形成する工程、(6a)前記(5a)で得られた保護層の上に配向膜を連続的に形成する工程、
(7a)前記(6a)で得られた配向膜の上に重合性液晶組成物を塗布し、連続的に第一の位相差層を形成する工程、
(8a)連続的に得られた位相差フィルムを第2の巻芯に巻き取り、第2ロールを得る工程
を順に行う方法も挙げられる。なお、工程(3a)、(5a)及び(6a)は、必要に応じて省略してもよく、この際、工程(4a)における「該配向膜上」は、「該基材上」に、工程(6a)における「前記(5a)で得られた保護層」は、「該第二の位相差層」に、工程(7a)における「前記(6a)で得られた配向膜」は、「該第二の位相差層」又は「前記(5a)で得られた保護層」に読み替える。また、搬送時のシワやカールを抑制するために、各工程におけるフィルム搬送時には、保護フィルムを貼合してもよい。
 また、
(1b)基材が巻芯に巻き取られているロールを準備する工程、
(2b)該ロールから、該基材を連続的に送り出す工程、
(3b)該基材上に配向膜を連続的に形成する工程、
(4b)該配向膜上に重合性液晶組成物を塗布し、連続的に第一の位相差層を形成する工程、
(5b)前記(4b)で得られた第一の位相差層と反対の基材面に配向膜を連続的に形成する工程、
(6b)前記(5b)で得られた配向膜上に重合性液晶組成物を塗布し、連続的に第二の位相差層を形成する工程、
(7b)連続的に得られた位相差フィルムを第2の巻芯に巻き取り、第2ロールを得る工程
を順に行う方法も挙げられる。なお、工程(3b)、及び(5b)は、必要に応じて省略してもよく、この際、工程(4b)における「該配向膜上」は、「該基材上」に、工程(6b)における「前記(5b)で得られた配向膜上」は、「前記(4b)で得られた第一の位相差層と反対の基材面」に読み替える。また、搬送時のシワやカールを抑制するために、各工程におけるフィルム搬送時には、保護フィルムを貼合してもよい。
 また、
(1c)透明基材が巻芯に巻き取られているロールを準備する工程、
(2c)該ロールから、該透明基材を連続的に送り出す工程、
(3c)該透明基材上に配向膜を連続的に形成する工程、
(4c)該配向膜上に重合性液晶組成物を塗布し、連続的に第二の位相差層を形成する工程、
(5c)前記(4c)で得られた第二の位相差層と反対の基材面に配向膜を連続的に形成する工程、
(6c)前記(5c)で得られた配向膜上に重合性液晶組成物を塗布し、連続的に第一の位相差層を形成する工程、
(7c)連続的に得られた位相差フィルムを第2の巻芯に巻き取り、第2ロールを得る工程
を順に行う方法も挙げられる。なお、工程(3c)、及び(5c)は、必要に応じて省略してもよく、この際、工程(4c)における「該配向膜上」は、「該基材上」に、工程(6c)における「前記(5c)で得られた配向膜上」は、「前記(4c)で得られた第二の位相差層と反対の基材面」に読み替える。また、搬送時のシワやカールを抑制するために、各工程におけるフィルム搬送時には、保護フィルムを貼合してもよい。
 また、
(1e)基材が巻芯に巻き取られているロールを準備する工程、
(2e)該ロールから、該基材を連続的に送り出す工程、
(3e)該基材上に配向膜を連続的に形成する工程、
(4e)該配向膜上に重合性液晶組成物を塗布し、連続的に第一の位相差層を形成する工程、
(5e)前記(4e)で得られた第一の位相差層の上に保護層を連続的に形成する工程、(6e)前記(5e)で得られた保護層の上に配向膜を連続的に形成する工程、
(7e)前記(6e)で得られた配向膜の上に重合性液晶組成物を塗布し、連続的に第二の位相差層を形成する工程、
(8e)前記(4e)で得られた第一の位相差層と反対の基材面に配向膜を連続的に形成する工程、
(9e)前記(8e)で得られた配向膜上に重合性液晶組成物を塗布し、連続的に第三の位相差層を形成する工程、
(10e)連続的に得られた位相差フィルムを第2の巻芯に巻き取り、第2ロールを得る工
程を順に行う方法も挙げられる。なお、
工程(3e)、(5e)及び(8e)は、必要に応じて省略してもよく、この際、
工程(4e)における「該配向膜上」は、「該基材上」に、工程(6e)における「前記(5e)で得られた保護層」は、「前記(4e)で得られた第一の位相差層」に、工程(9e)における、「前記(8e)で得られた配向膜上」は、「前記(4e)で得られた第一の位相差層と反対の基材面」に読み替える。また、搬送時のシワやカールを抑制するために、各工程におけるフィルム搬送時には、保護フィルムを貼合してもよい。また、搬送時のシワやカールを抑制するために、各工程におけるフィルム搬送時には、保護フィルムを貼合してもよい。
<粘接着剤>
 第一の位相差層、第二の位相差層、偏光板等の接着には粘接着剤を用いてもよい。粘接着剤としては、例えば、粘着剤、水系接着剤及び活性エネルギー線硬化型接着剤が挙げられる。
 粘着剤として一般的には、(メタ)アクリル酸エステルを主成分とし、官能基を有する(メタ)アクリルモノマーを少量含有するアクリル系モノマー混合物を、重合開始剤の存在下にラジカル重合することにより得られ、ガラス転移温度Tgが0℃以下のアクリル系樹脂と、架橋剤とを含有するアクリル系粘着剤が好ましく用いられる。
(メタ)アクリル酸エステルのなかでは、アクリル酸アルキルエステルが好ましく、中でも、アクリル酸n-ブチル、アクリル酸2-メトキシエチルやアクリル酸エトキシメチルが好ましい。
 アクリル系樹脂を構成するもう一つのモノマー成分となる官能基を有する(メタ)アクリルモノマーは、オレフィン性二重結合である(メタ)アクリロイル基を分子内に1個有するとともに、水酸基、カルボキシル基、アミド基、アミノ基、又はエポキシ基のような極性官能基を同一分子内に有する化合物である。なかでも、アクリロイル基がオレフィン性二重結合となるアクリルモノマーが好ましい。そのような官能基を有するアクリルモノマーの例を挙げると、水酸基を有するものとして、アクリル酸2-ヒドロキシエチルが好ましく、またカルボキシル基を有するものとして、アクリル酸が好ましい。
 アクリル系樹脂の原料となるアクリルモノマー混合物は、上記の(メタ)アクリル酸エステル及び官能基を有する(メタ)アクリルモノマー以外のモノマー(以下、「第三モノマー」と呼ぶことがある)をさらに含有してもよい。その例としては、分子内に1個のオレフィン性二重結合と少なくとも1個の芳香環を有するモノマー、スチレン系モノマー、分子内に脂環式構造を有する(メタ)アクリル酸エステル、ビニル系モノマー、分子内に複数の(メタ)アクリロイル基を有するモノマーなどが挙げられる。
 とりわけ、分子内に1個のオレフィン性二重結合と少なくとも1個の芳香環を有するモノマーは、好ましいものの一つである。そのなかでも、2-フェノキシエチル(メタ)アクリレート、2-(2-フェノキシエトキシ)エチル(メタ)アクリレート、エチレンオキシド変性ノニルフェノールの(メタ)アクリレート、2-(o-フェニルフェノキシ)エチル(メタ)アクリレートが好ましく。これらのなかでも、2-フェノキシエチルアクリレートがさらに好ましい。
 (メタ)アクリル酸エステル及び官能基を有する(メタ)アクリルモノマー以外のモノマー(第三モノマー)は、それぞれ単独で用いてもよいし、異なる複数種を併用してもよい。これら第三モノマーに由来する構造単位は、アクリル系樹脂全体を基準に、通常0~20重量%の範囲で存在することができ、好ましくは0~10重量%である。
 アクリル系粘着剤を構成するアクリル系樹脂は、ゲルパーミエイションクロマトグラフィー(GPC)による標準ポリスチレン換算の重量平均分子量Mw が、100万~200万の範囲にあることが好ましい。この重量平均分子量Mw が100万以上であると、高温高湿下での接着性が向上し、液晶セルを構成するガラス基板と粘着剤層との間に浮きや剥がれの発生する可能性が小さくなる傾向にあり、しかもリワーク性が向上する傾向にあることから好ましい。また、アクリル系樹脂の上記重量平均分子量Mw が200万以下であると、偏光板の寸法が変化しても、その寸法変化に粘着剤層が追随して変動するので、ディスプレイの光抜けや色ムラが抑制される傾向にあることから好ましい。さらに、重量平均分子量Mwと数平均分子量Mnとの比Mw/Mnで表される分子量分布は、3~7の範囲にあることが好ましい。
 アクリル系粘着剤に含有されるアクリル系樹脂は、上記のような比較的高分子量のものだけで構成することもできるが、それとは異なるアクリル系樹脂との混合物で構成することもできる。混合して用いることができるアクリル系樹脂の例を挙げると、上記式(I)で示される(メタ)アクリル酸エステルに由来する構造単位を主成分とし、重量平均分子量が5万~30万の範囲にあるものなどがある。
 アクリル系粘着剤を構成する上記のアクリル系樹脂は、例えば、溶液重合法、乳化重合法、塊状重合法、懸濁重合法など、公知の各種方法によって製造することができる。このアクリル系樹脂の製造においては通常、重合開始剤が用いられる。重合開始剤としては、アゾ系化合物、有機過酸化物、無機過酸化物、過酸化物と還元剤を併用したレドックス系開始剤などが挙げられる。なかでも、2,2’-アゾビスイソブチロニトリル、過酸化ベンゾイル、過硫酸アンモニウムなどが好ましく用いられる。重合開始剤は、アクリル系樹脂の原料となるモノマーの総量100質量部に対して、通常 0.001~5質量部程度の割合で用いられる。
 こうして得られるアクリル系樹脂に、架橋剤を配合して粘着剤とされる。架橋剤は、アクリル系樹脂中の極性官能基を有するモノマーに由来する構造単位と架橋反応し得る官能基を、分子内に少なくとも2個有する化合物であり、例えば、イソシアネート系化合物、エポキシ系化合物、金属キレート系化合物、アジリジン系化合物などが挙げられる。
 これらの架橋剤のなかでも、イソシアネート系化合物が好ましく用いられる。イソシアネート系化合物は、分子内にイソシアナト基(-NCO)を少なくとも2個有する化合物それ自体のほか、それをポリオールに反応させたアダクト体、その二量体、三量体などの形で用いることができる。具体例を挙げると、トリレンジイソシアネート、トリレンジイソシアネートをポリオールと反応させて得られるアダクト体、トリレンジイソシアネートの二量体、トリレンジイソシアネートの三量体、ヘキサメチレンジイソシアネート、ヘキサメチレンジイソシアネートをポリオールと反応させて得られるアダクト体、ヘキサメチレンジイソシアネートの二量体、ヘキサメチレンジイソシアネートの三量体などがある。
 架橋剤は、アクリル系樹脂100質量部に対して、通常 0.01~5質量部程度の割合で配合され、とりわけ0.1~5質量部、さらには0.2~3質量部の割合で配合するのが好ましい。アクリル系樹脂100質量部に対する架橋剤の配合量を 0.01質量部以上、とりわけ 0.1質量部以上とすれば、粘着剤層の耐久性が向上する傾向にある。
 粘着剤には、必要に応じて、他の成分を配合することもできる。配合しうる他の成分として、金属微粒子、金属酸化物微粒子、又は金属等をコーティングした微粒子のような、導電性の微粒子、イオン導電性組成物、有機のカチオン又はアニオンを有するイオン性化合物、シランカップリング剤、架橋触媒、耐候安定剤、タッキファイヤー、可塑剤、軟化剤、染料、顔料、無機フィラー、上記アクリル系樹脂以外の樹脂、有機ビーズ等の光拡散性微粒子などが挙げられる。また、粘着剤に紫外線硬化性化合物を配合し、粘着剤層を形成した後に紫外線を照射して硬化させ、より硬い粘着剤層とすることも有用である。
 粘着剤を構成するこれらの各成分は、通常、酢酸エチル等の適当な溶剤に溶かした状態で粘着剤組成物として使用される。粘着剤組成物を、適当な基材上に塗布し、乾燥させることで、粘着剤層が得られる。一部、溶剤に溶解しない成分もあるが、それらは系中に分散した状態であればよい。
 粘着剤層を本位相差フィルム上に形成する方法としては、例えば、基材として剥離フィルムを用い、上記の粘着剤組成物を塗布して粘着剤層を形成し、得られる粘着剤層を本光学フィルムの表面に移設する方法、本位相差フィルム表面に上記の粘着剤組成物を直接塗布して粘着剤層を形成する方法などが採用される。また、1枚の剥離フィルム上に粘着剤層を形成した後、さらにその粘着剤層の上に別の剥離フィルムを貼合して、両面セパレーター型粘着剤シートとすることもできる。このような両面セパレーター型粘着剤シートは、必要な時期に片側の剥離フィルムを剥がし、本位相差フィルム上へ貼合される。両面セパレーター型粘着剤シートの市販品としては、例えば、リンテック株式会社や日東電工株式会社から販売されているノンキャリア粘着剤フィルムやノンキャリア粘着剤シートがある。
 剥離フィルムは、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリカーボネート、ポリアリレート、ポリプロピレン又はポリエチレンのような各種の樹脂からなるフィルムを基材とし、この基材の粘着剤層との接合面に、シリコーン処理のような離型処理が施されたものであることができる。このような剥離フィルムは、セパレートフィルム又はセパレーターとも呼ばれる。
 粘着剤層の厚さは、5~50μmであるのが好ましく、さらには5~30μmであるのがより好ましい。粘着剤層の厚さを30μm以下とすることにより、高温高湿下での接着性が向上し、ディスプレイと粘着剤層との間に浮きや剥がれの発生する可能性が低くなる傾向にあり、リワーク性も向上する傾向にある。また、その厚さを5μm以上とすることにより、そこに貼合されている偏光板の寸法が変化してもその寸法変化に粘着剤層が追随して変動するので、寸法変化に対する耐久性が向上する。
 水系接着剤としては、例えば、主成分としてポリビニルアルコール系樹脂又はウレタン樹脂を用い、接着性を向上させるために、イソシアネート系化合物やエポキシ化合物のような架橋剤又は硬化性化合物を配合した組成物とするのが一般的である。
 水系接着剤の主成分としてポリビニルアルコール系樹脂を用いる場合、部分ケン化ポリビニルアルコール及び完全ケン化ポリビニルアルコールのほか、カルボキシル基変性ポリビニルアルコール、アセトアセチル基変性ポリビニルアルコール、メチロール基変性ポリビニルアルコール、及びアミノ基変性ポリビニルアルコールのような、変性されたポリビニルアルコール系樹脂を用いてもよい。このようなポリビニルアルコール系樹脂の水溶液が水系接着剤として用いられるが、水系接着剤中のポリビニルアルコール系樹脂の濃度は、水100質量部に対して、通常1~10質量部であり、好ましくは1~5質量部である。
 ポリビニルアルコール系樹脂の水溶液からなる水系接着剤には、前記したように接着性を向上させるために、多価アルデヒド、水溶性エポキシ樹脂、メラミン系化合物、ジルコニア系化合物、及び亜鉛化合物のような硬化性化合物を配合することができる。水溶性エポキシ樹脂の例を挙げると、ジエチレントリアミンやトリエチレンテトラミンのようなポリアルキレンポリアミンとアジピン酸のようなジカルボン酸との反応で得られるポリアミドポリアミンに、エピクロロヒドリンを反応させて得られる水溶性のポリアミドエポキシ樹脂がある。このようなポリアミドエポキシ樹脂の市販品として、住化ケムテックス株式会社から販売されている「スミレーズレジン650」及び「スミレーズレジン675」、日本PMC株式会社から販売されている「WS-525」などがある。水溶性エポキシ樹脂を配合する場合、その添加量は、ポリビニルアルコール系樹脂100質量部に対して、通常1~100質量部程度であり、好ましくは1~50質量部である。
 また、水系接着剤の主成分としてウレタン樹脂を用いる場合、ポリエステル系アイオノマー型ウレタン樹脂を水系接着剤の主成分とするのが有効である。ここでいうポリエステル系アイオノマー型ウレタン樹脂とは、ポリエステル骨格を有するウレタン樹脂であって、その中に少量のイオン性成分(親水成分)が導入されたものである。かかるアイオノマー型ウレタン樹脂は、乳化剤を使用せずに直接、水中で乳化してエマルジョンとなるため、水系の接着剤とすることができる。ポリエステル系アイオノマー型ウレタン樹脂を用いる場合は、架橋剤として水溶性のエポキシ化合物を配合するのが有効である。ポリエステル系アイオノマー型ウレタン樹脂を偏光板の接着剤とすることは、例えば、特開 2005-70140号公報や特開2005-208456号公報に記載されている。
 水系接着剤を構成するこれらの各成分は、通常、水に溶かした状態で使用される。水系接着剤を、適当な基材上に塗布し、乾燥させることで、接着剤層が得られる。水に溶解しない成分は、系中に分散した状態であればよい。
 前記接着剤層を本位相差フィルム上に形成する方法としては、本位相差フィルム表面に上記の接着剤組成物を直接塗布して接着剤層を形成する方法などが挙げられる。前記接着剤層の厚さは、通常0.001~5μm程度であり、好ましくは0.01μm以上、また好ましくは4μm以下、さらに好ましくは3μm以下である。接着剤層が厚すぎると、偏光板の外観不良となりやすい。
 また、例えば、得られた水系接着剤を偏光板と本位相差フィルムの間に注入後、加熱することで水を蒸発させつつ、熱架橋反応を進行させることで両者に十分な接着性を与えることができる。
 活性エネルギー線硬化型接着剤は、活性エネルギー線の照射を受けて硬化し、偏光板と本位相差フィルムとを、実用に足る強度で接着できるものであればよい。例えば、エポキシ化合物とカチオン重合開始剤を含有するカチオン重合性の活性エネルギー線硬化型接着剤、アクリル系硬化成分とラジカル重合開始剤を含有するラジカル重合性の活性エネルギー線硬化型接着剤、エポキシ化合物のようなカチオン重合性の硬化成分及びアクリル系化合物のようなラジカル重合性の硬化成分の両者を含有し、そこにカチオン重合開始剤及びラジカル重合開始剤を配合した活性エネルギー線硬化型接着剤、及び開始剤を含まない活性エネルギー線硬化型接着剤に電子ビームを照射することで硬化させる電子線硬化型接着剤等が挙げられる。好ましくは、アクリル系硬化成分とラジカル重合開始剤を含有するラジカル重合性の活性エネルギー線硬化型接着剤である。また、実質的に無溶剤で使用できる、エポキシ化合物とカチオン重合開始剤を含有するカチオン重合性の活性エネルギー線硬化型接着剤が好ましい。
 カチオン重合可能なエポキシ化合物であって、それ自身が室温において液体であり、溶剤を存在させなくても適度な流動性を有し、適切な硬化接着強度を与えるものを選択し、それに適したカチオン重合開始剤を配合した活性エネルギー線硬化型接着剤は、偏光板の製造設備において、偏光子と透明保護フィルムとを接着する工程で通常必要となる乾燥設備を省くことができる。また、適切な活性エネルギー線量を照射することで硬化速度を促進させ、生産速度を向上させることもできる。
 このような接着剤に用いられるエポキシ化合物は、例えば、水酸基を有する芳香族化合物又は鎖状化合物のグリシジルエーテル化物、アミノ基を有する化合物のグリシジルアミノ化物、C-C二重結合を有する鎖状化合物のエポキシ化物、飽和炭素環に直接若しくはアルキレンを介してグリシジルオキシ基若しくはエポキシエチル基が結合しているか、又は飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物などであることができる。これらのエポキシ化合物は、それぞれ単独で用いてもよいし、異なる複数種を併用してもよい。なかでも脂環式エポキシ化合物は、カチオン重合性に優れることから、好ましく用いられる。
 水酸基を有する芳香族化合物又は鎖状化合物のグリシジルエーテル化物は、例えば、これら芳香族化合物又は鎖状化合物の水酸基にエピクロロヒドリンを塩基性条件下で付加縮合させる方法によって製造できる。このような、水酸基を有する芳香族化合物又は鎖状化合物のグリシジルエーテル化物には、ビスフェノール類のジグリシジルエーテル、多芳香環型エポキシ樹脂、アルキレングリコール又はポリアルキレングリコールのジグリシジルエーテルなどが包含される。
 ビスフェノール類のジグリシジルエーテルとして、例えば、ビスフェノールAのグリシジルエーテル化物及びそのオリゴマー体、ビスフェノールFのグリシジルエーテル化物及びそのオリゴマー体、3,3’,5,5’-テトラメチル-4,4’-ビフェノールのグリシジルエーテル化物及びそのオリゴマー体などが挙げられる。
 多芳香環型エポキシ樹脂として、例えば、フェノールノボラック樹脂のグリシジルエーテル化物、クレゾールノボラック樹脂のグリシジルエーテル化物、フェノールアラルキル樹脂のグリシジルエーテル化物、ナフトールアラルキル樹脂のグリシジルエーテル化物、フェノールジシクロペンタジエン樹脂のグリシジルエーテル化物などが挙げられる。さらに、トリスフェノール類のグリシジルエーテル化物及びそのオリゴマー体なども多芳香環型エポキシ樹脂に属する。
 アルキレングリコール又はポリアルキレングリコールのジグリシジルエーテルとして、例えば、エチレングリコールのグリシジルエーテル化物、ジエチレングリコールのグリシジルエーテル化物、1,4-ブタンジオールのグリシジルエーテル化物、1,6-ヘキサンジオールのグリシジルエーテル化物などが挙げられる。
 アミノ基を有する化合物のグリシジルアミノ化物は、例えば、当該化合物のアミノ基にエピクロロヒドリンを塩基性条件下で付加縮合させる方法によって製造できる。アミノ基を有する化合物は、同時に水酸基を有していてもよい。このような、アミノ基を有する化合物のグリシジルアミノ化物には、1,3-フェニレンジアミンのグリシジルアミノ化物及びそのオリゴマー体、1,4-フェニレンジアミンのグリシジルアミノ化物及びそのオリゴマー体、3-アミノフェノールのグリシジルアミノ化及びグリジシジルエーテル化物並びにそのオリゴマー体、4-アミノフェノールのグリシジルアミノ化及びグリジシジルエーテル化物並びにそのオリゴマー体などが包含される。
 C-C二重結合を有する鎖状化合物のエポキシ化物は、その鎖状化合物のC-C二重結合を、塩基性条件下で過酸化物を用いてエポキシ化する方法によって製造できる。C-C二重結合を有する鎖状化合物には、ブタジエン、ポリブタジエン、イソプレン、ペンタジエン、ヘキサジエンなどが包含される。また、二重結合を有するテルペン類もエポキシ化原料として用いることができ、非環式モノテルペンとして、リナロールなどがある。エポキシ化に用いられる過酸化物は、例えば、過酸化水素、過酢酸、tert-ブチルヒドロペルオキシドなどであることができる。
 飽和炭素環に直接若しくはアルキレンを介してグリシジルオキシ基又はエポキシエチル基が結合している脂環式エポキシ化合物は、先に掲げたビスフェノール類を代表例とする水酸基を有する芳香族化合物の芳香環を水素化して得られる水素化ポリヒドロキシ化合物のグリシジルエーテル化物、水酸基を有するシクロアルカン化合物のグリシジルエーテル化物、ビニル基を有するシクロアルカン化合物のエポキシ化物などであることができる。
 以上説明したエポキシ化合物は、市販品を容易に入手することが可能であり、例えばそれぞれ商品名で、三菱化学株式会社から販売されている「jER」シリーズ、DIC株式会社から販売されている「エピクロン」、東都化成株式会社から販売されている「エポトート(登録商標)」、株式会社ADEKAから販売されている「アデカレジン(登録商標)」、ナガセケムテックス株式会社から販売されている「デナコール(登録商標)」、ダウケミカル社から販売されている「ダウエポキシ」、日産化学工業株式会社から販売されている「テピック(登録商標)」などが挙げられる。
 一方、飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物は、例えば、C-C二重結合を環内に有する非芳香族環状化合物のC-C二重結合を、塩基性条件下で過酸化物を用いてエポキシ化する方法によって製造できる。C-C二重結合を環内に有する非芳香族環状化合物としては、例えば、シクロペンテン環を有する化合物、シクロヘキセン環を有する化合物、シクロペンテン環又はシクロヘキセン環にさらに少なくとも2個の炭素原子が結合して追加の環を形成している多環式化合物などが挙げられる。C-C二重結合を環内に有する非芳香族環状化合物は、環外に別のC-C二重結合を有していてもよい。C-C二重結合を環内に有する非芳香族環状化合物の例を挙げると、シクロヘキセン、4-ビニルシクロヘキセン、単環式モノテルペンであるリモネン及びα-ピネンなどがある。
 飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物は、上で述べたような環に直接結合したエポキシ基を有する脂環式構造が、適当な連結基を介して分子内に少なくとも2個形成された化合物であってもよい。ここでいう連結基には、例えば、エステル結合、エーテル結合、アルキレン結合などが包含される。
 飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物の具体的な例を挙げると、次のようなものがある。
 3,4-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート、
 1,2-エポキシ-4-ビニルシクロヘキサン、
 1,2-エポキシ-4-エポキシエチルシクロヘキサン、
 1,2-エポキシ-1-メチル-4-(1-メチルエポキシエチル)シクロヘキサン、 3,4-エポキシシクロヘキシルメチル (メタ)アクリレート、
 2,2-ビス(ヒドロキシメチル)-1-ブタノールと4-エポキシエチル-1,2-エポキシシクロヘキサンとの付加物、
 エチレン ビス(3,4-エポキシシクロヘキサンカルボキシレート)、
 オキシジエチレン ビス(3,4-エポキシシクロヘキサンカルボキシレート)、
 1,4-シクロヘキサンジメチル ビス(3,4-エポキシシクロヘキサンカルボキシレート)、
 3-(3,4-エポキシシクロヘキシルメトキシカルボニル)プロピル 3,4-エポキシシクロヘキサンカルボキシレートなど。
 以上説明した飽和炭素環に直接エポキシ基が結合している脂環式エポキシ化合物も、市販品を容易に入手することが可能であり、例えば、それぞれ商品名で、株式会社ダイセルから販売されている「セロキサイド」シリーズ及び「サイクロマー」、ダウケミカル社から販売されている「サイラキュア UVR」シリーズなどが挙げられる。
 エポキシ化合物を含有する硬化性接着剤は、さらにエポキシ化合物以外の活性エネルギー線硬化性化合物を含有してもよい。エポキシ化合物以外の活性エネルギー線硬化性化合物としては、例えば、オキセタン化合物やアクリル化合物などが挙げられる。なかでも、カチオン重合において硬化速度を促進できる可能性があることから、オキセタン化合物を併用することが好ましい。
 オキセタン化合物は、分子内に4員環エーテルを有する化合物であり、例えば、次のようなものを挙げることができる。
 1,4-ビス〔(3-エチルオキセタン-3-イル)メトキシメチル〕ベンゼン、
 3-エチル-3-(2-エチルヘキシルオキシメチル)オキセタン、
 ビス(3-エチル-3-オキセタニルメチル)エーテル、
 3-エチル-3-(フェノキシメチル)オキセタン、
 3-エチル-3-(シクロヘキシルオキシメチル)オキセタン、
 フェノールノボラックオキセタン、
 1,3-ビス〔(3-エチルオキセタン-3-イル)メトキシ〕ベンゼンなど。
 オキセタン化合物も、市販品を容易に入手することが可能であり、例えば、それぞれ商品名で、東亞合成株式会社から販売されている「アロンオキセタン(登録商標)」シリーズ、宇部興産株式会社から販売されている「ETERNACOLL(登録商標)」シリーズなどが挙げられる。
 エポキシ化合物やオキセタン化合物を包含する硬化性化合物は、これらが配合された接着剤を無溶剤とするために、有機溶剤などで希釈されていないものを用いることが好ましい。また、接着剤を構成する他の成分であって、後述するカチオン重合開始剤や増感剤を包含する少量成分も、有機溶剤に溶解されたものよりも、有機溶剤が除去・乾燥されたその化合物単独の粉体又は液体を用いることが好ましい。
 カチオン重合開始剤は、活性エネルギー線、例えば紫外線の照射を受けてカチオン種を発生する化合物である。それが配合された接着剤に求められる接着強度及び硬化速度を与えるものであればよいが、例えば、芳香族ジアゾニウム塩;芳香族ヨードニウム塩や芳香族スルホニウム塩のようなオニウム塩;鉄-アレーン錯体などが挙げられる。これらのカチオン重合開始剤は、それぞれ単独で用いてもよいし、異なる複数種を併用してもよい。
 芳香族ジアゾニウム塩としては、例えば、次のようなものが挙げられる。
 ベンゼンジアゾニウム ヘキサフルオロアンチモネート、
 ベンゼンジアゾニウム ヘキサフルオロホスフェート、
 ベンゼンジアゾニウム ヘキサフルオロボレートなど。
 芳香族ヨードニウム塩としては、例えば、次のようなものが挙げられる。
 ジフェニルヨードニウム テトラキス(ペンタフルオロフェニル)ボレート、
 ジフェニルヨードニウム ヘキサフルオロホスフェート、
 ジフェニルヨードニウム ヘキサフルオロアンチモネート、
 ビス(4-ノニルフェニル)ヨードニウム ヘキサフルオロホスフェートなど。
 芳香族スルホニウム塩としては、例えば、次のようなものが挙げられる。
 トリフェニルスルホニウム ヘキサフルオロホスフェート、
 トリフェニルスルホニウム ヘキサフルオロアンチモネート、
 トリフェニルスルホニウム テトラキス(ペンタフルオロフェニル)ボレート、
 ジフェニル(4-フェニルチオフェニル)スルホニウム ヘキサフルオロアンチモネート、
 4,4’-ビス(ジフェニルスルホニオ)ジフェニルスルフィド ビスヘキサフルオロホスフェート、
 4,4’-ビス〔ジ(β-ヒドロキシエトキシフェニル)スルホニオ〕ジフェニルスルフィド ビスヘキサフルオロアンチモネート、
 4,4’-ビス〔ジ(β-ヒドロキシエトキシフェニル)スルホニオ〕ジフェニルスルフィド ビスヘキサフルオロホスフェート、
 7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン ヘキサフルオロアンチモネート、
 7-〔ジ(p-トルイル)スルホニオ〕-2-イソプロピルチオキサントン テトラキス(ペンタフルオロフェニル)ボレート、
 4-フェニルカルボニル-4’-ジフェニルスルホニオジフェニルスルフィド ヘキサフルオロホスフェート、
 4-(p-tert-ブチルフェニルカルボニル)-4’-ジフェニルスルホニオジフェニルスルフィド ヘキサフルオロアンチモネート、
 4-(p-tert-ブチルフェニルカルボニル)-4’-ジ(p-トルイル)スルホニオ-ジフェニルスルフィド テトラキス(ペンタフルオロフェニル)ボレートなど。
 鉄-アレーン錯体としては、例えば、次のようなものが挙げられる。
 キシレン-シクロペンタジエニル鉄(II) ヘキサフルオロアンチモネート、
 クメン-シクロペンタジエニル鉄(II) ヘキサフルオロホスフェート、
 キシレン-シクロペンタジエニル鉄(II) トリス(トリフルオロメチルスルホニル)メタナイドなど。
 カチオン重合開始剤のなかでも、芳香族スルホニウム塩は、300nm以上の波長領域でも紫外線吸収特性を有することから、硬化性に優れ、良好な機械強度や接着強度を有する接着剤層を与えることができるため、好ましく用いられる。
 カチオン重合開始剤も、市販品を容易に入手することが可能であり、例えば、それぞれ商品名で、日本化薬株式会社から販売されている「カヤラッド(登録商標)」シリーズ、ダウケミカル社から販売されている「サイラキュア UVI」シリーズ、サンアプロ株式会社から販売されている光酸発生剤「CPI」シリーズ、みどり化学株式会社から販売されている光酸発生剤「TAZ」、「BBI」及び「DTS」、株式会社ADEKAから販売されている「アデカオプトマー」シリーズ、ローディア社から販売されている「RHODORSIL(登録商標)」などが挙げられる。
 活性エネルギー線硬化型接着剤において、カチオン重合開始剤は、活性エネルギー線硬化型接着剤の総量100質量部に対して、通常 0.5~20質量部の割合で配合され、好ましくは1~15質量部である。その量があまり少ないと、硬化が不十分になり、接着剤層の機械強度や接着強度を低下させることがある。また、その量が多すぎると、接着剤層中のイオン性物質が増加することで接着剤層の吸湿性が高くなり、得られる偏光板の耐久性能を低下させることがある。
 活性エネルギー線硬化型接着剤を電子線硬化型で用いる場合、組成物中に光重合開始剤を含有させることは特に必要ではないが、紫外線硬化型で用いる場合には、光ラジカル発生剤を用いることが好ましい。光ラジカル発生剤としては、水素引き抜き型光ラジカル発生剤と開裂型光ラジカル発生剤とが挙げられる。 
 水素引き抜き型光ラジカル発生剤としては、例えば1-メチルナフタレン、2-メチルナフタレン、1-フルオロナフタレン、1-クロロナフタレン、2-クロロナフタレン、1-ブロモナフタレン、2-ブロモナフタレン、1-ヨードナフタレン、2-ヨードナフタレン、1-ナフトール、2-ナフトール、1-メトキシナフタレン、2-メトキシナフタレン、1,4-ジシアノナフタレンなどのナフタレン誘導体、アントラセン、1,2-ベンズアントラセン、9,10-ジクロロアントラセン、9,10-ジブロモアントラセン、9,10-ジフェニルアントラセン、9-シアノアントラセン、9,10-ジシアノアントラセン、2,6,9,10-テトラシアノアントラセンなどのアントラセン誘導体、ピレン誘導体、カルバゾール、9-メチルカルバゾール、9-フェニルカルバゾール、9-プロペ-2-イニル-9H-カルバゾール、9-プロピル-9H-カルバゾール、9-ビニルカルバゾール、9H-カルバゾール-9-エタノール、9-メチル-3-ニトロ-9H-カルバゾール、9-メチル-3,6-ジニトロ-9H-カルバゾール、9-オクタノイルカルバゾール、9-カルバゾールメタノール、9-カルバゾールプロピオン酸、9-カルバゾールプロピオニトリル、9-エチル-3,6-ジニトロ-9H-カルバゾール、9-エチル-3-ニトロカルバゾール、9-エチルカルバゾール、9-イソプロピルカルバゾール、9-(エトキシカルボニルメチル)カルバゾール、9-(モルホリノメチル)カルバゾール、9-アセチルカルバゾール、9-アリルカルバゾール、9-ベンジル-9H-カルバゾール、9-カルバゾール酢酸、9-(2-ニトロフェニル)カルバゾール、9-(4-メトキシフェニル)カルバゾール、9-(1-エトキシ-2-メチル-プロピル)-9H-カルバゾール、3-ニトロカルバゾール、4-ヒドロキシカルバゾール、3,6-ジニトロ-9H-カルバゾール、3,6-ジフェニル-9H-カルバゾール、2-ヒドロキシカルバゾール、3,6-ジアセチル-9-エチルカルバゾールなどのカルバゾール誘導体、ベンゾフェノン、4-フェニルベンゾフェノン、4,4’-ビス(ジメトキシ)ベンゾフェノン、4,4’-ビス(ジメチルアミノ)ベンゾフェノン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2-ベンゾイル安息香酸メチルエステル、2-メチルベンゾフェノン、3-メチルベンゾフェノン、4-メチルベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノン、2,4,6-トリメチルベンゾフェノンなどのベンゾフェノン誘導体、芳香族カルボニル化合物、[4-(4-メチルフェニルチオ)フェニル]-フェニルメタノン、キサントン、チオキサントン、2-クロロチオキサントン、4-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、1-クロロ-4-プロポキシチオキサントンなどのチオキサントン誘導体やクマリン誘導体などが挙げられる。
 開裂型光ラジカル発生剤は、活性エネルギー線を照射することにより当該化合物が開裂してラジカルを発生するタイプの光ラジカル発生剤であり、その具体例として、ベンゾインエーテル誘導体、アセトフェノン誘導体などのアリールアルキルケトン類、オキシムケトン類、アシルホスフィンオキシド類、チオ安息香酸S-フェニル類、チタノセン類、およびそれらを高分子量化した誘導体が挙げられるがこれに限定されるものではない。市販されている開裂型光ラジカル発生剤としては、1-(4-ドデシルベンゾイル)-1-ヒドロキシ-1-メチルエタン、1-(4-イソプロピルベンゾイル)-1-ヒドロキシ-1-メチルエタン、1-ベンゾイル-1-ヒドロキシ-1-メチルエタン、1-[4-(2-ヒドロキシエトキシ)-ベンゾイル]-1-ヒドロキシ-1-メチルエタン、1-[4-(アクリロイルオキシエトキシ)-ベンゾイル]-1-ヒドロキシ-1-メチルエタン、ジフェニルケトン、フェニル-1-ヒドロキシ-シクロヘキシルケトン、ベンジルジメチルケタール、ビス(シクロペンタジエニル)-ビス(2,6-ジフルオロ-3-ピリル-フェニル)チタン、(η6-イソプロピルベンゼン)-(η5-シクロペンタジエニル)-鉄(II)ヘキサフルオロホスフェート、トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,6-ジメトキシ-ベンゾイル)-(2,4,4-トリメチル-ペンチル)-ホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)-2,4-ジペントキシフェニルホスフィンオキシドまたはビス(2,4,6-トリメチルベンゾイル)フェニル-ホスフィンオキシド、(4-モルホリノベンゾイル)-1-ベンジル-1-ジメチルアミノプロパン、4-(メチルチオベンゾイル)-1-メチル-1-モルホリノエタンなどが挙げられるがこれに限定されるものではない。 
 本発明で使用される活性エネルギー硬化型接着剤の中で、電子線硬化型に含まれる光ラジカル発生剤、すなわち水素引き抜き型または開裂型光ラジカル発生剤は、いずれもそれぞれ単独で用いることができる他、複数を組み合わせて用いても良いが、光ラジカル発生剤単体の安定性や、硬化性の面でより好ましいものは開裂型光ラジカル発生剤の1種以上の組み合わせである。開裂型光ラジカル発生剤の中でもアシルホスフィンオキシド類が好ましく、より具体的には、トリメチルベンゾイルジフェニルホスフィンオキシド(商品名「DAROCURE  TPO」;チバ・ジャパン(株))、ビス(2,6-ジメトキシ-ベンゾイル)-(2,4,4-トリメチル-ペンチル)-ホスフィンオキシド(商品名「CGI  403」;チバ・ジャパン(株))、またはビス(2,4,6-トリメチルベンゾイル)-2,4-ジペントキシフェニルホスフィンオキシド(商品名「Irgacure819」;チバ・ジャパン(株))が好ましい。
 活性エネルギー線硬化型接着剤は、必要に応じて増感剤を含有することができる。増感剤を使用することにより、反応性が向上し、接着剤層の機械強度や接着強度をさらに向上させることができる。増感剤としては、前述したものを適宜適用できる。
 増感剤を配合する場合、その配合量は、活性エネルギー線硬化型接着剤の総量100質量部に対し、0.1~20質量部の範囲とすることが好ましい。
 活性エネルギー線硬化型接着剤には、その効果を損なわない範囲で各種の添加剤を配合することができる。配合しうる添加剤として、例えば、イオントラップ剤、酸化防止剤、連鎖移動剤、粘着付与剤、熱可塑性樹脂、充填剤、流動調整剤、可塑剤、消泡剤などが挙げられる。
 活性エネルギー線硬化型接着剤を構成するこれらの各成分は、通常、溶剤に溶かした状態で使用される。活性エネルギー線硬化型接着剤が溶剤を含む場合、活性エネルギー線硬化型接着剤を適当な基材上に塗布し、乾燥させることで、接着剤層が得られる。溶剤に溶解しない成分は、系中に分散した状態であればよい。
 前記接着剤層を本位相差フィルム上に形成する方法としては、本位相差フィルム表面に上記
の接着剤組成物を直接塗布して接着剤層を形成する方法などが挙げられる。前記接着剤層の厚さは、通常0.001~5μm程度であり、好ましくは0.01μm以上、また好ましくは2μm以下、さらに好ましくは1μm以下である。接着剤層が厚すぎると、偏光板の外観不良となりやすい。
 活性エネルギー線硬化型接着剤は、前述した塗布方法によりフィルムに塗工することができる。この際、活性エネルギー線硬化型接着剤の粘度としては、種々方法で塗工できる粘度を有するものであればよいが、その温度25℃における粘度は、10~30,000mPa・sec の範囲にあることが好ましく、50~6,000mPa・sec の範囲にあることがより好ましい。その粘度があまり小さいと、ムラのない均質な塗膜が得られにくくなる傾向にある。一方、その粘度があまり大きいと、流動しにくくなって、同じくムラのない均質な塗膜が得られにくくなる傾向にある。ここでいう粘度は、B型粘度計を用いてその接着剤を25℃に調温した後、60rpm で測定される値である。
 上記活性エネルギー線硬化型接着剤は、電子線硬化型、紫外線硬化型の態様で用いることができる。本発明の活性エネルギー線とは、活性種を発生する化合物を分解して活性種を発生させることのできるエネルギー線と定義される。このような活性エネルギー線としては、可視光、紫外線、赤外線、X線、α線、β線、γ線及び電子線等が挙げられる。
 電子線硬化型において、電子線の照射条件は、上記活性エネルギー線硬化型接着剤を硬化しうる条件であれば、任意の適切な条件を採用できる。例えば、電子線照射は、加速電圧が好ましくは5kV~300kVであり、さらに好ましくは10kV~250kVである。加速電圧が5kV未満の場合、電子線が接着剤まで届かず硬化不足となるおそれがあり、加速電圧が300kVを超えると、試料を通る浸透力が強すぎて電子線が跳ね返り、透明保護フィルムや偏光子に損傷を与えるおそれがある。照射線量としては、5~100kGy、さらに好ましくは10~75kGyである。照射線量が5kGy未満の場合は、接着剤が硬化不足となり、100kGyを超えると、透明保護フィルムや偏光子に損傷を与え、機械的強度の低下や黄変を生じ、所望の光学特性を得ることができない。
 電子線照射は、通常、不活性ガス中で照射を行うが、必要であれば大気中や酸素を少し導入した条件で行ってもよい。透明保護フィルムの材料によるが、酸素を適宜導入することによって、最初に電子線があたる透明保護フィルム面にあえて酸素阻害を生じさせ、透明保護フィルムへのダメージを防ぐことができ、接着剤にのみ効率的に電子線を照射させることができる。
 紫外線硬化型において、活性エネルギー線硬化型接着剤の光照射強度は、接着剤の組成ごとに決定されるものであって特に限定されないが、10~5000mW/cm2であることが好ましい。樹脂組成物への光照射強度が10mW/cm2未満であると、反応時間が長くなりすぎ、5000mW/cm2を超えると、光源から輻射される熱および組成物の重合時の発熱により、接着剤の構成材料の黄変や偏光子の劣化を生じる可能性がある。
なお、照射強度は、好ましくは光カチオン重合開始剤の活性化に有効な波長領域における強度であり、より好ましくは波長400nm以下の波長領域における強度であり、さらに好ましくは波長280~320nmの波長領域における強度である。このような光照射強度で1回あるいは複数回照射して、その積算光量が10mJ/cm2以上、好ましくは10~5,000mJ/cm2となるように設定されることが好ましい。上記接着剤への積算光量が10mJ/cm2未満であると、重合開始剤由来の活性種の発生が十分でなく、接着剤の硬化が不十分となる。一方でその積算光量が5,000mJ/cm2を超えると、照射時間が非常に長くなり、生産性向上には不利なものとなる。この際、使用するフィルムや接着剤種の組み合わせなどによって、どの波長領域(UVA(320~390nm)やUVB(280~320nm)など)での積算光量が必要かは異なる。
 本発明における活性エネルギー線の照射により接着剤の重合硬化を行うために用いる光源は、特に限定されないが、例えば、低圧水銀灯、中圧水銀灯、高圧水銀灯、超高圧水銀灯、キセノンランプ、ハロゲンランプ、カーボンアーク灯、タングステンランプ、ガリウムランプ、エキシマレーザー、波長範囲380~440nmを発光するLED光源、ケミカルランプ、ブラックライトランプ、マイクロウェーブ励起水銀灯、メタルハライドランプが挙げられる。エネルギーの安定性や装置の簡便さという観点から、波長400nm以下に発光分布を有する紫外光源であることが好ましい。
[円偏光板]
 本位相差フィルムは偏光板と組み合わせることで、本位相差フィルムと偏光板とを備える円偏光板(以下、本円偏光板ということがある。)を得ることができる。本位相差フィルムと偏光板とは、通常、粘接着剤で貼り合わされる。
 本光学フィルムの第一の位相差層の遅相軸(光軸)に対して、該偏光板の透過軸または吸収軸と実質的に15°となるように設定するのが好ましい。実質的に15°とは通常15°±5°の範囲である。さらに偏光板の透過軸または吸収軸と第一の位相差層の光軸の為す角度θに対して、偏光板の吸収軸あるいは透過軸と第二の位相差層の光軸の為す角度は、2θ+45°を満たす角度となるように設定することが好ましい。より好ましくは、実質的にθ=15°の場合に60°となるように設定する。実質的に60°とは、通常60°±5°の範囲である。一方で、特開2004-126538号公報に記載のように、第一の位相差層と第二の位相差層の光軸角度を偏光板の透過軸または吸収軸に対して30°と-30°、あるいは45°と-45°としても、広帯域λ/4板としての機能を発現させることができることは公知であるから、所望の方法で層を積層することが可能である。
 本円偏光板で用いる偏光板は、偏光子の片面に保護フィルムを有するものでもよく、偏光子の両面に保護フィルムを有するものであってもよい。この場合の保護フィルムは本発明の第一及び第二の位相差層を形成した基材を用いてもよい。また、偏光板上に重合性液晶組成物を直接塗布して位相差層を形成してもよく、偏光子面に接着剤を用いて位相差層を貼合してもよく、偏光板上に接着剤を用いて位相差層を貼合してもよい。
 偏光子面又は偏光板等のその他の基材へ、基材を有さない本位相差フィルムを貼合する方
法としては、本位相差フィルムを、接着剤を用いてその他の基材へ貼合する方法、及び、本位相差フィルムを、接着剤を用いてその他の基材へ貼合した後に位相差フィルムを形成した基材を取り除く方法等が挙げられる。この際、接着剤は、本位相差フィルムが有する位相差層側に塗布されてもよく、また、その他の基材側へ塗布されてもよい。基材と、位相差層との間に配向膜がある場合は、基材と共に配向膜も取り除いてもよい。
 位相差層又は配向膜等と化学結合を形成する官能基を表面に有する基材は、位相差層又は配向膜等と化学結合を形成し、取り除き難くなる傾向がある。よって基材を剥離して取り除く場合は、表面の官能基が少ない基材が好ましく、また、表面に官能基を形成する表面処理を施していない基材が好ましい。
 また、基材と化学結合を形成する官能基を有する配向膜は、基材と配向膜との密着力が大きくなる傾向があるため、基材を剥離して取り除く場合は、基材と化学結合を形成する官能基が少ない配向膜が好ましい。また、基材と配向膜とを架橋する試薬が含まれないのが好ましく、さらに、配向性ポリマー組成物及び光配向膜形成用組成物等の溶液には基材を溶解する、溶剤等の成分が含まれないことが好ましい。
 また、位相差層と化学結合を形成する官能基を有する配向膜は、位相差層と配向膜との密着力が大きくなる傾向がある。よって基材と共に配向膜を取り除く場合は、位相差層と化学結合を形成する官能基が少ない配向膜が好ましい。また、位相差層及び配向膜には、位相差層と配向膜とを架橋する試薬が含まれないことが好ましい。
 また、配向膜と化学結合を形成する官能基を有する位相差層は、配向膜と位相差層との密着力が大きくなる傾向がある。よって基材を取り除く場合又は、基材と共に配向膜を取り除く場合は、基材又は配向膜と化学結合を形成する官能基が少ない位相差層が好ましい。また、重合性液晶組成物は、好ましくは基材又は配向膜と位相差層とを架橋する試薬を含まない。
<偏光板>
 偏光板は、偏光機能を有するフィルムであればよい。当該フィルムとしては、吸収異方性を有する色素を吸着させた延伸フィルム、又は、吸収異方性を有する色素を塗布したフィルムを偏光子として含むフィルム等が挙げられる。吸収異方性を有する色素としては、例えば、二色性色素が挙げられる。
 吸収異方性を有する色素を吸着させた延伸フィルムを偏光子として含むフィルムは通常、ポリビニルアルコール系樹脂フィルムを一軸延伸する工程、ポリビニルアルコール系樹脂フィルムを二色性色素で染色することにより、その二色性色素を吸着させる工程、二色性色素が吸着されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液で処理する工程、及びホウ酸水溶液による処理後に水洗する工程を経て製造された偏光子の少なくとも一方の面に接着剤を介して透明保護フィルムで挟み込むことで作製される。
 ポリビニルアルコール系樹脂は、ポリ酢酸ビニル系樹脂をケン化することによって得られる。ポリ酢酸ビニル系樹脂としては、酢酸ビニルの単独重合体であるポリ酢酸ビニルのほか、酢酸ビニルとそれに共重合可能な他の単量体との共重合体が用いられる。酢酸ビニルに共重合可能な他の単量体としては、例えば、不飽和カルボン酸類、オレフィン類、ビニルエーテル類、不飽和スルホン酸類、アンモニウム基を有するアクリルアミド類などが挙げられる。
 ポリビニルアルコール系樹脂のケン化度は、通常85~100モル%程度であり、好ましくは98モル%以上である。ポリビニルアルコール系樹脂は変性されていてもよく、例えば、アルデヒド類で変性されたポリビニルホルマールやポリビニルアセタールも使用することができる。ポリビニルアルコール系樹脂の重合度は、通常1,000~10,000程度であり、好ましくは1,500~5,000の範囲である。
 このようなポリビニルアルコール系樹脂を製膜したものが、偏光板の原反フィルムとして用いられる。ポリビニルアルコール系樹脂を製膜する方法は、特に限定されるものでなく、公知の方法で製膜することができる。ポリビニルアルコール系原反フィルムの膜厚は、例えば、10~150μm程度とすることができる。
 ポリビニルアルコール系樹脂フィルムの一軸延伸は、二色性色素による染色の前、染色と同時、又は染色の後で行うことができる。一軸延伸を染色の後で行う場合、この一軸延伸は、ホウ酸処理の前に行ってもよいし、ホウ酸処理中に行ってもよい。また、これらの複数の段階で一軸延伸を行うことも可能である。一軸延伸にあたっては、周速の異なるロール間で一軸に延伸してもよいし、熱ロールを用いて一軸に延伸してもよい。また一軸延伸は、大気中で延伸を行う乾式延伸であってもよいし、溶剤を用い、ポリビニルアルコール系樹脂フィルムを膨潤させた状態で延伸を行う湿式延伸であってもよい。延伸倍率は、通常3~8倍程度である。
 ポリビニルアルコール系樹脂フィルムの二色性色素による染色は、例えば、二色性色素を含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬する方法によって行われる。二色性色素として、具体的には、ヨウ素や二色性の有機染料が用いられる。二色性の有機染料としては、C.I. DIRECT RED 39などのジスアゾ化合物からなる二色性直接染料及び、トリスアゾ、テトラキスアゾなどの化合物からなる二色性直接染料等が挙げられる。ポリビニルアルコール系樹脂フィルムは、染色処理の前に、水への浸漬処理を施しておくことが好ましい。
 二色性色素としてヨウ素を用いる場合は通常、ヨウ素及びヨウ化カリウムを含有する水溶液に、ポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。この水溶液におけるヨウ素の含有量は、水100質量部あたり、通常 0.01~1質量部程度である。またヨウ化カリウムの含有量は、水100質量部あたり、通常 0.5~20質量部程度である。染色に用いる水溶液の温度は、通常20~40℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常20~1,800秒程度である。
 一方、二色性色素として二色性の有機染料を用いる場合は通常、水溶性二色性染料を含む水溶液にポリビニルアルコール系樹脂フィルムを浸漬して染色する方法が採用される。
この水溶液における二色性有機染料の含有量は、水100質量部あたり、通常1×10-4~10質量部程度であり、好ましくは1×10-3~1質量部であり、さらに好ましくは1×10-3~1×10-2質量部である。この水溶液は、硫酸ナトリウムのような無機塩を染色助剤として含んでいてもよい。染色に用いる二色性染料水溶液の温度は、通常20~80℃程度である。また、この水溶液への浸漬時間(染色時間)は、通常10~1,800秒程度である。
 二色性色素による染色後のホウ酸処理は通常、染色されたポリビニルアルコール系樹脂フィルムをホウ酸水溶液に浸漬する方法により行うことができる。このホウ酸水溶液におけるホウ酸の含有量は、水100質量部あたり、通常2~15質量部程度であり、好ましくは5~12質量部である。二色性色素としてヨウ素を用いた場合には、このホウ酸水溶液はヨウ化カリウムを含有することが好ましく、その場合のヨウ化カリウムの含有量は、水100質量部あたり、通常 0.1~15質量部程度であり、好ましくは5~12質量部である。ホウ酸水溶液への浸漬時間は、通常 60~1,200秒程度であり、好ましくは150~600秒、さらに好ましくは200~400秒である。ホウ酸処理の温度は、通常50℃以上であり、好ましくは50~85℃、さらに好ましくは60~80℃である。
 ホウ酸処理後のポリビニルアルコール系樹脂フィルムは通常、水洗処理される。水洗処理は、例えば、ホウ酸処理されたポリビニルアルコール系樹脂フィルムを水に浸漬する方法により行うことができる。水洗処理における水の温度は、通常5~40℃程度である。
また浸漬時間は、通常1~120秒程度である。
 水洗後に乾燥処理が施されて、偏光子が得られる。乾燥処理は例えば、熱風乾燥機や遠赤外線ヒーターを用いて行うことができる。乾燥処理の温度は、通常30~100℃程度であり、好ましくは50~80℃である。乾燥処理の時間は、通常60~600秒程度であり、好ましくは120~600秒である。乾燥処理により、偏光子の水分率は実用程度にまで低減される。その水分率は、通常5~20重量%程度であり、好ましくは8~15重量%である。水分率が5重量%を下回ると、偏光子の可撓性が失われ、偏光子がその乾燥後に損傷したり、破断したりすることがある。また、水分率が20重量%を上回ると、偏光子の熱安定性が悪くなる可能性がある。
 こうしてポリビニルアルコール系樹脂フィルムに、一軸延伸、二色性色素による染色、ホウ酸処理、水洗及び乾燥をして得られる偏光子の厚さは好ましくは5~40μmである。
 吸収異方性を有する色素を塗布したフィルムとしては、液晶性を有する二色性色素を含む組成物又は、二色性色素と重合性液晶とを含む組成物を塗布して得られるフィルム等が挙げられる。当該フィルムは、好ましくは、その片面又は両面に保護フィルムを有する。
当該保護フィルムとしては、上記した基材と同一のものが挙げられる。
 吸収異方性を有する色素を塗布したフィルムは薄い方が好ましいが、薄すぎると強度が低下し、加工性に劣る傾向がある。当該フィルムの厚さは、通常20μm以下であり、好ましくは5μm以下であり、より好ましくは0.5μm以上3μm以下である。
 前記吸収異方性を有する色素を塗布したフィルムとしては、具体的には、特開2012-33249号公報等に記載のフィルムが挙げられる。
 このようにして得られた偏光子の少なくとも一方の面に、接着剤を介して透明保護フィルムを積層することにより偏光板が得られる。透明保護フィルムとしては、前述した基材と同様の透明フィルムを好ましく用いることができるし、本発明の位相差フィルムを用いることもできる。
 (偏光板の光学特性)
 偏光板の偏光性能は、主に単体透過率及び偏光度と呼ばれる数値で表すことがで
き、それぞれ下記式で定義される。
 単体透過率(λ)=0.5×(Tp(λ)+Tc(λ))
 偏光度(λ)=100×(Tp(λ)-Tc(λ))/(Tp(λ)+Tc(λ))
 ここで、Tp(λ)は、入射する波長λnmの直線偏光とパラレルニコルの関係で測定した偏光板又は偏光フィルムの透過率(%)であり、Tc(λ)は、入射する波長λnmの直線偏光とクロスニコルの関係で測定した偏光板又は偏光フィルムの透過率(%)であり、共に分光光度計による偏光紫外可視吸収スペクトル測定で得られる測定値である。また、各波長毎に求めた単体透過率(λ)及び偏光度(λ)に、視感度補正と呼ばれる感度補正をかけたものを、それぞれ視感度補正単体透過率(Ty)及び視感度補正偏光度(Py)と呼ぶ。これらTy、Pyの値は例えば、日本分光(株)製の吸光光度計(型番:V7100)などで簡便に測定できる。
 本発明に係る偏光板は、視感度補正単体透過率(Ty)が42%以上であることが好ましく、かつ、視感度補正偏光度(Py)が99.9%以上であることが好ましい。視感度補正単体透過率は、43%以上、更には44%以上であることが好ましい。視感度補正偏光度(Py)は99.9%以上であることが好ましいが、99.0%以上、更には99.5%以上であればよい。
 偏光板の透過色相aは、好ましくは-3.0以上1.5以下であり、より好ましくは-2.5以上1.0以下である、更に好ましくは-2.0以上0.5以下である。bは、好ましくは-1.5以上6.0以下であり、より好ましくは-1.0以上5.5以下である、更に好ましくは-0.5以上5.0以下である。
 上記の透過色相とは、偏光板の一方の面から光をあてたときに他方の面から透過してくる光の色相を意味する。ここでの色相は、Lab表色系においてa値及びb値で表すことができ、標準の光を用いて測定される。なお本発明において、偏光フィルムの透過色相の実測は偏光フィルムの片面に粘着剤層を設け、その粘着剤層側でガラス板に貼合した状態で行っている。Lab表色系は、 JIS K 5981:2006「合成樹脂粉体塗膜」の「5.5 促進耐候性試験」に記載されるように、ハンターの明度指数Lと色相a及びbで表されるものである。Lab表色系に類似する概念として、JIS Z 8781-4:2013 「測色-第4部:CIE 1976 L*a*b*空間」に規定されるL*a*b*表色系があるが、本発明ではLab表色系を採用する。明度指数Lと色相a及びbの値は、JIS Z 8722:2009「色の測定方法-反射及び透過物体色」に規定される三刺激値X、Y及びZから、次の式によって計算される。
  L=10Y1/2
  a=17.5(10.2X-Y)/Y1/2
  b=7.0(Y-0.847Z)/Y1/2
 Lab表色系において、色相a値及びb値は、彩度に相当する位置を示すことができ、色相a値が増加すると色相は赤系に、色相b値が増加すると色相は黄系に変化それぞれ変化する。また、0に近い程、共に無彩色に近いことを表す。
 本発明の位相差フィルムの構成について図1を用いて詳細に説明する。位相差フィルム100は図1-1のように第一の位相差層1と第二の位相差層2から形成される。第一の位相差層1及び/又は第二の位相差層2は基材3に形成してもよく、第一の位相差層1と第二の位相差層の間に保護層7を有していても良い。厚みを薄くするという観点から、第一の位相層1と第二の位相差層2を基材上に連続的に塗布形成した図1-2、図1-3、図1-4、図1-5、図1-6の位相差フィルムが好ましい。また、第一の位相差層1及び/又は第二の位相差層2は基材またはそれぞれの層の間に配向膜を有していても良い。
さらに好ましい形態として、第三の位相差層8と組み合わせた図1-7、図1-8、図1-9の位相差フィルム100とすることもできる。
 本発明の円偏光板110について図2を用いて詳細に説明する。本発明の円偏光板110は、前記本発明の位相差フィルム100を含み、偏光板6と第一の位相差層1と第二の位相差層2をこの順に形成することによって得られる。前記第一の位相層1と第二の位相差層2を基材上に連続的に塗布形成した位相差フィルムと偏光板を粘接着剤により一体化した図2-5、図2-6、図2-7の円偏光板が薄型化の観点から好ましい。また、第一の位相差層1及び/又は第二の位相差層2を基材から剥離転写し、粘接着剤で偏光板と一体化した図2-8や図2-9も同様に薄型化の観点から好ましい。
 本位相差フィルム及び本円偏光板は、さまざまな表示装置に用いることができる。
 表示装置とは、表示素子を有する装置であり、発光源として発光素子または発光装置を含む。表示装置としては、液晶表示装置、有機エレクトロルミネッセンス(EL)表示装置、無機エレクトロルミネッセンス(EL)表示装置、タッチパネル表示装置、電子放出表示装置(例えば電場放出表示装置(FED)、表面電界放出表示装置(SED))、電子ペーパー(電子インクや電気泳動素子を用いた表示装置、プラズマ表示装置、投射型表示装置(例えばグレーティングライトバルブ(GLV)表示装置、デジタルマイクロミラーデバイス(DMD)を有する表示装置)および圧電セラミックディスプレイなどが挙げられる。液晶表示装置は、透過型液晶表示装置、半透過型液晶表示装置、反射型液晶表示装置、直視型液晶表示装置および投写型液晶表示装置などのいずれをも含む。これらの表示装置は、2次元画像を表示する表示装置であってもよいし、3次元画像を表示する立体表示装置であってもよい。特に本円偏光板は有機エレクトロルミネッセンス(EL)表示装置及び無機エレクトロルミネッセンス(EL)表示装置に有効に用いることができ、本光学補償偏光板は液晶表示装置及びタッチパネル表示装置に有効に用いることができる。
 図3は、有機EL表示装置30を表わす概略図である。図3(a)で示した有機EL表示装置30は、本円偏光板31を備えており、層間絶縁膜33を介して、画素電極34が形成された基板32上に、発光層35、およびカソード電極36が積層されたものである。基板32を挟んで発光層35と反対側に、本円偏光板31が配置される。画素電極34にプラスの電圧、カソード電極36にマイナスの電圧を加え、画素電極34およびカソード電極36間に直流電流を印加することにより、発光層35が発光する。発光層35は、電子輸送層、発光層および正孔輸送層などからなる。発光層35から出射した光は、画素電極34、層間絶縁膜33、基板32、本円偏光板31を通過する。
 有機EL表示装置30を製造するには、まず、基板32上に薄膜トランジスタ38を所望の形状に形成する。そして層間絶縁膜33を成膜し、次いで画素電極34をスパッタ法で成膜し、パターニングする。その後、発光層35を積層する。
 次いで、基板32の薄膜トランジスタ38が設けられている面の反対の面に、本円偏光板31を設ける。その場合には、本円偏光板31における偏光板が、外側(基板32の反対側)になるように配置される。
 基板32としては、サファイアガラス基板、石英ガラス基板、ソーダガラス基板およびアルミナなどのセラミック基板;銅などの金属基板;プラスチック基板などが挙げられる。図示はしないが、基板32上に熱伝導性膜を形成してもよい。熱伝導性膜としては、ダイヤモンド薄膜(DLCなど)などが挙げられる。画素電極34を反射型とする場合は、基板32とは反対方向へ光が出射する。したがって、透明材料だけでなく、ステンレスなどの非透過材料を用いることができる。基板は単一で形成されていてもよく、複数の基板を接着剤で貼り合わせて積層基板として形成されていていてもよい。また、これらの基板は、板状のものに限定するものではなく、フィルムであってもよい。
 薄膜トランジスタ38としては、例えば、多結晶シリコントランジスタなどを用いればよい。薄膜トランジスタ38は、画素電極34の端部に設けられ、その大きさは10~30μm程度である。なお、画素電極34の大きさは20μm×20μm~300μm×300μm程度である。
 基板32上には、薄膜トランジスタ38の配線電極が設けられている。配線電極は抵抗が低く、画素電極34と電気的に接続して抵抗値を低く抑える機能があり、一般的にはその配線電極は、Al、Alおよび遷移金属(ただしTiを除く)、Tiまたは窒化チタン(TiN)のいずれか1種または2種以上を含有するものが使われる。
 薄膜トランジスタ38と画素電極34との間には層間絶縁膜33が設けられる。層間絶縁膜33は、SiOなどの酸化ケイ素、窒化ケイ素などの無機系材料をスパッタや真空蒸着で成膜したもの、SOG(スピン・オン・グラス)で形成した酸化ケイ素層、フォトレジスト、ポリイミドおよびアクリル樹脂などの樹脂系材料の塗膜など、絶縁性を有するものであればいずれであってもよい。
 層間絶縁膜33上に、リブ39を形成する。リブ39は、画素電極34の周辺部(隣接画素間)に配置されている。リブ39の材料としては、アクリル樹脂およびポリイミド樹脂などが挙げられる。リブ39の厚みは、好ましくは1.0μm以上3.5μmであり、より好ましくは1.5μm以上2.5μm以下である。
 次に、画素電極34と、発光層35と、カソード電極36とからなるEL素子について説明する。発光層35は、それぞれ少なくとも1層のホール輸送層および発光層を有し、例えば、電子注入輸送層、発光層、正孔輸送層および正孔注入層を順次有する。
 画素電極34としては、例えば、ITO(錫ドープ酸化インジウム)、IZO(亜鉛ドープ酸化インジウム)、IGZO、ZnO、SnOおよびInなどが挙げられるが、特にITOやIZOが好ましい。画素電極35の厚さは、ホール注入を十分行える一定以上の厚さを有すればよく、10~500nm程度とすることが好ましい。
 画素電極34は、蒸着法(好ましくはスパッタ法)により形成することができる。スパッタガスとしては、特に制限するものではなく、Ar、He、Ne、KrおよびXeなどの不活性ガス、あるいはこれらの混合ガスを用いればよい。
 カソード電極36の構成材料としては例えば、K、Li、Na、Mg、La、Ce、Ca、Sr、Ba、Al、Ag、In、Sn、ZnおよびZrなどの金属元素が用いられればよいが、電極の作動安定性を向上させるためには、例示した金属元素から選ばれる2成分または3成分の合金系を用いることが好ましい。合金系としては、例えばAg・Mg(Ag:1~20at%)、Al・Li(Li:0.3~14at%)、In・Mg(Mg:50~80at%)およびAl・Ca(Ca:5~20at%)などが好ましい。
 カソード電極36は、蒸着法およびスパッタ法などにより形成される。カソード電極37の厚さは、0.1nm以上、好ましくは1~500nm以上であることが好ましい。
 正孔注入層は、画素電極34からの正孔の注入を容易にする機能を有し、正孔輸送層は、正孔を輸送する機能および電子を妨げる機能を有し、電荷注入層や電荷輸送層とも称される。
 発光層の厚さ、正孔注入層と正孔輸送層とを併せた厚さ、および電子注入輸送層の厚さは特に限定されず、形成方法によっても異なるが、5~100nm程度とすることが好ましい。正孔注入層や正孔輸送層には、各種有機化合物を用いることができる。正孔注入輸送層、発光層および電子注入輸送層の形成には、均質な薄膜が形成できる点で真空蒸着法を用いることができる。
 発光層35としては、1重項励起子からの発光(蛍光)を利用するもの、3重項励起子からの発光(燐光)を利用するもの、1重項励起子からの発光(蛍光)を利用するものと3重項励起子からの発光(燐光)を利用するものとを含むもの、有機物によって形成されたもの、有機物によって形成されたものと無機物によって形成されたものとを含むもの、高分子の材料、低分子の材料、高分子の材料と低分子の材料とを含むものなどを用いることができる。ただし、これに限定されず、EL素子用として公知の様々なものを用いた発光層35を、有機EL表示装置30に用いることができる。
 カソード電極36と封止層37との空間には、乾燥剤(図示しない)を配置する。これは、発光層35は湿度に弱いためである。乾燥剤により水分を吸収し発光層35の劣化を防止する。
 図3(b)で示した本発明の有機EL表示装置30は、本円偏光板31を備えており、層間絶縁膜33を介して、画素電極34が形成された基板32上に、発光層35、およびカソード電極36が積層されたものである。カソード電極上に封止層37が形成され、基板32と反対側に、本円偏光板31が配置される。発光層35から出射した光は、カソード電極36、封止層37、本円偏光板31を通過する。
 以下、実施例により本発明をさらに詳細に説明する。例中の「%」および「部」は、特記ない限り、質量%および質量部である。
 シクロオレフィンポリマーフィルム(COP)には、日本ゼオン株式会社製のZF-14を用いた。
 レーザー顕微鏡には、オリンパス株式会社製のLEXTを用いた。
 位相差値は、王子計測機器社製のKOBRA-WRを用いて測定した。なお、450nm及び550nmの位相差値は実測値により求め、650nmの位相差値は他波長の測定結果から得られたコーシーの分散公式より求めた。
 反射率Y値及び反射色相a*、b*の測定は、コニカミノルタ社製のCM2600dを用いて測定した。測定光源はD65として、受光光学系はSCI(正反射光込み)にて求めた。
実施例1
[偏光板の製造]
 平均重合度約2,400、ケン化度99.9モル%以上で厚さ75μmのポリビニルアル
コールフィルムを、30℃の純水に浸漬した後、ヨウ素/ヨウ化カリウム/水の重量比が0.02/2/100の水溶液に30℃で浸漬してヨウ素染色を行った(ヨウ素染色工程)。ヨウ素染色工程を経たポリビニルアルコールフィルムを、ヨウ化カリウム/ホウ酸/水の重量比が12/5/100の水溶液に、56.5℃で浸漬してホウ酸処理を行った(ホウ酸処理工程)。ホウ酸処理工程を経たポリビニルアルコールフィルムを8℃の純水で洗浄した後、65℃で乾燥して、ポリビニルアルコールにヨウ素が吸着配向している偏光子(延伸後の厚さ27μm)を得た。この際、ヨウ素染色工程とホウ酸処理工程において延伸を行った。かかる延伸におけるトータル延伸倍率は5.3倍であった。得られた偏光子と、ケン化処理されたトリアセチルセルロースフィルム(コニカミノルタ製 KC4UYTAC 40μm)とを水系接着剤を介してニップロールで貼り合わせた。得られた貼合物の張力を430N/mの保ちながら、60℃で2分間乾燥して、片面に保護フィルムとしてトリアセチルセルロースフィルムを有する偏光板(1)を得た。尚、前記水系接着剤は水100部に、カルボキシル基変性ポリビニルアルコール(クラレ製 クラレポバール KL318)3部と、水溶性ポリアミドエポキシ樹脂(住化ケムテックス製 スミレーズレジン650 固形分濃度30%の水溶液〕1.5部を添加して調製した。
 得られた偏光板について光学特性の測定を行った。測定は上記で得られた偏光板の偏光子面を入射面として分光光度計(V7100、日本分光製)にて実施した。得られた視感度補正単体透過率は42.1%、視感度補正偏光度は99.996%、単体色相aは -1.1、単体色相b は3.7であった。
[紫外線硬化性接着剤組成物の製造]
 以下の各成分を混合して、紫外線硬化性接着剤組成物を調製した。 
3,4-エポキシシクロヘキシルメチル
3,4-エポキシシクロヘキサンカルボキシレート  40部 
ビスフェノールAのジグリシジルエーテル      60部 
ジフェニル(4-フェニルチオフェニル)スルホニウム 
ヘキサフルオロアンチモネート(光カチオン重合開始剤) 4部
[光配向膜形成用組成物の調製]
 下記成分を混合し、得られた混合物を80℃で1時間攪拌することにより、光配向膜形成用組成物(1)を得た。
光配向性材料(2部):
Figure JPOXMLDOC01-appb-I000003
溶剤(98部):シクロペンタノン
[配向性ポリマー組成物(1)の調製]
 市販の配向性ポリマーであるサンエバーSE-610(日産化学工業株式会社製)1重量部に2-ブトキシエタノール99重量部を加えて配向性ポリマー組成物を得た。
SE-610については、固形分量を納品仕様書に記載の濃度から換算した。
[組成物(A-1)の調製]
 下記の成分を混合し、得られた混合物を80℃で1時間攪拌することにより、組成物(A-1)を得た。
 重合性液晶A1および重合性液晶A2は、特開2010-31223号公報記載の方法で合成した。
重合性液晶A1(80部):
Figure JPOXMLDOC01-appb-I000004
重合性液晶A2(20部):
Figure JPOXMLDOC01-appb-I000005
重合開始剤(6部):
2-ジメチルアミノ-2-ベンジル-1-(4-モルホリノフェニル)ブタン-1-オン(イルガキュア369;チバ スペシャルティケミカルズ社製)     
レベリング剤(0.1部):ポリアクリレート化合物(BYK-361N;BYK-Chemie社製)
溶剤:シクロペンタノン(400部)
[組成物(B-1)の調製]
 組成物(B-1)の組成を表Aに示す。各成分を混合し、得られた溶液を80℃で1時間攪拌した後、室温まで冷却し、組成物(B-1)を得た。
〔表A〕
Figure JPOXMLDOC01-appb-I000006
 表Aにおける括弧内の値は、調製した組成物の全量に対する各成分の含有割合を表す。
表AにおけるLR9000は、BASFジャパン社製のLaromer(登録商標)LR-9000を、Irg907は、BASFジャパン社製のイルガキュア(登録商標)907を、BYK-361Nは、ビックケミージャパン製のレベリング剤を、LC242は、下記式で示されるBASF社製の重合性液晶を、PGMEAは、プロピレングリコール1-モノメチルエーテル2-アセタートを表す。
Figure JPOXMLDOC01-appb-I000007
[第一の位相差層(1-1)の製造]
 ロール状シクロオレフィンポリマーフィルム(COP)(ZF-14、日本ゼオン株式会社製 23μm)500mm幅×100mを、4m/分の速度で搬送しながら、プラズマ処理装置を用いて出力0.4kWで1回処理した。プラズマ処理を施した表面に、光配向膜形成用組成物(1)を460mmの範囲でダイコーターを用いて11.7ml/分の速度で塗布し、100℃で2分間乾燥し、偏光UV照射装置を用いて、搬送方向に対して15°の方向に積算光量100mJ/cm(空気雰囲気下、波長313nmにおける積算光量)で偏光UV露光を実施した。得られた配向膜の膜厚をレーザー顕微鏡(LEXT、オリンパス株式会社製)で測定したところ、100nmであった。続いて、配向膜上に組成物(A-1)を、ダイコーターを用いて39.2ml/分の速度で塗布し、120℃で2分間乾燥した後、高圧水銀ランプを用いて、紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:1000mJ/cm)することにより第一の位相差層(1-1)を形成したフィルムを得た。
得られた第一の位相差層(1-1)の厚みをレーザー顕微鏡で確認したところ、4.2μmであった。また、得られた第一の位相差層(1-1)を形成したフィルムの位相差値を測定したところ、Re(550)=284nm、Rth(550)=142nmであった。また、波長450nmならびに波長650nmの位相差値を測定したところ、Re(450)=247nm、Re(650)=290nmであった。各波長での面内位相差値の関係は以下のとおりとなった。
Re(450)/Re(550)=0.87
Re(650)/Re(550)=1.02
すなわち、第一の位相差層(1-1)は下記式(1)、(3)及び(4)で表される光学特性を有した。なお、COPの波長450nm、波長550nmならびに波長650nmにおける位相差値は略0であるため、当該面内位相差値の関係には影響しない。
 200nm<Re(550)<320nm      (1)
 Re(450)/Re(550)≦1.00     (3)
 1.00≦Re(650)/Re(550)     (4)
[第二の位相差層(2-1)の製造]
 光配向膜への偏光UV照射を搬送方向に対して75°の方向に、また、配向膜上に組成物(A-1)を、ダイコーターを用いて19.6ml/分の速度で塗布した以外は第一の位相差層(1-1)の製造例と同様にして、第二の位相差層(2-1)を形成したフィルムを得た。
 得られた第二の位相差層(2-1)の厚みをレーザー顕微鏡で確認したところ、2.1μmであった。また、第二の位相差層(2-1)を形成したフィルムの位相差値を測定したところ、Re(550)=142nm、Rth(550)=71nmであった。また、波長450nmならびに波長650nmの位相差値を測定したところ、Re(450)=124nm、Re(650)=145nmであった。各波長での面内位相差値の関係は以下のとおりとなった。
Re(450)/Re(550)=0.87
Re(650)/Re(550)=1.02
すなわち、第二の位相差層(2-1)は下記式(2)、(3)及び(4)で表される光学特性を有した。なお、COPの波長450nm、波長550nmならびに波長650nmにおける位相差値は略0であるため、当該面内位相差値の関係には影響しない。
 100nm<Re(550)<160nm      (2)
 Re(450)/Re(550)≦1.00     (3)
 1.00≦Re(650)/Re(550)     (4)
 このように作製した第一の位相差層を形成したフィルムの位相差層面と第二の位相差層を形成したフィルムのCOP面とを粘着剤(リンテック社製 感圧式粘着剤 5μm)を介してRoll to Roll貼合し、位相差フィルム(1)を作製した。位相差フィルム(1)の総厚みは57μmであった。得られた位相差フィルム(1)の位相差値を測定したところ、Re(550)=143nmであった。また、波長450nmならびに波長650nmの位相差値を測定したところ、Re(450)=109nm、Re(650)=157nmであった。各波長での面内位相差値の関係は以下のとおりとなった。
Re(450)/Re(550)=0.76
Re(650)/Re(550)=1.09
 すなわち、位相差フィルム(1)は下記式(2)、(3)及び(4)で表される光学特性を有した。なお、COPの波長450nm、波長550nmならびに波長650nmにおける位相差値は略0であるため、当該面内位相差値の関係には影響しない。
 100nm<Re(550)<160nm      (2)
 Re(450)/Re(550)≦1.00     (3)
 1.00≦Re(650)/Re(550)     (4)
 位相差フィルム(1)について分光光度計(V7100、日本分光製)を用いて単体透過色相の測定をした所、色相a*は-1.0、色相b*は2.7であった。
すなわち、位相差フィルム(1)は下記式(6)、(7)で表される光学特性を示した。
 -2.0≦ a* ≦0.5             (6)
 -0.5≦ b* ≦5.0             (7)
 第一の位相差層、第二の位相差層、及び位相差フィルム(1)の光学特性の測定結果を表1に示す。
 さらに、位相差フィルム(1)の第一の位相差層側のCOP面に、コロナ処理を施し、その上に紫外線硬化性接着剤組成物をマイクログラビアコーター塗布し、その上に偏光板の偏光子面と重ねて、2本の貼合ロールの間に通して一体化した。この際、Roll to Roll貼合となるため、該偏光板の吸収軸と第一の位相差層(1-1)の遅相軸のなす角度は15°となる。また、2本の貼合ロールのうち、第一の貼合ロールには、表面がゴムになっているゴムロールを使用し、第二の貼合ロールには、表面にクロムメッキが施された金属ロールを使用した。一体化後、メタルハライドランプを光源とする紫外線照射装置を用い、320~400nmの波長における積算光量が200mJ/cmとなるように偏光板側から紫外線照射して前記紫外線硬化性接着剤組成物からなる接着剤層を硬化させ、前記位相差フィルム(1)と偏光子(1)とを接着し、総厚み125μmの円偏光板(1)を得た。この円偏光板(1)の楕円率測定結果を表2に示す。円偏光板(1)の第二の位相差層側の面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向から色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(1)は、どの方向から観察しても着色が無く、良好な黒表示が得られた。また、この鏡に貼合した円偏光板について、コニカミノルタ社製のCM2600dを用いて、反射率Y値及び反射色相a*、b*の測定を行った。得られた反射率Y値は5.3%、反射色相a*は0.2、反射色相b*は-0.2であった。
 円偏光板(1)の厚み、楕円偏光率、反射特性測定結果及び観察結果を表2に示す。
実施例2
 偏光板に粘着剤を介して第一の位相差層(1-1)を形成したフィルムの第一の位相差層側の面をRoll to Roll貼合し、次に、第一の位相差層(1-1)を形成したフィルムのCOPフィルムを剥がしながら、第二の位相差層(2-1)を形成したフィルムの第二の位相差層側の面をRoll to Roll貼合し、第二の位相差層(2-1)を形成したフィルムのCOPフィルムを剥がしながら巻き取ることで、偏光板に第一の位相差層(1-1)と第二の位相差層(2-1)を転写形成した83μmの非常に薄型の円偏光板(2)を得た。したがって、円偏光板(2)には、偏光板に5μm以下の第一の位相差層(1-1)と5μm以下の第二の位相差層(2-1)からなる位相差フィルムが貼合されている。この円偏光板(2)の楕円率測定結果を表2に示す。円偏光板(2)の第二の位相差層側の面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(2)は、どの方向から観察しても着色が無く、良好な黒表示が得られた。
実施例3
 実施例1と同様に第一の位相差層(1-1)を形成したフィルムを作製し、該第一の位相差層面に、コロナ処理を施し、その上に前記紫外線硬化性接着剤組成物をマイクログラビアコーター塗布し、メタルハライドランプを光源とする紫外線照射装置を用い、320~400nmの波長における積算光量が200mJ/cmとなるように紫外線照射して、厚み1μmの中間層を形成した。さらに、中間層にプラズマ処理を施し、実施例1と同様にして第二の位相差層(2-1)を形成し、位相差フィルム(2)を作製した。続いて、実施例1と同様にして偏光板と位相差フィルム(2)の第二の位相差層側の面を貼合し、円偏光板(3)を得た。この円偏光板(3)の楕円率測定結果を表2に示す。円偏光板(3)のCOP側の面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(3)は、どの方向から観察しても着色が無く、良好な黒表示が得られた。
実施例4
 実施例1と同様に第一の位相差層(1-1)を形成したフィルムを作製し、第一の位相差層を形成したフィルムの第一の位相差層とは反対の面に、実施例1と同様にして第二の位相差層(2-1)を形成し、位相差フィルム(3)を作製した。続いて、第一の位相差層面を接着剤を介して偏光板と接着貼合した以外は、実施例1と同様にして偏光板と位相差フィルム(3)を組み合わせて円偏光板(4)を得た。この円偏光板(4)の楕円率測定結果を表2に示す。
円偏光板(4)の第二の位相差層側の面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(4)は、どの方向から観察しても着色が無く、良好な黒表示が得られた。
実施例5
[第三の位相差層の製造]
 ロール状シクロオレフィンポリマーフィルム(COP)(ZF-14、日本ゼオン株式会社製 23μm)500mm幅×100mを、4m/分の速度で搬送しながら、プラズマ処理装置を用いて出力0.4kWで1回処理した。プラズマ処理を施した表面に、前記配向性ポリマー組成物を、幅460mmの範囲でダイコーターを用いて11.7ml/分の速度で塗布し、90℃で1分間乾燥し、配向膜を得た。得られた配向膜の膜厚をレーザー顕微鏡で測定したところ、50nmであった。続いて、前記配向膜上に組成物(B-1)をダイコーターを用いて6.2ml/分の速度で塗布し、90℃で1分間乾燥した後、高圧水銀ランプを用いて、紫外線を照射(窒素雰囲気下、波長365nmにおける積算光量:1000mJ/cm)することにより第三の位相差層を形成したフィルムを得た。 得られた第三の位相差層の膜厚をレーザー顕微鏡で測定したところ、膜厚は550nmであった。また、得られた第三の位相差層を形成したフィルムの波長550nmでの位相差値を測定したところRe(550)=1nm、Rth(550)=-75nmであった。
すなわち、第三の位相差層は下記式(5)で表される光学特性を有した。なお、COPの波長550nmにおける位相差値は略0であるため、当該光学特性には影響しない。
 nx≒ny<nz    (5)
 得られた第三の位相差層を形成したフィルムのCOP面を実施例1の位相差フィルム(1)の第二の位相差層側の面と粘着剤(リンテック社製 感圧式粘着剤 5μm)を介してRoll to Roll貼合し、位相差フィルム(4)を作製した。位相差フィルム(4)の総厚みは86μmであった。得られた位相差フィルム(4)の位相差値を測定したところ、Re(550)=144nmであった。また、波長450nmならびに波長650nmの位相差値を測定したところ、Re(450)=110nm、Re(650)=157nmであった。各波長での面内位相差値の関係は以下のとおりとなった。
Re(450)/Re(550)=0.76
Re(650)/Re(550)=1.09
すなわち、位相差フィルム(4)は下記式(2)、(3)、(4)及び(6)で表される光学特性を有した。なお、COPの波長450nm、波長550nmならびに波長650nmにおける位相差値は略0であるため、当該面内位相差値の関係には影響しない。
 100nm<Re(550)<160nm      (2)
 Re(450)/Re(550)≦1.00     (3)
 1.00≦Re(650)/Re(550)     (4)
 nx>nz>ny    (6)
 得られた位相差フィルム(4)の第一の位相差層側のCOP面を実施例1と同様にして偏光板と貼りあわせることで円偏光板(5)を得た。この円偏光板(5)の楕円率測定結果を表2に示す。円偏光板(5)の第三の位相差層側の面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(5)は、どの方向から観察しても着色が無く、良好な黒表示が得られた。
実施例6
 ロール状シクロオレフィンポリマーフィルム(COP)(ZF-14、日本ゼオン株式会社製 23μm)の代わりに枚葉のポリカーボネートフィルム(商品名「ピュアエースRM」帝人株式会社製 50μm)を用いたこと以外は実施例1の第一の位相差層(1-1)の製造例と同様にして第一の位相差層(1-1)を形成し、位相差フィルム(5)を作製した。なお、実施例6ではポリカーボネートフィルムに位相差があるため、ポリカーボネートフィルムを第二の位相差層とする。この後、実施例1と同様にして偏光板と位相差フィルム(5)の第一の位相差層面を接着剤を介して貼合して円偏光板(6)を得た。この円偏光板(6)の楕円率測定結果を表2に示す。円偏光板(6)のポリカーボネートフィルム面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(6)は、どの方向から観察しても着色が無く、良好な黒表示が得られた。
 比較例1
 [第二の位相差層(2-2)の製造]
 偏光UVの照射方向を15°から45°に変えた以外は実施例1と同様にして第二の位相差層(2-2)を有するフィルムを作製した。
 実施例1と同様にして第二の位相差層(2-2)を有するフィルムと偏光板とを貼りあわせて円偏光板(7)を得た。この円偏光板(7)の楕円率測定結果を表2に示す。楕円率は実施例1~6よりも低く正面の反射色はわずかに紫色を呈していた。円偏光板(7)の第二の位相差層側の面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(7)は、特定の方向から観察した際に反射色が青緑色並びに赤色に呈することが観察された。
 比較例2
 比較例1と同様に作製した円偏光板(7)の第二の位相差層側の面にさらに実施例5で作製した第三の位相差層を有するフィルムを実施例5と同様の方法で貼りあわせることで円偏光板(8)を得た。
 この円偏光板(8)の楕円率測定結果を表2に示す。楕円率は実施例1~6よりも低く正面の反射色はわずかに紫色を呈していた。円偏光板(8)の第三の位相差層面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(8)は、特定の方向から観察した際に反射色が青緑色並びに赤色に呈することが観察された。
 比較例3
 ロール状の縦一軸延伸されたシクロオレフィンポリマーフィルム(COP)(ZM-14、日本ゼオン株式会社製)を第一の位相差層と第二の位相差層として用いた以外は実施例1と同様の方法で偏光板と貼りあわせることで円偏光板(9)を得た。第一の位相差層の厚みを確認したところ、33μmであった。また、位相差値を測定したところ、Re(550)=274nm、Rth(550)=137nmであった。また、波長450nmならびに波長650nmの位相差値を測定したところ、Re(450)=275nm、Re(650)=271nmであった。各波長での面内位相差値の関係は以下のとおりとなった。
Re(450)/Re(550)=1.00
Re(650)/Re(550)=0.99
第二の位相差層の厚みを確認したところ、28μmであった。また、位相差値を測定したところ、Re(550)=138nm、Rth(550)=69nmであった。また、波長450nmならびに波長650nmの位相差値を測定したところ、Re(450)=138nm、Re(650)=138nmであった。各波長での面内位相差値の関係は以下のとおりとなった。
Re(450)/Re(550)=1.00
Re(650)/Re(550)=1.00
 この円偏光板(9)の楕円率測定結果を表2に示す。特に450nmの楕円率は実施例1~6よりも低く正面の反射色は濃青色を呈していた。円偏光板(9)のCOP面を粘着剤を用いて鏡に貼合し、正面鉛直方向から仰角60°の位置における方位角全方向からの色相変化を観察した。色相変化が特に大きかった方向2点から見たときの色を表2に示す。円偏光板(9)は、特定の方向から観察して際に反射色が紫色に呈することが観察された。
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 上記の測定結果からも、実施例の円偏光板はあらゆる方向から観察した際にも明所での反射防止特性に優れており有用である。
 本発明の位相差フィルムは、黒表示時に着色の無い光漏れ抑制に優れる光学フィルムとして有用である。
1 第一の位相差層
2 第二の位相差層
3 基材
100 本位相差フィルム
4 配向膜
5 粘着剤
6 偏光板
7 保護層
8 第三の位相差層
200 有機EL表示装置
30 有機EL表示装置
31 本円偏光板
32 基板
33 層間絶縁膜
34 画素電極
35 発光層
36 カソード電極
37 封止層
38 薄膜トランジスタ
39 リブ

Claims (19)

  1. 少なくとも2つの位相差層を有し、第一の位相差層と第二の位相差層とを有する位相差フィルムであって、
    第一の位相差層が、
    式(1)及び式(3)及び式(4)で表される光学特性を有し、
    第二の位相差層が、
    式(2)及び式(3)及び式(4)で表される光学特性を有し、
    該位相差フィルムが、
    式(2)及び式(3)及び式(4)で表される光学特性を有する位相差フィルム。
    200nm<Re(550)<320nm      (1)
    100nm<Re(550)<160nm      (2)
    Re(450)/Re(550)≦1.00     (3)
    1.00≦Re(650)/Re(550)     (4)
    (式中、Re(450)は波長450nmにおける面内位相差値を表し、Re(550)は波長550nmにおける面内位相差値を表し、Re(650)は波長650nmにおける面内位相差値を表す。)
  2. さらに式(5)で表される第三の位相差層を有する請求項1に記載の位相差フィルム。
     nx≒ny<nz    (5)
    (nxは、位相差層が形成する屈折率楕円体において、フィルム平面に対して平行な方向の主屈折率を表し、nyは、位相差層が形成する屈折率楕円体において、フィルム平面に対して平行であり、且つ、該nxの方向に対して直交する方向の屈折率を表す。nzは、位相差層が形成する屈折率楕円体において、フィルム平面に対して垂直な方向の屈折率を表す。)
  3. 請求項1または請求項2に記載の位相差フィルムであって、式(6)及び(7)で表される光学特性を有する位相差フィルム。
     -2.0≦ a* ≦0.5             (6)
     -0.5≦ b* ≦5.0             (7)
    (式中、a*及びb*は、L*a*b*表色系における色座標を表す。)
  4. 第一の位相差層が1以上の重合性液晶を重合させることにより形成されるコーティング層である請求項1~請求項3のいずれか1項に記載の位相差フィルム。
  5. 第二の位相差層が1以上の重合性液晶を重合させることにより形成されるコーティング層である請求項1~請求項4のいずれか1項に記載の位相差フィルム。
  6. 第一の位相差層の厚さが5μm以下である請求項1~請求項5のいずれか1項に記載の位相差フィルム。
  7. 第二の位相差層の厚さが5μm以下である請求項1~請求項6のいずれか1項に記載の位相差フィルム。
  8. 第一の位相差層及び第二の位相差層の厚さがそれぞれ5μm以下である請求項1~請求項7のいずれか1項に記載の位相差フィルム。
  9. 基材上に、配向膜を介するかまたは介さずに第一の位相差層が形成され、該第一の位相差層の上に、配向膜を介するかまたは介さずに第二の位相差層が形成されている請求項1~請求項8のいずれか1項に記載の位相差フィルム。
  10. 基材上に、配向膜を介するかまたは介さずに第二の位相差層が形成され、該第二の位相差層の上に、配向膜を介するかまたは介さずに第一の位相差層が形成されている請求項1~請求項9のいずれか1項に記載の位相差フィルム。
  11. 基材の一方の面に、配向膜を介するかまたは介さずに第一の位相差層が形成され、基材の他方の面に、配向膜を介するかまたは介さずに第二の位相差層が形成されている請求項1~請求項9のいずれか1項に記載の位相差フィルム。
  12. 基材が第一の位相差層の光学特性を有し、該基材上に配向膜を介するかまたは介さずに第二の位相差層が形成されている請求項1~請求項9のいずれか1項に記載の位相差フィルム。
  13. 基材が第二の位相差層の光学特性を有し、該基材上に配向膜を介するかまたは介さずに第一の位相差層が形成されている請求項1~請求項9のいずれか1項に記載の位相差フィルム。
  14. 第一の位相差層と第二の位相差層の光軸の為す角度が実質的に60°である請求項1~請求項9のいずれか1項に記載の位相差フィルム。
  15. 第一の位相差層と、第二の位相差層との間に保護層を有する請求項7~12のいずれかに記載の位相差フィルム。
  16. 請求項1~15のいずれかに記載の位相差フィルムと偏光板とを備える円偏光板。
  17. 偏光板の吸収軸あるいは透過軸と第一の位相差層の光軸の為す角度θに対して、偏光板の吸収軸あるいは透過軸と第二の位相差層の光軸の為す角度が実質的に2θ+45°の関係である請求項16記載の円偏光板。
  18. 請求項16または請求項17に記載の円偏光板を備える有機EL表示装置。
  19. 請求項16または請求項17に記載の円偏光板を備えるタッチパネル表示装置。
PCT/JP2017/020797 2016-06-30 2017-06-05 位相差フィルム WO2018003416A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201780040410.0A CN109416426A (zh) 2016-06-30 2017-06-05 相位差膜
JP2018524989A JP7055099B2 (ja) 2016-06-30 2017-06-05 位相差フィルム
KR1020197001201A KR102453716B1 (ko) 2016-06-30 2017-06-05 위상차 필름

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-129927 2016-06-30
JP2016129927 2016-06-30

Publications (1)

Publication Number Publication Date
WO2018003416A1 true WO2018003416A1 (ja) 2018-01-04

Family

ID=60786046

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020797 WO2018003416A1 (ja) 2016-06-30 2017-06-05 位相差フィルム

Country Status (5)

Country Link
JP (1) JP7055099B2 (ja)
KR (1) KR102453716B1 (ja)
CN (1) CN109416426A (ja)
TW (1) TWI752971B (ja)
WO (1) WO2018003416A1 (ja)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019151099A (ja) * 2018-03-02 2019-09-12 住友化学株式会社 積層フィルム
JP2019191282A (ja) * 2018-04-20 2019-10-31 日東電工株式会社 位相差層付き偏光板および有機el表示装置
WO2019208610A1 (ja) * 2018-04-27 2019-10-31 住友化学株式会社 光学フィルム、光学積層体及びフレキシブル画像表示装置
WO2019208611A1 (ja) * 2018-04-27 2019-10-31 住友化学株式会社 光学フィルム、光学積層体及びフレキシブル画像表示装置
JP2019207391A (ja) * 2018-05-25 2019-12-05 住友化学株式会社 光学積層体の製造方法
CN110632693A (zh) * 2018-06-25 2019-12-31 住友化学株式会社 层叠体
CN111487703A (zh) * 2019-01-25 2020-08-04 住友化学株式会社 有机el显示器用层叠体及其使用的圆偏光板
CN111522088A (zh) * 2019-02-01 2020-08-11 住友化学株式会社 层叠体、带粘接层的层叠体、带基材层的光学层叠体、光学层叠体及其制造方法
WO2020170711A1 (ja) * 2019-02-19 2020-08-27 セントラル硝子株式会社 ヘッドアップディスプレイ装置
CN111788235A (zh) * 2018-03-05 2020-10-16 住友化学株式会社 聚合性液晶组合物
CN112513697A (zh) * 2018-07-31 2021-03-16 住友化学株式会社 水平取向液晶固化膜及包含其的层叠体
JP2021056419A (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 積層体及びその製造方法、並びに光学フィルム
JP2021103286A (ja) * 2019-01-25 2021-07-15 住友化学株式会社 有機elディスプレイ用積層体およびそれに用いる円偏光板
JP2021140103A (ja) * 2020-03-09 2021-09-16 住友化学株式会社 光学積層体及びその製造方法
JPWO2020149343A1 (ja) * 2019-01-17 2021-11-18 富士フイルム株式会社 積層体および画像表示装置
CN114375418A (zh) * 2019-09-17 2022-04-19 住友化学株式会社 层叠体及包含该层叠体的椭圆偏振板
JP7328000B2 (ja) 2019-05-20 2023-08-16 住友化学株式会社 長尺積層体及び有機el表示装置
WO2024080047A1 (ja) * 2022-10-13 2024-04-18 日東電工株式会社 光学積層体

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020020996A (ja) * 2018-08-02 2020-02-06 住友化学株式会社 偏光板、及び、液晶表示装置
KR102444973B1 (ko) * 2019-06-19 2022-09-19 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
KR20210135888A (ko) * 2020-05-06 2021-11-16 삼성에스디아이 주식회사 편광판 및 이를 포함하는 광학표시장치
CN111913248B (zh) * 2020-07-27 2022-03-29 明基材料有限公司 相位差膜、圆偏光板以及含该圆偏光板的电激发光显示器
KR102448613B1 (ko) * 2020-11-23 2022-09-28 솔루스첨단소재 주식회사 수지 조성물
CN114527594B (zh) * 2022-02-23 2023-11-03 京东方科技集团股份有限公司 一种显示面板及制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156528A (ja) * 1998-10-30 2002-05-31 Teijin Ltd 熱可塑性高分子フィルム
JP2014123099A (ja) * 2012-11-21 2014-07-03 Dainippon Printing Co Ltd 光学フィルム、光学フィルム用転写体、画像表示装置
JP2015163957A (ja) * 2014-01-31 2015-09-10 住友化学株式会社 光学異方性シート
JP2015163935A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 光学フィルム
WO2015166991A1 (ja) * 2014-05-01 2015-11-05 富士フイルム株式会社 有機el表示装置
WO2016114254A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 位相差板及び円偏光板

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1045261B1 (en) * 1998-10-30 2005-02-02 Teijin Limited Phase difference film and optical device using it
WO2006052001A1 (ja) * 2004-11-11 2006-05-18 Sumitomo Chemical Company, Limited 光学フィルム
KR101489541B1 (ko) 2007-09-03 2015-02-03 메르크 파텐트 게엠베하 플루오렌 유도체
JP2011203426A (ja) * 2010-03-25 2011-10-13 Nippon Zeon Co Ltd 長尺状の光学積層体、輝度向上フィルム及び液晶表示装置
JP2014142462A (ja) * 2013-01-23 2014-08-07 Dainippon Printing Co Ltd 光学機能層付きタッチパネル用電極部、円偏光板付きタッチパネル電極部、タッチパネル、画像表示装置
JP2015038598A (ja) * 2013-07-18 2015-02-26 富士フイルム株式会社 位相差フィルム、偏光板および液晶表示装置
CN104345368B (zh) * 2013-08-09 2018-10-16 住友化学株式会社 椭圆偏振板
JP6299367B2 (ja) * 2014-04-18 2018-03-28 住友化学株式会社 パターン偏光フィルムの製造方法
JP2015230386A (ja) * 2014-06-05 2015-12-21 大日本印刷株式会社 反射防止フィルム及び画像表示装置
US20150378075A1 (en) * 2014-06-27 2015-12-31 Samsung Electronics Co., Ltd. Optical film, manufacturing method thereof, and display device
JP2016126130A (ja) * 2014-12-26 2016-07-11 日東電工株式会社 有機el表示装置用積層体及び有機el表示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002156528A (ja) * 1998-10-30 2002-05-31 Teijin Ltd 熱可塑性高分子フィルム
JP2014123099A (ja) * 2012-11-21 2014-07-03 Dainippon Printing Co Ltd 光学フィルム、光学フィルム用転写体、画像表示装置
JP2015163935A (ja) * 2013-08-09 2015-09-10 住友化学株式会社 光学フィルム
JP2015163957A (ja) * 2014-01-31 2015-09-10 住友化学株式会社 光学異方性シート
WO2015166991A1 (ja) * 2014-05-01 2015-11-05 富士フイルム株式会社 有機el表示装置
WO2016114254A1 (ja) * 2015-01-16 2016-07-21 Dic株式会社 位相差板及び円偏光板

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7263804B2 (ja) 2018-03-02 2023-04-25 住友化学株式会社 積層フィルム
JP2019151099A (ja) * 2018-03-02 2019-09-12 住友化学株式会社 積層フィルム
CN111788235A (zh) * 2018-03-05 2020-10-16 住友化学株式会社 聚合性液晶组合物
JP2019191282A (ja) * 2018-04-20 2019-10-31 日東電工株式会社 位相差層付き偏光板および有機el表示装置
WO2019208610A1 (ja) * 2018-04-27 2019-10-31 住友化学株式会社 光学フィルム、光学積層体及びフレキシブル画像表示装置
WO2019208611A1 (ja) * 2018-04-27 2019-10-31 住友化学株式会社 光学フィルム、光学積層体及びフレキシブル画像表示装置
JP2019207391A (ja) * 2018-05-25 2019-12-05 住友化学株式会社 光学積層体の製造方法
CN110632693A (zh) * 2018-06-25 2019-12-31 住友化学株式会社 层叠体
CN110632693B (zh) * 2018-06-25 2023-07-18 住友化学株式会社 层叠体
CN112513697A (zh) * 2018-07-31 2021-03-16 住友化学株式会社 水平取向液晶固化膜及包含其的层叠体
CN112513697B (zh) * 2018-07-31 2023-10-17 住友化学株式会社 水平取向液晶固化膜及包含其的层叠体
JPWO2020149343A1 (ja) * 2019-01-17 2021-11-18 富士フイルム株式会社 積層体および画像表示装置
JP7357008B2 (ja) 2019-01-17 2023-10-05 富士フイルム株式会社 積層体および画像表示装置
JP7397683B2 (ja) 2019-01-25 2023-12-13 住友化学株式会社 有機elディスプレイ用積層体およびそれに用いる円偏光板
JP2021103286A (ja) * 2019-01-25 2021-07-15 住友化学株式会社 有機elディスプレイ用積層体およびそれに用いる円偏光板
CN111487703A (zh) * 2019-01-25 2020-08-04 住友化学株式会社 有机el显示器用层叠体及其使用的圆偏光板
CN111522088A (zh) * 2019-02-01 2020-08-11 住友化学株式会社 层叠体、带粘接层的层叠体、带基材层的光学层叠体、光学层叠体及其制造方法
WO2020170711A1 (ja) * 2019-02-19 2020-08-27 セントラル硝子株式会社 ヘッドアップディスプレイ装置
CN113365868A (zh) * 2019-02-19 2021-09-07 中央硝子株式会社 平视显示器装置
JPWO2020170711A1 (ja) * 2019-02-19 2021-12-23 セントラル硝子株式会社 ヘッドアップディスプレイ装置
JP7328575B2 (ja) 2019-02-19 2023-08-17 セントラル硝子株式会社 ヘッドアップディスプレイ装置
JP7328000B2 (ja) 2019-05-20 2023-08-16 住友化学株式会社 長尺積層体及び有機el表示装置
CN114375418A (zh) * 2019-09-17 2022-04-19 住友化学株式会社 层叠体及包含该层叠体的椭圆偏振板
CN114375418B (zh) * 2019-09-17 2024-03-12 住友化学株式会社 层叠体及包含该层叠体的椭圆偏振板
JP7310513B2 (ja) 2019-09-30 2023-07-19 日本ゼオン株式会社 積層体及びその製造方法、並びに光学フィルム
JP2021056419A (ja) * 2019-09-30 2021-04-08 日本ゼオン株式会社 積層体及びその製造方法、並びに光学フィルム
JP2021140103A (ja) * 2020-03-09 2021-09-16 住友化学株式会社 光学積層体及びその製造方法
JP7399756B2 (ja) 2020-03-09 2023-12-18 住友化学株式会社 光学積層体及びその製造方法
WO2024080047A1 (ja) * 2022-10-13 2024-04-18 日東電工株式会社 光学積層体

Also Published As

Publication number Publication date
JP7055099B2 (ja) 2022-04-15
KR102453716B1 (ko) 2022-10-11
KR20190021327A (ko) 2019-03-05
CN109416426A (zh) 2019-03-01
TWI752971B (zh) 2022-01-21
JPWO2018003416A1 (ja) 2019-05-30
TW201805700A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2018003416A1 (ja) 位相差フィルム
JP6786640B2 (ja) 光学フィルム
JP6481570B2 (ja) 光学フィルム
KR102389525B1 (ko) 광학 필름
JP5822006B2 (ja) 光学フィルム
JP6113120B2 (ja) 楕円偏光板
TWI650243B (zh) 光學薄膜
JP2015079230A (ja) 積層体の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17819781

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018524989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20197001201

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17819781

Country of ref document: EP

Kind code of ref document: A1