WO2017209128A1 - 眼鏡レンズ - Google Patents

眼鏡レンズ Download PDF

Info

Publication number
WO2017209128A1
WO2017209128A1 PCT/JP2017/020097 JP2017020097W WO2017209128A1 WO 2017209128 A1 WO2017209128 A1 WO 2017209128A1 JP 2017020097 W JP2017020097 W JP 2017020097W WO 2017209128 A1 WO2017209128 A1 WO 2017209128A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
ultraviolet
mass
ultraviolet absorber
group
Prior art date
Application number
PCT/JP2017/020097
Other languages
English (en)
French (fr)
Inventor
英之 脇保
Original Assignee
株式会社ニコン・エシロール
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニコン・エシロール filed Critical 株式会社ニコン・エシロール
Priority to CN201780033885.7A priority Critical patent/CN109313359B/zh
Priority to BR112018074819-6A priority patent/BR112018074819B1/pt
Priority to KR1020187034683A priority patent/KR102389007B1/ko
Priority to EP17806681.7A priority patent/EP3467575B1/en
Priority to JP2018520925A priority patent/JP7106449B2/ja
Priority to US16/306,845 priority patent/US10788605B2/en
Publication of WO2017209128A1 publication Critical patent/WO2017209128A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • C08K5/3475Five-membered rings condensed with carbocyclic rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/04Optical elements characterised by the material of which they are made; Optical coatings for optical elements made of organic materials, e.g. plastics
    • G02B1/041Lenses
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/10Filters, e.g. for facilitating adaptation of the eyes to the dark; Sunglasses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3863Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3863Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms
    • C08G18/3865Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing groups having sulfur atoms between two carbon atoms, the sulfur atoms being directly linked to carbon atoms or other sulfur atoms containing groups having one sulfur atom between two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3855Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur
    • C08G18/3876Low-molecular-weight compounds having heteroatoms other than oxygen having sulfur containing mercapto groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/75Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic
    • C08G18/758Polyisocyanates or polyisothiocyanates cyclic cycloaliphatic containing two or more cycloaliphatic rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3467Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
    • C08K5/3472Five-membered rings
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/208Filters for use with infrared or ultraviolet radiation, e.g. for separating visible light from infrared and/or ultraviolet radiation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/22Absorbing filters
    • G02B5/223Absorbing filters containing organic substances, e.g. dyes, inks or pigments
    • GPHYSICS
    • G02OPTICS
    • G02CSPECTACLES; SUNGLASSES OR GOGGLES INSOFAR AS THEY HAVE THE SAME FEATURES AS SPECTACLES; CONTACT LENSES
    • G02C7/00Optical parts
    • G02C7/02Lenses; Lens systems ; Methods of designing lenses
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/014Additives containing two or more different additives of the same subgroup in C08K
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone

Definitions

  • the present invention relates to a spectacle lens.
  • Patent Document 1 describes “a UV-absorbing plastic lens characterized by containing an ultraviolet absorber having a molecular weight of 360 or less in a proportion of 0.7 to 5 parts by mass with respect to 100 parts by mass of the raw material monomer.” Are listed.
  • 2,5-bis (isocyanatomethyl) bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) bicyclo [2.2.1] heptane The resin composition containing the at least 1 sort (s) of isocyanate compound selected from the group which consists of, a polythiol compound, the ultraviolet absorber represented by Formula (1), and the ultraviolet absorber represented by Formula (2)
  • R 1 to R 9 each independently represents a hydrogen atom, an alkyl group, an alkoxy group, or a hydroxyl group.
  • R 11 to R 18 each independently represents A hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, or a halogen atom is represented, and R 19 represents a hydrogen atom, an alkyl group, an alkoxy group, a phenylalkyl group, or a group represented by the following formula (3). However, when R 19 is a hydrogen atom, an alkyl group, or an alkoxy group, at least one of R 11 to R 14 represents a halogen atom.
  • Formula (3) * -LR 20 In formula (3), L represents an alkylene group.
  • R 20 represents an aromatic hydrocarbon group or a heterocyclic group which may have a substituent.
  • Formula (X) M value
  • ⁇ 1 is an ultraviolet absorber represented by formula (1) in an ultraviolet-visible absorption spectrum of a chloroform solution in which the concentration of the ultraviolet absorber represented by formula (1) is 10 ppm by mass
  • ⁇ 2 represents the ultraviolet absorber represented by the formula (2) in the ultraviolet-visible absorption spectrum of the chloroform solution in which the concentration of the ultraviolet absorber represented by the formula (2) is 10 ppm by mass.
  • a 1 represents the ultraviolet absorber represented by formula (1) in the ultraviolet-visible absorption spectrum of a chloroform solution having a concentration of 10 ppm by weight of the ultraviolet absorber represented by formula (1).
  • .A 2 representing the absorbance at the maximum absorption wavelength, the ultraviolet-visible absorption spectrum of the chloroform solution the concentration of the UV absorber of the formula (2) is 10 mass ppm, is represented by the formula (2) .
  • a 1 (400) representing the absorbance at the maximum absorption wavelength of the ultraviolet absorber in the UV-visible absorption spectrum of the chloroform solution the concentration of the UV absorber of the formula (1) is 10 mass ppm
  • the absorbance at 400nm A 2 (400) represents an absorbance at 400 nm in an ultraviolet-visible absorption spectrum of a chloroform solution in which the concentration of the ultraviolet absorber represented by the formula (2) is 10 ppm by mass
  • W 1 represents an isocyanate compound.
  • the content of the ultraviolet absorber represented by the formula (1) (mass part) when the total of the polythiol compound is 100 parts by mass, and W 2 is 100 parts by mass of the total of the isocyanate compound and the polythiol compound. Represents the content (parts by mass) of the ultraviolet absorber represented by the formula (2).
  • a numerical range expressed using “to” means a range including numerical values described before and after “to” as a lower limit value and an upper limit value.
  • the inventor of the present invention uses an ultraviolet-absorbing plastic lens specifically described in Patent Document 1, and absorbs ultraviolet rays (light having a wavelength of 200 to 400 nm) (hereinafter also referred to as “ultraviolet absorption rate”) and Examination of low yellowness (hereinafter, also referred to as “low yellowness”) revealed that there is a problem that has not reached the level required for recent spectacle lenses.
  • yellowness means the degree which the spectacle lens colored yellow, and is a value which can be measured by the method mentioned later.
  • a spectacle lens containing an ultraviolet absorber has a problem that yellowness tends to increase.
  • a required amount of an ultraviolet absorber must be added to the spectacle lens.
  • the present inventor calculated from the contents and physical property values of the above-mentioned two types of ultraviolet absorbers using a predetermined monomer and two predetermined types of ultraviolet absorbers. It has been found that a spectacle lens having an M-value within a predetermined range can provide a spectacle lens having excellent ultraviolet absorption and low yellowness.
  • the spectacle lens of the present embodiment is made of 2,5-bis (isocyanatomethyl) bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) bicyclo [2.2.1] heptane.
  • a resin composition comprising at least one isocyanate compound selected from the group consisting of: a polythiol compound; an ultraviolet absorber represented by formula (1); and an ultraviolet absorber represented by formula (2).
  • the M value represented by the formula (X) described later is greater than 0.7 and less than 16.7.
  • the spectacle lens having such a configuration has excellent ultraviolet absorption and low yellowness.
  • FIG. 1 the typical ultraviolet visible absorption spectrum of the ultraviolet absorber represented by Formula (1) and the typical ultraviolet visible absorption spectrum of the ultraviolet absorber represented by Formula (2) are respectively represented.
  • the two UV-visible absorption spectra are obtained by using a solution in which the ultraviolet absorber represented by the formula (1) and the ultraviolet absorber represented by the formula (2) are each dissolved in chloroform at a concentration of 10 mass ppm. It is measured.
  • the horizontal axis represents wavelength (nm) and the vertical axis represents absorbance.
  • FIG. 1 is merely an example, and a typical ultraviolet-visible absorption spectrum of the ultraviolet absorber represented by the formula (1) and a typical ultraviolet-visible absorption of the ultraviolet absorber represented by the formula (2). The spectrum is not limited to the embodiment of FIG. In FIG.
  • a curve A represented by an alternate long and short dash line represents an ultraviolet-visible absorption spectrum of the ultraviolet absorbent represented by the formula (1).
  • the ultraviolet absorber represented by the formula (1) has a benzotriazole skeleton, and usually has a maximum absorption wavelength ⁇ 1 in the range of 300 to 380 nm.
  • the ultraviolet absorber represented by the formula (1) having such ultraviolet absorption characteristics has excellent ultraviolet absorption in the range of less than 380 nm, but almost absorbs in the visible light range (approximately 400 to 800 nm). Does not have. Therefore, the absorbance A 1 (400) at 400 nm of the ultraviolet absorber represented by the formula (1 ) is relatively small.
  • a curve B represented by a solid line represents an ultraviolet-visible absorption spectrum of the ultraviolet absorbent represented by the formula (2).
  • the ultraviolet absorber represented by the formula (2) has a benzotriazole skeleton and a predetermined functional group, and a ⁇ -conjugated system is expanded as compared with the ultraviolet absorber represented by the formula (1). It is easy to absorb light in a longer wavelength region. Therefore, the ultraviolet absorber represented by the formula (2) has a higher absorbance than the ultraviolet absorber represented by the formula (1) in the range of 380 to 400 nm.
  • the absorbance A 2 (400) at 400 nm of the ultraviolet absorber represented by the formula (2) is higher than the absorbance A 1 (400) at 400 nm of the ultraviolet absorber represented by the formula (1).
  • the ultraviolet absorber represented by Formula (2) is easy to absorb visible light after 400 nm, a spectacle lens including this ultraviolet absorber is likely to be yellowed.
  • the inventor uses a predetermined monomer and uses the two kinds of ultraviolet absorbers having different ultraviolet absorption characteristics as described above, and the M value calculated from the content and physical properties of the ultraviolet absorber is within a predetermined range. It has been found that the above-mentioned problems can be solved when the content is within the range. Hereinafter, the technical significance of the M value will be described in detail.
  • the obtained spectacle lens does not have an ultraviolet absorption rate (particularly, an ultraviolet absorption rate in the range of 380 to 400 nm). Further, from the viewpoint of compatibility with the resin component in the spectacle lens, a large amount of the ultraviolet absorber represented by the formula (1) cannot be blended into the spectacle lens. Furthermore, when only the ultraviolet absorber represented by the formula (2) is used, the obtained spectacle lens is easily yellowed. As described above, when only one type of ultraviolet absorber is used, both excellent ultraviolet absorption rate and low yellowing cannot be achieved in a balanced manner.
  • M value is a value represented by the following formula (X).
  • ⁇ 1 is the ultraviolet absorber represented by the formula (1) in the ultraviolet-visible absorption spectrum of the chloroform solution in which the concentration of the ultraviolet absorber represented by the formula (1) is 10 mass ppm. It represents the maximum absorption wavelength (see FIG. 1). That is, the maximum absorption wavelength ⁇ 1 is obtained by ultraviolet-visible spectrophotometry (UV-Vis) using a solution in which the ultraviolet absorber represented by the formula (1) is dissolved in chloroform at a concentration of 10 mass ppm. It is a wavelength that exhibits a maximum value in the visible absorption spectrum. When there are a plurality of maximum values, the maximum value on the longest wavelength side is taken out of the plurality of maximum values.
  • UV-Vis ultraviolet-visible spectrophotometry
  • ⁇ 2 is the maximum absorption wavelength of the ultraviolet absorber represented by the formula (2) in the ultraviolet-visible absorption spectrum of the chloroform solution in which the concentration of the ultraviolet absorber represented by the formula (2) is 10 ppm by mass.
  • the maximum absorption wavelength ⁇ 2 is obtained by ultraviolet-visible spectrophotometry (UV-Vis) using a solution in which an ultraviolet absorber represented by the formula (2) is dissolved in chloroform at a concentration of 10 mass ppm. It is a wavelength that exhibits a maximum value in the visible absorption spectrum. When there are a plurality of maximum values, the maximum value on the longest wavelength side is taken out of the plurality of maximum values.
  • UV-Vis ultraviolet-visible spectrophotometry
  • curve B which is an ultraviolet-visible absorption spectrum of the ultraviolet absorber represented by the formula (2), and the wavelength indicating the maximum value on the long wavelength side is shown.
  • the maximum absorption wavelength ⁇ 2 As a device for measuring the UV-visible absorption spectrum, a spectrophotometer is used and measurement is performed under the following conditions.
  • Cell Quartz, 1 cm wide (corresponds to 1 cm optical path length)
  • Blank Solvent (chloroform)
  • ⁇ 2 ⁇ 1 is the absolute value of the difference between ⁇ 1 and ⁇ 2 , and the maximum absorption wavelength of the ultraviolet absorber represented by formula (1) and the formula (2) The difference with the maximum absorption wavelength of the represented ultraviolet absorber is shown. If this value is too small, the absorption band is narrowed, and the ultraviolet absorptivity of the spectacle lens tends to be inferior. On the other hand, if this value is too large, the absorption band tends to reach visible light, and the low yellowness of the spectacle lens tends to be inferior.
  • the size of ⁇ 1 is not particularly limited, but can be set to 340 to 350 nm and 343 to 347 nm in that the spectacle lens of the present embodiment has more excellent ultraviolet absorption and low yellowness.
  • the size of ⁇ 2 is not particularly limited, but can be set to 340 to 370 nm and 341 to 354 nm in that the spectacle lens of the present embodiment has more excellent UV absorption and low yellowness. Can do.
  • is not particularly limited, but can be set to 0.1 to 30 nm in that the spectacle lens of the present embodiment has better ultraviolet absorption and low yellowness. Also, it can be 1 to 9 nm.
  • lambda 2 is greater than lambda 1, is not limited to this aspect, lambda 1 may be larger than lambda 2.
  • a 1 represents the ultraviolet absorber represented by the formula (1) in the ultraviolet-visible absorption spectrum of the chloroform solution having the concentration of the ultraviolet absorber represented by the formula (1) of 10 ppm by mass. It represents the absorbance at the maximum absorption wavelength (see FIG. 1). That is, the absorbance A 1 is the UV-visible absorption obtained by UV-Vis spectrophotometry (UV-Vis) using a solution in which the UV absorber represented by the formula (1) is dissolved in chloroform at a concentration of 10 ppm by mass. In the spectrum, this is the absorbance at the maximum absorption wavelength ⁇ 1 .
  • a 2 represents the absorbance at the maximum absorption wavelength of the ultraviolet absorber represented by the formula (2) in the ultraviolet-visible absorption spectrum of the chloroform solution in which the concentration of the ultraviolet absorber represented by the formula (2) is 10 mass ppm.
  • the absorbance A 2 is an ultraviolet-visible absorption obtained by ultraviolet-visible spectrophotometry (UV-Vis) using a solution in which an ultraviolet absorber represented by the formula (2) is dissolved in chloroform at a concentration of 10 mass ppm.
  • UV-Vis ultraviolet-visible spectrophotometry
  • the absorbance at the maximum absorption wavelength ⁇ 2 The method for measuring the absorbance is the same as the method for measuring the maximum absorption wavelength described above.
  • a 2 / A 1 is the maximum absorption wavelength of the ultraviolet absorber represented by the formula (2) with respect to the ultraviolet absorption amount at the maximum absorption wavelength of the ultraviolet absorber represented by the formula (1). It means the ratio of UV absorption. If this value is too small, the absorption on the long wavelength side due to the absorption spectrum of the ultraviolet absorbent represented by the formula (2) becomes insufficient, and the ultraviolet absorptivity of the spectacle lens tends to be inferior. On the other hand, if this value is too large, the absorption on the long wavelength side becomes excessive, and the low yellowness of the spectacle lens tends to be inferior.
  • the size of A 1 is not particularly limited, but can be set to 0.2 to 2.0 in that the spectacle lens of the present embodiment has more excellent ultraviolet absorption and low yellowness. It can be 0.3 to 2.0, further 0.4 to 1.1, and 0.7 to 1.1.
  • the size of A 2 is not particularly limited, but can be set to 0.2 to 0.9 in terms of having the ultraviolet ray absorbing property and the low yellowness of the spectacle lens of the present embodiment, and is preferably set to 0.2. It can be 3 to 0.6.
  • the value of A 2 / A 1 is not particularly limited, but can be set to 0.1 to 4.5 in that the spectacle lens of the present embodiment has more excellent ultraviolet absorption and low yellowness. Also, it can be 0.2 to 3.4, and further can be 0.3 to 0.6.
  • a 1 (400) represents the absorbance at 400 nm in the ultraviolet-visible absorption spectrum of the chloroform solution in which the concentration of the ultraviolet absorber represented by the formula (1) is 10 mass ppm (see FIG. 1). ).
  • a 2 (400) represents absorbance at 400 nm in an ultraviolet-visible absorption spectrum of a chloroform solution in which the concentration of the ultraviolet absorber represented by the formula (2) is 10 mass ppm (see FIG. 1).
  • the method for measuring the absorbance is the same as the method for measuring the maximum absorption wavelength described above.
  • a 2 (400) / A 1 (400) is the amount of ultraviolet absorption at 400 nm of the ultraviolet absorber represented by formula (2) with respect to the amount of ultraviolet absorption at 400 nm of the ultraviolet absorber represented by formula (1). Means ratio. If this value is too small, the 400 nm absorptivity due to the absorption spectrum of the ultraviolet absorber represented by the formula (2) becomes insufficient, and the ultraviolet absorptivity of the spectacle lens tends to be inferior. On the other hand, if this value is too large, the absorbability at 400 nm becomes excessive, and the low yellowness of the spectacle lens tends to be inferior.
  • the size of A 1 (400) is not particularly limited, but may be 0.0001 to 0.008 from the viewpoint that the spectacle lens of the present embodiment has more excellent ultraviolet absorption and low yellowness. Or 0.0009 to 0.002.
  • the size of A 2 (400) is not particularly limited, but can be 0.001 to 0.3 in that the spectacle lens of the present embodiment has more excellent ultraviolet absorption and low yellowness, Further, it can be 0.001 to 0.05.
  • the value of A 2 (400) / A 1 (400) is not particularly limited, but is 0.125 to 3000 in that the spectacle lens of the present embodiment has more excellent ultraviolet absorption and low yellowness. Or 1.1 to 2700, and more preferably 1.5 to 50.
  • W 1 represents the time was 100 parts by mass of the total of the isocyanate compound and the polythiol compound, the content of the ultraviolet absorber of the formula (1) (parts by weight). That is, the W 1 is in the resin composition corresponds to to monomer mixture 100 parts by mass consisting of an isocyanate compound and the polythiol compound, the content of the ultraviolet absorber of the formula (1) (parts by mass).
  • W 2 is obtained when 100 parts by mass of the total of the isocyanate compound and the polythiol compound, represented content of the ultraviolet absorber of the formula (2) (parts by weight).
  • W 2 is in the resin composition, to monomer mixture 100 parts by mass consisting of an isocyanate compound and the polythiol compound, corresponding to the content of the ultraviolet absorber of the formula (2) (parts by weight).
  • W 2 / W 1 means the ratio of the content of the ultraviolet absorber represented by the formula (2) to the content of the ultraviolet absorber represented by the formula (1). If this value is too small, the absorption on the long wavelength side due to the absorption spectrum of the ultraviolet absorbent represented by the formula (2) becomes insufficient, and the ultraviolet absorptivity of the spectacle lens tends to be inferior. On the other hand, if this value is too large, the absorption on the long wavelength side becomes excessive, and the low yellowness of the spectacle lens tends to be inferior.
  • the specific range of W 1 and W 2 will be described in detail later.
  • the M value of the spectacle lens of the present embodiment is greater than 0.7 and less than 16.7.
  • the M value can be greater than 0.7 and less than 12.0, and can be greater than 0.7 and 11 in that a spectacle lens having superior UV absorption and low yellowness can be obtained.
  • the spectacle lens of this embodiment uses a predetermined monomer as described above, uses two types of ultraviolet absorbers having different ultraviolet absorption characteristics, and has an M value calculated from the content and physical properties of the ultraviolet absorber. Since it is configured so as to be within the predetermined range, it is presumed that the ultraviolet absorptivity and low yellowness which have been considered to be in a trade-off relationship can be achieved at a high level.
  • the resin composition is from the group consisting of 2,5-bis (isocyanatomethyl) bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) bicyclo [2.2.1] heptane. It contains at least one selected isocyanate compound, a polythiol compound, an ultraviolet absorber represented by formula (1) described later, and an ultraviolet absorber represented by formula (2) described later. Below, each component contained in a resin composition is explained in full detail.
  • a resin composition contains the ultraviolet absorber represented by following formula (1), and the ultraviolet absorber represented by following formula (2).
  • the two types of ultraviolet absorbers are structurally similar and have excellent compatibility.
  • these two kinds of ultraviolet absorbers are excellent in compatibility with the monomer described later, and are easily dispersed uniformly in the spectacle lens.
  • R 1 to R 9 each independently represents a hydrogen atom, an alkyl group (having 1 to 8 carbon atoms), or an alkoxy group (having 1 to 8 carbon atoms). ) Or a hydroxyl group.
  • R 1 to R 4 can be hydrogen atoms.
  • At least one of R 5 to R 9 can be a hydroxyl group, and R 5 can be a hydroxyl group.
  • R 7 can be an alkoxy group in that a spectacle lens having better UV absorption and low yellowness can be obtained.
  • the number of carbon atoms contained in the alkoxy group can be 2 to 4, and can be 4.
  • R 11 to R 18 each independently represents a hydrogen atom, an alkyl group (having 1 to 8 carbon atoms), or an alkoxy group (having 1 to 8 carbon atoms). ), A hydroxyl group, or a halogen atom (for example, a fluorine atom, a chlorine atom, a bromine atom, etc.).
  • R 11 to R 14 each independently represents a hydrogen atom, an alkyl group, an alkoxy group, a hydroxyl group, or a halogen atom, and can be a hydrogen atom, an alkyl group, an alkoxy group, or a hydroxyl group, Or it can be set as an alkyl group and can also be set as a hydrogen atom.
  • R 19 is a hydrogen atom, an alkyl group or an alkoxy group
  • at least one of R 11 to R 14 represents a halogen atom.
  • R 15 can be a hydroxyl group.
  • R 19 is a hydrogen atom, an alkyl group (having 1 to 8 carbon atoms), an alkoxy group (having 1 to 8 carbon atoms), a phenylalkyl group (having 1 to 8 carbon atoms). Or a group represented by the following formula (3), and a phenylalkyl group or a group represented by the following formula (3).
  • the phenylalkyl group refers to a group in which at least one of the hydrogen atoms of the phenyl group is substituted with an alkyl group.
  • Formula (3) * -LR 20 In formula (3), L represents an alkylene group.
  • R 20 represents an aromatic hydrocarbon group or a heterocyclic group which may have a substituent. Examples of the aromatic hydrocarbon group which may have a substituent include a phenyl group, a tolyl group, a xylyl group, a naphthyl group, an anthryl group, and the like. Therefore, it can be a phenyl group or a phenyl group having a substituent.
  • an alkyl group, an alkoxy group, a hydroxyl group, a halogen atom etc. are mentioned, Especially, it can be set as a hydroxyl group or an alkyl group.
  • heterocyclic group which may have a substituent examples include aliphatic heterocyclic groups such as oxetanyl group, pyrrolidinyl group, tetrahydrofuryl group, and tetrahydrophthalamide group; thienyl group, furanyl group, pyridyl group, pyrimidyl group, And aromatic heterocyclic groups such as thiazolyl group, oxazolyl group, triazolyl group, benzothiophenyl group, benzofuranyl group, benzothiazolyl group, benzoxazolyl group, and benzotriazolyl group.
  • substituent the group illustrated as a substituent which may be substituted by the said aromatic hydrocarbon group is mentioned.
  • the ultraviolet absorber represented by the above formula (2) should be an ultraviolet absorber represented by the following formula (4) in that a spectacle lens having better ultraviolet absorptivity and low yellowness can be obtained. it can.
  • R 51 to R 58 are each independently a hydrogen atom, an alkyl group (having 1 to 8 carbon atoms), or an alkoxy group (having 1 to 8 carbon atoms).
  • L represents an alkylene group (having 1 to 3 carbon atoms)
  • R 50 represents an aromatic hydrocarbon group or a heterocyclic ring which may have a substituent. Represents a group.
  • the embodiments of R 51 to R 54 , R 55 to R 58 , and R 50 are the same as the embodiments of R 11 to R 14 , R 15 to R 18 , and R 20 described above, respectively.
  • Examples of the ultraviolet absorber represented by the above formula (1) include 2- (2-hydroxy-5-methylpropyl) -2H-benzotriazole, 2- (2-hydroxy-5-tertiary octylphenyl)- Examples include 2H-benzotriazole, 2- (4-ethoxy-2-hydroxyphenyl) -2H-benzotriazole, and 2- (4-butoxy-2-hydroxyphenyl) -2H-benzotriazole.
  • Examples of the ultraviolet absorber represented by the above formula (2) include 2- (3-tertiarybutyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole, 2- (2H-benzotriazole -2-yl) -4-methyl-6- (3,4,5,6-tetrahydrophthalimidylmethyl) phenol, 6- (2-benzotriazolyl) -4-tertiary octyl-6'-tarsha Libutyl-4'-methyl-2,2'-methylenebisphenol and 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1, 3,3-tetramethylbutyl) phenol and the like.
  • the content W 1 (parts by mass) of the ultraviolet absorber represented by the above formula (1) and the content W 2 (parts by mass) of the ultraviolet absorber represented by the above formula (2) are not particularly limited.
  • W 1 is 0.001 to 7.7 when the total amount of an isocyanate compound and a polythiol compound described later is 100 parts by mass in terms of obtaining a spectacle lens having better ultraviolet absorption and low yellowness.
  • Part. W 2 can be 0.001 to 7.0 parts by mass, 0.01 to 7.0 parts by mass, and further 0.1 to 7.0 parts by mass, The amount can be 0.1 to 2.5 parts by mass, or 0.1 to 2.0 parts by mass.
  • the sum of the content of W 2 of the ultraviolet absorber represented by the content of the ultraviolet absorbent represented by formula (1) W 1 and the formula (2) (W 1 + W 2) is not particularly limited, It can be 0.01 parts by mass or more, and can be made 0.1 parts by mass or more, or 1.0 part by mass or more in that a spectacle lens having better UV absorption can be obtained. Furthermore, it can be 2.0 parts by mass or more, and can be 2.9 parts by mass or more. Especially, it can be 3.0 mass parts or more at the point from which the spectacle lens which has the further outstanding ultraviolet absorptivity and low yellow property is obtained, and can be 4.0 mass parts or more.
  • the upper limit is not particularly limited, but can be 13.0 parts by mass or less, or 7.0 parts by mass or less in terms of obtaining a spectacle lens having more excellent low yellowness. it can.
  • the value of W 2 / W 1 is not particularly limited, but can be set to 0.01 to 200 in terms of the spectacle lens of the present embodiment having more excellent ultraviolet absorption and low yellowness, and 0.05 To 10, more preferably 0.05 to 1.
  • the isocyanate compound is selected from the group consisting of 2,5-bis (isocyanatomethyl) bicyclo [2.2.1] heptane and 2,6-bis (isocyanatomethyl) bicyclo [2.2.1] heptane Is at least one kind.
  • the above-mentioned resin composition is composed of 2,5-bis (isocyanatomethyl) bicyclo [2.2.1] heptane and 2,6 in that a spectacle lens having a high refractive index and excellent mechanical properties can be obtained.
  • -It may contain bis (isocyanatomethyl) bicyclo [2.2.1] heptane.
  • the isocyanate compound is 2,5-bis (isocyanatomethyl) bicyclo [2.2.1] heptane, and 2 , 6-Bis (isocyanatomethyl) bicyclo [2.2.1] heptane may also be included.
  • the polythiol compound is not particularly limited as long as it has two or more mercapto groups in the molecule, but may have three or four, for example, pentaerythritol tetrakisthioglycolate, pentaerythritol tetrakis (3-mercapto Propionate), 1,2-bis [(2-mercaptoethyl) thio] -3-mercaptopropane, 4-mercaptomethyl-3,6-dithia-1,8-octanedithiolethanedithiol, and bis (mercaptomethyl) ) -3,6,9-trithio-1,11-undecanedithiol and the like.
  • a polythiol compound may be used individually by 1 type, or may use 2 or more types together.
  • the ratio of the isocyanate compound content in the resin composition (the total amount when other polyisocyanates are contained) and the polythiol compound content is such that the ratio of functional groups of isocyanate groups and mercapto groups is NCO / SH ( (Molar ratio) can be adjusted to 0.5 to 3.0, and can be 0.5 to 1.5.
  • the resin composition used in the present embodiment may contain components other than those described above as long as the spectacle lens of the present embodiment has excellent ultraviolet absorption and low yellowness.
  • the components other than the above include ultraviolet absorbers, preliminary reaction catalysts, reaction regulators, polymerization catalysts, dyes and pigments, and other additives.
  • the ultraviolet absorber here shall not contain the ultraviolet absorber represented by the said Formula (1) and Formula (2).
  • polymerization catalyst examples include tin compounds, amines, phosphines, quaternary ammonium salts, quaternary phosphonium salts, tertiary sulfonium salts, secondary iodonium salts, mineral acids described in JP-A-2004-315556. Lewis acids, organic acids, silicic acids, tetrafluoroboric acids, peroxides, azo compounds, condensates of aldehydes and ammonia compounds, guanidines, thiouric acids, thiazoles, sulfenamides, thiurams , Dithiocarbamates, xanthates, and acidic phosphates. Among these, tin compounds can be used. These polymerization catalysts may be used alone or in combination of two or more.
  • the addition amount of the polymerization catalyst can be 0.0001 to 10.0 parts by mass and 0.001 to 5.0 parts by mass with respect to 100 parts by mass in total of the isocyanate compound and the polythiol compound. be able to.
  • the dye and the pigment are not particularly limited as long as they are substances that can reduce initial color poorness or yellowness or redness.
  • optical materials such as bluing agents that are commercially available for spectacle lens materials Dyestuffs and / or pigments can be used.
  • the type and content of the ultraviolet absorber can be selected and designed so that the M value is within a predetermined range.
  • the type of spectacle lens is not particularly limited. For example, both a convex surface and a concave surface are optically finished, and a finish lens that is molded to a desired power, only the convex surface is optically similar to the finish lens. It includes a semi-finished lens that is finished and optically finishes the concave side according to a desired power level after receiving an order. In addition to the above, lenses that are not ground are also included.
  • the method for producing the resin composition is not particularly limited, and a method for producing the resin composition by simultaneously mixing the above-described components in the same container, and a method for producing the resin composition by adding and mixing the components stepwise. And a method of producing a resin composition by separately mixing several components and then remixing them in the same container.
  • the mixing order of each component is not limited.
  • a degassing operation may be performed under reduced pressure before, during, or after mixing the components and additives.
  • the curing method of the resin composition is not particularly limited.
  • thermal polymerization curing by an electric furnace, UV curing by ultraviolet irradiation, electron beam curing by electron beam irradiation And a method of performing radiation curing by irradiation with radiation.
  • the curing time in the thermal polymerization curing can be 0.1 to 100 hours, usually 1 to 72 hours, and the curing temperature can be ⁇ 10 to 160 ° C., usually 0 to 140 ° C.
  • the polymerization can be carried out by maintaining a predetermined polymerization temperature for a predetermined time, raising the temperature by 0.1 to 100 ° C./h, lowering the temperature by 0.1 to 100 ° C./h, and a combination thereof.
  • the spectacle lens may be annealed to remove the distortion of the spectacle lens.
  • the spectacle lens of the present embodiment may have a coating layer on one side or both sides.
  • the coating layer include a primer layer, a hard coat layer, an antireflection film layer, an antifogging coat film layer, and an antifouling film layer. These layers may be laminated.
  • the thickness of the spectacle lens of this embodiment is not particularly limited, and is often about 1 to 30 mm from the viewpoint of handleability.
  • the spectacle lens may not be transparent as long as it has translucency, and may be colored.
  • the surface shape is selected from arbitrary shapes such as a convex surface, a flat surface, and a concave surface.
  • the resin composition was degassed and then poured into a glass mold, and the resin composition was subjected to thermal polymerization and curing. After the curing was completed, the mold was released and the obtained spectacle lens was washed, and then the washed spectacle lens was annealed to obtain an evaluation spectacle lens.
  • a mixture of methyl) bicyclo [2.2.1] heptane, pentaerythritol tetrakis (3-mercaptopropionate), and a mixture of 4-mercaptomethyl-3,6-dithia-1,8-octanedithiol (hereinafter, It was 2.8 parts by mass with respect to a total of 100 parts by mass of “monomer mixture”.
  • the amount of 2- (3-tertiarybutyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole used was 0.16 parts by mass with respect to a total of 100 parts by mass of the monomer mixture. It was.
  • the amount of 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol used depends on the monomer mixture. It was 1.0 mass part with respect to a total of 100 mass parts.
  • the optical properties of 2- (4-butoxy-2-hydroxyphenyl) -2H-benzotriazole are as described in Example 1.
  • the concentration of 2- (2H-benzotriazol-2-yl) -6- (1-methyl-1-phenylethyl) -4- (1,1,3,3-tetramethylbutyl) phenol was 10 ppm by mass.
  • the maximum absorption wavelength of this compound was 349 nm, the absorbance at this wavelength was 0.32, and the absorbance at 400 nm was 0.00921.
  • the amount of 6- (2-benzotriazolyl) -4-tertiary octyl-6'-tertiary butyl-4'-methyl-2,2'-methylenebisphenol used is 100 parts by mass in total of the monomer mixture. It was 1.8 parts by mass.
  • the maximum absorption wavelength of this compound is 344 nm, and the absorbance at that wavelength is The absorbance at 1.02 and 400 nm was 0.000933.
  • the maximum absorption wavelength of this compound was 342 nm
  • the absorbance at this wavelength was 0.35
  • the absorbance at 400 nm was 0.00185.
  • the amount of 6- (2-benzotriazolyl) -4-tertiary octyl-6'-tertiary butyl-4'-methyl-2,2'-methylenebisphenol used is 100 parts by mass in total of the monomer mixture. It was 1.5 parts by mass.
  • the optical properties of 2- (4-butoxy-2-hydroxyphenyl) -2H-benzotriazole are as described in Example 1.
  • the optical properties of 6- (2-benzotriazolyl) -4-tertiary octyl-6′-tertiary butyl-4′-methyl-2,2′-methylenebisphenol were as described in Example 3. It is.
  • the amount of 2- (3-tertiarybutyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole used was 0.17 parts by mass with respect to a total of 100 parts by mass of the monomer mixture. It was.
  • the optical properties of 2- (4-butoxy-2-hydroxyphenyl) -2H-benzotriazole are as described in Example 1.
  • the optical properties of 2- (3-tertiarybutyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole are as described in Example 1.
  • the amount of 2- (3-tertiarybutyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole used was 0.3 parts by mass with respect to a total of 100 parts by mass of the monomer mixture. It was.
  • the optical properties of 2- (4-butoxy-2-hydroxyphenyl) -2H-benzotriazole are as described in Example 1.
  • the optical properties of 2- (3-tertiarybutyl-2-hydroxy-5-methylphenyl) -5-chloro-2H-benzotriazole are as described in Example 1.
  • the amount of 6- (2-benzotriazolyl) -4-tertiary octyl-6'-tertiary butyl-4'-methyl-2,2'-methylenebisphenol used is 100 parts by mass in total of the monomer mixture. And 0.5 parts by mass.
  • the optical properties of 2- (4-butoxy-2-hydroxyphenyl) -2H-benzotriazole are as described in Example 1.
  • the optical properties of 6- (2-benzotriazolyl) -4-tertiary octyl-6′-tertiary butyl-4′-methyl-2,2′-methylenebisphenol were as described in Example 3. It is.
  • the spectral transmittance was measured with each evaluation spectacle lens having an S-1.25 (D) lens thickness of 1.0 mm.
  • Table 2 shows the spectral transmittance of each evaluation spectacle lens of 400 nm or less.
  • the yellowness (yellow index, YI) is a tristimulus value X, Y, Z calculated from an ultraviolet-visible absorption spectrum and calculated based on JIS-K7373. Good low yellowness.
  • the yellowness was measured with each evaluation spectacle lens having an S-0.00 (D) lens thickness of 2.0 mm.

Abstract

本発明は、優れた紫外線吸収性および低黄色性を有する眼鏡レンズを提供することを課題とする。本発明の眼鏡レンズは、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンからなる群から選択される少なくとも1種のイソシアネート化合物と、ポリチオール化合物と、式(1)で表される紫外線吸収剤と、式(2)で表される紫外線吸収剤と、を含有する樹脂組成物を用いて作製される眼鏡レンズであって、式(X)で表されるM値が、0.7より大きく、16.7未満である。

Description

眼鏡レンズ
 本発明は、眼鏡レンズに関する。
 特許文献1には、「分子量が360以下の紫外線吸収剤を、原料モノマー100質量部に対して0.7~5質量部の割合で含有することを特徴とする紫外線吸収性プラスチックレンズ。」が記載されている。
特開平11-271501号公報
 本発明の実施形態によれば、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンからなる群から選択される少なくとも1種のイソシアネート化合物と、ポリチオール化合物と、式(1)で表される紫外線吸収剤と、式(2)で表される紫外線吸収剤と、を含有する樹脂組成物を用いて作製される眼鏡レンズであって、下記式(X)で表されるM値が、0.7より大きく、16.7未満である、眼鏡レンズが提供される。
Figure JPOXMLDOC01-appb-C000003
(式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、または、水酸基を表す。式(2)中、R11~R18は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、水酸基、または、ハロゲン原子を表し、R19は、水素原子、アルキル基、アルコキシ基、フェニルアルキル基、または、下記式(3)で表される基を表す。ただし、R19が水素原子、アルキル基、または、アルコキシ基の場合、R11~R14の少なくとも一つはハロゲン原子を表す。
 式(3)  *-L-R20 
 式(3)中、Lは、アルキレン基を表す。R20は、置換基を有していてもよい芳香族炭化水素基または複素環基を表す。)
 式(X)  M値=|λ-λ|×(A/A)×(A2(400)/A1(400))×(W/W
(式(X)中、λは、式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(1)で表される紫外線吸収剤の極大吸収波長を表す。λは、式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(2)で表される紫外線吸収剤の極大吸収波長を表す。Aは、式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(1)で表される紫外線吸収剤の極大吸収波長における吸光度を表す。Aは、式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(2)で表される紫外線吸収剤の極大吸収波長における吸光度を表す。A1(400)は、式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、400nmにおける吸光度を表す。A2(400)は、式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、400nmにおける吸光度を表す。Wは、イソシアネート化合物およびポリチオール化合物の合計を100質量部としたときの、式(1)で表される紫外線吸収剤の含有量(質量部)を表す。Wは、イソシアネート化合物およびポリチオール化合物の合計を100質量部としたときの、式(2)で表される紫外線吸収剤の含有量(質量部)を表す。)
式(1)で表される紫外線吸収剤および式(2)で表される紫外線吸収剤の代表的な紫外可視吸収スペクトルを表す模式図である。
 以下、本発明の実施形態について詳細に説明する。
 以下に記載する構成要件の説明は、本発明の代表的な実施態様に基づいてなされることがあるが、本発明はそのような実施態様に限定されるものではない。
 なお、本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値および上限値として含む範囲を意味する。
 本発明者は、特許文献1に具体的に記載された紫外線吸収性プラスチックレンズを用いて、紫外線(波長が200~400nmの光線)の吸収率(以下、「紫外線吸収率」ともいう。)および黄色度の低さ(以下、「低黄色性」ともいう。)について検討したところ、昨今の眼鏡レンズに求められる水準に達していない問題があることを明らかとした。なお、黄色度とは、眼鏡レンズが黄色に着色した度合いをいい、後述の方法により測定することができる値である。
 一般に、紫外線吸収剤を含有する眼鏡レンズは、黄色度が高くなり易いという問題がある。しかし、眼鏡レンズに対し優れた紫外線吸収性を付与するためには、所要量の紫外線吸収剤を眼鏡レンズに配合しなければならない。そのため、眼鏡レンズの特性において、紫外線吸収性と低黄色性とはトレードオフの関係にあると考えられてきた。
 本発明者は、上記課題を達成すべく鋭意検討した結果、所定のモノマーと、所定の2種類の紫外線吸収剤とを用い、上述の2種類の紫外線吸収剤の含有量および物性値から計算したM値が所定の範囲内にある眼鏡レンズによれば優れた紫外線吸収性および低黄色性を有する眼鏡レンズを提供することができることを知見した。
[眼鏡レンズ]
 本実施形態の眼鏡レンズは、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンからなる群から選択される少なくとも1種のイソシアネート化合物と、ポリチオール化合物と、式(1)で表される紫外線吸収剤と、式(2)で表される紫外線吸収剤とを含有する樹脂組成物を用いて作製され、後述する式(X)で表されるM値が、0.7より大きく、16.7未満である。
 このような構成を有する眼鏡レンズは、優れた紫外線吸収性および低黄色性を有する。以下、図1を用いて、その理由を説明する。
 図1では、式(1)で表される紫外線吸収剤の代表的な紫外可視吸収スペクトル、および、式(2)で表される紫外線吸収剤の代表的な紫外可視吸収スペクトルをそれぞれ表す。なお、2つの紫外可視吸収スペクトルは、式(1)で表される紫外線吸収剤および式(2)で表される紫外線吸収剤をそれぞれ10質量ppmの濃度でクロロホルムに溶解させた溶液を用いて測定したものである。また、図1において、横軸は波長(nm)を、縦軸は吸光度を表す。なお、図1はあくまで一例であり、式(1)で表される紫外線吸収剤の代表的な紫外可視吸収スペクトル、および、式(2)で表される紫外線吸収剤の代表的な紫外可視吸収スペクトルは図1の態様に限定されない。
 図1において、一点鎖線で表される曲線Aは、式(1)で表される紫外線吸収剤の紫外可視吸収スペクトルを表す。式(1)で表される紫外線吸収剤は、ベンゾトリアゾール骨格を有し、通常、300~380nmの範囲に極大吸収波長λを有する。このような紫外線吸収特性を有する式(1)で表される紫外線吸収剤は、380nm未満の範囲においては優れた紫外線吸収性を有するが、可視光の範囲(およそ400~800nm)にはほとんど吸収を有さない。そのため、式(1)で表される紫外線吸収剤の400nmにおける吸光度A1(400)は比較的小さい。
 また、図1において、実線で表される曲線Bは、式(2)で表される紫外線吸収剤の紫外可視吸収スペクトルを表す。式(2)で表される紫外線吸収剤は、ベンゾトリアゾール骨格を有し、かつ、所定の官能基を有し、式(1)で表される紫外線吸収剤と比較してπ共役系が広がりやすく、より長波長領域の光を吸収しやすい。そのため、式(2)で表される紫外線吸収剤は、380~400nmの範囲において、式(1)で表される紫外線吸収剤より高い吸光度を有する。つまり、式(2)で表される紫外線吸収剤の400nmにおける吸光度A2(400)は、式(1)で表される紫外線吸収剤の400nmにおける吸光度A1(400)よりも高い。
 一方で、式(2)で表される紫外線吸収剤は400nm以降の可視光を吸収しやすいため、この紫外線吸収剤を含む眼鏡レンズは黄色化しやすい。
 本発明者は、所定のモノマーを使用すると共に、上述した紫外線吸収特性の異なる2種の紫外線吸収剤を併用し、かつ、紫外線吸収剤の含有量および物性値から計算したM値が所定の範囲内であると、上述の課題を解決することができることを見出している。
 以下、M値の技術的意義についてより詳細に詳述する。
 なお、式(1)で表される紫外線吸収剤のみを用いた場合、得られる眼鏡レンズは紫外線吸収率(特に、380~400nmの範囲での紫外線吸収率)が十分でない。また、眼鏡レンズ中の樹脂成分との相溶性の観点で、式(1)で表される紫外線吸収剤を多量に眼鏡レンズに配合することはできない。
 さらに、式(2)で表される紫外線吸収剤のみを用いた場合、得られる眼鏡レンズは黄色化しやすい。
 以上のように、1種の紫外線吸収剤のみを使用する場合、優れた紫外線吸収率、および、低黄色化の両者をバランスよく達成することができなかった。
〔M値〕
 M値は、以下の式(X)により表される値である。
 式(X) M値=|λ-λ|×(A/A)×(A2(400)/A1(400))×(W/W
 式(X)において、λは、式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(1)で表される紫外線吸収剤の極大吸収波長を表す(図1参照)。つまり、極大吸収波長λは、式(1)で表される紫外線吸収剤を濃度10質量ppmでクロロホルムに溶解させた溶液を用いて、紫外可視分光光度法(UV-Vis)より求めた紫外可視吸収スペクトルにおいて極大値を示す波長のことである。なお、極大値が複数ある場合は、複数の極大値の内、最も長波長側の極大値を採るものとする。
 また、λは、式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(2)で表される紫外線吸収剤の極大吸収波長を表す(図1参照)。つまり、極大吸収波長λは、式(2)で表される紫外線吸収剤を濃度10質量ppmでクロロホルムに溶解させた溶液を用いて、紫外可視分光光度法(UV-Vis)より求めた紫外可視吸収スペクトルにおいて極大値を示す波長のことである。なお、極大値が複数ある場合は、複数の極大値の内、最も長波長側の極大値を採るものとする。
 なお、図1においては、式(2)で表される紫外線吸収剤の紫外可視吸収スペクトルである曲線Bにおいて、2つの極大値が示されており、そのうち長波長側の極大値を示す波長を極大吸収波長λとする。
 上記紫外可視吸収スペクトルを測定するための装置としては、分光光度計を用い、以下の条件で測定を行う。
 セル:石英、幅1cm(光路長1cmに該当)
 ブランク:溶媒(クロロホルム)
 式(X)において、|λ-λ|は、λおよびλの差の絶対値であり、式(1)で表される紫外線吸収剤の極大吸収波長と、式(2)で表される紫外線吸収剤の極大吸収波長との差を示している。この値が小さすぎると、吸収帯が狭くなり、眼鏡レンズの紫外線吸収性が劣る傾向がある。一方で、この値が大きすぎると、吸収帯が可視光におよびやすく、眼鏡レンズの低黄色性が劣る傾向がある。
 なお、λの大きさは特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、340~350nmとすることができ、また343~347nmとすることができる。
 λの大きさは特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、340~370nmとすることができ、また341~354nmとすることができる。
 また、|λ-λ|の値は特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、0.1~30nmとすることができ、また1~9nmとすることができる。
 なお、図1においては、λがλより大きいが、この態様に限定されず、λがλより大きくてもよい。
 式(X)において、Aは、式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(1)で表される紫外線吸収剤の極大吸収波長における吸光度を表す(図1参照)。つまり、吸光度Aは、式(1)で表される紫外線吸収剤を濃度10質量ppmでクロロホルムに溶解させた溶液を用いて、紫外可視分光光度法(UV-Vis)より求めた紫外可視吸収スペクトルにおいて、上記極大吸収波長λにおける吸光度のことである。
 Aは、式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、式(2)で表される紫外線吸収剤の極大吸収波長における吸光度を表す(図1参照)。つまり、吸光度Aは、式(2)で表される紫外線吸収剤を濃度10質量ppmでクロロホルムに溶解させた溶液を用いて、紫外可視分光光度法(UV-Vis)より求めた紫外可視吸収スペクトルにおいて、上記極大吸収波長λにおける吸光度のことである。
 上記吸光度の測定方法は、上述した極大吸収波長の測定方法と同じである。
 式(X)中、A/Aは、式(1)で表される紫外線吸収剤の極大吸収波長における紫外線吸収量に対する、式(2)で表される紫外線吸収剤の極大吸収波長における紫外線吸収量の比を意味する。この値が小さすぎると、式(2)で表される紫外線吸収剤の吸収スペクトルに起因する長波長側の吸収性が不十分となり、眼鏡レンズの紫外線吸収性が劣る傾向がある。一方で、この値が大きすぎると、長波長側の吸収性が過大となり、眼鏡レンズの低黄色性が劣る傾向がある。
 なお、Aの大きさは特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、0.2~2.0とすることができ、また0.3~2.0とすることができ、さらに0.4~1.1とすることができ、そして0.7~1.1とすることができる。
 Aの大きさは特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、0.2~0.9とすることができ、また0.3~0.6とすることができる。
 また、A/Aの値は特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、0.1~4.5とすることができ、また0.2~3.4とすることができ、さらに0.3~0.6とすることができる。
 式(X)において、A1(400)は、式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、400nmにおける吸光度を表す(図1参照)。
 A2(400)は、式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、400nmにおける吸光度を表す(図1参照)。
 上記吸光度の測定方法は、上述した極大吸収波長の測定方法と同じである。
 A2(400)/A1(400)は、式(1)で表される紫外線吸収剤の400nmにおける紫外線吸収量に対する、式(2)で表される紫外線吸収剤の400nmにおける紫外線吸収量の比を意味する。この値が小さすぎると、式(2)で表される紫外線吸収剤の吸収スペクトルに起因する400nmの吸収性が不十分となり、眼鏡レンズの紫外線吸収性が劣る傾向がある。一方で、この値が大きすぎると、400nmの吸収性が過大となり、眼鏡レンズの低黄色性が劣る傾向がある。
 なお、A1(400)の大きさは特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、0.0001~0.008とすることができ、また0.0009~0.002とすることができる。
 A2(400)の大きさは特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、0.001~0.3とすることができ、また0.001~0.05とすることができる。
 また、A2(400)/A1(400)の値は特に制限されないが、本実施形態の眼鏡レンズが、より優れた紫外線吸収性および低黄色性を有する点で、0.125~3000とすることができ、また1.1~2700とすることができ、さらに1.5~50とすることができる。
 式(X)において、Wは、イソシアネート化合物およびポリチオール化合物の合計を100質量部としたときの、式(1)で表される紫外線吸収剤の含有量(質量部)を表す。つまり、上記Wは、樹脂組成物中における、イソシアネート化合物およびポリチオール化合物からなるモノマー混合物100質量に対する、式(1)で表される紫外線吸収剤の含有量(質量部)に該当する。
 Wは、イソシアネート化合物およびポリチオール化合物の合計を100質量部としたときの、式(2)で表される紫外線吸収剤の含有量(質量部)を表す。つまり、上記Wは、樹脂組成物中における、イソシアネート化合物およびポリチオール化合物からなるモノマー混合物100質量に対する、式(2)で表される紫外線吸収剤の含有量(質量部)に該当する。
 W/Wは、式(1)で表される紫外線吸収剤の含有量に対する、式(2)で表される紫外線吸収剤の含有量の比を意味する。この値が小さすぎると、式(2)で表される紫外線吸収剤の吸収スペクトルに起因する長波長側の吸収性が不十分となり、眼鏡レンズの紫外線吸収性が劣る傾向がある。一方で、この値が大きすぎると、長波長側の吸収性が過大となり、眼鏡レンズの低黄色性が劣る傾向がある。
 WおよびWの具体的な範囲に関しては、後段で詳述する。
 上述のとおり、M値を構成する各項の値は、小さすぎると眼鏡レンズの紫外線吸収性が劣る傾向があり、大きすぎると眼鏡レンズの低黄色性が劣る傾向がある。
 そのため、本実施形態の眼鏡レンズのM値は、0.7より大きく、16.7未満である。M値が下限値以下であると、眼鏡レンズの紫外線吸収性が劣り、上限値以上であると眼鏡レンズの低黄色性が劣る。なかでも、より優れた紫外線吸収性および低黄色性を有する眼鏡レンズが得られる点で、M値は0.7より大きく、12.0未満とすることができ、また0.7より大きく、11.0未満とすることができ、さらに0.7より大きく、10.1未満とすることができ、そして1.0より大きく、4.0未満とすることができる。
 本実施形態の眼鏡レンズは、上述のとおり所定のモノマーを用いると共に、紫外線吸収特性の異なる2種の紫外線吸収剤を併用し、かつ、紫外線吸収剤の含有量および物性値から計算したM値が所定の範囲内であるよう構成したので、トレードオフの関係にあると考えられてきた紫外線吸収性と低黄色性とを高水準で両立することができたものと推測される。
〔樹脂組成物〕
 樹脂組成物は、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンからなる群から選択される少なくとも1種のイソシアネート化合物と、ポリチオール化合物と、後述する式(1)で表される紫外線吸収剤と、後述する式(2)で表される紫外線吸収剤と、を含有する。以下では樹脂組成物に含有される各成分について詳述する。
<紫外線吸収剤>
 樹脂組成物は、下記式(1)で表される紫外線吸収剤と、下記式(2)で表される紫外線吸収剤とを含有する。この2種の紫外線吸収剤は構造的に類似しており、両者の相溶性が優れる。また、この2種の紫外線吸収剤は、後述するモノマーとの相溶性も優れ、眼鏡レンズ中で均一に分散しやすい。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基(炭素数は1~8とすることができる)、アルコキシ基(炭素数は1~8とすることができる)、または、水酸基を表す。なかでも、R~Rは水素原子とすることができる。また、R~Rの少なくともいずれかが水酸基とすることができ、Rは水酸基とすることができる。また、より優れた紫外線吸収性および低黄色性を有する眼鏡レンズが得られる点で、Rはアルコキシ基とすることができる。アルコキシ基中に含まれる炭素数は、2~4とすることができ、また4とすることができる。
 式(2)中、R11~R18は、それぞれ独立に、水素原子、アルキル基(炭素数は1~8とすることができる)、アルコキシ基(炭素数は1~8とすることができる)、水酸基、または、ハロゲン原子(例えば、フッ素原子、塩素原子、臭素原子など)を表す。R11~R14はそれぞれ独立に、水素原子、アルキル基、アルコキシ基、水酸基、または、ハロゲン原子を表し、水素原子、アルキル基、アルコキシ基、または、水酸基とすることができ、また水素原子、または、アルキル基とすることができ、さらに水素原子とすることができる。なお、R19が水素原子、アルキル基、または、アルコキシ基の場合は、R11~R14の少なくとも一つはハロゲン原子を表す。
 R15は水酸基とすることができる。
 R19は、水素原子、アルキル基(炭素数は1~8とすることができる)、アルコキシ基(炭素数は1~8とすることができる)、フェニルアルキル基(炭素数は1~8とすることができる)、または、下記式(3)で表される基を表し、フェニルアルキル基、または、下記式(3)で表される基とすることができる。なお、本明細書において、フェニルアルキル基とは、フェニル基の水素原子のうち少なくともひとつがアルキル基によって置換された基をいう。
 式(3)  *-L-R20 
 式(3)中、Lは、アルキレン基を表す。R20は、置換基を有していてもよい芳香族炭化水素基または複素環基を表す。置換基を有していてもよい芳香族炭化水素基としては、例えば、フェニル基、トリル基、キシリル基、ナフチル基、およびアントリル基などが挙げられ、より長波長側の紫外線吸収性が良好となる点で、フェニル基、または、置換基を有するフェニル基とすることができる。置換基としては、特に制限されないが、例えば、アルキル基、アルコキシ基、水酸基、およびハロゲン原子などが挙げられ、なかでも水酸基、または、アルキル基とすることができる。
 置換基を有していてもよい複素環基としては、オキセタニル基、ピロリジニル基、テトラヒドロフリル基、およびテトラヒドロフタルアミド基などの脂肪族複素環基;チエニル基、フラニル基、ピリジル基、ピリミジル基、チアゾリル基、オキサゾリル基、トリアゾリル基、ベンゾチオフェニル基、ベンゾフラニル基、ベンゾチアゾリル基、ベンゾオキサゾリル基、およびベンゾトリアゾリル基などの芳香族複素環基;などが挙げられる。置換基の種類としては、上記芳香族炭化水素基に置換していてもよい置換基として例示した基が挙げられる。
 より優れた紫外線吸収性および低黄色性を有する眼鏡レンズが得られる点で、上記式(2)で表される紫外線吸収剤は、下記式(4)で表される紫外線吸収剤とすることができる。
Figure JPOXMLDOC01-appb-C000005
 式(4)中、R51~R58は、それぞれ独立に、水素原子、アルキル基(炭素数は1~8とすることができる)、アルコキシ基(炭素数は1~8とすることができる)、または、水酸基を表し、Lは、アルキレン基(炭素数は1~3とすることができる)を表し、R50は、置換基を有していてもよい芳香族炭化水素基または複素環基を表す。なお、R51~R54、R55~R58、および、R50の態様は、それぞれ上述のR11~R14、R15~R18、および、R20の態様と同様である。
 上記式(1)で表される紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-5-メチルプロピル)-2H-ベンゾトリアゾール、2-(2-ヒドロキシ-5-ターシャリーオクチルフェニル)-2H-ベンゾトリアゾール、2-(4-エトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール、および2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールなどが挙げられる。
 上記式(2)で表される紫外線吸収剤としては、2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール、2-(2H-ベンゾトリアゾール-2-イル)-4-メチル-6-(3,4,5,6-テトラヒドロフタルイミジルメチル)フェノール、6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノール、および2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノールなどが挙げられる。
 上記式(1)で表される紫外線吸収剤の含有量W(質量部)および上記式(2)で表される紫外線吸収剤の含有量W(質量部)は、特に制限されない。なかでも、より優れた紫外線吸収性および低黄色性を有する眼鏡レンズが得られる点で、後述するイソシアネート化合物およびポリチオール化合物の合計を100質量部としたときに、Wは0.001~7.0質量部とすることができ、また0.01~7.0質量部とすることができ、さらに0.1~4.0質量部とすることができ、そして2.0~3.5質量部とすることができる。
 Wは0.001~7.0質量部とすることができ、また0.01~7.0質量部とすることができ、さらに0.1~7.0質量部とすることができ、そして0.1~2.5質量部とすることができ、また0.1~2.0質量部とすることができる。
 上記式(1)で表される紫外線吸収剤の含有量Wおよび上記式(2)で表される紫外線吸収剤の含有量Wの和(W+W)は、特に制限されないが、0.01質量部以上とすることができ、より優れた紫外線吸収性を有する眼鏡レンズが得られる点で、0.1質量部以上とすることができ、また1.0質量部以上とすることができ、さらに2.0質量部以上とすることができ、そして2.9質量部以上とすることができる。なかでも、さらに優れた紫外線吸収性および低黄色性を有する眼鏡レンズが得られる点で、3.0質量部以上とすることができ、また4.0質量部以上とすることができる。なお、上限としては特に制限はないが、より優れた低黄色性を有する眼鏡レンズが得られる点で、13.0質量部以下とすることができ、また7.0質量部以下とすることができる。
 W/Wの値は特に制限されないが、本実施形態の眼鏡レンズがより優れた紫外線吸収性および低黄色性を有する点で、0.01~200とすることができ、また0.05~10とすることができ、さらに0.05~1とすることができる。
<イソシアネート化合物>
 イソシアネート化合物は、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンからなる群から選択される少なくとも1種である。高い屈折率および優れた機械特性を有する眼鏡レンズが得られる点で、上述の樹脂組成物は、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンを含有することができる。
 なお、本実施形態の眼鏡レンズが優れた紫外線吸収性および低黄色性を有する限りにおいて、イソシアネート化合物は、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン以外のその他のポリイソシアネートを含有してもよい。
<ポリチオール化合物>
 ポリチオール化合物としては、メルカプト基を分子内に2つ以上有していれば特に制限されないが、3つまたは4つ有することができ、例えば、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、1,2-ビス[(2-メルカプトエチル)チオ]-3-メルカプトプロパン、4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオールエタンジチオール、およびビス(メルカプトメチル)-3,6,9-トリチオ-1,11-ウンデカンジチオールなどが挙げられる。ポリチオール化合物は1種を単独で用いても、2種以上を併用してもよい。
 上記以外のポリチオール化合物としては、特開2015-34990号公報の段落0051~0058および特開平11-271501号公報の段落0027~0032などに記載された化合物が使用でき、これらの内容は本明細書に取り込まれる。
 樹脂組成物中におけるイソシアネート化合物の含有量(その他のポリイソシアネートを含有する場合はその合計量)と、ポリチオール化合物の含有量の比率は、イソシアネート基とメルカプト基の官能基の割合がNCO/SH(モル比)0.5~3.0となるよう調製されることができ、また0.5~1.5とすることができる。
<その他の成分>
 本実施形態に用いられる樹脂組成物は、本実施形態の眼鏡レンズが優れた紫外線吸収性および低黄色性を有する限りにおいて、上記以外の成分を含有してもよい。上記以外の成分としては、例えば、紫外線吸収剤、予備反応触媒、反応調整剤、重合触媒、染料および顔料、ならびにその他の添加剤などが挙げられる。なお、ここでいう紫外線吸収剤には上記式(1)および式(2)で表される紫外線吸収剤は含まれないものとする。
(重合触媒)
 重合触媒としては、錫化合物、特開2004-315556号公報に記載のアミン類、フォスフィン類、第4級アンモニウム塩類、第4級ホスホニウム塩類、第3級スルホニウム塩類、第2級ヨードニウム塩類、鉱酸類、ルイス酸類、有機酸類、ケイ酸類、四フッ化ホウ酸類、過酸化物、アゾ系化合物、アルデヒドとアンモニア系化合物の縮合物、グアニジン類、チオ尿酸類、チアゾール類、スルフェンアミド類、チウラム類、ジチオカルバミン酸塩類、キサントゲン酸塩類、および酸性リン酸エステル類などが挙げられ、なかでも、錫化合物とすることができる。これらの重合触媒は1種を単独で用いても、2種以上を併用してもよい。
 重合触媒の添加量は、上記イソシアネート化合物とポリチオール化合物との合計100質量部に対して、0.0001~10.0質量部とすることができ、また0.001~5.0質量部とすることができる。
(染料および顔料)
 染料および顔料としては、初期色調不良、または、黄色度もしくは赤色度を減少することができる物質であれば特に限定されないが、例えば、眼鏡レンズ材料用として市販されているブルーイング剤などの光学材料用染料および/または顔料を使用することができる。
〔眼鏡レンズの製造方法〕
 本実施形態の眼鏡レンズの製造方法としては、上述の各成分を混合して得られた樹脂組成物を硬化させることで製造できる。なお、必要に応じて、硬化処理後に、得られた眼鏡レンズに所望の加工(コーティングおよび/または切削など)を行ってもよい。眼鏡レンズの製造に際しては、紫外線吸収剤の種類および含有量は、M値が所定の範囲内となるよう、選択および設計することができる。
 なお、本明細書において、眼鏡レンズの種類は特に制限されず、例えば、凸面および凹面共に光学的に仕上げ、所望の度数にあわせて成形されるフィニッシュレンズ、凸面のみフィニッシュレンズと同様に光学的に仕上げられ、後に受注などによる所望の度数に合わせて凹面側を光学的に仕上げるセミフィニッシュレンズなどを含む。上記以外にも、研削加工が施されていないレンズも含む。
 樹脂組成物の製造方法は特に制限されず、上述の各成分を同一容器内で同時に混合して樹脂組成物を製造する方法、各成分を段階的に添加混合して樹脂組成物を製造する方法、および数成分を別々に混合後さらに同一容器内で再混合して樹脂組成物を製造する方法が挙げられる。各成分の混合順序は制限されない。
 各成分、添加剤の混合前、混合時または混合後に、減圧下で脱ガス操作を行ってもよい。
 樹脂組成物の硬化方法は特に制限されず、例えば、樹脂組成物をガラスまたは金属製のモールド型に注入後、電気炉などによる熱重合硬化、紫外線照射によるUV硬化、電子線照射による電子線硬化、および放射線照射により放射線硬化を行う方法などが挙げられる。熱重合硬化における硬化時間は0.1~100時間、通常1~72時間とすることができ、硬化温度は-10~160℃、通常0~140℃とすることができる。重合は、所定の重合温度で所定時間の保持、0.1~100℃/hの昇温、0.1~100℃/hの降温およびこれらの組み合わせで行うことができる。また、硬化終了後、眼鏡レンズにアニール処理を施し、眼鏡レンズのひずみを除いてもよい。
 本実施形態の眼鏡レンズは、その片面または両面にコーティング層を有していてもよい。コーティング層としては、例えば、プライマー層、ハードコート層、反射防止膜層、防曇コート膜層、および汚れ防止膜層などが挙げられる。これらの層は積層していてもよい。
 本実施形態の眼鏡レンズの厚さとしては特に制限されず、取扱い性の点から、1~30mm程度の場合が多い。眼鏡レンズは透光性を有していれば透明でなくてもよく、着色されていてもよい。また、表面形状は凸面、平面、および凹面などの任意の形状から選択される。
 以下に実施例に基づいて本発明の実施形態をさらに詳細に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順などは、本発明の趣旨を逸脱しない限り適宜変更することができる。したがって、本発明の範囲は以下に示す実施例により限定的に解釈されるべきものではない。
[眼鏡レンズの製造]
 2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンおよび2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンの混合物(一般名:2,5(2,6)-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、イソシアネート化合物に該当する。)50.6質量部と、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)(ポリチオール化合物に該当する。)23.9質量部および4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオール(ポリチオール化合物に該当する。)25.5質量部と、重合触媒としてジブチルスズジクロリド0.08質量部と、リン酸エステルを主成分とする内部離型剤0.1質量部と、ブルーイング剤として三菱化学社製ダイアレジン ブルーJ 0.6質量ppmと、後述する紫外線吸収剤を均一になるように混合し、樹脂組成物を調製した。次いで、この樹脂組成物を脱気した後、ガラス製モールド型に注入し、樹脂組成物の熱重合硬化を行った。硬化終了後、モールド型を離型し、得られた眼鏡レンズを洗浄した後、洗浄後の眼鏡レンズに対してアニール処理を施し、評価用眼鏡レンズを得た。
<実施例1>
 上記[眼鏡レンズの製造]において、紫外線吸収剤として、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(式(1)で表される紫外線吸収剤に該当する。)、および、2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール(式(2)で表される紫外線吸収剤に該当する。)を用いて、評価用眼鏡レンズ1を得た。
 2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの使用量は、2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンおよび2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンの混合物、ペンタエリスリトールテトラキス(3-メルカプトプロピオネート)、並びに、4-メルカプトメチル-3,6-ジチア-1,8-オクタンジチオールの混合物(以下、「モノマー混合物」とも称する)の合計100質量部に対して、2.8質量部であった。
 2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、0.16質量部であった。
 なお、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、この化合物の極大吸収波長は346nm、当該波長における吸光度は0.92、400nmにおける吸光度は0.000956であった。
 なお、2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾールの濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、この化合物の極大吸収波長は353nm、当該波長における吸光度は0.52、400nmにおける吸光度は0.0427であった。
<実施例2>
 上記[眼鏡レンズの製造]において、紫外線吸収剤として、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(式(1)で表される紫外線吸収剤に該当する。)、および、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノール(式(4)で表される紫外線吸収剤に該当する。)を用いて、評価用眼鏡レンズ2を得た。
 2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、2.8質量部であった。
 2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノールの使用量は、モノマー混合物の合計100質量部に対して、1.0質量部であった。
 なお、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの光学特性は、実施例1で述べた通りである。
 なお、2-(2H-ベンゾトリアゾール-2-イル)-6-(1-メチル-1-フェニルエチル)-4-(1,1,3,3-テトラメチルブチル)フェノールの濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、この化合物の極大吸収波長は349nm、当該波長における吸光度は0.32、400nmにおける吸光度は0.00921であった。
<実施例3>
 上記[眼鏡レンズの製造]において、紫外線吸収剤として、2-(4-エトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(式(1)で表される化合物に該当する。)、および、6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノール(式(4)で表される紫外線吸収剤に該当する。)を用いて、評価用眼鏡レンズ3を得た。
 2-(4-エトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、2.2質量部であった。
 6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノールの使用量は、モノマー混合物の合計100質量部に対して、1.8質量部であった。
 なお、2-(4-エトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、この化合物の極大吸収波長は344nm、当該波長における吸光度は1.02、400nmにおける吸光度は0.000933であった。
 なお、6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノールの濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、この化合物の極大吸収波長は342nm、当該波長における吸光度は0.35、400nmにおける吸光度は0.00185であった。
<実施例4>
 上記[眼鏡レンズの製造]において、紫外線吸収剤として、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(式(1)で表される紫外線吸収剤に該当する。)、および、6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノール(式(4)で表される紫外線吸収剤に該当する。)を用いて、評価用眼鏡レンズ4を得た。
 2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、2.8質量部であった。
 6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノールの使用量は、モノマー混合物の合計100質量部に対して、1.5質量部であった。
 なお、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの光学特性は、実施例1で述べた通りである。
 なお、6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノールの光学特性は、実施例3で述べた通りである。
<実施例5>
 上記[眼鏡レンズの製造]において、紫外線吸収剤として、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(式(1)で表される紫外線吸収剤に該当する。)、および、2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール(式(2)で表される紫外線吸収剤に該当する。)を用いて、評価用眼鏡レンズ5を得た。
 2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、2.8質量部であった。
 2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、0.17質量部であった。
 なお、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの光学特性は、実施例1で述べた通りである。
 なお、2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾールの光学特性は、実施例1で述べた通りである。
<比較例1>
 上記[眼鏡レンズの製造]において、紫外線吸収剤として、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(式(1)で表される紫外線吸収剤に該当する。)、および、2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾール(式(2)で表される紫外線吸収剤に該当する。)を用いて、評価用眼鏡レンズC1を得た。
 2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、2.8質量部であった。
 2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、0.3質量部であった。
 なお、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの光学特性は、実施例1で述べた通りである。
 なお、2-(3-ターシャリーブチル-2-ヒドロキシ-5-メチルフェニル)-5-クロロ-2H-ベンゾトリアゾールの光学特性は、実施例1で述べた通りである。
<比較例2>
 上記[眼鏡レンズの製造]において、紫外線吸収剤として、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾール(式(1)で表される紫外線吸収剤に該当する。)、および、6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノール(式(4)で表される紫外線吸収剤に該当する。)を用いて、評価用眼鏡レンズC2を得た。
 2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの使用量は、モノマー混合物の合計100質量部に対して、2.8質量部であった。
 6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノールの使用量は、モノマー混合物の合計100質量部に対して、0.5質量部であった。
 なお、2-(4-ブトキシ-2-ヒドロキシフェニル)-2H-ベンゾトリアゾールの光学特性は、実施例1で述べた通りである。
 なお、6-(2-ベンゾトリアゾリル)-4-ターシャリーオクチル-6’-ターシャリーブチル-4’-メチル-2,2’-メチレンビスフェノールの光学特性は、実施例3で述べた通りである。
[評価方法]
 実施例および比較例の評価用眼鏡レンズの紫外線吸収性および低黄色性の評価は以下の方法により実施した。まず、評価用眼鏡レンズの紫外可視吸収スペクトルの測定は、日立ハイテクノロジーズ社製分光光度計U-4100を用い、波長280~780nmの範囲で1nmごとに行った。この測定結果から、分光透過率と黄色度を算出した。評価結果を表1に示す。
 ここで、分光透過率とは、各波長における透過率(%)をいい、評価は波長400nm以下の最大分光透過率(%)により行った。波長400nm以下における最大分光透過率が1.0%以下であるものを紫外線吸収性が良好とした。なお、分光透過率は、S-1.25(D)レンズ1.0mm厚の各評価用眼鏡レンズにて測定した。各評価用眼鏡レンズの400nm以下の分光透過率を表2に示す。
 ここで、黄色度(イエローインデックス、YI)とは、紫外可視吸収スペクトルから三刺激値X、Y、Zを算出し、JIS-K7373に基づいて算出したものであり、5.0未満のものを低黄色性が良好とした。なお、黄色度は、S-0.00(D)レンズ2.0mm厚の各評価用眼鏡レンズにて測定した。
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
 表1に示す結果から、M値が0.7より大きく16.7未満である実施例1~5の評価用眼鏡レンズは、優れた紫外線吸収性および低黄色性を有していることがわかった。一方、M値が所定の範囲内にない比較例1および比較例2の評価用眼鏡レンズにおいては、所望の効果は得られなかった。
 また、M値が0.7より大きく10.1未満である実施例2~4の評価用眼鏡レンズは、上記範囲内にない実施例1および5と比較して、より優れた紫外線吸収性および低黄色性を有していることがわかった。
 式(4)で表される紫外線吸収剤を含有する実施例2~4の評価用眼鏡レンズは、より優れた紫外線吸収性および低黄色性を有していることがわかった。
 W+Wが3.0質量部以上である実施例2~4の評価用眼鏡レンズは、より優れた紫外線吸収性および低黄色性を有していることがわかった。

Claims (5)

  1.  2,5-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタン、および、2,6-ビス(イソシアナトメチル)ビシクロ[2.2.1]ヘプタンからなる群から選択される少なくとも1種のイソシアネート化合物と、ポリチオール化合物と、式(1)で表される紫外線吸収剤と、式(2)で表される紫外線吸収剤と、を含有する樹脂組成物を用いて作製される眼鏡レンズであって、
     下記式(X)で表されるM値が、0.7より大きく、16.7未満である、眼鏡レンズ。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~Rは、それぞれ独立に、水素原子、アルキル基、アルコキシ基、または、水酸基を表す。
     式(2)中、R11~R18は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、水酸基、または、ハロゲン原子を表し、R19は、水素原子、アルキル基、アルコキシ基、フェニルアルキル基、または、下記式(3)で表される基を表す。ただし、R19が水素原子、アルキル基、または、アルコキシ基の場合、R11~R14の少なくとも一つはハロゲン原子を表す。
     式(3)  *-L-R20 
     式(3)中、Lは、アルキレン基を表す。R20は、置換基を有していてもよい芳香族炭化水素基または複素環基を表す。)
     式(X)  M値=|λ-λ|×(A/A)×(A2(400)/A1(400))×(W/W
    (式(X)中、
     λは、前記式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、前記式(1)で表される紫外線吸収剤の極大吸収波長を表す。
     λは、前記式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、前記式(2)で表される紫外線吸収剤の極大吸収波長を表す。
     Aは、前記式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、前記式(1)で表される紫外線吸収剤の前記極大吸収波長における吸光度を表す。
     Aは、前記式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおける、前記式(2)で表される紫外線吸収剤の前記極大吸収波長における吸光度を表す。
     A1(400)は、前記式(1)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、400nmにおける吸光度を表す。
     A2(400)は、前記式(2)で表される紫外線吸収剤の濃度が10質量ppmであるクロロホルム溶液の紫外可視吸収スペクトルにおいて、400nmにおける吸光度を表す。
     Wは、前記イソシアネート化合物および前記ポリチオール化合物の合計を100質量部としたときの、前記式(1)で表される紫外線吸収剤の含有量(質量部)を表す。
     Wは、前記イソシアネート化合物および前記ポリチオール化合物の合計を100質量部としたときの、前記式(2)で表される紫外線吸収剤の含有量(質量部)を表す。)
  2.  前記Wおよび前記Wの和が0.1質量部以上である、請求項1に記載の眼鏡レンズ。
  3.  前記M値が、0.7より大きく、10.1未満である、請求項1または2に記載の眼鏡レンズ。
  4.  前記式(2)で表される紫外線吸収剤が下記式(4)で表される、請求項1~3のいずれか一項に記載の眼鏡レンズ。
    Figure JPOXMLDOC01-appb-C000002
    (式(4)中、R51~R58は、それぞれ独立に、水素原子、アルキル基、アルコキシ基、または、水酸基を表し、Lは、アルキレン基を表し、R50は、置換基を有していてもよい芳香族炭化水素基または複素環基を表す。)
  5.  前記Wおよび前記Wの和が3.0質量部以上である、請求項1~4のいずれか一項に記載の眼鏡レンズ。
PCT/JP2017/020097 2016-06-02 2017-05-30 眼鏡レンズ WO2017209128A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780033885.7A CN109313359B (zh) 2016-06-02 2017-05-30 眼镜镜片
BR112018074819-6A BR112018074819B1 (pt) 2016-06-02 2017-05-30 Lente para óculos
KR1020187034683A KR102389007B1 (ko) 2016-06-02 2017-05-30 안경 렌즈
EP17806681.7A EP3467575B1 (en) 2016-06-02 2017-05-30 Eyeglass lens
JP2018520925A JP7106449B2 (ja) 2016-06-02 2017-05-30 眼鏡レンズ
US16/306,845 US10788605B2 (en) 2016-06-02 2017-05-30 Eyeglass lens

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-110947 2016-06-02
JP2016110947 2016-06-02

Publications (1)

Publication Number Publication Date
WO2017209128A1 true WO2017209128A1 (ja) 2017-12-07

Family

ID=60478507

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/020097 WO2017209128A1 (ja) 2016-06-02 2017-05-30 眼鏡レンズ

Country Status (6)

Country Link
US (1) US10788605B2 (ja)
EP (1) EP3467575B1 (ja)
JP (1) JP7106449B2 (ja)
KR (1) KR102389007B1 (ja)
CN (1) CN109313359B (ja)
WO (1) WO2017209128A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271501A (ja) 1998-03-18 1999-10-08 Seiko Epson Corp 紫外線吸収性プラスチックレンズ及びその製造方法
JP2004315556A (ja) 2003-04-11 2004-11-11 Nikon-Essilor Co Ltd 光学材料用組成物、光学材料及び眼鏡レンズ
JP2006235587A (ja) * 2005-01-25 2006-09-07 Tokai Kogaku Kk 生産性良く製造できる眼鏡用プラスチックレンズの製造方法
JP2012118326A (ja) * 2010-12-01 2012-06-21 Teijin Chem Ltd 眼鏡レンズ
JP2012173704A (ja) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk 防眩光学要素
JP2013238634A (ja) * 2012-05-11 2013-11-28 Ito Kogaku Kogyo Kk 防眩光学要素
CN103980643A (zh) * 2014-06-04 2014-08-13 江苏华天通纳米科技有限公司 防蓝光纳米复合树脂材料、镜片及其制备方法
JP2015034990A (ja) 2014-09-10 2015-02-19 株式会社ニコン・エシロール 光学レンズの製造方法
KR101612940B1 (ko) * 2015-09-15 2016-04-15 (주)케미그라스 자외선 및 청색광 차단 기능성 안경렌즈

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3354066B2 (ja) * 1996-01-26 2002-12-09 帝人化成株式会社 眼鏡レンズ
JP2003301101A (ja) * 2002-02-08 2003-10-21 Mitsubishi Engineering Plastics Corp ポリカーボネート樹脂組成物および成形品
JP2004352829A (ja) * 2003-05-28 2004-12-16 Mitsubishi Engineering Plastics Corp メガネレンズ用芳香族ポリカーボネート樹脂組成物
JP4399419B2 (ja) * 2004-01-20 2010-01-13 帝人化成株式会社 眼鏡レンズおよびその製造方法
EP1808726B1 (en) * 2004-11-05 2011-11-23 Teijin Chemicals, Ltd. Polycarbonate resin material for molding eyeglass lenses and optical elements
JP5038601B2 (ja) * 2005-07-05 2012-10-03 帝人化成株式会社 ポリカーボネート樹脂組成物および眼鏡レンズ
JP5250289B2 (ja) * 2008-03-31 2013-07-31 富士フイルム株式会社 紫外線吸収剤組成物
JP2010097062A (ja) * 2008-10-17 2010-04-30 Fujifilm Corp 長波紫外線吸収積層体
WO2012074125A1 (ja) * 2010-12-01 2012-06-07 帝人化成株式会社 眼鏡レンズ
CN102633980B (zh) * 2011-02-15 2015-09-16 三菱瓦斯化学株式会社 光学材料用组合物及使用其的光学材料
JP6080985B2 (ja) * 2014-02-06 2017-02-15 三井化学株式会社 光学材料用重合性組成物および光学材料
KR101593297B1 (ko) * 2014-03-25 2016-02-11 롯데케미칼 주식회사 광 차단성이 개선된 바이오 유래 폴리카보네이트 수지 조성물 및 이를 이용한 성형품
US10316024B2 (en) 2014-08-05 2019-06-11 Miyoshi Oil & Fat Co., Ltd. Additive for imparting ultraviolet absorbency and/or high refractive index to matrix, and resin member using same

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11271501A (ja) 1998-03-18 1999-10-08 Seiko Epson Corp 紫外線吸収性プラスチックレンズ及びその製造方法
JP2004315556A (ja) 2003-04-11 2004-11-11 Nikon-Essilor Co Ltd 光学材料用組成物、光学材料及び眼鏡レンズ
JP2006235587A (ja) * 2005-01-25 2006-09-07 Tokai Kogaku Kk 生産性良く製造できる眼鏡用プラスチックレンズの製造方法
JP2012118326A (ja) * 2010-12-01 2012-06-21 Teijin Chem Ltd 眼鏡レンズ
JP2012173704A (ja) * 2011-02-24 2012-09-10 Ito Kogaku Kogyo Kk 防眩光学要素
JP2013238634A (ja) * 2012-05-11 2013-11-28 Ito Kogaku Kogyo Kk 防眩光学要素
CN103980643A (zh) * 2014-06-04 2014-08-13 江苏华天通纳米科技有限公司 防蓝光纳米复合树脂材料、镜片及其制备方法
JP2015034990A (ja) 2014-09-10 2015-02-19 株式会社ニコン・エシロール 光学レンズの製造方法
KR101612940B1 (ko) * 2015-09-15 2016-04-15 (주)케미그라스 자외선 및 청색광 차단 기능성 안경렌즈

Also Published As

Publication number Publication date
JPWO2017209128A1 (ja) 2019-03-28
US10788605B2 (en) 2020-09-29
US20190137657A1 (en) 2019-05-09
JP7106449B2 (ja) 2022-07-26
EP3467575A1 (en) 2019-04-10
KR102389007B1 (ko) 2022-04-21
CN109313359B (zh) 2021-02-02
EP3467575A4 (en) 2019-12-18
BR112018074819A2 (pt) 2019-03-06
CN109313359A (zh) 2019-02-05
KR20190013791A (ko) 2019-02-11
EP3467575B1 (en) 2022-01-05

Similar Documents

Publication Publication Date Title
JP3676138B2 (ja) 紫外線吸収性に優れたプラスチック眼鏡レンズ及びその製造方法
CN107735428B (zh) 光学材料用组合物及使用其的光学材料
JP3868683B2 (ja) プラスチック基材
JP5150624B2 (ja) プラスチックレンズの製造方法
CN108026241B (zh) 成型体和光学材料用聚合性组合物
US20220056187A1 (en) Curable composition for optical materials, and optical material
WO2017209104A1 (ja) 眼鏡レンズ
KR20180039099A (ko) 광학 재료용 중합성 조성물, 당해 조성물로부터 얻어지는 광학 재료 및 플라스틱 렌즈
JP2009074024A (ja) 光学材料用組成物、光学材料、眼鏡レンズ用基材および眼鏡レンズ
US20120188503A1 (en) Eyeglass lens made of allyl diglycol carbonate resin
WO2017209128A1 (ja) 眼鏡レンズ
KR101831889B1 (ko) 플라스틱 렌즈용 폴리티올 조성물
JP3538310B2 (ja) プラスチックレンズ
WO2021111830A1 (ja) プラスチック基材、プラスチックレンズ
JP4343118B2 (ja) 紫外線吸収性に優れたプラスチック眼鏡レンズの製造方法及び眼鏡レンズ
KR20210134654A (ko) 플라스틱 렌즈 및 안경
CN113711114B (zh) 光学材料、光学材料用聚合性组合物、塑料透镜、护目镜、红外线传感器及红外线照相机
JP7254167B2 (ja) 光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア、赤外線センサー及び赤外線カメラ
BR112018074837B1 (pt) Lente para óculos
JP2021107882A (ja) 光学材料、光学材料用重合性組成物、プラスチックレンズ、アイウェア及び光学センサー
BR112018074819B1 (pt) Lente para óculos
WO2021059850A1 (ja) 光透過性部材、レンズ及び光透過性部材の製造方法
WO2019054502A1 (ja) プラスチック基材、プラスチックレンズ
KR20180090721A (ko) 플라스틱 렌즈용 폴리티올 조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520925

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806681

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187034683

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018074819

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017806681

Country of ref document: EP

Effective date: 20190102

ENP Entry into the national phase

Ref document number: 112018074819

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181130