WO2017206633A1 - 一种高倍率型钴酸锂正极材料及其制备方法 - Google Patents

一种高倍率型钴酸锂正极材料及其制备方法 Download PDF

Info

Publication number
WO2017206633A1
WO2017206633A1 PCT/CN2017/082231 CN2017082231W WO2017206633A1 WO 2017206633 A1 WO2017206633 A1 WO 2017206633A1 CN 2017082231 W CN2017082231 W CN 2017082231W WO 2017206633 A1 WO2017206633 A1 WO 2017206633A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium cobaltate
lithium
cobalt oxide
cathode material
solution
Prior art date
Application number
PCT/CN2017/082231
Other languages
English (en)
French (fr)
Inventor
董虹
胡旭尧
蒋湘康
谭欣欣
李旭
Original Assignee
湖南杉杉能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 湖南杉杉能源科技股份有限公司 filed Critical 湖南杉杉能源科技股份有限公司
Priority to EP17805578.6A priority Critical patent/EP3467915B1/en
Priority to US16/304,309 priority patent/US10714749B2/en
Priority to KR1020187035988A priority patent/KR102067590B1/ko
Priority to JP2019516041A priority patent/JP6716788B2/ja
Publication of WO2017206633A1 publication Critical patent/WO2017206633A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/005Alkali titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G33/00Compounds of niobium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/42Cobaltates containing alkali metals, e.g. LiCoO2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G51/00Compounds of cobalt
    • C01G51/40Cobaltates
    • C01G51/66Cobaltates containing alkaline earth metals, e.g. SrCoO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • C01P2004/82Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases
    • C01P2004/84Particles consisting of a mixture of two or more inorganic phases two phases having the same anion, e.g. both oxidic phases one phase coated with the other
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to a lithium cobaltate cathode material and a preparation method thereof, in particular to a high-rate lithium cobaltate cathode material and a preparation method thereof.
  • Lithium-ion batteries are widely used in mobile/IT equipment and energy storage due to their high power density, high energy and long life.
  • the lithium-ion battery industry is developing rapidly. With the development of electronic products, higher requirements have also been placed on lithium-ion batteries, especially considering its light weight, high current discharge and safety performance.
  • Lithium cobaltate cathode material has high cycle capacity and compact density, excellent cycle performance, especially high discharge rate and high platform discharge, so it is widely used as electronic cigarettes, electronic models, toys, wireless power tools and small The power source of the appliance.
  • a lithium ion battery consists of a positive electrode, a negative electrode, an electrolyte, and a separator that prevents short circuit between the positive and negative plates.
  • Li + intercalates and extracts the positive and negative electrode materials for energy exchange.
  • Lithium cobaltate cathode material stores lithium in the bulk phase. Li + needs to diffuse from the surface of the cathode material through the cathode material phase to the inside of the cathode material. The lithium ion diffusion path is long, resulting in excessive internal resistance and low discharge capacity and platform.
  • the discharge rate is increased from the early 10C discharge to 20-30C, and some special requirements are even increased to 50-60C discharge.
  • the charge and discharge rate of the lithium ion battery is related to the positive and negative materials of the battery and the preparation process.
  • the lithium cobaltate cathode material prepared by the prior art is difficult to satisfy the rate performance and cycle performance of the above battery, and in particular, it is difficult to meet the rate performance and cycle performance at 50-60 C discharge, so it is necessary to develop a high-rate lithium cobaltate cathode. Material, this material not only has better capacity and platform at high rate discharge, but also maintains excellent cycle performance to meet the needs of battery manufacturers.
  • the technical problem to be solved by the present invention is to provide a high-magnification type lithium cobaltate cathode material by overcoming the deficiencies and defects mentioned in the above background art, and to provide a quick, simple and effective preparation for improving product rate performance. method.
  • the technical solution proposed by the present invention is a high-rate lithium cobaltate cathode material, which is mainly composed of lithium cobaltate, and the lithium cobaltate cathode material comprises a fast ion conductor Li ⁇ M′ ⁇ O.
  • the lithium cobaltate is melted in a primary particle form with the fast ion conductor Li ⁇ M′ ⁇ O ⁇ to form secondary particles; and lithium cobaltate is embedded in the aforementioned fast In the multi-channel network formed by the ionic conductor Li ⁇ M′ ⁇ O ⁇ ;
  • the element M′ in Li ⁇ M′ ⁇ O ⁇ is Ti, Zr, Y, V, Nb, Mo, Sn, In, La, W One or more of them, 1 ⁇ ⁇ ⁇ 4, 1 ⁇ ⁇ ⁇ 5, 2 ⁇ ⁇ ⁇ 12.
  • the lithium cobaltate cathode material is further doped with an element M, and the lithium cobaltate cathode material is chemically synthesized by Li 1+y Co 1-x M x O 2 ⁇ zLi ⁇ M′ ⁇ O ⁇ represents, where 0 ⁇ x ⁇ 0.1, -0.01 ⁇ y ⁇ 0.01, 0.005 ⁇ z ⁇ 0.01; wherein the element M is Mg, Al, Si, Sc, Ni, Mn, Ga, One or more of Ge.
  • the above-mentioned high-rate lithium cobaltate cathode material of the present invention is characterized by a multi-channel network structure formed by a fast ion conductor Li ⁇ M′ ⁇ O ⁇ and formed into a single phase, which is embedded in a lithium cobaltate phase.
  • a multi-dimensional channel two-phase structure interconnecting the surfaces.
  • the present invention also provides a method for preparing the above high-rate lithium cobaltate cathode material, wherein the lithium cobaltate cathode material mainly uses cobalt oxide and lithium impregnated with hydroxide of M′.
  • the source, the additive containing the doping element M (optional) is uniformly mixed (mixed according to the dry ratio of Li 1+y Co 1-x M x O 2 ⁇ zLi ⁇ M′ ⁇ O ⁇ ), and placed at a high temperature It is prepared by a sintering reaction in an air atmosphere furnace.
  • the cobalt oxide impregnated with the hydroxide of M' is mainly prepared by the following steps:
  • the hydroxide of M' is formed by hydrolysis of an organic compound containing M', and the hydroxide of M' can be uniformly embedded in the porous cobalt oxide by a hydrolysis method, thereby obtaining
  • the high-rate lithium cobalt oxide cathode material provides the premise and basis.
  • the M'-containing organic compound is an alkoxide of M', an alkyl compound of M', a carbonyl compound of M', a carboxyl group of M', and a preferred method of preparing the high-magnification lithium cobaltate cathode material.
  • One or more of the compounds; the porous cobalt oxide is prepared by pre-sintering the precursor, the precursor being CoCO 3 ⁇ aH 2 O or CoC 2 O 4 ⁇ aH 2 O, wherein 0 ⁇ a ⁇ 9.
  • the porous cobalt oxide has an average pore size distribution of from 100 nm to 500 nm and a porosity of from 0.5% to 5%.
  • porous cobalt oxide is prepared by the following steps:
  • the cobalt salt solution is at least at least CoCl 2 ⁇ bH 2 O, CoSO 4 ⁇ bH 2 O, Co(NO 3 ) 2 ⁇ bH 2 O a solution formed after dissolving in water, wherein 0 ⁇ b ⁇ 6; the concentration of Co 2+ in the cobalt salt solution is controlled to be 70-200 g/L; the complexing agent solution is ammonia water or an aminocarboxylate solution The precipitant solution carbonate solution, oxalic acid or oxalate solution.
  • the chemical formula of the synthesized precursor when a carbonate solution is selected as the precipitant solution, the chemical formula of the synthesized precursor is CoCO 3 ⁇ aH 2 O, and the carbonate solution is sodium carbonate, potassium carbonate, ammonium carbonate, hydrogen carbonate.
  • the synthesized chemical formula of the precursor when the oxalic acid or oxalate solution is selected as the precipitant solution, the synthesized chemical formula of the precursor is CoC 2 O 4 ⁇ aH 2 O, and the oxalate solution is oxalic acid One or more of sodium, potassium oxalate and ammonium oxalate solutions.
  • the aging time is 4-8 hours
  • the heating mechanism of the pre-sintering is: sintering at 300 ° C to 500 ° C for 2 to 5 hours, after Sintering at 700 ° C ⁇ 800 ° C for 2 ⁇ 5h.
  • the lithium source is one or more of lithium carbonate, lithium hydroxide or lithium oxide (Li 2 CO 3 , LiOH, Li 2 O).
  • the additive containing the doping element M is at least one of an oxide, a hydroxide, a carboxy oxide, a carbonate or a basic carbonate of M;
  • the above technical solution of the present invention is mainly based on the following principle: firstly, cobalt oxide impregnated with hydroxide of M' is used as a raw material, and in the sintering process of synthesis of a high-rate lithium cobaltate positive electrode material, since the ion radius of M' is far It is much larger than Co 3+ and is not easy to be dissolved into the lithium cobaltate crystal structure. Instead, it reacts with lithium ions to form a multi-channel network structure Li ⁇ M′ ⁇ O ⁇ phase. The lithium cobalt oxide primary particles are embedded in the fast ion.
  • the multi-channel network structure fast ion conductor Li ⁇ M′ ⁇ O ⁇ phase forms a multi-dimensional lithium ion transmission channel
  • charging process Lithium ions are separated from the bulk phase and diffused to the surface of the particles through the channel, through the conductive agent, and finally diffused into the electrolyte.
  • the discharge process is the diffusion of lithium ions from the electrolyte to the surface of the secondary particles.
  • the channel network structure fast ion transport channel is transported to the surface of the primary particles and finally embedded in the lithium cobaltate bulk phase.
  • the characteristics of the specific raw materials selected in the present invention determine the characteristics of the finally obtained lithium cobaltate cathode material of the present invention, and also determine the high rate which it has.
  • the present invention particularly provides an embodiment for preparing the foregoing raw materials by using porous cobalt oxide and an organic compound containing M'; the organic compound containing M' is sufficiently dissolved in anhydrous ethanol, and after adding the aqueous alcohol solution, The water promotes hydrolysis of the metal organic compound to form a hydroxide of M', and is sufficiently and uniformly filled into the gaps and pores inside the porous cobalt oxide particles to form a continuous film on the surface of the impregnated cobalt oxide particles; Improvements, the present invention also provides a method for preparing porous cobalt oxide, which is prepared by a specific process condition to obtain a porous porous cobalt oxide material for subsequent hydrolysis, impregnation and continuous film formation.
  • the additive containing M' is added in the synthesis step of lithium cobaltate, but since the ionic radius of M' is much larger than Co 3+ , it is not easy to be dissolved into the lithium cobaltate crystal structure, but A layer of fast ion conductor film is formed by enrichment on the surface of the particles.
  • the present invention has an advantage in that the present invention provides a porous cobalt oxide impregnation method for synthesizing lithium cobalt oxide using porous cobalt oxide as a cobalt source, and lithium cobaltate particles containing a multi-channel network structure of Li ⁇ M' ⁇ O ⁇ phase, in the process of charge and discharge of lithium ion battery, this phase can be used as a fast channel for lithium ion transport, which greatly promotes the lithium ion conductivity of lithium cobaltate cathode material and improves the rate performance of the material.
  • FIG. 1 is a schematic view showing a lithium ion transport path during charging of a lithium cobaltate particle in the present invention, and the discharge process is reversed.
  • Fig. 2 is a SEM photograph of the porous cobalt oxide before impregnation in Example 1 of the present invention.
  • Fig. 3 is a SEM photograph of the porous cobalt oxide after immersion in Example 1 of the present invention.
  • Example 4 is a SEM photograph of a lithium cobaltate cathode material LCO-1 in Example 1 of the present invention.
  • the chemical formula of the lithium cobaltate cathode material of the present embodiment can be represented by Li 0.99 CoO 2 ⁇ 0.005Li 2 TiO 3 and has a layered structure.
  • the cobalt carbonate obtained in the above step (3) is pre-sintered at 400 ° C for 3 h, and then sintered at 750 ° C for 3 h to obtain porous cobalt oxide (having a particle size of 5.0 ⁇ m), numbered as PC-1 (see FIG. 2). , the average pore size is 100 nm, and the porosity is 0.5%;
  • the mixture obtained in the above step (6) is sintered in an air atmosphere furnace at a sintering temperature of 950 ° C and a sintering time of 10 h; after cooling, the universal pulverizer is pulverized for 20 s, and the controlled particle size is 5.5 to 6.0 ⁇ m to obtain a high magnification.
  • Lithium cobaltate cathode material (numbered LCO-1, see Figure 4).
  • the chemical formula of the lithium cobaltate cathode material of the present embodiment can be represented by Li 1.00 Co 0.99 Mg 0.005 Al 0.005 O 2 ⁇ 0.005 Li 2 TiO 3 and has a layered structure.
  • steps (1)-(5) of the present embodiment are the same as those of the embodiment 1;
  • the mixture obtained in the above step (6) is sintered in an air atmosphere furnace at a sintering temperature of 1000 ° C and a sintering time of 10 h; after cooling, the universal pulverizer is pulverized for 20 s, and the controlled particle size is 5.5 to 6.0 ⁇ m to obtain a high magnification.
  • Lithium cobaltate cathode material (numbered LCO-2).
  • the preparation method of the lithium positive electrode material specifically includes the following steps:
  • the ionic conductor LiNbO 3 is melted into one body and forms secondary particles; lithium cobaltate is embedded in the multi-channel network formed by the aforementioned fast ion conductor LiNbO 3 .
  • the chemical formula of the lithium cobaltate cathode material of the present embodiment can be represented by Li 1.01 CoO 2 ⁇ 0.01LiNbO 3 and has a layered structure.
  • the cobalt oxalate obtained in the above step (3) is sintered at 300 ° C for 2 h, and then sintered at 700 ° C for 5 h to obtain porous cobalt oxide (particle size of 6.5 ⁇ m), numbered PC-3, and the average pore size is 500 nm. Porosity is 5%;
  • the mixture obtained in the above step (6) is sintered in an air atmosphere furnace at a sintering temperature of 900 ° C and a sintering time of 10 h; after cooling, the universal pulverizer is pulverized for 20 s, and the particle size is controlled to be 6.5 to 7.0 ⁇ m to obtain a high magnification.
  • the chemical formula of the lithium cobaltate cathode material of the present embodiment can be represented by Li 1.00 CoO 2 ⁇ 0.008Li 2 WO 4 and has a layered structure.
  • the cobalt oxalate obtained in the above step (3) is sintered at 500 ° C for 3 h, and then sintered at 800 ° C for 5 h to obtain porous cobalt oxide (particle size of 6.5 ⁇ m), numbered PC-5, pore size of 200 nm, pores.
  • the rate is 1%;
  • the mixture obtained in the above step (6) is sintered in an air atmosphere furnace at a sintering temperature of 1000 ° C and a sintering time of 10 h; after cooling, the universal pulverizer is pulverized for 20 s, and the controlled particle size is 6.5 to 7.0 ⁇ m to obtain a high magnification.
  • Table 1 shows the rate performance of the LCO-0/1/2/3/4 tested at different voltages.
  • FIG. 1 is a schematic view showing the transport of lithium ions during charging of the lithium cobaltate particles of the present invention.
  • the solid line represents the lithium ion transport path in the positive electrode material particles prepared in the examples of the present invention
  • the broken line represents the lithium ion transport path in the positive electrode material particles of the comparative examples of the examples.
  • butyl titanate is hydrolyzed to form Ti(OH) 4 , filling gaps and micropores inside the porous cobalt oxide particles, and forming a continuous film on the surface of the impregnated particles.
  • the ionic radius of Ti 4+ is much larger than that of Co 3+ , and it is not easy to be dissolved into the lithium cobalt oxide crystal structure, but reacts with lithium ions to form a multi-channel network structure Li 2 TiO.
  • the 3- phase, lithium cobalt oxide primary particles are embedded in a multi-channel network of fast ion conductors and melted together to form secondary particles.
  • the LCO-1/2/3/4 prepared by using butyl titanate-impregnated cobalt oxide at 4.2V test the capacity retention rate and platform at 50C rate were significantly higher than the comparative example.
  • LCO-0 This indicates that the presence of the LCO-1/2/3/4 multi-channel network structure fast ion conductor greatly increases the lithium ion transmission rate and effectively increases the discharge capacity and platform of the material.
  • LCO-2 was tested at 4.35V, the capacity retention rate and platform at 50C rate were significantly higher than those in the example.
  • LCO-1, LCO-3 and LCO-4 This is because for the 4.35V high-voltage material, Mg and Al doping can effectively improve the structural stability of the material, and thus the rate performance at high voltage is excellent.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

一种高倍率型钴酸锂正极材料,其包含有快离子导体LiαM'γOβ形成的多通道网状结构,其主要由钴酸锂组成,钴酸锂是以一次颗粒形式与快离子导体LiαM'γOβ熔融为一体并形成二次颗粒;且钴酸锂包埋在快离子导体LiαM'γOβ形成的多通道网状结构中;LiαM'γOβ中的元素M'为Ti、Zr、Y、V、Nb、Mo、Sn、In、La、W中的一种或多种,1≤α≤4,1≤γ≤5,2≤β≤12。该钴酸锂正极材料主要是采用浸渍有M'的氢氧化物的氧化钴与锂源混合均匀后,在高温下置于空气气氛炉中通过烧结反应制备而成本发明的产品在锂离子电池充放电过程中,可极大地促进钴酸锂正极材料的锂离子电导率,提升材料的倍率性能。

Description

一种高倍率型钴酸锂正极材料及其制备方法 技术领域
本发明涉及一种钴酸锂正极材料及其制备方法,尤其是涉及一种高倍率型钴酸锂正极材料及其制备方法。
背景技术
锂离子电池因功率密度、能量高、寿命长被广泛应用于移动/IT设备以及储能领域。锂离子电池行业发展迅速,随着电子产品的发展,对锂离子电池也提出了更高的要求,特别要考虑其轻薄、大电流放电及安全性能。
电子烟、电子模型(车模、船模、航模等)、玩具、无线电动工具市场展现出蓬勃的发展势头,需要充电时间更短、放电电流更大、安全性能更高的锂离子电池,许多小型电器也要求能够高倍率放电。因此,开发一种能用于上述大功率电子器具的高倍率锂离子电池显得极为重要。钴酸锂正极材料因克容量和压实密度高,循环性能优异,特别是高倍率放电时放电容量和平台均较高,因而被广泛用作电子烟、电子模型、玩具、无线电动工具和小型电器的动力源。
锂离子电池由正极、负极、电解液以及介于正负极板间防止其短路的隔膜组成。锂电池充放电过程中,Li+嵌入和脱出正负电极材料进行能量交换。钴酸锂正极材料将锂存储在体相中,Li+需要从正极材料表面经过正极材料体相扩散到正极材料内部,锂离子扩散路径长,导致内阻过大,放电容量和平台较低。
另外,由于功率型锂电池对功率密度的要求不断提高,放电倍率由早期的10C放电增至20~30C持续放电,一些特殊需求甚至提高至50~60C放电。而锂离子电池的充放电倍率与电池的正负极材料和制备工艺有关。现有技术制备的钴酸锂正极材料很难满足上述电池的倍率性能和循环性能,特别是难以满足50~60C放电时的倍率性能和循环性能,因此需要开发一种高倍率型钴酸锂正极材料,该种材料在高倍率放电时不仅容量和平台较好,而且还能保持优异的循环性能,以满足电池厂商的需要。
发明内容
本发明所要解决的技术问题是,克服以上背景技术中提到的不足和缺陷,提供一种高倍率型钴酸锂正极材料,还相应提供一种快速、简便、可有效提升产品倍率性能的制备方法。
为解决上述技术问题,本发明提出的技术方案为一种高倍率型钴酸锂正极材料,其主要由钴酸锂组成,所述钴酸锂正极材料包含有快离子导体LiαM′γOβ形成的多通道网状结构,所 述钴酸锂是以一次颗粒形式与所述快离子导体LiαM′γOβ熔融为一体并形成二次颗粒;且钴酸锂包埋在前述快离子导体LiαM′γOβ形成的多通道网状结构中;LiαM′γOβ中的元素M′为Ti、Zr、Y、V、Nb、Mo、Sn、In、La、W中的一种或多种,1≤α≤4,1≤γ≤5,2≤β≤12。
上述的高倍率型钴酸锂正极材料,优选的,所述钴酸锂正极材料中还掺杂有元素M,且该钴酸锂正极材料用化学通式Li1+yCo1-xMxO2·zLiαM′γOβ表示,其中0≤x≤0.1,-0.01≤y≤0.01,0.005≤z≤0.01;其中元素M为Mg、Al、Si、Sc、Ni、Mn、Ga、Ge中的一种或多种。
上述本发明的高倍率型钴酸锂正极材料的突出特点表现在:快离子导体LiαM′γOβ形成的多通道网状结构并单独成为一相,包埋在钴酸锂相中形成表面内部互通的多维通道两相结构。
作为一个总的技术构思,本发明还提供一种上述的高倍率型钴酸锂正极材料的制备方法,所述钴酸锂正极材料主要是采用浸渍有M′的氢氧化物的氧化钴与锂源、含掺杂元素M的添加剂(可选)混合均匀后(按照Li1+yCo1-xMxO2·zLiαM′γOβ的配比干法混合),在高温下置于空气气氛炉中通过烧结反应制备而成。
上述的高倍率型钴酸锂正极材料的制备方法,优选的,所述浸渍有M′的氢氧化物的氧化钴主要是通过以下步骤制备得到:
将含M′的有机化合物溶解于无水乙醇中,采用分散机进行溶解和分散,充分搅拌(0.5~1h)均匀后加入多孔氧化钴(注意区别于常规氧化钴),搅拌0.5~1.5h,再加入乙醇水溶液,醇与水的体积比为5~20,继续搅拌2~5h,抽滤,将滤饼置于烘箱(优选50℃~70℃)中干燥,得到浸渍有M′的氢氧化物的氧化钴。在本发明优选的操作中,M′的氢氧化物是通过含M′的有机化合物水解后形成,采用水解法可以使M′的氢氧化物均匀地包埋于多孔氧化钴中,进而为得到高倍率型的钴酸锂正极材料提供前提和基础。
上述的高倍率型钴酸锂正极材料的制备方法,更优选的,所述含M′的有机化合物为M′的醇盐、M′的烷基化合物、M′的羰基化合物、M′的羧基化合物中的一种或多种;所述多孔氧化钴是通过对前驱物进行预烧结后制备得到,所述前驱物为CoCO3·aH2O或CoC2O4·aH2O,其中0≤a≤9。所述多孔氧化钴的平均孔径分布在100nm~500nm,孔隙率为0.5%~5%。
上述的高倍率型钴酸锂正极材料的制备方法,更优选的,所述多孔氧化钴主要是通过以下步骤制备得到:
在反应釜中注入少量沉淀剂溶液,控制pH在6~14,在强力搅拌作用和惰性气体保护下,采用并流的方法向反应釜中同时注入钴盐溶液、络合剂溶液和沉淀剂溶液使其反应,搅拌反应过程中将pH持续控制在6~14,反应过程中控制反应釜的温度在0℃~85℃;待钴盐溶液全部加入后,陈化,过滤得到滤饼,并于烘箱(100℃以上)中干燥(3~5h)得到前驱物;将所述前驱物置于空气气氛炉中进行预烧结,烧结出炉后过筛得到多孔氧化钴。
上述的高倍率型钴酸锂正极材料的制备方法,优选的,所述钴盐溶液为CoCl2·bH2O、CoSO4·bH2O、Co(NO3)2·bH2O中的至少一种溶于水后形成的溶液,其中0≤b≤6;所述钴盐溶液中Co2+的浓度控制在70~200g/L;所述络合剂溶液为氨水或者氨基羧酸盐溶液;所述沉淀剂溶液碳酸盐溶液、草酸或草酸盐溶液。更优选的:当选用碳酸盐溶液作为沉淀剂溶液时,合成的所述前驱物的化学式为CoCO3·aH2O,所述碳酸盐溶液为碳酸钠、碳酸钾、碳酸铵、碳酸氢铵溶液中的一种或多种;当选用草酸或草酸盐溶液作为沉淀剂溶液时,合成的所述前驱物的化学式为CoC2O4·aH2O,所述草酸盐溶液为草酸钠、草酸钾和草酸铵溶液中的一种或多种。
上述的高倍率型钴酸锂正极材料的制备方法,优选的,所述陈化的时间为4~8h,所述预烧结的升温机制为:先于300℃~500℃烧结2~5h,后于700℃~800℃下烧结2~5h。
上述的高倍率型钴酸锂正极材料的制备方法,优选的,所述锂源为碳酸锂、氢氧化锂或氧化锂(Li2CO3、LiOH、Li2O)中的一种或多种;所述含掺杂元素M的添加剂为M的氧化物、氢氧化物、羧基氧化物、碳酸盐或碱式碳酸盐中的至少一种;
上述本发明的技术方案主要基于以下原理:首先是采用浸渍有M′的氢氧化物的氧化钴为原料,在高倍率型钴酸锂正极材料合成的烧结过程中,由于M′的离子半径远远大于Co3+,不易于固溶进入钴酸锂晶体结构中,而是与锂离子反应形成一个多通道网状结构LiαM′γOβ相,钴酸锂一次颗粒包埋在快离子导体多通道网状结构中,并与之熔融为一体形成二次颗粒(参见图1),多通道网状结构快离子导体LiαM′γOβ相形成多维的锂离子传输通道,充电过程中,锂离子从体相脱离经此通道扩散至颗粒的表面,经过导电剂,最后扩散进入电解液中,放电过程则是锂离子从电解液中扩散至二次颗粒的表面,通过颗粒的多通道网状结构快离子传输通道传输至一次颗粒的表面,最后嵌入钴酸锂体相中。可见,本发明选用的特定原料的特性决定了本发明最终制得的钴酸锂正极材料的特性,也决定了其所具有的高倍率性。而作为进一步的改进,本发明特别提供了以多孔氧化钴和含M′的有机化合物制备前述原料的实施方案;使含M′的有机化合物充分溶解在无水乙醇中,加入的醇水溶液后,水促使金属有机化合物水解,形成M′的氢氧化物,并充分、均匀地填充到多孔氧化钴颗粒内部的间隙和微孔中,在被浸渍的氧化钴颗粒表面形成连续膜;作为再进一步的改进,本发明还提供了一种多孔氧化钴的制备方法,通过特定的工艺条件制备得到了一种疏松多孔的氧化钴材料,以便于进行后续的水解、浸渍和连续成膜。
现有技术中多是将含有M′的添加剂在钴酸锂的合成步骤中加入,但由于M′的离子半径远远大于Co3+,不易于固溶进入钴酸锂晶体结构中,而是在颗粒表面富集形成一层快离子导体膜。与现有技术相比,本发明的优点在于:本发明提供了一种多孔氧化钴浸渍法,以多孔 氧化钴为钴源合成钴酸锂,钴酸锂颗粒含有多通道网状结构的LiαM′γOβ相,在锂离子电池充放电过程中,该相可以作为锂离子传输的快速通道,极大地促进了钴酸锂正极材料的锂离子电导率,提升了材料的倍率性能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明中钴酸锂颗粒在充电过程中锂离子传输路径示意图,放电过程则相反。
图2为本发明实施例1中多孔氧化钴浸渍前的SEM照片。
图3为本发明实施例1中多孔氧化钴浸渍后的SEM照片。
图4为本发明实施例1中钴酸锂正极材料LCO-1的SEM照片。
具体实施方式
为了便于理解本发明,下文将结合说明书附图和较佳的实施例对本发明作更全面、细致地描述,但本发明的保护范围并不限于以下具体的实施例。
除非另有定义,下文中所使用的所有专业术语与本领域技术人员通常理解的含义相同。本文中所使用的专业术语只是为了描述具体实施例的目的,并不是旨在限制本发明的保护范围。
除非另有特别说明,本发明中用到的各种原材料、试剂、仪器和设备等均可通过市场购买得到或者可通过现有方法制备得到。
实施例1:
一种高倍率型钴酸锂正极材料,其主要由钴酸锂组成,钴酸锂正极材料包含有快离子导体Li2TiO3形成的多通道网状结构,且钴酸锂是以一次颗粒形式与快离子导体Li2TiO3熔融为一体并形成二次颗粒;钴酸锂包埋在前述快离子导体Li2TiO3形成的多通道网状结构中。本实施例的钴酸锂正极材料的化学通式可用Li0.99CoO2·0.005Li2TiO3表示,具有层状结构。
本实施例上述的高倍率型钴酸锂正极材料的制备方法,具体包括以下步骤:
(1)配制CoCl2溶液,溶液中Co2+的浓度为110g/L;选用浓氨水和蒸馏水按体积比1∶10配成络合剂氨水溶液;沉淀剂溶液选用1.2mol/L的碳酸氢钠溶液;
(2)在25L反应釜中注入其容积1/3的沉淀剂溶液,溶液pH控制在6.0~8.0;在强力搅拌作用和惰性气体保护下,采用并流的方法继续向反应釜中同时注入上述的CoCl2溶液、氨水溶液和碳酸氢钠溶液使其反应,搅拌反应过程中将pH控制在6.0~8.0,反应釜温度控制 在70℃~80℃;待CoCl2溶液全部注入后,陈化4~8h,过滤,得到滤饼;
(3)将上述步骤(2)得到的滤饼在120℃烘箱中干燥3h,得到碳酸钴(粒度为5.5μm);
(4)将上述步骤(3)得到的碳酸钴在400℃下预烧结3h,后于750℃下烧结3h,得到多孔氧化钴(粒度为5.0μm),编号为PC-1(参见图2),平均孔径大小为100nm,孔隙率为0.5%;
(5)将42g钛酸丁酯溶液溶于500g无水乙醇中,搅拌0.5h,在分散机的强力搅拌下加入3000g步骤(4)制得的多孔氧化钴PC-1,搅拌0.5h,再加入乙醇水溶液,乙醇与水的体积比为6,继续搅拌3h,抽滤,将滤饼置于烘箱中干燥,得到浸渍有Ti(OH)4的氧化钴,编号为PC-2(参见图3);
(6)将920g碳酸锂和上述步骤(5)得到的氧化钴PC-2 2000g干法混合均匀,得到混合物;
(7)将上述步骤(6)所得的混合物于空气气氛炉中进行烧结,烧结温度为950℃,烧结时间为10h;冷却后万能粉碎机粉碎20s,控制粒度为5.5~6.0μm,得到高倍率型钴酸锂正极材料(编号为LCO-1,参见图4)。
实施例2:
一种高倍率型钴酸锂正极材料,其主要由钴酸锂组成,钴酸锂正极材料包含有快离子导体Li2TiO3形成的多通道网状结构,且钴酸锂是以一次颗粒形式与快离子导体Li2TiO3熔融为一体并形成二次颗粒;钴酸锂包埋在前述快离子导体Li2TiO3形成的多通道网状结构中。本实施例的钴酸锂正极材料的化学通式可用Li1.00Co0.99Mg0.005Al0.005O2·0.005Li2TiO3表示,具有层状结构。
本实施例上述的高倍率型钴酸锂正极材料的制备方法,具体包括以下步骤:
(1)-(5):本实施例的步骤(1)-(5)与实施例1相同;
(6)将936g碳酸锂、上述实施例1得到的氧化钴PC-2 2000g、5g氧化镁和6.5g氧化铝干法混合均匀,得到混合物;
(7)将上述步骤(6)所得的混合物于空气气氛炉中进行烧结,烧结温度为1000℃,烧结时间为10h;冷却后万能粉碎机粉碎20s,控制粒度为5.5~6.0μm,得到高倍率型钴酸锂正极材料(编号为LCO-2)。
对比例1:
一种钴酸锂正极材料,其化学通式为Li0.99CoO2·0.005Li2TiO3,具有层状结构,其中Li2TiO3存在形式主要为颗粒表面的富集;本对比例的钴酸锂正极材料的制备方法,具体包括以下步骤:
(1)将920g碳酸锂、2000g PC-1(实施例1中合成)和10g二氧化钛干法混合均匀,得到混合物;
(2)将上述步骤(1)所得的混合物于空气气氛炉中进行烧结,烧结温度为950℃,烧结时间为10h;冷却后万能粉碎机粉碎20s,控制粒度为5.5~6.0μm,得到钴酸锂正极材料(编号为LCO-0)。
实施例3:
一种高倍率型钴酸锂正极材料,其主要由钴酸锂组成,钴酸锂正极材料包含有快离子导体LiNbO3形成的多通道网状结构,且钴酸锂是以一次颗粒形式与快离子导体LiNbO3熔融为一体并形成二次颗粒;钴酸锂包埋在前述快离子导体LiNbO3形成的多通道网状结构中。本实施例的钴酸锂正极材料的化学通式可用Li1.01CoO2·0.01LiNbO3表示,具有层状结构。
本实施例上述的高倍率型钴酸锂正极材料的制备方法,具体包括以下步骤:
(1)配制CoSO4溶液,溶液中Co2+的浓度为150g/L;选用浓氨水和蒸馏水按体积比1∶10配成络合剂溶液;沉淀剂溶液选用1.5mol/L的草酸铵溶液;
(2)在25L反应釜中注入其容积1/3的沉淀剂溶液,在强力搅拌作用和惰性气体保护下,采用并流的方法继续向反应釜中同时注入上述的CoSO4溶液、氨水和草酸铵溶液使其反应,搅拌反应过程中将pH控制在6.0~7.0,反应过程控制反应釜温度在25℃;待CoSO4溶液全部注入后,陈化4~8h,过滤,得到滤饼;
(3)将上述步骤(2)得到的滤饼在120℃烘箱中干燥3h,得到草酸钴(粒度为7.5μm);
(4)将上述步骤(3)得到的草酸钴在300℃烧结2h,后于700℃下烧结5h,得到多孔氧化钴(粒度为6.5μm),编号为PC-3,平均孔径大小为500nm,孔隙率为5%;
(5)将120g乙醇铌溶解于2000g无水乙醇中,搅拌0.5h,在分散剂的强力搅拌下加入3000g步骤(4)制得的多孔氧化钴PC-3,搅拌1.0h,再加入乙醇水溶液,乙醇与水的体积比为20,继续搅拌5h,抽滤,将滤饼置于烘箱中干燥,得到浸渍有Nb(OH)5的氧化钴,编号为PC-4;
(6)将938g碳酸锂和上述步骤(5)得到的氧化钴PC-4 2000g干法混合均匀,得到混合物;
(7)将上述步骤(6)所得的混合物于空气气氛炉中进行烧结,烧结温度为900℃,烧结时间为10h;冷却后万能粉碎机粉碎20s,控制粒度为6.5~7.0μm,得到高倍率型钴酸锂正极材料,编号为LCO-3。
实施例4:
一种高倍率型钴酸锂正极材料,其主要由钴酸锂组成,钴酸锂正极材料包含有快离子导 体Li2WO4形成的多通道网状结构,且钴酸锂是以一次颗粒形式与快离子导体Li2WO4熔融为一体并形成二次颗粒;钴酸锂包埋在前述快离子导体Li2WO4形成的多通道网状结构中。本实施例的钴酸锂正极材料的化学通式可用Li1.00CoO2·0.008Li2WO4表示,具有层状结构。
本实施例上述的高倍率型钴酸锂正极材料的制备方法,具体包括以下步骤:
(1)配制Co(NO3)2溶液,溶液中Co2+的浓度为100g/L;选用浓氨水和蒸馏水按体积比1∶10配成络合剂溶液;沉淀剂溶液选用1.5mol/L的草酸铵溶液;
(2)在25L反应釜中注入其容积1/3的沉淀剂溶液,在强力搅拌作用和惰性气体保护下,采用并流的方法继续向反应釜中同时注入上述的Co(NO3)2溶液、氨水和草酸铵溶液使其反应,搅拌反应过程中将pH控制在6.0~7.0,反应过程控制反应釜温度在25℃;待Co(NO3)2溶液全部注入后,陈化4~8h,过滤,得到滤饼;
(3)将上述步骤(2)得到的滤饼在120℃烘箱中干燥3h,得到草酸钴(粒度为7.0μm);
(4)将上述步骤(3)得到的草酸钴在500℃烧结3h,后于800℃下烧结5h,得到多孔氧化钴(粒度为6.5μm),编号为PC-5,孔径大小为200nm,孔隙率为1%;
(5)将135g乙醇钨溶解于2500g无水乙醇中,搅拌0.5h,在分散剂的强力搅拌下加入3000g步骤(4)制得的多孔氧化钴PC-5,搅拌1.5h,再加入乙醇水溶液,乙醇与水的体积比为15,继续搅拌4h,抽滤,将滤饼置于烘箱中干燥,得到浸渍有W(OH)6的氧化钴,编号为PC-6;
(6)将928g碳酸锂和上述步骤(5)得到的氧化钴PC-6 2000g干法混合均匀,得到混合物;
(7)将上述步骤(6)所得的混合物于空气气氛炉中进行烧结,烧结温度为1000℃,烧结时间为10h;冷却后万能粉碎机粉碎20s,控制粒度为6.5~7.0μm,得到高倍率型钴酸锂正极材料,编号为LCO-4。
对上述实施例1、2、3、4和对比例1得到的5种产品进行电化学性能测试,测试方法说明如下。
063048型方形电池的组装:将活性材料、PVDF和导电炭黑按95.4∶2.5∶2.1的质量比例混合,加NMP,搅拌制成浆料。将浆料涂布于铝箔上,在120℃下烘干,做成正极片;与负极片、隔膜、电解液等组装成063048型电池。电池的充放电性能测试在室温下进行,采用先恒流再恒压的方式充电,充电截止电压为4.2V或4.35V,采用恒流放电,截止电压为3.0V,充电电流密度为0.5C,放电电流密度为0.2C/1C/10C/20C/50C。
表1为LCO-0/1/2/3/4不同电压下测试的倍率性能。
表1:LCO-0/1/2/3/4不同电压下测试的倍率性能
Figure PCTCN2017082231-appb-000001
图1为本发明钴酸锂颗粒在充电过程中锂离子的传输示意图。实线代表本发明实施例所制备的正极材料颗粒中锂离子传输路径,而虚线代表实施例对比例的正极材料颗粒中锂离子传输路径。钛酸丁酯浸渍多孔氧化钴的过程中,钛酸丁酯水解形成Ti(OH)4,填充多孔氧化钴颗粒内部的间隙和微孔,并在被浸渍的颗粒表面形成连续膜。钴酸锂合成的烧结过程中,Ti4+的离子半径远远大于Co3+,不易于固溶进入钴酸锂晶体结构中,而是与锂离子反应形成一个多通道网状结构Li2TiO3相,钴酸锂一次颗粒包埋在快离子导体多通道网中,并与之熔融为一体形成二次颗粒。
从上表1中可以看出,采用钛酸丁酯浸渍的氧化钴制备的LCO-1/2/3/4在4.2V测试时,50C倍率下的容量保持率和平台明显高于对比例中的LCO-0。这表明LCO-1/2/3/4的多通道网状结构快离子导体的存在,极大地提高了锂离子的传输速率,有效地提升了材料的放电容量和平台。LCO-2在4.35V测试时,50C倍率下的容量保持率和平台明显高于实施例中的 LCO-1、LCO-3和LCO-4。这是因为对于4.35V高电压材料,Mg和Al掺杂可以有效改善材料的结构稳定性,因而高电压下倍率性能优异。

Claims (10)

  1. 一种高倍率型钴酸锂正极材料,其主要由钴酸锂组成,其特征在于,所述钴酸锂正极材料包含有快离子导体LiαM′γOβ形成的多通道网状结构,所述钴酸锂是以一次颗粒形式与所述快离子导体LiαM′γOβ熔融为一体并形成二次颗粒;且钴酸锂包埋在前述快离子导体LiαM′γOβ形成的多通道网状结构中;LiαM′γOβ中的元素M′为Ti、Zr、Y、V、Nb、Mo、Sn、In、La、W中的一种或多种,1≤α≤4,1≤γ≤5,2≤β≤12。
  2. 根据权利要求1所述的高倍率型钴酸锂正极材料,其特征在于,所述钴酸锂正极材料中含有掺杂元素M,且该钴酸锂正极材料用化学通式Li1+yCo1-xMxO2·zLiαM′γOβ表示,其中0≤x≤0.1,-0.01≤y≤0.01,0.005≤z≤0.01;其中元素M为Mg、Al、Si、Sc、Ni、Mn、Ga、Ge中的一种或多种。
  3. 一种如权利要求1或2所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述钴酸锂正极材料主要是采用浸渍有M′的氢氧化物的氧化钴与锂源混合均匀后,在高温下置于空气气氛炉中通过烧结反应制备而成。
  4. 根据权利要求3所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述浸渍有M′的氢氧化物的氧化钴主要是通过以下步骤制备得到:
    将含M′的有机化合物溶解于无水乙醇中,采用分散机进行溶解和分散,充分搅拌均匀后加入多孔氧化钴,搅拌0.5~1.5h,再加入乙醇水溶液,乙醇与水的体积比为5~20,继续搅拌2~5h,抽滤,干燥,得到浸渍有M′的氢氧化物的氧化钴。
  5. 根据权利要求4所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述含M′的有机化合物为M′的醇盐、M′的烷基化合物、M′的羰基化合物、M′的羧基化合物中的一种或多种;所述多孔氧化钴是通过对前驱物进行预烧结后制备得到,所述前驱物为CoCO3·aH2O或CoC2O4·aH2O,其中0≤a≤9;所述多孔氧化钴的平均孔径分布在100nm~500nm,孔隙率为0.5%~5%。
  6. 根据权利要求5所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述多孔氧化钴主要是通过以下步骤制备得到:
    在反应釜中注入少量沉淀剂溶液,控制pH在6~14,在强力搅拌作用和惰性气体保护下,采用并流的方法向反应釜中同时注入钴盐溶液、络合剂溶液和剩余的沉淀剂溶液使其反应,搅拌反应过程中将pH持续控制在6~14,反应过程中控制反应釜的温度在0℃~85℃;待钴盐溶液全部加入后,陈化,过滤得到滤饼,干燥后得到前驱物;将所述前驱物置于空气气氛炉中进行预烧结,烧结出炉后过筛得到多孔氧化钴。
  7. 根据权利要求6所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述钴盐溶液为CoCl2·bH2O、CoSO4·bH2O、Co(NO3)2·bH2O中的至少一种溶于水后形成的溶液,其中 0≤b≤6;所述钴盐溶液中Co2+的浓度控制在70~200g/L;所述络合剂溶液为氨水或者氨基羧酸盐溶液;所述沉淀剂溶液碳酸盐溶液、草酸或草酸盐溶液。
  8. 根据权利要求6所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述陈化的时间为4~8h,所述预烧结的升温机制为:先于300℃~500℃烧结2~5h,后于700℃~800℃下烧结2~5h。
  9. 根据权利要求3~7中任一项所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述锂源为碳酸锂、氢氧化锂或氧化锂中的一种或多种;在制备钴酸锂正极材料的原料中还混合添加有含掺杂元素M的添加剂,含掺杂元素M的添加剂为M的氧化物、氢氧化物、羧基氧化物、碳酸盐或碱式碳酸盐中的至少一种。
  10. 根据权利要求3~7中任一项所述的高倍率型钴酸锂正极材料的制备方法,其特征在于,所述烧结反应是指在850℃~1000℃下烧结6~20h。
PCT/CN2017/082231 2016-06-01 2017-04-27 一种高倍率型钴酸锂正极材料及其制备方法 WO2017206633A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP17805578.6A EP3467915B1 (en) 2016-06-01 2017-04-27 High-rate lithium cobaltate positive electrode material and method for preparation thereof
US16/304,309 US10714749B2 (en) 2016-06-01 2017-04-27 High rate lithium cobalt oxide positive electrode material and manufacturing method thereof
KR1020187035988A KR102067590B1 (ko) 2016-06-01 2017-04-27 고공률(high rate) 리튬 코발트 산화물 양극재 및 그의 제조 방법
JP2019516041A JP6716788B2 (ja) 2016-06-01 2017-04-27 ハイレート型のコバルト酸リチウム正極材料及びその調製方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610381625.6 2016-06-01
CN201610381625.6A CN105870441B (zh) 2016-06-01 2016-06-01 一种高倍率型钴酸锂正极材料及其制备方法

Publications (1)

Publication Number Publication Date
WO2017206633A1 true WO2017206633A1 (zh) 2017-12-07

Family

ID=56676309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/082231 WO2017206633A1 (zh) 2016-06-01 2017-04-27 一种高倍率型钴酸锂正极材料及其制备方法

Country Status (6)

Country Link
US (1) US10714749B2 (zh)
EP (1) EP3467915B1 (zh)
JP (1) JP6716788B2 (zh)
KR (1) KR102067590B1 (zh)
CN (1) CN105870441B (zh)
WO (1) WO2017206633A1 (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105870441B (zh) 2016-06-01 2018-07-31 湖南杉杉能源科技股份有限公司 一种高倍率型钴酸锂正极材料及其制备方法
CN107732230B (zh) * 2017-09-01 2020-09-01 格林美(江苏)钴业股份有限公司 一种嵌入镍钴锰三元材料的钴酸锂正极材料及其制备方法
US20200343536A1 (en) 2017-11-06 2020-10-29 Lg Chem, Ltd. Lithium Secondary Battery
CN117080405A (zh) * 2019-06-25 2023-11-17 住友金属矿山株式会社 锂离子二次电池用正极活性物质及其制造方法以及锂离子二次电池
CN110294499B (zh) * 2019-07-30 2020-12-08 中南大学 一种预烧-浸渍联合制备三元正极材料的方法及锂电池
CN112542572A (zh) * 2019-09-23 2021-03-23 珠海冠宇电池股份有限公司 一种新型锂离子电池正极极片及其制备方法和用途
CN113140725B (zh) * 2020-01-19 2022-05-06 北京小米移动软件有限公司 钴酸锂材料及其制备方法、锂离子电池、电子设备
CN112599734B (zh) * 2020-12-07 2022-02-08 宁德新能源科技有限公司 正极活性材料、电化学装置以及电子装置
CN113675396B (zh) * 2021-08-24 2023-12-01 贵州丕丕丕电子科技有限公司 一种复合型钴酸锂正极材料、制备方法及锂离子电池
CN114094094A (zh) * 2021-11-09 2022-02-25 远景动力技术(江苏)有限公司 复合镍锰酸锂正极材料及其制备方法与锂离子电池正极片
CN114634211B (zh) * 2022-03-17 2024-04-09 宜昌邦普时代新能源有限公司 一种锡基钴酸锂前驱体的制备方法及其应用
GB2621023A (en) * 2022-03-17 2024-01-31 Yichang Brunp Contemporary Amperex Co Ltd Preparation method of tin-based lithium cobalt oxide precursor, and application of precursor
CN114702081B (zh) * 2022-04-25 2024-01-09 广东邦普循环科技有限公司 镁钛共掺杂碳酸钴的制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201222A (zh) * 2010-09-02 2013-07-10 日本化学工业株式会社 氢氧化钴及其制造方法以及氧化钴及其制造方法
CN104282880A (zh) * 2014-10-24 2015-01-14 湖南杉杉新材料有限公司 一种锂钴复合氧化物锂离子正极材料及其制备方法
CN105870441A (zh) * 2016-06-01 2016-08-17 湖南杉杉能源科技股份有限公司 一种高倍率型钴酸锂正极材料及其制备方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000164214A (ja) 1998-11-25 2000-06-16 Japan Storage Battery Co Ltd 非水電解質二次電池
JP4615339B2 (ja) * 2005-03-16 2011-01-19 独立行政法人科学技術振興機構 多孔質固体電極及びそれを用いた全固体リチウム二次電池
US7993782B2 (en) * 2005-07-01 2011-08-09 National Institute For Materials Science All-solid lithium battery
WO2009157524A1 (ja) 2008-06-26 2009-12-30 Agcセイミケミカル株式会社 リチウムイオン二次電池用正極活物質用の表面修飾リチウム含有複合酸化物及びその製造方法
JP2012155994A (ja) * 2011-01-26 2012-08-16 Toyota Motor Corp 固体電池用電極
CN103563138B (zh) 2011-06-01 2017-02-08 丰田自动车株式会社 电极活性物质的制造方法和电极活性物质
JP2013137947A (ja) 2011-12-28 2013-07-11 Panasonic Corp リチウムイオン二次電池およびリチウムイオン二次電池用正極活物質の製造方法
CN104037407B (zh) * 2014-05-22 2017-04-05 北大先行科技产业有限公司 一种锂超离子导体包覆的钴酸锂复合材料及其制备方法
US9979644B2 (en) 2014-07-13 2018-05-22 Cisco Technology, Inc. Linking to content using information centric networking
CN104505500A (zh) * 2014-12-24 2015-04-08 湖南杉杉新能源有限公司 纳米熔融复合包覆改性锂离子电池正极材料及其制备方法
CN104617304B (zh) * 2015-01-21 2017-07-07 长沙矿冶研究院有限责任公司 锂电池正极材料超薄包覆层、锂电池正极材料及其制备方法
CN104953096B (zh) * 2015-05-06 2017-07-14 湖南杉杉新能源有限公司 一种表面改性的高电压钴酸锂正极材料及其制备方法
CN105185974B (zh) * 2015-07-15 2017-09-01 湖南杉杉能源科技股份有限公司 锂离子电池正极材料及其制备方法
CN105047906B (zh) * 2015-08-21 2018-04-03 湖南杉杉能源科技股份有限公司 锂钴复合氧化物正极材料及其制备方法
JP2018185883A (ja) * 2015-08-26 2018-11-22 株式会社日立製作所 全固体リチウム二次電池および該二次電池を備えた二次電池システム
CN105261754B (zh) * 2015-09-23 2018-07-10 中国科学院大学 锂离子导体包覆锂离子电池钴酸锂正极材料的制备方法
US20190088943A1 (en) * 2016-03-08 2019-03-21 Sumitomo Metal Mining Co., Ltd. Positive electrode plate for nonaqueous electrolyte secondary battery, positive active material to be used therefor, and secondary battery using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103201222A (zh) * 2010-09-02 2013-07-10 日本化学工业株式会社 氢氧化钴及其制造方法以及氧化钴及其制造方法
CN104282880A (zh) * 2014-10-24 2015-01-14 湖南杉杉新材料有限公司 一种锂钴复合氧化物锂离子正极材料及其制备方法
CN105870441A (zh) * 2016-06-01 2016-08-17 湖南杉杉能源科技股份有限公司 一种高倍率型钴酸锂正极材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467915A4 *

Also Published As

Publication number Publication date
JP2019519903A (ja) 2019-07-11
US10714749B2 (en) 2020-07-14
KR102067590B1 (ko) 2020-01-17
EP3467915A1 (en) 2019-04-10
CN105870441A (zh) 2016-08-17
CN105870441B (zh) 2018-07-31
JP6716788B2 (ja) 2020-07-01
US20190140277A1 (en) 2019-05-09
EP3467915B1 (en) 2023-05-17
KR20190016963A (ko) 2019-02-19
EP3467915A4 (en) 2019-07-10

Similar Documents

Publication Publication Date Title
WO2017206633A1 (zh) 一种高倍率型钴酸锂正极材料及其制备方法
CN109686938B (zh) 镁离子掺杂梯度镍钴锰酸锂正极材料及其制备方法
KR101989633B1 (ko) Li-Ni 복합 산화물 입자 분말 및 그의 제조 방법, 및 비수전해질 이차 전지
KR101644252B1 (ko) 니켈 복합 수산화물과 그의 제조 방법, 비수계 전해질 이차 전지용 정극 활물질과 그의 제조 방법, 및 비수계 전해질 이차 전지
US11482703B2 (en) Positive-electrode active material precursor for nonaqueous electrolyte secondary battery and method for manufacturing positive-electrode active material precursor for nonaqueous electrolyte secondary battery
JP5987401B2 (ja) 非水系電解質二次電池用正極活物質とその製造方法および二次電池
JP2016084279A (ja) リチウム複合化合物粒子粉末及びその製造方法、非水電解質二次電池
CN107591519A (zh) 改性锂镍钴锰正极材料及其制备方法
JP6471693B2 (ja) リチウム二次電池用正極活物質、リチウム二次電池用電極及びリチウム二次電池
CN112151790A (zh) 高镍三元正极材料前驱体及其晶面可控生长的方法、三元正极材料及锂离子电池
CN101807714A (zh) 非水电解质二次电池及其制造方法
CN107925079B (zh) 非水系电解质二次电池用正极活性物质和其制造方法、和非水系电解质二次电池
JP2016126976A (ja) リチウム二次電池
JP2018129221A (ja) 非水電解質二次電池用正極活物質、その製造方法、非水電解質二次電池用正極、及び非水電解質二次電池
JP7262419B2 (ja) 非水系電解質二次電池用正極活物質、および非水系電解質二次電池
WO2022237110A1 (zh) 氟掺杂锂正极材料及其制备方法和应用
JP7163624B2 (ja) リチウムイオン二次電池用正極活物質及びその製造方法、並びにその正極活物質を用いたリチウムイオン二次電池
JP2014220139A (ja) 非水系電解質二次電池
CN115084457A (zh) 一种高压实长寿命三元正极材料及其制备方法
JP2013037823A (ja) リチウムイオン二次電池
JP5691159B2 (ja) オキシ水酸化マンガン及びその製造方法並びにそれを用いたリチウムマンガン系複合酸化物
JP7454642B1 (ja) リチウム金属複合酸化物、リチウム二次電池用正極活物質、リチウム二次電池用正極及びリチウム二次電池
CN118380584B (zh) 一种铁硫化合物负极组成的2v以上锂离子全电池及其制备方法
KR102125766B1 (ko) 양극활물질 표면처리용 조성물, 이의 제조방법 및 이에 의하여 표면 처리된 양극활물질
WO2019189504A1 (ja) リチウムニッケル複合酸化物、リチウムニッケル複合酸化物の製造方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019516041

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805578

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187035988

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017805578

Country of ref document: EP

Effective date: 20190102