WO2017208887A1 - 半導体集積回路装置 - Google Patents

半導体集積回路装置 Download PDF

Info

Publication number
WO2017208887A1
WO2017208887A1 PCT/JP2017/019015 JP2017019015W WO2017208887A1 WO 2017208887 A1 WO2017208887 A1 WO 2017208887A1 JP 2017019015 W JP2017019015 W JP 2017019015W WO 2017208887 A1 WO2017208887 A1 WO 2017208887A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
wiring
strap
switch
cell
Prior art date
Application number
PCT/JP2017/019015
Other languages
English (en)
French (fr)
Inventor
岡本 淳
智靖 北浦
紘宜 武野
Original Assignee
株式会社ソシオネクスト
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ソシオネクスト filed Critical 株式会社ソシオネクスト
Priority to JP2018520810A priority Critical patent/JP6898570B2/ja
Priority to CN201780029899.1A priority patent/CN109155284B/zh
Publication of WO2017208887A1 publication Critical patent/WO2017208887A1/ja
Priority to US16/189,900 priority patent/US10734373B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/0203Particular design considerations for integrated circuits
    • H01L27/0207Geometrical layout of the components, e.g. computer aided design; custom LSI, semi-custom LSI, standard cell technique
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/26Power supply means, e.g. regulation thereof
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/392Floor-planning or layout, e.g. partitioning or placement
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/30Circuit design
    • G06F30/39Circuit design at the physical level
    • G06F30/394Routing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/52Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
    • H01L23/522Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
    • H01L23/528Geometry or layout of the interconnection structure
    • H01L23/5286Arrangements of power or ground buses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K19/00Logic circuits, i.e. having at least two inputs acting on one output; Inverting circuits
    • H03K19/0008Arrangements for reducing power consumption
    • H03K19/0016Arrangements for reducing power consumption by using a control or a clock signal, e.g. in order to apply power supply
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/10Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including a plurality of individual components in a repetitive configuration
    • H01L27/118Masterslice integrated circuits
    • H01L27/11803Masterslice integrated circuits using field effect technology
    • H01L27/11807CMOS gate arrays
    • H01L2027/11868Macro-architecture
    • H01L2027/11874Layout specification, i.e. inner core region
    • H01L2027/11881Power supply lines

Definitions

  • the present disclosure relates to a power shutoff technique in a semiconductor integrated circuit device.
  • the power cutoff technique is a technique for suppressing leakage current that causes power consumption by dividing the inside of a semiconductor integrated circuit device into a plurality of circuit blocks and shutting off the power supply of the circuit blocks that are not operating.
  • Patent Document 1 discloses a configuration in which a switch for supplying / shutting off power is arranged in each standard cell row in the power shut-off region to realize power supply control. Each standard cell is supplied with power from the strap power supply wiring via the switch and the standard cell power supply wiring.
  • Patent Document 1 it is necessary to provide a switch for supplying / shutting off power to each standard cell power supply wiring in a circuit block that shuts off power. That is, it is necessary to arrange a large number of switches in the circuit block. For this reason, the area of the circuit block increases by the area of the switch, and the presence of a large number of switches reduces the degree of freedom of arrangement of the standard cells. That is, there is a possibility that problems such as an increase in area due to the presence of a large number of switches and an increase in design man-hour due to deterioration in timing convergence due to a decrease in the degree of freedom of standard cell arrangement may occur.
  • the number of switches arranged in the circuit block can be set to the minimum necessary based on the total amount of current in the circuit block.
  • the distance between the switches may become long, and the voltage drop may increase in the power supply wiring between the switches.
  • the power supply voltage drop is not preferable because it causes a malfunction of the circuit.
  • An object of the present disclosure is to enable a power supply voltage drop to be effectively suppressed while suppressing the number of switches to be arranged in a semiconductor integrated circuit device using a power supply cutoff technique.
  • a semiconductor integrated circuit device includes a plurality of standard cells arranged in a first direction, and a plurality of standards arranged in a second direction, which is a direction perpendicular to the first direction.
  • the cell rows are arranged so as to extend in the first direction, respectively, and a plurality of power supply lines for supplying power to the plurality of standard cells, and an upper layer of the plurality of power supply lines so as to extend in the second direction.
  • a plurality of switch cells configured to switch whether or not to electrically connect the strap power wiring and the power wiring belonging to the wiring set in accordance with a control signal, and the plurality of switch cells Are arranged for each of the plurality of strap power supply lines for each of the M (M is an integer of 3 or more) wiring sets, and the plurality of switch cells are arranged in the second direction. The positions are different from each other in the adjacent strap power supply wires, and are the same for every M of the strap power supply wires in the first direction.
  • the switch cell for each strap power supply wiring, the switch cell is arranged for every M (M is an integer of 3 or more) power supply wirings. That is, the number of switch cells to be arranged is reduced.
  • the arrangement positions of the switch cells in the second direction, which is the direction in which the strap power supply line extends, are different from each other in the adjacent strap power supply lines, and are the same for every M strap power supply lines. For this reason, even when the standard cell is separated from the switch cell provided in the power supply wiring to which the standard cell is connected, the switch cell provided in the adjacent power supply wiring is arranged in the vicinity thereof. For this reason, since power is supplied from the switch cell via the sub strap power supply wiring, a power supply voltage drop is suppressed. Therefore, the power supply voltage drop in each standard cell can be suppressed while the number of switch cells is reduced.
  • the plurality of switch cells are respectively provided for a first wiring set that is one of the wiring sets, and are adjacent to each other in the first direction.
  • Two switch cells and a third switch cell provided for the first wiring set and the wiring set adjacent in the second direction, and the third switch cell is provided with the first switch cell.
  • the strap power supply wiring may be provided to the strap power supply wiring at an intermediate position between the strap power supply wiring and the strap power supply wiring provided with the second switch cell.
  • each row extending in the X-axis direction corresponds to the wiring set
  • each column extending in the Y-axis direction corresponds to the strap power supply wiring.
  • FIG. 2 is a plan view showing the configuration of the semiconductor integrated circuit device according to the first embodiment.
  • Schematic diagram showing a configuration example of a switch cell III-III sectional view of Fig. 1 IV-IV sectional view of Fig. 1 The top view which shows the structure of the semiconductor integrated circuit device which concerns on the modification of 1st Embodiment.
  • the top view which shows the structure of the semiconductor integrated circuit device which concerns on the modification of 1st Embodiment.
  • the top view which shows the structure of the semiconductor integrated circuit device which concerns on the modification of 1st Embodiment.
  • FIG. 1 is a diagram conceptually showing a switch cell arrangement in the configuration of FIG. Diagram conceptually showing switch cell layout as a proportional Diagram for explaining switch cell placement technique
  • (A)-(d) is a figure which conceptually represents the other example of switch cell arrangement
  • (A)-(c) is a figure which represents notionally other examples of switch cell arrangement
  • FIG. 1 is a plan view showing the configuration of the semiconductor integrated circuit device according to the first embodiment, and shows a simplified layout pattern in a circuit block that shuts off power (the same applies to the following plan views).
  • a plurality of standard cells 1 are arranged on a substrate.
  • a standard cell row 2 having a plurality of standard cells 1 arranged in the X direction (the horizontal direction in the drawing, corresponding to the first direction) is the Y direction (the vertical direction in the drawing, a direction perpendicular to the first direction).
  • a plurality of rows are arranged in two directions.
  • the standard cell 1 is a basic circuit element having functions such as an inverter and a logic circuit, for example, and it is possible to design and manufacture a semiconductor integrated circuit device that realizes a predetermined function by combining and arranging the standard cells 1. it can.
  • the standard cell 1 has an N-type region where a P-type MOS (Metal Oxide Semiconductor) transistor (PMOS) is formed and a P-type region where an N-type MOS transistor (NMOS) is formed.
  • the standard cell 1 has an N-type region and a P-type region arranged in the Y direction
  • the standard cell column 2 has an N-type region and a P-type region arranged every other row. Is inverted. Note that the internal structure of the standard cell 1 is not shown.
  • a standard cell power supply wiring 3 (indicated as VVDD on the right side) for supplying a power supply potential to the standard cell 1 and a ground power supply wiring 4 (on the right side) for supplying a ground potential to the standard cell 1. (Referred to as VSS) are alternately arranged. Both standard cell power supply wiring 3 and ground power supply wiring 4 are arranged to extend in the X direction.
  • the standard cell power supply wiring 3 supplies a power supply potential to the standard cell rows 2 on both sides in the Y direction.
  • the ground power supply wiring 4 supplies a ground potential to the standard cell rows 2 on both sides in the Y direction.
  • a switch cell 20 (hatched) is provided for each standard cell power supply wiring 3.
  • the switch cell 20 controls whether or not the power supply to the standard cell 1 is cut off, and electrically connects the standard cell power supply wiring 3 and a strap power supply wiring 11 to be described later according to a control signal. Whether or not can be switched.
  • the control signal is sent from, for example, a control block that controls power-off.
  • FIG. 2 is a schematic diagram showing a configuration example of the switch cell 20.
  • the configuration is illustrated by circuit symbols, but in practice, a layout including diffusion regions, gate wirings, metal wirings, and the like is formed.
  • the switch cell 20 shown in FIG. 2 is a double-height cell, and has an input terminal 21 connected to the strap power supply wiring 11, a control terminal 22 for receiving a control signal, a PMOS 23, and a control signal applied to the control terminal 22. And a receiving buffer 24.
  • the PMOS 23 has a source connected to the input terminal 21, a drain connected to the standard cell power supply wiring 3, and receives the output of the buffer 24 at the gate.
  • the control signal When the control signal is at a high level, the PMOS 23 does not conduct, and the input terminal 21 and the standard cell power supply wiring 3 are electrically cut off. On the other hand, when the control signal is at a low level, the PMOS 23 becomes conductive, and the input terminal 21 and the standard cell power supply wiring 3 are electrically connected. Although not shown in FIG. 2, power is supplied to the buffer 24 via the input terminal 21.
  • the strap power supply wiring 11 arranged to extend in the Y direction is provided in the upper layer of the standard cell row 2 and the standard cell power supply wiring 3.
  • the strap power supply wiring 11 is connected to the input terminal 21 of the switch cell 20 disposed below the strap power supply wiring 11.
  • a sub strap power supply wiring 12 arranged to extend in the Y direction is provided above the standard cell row 2 and the standard cell power supply wiring 3.
  • the sub strap power supply wiring 12 is connected via the via structure 13 to the standard cell power supply wiring 3 passing therebelow.
  • the strap power supply wiring 11 has an overlap with the switch cell 20 in plan view.
  • the sub strap power supply wiring 12 also overlaps the switch cell 20 in plan view.
  • the “strap power supply wiring” is used to mean a power supply wiring extending in a direction orthogonal to the direction of the standard cell row 2.
  • the strap power supply wiring for supplying the ground potential is also arranged on the upper layer of the standard cell row 2 and the standard cell power supply wiring 3 so as to extend in the vertical direction of the drawing. .
  • the power supply wiring from the power supply source to the switch cell 20, that is, the strap power supply wiring 11 is indicated as “VDD”, and the power supply wiring after passing through the switch cell 20, that is, the sub strap power supply wiring 12.
  • VDD the power supply wiring after passing through the switch cell 20, that is, the sub strap power supply wiring 12.
  • VVDD is written in the standard cell power supply wiring 3. The same applies to the subsequent drawings.
  • the power supply potential supplied when the PMOS 23 in the switch cell 20 is conductive is common to the power supply wiring indicated by “VDD” and the power supply wiring indicated by “VVDD”.
  • FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 1
  • FIG. 4 is a cross-sectional view taken along the line IV-IV in FIG. 1. Both show the cross-sectional structure at the location where the switch cell 20 is disposed.
  • the semiconductor integrated circuit device of FIG. 1 has five or more wiring layers on a substrate. As shown in FIGS. 3 and 4, first to fifth wiring layers (M1 to M5) are formed so as to be stacked in order from the substrate side.
  • the strap power supply wiring 11 is formed in the fifth wiring layer (M5), and the sub strap power supply wiring 12 is formed in the third wiring layer (M3). In other words, the sub strap power supply wiring 12 is provided below the strap power supply wiring 11 here.
  • the standard cell power supply wiring 3 is formed in the first wiring layer (M1). Although not shown, the ground power supply wiring 4 is formed in the first wiring layer, and the signal wiring of the standard cell 1 is mainly formed in the first wiring layer.
  • the priority wiring direction of the first, second and fourth wiring layers is the X direction
  • the priority wiring direction of the third and fifth wiring layers is the Y direction.
  • the switch cell 20 is provided between the strap power supply line 11 and the standard cell power supply line 3 at a location where the strap power supply line 11 and the standard cell power supply line 3 intersect in plan view. However, even if the strap power supply wiring 11 and the standard cell power supply wiring 3 intersect in plan view, there are places where the switch cell 20 is not disposed.
  • the switch cell 20 is arranged for every four standard cell power supply lines 3.
  • three standard cell power supply lines 3 exist between the switch cells 20 adjacent in the Y direction.
  • the positions of the switch cells 20 in the Y direction are different from each other in the adjacent strap power supply wires 11. Further, the arrangement positions of the switch cells 20 in the Y direction are the same for every four strap power supply wires 11.
  • the strap power supply line 11 (1) is provided with the switch cell 20 only between the standard cell power supply line 3 (1) and between the other standard cell power supply lines 3 (2) to (4).
  • the switch cell 20 is not arranged.
  • the switch cell 20 is disposed only between the strap power supply wiring 11 (2) and the standard cell power supply wiring 3 (3), and the strap power supply wiring 11 (3) is connected to the standard cell power supply wiring 3 (2).
  • the switch cell 20 is disposed only between the switch power supply 20 and the strap power supply wiring 11 (4), and the switch cell 20 is disposed only between the standard power supply wiring 3 (4).
  • the switch cell 20 is arranged between the four strap power supply wires 11 (1) to (4) in the order of the standard cell power supply wires 3 (1), (3), (2), (4). ing. Such an arrangement of the switch cells 20 is repeated in the X direction and the Y direction.
  • the standard cell 1A focus on the standard cell 1A (hatched).
  • a broken line with an arrow is attached to a part of the power supply path to the standard cell 1A.
  • the standard cell 1A is connected to the standard cell power supply wiring 3 (2), but is separated from the switch cells 201 and 202 provided in the standard cell power supply wiring 3 (2). For this reason, there is a concern about a power supply voltage drop.
  • the switch cell 203 is disposed at a position close to the standard cell 1A. For this reason, since the standard cell 1A is supplied with power from the switch cell 203 via the sub strap power supply wiring 12, the power supply voltage drop is suppressed.
  • the switch cell 201 as the first switch cell and the switch cell 202 as the second switch cell are provided for the standard cell power supply wiring 3 (2) and are adjacent to each other in the X direction.
  • the switch cell 203 as the third switch cell is provided in the standard cell power supply wiring 3 (1) adjacent to the standard cell power supply wiring 3 (2) in the Y direction.
  • the switch cell 203 is provided with respect to the strap power supply line 11 that is in an intermediate position between the strap power supply line 11 provided with the switch cell 201 and the strap power supply line 11 provided with the switch cell 202. Yes.
  • the standard cell 1 is provided in the adjacent standard cell power supply wiring 3 even when it is separated from the switch cell 20 provided in the standard cell power supply wiring 3 to which the standard cell 1 is connected.
  • the switch cell 20 is disposed in the vicinity thereof.
  • the switch cells 20 are arranged at positions adjacent to each other in the Y direction in the standard cell 1 located at an intermediate position between the switch cells 20 adjacent in the X direction. For this reason, since power is supplied from the switch cell 20 via the sub strap power supply wiring 12, the power supply voltage drop is suppressed. Therefore, according to the present embodiment, the power supply voltage drop in each standard cell 1 can be suppressed while the number of switch cells 20 is reduced.
  • the sub strap power supply wiring 12 is arranged next to the strap power supply wiring 11, but the present invention is not limited to this.
  • the sub strap power supply wiring 12 may be arranged at a distance from the strap power supply wiring 11 so as not to overlap the switch cell 20 in plan view.
  • the auxiliary strap power supply wires 12 may not be arranged adjacent to some of the strap power supply wires 11.
  • the switch cell 20 is disposed below the strap power supply wiring 11, and the strap power supply wiring 11 is assumed to overlap the switch cell 20 in plan view. It is not limited. However, when the switch cell 20 is disposed below the strap power supply wiring 11, the resistance value in the path such as the wiring or via between the input terminal 21 of the switch cell 20 and the strap power supply wiring 11 becomes small. Voltage drop is suppressed. In the configuration of FIG. 1, the sub strap power supply wiring 12 is overlapped with the switch cell 20 in plan view, but is not limited thereto.
  • the sub strap power supply wiring 12 is electrically connected to all the standard cell power supply wirings 3 that pass below, but is not limited thereto. For example, only a part of the standard cell power supply wiring 3 passing below may be electrically connected.
  • FIG. 5 is a plan view showing a configuration of a semiconductor integrated circuit device according to Modification 1 of the present embodiment.
  • the arrangement of the standard cell 1 and the arrangement of the standard cell power supply wiring 3, the ground power supply wiring 4, the strap power supply wiring 11 and the sub strap power supply wiring 12 are the same as in FIG. 1, and detailed description thereof is omitted here.
  • the switch cells 20 are arranged for every four standard cell power supply wirings 3.
  • the positions of the switch cells 20 in the Y direction are different from each other in the adjacent strap power supply wires 11. Further, the arrangement positions of the switch cells 20 in the Y direction are the same for every four strap power supply wires 11.
  • the arrangement pattern of the switch cells 20 is different from the configuration of FIG. That is, the switch cell 20 is arranged only between the strap power supply wiring 11 (1) and the standard cell power supply wiring 3 (1), and between the other standard cell power supply wirings 3 (2) to (4). The switch cell 20 is not arranged. Similarly, the switch cell 20 is disposed only between the strap power supply wiring 11 (2) and the standard cell power supply wiring 3 (2), and the strap power supply wiring 11 (3) is connected to the standard cell power supply wiring 3 (3). The switch cell 20 is disposed only between the switch power supply 20 and the strap power supply wiring 11 (4), and the switch cell 20 is disposed only between the standard power supply wiring 3 (4).
  • the switch cell 20 is arranged between the four strap power supply wires 11 (1) to (4) in the order of the standard cell power supply wires 3 (1), (2), (3), (4). Yes. Such an arrangement of the switch cells 20 is repeated in the X direction and the Y direction.
  • the standard cell 1 is not connected to the switch cell 20 provided in the standard cell power supply wiring 3 to which the standard cell 1 is connected, but the switch cell 20 provided in the adjacent standard cell power supply wiring 3. Is arranged in the vicinity thereof. For this reason, since power is supplied from the switch cell 20 via the sub strap power supply wiring 12, the power supply voltage drop is suppressed. Therefore, the power supply voltage drop in each standard cell 1 can be suppressed while the number of switch cells 20 is reduced.
  • FIG. 6 is a plan view showing a configuration of a semiconductor integrated circuit device according to the second modification of the present embodiment.
  • illustration of the arrangement of the standard cells 1 is omitted for simplification of the drawing.
  • the arrangement of the standard cell power supply wiring 3, the ground power supply wiring 4, the strap power supply wiring 11 and the sub strap power supply wiring 12 is substantially the same as that in FIG. 1, and detailed description thereof is omitted here.
  • the switch cell 25 has a size in the Y direction, that is, a cell height that is twice that of the switch cell 20 of FIG. Yes.
  • Each switch cell 25 is provided between the strap power supply line 11 and the two standard cell power supply lines 3. That is, when the two standard cell power supply wirings 3 are regarded as one “wiring set”, each switch cell 25 is provided between the strap power supply wiring 11 and the wiring set.
  • the switch cell 25 is arranged for every four wiring sets for each strap power supply wiring 11.
  • the positions of the switch cells 25 in the Y direction are different from each other in the adjacent strap power supply wires 11. Further, the arrangement positions of the switch cells 25 in the Y direction are the same for every four strap power supply wires 11.
  • the switch cell 25 is arranged only between the wiring set (1) and the switch cell 25 is arranged between the other wiring sets (2) to (4).
  • the switch power supply 25 is disposed only between the strap power supply wiring 11 (2) and the wiring set (3), and the strap power supply wiring 11 (3) is provided only between the wiring power supply set (2).
  • the switch cell 25 is disposed, and the strap power supply line 11 (4) is disposed only between the wiring set (4). That is, the switch cells 25 are arranged between the four strap power supply wires 11 (1) to (4) in the order of the wiring groups (1), (3), (2), and (4). Such an arrangement of the switch cells 25 is repeated in the X direction and the Y direction.
  • the switch cell 25 is arranged according to the same arrangement pattern as the switch cell 20 of FIG. Therefore, the power supply voltage drop in each standard cell 1 can be suppressed while the number of switch cells 25 is reduced.
  • the arrangement pattern of the switch cells 25 is not limited to that shown in FIG.
  • the four strap power supply wires 11 (1) to (4) are arranged in the order of the wiring groups (1), (2), (3), (4), and the switch cell 25 therebetween. May be arranged.
  • FIG. 7 is a plan view showing a configuration of a semiconductor integrated circuit device according to Modification 3 of the present embodiment.
  • illustration of the arrangement of the standard cells 1 is omitted for simplification of the drawing.
  • the arrangement of the standard cell power supply wiring 3, the ground power supply wiring 4, the strap power supply wiring 11 and the sub strap power supply wiring 12 is substantially the same as that in FIG. 1, and detailed description thereof is omitted here.
  • the switch cell 26 has a size in the Y direction, that is, a cell height that is three times that of the switch cell 20 of FIG. Yes.
  • Each switch cell 26 is provided between the strap power supply line 11 and the three standard cell power supply lines 3. That is, when the three standard cell power supply wirings 3 are regarded as one “wiring set”, each switch cell 26 is provided between the strap power supply wiring 11 and the wiring set.
  • the switch cell 26 is arranged for each of the four wiring groups for each strap power supply wiring 11.
  • the positions of the switch cells 26 in the Y direction are different from each other in the adjacent strap power supply wires 11. Further, the arrangement positions of the switch cells 26 in the Y direction are the same for every four strap power supply wires 11.
  • the switch cell 26 is arranged only between the wiring set (1) and the switch cell 26 is arranged between the other wiring sets (2) to (4).
  • the strap power supply wiring 11 (2) is provided with the switch cell 26 only between the wiring set (3)
  • the strap power supply wiring 11 (3) is provided only between the wiring set (2).
  • the switch cell 26 is arranged, and the strap power supply line 11 (4) is arranged only between the wiring set (4). That is, the switch cells 26 are arranged between the four strap power supply wires 11 (1) to (4) in the order of the wiring groups (1), (3), (2), and (4). Such an arrangement of the switch cells 26 is repeated in the X direction and the Y direction.
  • the switch cells 26 are arranged according to the same arrangement pattern as the configuration of FIG. Therefore, the power supply voltage drop in each standard cell 1 can be suppressed while the number of switch cells 26 is reduced.
  • the arrangement pattern of the switch cells 26 is not limited to that shown in FIG.
  • the four strap power supply wires 11 (1) to (4) are arranged in the order of the wiring groups (1), (2), (3), (4) and the switch cell 26 therebetween. May be arranged.
  • two standard cell power supply wirings 3 are regarded as one “wiring set”.
  • three standard cell power supply wirings 3 are taken as one “wiring set”.
  • the number of standard cell power supply wirings 3 belonging to the wiring set is not limited to two or three.
  • the four standard cell power supply wirings 3 are regarded as one “wiring set”, and switch cells having cell heights corresponding to eight rows of the standard cell row 2 are arranged in the same manner as in this embodiment.
  • Good. 1 and 5 corresponds to a configuration in which one standard cell power supply wiring 3 is regarded as one “wiring set”.
  • N switch cells N is an integer equal to or greater than 1 may be regarded as one wiring set, and switch cells may be arranged.
  • FIG. 8 is a plan view showing the configuration of the semiconductor integrated circuit device according to the second embodiment.
  • the arrangement of the standard cell 1 and the arrangement of the standard cell power supply wiring 3, the ground power supply wiring 4, the strap power supply wiring 11 and the sub strap power supply wiring 12 are the same as in FIG. 1, and detailed description thereof is omitted here.
  • an upper layer power supply wiring 14 extending in the X direction is arranged above the strap power supply wiring 11 and the sub strap power supply wiring 12.
  • the upper layer power supply wiring 14 is connected to the sub strap power supply wiring 12 and the via 16 in the lower layer.
  • the upper layer power supply wiring 14 is electrically connected to all the sub strap power supply wirings 12 passing below, but is not limited thereto.
  • the upper layer power supply wiring 14 may be electrically connected to only a part of the sub strap power supply wiring 12 that passes below.
  • FIG. 9 is a plan view showing the configuration of the semiconductor integrated circuit device according to the third embodiment.
  • the arrangement of the standard cell 1 and the arrangement of the standard cell power supply wiring 3, the ground power supply wiring 4, and the strap power supply wiring 11 are the same as those in FIG. 1, and detailed description thereof is omitted here.
  • the number of sub strap power supply wires is increased as compared with FIG.
  • two sub strap power supply wires 12 are arranged between the strap power supply wires 11.
  • a wiring layer different from the sub strap power supply wiring 12 here, the fifth wiring layer (M5)
  • M5 the fifth wiring layer
  • Sub strap power supply wiring 15 is arranged.
  • Three or more auxiliary strap power supply wires 12 and 15 may be arranged between the strap power supply wires 11.
  • the power supply can be strengthened without increasing the number of the switch cells 20, so that an increase in the area of the semiconductor integrated circuit device can be suppressed.
  • FIG. 10 is a plan view showing the configuration of the semiconductor integrated circuit device according to the fourth embodiment.
  • the arrangement of the standard cell 1 and the arrangement of the standard cell power supply wiring 3, the ground power supply wiring 4, the strap power supply wiring 11 and the sub strap power supply wiring 12 are substantially the same as in FIG. 1, and detailed description thereof is omitted here. .
  • a switch cell 20a having a standard driving capability and a switch cell 20b having a high driving capability are arranged.
  • the switch cell 20a and the switch cell 20b have different transistor sizes.
  • a region X surrounded by a broken line is a region where it is desired to enhance power supply.
  • the switch cell 20a cannot be added any more. Therefore, a switch cell 20b having a higher driving capability than the switch cell 20a is disposed around the region X. As a result, power can be supplied to the region X from the switch cell 20b having high driving capability via the sub strap power supply wiring 12.
  • FIG. 11 is a diagram conceptually showing an arrangement pattern of the switch cells 20 in the configuration of FIG.
  • each row extending in the X-axis direction corresponds to the standard cell power supply wiring 3
  • each column extending in the Y-axis direction corresponds to the strap power supply wiring 11.
  • Each square corresponds to a place where the standard cell power supply line 3 and the strap power supply line 11 intersect in plan view, in other words, a place where the switch cell 20 may be arranged.
  • the gray cells represent the locations where the switch cells 20 are arranged, and the white cells represent the locations where the switch cells 20 are not arranged.
  • each row extending in the X-axis direction corresponds to a “wiring set” including a plurality of standard cell power supply wirings 3.
  • FIG. 11 a number indicating the distance to the gray square closest to the square is written on the white square. Specifically, the minimum value of the value obtained by adding the X coordinate difference and the Y coordinate difference between the square and the gray square is described. In FIG. 11, all the white cells are marked with “1”. That is, the switch cells are arranged at any of the top, bottom, left, and right of any part where the switch cells are not arranged.
  • FIG. 12 is a diagram conceptually showing an arrangement pattern of switch cells as a comparative example.
  • the switch cells are arranged in a so-called staggered pattern.
  • all white squares are marked with “1”, and any switch cell is not placed on either the top, bottom, left or right side. Has been placed. Therefore, the effect of suppressing the power supply voltage drop can be obtained.
  • the number of switch cells required is twice that of the above-described embodiment, which is significantly larger. That is, in the present embodiment, the power supply voltage drop in each standard cell 1 can be suppressed while the number of switch cells is reduced.
  • the layout pattern of the switch cells 20, 25, and 26 is set by using the four strap power supply wires 11 and the four standard cell power supply wires 3 or the four wire sets as one unit. It had been.
  • the present disclosure is not limited to this. That is, the arrangement pattern of the switch cells 20, 25, 26 with M (M is an integer of 3 or more) strap power supply wires 11 and M standard cell power supply wires 3 or M wiring sets as one unit. Should be set.
  • the switch cell arrangement pattern may be set as follows, for example.
  • a cell composed of M ⁇ M cells is created.
  • each row extending in the X-axis direction corresponds to a standard cell power supply wiring 3 or a wiring set including a plurality of standard cell power supply wirings 3, and each column extending in the Y-axis direction corresponds to a strap power supply wiring 11.
  • the switch cell is arranged with the upper left coordinate (1, 1) as a starting point.
  • an arrangement pattern as shown in FIG. 13 is obtained.
  • FIG. 14 and FIG. 15 are switch cell arrangement patterns obtained by the above method.
  • the expression method is the same as in FIG. 11, and the gray cells correspond to the locations where the switch cells are arranged, and the white cells have the gray cells closest to the cells (that is, the closest switch cells). A number representing the distance is marked.
  • the power supply voltage drop can be more effectively suppressed by a small number of switch cells.
  • the strap power supply wiring 11 is provided in the fifth wiring layer, and the sub strap power supply wirings 12 and 15 are provided in the third wiring layer and the fifth wiring layer.
  • the wiring layer in which the wiring is formed is not limited to these.
  • the sub strap power supply wiring is preferably formed in a wiring layer as close as possible to the standard cell power supply wiring. As a result, the resistance value in the path between the sub strap power supply line and the standard cell power supply line and the path such as the via becomes small, and the decrease in the power supply potential can be suppressed.
  • the standard cell power supply wiring 3 is provided in the first wiring layer.
  • the present invention is not limited to this.
  • the standard cell power supply wiring 3 may be provided in a plurality of wiring layers.
  • the configuration of the switch cell 20 shown in FIG. 2 is merely an example, and the switch cell 20 determines whether or not to electrically connect the standard cell power supply wiring 3 and the strap power supply wiring 11 in accordance with a control signal. What is necessary is just to be comprised so that switching is possible.
  • an inverter may be used instead of the buffer 24.
  • the relationship between the logic of the control signal and connection / cutoff is the reverse of that described above.
  • two sets of the circuit configuration shown in FIG. 2 may be provided.
  • the switch cell 20 is a double height cell, but may be a single height cell.
  • the switch cell 20 is provided for the standard cell power supply wiring 3 for supplying the power supply potential.
  • a switch cell is provided for the ground power supply wiring 4 for supplying the ground potential.
  • the auxiliary strap power supply wiring may be provided so as to connect the ground power supply wiring 4.
  • the power supply can be enhanced without increasing the number of switch cells in the semiconductor integrated circuit device using the power shutoff technology, which is effective for reducing the power consumption and area of the LSI, for example.
  • Standard cell 2 Standard cell row 3 Standard cell power supply wiring (power supply wiring) 11 Strap power supply wiring 12, 15 Sub strap power supply wiring 14 Upper layer power supply wiring 20, 20a, 20b Switch cell 25, 26 Switch cell 201 First switch cell 202 Second switch cell 203 Third switch cell

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Geometry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Evolutionary Computation (AREA)
  • Computing Systems (AREA)
  • Mathematical Physics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Architecture (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Design And Manufacture Of Integrated Circuits (AREA)

Abstract

スタンダードセル(1)が配置された回路ブロックにおいて、X方向に延びる電源配線(3)とY方向に延びるストラップ電源配線(11)とを電気的に接続するか否かを切替可能なスイッチセル(20)が設けられている。スイッチセル(20)は、ストラップ電源配線(11)に対して、M(Mは3以上の整数)本の電源配線(3)毎に1個ずつ配置されている。スイッチセル(20)のY方向における配置位置は、隣り合うストラップ電源配線(11)において互いに異なっており、かつ、X方向におけるストラップ電源配線(11)のM本ごとに、同一である。

Description

半導体集積回路装置
 本開示は、半導体集積回路装置における電源遮断技術に関する。
 半導体集積回路装置の低消費電力化を実現するための技術の一つに、電源遮断技術がある。電源遮断技術とは、半導体集積回路装置の内部を複数の回路ブロックに分割し、動作していない回路ブロックの電源を遮断することによって電力消費の原因となるリーク電流を抑制する技術である。特許文献1では、電源遮断領域において、電源を供給/遮断するためのスイッチを各スタンダードセル列に配置し、電源供給制御を実現する構成が開示されている。各スタンダードセルには、ストラップ電源配線からスイッチおよびスタンダードセル電源配線を経由して、電源が供給される。
特開2008-277788号公報
 特許文献1の構成では、電源遮断を行う回路ブロックにおいて、各スタンダードセル電源配線に対してそれぞれ、電源を供給/遮断するためのスイッチを設ける必要がある。すなわち、多数のスイッチを回路ブロック内に配置する必要がある。このため、スイッチの面積分、回路ブロックの面積が増加することになり、また多数のスイッチの存在により、スタンダードセルの配置の自由度が下がることになる。すなわち、多数のスイッチの存在に起因した面積の増加や、スタンダードセル配置の自由度低下によるタイミング収束性の悪化に起因した設計工数の増大、という問題が生じるおそれがある。
 また、スイッチ1個当たりで供給可能な電流量は定まっているため、回路ブロック内に配置するスイッチの個数は、当該回路ブロックの総電流量を基にして、必要最小限に設定することができる。ところがこの場合、スイッチの配置位置によっては、スイッチ間の距離が長くなってしまい、スイッチ間の電源配線において電圧降下が大きくなってしまうおそれがある。電源電圧降下は、回路の誤動作の原因となるため、好ましくない。
 本開示は、電源遮断技術を用いた半導体集積回路装置において、配置するスイッチの個数を少なく抑えつつ、電源電圧降下を効果的に抑制可能にすることを目的とする。
 本開示の態様では、半導体集積回路装置は、第1方向に並べて配置された複数のスタンダードセルをそれぞれ備え、前記第1方向と垂直をなす方向である第2方向に並べて配置された複数のスタンダードセル列と、前記第1方向に延びるようにそれぞれ配置されており、前記複数のスタンダードセルに電源を供給する複数の電源配線と、前記複数の電源配線の上層において前記第2方向に延びるように配置された、複数のストラップ電源配線と、前記複数の電源配線の上層において前記第2方向に延びるように配置され、前記複数の電源配線とそれぞれ接続された、複数の副ストラップ電源配線と、前記複数のストラップ電源配線のいずれかと、前記複数の電源配線の中のN本(Nは1以上の整数)からなる配線組との間に設けられており、制御信号に応じて、当該ストラップ電源配線と当該配線組に属する前記電源配線とを電気的に接続するか否かを切替可能に構成された、複数のスイッチセルとを備え、前記複数のスイッチセルは、前記複数のストラップ電源配線に対してそれぞれ、M(Mは3以上の整数)個の前記配線組毎に1個ずつ、配置されており、前記複数のスイッチセルの前記第2方向における配置位置は、隣り合う前記ストラップ電源配線において互いに異なっており、かつ、前記第1方向における前記ストラップ電源配線のM本ごとに、同一である。
 この態様によると、各ストラップ電源配線について、スイッチセルは、電源配線のM(Mは3以上の整数)本毎に配置されている。すなわち、配置するスイッチセルの個数は少なく抑えられている。そして、ストラップ電源配線が延びる方向である第2方向における、スイッチセルの配置位置は、隣り合うストラップ電源配線において互いに異なっており、かつ、ストラップ電源配線のM本毎に、同一になっている。このため、スタンダードセルは、自己が接続された電源配線に設けられたスイッチセルから離れている場合でも、隣り合う電源配線に設けられたスイッチセルが、その近傍に配置されている。このため、そのスイッチセルから副ストラップ電源配線を介した電源供給がなされるので、電源電圧降下が抑制される。したがって、スイッチセルの個数を少なく抑えつつ、各スタンダードセルにおける電源電圧降下を抑制することができる。
 そして、前記態様の半導体集積回路装置において、前記複数のスイッチセルは、前記配線組の1つである第1配線組に対してそれぞれ設けられており、前記第1方向において隣り合う第1および第2スイッチセルと、前記第1配線組と前記第2方向において隣り合う前記配線組に対して設けられた第3スイッチセルとを含み、前記第3スイッチセルは、前記第1スイッチセルが設けられた前記ストラップ電源配線と前記第2スイッチセルが設けられた前記ストラップ電源配線と間の中間位置にある、前記ストラップ電源配線に対して、設けられている、としてもよい。
 また、前記態様の半導体集積回路装置において、前記複数のスイッチセルの配置を、X軸方向に延びる各行が前記配線組に対応し、Y軸方向に延びる各列が前記ストラップ電源配線に対応するマス目で表した場合において、前記スイッチセルが配置されていない第1マスと、前記スイッチセルが配置されており当該第1マスから最も近い第2マスとの、X座標の差をX、Y座標の差をYとしたとき、X+Y≦M/4の関係を満たす、としてもよい。
 本開示によると、電源遮断技術を用いた半導体集積回路装置について、配置するスイッチの個数を少なく抑えつつ、電源電圧降下を効果的に抑制することができる。
第1実施形態に係る半導体集積回路装置の構成を示す平面図 スイッチセルの構成例を示す模式図 図1のIII-III断面図 図1のIV-IV断面図 第1実施形態の変形例に係る半導体集積回路装置の構成を示す平面図 第1実施形態の変形例に係る半導体集積回路装置の構成を示す平面図 第1実施形態の変形例に係る半導体集積回路装置の構成を示す平面図 第2実施形態に係る半導体集積回路装置の構成を示す平面図 第3実施形態に係る半導体集積回路装置の構成を示す平面図 第4実施形態に係る半導体集積回路装置の構成を示す平面図 図1の構成におけるスイッチセル配置を概念的に表す図 対比例としてのスイッチセル配置を概念的に表す図 スイッチセルの配置手法を説明するための図 (a)~(d)はスイッチセル配置の他の例を概念的に表す図 (a)~(c)はスイッチセル配置の他の例を概念的に表す図
 以下、実施の形態について、図面を参照して説明する。
 (第1実施形態)
 図1は第1実施形態に係る半導体集積回路装置の構成を示す平面図であり、電源遮断を行う回路ブロックにおけるレイアウトパターンを簡略化して図示している(以降の平面図も同様)。図1に示す半導体集積回路装置は、基板に、複数のスタンダードセル1が配置されている。X方向(図面横方向、第1方向に相当)に並べて配置された複数のスタンダードセル1を備えたスタンダードセル列2が、Y方向(図面縦方向、第1方向と垂直をなす方向である第2方向)に複数行配置されている。スタンダードセル1は、例えばインバータや論理回路等の機能を有する基本回路素子であり、スタンダードセル1を組み合わせて配置配線することによって、所定の機能を実現する半導体集積回路装置を設計・製造することができる。スタンダードセル1は、P型MOS(Metal Oxide Semiconductor)トランジスタ(PMOS)が形成されるN型領域とN型MOSトランジスタ(NMOS)が形成されるP型領域とをそれぞれ有している。本開示では、スタンダードセル1は、N型領域とP型領域とがY方向に並べて配置されており、かつ、スタンダードセル列2は、1行おきに、N型領域とP型領域との並びが反転しているものとする。なお、スタンダードセル1の内部構造については図示を省略している。
 スタンダードセル列2同士の間に、スタンダードセル1に電源電位を供給するスタンダードセル電源配線3(右横にVVDDと記す)と、スタンダードセル1に接地電位を供給する接地電源配線4(右横にVSSと記す)とが、交互に、配置されている。スタンダードセル電源配線3および接地電源配線4はともに、X方向に延びるように配置されている。スタンダードセル電源配線3は、そのY方向両側のスタンダードセル列2に電源電位を供給する。また接地電源配線4は、そのY方向両側のスタンダードセル列2に接地電位を供給する。そして、各スタンダードセル電源配線3に対して、スイッチセル20(ハッチを付している)が設けられている。スイッチセル20は、スタンダードセル1に対する電源供給を遮断するか否かを制御するものであり、制御信号に応じて、スタンダードセル電源配線3と、後述するストラップ電源配線11とを電気的に接続するか否かを切替可能に構成されている。制御信号は例えば、電源遮断を制御する制御ブロックから送られる。
 図2はスイッチセル20の構成例を示す模式図である。なお図2では、構成を回路記号によって図示しているが、実際には、拡散領域やゲート配線、メタル配線等からなるレイアウトが形成される。図2に示すスイッチセル20は、ダブルハイトセルであり、ストラップ電源配線11と接続される入力端子21と、制御信号を受ける制御端子22と、PMOS23と、制御端子22に与えられた制御信号を受けるバッファ24とを備えている。PMOS23は、ソースが入力端子21と接続され、ドレインがスタンダードセル電源配線3と接続され、ゲートにバッファ24の出力を受ける。制御信号がハイレベルのとき、PMOS23は導通せず、入力端子21とスタンダードセル電源配線3とは電気的に遮断される。一方、制御信号がローレベルのとき、PMOS23は導通し、入力端子21とスタンダードセル電源配線3とは電気的に接続される。なお、図2では図示を省略しているが、バッファ24には入力端子21を介して電源が供給される。
 図1に戻り、スタンダードセル列2やスタンダードセル電源配線3の上層に、Y方向に延びるように配置されたストラップ電源配線11が設けられている。ストラップ電源配線11は、その下方に配置されているスイッチセル20の入力端子21と接続されている。また、スタンダードセル列2やスタンダードセル電源配線3の上層に、Y方向に延びるように配置された副ストラップ電源配線12が設けられている。副ストラップ電源配線12は、ビア構造13を介して、その下方を通過するスタンダードセル電源配線3と接続されている。図1の構成では、ストラップ電源配線11は、平面視において、スイッチセル20と重なりを有している。また、副ストラップ電源配線12も、平面視において、スイッチセル20と重なりを有している。なお本願明細書では、「ストラップ電源配線」は、スタンダードセル列2の方向と直交する方向に延びる電源配線という意味で用いている。また、図1では図示を省略しているが、接地電位を供給するためのストラップ電源配線も、スタンダードセル列2やスタンダードセル電源配線3の上層に、図面縦方向に延びるように配置されている。
 なお、図1では、電源供給元からスイッチセル20までの電源配線、すなわちストラップ電源配線11には「VDD」と記しており、スイッチセル20を経由した後の電源配線、すなわち副ストラップ電源配線12およびスタンダードセル電源配線3には「VVDD」と記している。以降の図でも同様である、ただし、スイッチセル20におけるPMOS23の導通時に供給される電源電位は、「VDD」と記された電源配線と「VVDD」と記された電源配線とで共通である。
 図3は図1のIII-III断面図、図4は図1のIV-IV断面図であり、いずれもスイッチセル20が配置された箇所における断面構造を示している。図1の半導体集積回路装置は、基板上に5層以上の配線層を有している。図3および図4に示すように、基板側から順に積層するように、第1~第5配線層(M1~M5)が形成されている。ストラップ電源配線11は第5配線層(M5)に形成されており、副ストラップ電源配線12は第3配線層(M3)に形成されている。すなわち、ここでは、副ストラップ電源配線12は、ストラップ電源配線11よりも下層に設けられている。またスタンダードセル電源配線3は、第1配線層(M1)に形成されている。また図示はしていないが、接地電源配線4は第1配線層に形成されており、スタンダードセル1の信号配線は主に第1配線層に形成されている。なお図1において、第1、第2および第4配線層の優先配線方向はX方向であり、第3および第5配線層の優先配線方向はY方向である。
 ここで、図1の構成におけるスイッチセル20の配置位置について、説明する。スイッチセル20は、ストラップ電源配線11とスタンダードセル電源配線3とが平面視で交差する箇所において、当該ストラップ電源配線11と当該スタンダードセル電源配線3との間に、設けられている。ただし、ストラップ電源配線11とスタンダードセル電源配線3とが平面視で交差する箇所であっても、スイッチセル20が配置されていない箇所がある。
 図1の構成では、各ストラップ電源配線11について、スイッチセル20は、スタンダードセル電源配線3の4本毎に配置されている。言い換えると、各ストラップ電源配線11について、Y方向において隣り合うスイッチセル20同士の間には、3本のスタンダードセル電源配線3が存在する。そして、スイッチセル20のY方向における配置位置は、隣り合うストラップ電源配線11において互いに異なっている。また、スイッチセル20のY方向における配置位置は、ストラップ電源配線11の4本毎に、同一になっている。
 例えば、図面下側の4本のスタンダードセル電源配線3((1)~(4)を付している)と、図面左側の4本のストラップ電源配線11((1)~(4)を付している)とに着目する。ストラップ電源配線11(1)は、スタンダードセル電源配線3(1)との間にのみスイッチセル20が配置されており、他のスタンダードセル電源配線3(2)~(4)との間にはスイッチセル20は配置されていない。同様に、ストラップ電源配線11(2)は、スタンダードセル電源配線3(3)との間にのみスイッチセル20が配置されており、ストラップ電源配線11(3)は、スタンダードセル電源配線3(2)との間にのみスイッチセル20が配置されており、ストラップ電源配線11(4)は、スタンダードセル電源配線3(4)との間にのみスイッチセル20が配置されている。すなわち、4本のストラップ電源配線11(1)~(4)について、スタンダードセル電源配線3(1),(3),(2),(4)の順で、その間にスイッチセル20が配置されている。そして、このようなスイッチセル20の配置が、X方向およびY方向において繰り返されている。
 ここで、スタンダードセル1A(ハッチを付している)に着目する。図1では、スタンダードセル1Aに対する電源供給経路の一部に矢印付き破線を付している。スタンダードセル1Aは、スタンダードセル電源配線3(2)に接続されるが、スタンダードセル電源配線3(2)に設けられたスイッチセル201,202からは離れている。このため、電源電圧降下が懸念される。この一方で、スタンダードセル電源配線3(2)に隣りあうスタンダードセル電源配線3(1)には、スタンダードセル1Aに近接した位置に、スイッチセル203が配置されている。このため、スタンダードセル1Aは、スイッチセル203から副ストラップ電源配線12を介して電源が供給されるので、電源電圧降下が抑制される。すなわち、第1スイッチセルとしてのスイッチセル201と第2スイッチセルとしてのスイッチセル202は、スタンダードセル電源配線3(2)に対してそれぞれ設けられており、X方向において隣り合っている。第3スイッチセルとしてのスイッチセル203は、スタンダードセル電源配線3(2)とY方向において隣りあうスタンダードセル電源配線3(1)に設けられている。そして、スイッチセル203は、スイッチセル201が設けられたストラップ電源配線11とスイッチセル202が設けられたストラップ電源配線11との間の中間位置にある、ストラップ電源配線11に対して、設けられている。
 このように、図1の構成では、スタンダードセル1は、自己が接続されたスタンダードセル電源配線3に設けられたスイッチセル20から離れている場合でも、隣り合うスタンダードセル電源配線3に設けられたスイッチセル20が、その近傍に配置されている。例えば、X方向において隣り合うスイッチセル20同士の間の中間位置にあるスタンダードセル1に、Y方向において隣り合う位置に、スイッチセル20が配置されている。このため、そのスイッチセル20から副ストラップ電源配線12を介した電源供給がなされるので、電源電圧降下が抑制される。したがって、本実施形態によると、スイッチセル20の個数を少なく抑えつつ、各スタンダードセル1における電源電圧降下を抑制することができる。
 なお、図1の構成では、副ストラップ電源配線12は、ストラップ電源配線11の隣りにそれぞれ並べて配置しているが、これに限られるものではない。例えば、副ストラップ電源配線12を、ストラップ電源配線11から間隔を空けて配置し、スイッチセル20と平面視で重ならないようにしてもかまわない。また、一部のストラップ電源配線11には、副ストラップ電源配線12を隣りに並べないようにしてもよい。
 また、図1の構成では、スイッチセル20は、ストラップ電源配線11の下方に配置されており、ストラップ電源配線11は平面視においてスイッチセル20と重なりを有しているものとしたが、これに限られるものではない。ただし、スイッチセル20をストラップ電源配線11の下方に配置した場合、スイッチセル20の入力端子21とストラップ電源配線11との間の配線やビア等の経路における抵抗値が小さくなるため、電源電圧の電圧降下が抑制される。また、図1の構成では、副ストラップ電源配線12は平面視においてスイッチセル20と重なりを有しているものとしたが、これに限られるものではない。
 また、図1の構成では、副ストラップ電源配線12は、下方を通過する全てのスタンダードセル電源配線3と電気的に接続しているが、これに限られるものではない。例えば、下方を通過するスタンダードセル電源配線3の一部のみと電気的に接続するものとしてもよい。
 (変形例1)
 図1の構成では、4本のストラップ電源配線11(1)~(4)について、スタンダードセル電源配線3(1),(3),(2),(4)の順で、その間にスイッチセル20が配置されているものとした。ただし、スイッチセル20の配置パターンは、図1に示したものに限られるものではない。
 図5は本実施形態の変形例1に係る半導体集積回路装置の構成を示す平面図である。スタンダードセル1の配置や、スタンダードセル電源配線3、接地電源配線4、ストラップ電源配線11および副ストラップ電源配線12の配置に関しては、図1と同様であり、ここではその詳細な説明を省略する。
 図5の構成では、図1の構成と同様に、各ストラップ電源配線11について、スイッチセル20は、スタンダードセル電源配線3の4本毎に配置されている。そして、スイッチセル20のY方向における配置位置は、隣り合うストラップ電源配線11において互いに異なっている。また、スイッチセル20のY方向における配置位置は、ストラップ電源配線11の4本毎に、同一になっている。
 ただし、図5の構成では、スイッチセル20の配置パターンが、図1の構成と異なっている。すなわち、ストラップ電源配線11(1)は、スタンダードセル電源配線3(1)との間にのみスイッチセル20が配置されており、他のスタンダードセル電源配線3(2)~(4)との間にはスイッチセル20は配置されていない。同様に、ストラップ電源配線11(2)は、スタンダードセル電源配線3(2)との間にのみスイッチセル20が配置されており、ストラップ電源配線11(3)は、スタンダードセル電源配線3(3)との間にのみスイッチセル20が配置されており、ストラップ電源配線11(4)は、スタンダードセル電源配線3(4)との間にのみスイッチセル20が配置されている。すなわち、4本のストラップ電源配線11(1)~(4)について、スタンダードセル電源配線3(1),(2),(3),(4)の順に、その間にスイッチセル20が配置されている。そして、このようなスイッチセル20の配置が、X方向およびY方向において繰り返されている。
 図5の構成においても、スタンダードセル1は、自己が接続されたスタンダードセル電源配線3に設けられたスイッチセル20から離れている場合でも、隣り合うスタンダードセル電源配線3に設けられたスイッチセル20が、その近傍に配置されている。このため、そのスイッチセル20から副ストラップ電源配線12を介した電源供給がなされるので、電源電圧降下が抑制される。したがって、スイッチセル20の個数を少なく抑えつつ、各スタンダードセル1における電源電圧降下を抑制することができる。
 (変形例2)
 図6は本実施形態の変形例2に係る半導体集積回路装置の構成を示す平面図である。図6では、図の簡略化のために、スタンダードセル1の配置に関しては図示を省略している。また、スタンダードセル電源配線3、接地電源配線4、ストラップ電源配線11および副ストラップ電源配線12の配置に関しては、図1とほぼ同様であり、ここではその詳細な説明を省略する。
 図6の構成では、スイッチセル25は、Y方向におけるサイズすなわちセル高さが図1のスイッチセル20の2倍になっており、スタンダードセル列2の4列分のセル高さを有している。そして、各スイッチセル25は、ストラップ電源配線11と2本のスタンダードセル電源配線3との間に設けられている。すなわち、2本のスタンダードセル電源配線3を1個の「配線組」として捉えたとき、各スイッチセル25は、ストラップ電源配線11と配線組との間に設けられている。
 そして図6の構成では、各ストラップ電源配線11について、スイッチセル25は、4個の配線組毎に配置されている。そして、スイッチセル25のY方向における配置位置は、隣り合うストラップ電源配線11において互いに異なっている。また、スイッチセル25のY方向における配置位置は、ストラップ電源配線11の4本毎に、同一になっている。
 例えば、図面左側の4本のストラップ電源配線11((1)~(4)を付している)と、図面下側の4個の配線組(1)~(4)に着目する。ストラップ電源配線11(1)は、配線組(1)との間にのみスイッチセル25が配置されており、他の配線組(2)~(4)との間にはスイッチセル25は配置されていない。同様に、ストラップ電源配線11(2)は、配線組(3)との間にのみスイッチセル25が配置されており、ストラップ電源配線11(3)は、配線組(2)との間にのみスイッチセル25が配置されており、ストラップ電源配線11(4)は、配線組(4)との間にのみスイッチセル25が配置されている。すなわち、4本のストラップ電源配線11(1)~(4)について、配線組(1),(3),(2),(4)の順に、その間にスイッチセル25が配置されている。そして、このようなスイッチセル25の配置が、X方向およびY方向において繰り返されている。
 すなわち、図6の構成では、図1のスイッチセル20と同様の配置パターンに従って、スイッチセル25が配置されている。したがって、スイッチセル25の個数を少なく抑えつつ、各スタンダードセル1における電源電圧降下を抑制することができる。
 なお、スイッチセル25の配置パターンは、図1に示したものに限られるものではない。例えば図5の構成と同様に、4本のストラップ電源配線11(1)~(4)について、配線組(1),(2),(3),(4)の順に、その間にスイッチセル25が配置されるようにしてもよい。
 (変形例3)
 図7は本実施形態の変形例3に係る半導体集積回路装置の構成を示す平面図である。図7では、図の簡略化のために、スタンダードセル1の配置に関しては図示を省略している。また、スタンダードセル電源配線3、接地電源配線4、ストラップ電源配線11および副ストラップ電源配線12の配置に関しては、図1とほぼ同様であり、ここではその詳細な説明を省略する。
 図7の構成では、スイッチセル26は、Y方向におけるサイズすなわちセル高さが図1のスイッチセル20の3倍になっており、スタンダードセル列2の6列分のセル高さを有している。そして、各スイッチセル26は、ストラップ電源配線11と3本のスタンダードセル電源配線3との間に設けられている。すなわち、3本のスタンダードセル電源配線3を1個の「配線組」として捉えたとき、各スイッチセル26は、ストラップ電源配線11と配線組との間に設けられている。
 そして図7の構成では、図6の構成と同様に、各ストラップ電源配線11について、スイッチセル26は、4個の配線組毎に配置されている。そして、スイッチセル26のY方向における配置位置は、隣り合うストラップ電源配線11において互いに異なっている。また、スイッチセル26のY方向における配置位置は、ストラップ電源配線11の4本毎に、同一になっている。
 例えば、図面左側の4本のストラップ電源配線11((1)~(4)を付している)と、図面下側の4個の配線組(1)~(4)に着目する。ストラップ電源配線11(1)は、配線組(1)との間にのみスイッチセル26が配置されており、他の配線組(2)~(4)との間にはスイッチセル26は配置されていない。同様に、ストラップ電源配線11(2)は、配線組(3)との間にのみスイッチセル26が配置されており、ストラップ電源配線11(3)は、配線組(2)との間にのみスイッチセル26が配置されており、ストラップ電源配線11(4)は、配線組(4)との間にのみスイッチセル26が配置されている。すなわち、4本のストラップ電源配線11(1)~(4)について、配線組(1),(3),(2),(4)の順に、その間にスイッチセル26が配置されている。そして、このようなスイッチセル26の配置が、X方向およびY方向において繰り返されている。
 すなわち、図7の構成は、図1の構成と同様の配置パターンに従って、スイッチセル26が配置されている。したがって、スイッチセル26の個数を少なく抑えつつ、各スタンダードセル1における電源電圧降下を抑制することができる。
 なお、スイッチセル26の配置パターンは、図7に示したものに限られるものではない。例えば図5の構成と同様に、4本のストラップ電源配線11(1)~(4)について、配線組(1),(2),(3),(4)の順に、その間にスイッチセル26が配置されていてもよい。
 ここで、変形例2では、2本のスタンダードセル電源配線3を1個の「配線組」として捉えるものとし、変形例3では、3本のスタンダードセル電源配線3を1個の「配線組」として捉えるものとしたが、配線組に属するスタンダードセル電源配線3の本数は、2本または3本に限られるものではない。例えば、4本のスタンダードセル電源配線3を1個の「配線組」として捉えて、スタンダードセル列2の8列分のセル高さを有するスイッチセルを、本実施形態と同様に配置してもよい。また、図1や図5の構成は、1本のスタンダードセル電源配線3を1個の「配線組」として捉えたものに相当する。すなわち、N本(Nは1以上の整数)のスタンダードセル電源配線3を1個の配線組として捉えて、スイッチセルを配置すればよい。
 (第2実施形態)
 図8は第2実施形態に係る半導体集積回路装置の構成を示す平面図である。スタンダードセル1の配置や、スタンダードセル電源配線3、接地電源配線4、ストラップ電源配線11および副ストラップ電源配線12の配置に関しては、図1と同様であり、ここではその詳細な説明を省略する。
 図8では、図1と対比すると、ストラップ電源配線11および副ストラップ電源配線12の上層に、X方向に延びる上層電源配線14が配置されている。上層電源配線14は、その下層にある副ストラップ電源配線12とビア16によって接続されている。このように、副ストラップ電源配線12同士を接続する上層電源配線14を設けることによって、電源供給の強化ができるので、電源電圧降下をより抑制することが可能になる。
 なお、図8の構成では、上層電源配線14は、下方を通過する全ての副ストラップ電源配線12と電気的に接続されているが、これに限られるものではない。例えば、上層電源配線14は、下方を通過する副ストラップ電源配線12の一部のみと電気的に接続するものとしてもよい。
 (第3実施形態)
 図9は第3実施形態に係る半導体集積回路装置の構成を示す平面図である。スタンダードセル1の配置や、スタンダードセル電源配線3、接地電源配線4およびストラップ電源配線11の配置に関しては、図1と同様であり、ここではその詳細な説明を省略する。
 図9では、図1と対比すると、副ストラップ電源配線の本数が増えている。例えば、領域A1,A2では、ストラップ電源配線11同士の間に、副ストラップ電源配線12が2本配置されている。また、領域A3では、ストラップ電源配線11同士の間に、副ストラップ電源配線12に加えて、副ストラップ電源配線12とは異なる配線層(ここでは第5配線層(M5)とする)に形成された副ストラップ電源配線15が配置されている。なお、ストラップ電源配線11同士の間に、副ストラップ電源配線12,15を3本以上配置してもかまわない。
 このように、副ストラップ電源配線12,15の本数を増やすことによって、スイッチセル20の個数を増やすことなく、電源供給の強化ができるので、半導体集積回路装置の面積増加を抑制することができる。
 (第4実施形態)
 図10は第4実施形態に係る半導体集積回路装置の構成を示す平面図である。スタンダードセル1の配置や、スタンダードセル電源配線3、接地電源配線4、ストラップ電源配線11および副ストラップ電源配線12の配置に関しては、図1とほぼ同様であり、ここではその詳細な説明を省略する。
 図10の構成では、標準の駆動能力を有するスイッチセル20aと、高い駆動能力を有するスイッチセル20bとが配置されている。スイッチセル20aとスイッチセル20bとは、トランジスタサイズが互いに異なっている。ここで、破線で囲んだ領域Xは電源供給を強化したい領域である。ところが、領域Xにはスタンダードセル1が高密度で配置されているため、スイッチセル20aをこれ以上追加できない。そこで、領域Xの周囲に、スイッチセル20aよりも駆動能力が高いスイッチセル20bを配置している。これにより、領域X内に、駆動能力が高いスイッチセル20bから副ストラップ電源配線12を介して、電源を供給することができる。
 (スイッチセルの配置パターンおよび配置手法)
 図11は図1の構成におけるスイッチセル20の配置パターンを概念的に示す図である。図11では、X軸方向に延びる各行がスタンダードセル電源配線3に対応し、Y軸方向に延びる各列がストラップ電源配線11に対応している。そして、各マスはそれぞれ、スタンダードセル電源配線3とストラップ電源配線11とが平面視で交差した箇所、言い換えると、スイッチセル20が配置される可能性がある箇所に対応している。そして、灰色のマスはスイッチセル20が配置された箇所を表しており、白いマスはスイッチセル20が配置されていない箇所を表している。なお、図6や図7の構成のように、スイッチセル20よりもセル高さが高いスイッチセル25,26が、複数のスタンダードセル電源配線3に対して配置されている場合は、図11のX軸方向に延びる各行は、複数のスタンダードセル電源配線3からなる「配線組」に対応することになる。
 図11において、白いマスには、当該マスに最も近い灰色のマスまでの距離を表す数字が記されている。具体的には、当該マスと灰色のマスとの間の、X座標の差およびY座標の差を加えた値の、最小値を記している。図11では、白いマスは、全て「1」が記されている。すなわち、スイッチセルが配置されていない箇所はいずれも、その上下左右のいずれかにスイッチセルが配置されている。
 図12は対比例としてのスイッチセルの配置パターンを概念的に示す図である。図12では、スイッチセルはいわゆる千鳥状に配置されている。図12から分かるように、この千鳥状の配置パターンでも、白いマスは全て「1」が記されており、スイッチセルが配置されていない箇所はいずれも、その上下左右のいずれかにスイッチセルが配置されている。したがって、電源電圧降下の抑制効果は得られる。ただし、図11と対比すると分かるように、必要とするスイッチセルの個数が、上述の実施形態の2倍になっており、格段に多くなっている。すなわち、本実施形態では、スイッチセルの個数を少なく抑えつつ、各スタンダードセル1における電源電圧降下を抑制することができる。
 なお、上述の実施形態では、4本のストラップ電源配線11と、4本のスタンダードセル電源配線3または4個の配線組とを1つの単位として、スイッチセル20,25,26の配置パターンが設定されていた。ただし、本開示はこれに限定されるものではない。すなわち、M(Mは3以上の整数)本のストラップ電源配線11と、M本のスタンダードセル電源配線3またはM個の配線組とを1つの単位として、スイッチセル20,25,26の配置パターンを設定すればよい。
 この場合、スイッチセルの配置パターンは、例えば次のように設定すればよい。図13を参照して、M=8の場合を例にとって、説明する。まず、M個×M個のマスからなるマス目を作成する。マス目において、X軸方向に延びる各行は、スタンダードセル電源配線3または複数のスタンダードセル電源配線3からなる配線組に対応し、Y軸方向に延びる各列は、ストラップ電源配線11に対応している。まず、左上の座標(1,1)を出発点とし、スイッチセルを配置する。その後、1マス下に下りてからmx(図13ではmx=3)段右に移動し、その座標にスイッチセルを配置する。この動作を繰り返し行う。この結果、図13に示すような配置パターンが得られる。
 図14および図15は上のような手法によって得られたスイッチセルの配置パターンである。図14において、(a)はM=3、(b)はM=5、(c)はM=6、(d)はM=7の場合であり、図15において、(a)はM=8、(b)はM=12、(c)はM=16の場合である。表現方法は図11と同一であり、灰色のマスは、スイッチセルが配置された箇所に対応しており、白いマスには、当該マスに最も近い灰色のマス(すなわち最も近いスイッチセル)までの距離を表す数字が記されている。
 Mの値と、移動量mxの値との関係は次のとおりである。
 M=3:mx=2
 M=4:mx=2,3,2の順
 M=5:mx=2
 M=6:mx=2,3,4,4,3,2の順
 M=7:mx=3
 M=8:mx=3
 M=12:mx=5
 M=16:mx=5
 ここで、白いマスに記された数字の最大値をDmaxとすると、次のようになる。
 M=3:Dmax=1
 M=4:Dmax=1
 M=5:Dmax=1
 M=6:Dmax=2
 M=7:Dmax=2
 M=8:Dmax=2
 M=12:Dmax=3
 M=16:Dmax=4
 この例では、M=4,5,8,12,16では、次の関係が成り立っている。
 Dmax ≦ M/4
 図14および図15に示すスイッチセルの配置パターンを半導体集積回路装置に適用することによって、電源電圧降下を、少ない個数のスイッチセルによって、より効果的に抑制することができる。
 (その他の実施形態)
 上の説明では、ストラップ電源配線11は第5配線層に設けられ、副ストラップ電源配線12,15は第3配線層および第5配線層に設けられるものとしたが、ストラップ電源配線や副ストラップ電源配線が形成される配線層はこれらに限られるものではない。ただし、副ストラップ電源配線は、スタンダードセル電源配線にできるだけ近い配線層に形成することが好ましい。これにより、副ストラップ電源配線とスタンダードセル電源配線との間の配線やビア等の経路における抵抗値が小さくなり、電源電位の低下を抑制することができる。また、上の説明では、スタンダードセル電源配線3は第1配線層に設けられるものとしたが、これに限られるものではなく、例えば複数の配線層に設けてもかまわない。
 また、図2に示したスイッチセル20の構成はあくまでも一例であり、スイッチセル20は、制御信号に応じて、スタンダードセル電源配線3とストラップ電源配線11とを電気的に接続するか否かを切替可能に構成されていればよい。例えば図2において、バッファ24に代えてインバータを用いてもよい。この場合は、制御信号の論理と接続/遮断との関係が上で説明したものと逆になる。あるいは、図2に示した回路構成を2組設けてもかまわない。また、図2の構成例では、スイッチセル20はダブルハイトセルとしたが、シングルハイトセルとしてもよい。
 また、上の説明では、電源電位を供給するスタンダードセル電源配線3に対してスイッチセル20を設けるものとしたが、これに代えて、接地電位を供給する接地電源配線4にスイッチセルを設けて、上で説明したものと同様の構成を適用してもよい。この場合は,副ストラップ電源配線は、接地電源配線4を接続するように設ければよい。
 本開示では、電源遮断技術を用いた半導体集積回路装置について、スイッチセルを増やすことなく、電源供給の強化が可能になるので、例えば、LSIの消費電力削減や面積削減に有効である。
1 スタンダードセル
2 スタンダードセル列
3 スタンダードセル電源配線(電源配線)
11 ストラップ電源配線
12,15 副ストラップ電源配線
14 上層電源配線
20,20a,20b スイッチセル
25,26 スイッチセル
201 第1スイッチセル
202 第2スイッチセル
203 第3スイッチセル

Claims (12)

  1.  第1方向に並べて配置された複数のスタンダードセルをそれぞれ備え、前記第1方向と垂直をなす方向である第2方向に並べて配置された複数のスタンダードセル列と、
     前記第1方向に延びるようにそれぞれ配置されており、前記複数のスタンダードセルに電源を供給する複数の電源配線と、
     前記複数の電源配線の上層において前記第2方向に延びるように配置された、複数のストラップ電源配線と、
     前記複数の電源配線の上層において前記第2方向に延びるように配置され、前記複数の電源配線とそれぞれ接続された、複数の副ストラップ電源配線と、
     前記複数のストラップ電源配線のいずれかと、前記複数の電源配線の中のN本(Nは1以上の整数)からなる配線組との間に設けられており、制御信号に応じて、当該ストラップ電源配線と当該配線組に属する前記電源配線とを電気的に接続するか否かを切替可能に構成された、複数のスイッチセルとを備え、
     前記複数のスイッチセルは、前記複数のストラップ電源配線に対してそれぞれ、M(Mは3以上の整数)個の前記配線組毎に1個ずつ、配置されており、
     前記複数のスイッチセルの前記第2方向における配置位置は、隣り合う前記ストラップ電源配線において互いに異なっており、かつ、前記第1方向における前記ストラップ電源配線のM本ごとに、同一である
    ことを特徴とする半導体集積回路装置。
  2.  請求項1記載の半導体集積回路装置において、
     前記複数の副ストラップ電源配線の上層に、前記第1方向に延びるように配置されており、前記複数の副ストラップ電源配線とそれぞれ接続された、上層電源配線を備えた
    ことを特徴とする半導体集積回路装置。
  3.  請求項1記載の半導体集積回路装置において、
     前記副ストラップ電源配線は、前記ストラップ電源配線よりも下層に設けられている
    ことを特徴とする半導体集積回路装置。
  4.  請求項1記載の半導体集積回路装置において、
     前記ストラップ電源配線は、平面視において、前記スイッチセルと重なりを有している
    ことを特徴とする半導体集積回路装置。
  5.  請求項1記載の半導体集積回路装置において、
     前記副ストラップ電源配線は、平面視において、前記スイッチセルと重なりを有している
    ことを特徴とする半導体集積回路装置。
  6.  請求項1記載の半導体集積回路装置において、
     前記ストラップ電源配線は、その間に前記副ストラップ電源配線が2本以上配置された、2本のストラップ電源配線を含む
    ことを特徴とする半導体集積回路装置。
  7.  請求項1記載の半導体集積回路装置において、
     前記副ストラップ電源配線は、配置された層が互いに異なる、2本の副ストラップ電源配線を含む
    ことを特徴とする半導体集積回路装置。
  8.  請求項1記載の半導体集積回路装置において、
     前記スイッチセルは、トランジスタサイズが互いに異なる、2個のスイッチセルを含む
    ことを特徴とする半導体集積回路装置。
  9.  第1方向に並べて配置された複数のスタンダードセルをそれぞれ備え、前記第1方向と垂直をなす方向である第2方向に並べて配置された複数のスタンダードセル列と、
     前記第1方向に延びるようにそれぞれ配置されており、前記複数のスタンダードセルに電源を供給する複数の電源配線と、
     前記複数の電源配線の上層において前記第2方向に延びるように配置された、複数のストラップ電源配線と、
     前記複数の電源配線の上層において前記第2方向に延びるように配置され、前記複数の電源配線とそれぞれ接続された、複数の副ストラップ電源配線と、
     前記複数のストラップ電源配線のいずれかと、前記複数の電源配線の中のN本(Nは1以上の整数)からなる配線組との間に設けられており、制御信号に応じて、当該ストラップ電源配線と当該配線組に属する前記電源配線とを電気的に接続するか否かを切替可能に構成された、複数のスイッチセルとを備え、
     前記複数のスイッチセルは、前記複数のストラップ電源配線に対してそれぞれ、M(Mは3以上の整数)個の前記配線組毎に1個ずつ、配置されており、
     前記複数のスイッチセルの前記第2方向における配置位置は、隣り合う前記ストラップ電源配線において互いに異なっており、かつ、前記第1方向における前記ストラップ電源配線のM本ごとに、同一であり、
     前記複数のスイッチセルは、前記配線組の1つである第1配線組に対してそれぞれ設けられており、前記第1方向において隣り合う第1および第2スイッチセルと、前記第1配線組と前記第2方向において隣り合う前記配線組に対して設けられた第3スイッチセルとを含み、
     前記第3スイッチセルは、前記第1スイッチセルが設けられた前記ストラップ電源配線と前記第2スイッチセルが設けられた前記ストラップ電源配線と間の中間位置にある、前記ストラップ電源配線に対して、設けられている
    ことを特徴とする半導体集積回路装置。
  10.  請求項9記載の半導体集積回路装置において、
     Mは4である
    ことを特徴とする半導体集積回路装置。
  11.  第1方向に並べて配置された複数のスタンダードセルをそれぞれ備え、前記第1方向と垂直をなす方向である第2方向に並べて配置された複数のスタンダードセル列と、
     前記第1方向に延びるようにそれぞれ配置されており、前記複数のスタンダードセルに電源を供給する複数の電源配線と、
     前記複数の電源配線の上層において前記第2方向に延びるように配置された、複数のストラップ電源配線と、
     前記複数の電源配線の上層において前記第2方向に延びるように配置され、前記複数の電源配線とそれぞれ接続された、複数の副ストラップ電源配線と、
     前記複数のストラップ電源配線のいずれかと、前記複数の電源配線の中のN本(Nは1以上の整数)からなる配線組との間に設けられており、制御信号に応じて、当該ストラップ電源配線と当該配線組に属する前記電源配線とを電気的に接続するか否かを切替可能に構成された、複数のスイッチセルとを備え、
     前記複数のスイッチセルは、前記複数のストラップ電源配線に対してそれぞれ、M(Mは3以上の整数)個の前記配線組毎に1個ずつ、配置されており、
     前記複数のスイッチセルの前記第2方向における配置位置は、隣り合う前記ストラップ電源配線において互いに異なっており、かつ、前記第1方向における前記ストラップ電源配線のM本ごとに、同一であり、
     前記複数のスイッチセルの配置を、X軸方向に延びる各行が前記配線組に対応し、Y軸方向に延びる各列が前記ストラップ電源配線に対応するマス目で表した場合において、
     前記スイッチセルが配置されていない第1マスと、前記スイッチセルが配置されており当該第1マスから最も近い第2マスとの、X座標の差をX、Y座標の差をYとしたとき、
     X+Y≦M/4
    の関係を満たす
    ことを特徴とする半導体集積回路装置。
  12.  請求項11記載の半導体集積回路装置において、
     Mは4,8,12,16のうちのいずれかである
    ことを特徴とする半導体集積回路装置。
PCT/JP2017/019015 2016-06-01 2017-05-22 半導体集積回路装置 WO2017208887A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2018520810A JP6898570B2 (ja) 2016-06-01 2017-05-22 半導体集積回路装置
CN201780029899.1A CN109155284B (zh) 2016-06-01 2017-05-22 半导体集成电路装置
US16/189,900 US10734373B2 (en) 2016-06-01 2018-11-13 Semiconductor integrated circuit device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2016-110402 2016-06-01
JP2016110402 2016-06-01
JP2017077462 2017-04-10
JP2017-077462 2017-04-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/189,900 Continuation US10734373B2 (en) 2016-06-01 2018-11-13 Semiconductor integrated circuit device

Publications (1)

Publication Number Publication Date
WO2017208887A1 true WO2017208887A1 (ja) 2017-12-07

Family

ID=60477489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/019015 WO2017208887A1 (ja) 2016-06-01 2017-05-22 半導体集積回路装置

Country Status (4)

Country Link
US (1) US10734373B2 (ja)
JP (1) JP6898570B2 (ja)
CN (1) CN109155284B (ja)
WO (1) WO2017208887A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531136A (zh) * 2018-05-23 2019-12-03 中芯国际集成电路制造(上海)有限公司 标准单元漏电流的测试电路及测试方法
JP2020155597A (ja) * 2019-03-20 2020-09-24 株式会社東芝 半導体装置
CN113688594A (zh) * 2020-05-18 2021-11-23 元太科技工业股份有限公司 电子装置
WO2022113282A1 (ja) * 2020-11-27 2022-06-02 株式会社ソシオネクスト 半導体集積回路装置の設計方法、半導体集積回路装置及びプログラム
US11563432B2 (en) 2021-01-19 2023-01-24 Socionext Inc. Semiconductor device
WO2024071040A1 (ja) * 2022-09-27 2024-04-04 ヌヴォトンテクノロジージャパン株式会社 半導体集積回路装置

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11011545B2 (en) * 2017-11-14 2021-05-18 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device including standard cells
US10784199B2 (en) * 2019-02-20 2020-09-22 Micron Technology, Inc. Component inter-digitated VIAS and leads
WO2020217396A1 (ja) 2019-04-25 2020-10-29 株式会社ソシオネクスト 半導体装置
CN110752203B (zh) * 2019-10-30 2021-03-23 珠海格力电器股份有限公司 一种低功耗芯片及其制备方法
CN115472195A (zh) * 2021-07-27 2022-12-13 台湾积体电路制造股份有限公司 半导体器件及其操作方法
CN113935273A (zh) * 2021-09-17 2022-01-14 东科半导体(安徽)股份有限公司 一种低功耗模块的控制信号连接方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095787A (ja) * 2005-09-27 2007-04-12 Nec Electronics Corp 半導体集積回路
JP2008277788A (ja) * 2007-04-05 2008-11-13 Nec Electronics Corp 半導体装置
JP2009076501A (ja) * 2007-09-18 2009-04-09 Sony Corp 半導体集積回路
JP2009117625A (ja) * 2007-11-07 2009-05-28 Sony Corp 半導体集積回路
JP2009152453A (ja) * 2007-12-21 2009-07-09 Fujitsu Microelectronics Ltd 電子回路装置及び電子回路装置の制御方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3924471B2 (ja) * 2002-01-30 2007-06-06 株式会社リコー スタンダードセルまたはマクロセルを含む半導体集積回路、およびその配置配線方法
JP4547939B2 (ja) * 2004-03-02 2010-09-22 ソニー株式会社 半導体集積回路およびそのレイアウト設計方法
US7279926B2 (en) * 2004-05-27 2007-10-09 Qualcomm Incoporated Headswitch and footswitch circuitry for power management
US7659746B2 (en) * 2005-02-14 2010-02-09 Qualcomm, Incorporated Distributed supply current switch circuits for enabling individual power domains
JP5358913B2 (ja) * 2007-09-07 2013-12-04 日本電気株式会社 半導体集積回路およびその設計方法
JP4535136B2 (ja) * 2008-01-17 2010-09-01 ソニー株式会社 半導体集積回路、および、スイッチの配置配線方法
JP5398257B2 (ja) * 2008-12-25 2014-01-29 ルネサスエレクトロニクス株式会社 半導体装置及びそのスイッチトランジスタの制御方法
US8368226B2 (en) * 2009-12-23 2013-02-05 Oracle International Corporation Die power structure
JP2011159810A (ja) * 2010-02-01 2011-08-18 Renesas Electronics Corp 半導体集積回路及びその制御方法
JP5364023B2 (ja) * 2010-03-29 2013-12-11 パナソニック株式会社 半導体装置
JP2011243794A (ja) * 2010-05-19 2011-12-01 Renesas Electronics Corp 半導体装置、電源スイッチの制御方法及びその設計方法
JP5404678B2 (ja) * 2011-03-10 2014-02-05 株式会社東芝 電源制御装置
JP5819218B2 (ja) * 2012-02-23 2015-11-18 ルネサスエレクトロニクス株式会社 半導体装置
JP2016035995A (ja) * 2014-08-04 2016-03-17 株式会社東芝 半導体集積回路装置
US10394299B2 (en) * 2016-05-23 2019-08-27 Qualcomm Incorporated Systems and methods to separate power domains in a processing device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007095787A (ja) * 2005-09-27 2007-04-12 Nec Electronics Corp 半導体集積回路
JP2008277788A (ja) * 2007-04-05 2008-11-13 Nec Electronics Corp 半導体装置
JP2009076501A (ja) * 2007-09-18 2009-04-09 Sony Corp 半導体集積回路
JP2009117625A (ja) * 2007-11-07 2009-05-28 Sony Corp 半導体集積回路
JP2009152453A (ja) * 2007-12-21 2009-07-09 Fujitsu Microelectronics Ltd 電子回路装置及び電子回路装置の制御方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110531136A (zh) * 2018-05-23 2019-12-03 中芯国际集成电路制造(上海)有限公司 标准单元漏电流的测试电路及测试方法
CN110531136B (zh) * 2018-05-23 2021-11-12 中芯国际集成电路制造(上海)有限公司 标准单元漏电流的测试电路及测试方法
JP2020155597A (ja) * 2019-03-20 2020-09-24 株式会社東芝 半導体装置
JP7080845B2 (ja) 2019-03-20 2022-06-06 株式会社東芝 半導体装置
CN113688594A (zh) * 2020-05-18 2021-11-23 元太科技工业股份有限公司 电子装置
WO2022113282A1 (ja) * 2020-11-27 2022-06-02 株式会社ソシオネクスト 半導体集積回路装置の設計方法、半導体集積回路装置及びプログラム
US11563432B2 (en) 2021-01-19 2023-01-24 Socionext Inc. Semiconductor device
US11799471B2 (en) 2021-01-19 2023-10-24 Socionext Inc. Semiconductor device
WO2024071040A1 (ja) * 2022-09-27 2024-04-04 ヌヴォトンテクノロジージャパン株式会社 半導体集積回路装置

Also Published As

Publication number Publication date
JP6898570B2 (ja) 2021-07-07
US10734373B2 (en) 2020-08-04
CN109155284A (zh) 2019-01-04
US20190081029A1 (en) 2019-03-14
JPWO2017208887A1 (ja) 2019-03-28
CN109155284B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2017208887A1 (ja) 半導体集積回路装置
WO2017090389A1 (ja) 半導体集積回路装置
US7274210B2 (en) Semiconductor integrated circuit
KR100433199B1 (ko) 입력/출력 셀 배치방법 및 반도체 장치
US10693457B2 (en) Semiconductor integrated circuit device
US10748933B2 (en) Semiconductor device
US20220262787A1 (en) Semiconductor integrated circuit device
JP5896682B2 (ja) 半導体集積回路装置
US20100308667A1 (en) Arrangement of power supply cells within cell-base integrated circuit
JP2019009369A (ja) 半導体装置及びその製造方法
JP2009164278A (ja) Mosトランジスタ及びこれを用いた半導体集積回路装置
JP5029272B2 (ja) 半導体集積回路
JP2006269604A (ja) ハードマクロの電源端子構造
JP7323847B2 (ja) 半導体集積回路装置
WO2024047820A1 (ja) 半導体集積回路装置
US10417368B2 (en) Semiconductor device and layout design method thereof
JP2009260147A (ja) 半導体集積回路装置
JP2010225782A (ja) 半導体集積回路装置
EP0495990A1 (en) Semiconductor device
WO2014010088A1 (ja) 半導体集積回路
JP2006147610A (ja) I/oセル及び半導体装置
JP6118923B2 (ja) 半導体集積回路装置
JP4229207B2 (ja) 半導体集積回路
JP2011009388A (ja) 半導体集積回路
JP2006135193A (ja) パストランジスタ論理回路のレイアウト及びパストランジスタ論理回路を備えた半導体装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018520810

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17806444

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17806444

Country of ref document: EP

Kind code of ref document: A1