WO2017206593A1 - 一种高浸润性隔离膜及其制备方法 - Google Patents

一种高浸润性隔离膜及其制备方法 Download PDF

Info

Publication number
WO2017206593A1
WO2017206593A1 PCT/CN2017/080411 CN2017080411W WO2017206593A1 WO 2017206593 A1 WO2017206593 A1 WO 2017206593A1 CN 2017080411 W CN2017080411 W CN 2017080411W WO 2017206593 A1 WO2017206593 A1 WO 2017206593A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyethylene
separator
molecular weight
parts
ethylene
Prior art date
Application number
PCT/CN2017/080411
Other languages
English (en)
French (fr)
Inventor
程跃
熊磊
邓洪贵
何方波
王伟强
Original Assignee
上海恩捷新材料科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海恩捷新材料科技股份有限公司 filed Critical 上海恩捷新材料科技股份有限公司
Priority to PL17805538T priority Critical patent/PL3467904T3/pl
Priority to ES17805538T priority patent/ES2887012T3/es
Priority to KR1020187037657A priority patent/KR102299633B1/ko
Priority to LTEPPCT/CN2017/080411T priority patent/LT3467904T/lt
Priority to EP17805538.0A priority patent/EP3467904B1/en
Priority to US16/306,554 priority patent/US11031654B2/en
Priority to DK17805538.0T priority patent/DK3467904T3/da
Priority to JP2019516040A priority patent/JP6995845B2/ja
Publication of WO2017206593A1 publication Critical patent/WO2017206593A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of electrochemistry, and in particular to a lithium ion battery separator and a preparation method thereof.
  • Lithium-ion batteries are usually composed mainly of a positive electrode, a negative electrode, a separator, an electrolyte, and a battery casing.
  • the diaphragm is one of the key inner layer components.
  • the main function of the separator is to separate the positive and negative electrodes of the battery to prevent direct contact between the positive electrode and the negative electrode and short circuit.
  • the electrolyte ions can pass smoothly during the charging and discharging process of the battery to form a current; in addition, the battery operating temperature occurs.
  • the diaphragm closes the migration path of the electrolyte ions, and the current is cut off to ensure the safety of the battery.
  • the performance of the diaphragm determines the interface structure and internal resistance of the battery, which directly affects the capacity, cycle and safety performance of the battery.
  • the separator with excellent performance plays an important role in improving the overall performance of the battery.
  • commercially available lithium ion battery separators generally employ a polyolefin porous membrane.
  • the main performance parameters of the battery separator include thickness, porosity, pore size, pore size distribution, strength, and the like.
  • the electrode area In order to reduce the internal resistance of the battery, the electrode area must be as large as possible, so the thickness of the diaphragm is required to be as thin as possible.
  • the battery separator itself is not electrically conductive, the conductive ions need to migrate through the diaphragm. This requires that the diaphragm itself needs a certain number of pores, that is, porosity, but the porosity is too high, which will cause the strength of the diaphragm to decrease, affecting the overall reliability of the battery.
  • the wettability of the electrolyte on the separator directly affects the resistance of ion migration.
  • the diaphragm needs to be pulled. After the assembly is completed, it is also necessary to ensure that the diaphragm is not pierced by the electrode material, so the diaphragm not only needs sufficient tensile strength but also requires a certain piercing strength.
  • the wettability of the surface to the electrolyte is mainly determined by the separator material itself.
  • the surface is mainly non-polar groups, and the electrolyte is generally infiltrated with lithium ion batteries.
  • the rich specific surface area of the ceramic particles helps to adsorb the electrolyte, thereby helping to improve the wettability of the surface of the polyolefin separator.
  • the polyolefin separator is The wettability of the matrix still maintains the original characteristics, and if the coated ceramic particles are too densely packed on the surface of the separator, the original pore size of the separator may be blocked, which may affect the normal use of the separator. Therefore, in order to obtain a permanent stable good wettability, it is necessary to improve the properties of the polyolefin separator substrate.
  • the present invention is directed to providing a highly wettable lithium ion battery separator.
  • a lithium ion battery separator comprising: an ethylene copolymer, a grafted polyolefin, and an ultrahigh molecular weight polyethylene having a molecular weight of 1.0 ⁇ 10 6 -10.0 ⁇ 10 6 And a high density polyethylene having a density in the range of 0.940-0.976 g/cm 3 ; wherein the ethylene copolymer is 1 in terms of 100 parts by weight of the total of the ultrahigh molecular weight polyethylene and the high density polyethylene
  • the graft polyolefin is contained in an amount of from 0 to 5 parts by weight based on 5 parts by weight.
  • the contact angle of the separator to the lithium ion battery electrolyte is 20-40°, preferably 21-30°, more preferably 22-27°.
  • the separator has a puncture strength of 540 grams or more.
  • the separator has a thickness of 9 to 35 ⁇ m, a micropore diameter of 0.3 to 0.65 ⁇ m, and a porosity of 40 to 50%.
  • the ethylene copolymer is selected from one or more of the group consisting of ethylene-vinyl acetate copolymer, ethylene-acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic acid copolymer, and ethylene-methyl Methyl acrylate copolymer.
  • the grafted polyolefin is selected from one or more of the group consisting of maleic anhydride grafted polyethylene, acrylic grafted polyethylene, and glycidyl methacrylate grafted polyethylene.
  • the ethylene copolymer has a density of from 0.936 to 0.950 g/cm 3 ; and the grafted polyolefin has a density of from 0.950 to 1.13 g/cm 3 .
  • the weight ratio of the ultrahigh molecular weight polyethylene to the high density polyethylene is from 1:1 to 1:20, more preferably from 1:2 to 1:10, most preferably 1:5. 1:10.
  • the ultrahigh molecular weight polyethylene has a molecular weight of from 2.0 ⁇ 10 6 to 8.0 ⁇ 10 6 , more preferably from 3.5 ⁇ 10 6 to 5.0 ⁇ 10 6 ; 0.940 to 0.960 g/cm 3 , more preferably 0.950 to 0.960 g/cm 3 .
  • the separator further comprises an antioxidant; the antioxidant is contained in an amount of 0.5-20 parts by weight based on 100 parts by total of the ultrahigh molecular weight polyethylene and the high density polyethylene, It is preferably 1.5 to 16 parts by weight, and most preferably 2 to 12 parts by weight.
  • the antioxidant may be 4,4-thiobis(6-tert-butylm-cresol), dibutylhydroxytoluene, phosphite, tert-butyl hydroquinone, ⁇ -(3,5- Di-tert-butyl-4-hydroxyphenyl)propionic acid n-octadecyl carbonate, 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane, 2-tert-butyl -6-methylphenol, N,N'-di- ⁇ -naphthyl p-phenylenediamine, dilauryl thiodipropionate, tris(nonylphenyl) phosphite, phosphorous One or more of triphenyl phthalates.
  • the film was heat-set and wound to obtain a lithium ion battery separator as described above.
  • the ethylene copolymer is added in an amount of from 1 to 5 parts by weight, preferably from 1 to 3 parts by weight, based on 100 parts by total of the total of the ultrahigh molecular weight polyethylene and the high density polyethylene.
  • the amount of grafted polyolefin is from 0 to 5 parts by weight, more preferably from 0 to 3 parts by weight.
  • the weight ratio of the ultrahigh molecular weight polyethylene to the high density polyethylene is from 1:1 to 1:20, more preferably from 1:2 to 1:10, most preferably 1:5. 1:10.
  • the pore former is used in an amount of 500 to 2000 parts by weight, more preferably 700 to 1800 parts by weight, based on 100 parts by weight of the ultrahigh molecular weight polyethylene and the high density polyethylene. Most preferably from 800 to 1600 parts by weight; the pore former may be a natural mineral oil, a C 6-15 alkane, a C 8-15 aliphatic carboxylic acid, a C 8-15 aliphatic carboxylic acid C 1-4 alkyl ester and One or more of C 2-6 haloalkanes.
  • the antioxidant is used in an amount of 0.5-20 parts by weight, more preferably 1.5-16 parts by weight, most preferably 2-12 parts by weight; the antioxidant may be 4,4-thiobis(6-tert Butyl m-cresol), dibutylhydroxytoluene, phosphite, tert-butyl hydroquinone, ⁇ -(3,5-di-tert-butyl-4-hydroxyphenyl)propionic acid n-octadecyl carbonate , 1,1,3-tris(2-methyl-4hydroxy-5-tert-butylphenyl)butane, 2-tert-butyl-6-methylphenol, N,N'-di- ⁇ -naphthyl One or more of p-phenylenediamine, dilauryl thiodipropionate, tris(nonylphenyl) phosphite, and tripheny
  • the organic solvent used for the extraction is selected from one of dichloromethane, n-hexane, ethyl acetate, and acetone.
  • a lithium ion battery comprising a positive electrode, a negative electrode, a separator between the positive electrode and the negative electrode, and an electrolyte, wherein the separator is as described in the first aspect of the invention Isolation membrane.
  • an ethylene copolymer B selected from one or more of the following: a vinyl-vinyl acetate in the preparation of a lithium ion battery separator. Copolymer, ethylene-acrylate copolymer, ethylene-methacrylic acid copolymer, ethylene-acrylic acid copolymer, and ethylene-methyl methacrylate copolymer.
  • the present invention provides a highly wettable polymeric separator.
  • a “lithium ion battery” includes a lithium secondary battery, a lithium ion secondary battery, and the like; the lithium ion secondary battery includes a polymer lithium ion secondary battery.
  • the numerical range "a-b” means a to b unless otherwise stated.
  • Abbreviated representation of any combination of real numbers where a and b are both real numbers.
  • a numerical range of "0-5" means that all real numbers between "0-5" have been listed in this document, and "0-5" is only an abbreviated representation of these numerical combinations.
  • integer value range "a-b” denotes an abbreviated representation of any integer combination between a and b unless otherwise stated, where a and b are integers.
  • an integer value range "1-N” means 1, 2, ... N, where N is an integer.
  • the "scope” disclosed herein is in the form of a lower limit and an upper limit. It may be one or more lower limits, respectively, and one or more upper limits.
  • the given range is defined by selecting a lower limit and an upper limit.
  • the selected lower and upper limits define the boundaries of the particular range. All ranges that can be defined in this manner are inclusive and combinable, that is, any lower limit can be combined with any upper limit to form a range. For example, ranges of 60-120 and 80-110 are listed for specific parameters, and ranges of 60-110 and 80-120 are also contemplated. In addition, if the minimum range values listed are 1 and 2, and if the maximum range values 3, 4 and 5 are listed, then the following ranges are all expected: 1-3, 1-4, 1-5, 2- 3, 2-4, and 2-5.
  • a battery separator composition contains a component other than a conventional separator, a high-wetting battery separator can be obtained by adding an ethylene copolymer, and the separator has remarkable Improved surface wetting while combining the good porosity, pore size, pore size distribution and film strength of conventional polymer separators.
  • the present invention has been completed.
  • the lithium ion battery separator provided by the invention is a high-wetting battery isolation a film having a contact angle to the lithium ion battery electrolyte of 20-40°, preferably 21-30°, more preferably 22-27°; at the same time, other properties such as a separator thickness can be maintained. 9-35 ⁇ m, micropore diameter 0.3-0.65 ⁇ m, porosity 40-50%.
  • the preparation raw material of the electrochemical device separator provided by the present invention may include:
  • the ultrahigh molecular weight polyethylene has a molecular weight of from 2.0 ⁇ 10 6 to 8.0 ⁇ 10 6 , preferably from 3.5 ⁇ 10 6 to 5.0 ⁇ 10 6 .
  • the high density polyethylene has a density of from 0.940 to 0.960 g/cm 3 , preferably from 0.950 to 0.960 g/cm 3 .
  • the weight ratio of the ultrahigh molecular weight polyethylene to the high density polyethylene is from 1:2 to 1:10, preferably from 1:5 to 1:10.
  • the graft polyolefin is contained in an amount of from 0 to 5 parts by weight, preferably from 0 to 3 parts by weight, based on 100 parts by total of the ultrahigh molecular weight polyethylene and the high density polyethylene.
  • the ultrahigh molecular weight polyethylene is The total weight of the high-density polyethylene is 100 parts by weight, and the ethylene copolymer is contained in an amount of 1-3 parts by weight.
  • the ethylene copolymer has a density of from 0.936 to 0.950 g/cm 3 ; and the grafted polyolefin has a density of from 0.950 to 1.13 g/cm 3 .
  • the pore former may be a natural mineral oil, a C 6-15 alkane, a C 8-15 aliphatic carboxylic acid, a C 8-15 aliphatic carboxylic acid C 1-4 alkane.
  • One or more of an ester and a C 2-6 halogenated alkane; the pore former content is from 700 to 1800 parts by weight, preferably 800-based, based on 100 parts by total weight of the ultrahigh molecular weight polyethylene and the high density polyethylene. 1600 parts by weight.
  • the antioxidant may be 4,4-thiobis(6-tert-butylm-cresol), dibutylhydroxytoluene, phosphite, tert-butyl-p-benzene.
  • the preparation method of the electrochemical device separator provided by the invention comprises the following steps:
  • the above-mentioned preparation materials are mixed according to a formula to form a mixture
  • the mixture is extruded into a ribbon through an extruder
  • the ribbon is extracted with an organic solvent
  • the extracted ribbon is drawn into a film by a stretching machine
  • the film is heat-set and wound to obtain the lithium ion battery separator of the present invention.
  • the total weight ratio of the ultrahigh molecular weight polyethylene to the high density polyethylene is from 1:1 to 1:20, preferably from 1:2 to 1:10, and most preferably from 1:5 to 1:10.
  • the ethylene copolymer is used in an amount of 1 to 5 parts by weight, preferably 1 to 5 parts by weight, based on 100 parts by total of the ultrahigh molecular weight polyethylene and the high density polyethylene; It is 0 to 5 parts by weight, preferably 0 to 3 parts by weight.
  • the porogen content is from 500 to 2000 parts by weight, preferably from 700 to 1800 parts by weight, most preferably from 800 to 1600 parts by weight, based on 100 parts by total of the ultrahigh molecular weight polyethylene and the high density polyethylene. .
  • the antioxidant content is from 0.5 to 20 parts by weight, preferably from 1.5 to 16 parts by weight, most preferably from 2 to 12 parts by weight, based on 100 parts by total of the ultrahigh molecular weight polyethylene and the high density polyethylene.
  • mixing can be carried out using conventional methods in the art such as, but not limited to, stirring, ball milling, ultrasonic dispersion, and the like.
  • the mixture is added to a twin-screw extruder to copolymerize ultrahigh molecular weight polyethylene, high density polyethylene, and ethylene at 150 ° C or higher (preferably 170 to 180 ° C).
  • optional grafted polyolefin, and antioxidant are continuously dissolved in a pore former in a twin-screw extruder, and continuously extruded by a twin-screw extruder (150-250 rpm); extrusion
  • the mixture was extruded through a (slit) die onto a casting chill roll and cast into a ribbon at 75-85 °C.
  • the extraction in the third step described above is used to remove the pore former in the ribbon; the organic solvent used in the extraction is selected from one of dichloromethane, n-hexane, ethyl acetate, and acetone.
  • the extracted ribbon is continuously drawn into a film at 110-130 ° C into a biaxial stretching machine; in a preferred embodiment, the film is subjected to secondary extraction, the second
  • the organic solvent used for the secondary extraction is usually the same as the organic solvent used for the first extraction.
  • the film was heat set at 110-130 ° C for 10-20 minutes and the film was wound at a speed of 15-25 m/min.
  • the separator provided by the present invention can be used for a lithium ion battery and its preparation.
  • the lithium ion battery includes a positive electrode, a negative electrode, a separator provided by the present invention between the positive electrode and the negative electrode, and an electrolyte.
  • An electrolyte conventional in the art may be used, such as, but not limited to, an alkyl carbonate-based organic solvent in the electrolyte.
  • the separator provided by the invention has high electrolyte wettability and has good porosity, pore size, pore size distribution and film strength.
  • the units in the weight percent by volume in the present invention are well known to those skilled in the art and, for example, refer to the weight of the solute in a 100 ml solution.
  • German Malt film thickness gauge 1216 was measured according to the method for measuring the thickness of plastic film and sheet of GB/T6672-2001.
  • results were measured using a multimeter at two points where the separators were 10 cm apart, and the results were the average of 10 measurements at different measurement points.
  • Gurley permeability tester 4110 was used to measure according to the GB/T 1037 plastic film and sheet water vapor permeability test method.
  • the lithium ion battery electrolyte was measured by a German Kruss DSA100 video optical contact angle measuring instrument.
  • the electrolyte used for the test was a lithium iron phosphate cylindrical electrolyte.
  • the Shanghai Jiaoji QJ210A universal testing machine was used to measure the peeling strength of the paper according to GB/T 2679.7.
  • test was carried out according to ASTM d882-2002 tensile standard test method for plastic sheets using a Shanghai TQ QJ210A universal testing machine.
  • the maleic anhydride grafted polyethylene used in the following examples had a density of 0.956 g/cm 3 and the ethylene-vinyl acetate copolymer and ethylene-acrylic acid copolymer had a density of 0.946 g/cm 3 .
  • the mixture was continuously fed to a twin-screw extruder, and the ultrahigh molecular weight polyethylene, high density polyethylene, antioxidant and maleic anhydride grafted polyethylene were continuously dissolved in the mineral in a twin-screw extruder at 180 °C.
  • the twin-screw extruder was continuously extruded at a speed of 200 rpm, the mixture was continuously introduced into the slit die, and the mixture was extruded through a slit die to a casting cooling roll, and flowed at 80 ° C. Extend into a ribbon.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound at a speed of 20 m / min to obtain a separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture was continuously fed to a twin-screw extruder, and the ultrahigh molecular weight polyethylene, high density polyethylene, antioxidant and ethylene-vinyl acetate copolymer were continuously dissolved in the mineral in a twin-screw extruder at 180 °C.
  • the twin-screw extruder was continuously extruded at a speed of 200 rpm, the mixture was continuously introduced into the slit die, and the mixture was extruded through a slit die to a casting cooling roll, and flowed at 80 ° C. Extend into a ribbon.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. At 120 ° C conditions After heat setting for 15 minutes, the film was wound up at a speed of 20 m/min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously fed to a twin-screw extruder at 180 ° C, the ultra-high molecular weight polyethylene, high density polyethylene, antioxidant, maleic anhydride grafted polyethylene and ethylene-vinyl acetate copolymer in a twin screw
  • the extruder was continuously dissolved in mineral oil, and then continuously extruded by a twin-screw extruder at a speed of 200 rpm.
  • the mixture continuously entered the slit die, and the mixture was extruded through a slit die to the casting.
  • the chill roll was cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon.
  • the extracted strip is then applied at 120 ° C.
  • the material was continuously fed into a biaxial stretching machine to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water.
  • the film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously fed to a twin-screw extruder at 180 ° C, the ultra-high molecular weight polyethylene, high density polyethylene, antioxidant, maleic anhydride grafted polyethylene and ethylene-vinyl acetate copolymer in a twin screw
  • the extruder was continuously dissolved in mineral oil, and then continuously extruded by a twin-screw extruder at a speed of 200 rpm.
  • the mixture continuously entered the slit die, and the mixture was extruded through a slit die to the casting.
  • the chill roll was cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously fed to a twin-screw extruder at 180 ° C, the ultra-high molecular weight polyethylene, high density polyethylene, antioxidant, maleic anhydride grafted polyethylene and ethylene-vinyl acetate copolymer in a twin screw
  • the extruder was continuously dissolved in mineral oil, and then continuously extruded by a twin-screw extruder at a speed of 200 rpm.
  • the mixture continuously entered the slit die, and the mixture was extruded through a slit die to the casting. Cooling roller, Cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously fed to a twin-screw extruder at 180 ° C, the ultra high molecular weight polyethylene, high density polyethylene, antioxidant, maleic anhydride grafted polyethylene and ethylene-acrylic acid copolymer in twin screw extrusion Continuously dissolved in mineral oil in the machine,
  • the mixture was continuously extruded at a speed of 200 rpm by a twin-screw extruder, and the mixture was continuously introduced into a slit die.
  • the mixture was extruded through a slit die to a casting chill roll, and cast into a belt at 80 ° C. Shape.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously added to a twin-screw extruder, and the ultra-high molecular weight polyethylene, high-density polyethylene, and antioxidant are continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C, and then the twin-screw The extruder is continuous at 200 rpm After extrusion, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously added to a twin-screw extruder, and the ultrahigh molecular weight polyethylene, high density polyethylene, antioxidant, ethylene-vinyl acetate is continuously dissolved in mineral oil in a twin-screw extruder at 180 ° C. Medium and then by a twin-screw extruder
  • the mixture was continuously extruded at a speed of 200 rpm, the mixture was continuously introduced into a slit die, and the mixture was extruded through a slit die to a casting chill roll, and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously fed to a twin-screw extruder at 180 ° C, the ultra high molecular weight polyethylene, high density polyethylene, antioxidant, ethylene vinyl acetate, Continuously dissolved in mineral oil in a twin-screw extruder, and continuously extruded at a speed of 200 rpm by a twin-screw extruder, the mixture continuously enters into the slit die, and the mixture is extruded through a slit die. To the casting chill roll, it was cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the mixture is continuously fed to a twin-screw extruder, and the ultrahigh molecular weight polyethylene, high density polyethylene, antioxidant, vinyl triethoxysilane grafted polyethylene and ethylene-vinyl acetate copolymer are copolymerized at 180 ° C.
  • the product was continuously dissolved in mineral oil in a twin-screw extruder, and continuously extruded by a twin-screw extruder at a speed of 200 rpm.
  • the mixture continuously entered the slit die, and the mixture was extruded through a slit die.
  • the casting was passed to a casting chill roll and cast into a ribbon at 80 °C.
  • the obtained ribbon was placed in an extraction tank containing dichloromethane for extraction to remove mineral oil from the ribbon. Thereafter, the extracted ribbon was continuously fed into a biaxial stretching machine at 120 ° C to be stretched into a film, and then the obtained film material was subjected to secondary extraction with dichloromethane, and the resulting film was washed with deionized water. The film was heat-set at 120 ° C for 15 minutes, and the film was wound up at a speed of 20 m / min to obtain the battery separator.
  • the specific performance parameters have been tested as shown in the following table:
  • the separator prepared by the addition of the ethylene copolymer has a large contact angle of the electrolyte and a corresponding electric resistance (Comparative Example 2); contact angle and resistance of the electrolyte after the addition of the ethylene copolymer Both are significantly reduced. This may be mainly due to the fact that the ethylene copolymer contains a large amount of ester groups or carboxylic acid functional groups, and is similar in polarity to the main components of the lithium ion battery electrolyte, so that good wettability can be obtained. Add separately The separator prepared by the addition of maleic anhydride grafted polyethylene had a large electrolyte contact angle (Comparative Example 1).
  • Comparative Example 5 when a graft polymer containing no ester group or a carboxylic acid functional group is used together with an ethylene-vinyl acetate copolymer, a contact angle of less than 30° cannot be obtained, and the thorn of the separator The penetration strength and tensile strength also decreased, which may be related to the poor compatibility of the graft polymer and the ethylene-vinyl acetate copolymer.

Abstract

本发明公开了一种高浸润性隔离膜及其制备方法。所述隔离膜包含:乙烯共聚物,接枝聚烯烃,分子量为1.0×106至10.0×106的超高分子量聚乙烯,和密度为0.940-0.976g/cm3范围内的高密度聚乙烯;其中按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,所述乙烯共聚物的含量为1-5重量份,所述接枝聚烯烃的含量为0-5重量份。所述隔离膜与锂离子电池电解液接触角为20-40°。

Description

一种高浸润性隔离膜及其制备方法 技术领域
本发明涉及电化学领域,尤其涉及一种锂离子电池隔离膜及其制备方法。
背景技术
锂离子电池通常主要由正极,负极,隔膜,电解液,电池外壳组成。锂离子电池结构中,隔膜是关键的内层组件之一。隔膜的主要作用是将电池的正极和负极分隔开来,防止正极和负极直接接触而短路,同时还要使电解质离子能够在电池充放电过程中顺利通过,形成电流;此外在电池工作温度发生异常升高时,隔膜关闭电解质离子的迁移通道,切断电流保证电池安全。由此可见,隔膜的性能决定了电池的界面结构、内阻等,直接影响电池的容量、循环以及安全性能等特性,性能优异的隔膜对提高电池的综合性能具有重要的作用。目前市售的锂离子电池隔膜一般采用聚烯烃多孔膜。
电池隔离膜的主要性能参数包括厚度,孔隙率,孔径大小,孔径分布,强度等。为了减少电池内阻,电极面积必须尽可能大,所以对于隔膜的厚度要求尽可能的薄。电池隔膜本身虽然不导电,但是导电离子需要通过隔膜进行迁移,这就要求隔膜本身需要存在一定数量的孔,即孔隙率,但是孔隙率过高势必导致隔膜强度降低,影响电池整体可靠性。除此之外,电解液在隔膜上的浸润性直接影响离子迁移的阻力,浸润性越好,离子通过隔膜进行迁移的阻力越小,电池内阻也就越小。通常,在孔径不是非常大的情况下,孔径分布越均匀,电解液的浸润性越好。电池组件在其 生产组装过程中需要对隔膜进行牵引,在组装完成后还需要保证隔膜不会被电极材料刺穿,因此隔膜不仅需要足够的拉伸强度还需要一定的刺穿强度。
事实上,相同厚度的隔膜在孔隙率,孔径大小和孔径分布一定的情况下,其表面对电解液的浸润性主要由隔膜材料本身决定。常见的聚烯烃隔膜,表面主要是非极性基团,对锂离子电池电解液浸润性一般。在聚烯烃隔膜表面涂覆陶瓷颗粒后,陶瓷颗粒丰富的比表面积有助于吸附电解液,从而帮助改善聚烯烃隔膜表面的浸润性,然而倘若所涂覆的陶瓷颗粒被剥落,聚烯烃隔膜的基体的浸润性仍然维持原有的特性,并且涂覆的陶瓷颗粒如果在隔膜表面堆积过于密集,有可能会将隔膜原有的孔径堵住,反而影响隔膜的正常使用。因此,若想获得永久稳定的良好浸润性,需要从改善聚烯烃隔膜基材特性入手。
因此,本领域需要提供一种高浸润性聚合物隔离膜。
发明内容
本发明旨在提供一种高浸润性的锂离子电池隔离膜。
在本发明的第一方面,提供了一种锂离子电池隔离膜,所述隔离膜包含:乙烯共聚物,接枝聚烯烃,分子量为1.0×106-10.0×106的超高分子量聚乙烯,和密度为0.940-0.976g/cm3范围内的高密度聚乙烯;其中按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,所述乙烯共聚物的含量为1-5重量份,所述接枝聚烯烃的含量为0-5重量份。
所述隔离膜与锂离子电池电解液的接触角为20-40°,优选为21-30°,更优选为22-27°。
在另一优选实施方案中,所述隔离膜的刺穿强度在540克以上。
在另一优选实施方案中,所述隔离膜的厚度为9-35μm,微孔孔径为0.3-0.65μm,孔隙率为40-50%。
所述乙烯共聚物选自下述的一种或多种:乙烯-醋酸乙烯酯共聚物,乙烯-丙烯酸酯共聚物,乙烯-甲基丙烯酸共聚物,乙烯-丙烯酸共聚物,和乙烯-甲基丙烯酸甲酯共聚物。
所述接枝聚烯烃选自下述的一种或多种:马来酸酐接枝聚乙烯,丙烯酸接枝聚乙烯,和甲基丙烯酸环氧丙酯接枝聚乙烯。
在另一优选实施方案中,所述乙烯共聚物的密度为0.936-0.950g/cm3;所述接枝聚烯烃的密度为0.950-1.13g/cm3
在另一优选实施方案中,所述超高分子量聚乙烯和高密度聚乙烯的重量比为1:1-1:20,更优选为1:2-1:10,最优选为1:5-1:10。
在另一优选实施方案中,所述的超高分子量聚乙烯分子量为2.0×106-8.0×106,更优选为3.5×106-5.0×106;所述的高密度聚乙烯密度为0.940-0.960g/cm3,更优选为0.950-0.960g/cm3
在另一优选实施方案中,所述隔离膜还包含抗氧化剂;按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,抗氧化剂的含量为0.5-20重量份,更优选为1.5-16重量份,最优选为2-12重量份。
所述的抗氧化剂可以是4,4-硫代双(6-叔丁基间甲酚),二丁基羟基甲苯,亚磷酸酯,特丁基对苯二酚,β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯,1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷,2-特丁基-6-甲基苯酚,N,N’-二-β-萘基对苯二胺,硫代二丙酸双月桂酯,亚磷酸三(壬基苯基)酯,亚磷 酸三苯酯中的一种或多种。
在本发明的第二方面,提供了一种如上所述的本发明提供的隔离膜的制备方法,所述方法包括步骤:
(1)将接枝聚烯烃,乙烯共聚物,分子量为1.0×106-10.0×106的超高分子量聚乙烯、密度为0.940-0.976g/cm3范围内的高密度聚乙烯、抗氧化剂和成孔剂混合形成混合物;
(2)将混合物通过挤出机挤出成带状物;
(3)使用有机溶剂对所述带状物进行萃取;
(4)通过拉伸机将萃取过的带状物拉伸成薄膜;和
(5)对所述薄膜进行热定型和收卷,得到如上所述的锂离子电池隔离膜。
在另一优选实施方案中,按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,乙烯共聚物的添加量为1-5重量份,优选1-3重量份。
在另一优选实施方案中,接枝聚烯烃的量为0-5重量份,更优选为0-3重量份。
在另一优选实施方案中,所述超高分子量聚乙烯和高密度聚乙烯的重量比为1:1-1:20,更优选为1:2-1:10,最优选为1:5-1:10。
在另一优选实施方案中,按所述超高分子量聚乙烯和高密度聚乙烯的重量为100份计,成孔剂的使用量为500-2000重量份,更优选为700-1800重量份,最优选为800-1600重量份;所述成孔剂可以是天然矿物油,C6-15烷烃,C8-15脂族羧酸,C8-15脂族羧酸C1-4烷酯和C2-6卤代烷烃中的一种或多种。
按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份 计,抗氧化剂的使用量为0.5-20重量份,更优选为1.5-16重量份,最优选为2-12重量份;所述的抗氧化剂可以是4,4-硫代双(6-叔丁基间甲酚),二丁基羟基甲苯,亚磷酸酯,特丁基对苯二酚,β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯,1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷,2-特丁基-6-甲基苯酚,N,N’-二-β-萘基对苯二胺,硫代二丙酸双月桂酯,亚磷酸三(壬基苯基)酯,亚磷酸三苯酯中的一种或多种。
在另一优选实施方案中,萃取所用的有机溶剂选自二氯甲烷、正己烷、乙酸乙酯、丙酮中的一种。
在本发明的第三方面,提供了一种锂离子电池,其包含包括正极、负极、位于正极和负极之间的隔离膜以及电解液,其中所述隔离膜是如本发明第一方面所述的隔离膜。
在本发明的第四方面,提供了一种乙烯共聚物B在制备锂离子电池隔离膜中的应用,所述乙烯共聚物B选自下述的一种或两种以上:乙烯-醋酸乙烯酯共聚物,乙烯-丙烯酸酯共聚物,乙烯-甲基丙烯酸共聚物,乙烯-丙烯酸共聚物,和乙烯-甲基丙烯酸甲酯共聚物。
据此,本发明提供了一种高浸润性聚合物隔离膜。
具体实施方式
如本发明所用,“锂离子电池”包括锂二次电池、锂离子二次电池等;所述锂离子二次电池包括聚合物锂离子二次电池。
在本发明中,除非有其他说明,数值范围“a-b”表示a到b 之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。
在本发明中,除非有其他说明,整数数值范围“a-b”表示a到b之间的任意整数组合的缩略表示,其中a和b都是整数。例如整数数值范围“1-N”表示1、2……N,其中N是整数。
如果没有特别指出,本说明书所用的术语“一种”指“至少一种”。
本文所公开的“范围”以下限和上限的形式。可以分别为一个或多个下限,和一个或多个上限。给定范围是通过选定一个下限和一个上限进行限定的。选定的下限和上限限定了特别范围的边界。所有可以这种方式进行限定的范围是包含和可组合的,即任何下限可以与任何上限组合形成一个范围。例如,针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4、和2-5。
发明人经过广泛而深入的研究,发现如果在电池隔离膜组合物中除了含有常规隔离膜所具有的组分外,添加乙烯共聚物可以获得一种高浸润性电池隔离膜,该隔离膜具有显著改善的表面浸润性,同时兼具常规聚合物隔离膜良好的孔隙率,孔径大小,孔径分布和膜强度。在此基础上,完成了本发明。
隔离膜
本发明提供的锂离子电池隔离膜是一种高浸润性的电池隔离 膜,该隔离膜对锂离子电池电解液的接触角为20-40°,优选21-30°,更优选22-27°;与此同时,还能够保持其他性能的良好,例如隔离膜厚度为9-35μm,微孔孔径为0.3-0.65μm,孔隙率为40-50%。
本发明提供的电化学装置隔离膜的制备原料可包括:
(a)分子量为1.0×106-10.0×106的超高分子量聚乙烯和密度为0.940-0.976g/cm3范围内的高密度聚乙烯的混合物,所述超高分子量聚乙烯和高密度聚乙烯的重量比为1:1-1:20;
(b)按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,5-2000重量份的成孔剂;
(c)按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,0.5-20重量份的抗氧化剂;
(d)按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,0-5重量份的接枝聚烯烃;和
(e)按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,1-5重量份的乙烯共聚物。
在本发明的一种实施方式中,所述超高分子量聚乙烯的分子量为2.0×106-8.0×106,优选为3.5×106-5.0×106
在本发明的一种实施方式中,所述高密度聚乙烯的密度为0.940-0.960g/cm3,优选为0.950-0.960g/cm3
在本发明的一种实施方式中,所述超高分子量聚乙烯和高密度聚乙烯的重量比为1:2-1:10,优选为1:5-1:10。
在本发明的一种实施方式中,按超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,接枝聚烯烃的含量为0-5重量份,优选为0-3重量份。
在本发明的一种优选实施方式中,按所述超高分子量聚乙烯 和高密度聚乙烯的总重量为100份计,乙烯共聚物的含量为1-3重量份。
在本发明的一种实施方式中,所述乙烯共聚物的密度为0.936-0.950g/cm3;所述接枝聚烯烃的密度为0.950-1.13g/cm3
在本发明的一种实施方式中,所述的成孔剂可以是天然矿物油,C6-15烷烃,C8-15脂族羧酸,C8-15脂族羧酸C1-4烷酯和C2-6卤代烷烃中的一种或多种;按超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,成孔剂含量为700-1800重量份,优选为800-1600重量份。
在本发明的一种实施方式中,所述的抗氧化剂可以是4,4-硫代双(6-叔丁基间甲酚),二丁基羟基甲苯,亚磷酸酯,特丁基对苯二酚,β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯,1,1,3-三(2-甲基-4羟基-5-叔丁苯基)丁烷,2-特丁基-6-甲基苯酚,N,N’-二-β-萘基对苯二胺,硫代二丙酸双月桂酯,亚磷酸三(壬基苯基)酯,亚磷酸三苯酯中的一种或多种;按超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,抗氧化剂含量为1.5-16重量份,优选为2-12重量份。
隔离膜制备方法
本发明提供的电化学装置隔离膜的制备方法包括以下步骤:
第一步,将上述的制备原料按配方混合形成混合物;
第二步,将混合物通过挤出机挤出成带状物;
第三步,带状物经有机溶剂萃取;
第四步,经萃取的带状物通过拉伸机拉伸成薄膜;
第五步,将薄膜热定型和收卷,得到本发明的锂离子电池隔离膜。
上述第一步中,所述超高分子量聚乙烯和高密度聚乙烯的总重量比为1:1-1:20,优选1:2-1:10,最优选1:5-1:10。
上述第一步中,按超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,乙烯共聚物的用量为1-5重量份,优选1-5重量份;接枝聚烯烃的用量为0-5重量份,优选0-3重量份。
上述第一步中,按超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,成孔剂含量为500-2000重量份,优选700-1800重量份,最优选800-1600重量份。
上述第一步中,按超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,抗氧化剂含量为0.5-20重量份,优选1.5-16重量份,最优选2-12重量份。
上述第一步中,可以使用本领域的常规方法进行混合,例如但不限于,搅拌、球磨,超声分散等。
上述第二步中,在本发明的一种实施方式中,将混合物加入双螺杆挤出机,在150℃以上(优选170-180℃)使超高分子量聚乙烯、高密度聚乙烯、乙烯共聚物、任选的接枝聚烯烃、和抗氧化剂在双螺杆挤出机中连续溶解于成孔剂中,再由双螺杆挤出机(150-250转/分速度)连续挤出;挤出的混合物通过(狭缝)模头挤出到流延冷却辊,在75-85℃下流延成带状物。
上述第三步中所述萃取用以除去带状物中的成孔剂;所述萃取使用的有机溶剂选自二氯甲烷、正己烷、乙酸乙酯、丙酮中的一种。
上述第四步中,经萃取的带状物在110-130℃连续进入双向拉伸机中被拉伸成薄膜;在一种较佳的实施方式中,对该薄膜进行二次萃取,该二次萃取使用的有机溶剂通常与首次萃取使用的有机溶剂相同。
在上述第五步中,在110-130℃对薄膜进行热定型10-20分钟,并以15-25米/分的速度将薄膜收卷。
隔离膜用途
本发明提供的隔离膜可用于锂离子电池及其制备。所述锂离子电池包括正极、负极、位于正极和负极之间的本发明提供的隔离膜以及电解液。
可以使用本领域常规的电解液,例如但不限于,所述电解液中含有烷基碳酸酯类有机溶剂。
本发明提到的上述特征,或实施例提到的特征可以任意组合。本案说明书所揭示的所有特征可与任何组合物形式并用,说明书中所揭示的各个特征,可以任何可提供相同、均等或相似目的的替代性特征取代。因此除有特别说明,所揭示的特征仅为均等或相似特征的一般性例子。
本发明的主要优点在于:
本发明提供的隔离膜具有高的电解液浸润性,且兼具良好的孔隙率,孔径大小,孔径分布和膜强度。
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。下列实施例中未注明具体条件的实验方法,通常按照常规条件或按照制造厂商所建议的条件。除非另外说明,否则所有的百分数、比率、比例、或份数按重量计。
本发明中的重量体积百分比中的单位是本领域技术人员所熟知的,例如是指在100毫升的溶液中溶质的重量。
除非另行定义,文中所使用的所有专业与科学用语与本领域熟练人员所熟悉的意义相同。此外,任何与所记载内容相似或均等的方法及材料皆可应用于本发明方法中。文中所述的较佳实施方法与材料仅作示范之用。
实验方法
1.厚度测定
采用德国马尔薄膜测厚仪1216根据GB/T6672-2001塑料薄膜与薄片厚度的测定方法测定。
2.电阻测定
采用万用表在隔离膜相距10cm的两个点上测得,采用的结果为不同的测量点上10次测定的平均值。
3.透过率测定
采用Gurley透气度测试仪4110根据GB/T1037塑料薄膜和片材透水蒸汽性试验方法进行测定。
4.孔隙率测定
采用康塔PoreMaster-33全自动压汞仪测定。
5.孔径测定
采用UV-3200大屏幕扫描型紫外可见分光光度计测定。
6.接触角测定
采用德国Kruss DSA100视频光学接触角测量仪测定针对锂离子电池电解液进行测定,测试所用电解液为磷酸铁锂圆柱型电解液。
7.刺穿强度测定
采用上海倾技QJ210A万能试验机根据GB/T 2679.7纸板戳穿强度进行测定。
8.拉伸强度测定
采用上海倾技QJ210A万能试验机根据ASTM d882-2002塑料薄片的拉伸标准测试方法进行测定。
下述实施例中使用的马来酸酐接枝聚乙烯密度为0.956g/cm3,乙烯-醋酸乙烯酯共聚物和乙烯-丙烯酸共聚物密度为0.946g/cm3
比较例1
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),9.6克马来酸酐接枝聚乙烯,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂和马来酸酐接枝聚乙烯在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000001
实施例1
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),9.6克乙烯-醋酸乙烯酯共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂和乙烯-醋酸乙烯酯共聚物在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件 下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000002
实施例2
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),4.8克马来酸酐接枝聚乙烯,4.8克乙烯-醋酸乙烯酯共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,马来酸酐接枝聚乙烯和乙烯-醋酸乙烯酯共聚物在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带 状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000003
实施例3
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),3.2克马来酸酐接枝聚乙烯,6.4克乙烯-醋酸乙烯酯共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,马来酸酐接枝聚乙烯和乙烯-醋酸乙烯酯共聚物在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000004
实施例4
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),6.4克马来酸酐接枝聚乙烯,3.2克乙烯-醋酸乙烯酯共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,马来酸酐接枝聚乙烯和乙烯-醋酸乙烯酯共聚物在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊, 在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000005
实施例5
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),3.2克马来酸酐接枝聚乙烯,6.4克乙烯-丙烯酸共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,马来酸酐接枝聚乙烯和乙烯-丙烯酸共聚物在双螺杆挤出机中连续溶解于矿物油中, 再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000006
比较例2
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续 挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000007
比较例3
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),16.0克乙烯-醋酸乙烯酯共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,乙烯-醋酸乙烯酯,在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以 200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000008
比较例4
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),32.0克乙烯-醋酸乙烯酯共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,乙烯-醋酸乙烯酯, 在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000009
比较例5
将220克密度为0.956g/cm3的高密度聚乙烯,100克分子量为5.0×106的超高分子量聚乙烯,6.4克β-(3,5-二叔丁基-4-羟基苯基)丙酸正十八碳酸酯(抗氧化剂),3.2克乙烯基三乙氧基硅烷接枝聚乙烯,6.4克乙烯-醋酸乙烯酯共聚物,2200克矿物油加入连续配料加料釜中,以50转/分的速度搅拌,将原料混合均匀。
将混合物连续加入双螺杆挤出机,在180℃条件下,所述超高分子量聚乙烯,高密度聚乙烯,抗氧化剂,乙烯基三乙氧基硅烷接枝聚乙烯和乙烯-醋酸乙烯酯共聚物在双螺杆挤出机中连续溶解于矿物油中,再由双螺杆挤出机以200转/分的速度连续挤出,混合物连续进入到狭缝模头内,混合物通过狭缝模头挤出到流延冷却辊,在80℃条件下流延成带状物。
将得到的带状物置入含有二氯甲烷的萃取槽中进行萃取,用以除去带状物中的矿物油。之后在120℃条件下将经过萃取的带状物连续送入双向拉伸机拉伸成薄膜,接着用二氯甲烷对所得薄膜材料进行二次萃取,用去离子水清洗所得薄膜。在120℃条件下热定型15分钟,将薄膜以20米/分的速度收卷,得到所述电池隔离膜。其具体性能参数经过测试如下表所示:
Figure PCTCN2017080411-appb-000010
从上述结果可以看出,未添加乙烯共聚物所制备的隔离膜的电解液接触角较大,相应的电阻也较大(比较例2);添加了乙烯共聚物后,电解液接触角和电阻均明显降低。这可能主要是由于乙烯共聚物中含有较多的酯基或羧酸官能团,与锂离子电池电解液的主要成分极性相近,因而能够获得良好的浸润性。单独添 加马来酸酐接枝聚乙烯所制备的隔离膜的电解液接触角较大(比较例1)。
从上述结果还可以看出,按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,添加小于5重量份的乙烯共聚物对隔膜孔径和强度均没有显著影响,从而可以在获得良好浸润性的同时保持隔膜材料的原有性能。当乙烯-醋酸乙烯酯共聚物添加量为5重量份时(比较例3),隔膜的刺穿强度和拉伸强度开始降低;而当乙烯-醋酸乙烯酯共聚物添加量为10重量份时(比较例4),隔膜的刺穿强度和拉伸强度会有明显的下降,这可能与该类共聚物本身的强度较低有关。另外,从比较例5中可以看出,不含有酯基或羧酸官能团的接枝聚合物与乙烯-醋酸乙烯酯共聚物共同使用时,无法获得低于30°的接触角,并且隔膜的刺穿强度和拉伸强度也有所下降,这可能与该类接枝聚合物和乙烯-醋酸乙烯酯共聚物相容性较差有关。
以上所述仅为本发明的较佳实施例而已,并非用以限定本发明的实质技术内容范围,本发明的实质技术内容是广义地定义于申请的权利要求范围中,任何他人完成的技术实体或方法,若是与申请的权利要求范围所定义的完全相同,也或是一种等效的变更,均将被视为涵盖于该权利要求范围之中。

Claims (10)

  1. 一种锂离子电池隔离膜,其特征在于,所述隔离膜包含:乙烯共聚物,接枝聚烯烃,分子量为1.0×106至10.0×106的超高分子量聚乙烯,和密度为0.940-0.976g/cm3范围内的高密度聚乙烯;其中按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,所述乙烯共聚物的含量为1-5重量份,所述接枝聚烯烃的含量为0-5重量份。
  2. 如权利要求1所述的隔离膜,其特征在于,所述隔离膜与锂离子电池电解液接触角为20-40°。
  3. 如权利要求1所述的隔离膜,其特征在于,所述乙烯共聚物是选自下述的一种或多种:乙烯-醋酸乙烯酯共聚物,乙烯-丙烯酸酯共聚物,乙烯-甲基丙烯酸共聚物,乙烯-丙烯酸共聚物,和乙烯-甲基丙烯酸甲酯共聚物。
  4. 如权利要求1所述的隔离膜,其特征在于,所述接枝聚烯烃是选自下述的一种或多种:马来酸酐接枝聚乙烯,丙烯酸接枝聚乙烯,和甲基丙烯酸环氧丙酯接枝聚乙烯。
  5. 如权利要求1所述的隔离膜,其特征在于,所述超高分子量聚乙烯和高密度聚乙烯的重量比为1:1至1:20。
  6. 一种制备离子电池隔离膜的方法,其特征在于,所述方法包括步骤:
    (1)将接枝聚烯烃,乙烯共聚物,分子量为1.0×106至10.0×106的超高分子量聚乙烯、密度为0.940-0.976g/cm3范围内的高密度聚乙烯、抗氧化剂和成孔剂混合形成混合物;
    (2)将混合物通过挤出机挤出成带状物;
    (3)使用有机溶剂对所述带状物经有机溶剂萃取;
    (4)通过拉伸机将萃取过的带状物拉伸成薄膜;和
    (5)对所述薄膜进行热定型和收卷,得到所述的锂离子电池隔离膜。
  7. 如权利要求6所述的制备方法,其特征在于,按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,所述乙烯共聚物的添加量为1-5重量份。
  8. 如权利要求6所述的制备方法,其特征在于,按所述超高分子量聚乙烯和高密度聚乙烯的总重量为100份计,所述接枝聚烯烃A的添加量为0-5重量份。
  9. 如权利要求6所述的制备方法,其特征在于,所述超高分子量聚乙烯和高密度聚乙烯的重量比为1:1至1:20。
  10. 一种锂离子电池,其包含包括正极、负极、位于正极和负极之间的隔离膜以及电解液,其中所述隔离膜是如权利要求1所述的隔离膜。
PCT/CN2017/080411 2016-06-01 2017-04-13 一种高浸润性隔离膜及其制备方法 WO2017206593A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
PL17805538T PL3467904T3 (pl) 2016-06-01 2017-04-13 Separator o dużej zwilżalności i sposób jego wytwarzania
ES17805538T ES2887012T3 (es) 2016-06-01 2017-04-13 Separador de alta humectabilidad y método de preparación del mismo
KR1020187037657A KR102299633B1 (ko) 2016-06-01 2017-04-13 고 침윤성 세퍼레이터 및 그 제조 방법
LTEPPCT/CN2017/080411T LT3467904T (lt) 2016-06-01 2017-04-13 Didelio drėkstamumo separatorius ir jo paruošimo būdas
EP17805538.0A EP3467904B1 (en) 2016-06-01 2017-04-13 High-wettability separator and preparation method therefor
US16/306,554 US11031654B2 (en) 2016-06-01 2017-04-13 High-wettability separator and preparation method thereof
DK17805538.0T DK3467904T3 (da) 2016-06-01 2017-04-13 Separator med høj vådbarhed og fremgangsmåde til fremstilling deraf
JP2019516040A JP6995845B2 (ja) 2016-06-01 2017-04-13 高ぬれ性セパレータおよびその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610380478.0 2016-06-01
CN201610380478.0A CN107452919B (zh) 2016-06-01 2016-06-01 一种高浸润性隔离膜及其制备方法和用途

Publications (1)

Publication Number Publication Date
WO2017206593A1 true WO2017206593A1 (zh) 2017-12-07

Family

ID=60479611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/080411 WO2017206593A1 (zh) 2016-06-01 2017-04-13 一种高浸润性隔离膜及其制备方法

Country Status (12)

Country Link
US (1) US11031654B2 (zh)
EP (1) EP3467904B1 (zh)
JP (1) JP6995845B2 (zh)
KR (1) KR102299633B1 (zh)
CN (1) CN107452919B (zh)
DK (1) DK3467904T3 (zh)
ES (1) ES2887012T3 (zh)
HU (1) HUE055939T2 (zh)
LT (1) LT3467904T (zh)
PL (1) PL3467904T3 (zh)
PT (1) PT3467904T (zh)
WO (1) WO2017206593A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2020075865A1 (ja) * 2018-10-11 2021-02-15 旭化成株式会社 リチウムイオン電池用セパレータ
EP3789105A4 (en) * 2018-05-04 2022-02-23 Shanghai Energy New Materials Technology Co., Ltd. POROUS MEMBRANE FOR WATER TREATMENT AND MANUFACTURING PROCESS THEREOF

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108636131A (zh) * 2018-05-04 2018-10-12 上海恩捷新材料科技股份有限公司 亲水性多孔膜及其制备方法
CN108666506A (zh) * 2018-05-07 2018-10-16 苏州睿烁环境科技有限公司 一种具有复合树脂的锂电池隔膜及其制备方法
KR101955911B1 (ko) 2018-08-23 2019-03-12 더블유스코프코리아 주식회사 분리막 및 그 제조방법
CN110911615A (zh) * 2019-11-20 2020-03-24 芜湖天弋能源科技有限公司 一种耐高温性锂离子电池隔膜及其制备方法及其制备的锂离子电池
EP3832770A1 (en) * 2019-12-06 2021-06-09 W-Scope Korea Co., Ltd. Crosslinked separator and method of manufacturing the same
WO2022092984A1 (ko) * 2020-11-02 2022-05-05 주식회사 엘지에너지솔루션 비수전해질 전지 세퍼레이터용 조성물, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
CN114497880A (zh) * 2022-01-28 2022-05-13 武汉微美新材料科技有限公司 隔膜及包括所述隔膜的锂离子电池
CN114665227B (zh) * 2022-03-23 2024-04-09 哈尔滨工业大学无锡新材料研究院 一种高浸润性的锂离子电池隔膜及其制备方法
CN114976479A (zh) * 2022-06-10 2022-08-30 河北金力新能源科技股份有限公司 一种高浸润的锂离子电池隔膜、锂电池及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649957A (zh) * 2002-03-26 2005-08-03 塞克姆公司 聚合物接枝的载体聚合物
CN102199320A (zh) * 2010-12-30 2011-09-28 上海恩捷新材料科技股份有限公司 用于形成电池隔离膜的聚合物组合物
CN103131079A (zh) * 2012-11-26 2013-06-05 深圳中兴创新材料技术有限公司 一种微孔膜及电池隔膜

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351495A (en) * 1966-11-22 1967-11-07 Grace W R & Co Battery separator
US4699857A (en) * 1986-10-15 1987-10-13 W. R. Grace & Co. Battery separator
JP2657434B2 (ja) * 1991-07-19 1997-09-24 東燃株式会社 ポリエチレン微多孔膜、その製造方法及びそれを用いた電池用セパレータ
JP3455285B2 (ja) * 1994-05-16 2003-10-14 三井化学株式会社 高分子量エチレン・α−オレフィン共重合体よりなる多孔性二軸配向フィルムおよびその用途
EP0989619B1 (en) * 1998-09-22 2006-06-28 Japan Vilene Company, Ltd. Alkaline battery separator
JP4884008B2 (ja) * 2003-03-24 2012-02-22 旭化成イーマテリアルズ株式会社 ポリエチレン微多孔膜
US20070015876A1 (en) * 2003-10-27 2007-01-18 Daisuke Inagaki Microporous polyolefin film
EP1689008B1 (en) * 2005-01-26 2011-05-11 Japan Vilene Company, Ltd. Battery separator and battery comprising the same
CN101997114B (zh) * 2006-12-26 2013-08-07 三菱化学株式会社 锂过渡金属类化合物粉末、其制造方法、以及使用该粉末的锂二次电池用正极和锂二次电池
US8304113B2 (en) * 2007-03-05 2012-11-06 Advanced Membrane Systems, Inc. Polyolefin and ceramic battery separator for non-aqueous battery applications
KR101211978B1 (ko) * 2008-09-03 2012-12-13 미쓰비시 쥬시 가부시끼가이샤 세퍼레이터용 적층 다공성 필름
JP5502707B2 (ja) * 2009-11-20 2014-05-28 三菱樹脂株式会社 積層多孔フィルム、電池用セパレータおよび電池
WO2012042716A1 (ja) * 2010-09-30 2012-04-05 パナソニック株式会社 非水電解質二次電池用セパレータおよびそれを用いた非水電解質二次電池
WO2013136404A1 (ja) * 2012-03-12 2013-09-19 株式会社日立製作所 電気化学素子用セパレータ、その製造方法および電気化学素子
KR102107364B1 (ko) * 2012-06-29 2020-05-07 미쯔비시 케미컬 주식회사 적층 다공 필름, 비수 전해액 이차 전지용 세퍼레이터, 및 비수 전해액 이차 전지
CN102863642B (zh) * 2012-09-17 2013-11-06 中国科学院化学研究所 一种高性能隔膜及其制备方法
CN102868642B (zh) 2012-10-09 2015-11-18 盛科网络(苏州)有限公司 在asic中实现nvgre报文转发的方法和装置
JP2014156574A (ja) * 2013-02-14 2014-08-28 Kee:Kk 耐熱性改良ポリオレフィン微多孔膜及びその製造方法。
US9331323B2 (en) * 2013-08-21 2016-05-03 GM Global Technology Operations LLC Cross-linked multilayer porous polymer membrane battery separators
JP5801983B1 (ja) * 2014-01-10 2015-10-28 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
CN103904276B (zh) * 2014-03-28 2017-09-19 东莞新能源科技有限公司 复合多孔隔离膜及电化学装置
JP2016023307A (ja) * 2014-07-22 2016-02-08 有限会社ケー・イー・イー 耐熱性ポリオレフィン微多孔膜及びその製造方法。
CN106163806B (zh) * 2014-08-29 2018-01-16 住友化学株式会社 层叠体、间隔件和非水二次电池
EP3216070A4 (en) * 2014-11-05 2018-09-26 Yen, William Winchin Microporous sheet product and methods for making and using the same
US20160351872A2 (en) * 2015-01-29 2016-12-01 Innovia Films Limited Separator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1649957A (zh) * 2002-03-26 2005-08-03 塞克姆公司 聚合物接枝的载体聚合物
CN102199320A (zh) * 2010-12-30 2011-09-28 上海恩捷新材料科技股份有限公司 用于形成电池隔离膜的聚合物组合物
CN103131079A (zh) * 2012-11-26 2013-06-05 深圳中兴创新材料技术有限公司 一种微孔膜及电池隔膜

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3467904A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3789105A4 (en) * 2018-05-04 2022-02-23 Shanghai Energy New Materials Technology Co., Ltd. POROUS MEMBRANE FOR WATER TREATMENT AND MANUFACTURING PROCESS THEREOF
JP7046956B2 (ja) 2018-05-04 2022-04-04 シャンハイ・エネルギー・ニュー・マテリアルズ・テクノロジー・カンパニー・リミテッド 水処理用ポーラスメンブレンおよびそれを製造する方法
US11325074B2 (en) 2018-05-04 2022-05-10 Shanghai Energy New Materials Technology Co., Ltd. Porous membrane for water treatment and method for preparing the same
JPWO2020075865A1 (ja) * 2018-10-11 2021-02-15 旭化成株式会社 リチウムイオン電池用セパレータ

Also Published As

Publication number Publication date
EP3467904A1 (en) 2019-04-10
KR102299633B1 (ko) 2021-09-08
JP2019517731A (ja) 2019-06-24
ES2887012T3 (es) 2021-12-21
EP3467904B1 (en) 2021-08-04
US20190157645A1 (en) 2019-05-23
PT3467904T (pt) 2021-09-21
PL3467904T3 (pl) 2021-12-20
CN107452919A (zh) 2017-12-08
EP3467904A4 (en) 2020-01-08
CN107452919B (zh) 2020-08-28
JP6995845B2 (ja) 2022-01-17
HUE055939T2 (hu) 2022-01-28
KR20190025571A (ko) 2019-03-11
LT3467904T (lt) 2021-10-25
DK3467904T3 (da) 2021-09-20
US11031654B2 (en) 2021-06-08

Similar Documents

Publication Publication Date Title
WO2017206593A1 (zh) 一种高浸润性隔离膜及其制备方法
JP5128488B2 (ja) 溶融破断特性に優れるポリオレフィン微多孔膜及びその製造方法
WO2018209794A1 (zh) 形成电池隔离膜的聚合物组合物、电池隔离膜及制备方法
KR102248232B1 (ko) 분리막, 상기 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
CN105355811B (zh) 一种聚烯烃微孔膜、制备方法及锂离子电池
KR102067147B1 (ko) 분리막을 포함하는 리튬 이차 전지 및 이의 제조방법
Huai et al. Preparation and characterization of a special structural poly (acrylonitrile)-based microporous membrane for lithium-ion batteries
WO2017152731A1 (zh) 一种锂离子电池隔膜的制备方法
CN110429231B (zh) 交联型氧化石墨烯/聚丙烯复合隔膜、制备方法及应用
KR20200078407A (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
JP2004247292A (ja) バインダー樹脂、合剤スラリー、非水電解液系二次電池の電極及び非水電解液系二次電池
CN110783515B (zh) 一种高浸润性锂离子电池隔膜
CN114784459B (zh) 一种高耐热高强度的三层共挤隔膜及其制备方法
CN111697189A (zh) 聚烯烃微孔基膜及其制备方法、隔膜和电池
CN110635092A (zh) 极性聚烯烃隔膜及其制备方法
KR20210092600A (ko) 리튬이차전지 분리막용 가교 폴리올레핀 필름 및 그의 제조방법
TW202219089A (zh) 組成物、正極用組成物、正極用漿料、正極、和二次電池
TW201351759A (zh) 離子聚合物膜材料及其製備方法和鋰二次電池
KR101529210B1 (ko) 리튬 이차 전지용 분리막과, 이를 포함하는 리튬 이차 전지
KR102043387B1 (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
TW202206480A (zh) 組成物、正極用組成物、正極用漿料、正極、以及二次電池
CN116845480A (zh) 一种锂离子电池用高离子电导率聚烯烃隔膜的制备方法
CN116034137A (zh) 组合物、树脂组合物、正极用组合物、正极用浆料、正极以及二次电池
CN117497958A (zh) 一种高机械强度的交联醋酸纤维素隔膜及其制备方法与应用
KR100592893B1 (ko) 이차전지세퍼레이터용열가소성수지조성물

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019516040

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17805538

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20187037657

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017805538

Country of ref document: EP

Effective date: 20190102