JP6995845B2 - 高ぬれ性セパレータおよびその製造方法 - Google Patents

高ぬれ性セパレータおよびその製造方法 Download PDF

Info

Publication number
JP6995845B2
JP6995845B2 JP2019516040A JP2019516040A JP6995845B2 JP 6995845 B2 JP6995845 B2 JP 6995845B2 JP 2019516040 A JP2019516040 A JP 2019516040A JP 2019516040 A JP2019516040 A JP 2019516040A JP 6995845 B2 JP6995845 B2 JP 6995845B2
Authority
JP
Japan
Prior art keywords
separator
polyethylene
molecular weight
parts
ethylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019516040A
Other languages
English (en)
Other versions
JP2019517731A (ja
Inventor
チョン、アレックス
シオン、レイ
デン、ホングイ
ホー、ファンボー
ワン、ウェイチアン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Energy New Materials Technology Co Ltd
Original Assignee
Shanghai Energy New Materials Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Energy New Materials Technology Co Ltd filed Critical Shanghai Energy New Materials Technology Co Ltd
Publication of JP2019517731A publication Critical patent/JP2019517731A/ja
Application granted granted Critical
Publication of JP6995845B2 publication Critical patent/JP6995845B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/28Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof by elimination of a liquid phase from a macromolecular composition or article, e.g. drying of coagulum
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/06Polyethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/04Homopolymers or copolymers of ethene
    • C08L23/08Copolymers of ethene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L51/00Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L51/003Compositions of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers grafted on to macromolecular compounds obtained by reactions only involving unsaturated carbon-to-carbon bonds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • H01M50/406Moulding; Embossing; Cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • H01M50/417Polyolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/04Polymers of ethylene
    • B29K2023/06PE, i.e. polyethylene
    • B29K2023/0608PE, i.e. polyethylene characterised by its density
    • B29K2023/065HDPE, i.e. high density polyethylene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29LINDEXING SCHEME ASSOCIATED WITH SUBCLASS B29C, RELATING TO PARTICULAR ARTICLES
    • B29L2031/00Other particular articles
    • B29L2031/755Membranes, diaphragms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/062HDPE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2207/00Properties characterising the ingredient of the composition
    • C08L2207/06Properties of polyethylene
    • C08L2207/068Ultra high molecular weight polyethylene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/491Porosity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/489Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
    • H01M50/494Tensile strength
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Cell Separators (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Description

本発明は電気化学の分野、特にリチウムイオン電池セパレータ及びその製造方法に関する。
リチウムイオン電池は通常、正極、負極、セパレータ、電解質溶液、および電池ケースから構成される。リチウムイオン電池の構造において、セパレータは鍵となる内部要素の一つである。セパレータの主な機能は、電池の正極と負極とを分離して正極と負極との間の直接接触したがって短絡を防止するようにし、かつ電池の充電および放電中に電解質イオンをスムースに通過させて電流を生じさせることである。さらに、電池の作動温度が異常に上昇したときに、セパレータは電解質イオンの移動チャネルを閉じ、電流を切断して電池の安全を確保する。したがって、セパレータの性能が電池の界面構造および内部抵抗を決定し、電池の容量、サイクルおよび安全性能に直接影響することがわかる。優れた性能をもつセパレータは、電池の総体的な性能を改善するのに重要な役割を果たす。現在、リチウムイオン電池用の市販のセパレータは一般的に、ポリオレフィン多孔質フィルムを用いている。
電池セパレータの主要な性能パラメータは、厚さ、気孔率、気孔径、気孔径分布、強度などを含む。電池の内部抵抗を低減させるためには、セパレータの厚さができるだけ薄いことを要するように、電極の面積ができるだけ大きくなければならない。電池セパレータ自体は電気伝導性ではないけれども、導電性イオンがセパレータを通して移動することが必要である。このことは、セパレータ自体が、一定の数の気孔、すなわち気孔率を有することを要する。しかし、過剰な気孔率はセパレータの低い強度をもたらし、それによって電池の総体的な信頼性に影響する。そのうえ、セパレータへの電解質のぬれ性が、イオン移動の抵抗に直接影響する。ぬれ性がよいほど、イオンがセパレータを通して移動する抵抗が小さくなり、電池の内部抵抗が小さくなる。一般的に、気孔径がそれほど大きくない場合には、気孔径分布が均一であるほど、電解質のぬれ性が良好になる。セパレータは、製造および電池部品の組み立ての間に延伸されることを要し、組み立てが完了した後、セパレータが電極材料によって穿刺されていないことを保証することも必要である。したがって、セパレータは、十分な引張強度だけでなく、一定の突刺し強度も必要とする。
事実、同じ厚さをもつセパレータが、一定の気孔率、気孔径および気孔径を有する場合、電解質溶液に対するその表面のぬれ性は主に、セパレータそれ自体の材料に依存する。普通のポリオレフィンセパレータについては、それらの表面は主に非極性基を含み、リチウムイオン電池電解質に対して一般的なぬれ性を示す。ポリオレフィンセパレータの表面にセラミック粒子をコートした後には、セラミック粒子の多大な比表面積が電解質を吸着するのを助け、それによってポリオレフィンセパレータの表面のぬれ性を改善する。しかし、コートされたセラミック粒子が剥離されれば、ポリオレフィンセパレータ基材のぬれ性はいまだに本来の性質を維持し、コートされたセラミック粒子がセパレータの表面で密集しすぎて充填されれば、セパレータの本来の気孔率が塞がれるかもしれず、これはセパレータの正常な使用に影響するかもしれない。したがって、いつまでも安定で改善されたぬれ性を得るためには、ポリオレフィンセパレータの基材の性質を改善することが必要である。
よって、この分野においては、高ぬれ性のポリマーセパレータを提供するという必要性がある。
本発明は、高ぬれ性リチウムイオン電池セパレータを提供することをめざしている。
第1の態様では、本発明は、リチウムイオン電池セパレータであって、前記セパレータは、エチレンコポリマーと、グラフト化ポリオレフィンと、1.0×106ないし10.0×106の分子量を有する超高分子量ポリエチレンと、0.940ないし0.976g/cm3の範囲の密度を有する高密度ポリエチレンとを含み、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、前記エチレンコポリマーの含有量が1-5重量部であり、前記グラフト化ポリオレフィンの含有量が0-5重量部である、リチウムイオン電池セパレータを提供する。
前記セパレータは、リチウムイオン電池電解質との接触角が20°ないし40°、好ましくは21°ないし30°、より好ましくは22°ないし27°である。
好ましい実施形態において、前記セパレータは、突刺し強度が540グラム以上である。
別の好ましい実施形態において、前記セパレータは、厚さが9ないし35μm、ミクロ気孔径が0.3ないし0.65μm、および気孔率が40ないし50%である。
前記エチレンコポリマーは、エチレン-ビニルアセテートコポリマー、エチレン-アクリレートコポリマー、エチレン-メタクリル酸コポリマー、エチレン-アクリル酸コポリマー、およびエチレン-メチルメタクリレートコポリマーからなる群より選択される1以上である。
前記グラフト化ポリオレフィンは、マレイン酸無水物グラフト化ポリエチレン、アクリル酸グラフト化ポリエチレン、およびグリシジルメタクリレートグラフト化ポリエチレンからなる群より選択される1以上である。
別の好ましい実施形態において、前記エチレンコポリマーは密度が0.936ないし0.950g/cm3であり、前記グラフト化ポリオレフィンは密度が0.950ないし1.13g/cm3である。
別の好ましい実施形態において、前記超高分子量ポリエチレンの前記高密度ポリエチレンに対する重量比は1:1ないし1:20、より好ましくは1:2ないし1:10、最も好ましくは1:5ないし1:10である。
別の好ましい実施形態において、前記超高分子量ポリエチレンは、分子量が2.0×106ないし8.0×106、より好ましくは3.5×106ないし5.0×106であり、前記高密度ポリエチレンは、密度が0.940ないし0.960g/cm3、より好ましくは0.950ないし0.960g/cm3である。
別の好ましい実施形態において、前記セパレータはさらに抗酸化剤を含み、前記抗酸化剤の含有量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、0.5-20重量部、好ましくは1.5-16重量部、最も好ましくは2-12重量部である。
前記抗酸化剤は、4,4-チオビス(6-tert-ブチル-m-クレゾール)、ジブチルヒドロキシトルエン、ホスファイト、tert-ブチルヒドロキノン、n-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2-tert-ブチル-6-メチルフェノール、N,N'-ビス(β-ナフチル)-p-フェニレンジアミン、ジラウリルチオジプロピオネート、トリス(ノニルフェニル)ホスファイト、およびトリフェニルホスファイトの1以上であってもよい。
第2の態様において、本発明は、上述した本発明によるセパレータの製造方法であって、前記方法は、以下の工程、
(1) グラフト化ポリオレフィンと、エチレンコポリマーと、1.0×106ないし10.0×106の分子量を有する超高分子量ポリエチレンと、0.940ないし0.976g/cm3の密度を有する高密度ポリエチレンと、抗酸化剤と、気孔形成剤とを混合して混合物を形成する工程と、
(2) 押出機によって、前記混合物を押し出してストリップにする工程と、
(3) 有機溶媒によって、前記ストリップを抽出する工程と、
(4) 延伸機によって、抽出されたストリップを延伸してフィルムにする工程と、
(5) 前記フィルムに加熱硬化を施して巻き取り、リチウムイオン電池セパレータを得る工程と
を含む製造方法を提供する。
好ましい実施形態において、前記エチレンコポリマーの含有量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、1-5重量部、好ましくは1-3重量部である。
別の好ましい実施形態において、前記グラフト化ポリオレフィンの含有量は0-5重量部、より好ましくは0-3重量部である。
別の好ましい実施形態において、前記超高分子量ポリエチレンの前記高密度ポリエチレンに対する重量比は、1:1ないし1:20、より好ましくは1:2ないし1:10、最も好ましくは1:5ないし1:10である。
別の好ましい実施形態において、前記気孔形成剤の量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、500ないし2000重量部、好ましくは700ないし1800重量部、最も好ましくは800ないし1600重量部である。前記気孔形成剤は、天然鉱物油、C6-15アルカン、C8-15脂肪族カルボン酸、C1-4アルキルC8-15脂肪族カルボキシレート、およびC2-6ハロゲン化アルキルの1以上であってもよい。
前記抗酸化剤の量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、0.5-20重量部、好ましくは1.5-16重量部、最も好ましくは2-12重量部である。前記抗酸化剤は、4,4-チオビス(6-tert-ブチル-m-クレゾール)、ジブチルヒドロキシトルエン、ホスファイト、tert-ブチルヒドロキノン、n-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシ-フェニル)-プロピオネート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2-tert-ブチル-6-メチルフェノール、N,N'-ビス(β-ナフチル)-p-フェニレンジアミン、ジラウリルチオジプロピオネート、トリス(ノニルフェニル)ホスファイト、およびトリフェニルホスファイトの1以上であってもよい。
別の好ましい実施形態において、抽出に用いられる前記有機溶媒は、ジクロロメタン、n-ヘキサン、エチルアセテートまたはアセトンから選択される。
第3の態様において、本発明は、正極と、負極と、前記正極と前記負極との間のセパレータと、電解質とを含み、前記セパレータが本発明の第1の態様に記載したセパレータである、リチウムイオン電池を提供する。
第4の態様において、本発明は、リチウムイオン電池セパレータの製造のためのエチレンコポリマーBの使用であって、前記エチレンコポリマーBは、エチレン-ビニルアセテートコポリマー、エチレン-アクリレートコポリマー、エチレン-メタクリル酸コポリマー、エチレン-アクリル酸コポリマー、およびエチレン-メチルメタクリレートコポリマーからなる群より選択される1以上である使用を提供する。
したがって、本発明は、高ぬれ性ポリマーセパレータを提供する。
実施形態
ここにおいて使用される場合、「リチウムイオン電池」はリチウム二次電池、リチウムイオン二次電池などを含み、前記リチウムイオン二次電池はポリマーリチウムイオン二次電池を含む。
本発明において、特記しない限り、数値範囲「a-b」は、aとbとの間の任意の実数の組合せの省略表現を意味し、ここでaおよびbは両方とも実数である。たとえば、「0-5」という数値範囲は、「0-5」の間のすべての実数がここに列挙されたことを意味し、「0-5」はこれらの数値の組合せの省略表現にすぎない。
本発明において、特記しない限り、整数の数値範囲「a-b」は、aとbとの間の任意の整数の組合せの省略表現を意味し、ここでaおよびbの両方は整数である。たとえば、整数の数値範囲「1-N」は、1, 2...N, を意味し、ここでNは整数である。
特記しない限り、本明細書において使用される場合の用語「a」または「an」は、「少なくとも1」を意味する。
ここにおいて開示されている「範囲」は、最小限および最大限の形式にある。それは、それぞれ、1以上の最小限、および1以上の最大限であるかもしれない。所与の範囲は、最小限および最大限を選択することによって定義される。選択された最小限および最大限は、特別の範囲の境界を定義する。このように定義されうるすべての範囲は、包含的で組合せ可能であり、すなわち任意の最小限を任意の最大限と組合せて範囲を作ることができる。たとえば、60-120および80-110という範囲を特定のパラメータについて列挙すると、これらは60-110および80-120という範囲をも含むものと理解すべきものとする。また、最小範囲の値1および2を列挙したならば、かつ最大範囲の値3, 4および5を列挙したならば、下記の範囲: 1-3, 1-4, 1-5, 2-3, 2-4,および2-5がすべて含まれる。
広範で集中的な研究の後、発明者は、通常のセパレータに要求される成分に加えて、エチレンコポリマーを加えたならば、高ぬれ性電池セパレータを得ることができ、前記セパレータは、かなり改善されたぬれ性を有する一方、従来のポリマーセパレータの良好な気孔率、気孔径、気孔径分布およびフィルム強度を有することを見出した。
セパレータ
本発明によって提供されるリチウムイオン電池セパレータは、高ぬれ性電池セパレータである。前記セパレータは、リチウムイオン電池電解質との接触角が、20°ないし40°、好ましくは21°ないし30°、より好ましくは22°ないし27°である。同時に、前記セパレータは、他の優れた性質を維持することができ、たとえば、前記セパレータは、厚さが9ないし35μm、ミクロ気孔径が0.3ないし0.65μm、および気孔率が40ないし50%である。
本発明による電気化学デバイス用セパレータを製造するための原材料は以下を含んでいてもよい。
(a) 1.0×106ないし10.0×106の分子量を有する超高分子量ポリエチレンと、0.940-0.976g/cm3の範囲の密度を有する高密度ポリエチレンとの混合物であって、前記超高分子量ポリエチレンの前記高密度ポリエチレンに対する重量比が1:1ないし1:20である混合物;
(b) 前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、5-2000重量部の気孔形成剤;
(c) 前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、0.5-20重量部の抗酸化剤;
(d) 前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、0-5重量部のグラフト化ポリオレフィン;および
(e) 前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、1-5重量部のエチレンコポリマー。
本発明の一実施形態において、前記超高分子量ポリエチレンは、分子量が2.0×106ないし8.0×106、好ましくは3.5×106ないし5.0×106である。
本発明の一実施形態において、前記高密度ポリエチレンは、密度が0.940-0.960g/cm3、好ましくは0.950-0.960g/cm3である。
本発明の一実施形態において、前記超高分子量ポリエチレンの前記高密度ポリエチレンに対する重量比は1:2ないし1:10、好ましくは1:5ないし1:10である。
本発明の一実施形態において、前記グラフト化ポリオレフィンの含有量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、0-5重量部、好ましくは0-3重量部である。
本発明の好ましい実施形態において、前記エチレンコポリマーの含有量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、1-3重量部である。
本発明の一実施形態において、前記エチレンコポリマーは密度が0.936-0.950g/cm3であり、前記グラフト化ポリオレフィンは密度が0.950-1.13g/cm3である。
本発明の一実施形態において、前記気孔形成剤は、天然鉱物油、C6-15アルカン、C8-15脂肪族カルボン酸、C1-4アルキルC8-15脂肪族カルボキシレート、およびC2-6ハロゲン化アルキルの1以上であってもよい。前記気孔形成剤の量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、700ないし1800重量部、好ましくは800ないし1600重量部である。
本発明の一実施形態において、前記抗酸化剤は、4,4-チオビス(6-tert-ブチル-m-クレゾール)、ジブチルヒドロキシトルエン、ホスファイト、tert-ブチルヒドロキノン、n-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシ-フェニル)-プロピオネート、1,1,3-トリス(2-メチル-4-ヒドロキシ-5-tert-ブチルフェニル)ブタン、2-tert-ブチル-6-メチルフェノール、N,N'-ビス(β-ナフチル)-p-フェニレンジアミン、ジラウリルチオジプロピオネート、トリス(ノニルフェニル)ホスファイト、およびトリフェニルホスファイトの1以上であってもよい。前記抗酸化剤の量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、1.5-16重量部、好ましくは2-12重量部である。
セパレータの製造方法
本発明による電気化学デバイス用セパレータの製造方法は下記の工程を含む。
工程1, 組成に従って上記の原材料を混合して混合物を形成する;
工程2, 押出機によって、前記混合物を押し出してストリップにする;
工程3, 有機溶媒によって、前記ストリップを抽出する;
工程4, 延伸機によって、抽出されたストリップを延伸してフィルムにする;
工程5, 前記フィルムに加熱硬化を施して巻き取り、本発明によるリチウムイオン電池セパレータを得る。
上記工程1において、前記超高分子量ポリエチレンの前記高密度ポリエチレンに対する重量比は、1:1ないし1:20、好ましくは1:2ないし1:10、最も好ましくは1:5ないし1:10である。
上記工程1において、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、前記エチレンコポリマーの量は、1-5重量部、好ましくは1-5重量部であり、前記グラフト化ポリオレフィンの量は0-5重量部、好ましくは0-3重量部である。
上記工程1において、前記気孔形成剤の量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、500ないし2000重量部、好ましくは700ないし1800重量部、最も好ましくは800ないし1600重量部である。
上記工程1において、前記抗酸化剤の含有量は、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、0.5-20重量部、好ましくは1.5-16重量部、最も好ましくは2-12重量部である。
上記工程1において、混合は、この分野における通常の方法、たとえば、限定されないが、撹拌、ボールミリング、超音波分散などによって行うことができる。
上記工程2において、本発明の一実施形態では、前記混合物を二軸押出機に供給し、前記二軸押出機内において、150℃超(好ましくは170-180℃)で、超高分子量ポリエチレンと、高密度ポリエチレンと、エチレンコポリマーと、任意のグラフト化ポリオレフィンと、抗酸化剤とを、気孔形成剤中に連続的に溶解させた後、前記二軸押出機によって(150-250rpmの速度で)連続的に押し出す。押出混合物を(スリット)ダイを通してキャスティング冷却ローラーに押し出し、75-85℃でキャストしてストリップにする。
上記工程3において、前記ストリップから前記気孔形成剤を除去するために、抽出を用いる。抽出に用いられる有機溶媒は、ジクロロメタン、n-ヘキサン、エチルアセテート、またはアセトンから選択される。
上記工程4において、抽出されたストリップを二方向延伸機に110-130℃で供給し、延伸してフィルムにする。好ましい実施形態において、フィルムに二次抽出を施し、二次抽出では一般的に、一次抽出で用いたのと同じ有機溶媒を用いる。
上記工程5において、前記フィルムを110-130℃で10-20分間加熱硬化し、フィルムを15-25m/分の速度で巻き取る。
セパレータの使用
本発明によるセパレータは、リチウムイオン電池およびその製造に用いることができる。リチウムイオン電池は、正極と、負極と、前記正極と前記負極との間の本発明のセパレータと、電解質とを含む。
この分野における通常の電解質を用いてもよく、たとえば、限定されないが、電解質はアルキルカーボネート有機溶媒を含む。
本発明において上で述べた特徴または実施例において述べた特徴を、任意の組合せで用いてもよい。明細書に記載したすべての特徴を任意の形態の組成物との組合せで用いることができ、明細書に記載した種々の特徴を、同じ、等しいまたは類似の目的を提供する任意の代替的な特徴によって置き替えることができる。したがって、特記しない限り、記載した特徴は、等価なまたは類似の特徴の一般的な例にすぎない。
本発明の主要な特徴は、以下のとおりである:
本発明によるセパレータは、高い電解質ぬれ性、ならびに改善した気孔率、気孔径、気孔径分布およびフィルム強度を有する。
本発明をさらに、特定の例との組合せで下記に説明する。これらの例は、本発明を説明するためのみに用いられるが、本発明の範囲を限定することを意図していないことが理解されるべきである。具体的な条件を特定しない、下記の実施例における実験方法は一般的に、通常の条件下または製造業者によって推奨される条件下で行われる。すべてのパーセンテージ、比、割合、または部は、特記しない限り、重量に基づく。
本発明において、体積中のパーセント重量は当業者によく知られており、たとえば、100ml溶液中の溶質の重量をいう。
特記しない限り、ここにおいて用いられるすべての専門的および科学的な用語は、この分野において用いられるものと同じ意味を有する。また、記載したのと類似のまたは等価な任意の方法または材料が本発明の方法において用いられるであろう。ここにおいて記載した好ましい実施形態および材料は、説明の目的のみのためである。
実験方法
1. 厚さの測定
Mahr Inc.、ドイツからの膜厚計1216を用いることによって、GB/T6672-2001、プラスチックフィルムおよびシートの厚さの測定方法に従って、厚さを測定する。
2. 抵抗の測定
マルチメータを用いてセパレータ上で10cm離れた二点で抵抗を測定し、採用した結果は異なる測定点での10の測定値の平均である。
3. 透気度の測定
ガーレーデンソメータ4110を用いることによって、GB/T1037、プラスチックフィルムおよびシートの水蒸気透気度の試験方法に従って、透気度を測定する。
4. 気孔率の測定
Quantachrome Inc.から入手できるPoreMaster-33、自動水銀ポロシメータを用いることによって、気孔率を測定する。
5. 気孔径の測定
UV-3200ラージスクリーン走査型UV分光光度計を用いることによって気孔径を測定する。
6. 接触角の測定
Kruss Inc.、ドイツから入手できるDSA100、ビデオ接触角分析装置を用いることによってリチウムイオン電池電解質との接触角を測定する。測定に用いる電解質は、リン酸リチウム鉄円筒型セル用の電解質である。
7. 突刺し強度の測定
Shanghai QingJi Corporationから入手できる万能試験機QJ210Aを用いることによって、GB/T 2679.7、板紙の突刺し強度に従って、突刺し強度を測定する。
8. 引張強度の測定
Shanghai QingJi Corporationから入手できる万能試験機QJ210Aを用いることによって、ASTM d882-2002、薄いプラスチックシートの引張特性のための標準試験方法に従って、引張強度を測定する。
下記の実施例において、マレイン酸無水物グラフト化ポリエチレンは0.956g/cm3の密度を有し、エチレン-ビニルアセテートコポリマーおよびエチレン-アクリル酸コポリマーは0.946g/cm3の密度を有する。
比較例1
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、9.6gのマレイン酸無水物グラフト化ポリエチレン、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤およびマレイン酸無水物グラフト化ポリエチレンを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得て、その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000001
実施例1
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、9.6gのエチレン-ビニルアセテートコポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤およびエチレン-ビニルアセテートコポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得た。その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000002
実施例2
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、4.8gのマレイン酸無水物グラフト化ポリエチレン、4.8gのエチレン-ビニルアセテートコポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤、マレイン酸無水物グラフト化ポリエチレンおよびエチレン-ビニルアセテートコポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得た。その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000003
実施例3
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、3.2gのマレイン酸無水物グラフト化ポリエチレン、6.4gのエチレン-ビニルアセテートコポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤、マレイン酸無水物グラフト化ポリエチレンおよびエチレン-ビニルアセテートコポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得た。その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000004
実施例4
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、6.4gのマレイン酸無水物グラフト化ポリエチレン、3.2gのエチレン-ビニルアセテートコポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤、マレイン酸無水物グラフト化ポリエチレンおよびエチレン-ビニルアセテートコポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得た。その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000005
実施例5
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、3.2gのマレイン酸無水物グラフト化ポリエチレン、6.4gのエチレン-アクリル酸コポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤、マレイン酸無水物グラフト化ポリエチレンおよびエチレン-アクリル酸コポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得た。その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000006
比較例2
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、および抗酸化剤を、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得て、その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000007
比較例3
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、16.0gのエチレン-ビニルアセテートコポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤、およびエチレン-ビニルアセテートコポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得て、その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000008
比較例4
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、32.0gのエチレン-ビニルアセテートコポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤、およびエチレン-ビニルアセテートコポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得て、その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000009
比較例5
220gの高密度ポリエチレン(0.956g/cm3の密度を有する)、100gの超高分子量ポリエチレン(5.0×106の分子量を有する)、6.4gのn-オクタデシル-β-(3,5-ジ-tert-ブチル-4-ヒドロキシフェニル)-プロピオネート(抗酸化剤)、3.2gのトリエトキシビニルシラングラフト化ポリエチレン、6.4gのエチレン-ビニルアセテートコポリマー、および2200gの鉱物油を、連続混合仕込みケトルに供給し、50rpmの速度で撹拌して原材料を均一に混合した。
混合物を連続的に二軸押出機に供給し、二軸押出機中において180℃で、超高分子量ポリエチレン、高密度ポリエチレン、抗酸化剤、トリエトキシビニルシラングラフト化ポリエチレンおよびエチレン-ビニルアセテートコポリマーを、鉱物油に溶解し、二軸押出機によって200rpmの速度で連続的に押し出した。混合物は連続的にスリットダイに入り、スリットダイを通してキャスティング冷却ローラーに押し出され、80℃でキャストされてストリップになった。
得られたストリップを、抽出用のジクロロメタンを含む抽出槽に入れて、ストリップから鉱物油を除去した。抽出したストリップを連続的に二軸延伸機に120℃で供給して延伸させてフィルムにした後、得られたフィルム材料にジクロロメタンで二次抽出を施し、得られたフィルムを脱イオン水で洗浄し、120℃で15分間加熱硬化し、20m/分の速度で巻き取ってセパレータを得た。その具体的な性能パラメータを試験し、下記の表に示したようであった。
Figure 0006995845000010
上記の結果からわかるように、エチレンコポリマーを加えることなしに製造されたセパレータは、電解質との接触角が比較的大きく、よって抵抗が比較的大きい(比較例2)。エチレンコポリマーの添加の後、電解質との接触角および抵抗がかなり低減した。これは主に、エチレンコポリマーが多量のエステル基またはカルボン酸官能基を含み、これらは極性においてリチウムイオン電池電解質の主な成分に類似しているという事実によるであろう。結果として、改善されたぬれ性が得られる。単にマレイン酸無水物グラフト化ポリエチレンを添加することによって製造されたセパレータは、電解質との比較的大きな接触角を示す(比較例1)。
また、上記の結果からわかるように、超高分子量ポリエチレンおよび高密度ポリエチレンの総重量が100部であることを基準にして、5重量部未満のエチレンコポリマーの添加はセパレータの気孔径および強度にそれほど影響をもたず、それによってセパレータ材料の本来の性質を維持し、一方で改善されたぬれ性を得る。エチレン-ビニルアセテートコポリマーの量が5重量部である場合(比較例3)、セパレータの突刺し強度および引張強度が減少し始める。エチレン-ビニルアセテートコポリマーの量が10重量部である場合(比較例4)、セパレータの突刺し強度および引張強度がかなり減少し、これはこのようなコポリマー自体の低い強度によるであろう。さらに、比較例5からわかるように、エステル基またはカルボン酸官能基をもたないグラフト化ポリマーを、エチレン-ビニルアセテートと組合せて用いた場合、30°未満の接触角を得ることはできず、セパレータの突刺し強度および引張強度もかなり低減し、これらはこのようなグラフト化ポリマーとエチレン-ビニルアセテートコポリマーとの間の不十分な相溶性によるであろう。
上記は本発明の好ましい実施例にすぎず、本発明の本質的な技術的内容の範囲を限定することを意図していない。本発明の本質的な技術的内容は、添付した特許請求の範囲に概括的に定義されている。他人によって完成されたあらゆる技術的実体または方法は、それが本出願の特許請求の範囲に定義されたのと正確に同じであるか、または等価な変化であるならば、特許請求の範囲内にあるとみなされる。

Claims (5)

  1. 正極と、負極と、前記正極と前記負極との間のセパレータと、電解質とを含むリチウムイオン電池であって、前記セパレータは、エチレンコポリマーと、グラフト化ポリオレフィンと、1.0×10ないし10.0×10の分子量を有する超高分子量ポリエチレンと、0.940ないし0.976g/cmの範囲の密度を有する高密度ポリエチレンとを含み、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、前記エチレンコポリマーの含有量が1-5重量部であり、前記グラフト化ポリオレフィンの含有量が0-5重量部であり、
    前記電解質が、リン酸リチウム鉄円筒型セル用の電解質であり、
    且つ、前記セパレータは、前記電解質との接触角が20°ないし40°である、リチウムイオン電池。
  2. 前記セパレータにおいて、前記エチレンコポリマーは、エチレン-ビニルアセテートコポリマー、エチレン-アクリレートコポリマー、エチレン-メタクリル酸コポリマー、エチレン-アクリル酸コポリマー、およびエチレン-メチルメタクリレートコポリマーからなる群より選択される1以上である、請求項1に記載のリチウムイオン電池
  3. 前記セパレータにおいて、前記グラフト化ポリオレフィンは、マレイン酸無水物グラフト化ポリエチレン、アクリル酸グラフト化ポリエチレン、およびグリシジルメタクリレートグラフト化ポリエチレンからなる群より選択される1以上である、請求項1に記載のリチウムイオン電池
  4. 前記セパレータにおいて、前記超高分子量ポリエチレンの前記高密度ポリエチレンに対する重量比が1:1ないし1:20である、請求項1に記載のリチウムイオン電池
  5. 請求項1~4のいずれかに記載のリチウムイオン電池に含まれるセパレータの製造方法であって、前記方法は、以下の工程、
    (1) グラフト化ポリオレフィンと、エチレンコポリマーと、1.0×10ないし10.0×10の分子量を有する超高分子量ポリエチレンと、0.940ないし0.976g/cmの範囲の密度を有する高密度ポリエチレンと、抗酸化剤と、気孔形成剤とを混合して混合物を形成する工程と、
    (2) 押出機によって、前記混合物を押し出してストリップにする工程と、
    (3) 有機溶媒によって、前記ストリップを抽出する工程と、
    (4) 延伸機によって、抽出されたストリップを延伸してフィルムにする工程と、
    (5) 前記フィルムに加熱硬化を施して巻き取り、リチウムイオン電池セパレータを得る工程と
    を含み、
    前記(1)工程において、前記超高分子量ポリエチレンおよび前記高密度ポリエチレンの総重量が100部であることを基準にして、前記エチレンコポリマーを1-5重量部の量で加え、前記グラフト化ポリオレフィンを0-5重量部の量で加え、前記超高分子量ポリエチレンの前記高密度ポリエチレンに対する重量比が、1:1ないし1:20であり、且つ、
    前記セパレータは、前記リチウムイオン電池電解質との接触角が20°ないし40°であり、前記リチウムイオン電池電解質は、リン酸リチウム鉄円筒型セル用の電解質である、製造方法。
JP2019516040A 2016-06-01 2017-04-13 高ぬれ性セパレータおよびその製造方法 Active JP6995845B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201610380478.0 2016-06-01
CN201610380478.0A CN107452919B (zh) 2016-06-01 2016-06-01 一种高浸润性隔离膜及其制备方法和用途
PCT/CN2017/080411 WO2017206593A1 (zh) 2016-06-01 2017-04-13 一种高浸润性隔离膜及其制备方法

Publications (2)

Publication Number Publication Date
JP2019517731A JP2019517731A (ja) 2019-06-24
JP6995845B2 true JP6995845B2 (ja) 2022-01-17

Family

ID=60479611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019516040A Active JP6995845B2 (ja) 2016-06-01 2017-04-13 高ぬれ性セパレータおよびその製造方法

Country Status (12)

Country Link
US (1) US11031654B2 (ja)
EP (1) EP3467904B1 (ja)
JP (1) JP6995845B2 (ja)
KR (1) KR102299633B1 (ja)
CN (1) CN107452919B (ja)
DK (1) DK3467904T3 (ja)
ES (1) ES2887012T3 (ja)
HU (1) HUE055939T2 (ja)
LT (1) LT3467904T (ja)
PL (1) PL3467904T3 (ja)
PT (1) PT3467904T (ja)
WO (1) WO2017206593A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108619923A (zh) 2018-05-04 2018-10-09 上海恩捷新材料科技股份有限公司 水处理多孔膜及其制备方法
CN108636131A (zh) * 2018-05-04 2018-10-12 上海恩捷新材料科技股份有限公司 亲水性多孔膜及其制备方法
CN108666506A (zh) * 2018-05-07 2018-10-16 苏州睿烁环境科技有限公司 一种具有复合树脂的锂电池隔膜及其制备方法
KR101955911B1 (ko) 2018-08-23 2019-03-12 더블유스코프코리아 주식회사 분리막 및 그 제조방법
EP4220845A3 (en) * 2018-10-11 2023-08-30 Asahi Kasei Kabushiki Kaisha Separator for lithium ion battery
CN110911615A (zh) * 2019-11-20 2020-03-24 芜湖天弋能源科技有限公司 一种耐高温性锂离子电池隔膜及其制备方法及其制备的锂离子电池
EP3832770A1 (en) * 2019-12-06 2021-06-09 W-Scope Korea Co., Ltd. Crosslinked separator and method of manufacturing the same
WO2022092984A1 (ko) * 2020-11-02 2022-05-05 주식회사 엘지에너지솔루션 비수전해질 전지 세퍼레이터용 조성물, 비수전해질 전지 세퍼레이터, 및 비수전해질 전지
CN114497880A (zh) * 2022-01-28 2022-05-13 武汉微美新材料科技有限公司 隔膜及包括所述隔膜的锂离子电池
CN114665227B (zh) * 2022-03-23 2024-04-09 哈尔滨工业大学无锡新材料研究院 一种高浸润性的锂离子电池隔膜及其制备方法
CN114976479A (zh) * 2022-06-10 2022-08-30 河北金力新能源科技股份有限公司 一种高浸润的锂离子电池隔膜、锂电池及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156574A (ja) 2013-02-14 2014-08-28 Kee:Kk 耐熱性改良ポリオレフィン微多孔膜及びその製造方法。
JP2016023307A (ja) 2014-07-22 2016-02-08 有限会社ケー・イー・イー 耐熱性ポリオレフィン微多孔膜及びその製造方法。

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3351495A (en) * 1966-11-22 1967-11-07 Grace W R & Co Battery separator
US4699857A (en) * 1986-10-15 1987-10-13 W. R. Grace & Co. Battery separator
JP2657434B2 (ja) * 1991-07-19 1997-09-24 東燃株式会社 ポリエチレン微多孔膜、その製造方法及びそれを用いた電池用セパレータ
JP3455285B2 (ja) * 1994-05-16 2003-10-14 三井化学株式会社 高分子量エチレン・α−オレフィン共重合体よりなる多孔性二軸配向フィルムおよびその用途
EP0989619B1 (en) * 1998-09-22 2006-06-28 Japan Vilene Company, Ltd. Alkaline battery separator
US6849688B2 (en) 2002-03-26 2005-02-01 Sachem, Inc. Polymer grafted support polymers
EP1614710B1 (en) 2003-03-24 2019-04-24 Asahi Kasei Kabushiki Kaisha Microporous polyethylene film
KR100780523B1 (ko) * 2003-10-27 2007-11-30 아사히 가세이 케미칼즈 가부시키가이샤 폴리올레핀 미다공막 및 그의 제조 방법
EP1689008B1 (en) * 2005-01-26 2011-05-11 Japan Vilene Company, Ltd. Battery separator and battery comprising the same
CN101536220B (zh) * 2006-12-26 2013-07-10 三菱化学株式会社 锂过渡金属类化合物粉末、其制造方法、及锂二次电池
US8304113B2 (en) * 2007-03-05 2012-11-06 Advanced Membrane Systems, Inc. Polyolefin and ceramic battery separator for non-aqueous battery applications
US20110159346A1 (en) * 2008-09-03 2011-06-30 Mitsubishi Plastics, Inc. Laminated porous film for separator
JP5502707B2 (ja) * 2009-11-20 2014-05-28 三菱樹脂株式会社 積層多孔フィルム、電池用セパレータおよび電池
JP4981195B2 (ja) * 2010-09-30 2012-07-18 パナソニック株式会社 非水電解質二次電池用セパレータおよびそれを用いた非水電解質二次電池
CN102199320B (zh) * 2010-12-30 2013-05-08 上海恩捷新材料科技股份有限公司 用于形成电池隔离膜的聚合物组合物
WO2013136404A1 (ja) * 2012-03-12 2013-09-19 株式会社日立製作所 電気化学素子用セパレータ、その製造方法および電気化学素子
JP5930032B2 (ja) * 2012-06-29 2016-06-08 三菱樹脂株式会社 積層多孔フィルム、非水電解液二次電池用セパレータ、及び非水電解液二次電池
CN102863642B (zh) * 2012-09-17 2013-11-06 中国科学院化学研究所 一种高性能隔膜及其制备方法
CN102868642B (zh) 2012-10-09 2015-11-18 盛科网络(苏州)有限公司 在asic中实现nvgre报文转发的方法和装置
CN103131079B (zh) * 2012-11-26 2015-04-22 深圳中兴创新材料技术有限公司 一种微孔膜及电池隔膜
US9331323B2 (en) * 2013-08-21 2016-05-03 GM Global Technology Operations LLC Cross-linked multilayer porous polymer membrane battery separators
JP5801983B1 (ja) * 2014-01-10 2015-10-28 東レバッテリーセパレータフィルム株式会社 電池用セパレータ及びその製造方法
CN103904276B (zh) * 2014-03-28 2017-09-19 东莞新能源科技有限公司 复合多孔隔离膜及电化学装置
KR20170038761A (ko) * 2014-08-29 2017-04-07 스미또모 가가꾸 가부시키가이샤 적층체, 세퍼레이터 및 비수 이차 전지
WO2016073580A1 (en) * 2014-11-05 2016-05-12 William Winchin Yen Microporous sheet product and methods for making and using the same
US20160351872A2 (en) * 2015-01-29 2016-12-01 Innovia Films Limited Separator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014156574A (ja) 2013-02-14 2014-08-28 Kee:Kk 耐熱性改良ポリオレフィン微多孔膜及びその製造方法。
JP2016023307A (ja) 2014-07-22 2016-02-08 有限会社ケー・イー・イー 耐熱性ポリオレフィン微多孔膜及びその製造方法。

Also Published As

Publication number Publication date
KR102299633B1 (ko) 2021-09-08
EP3467904A1 (en) 2019-04-10
CN107452919A (zh) 2017-12-08
ES2887012T3 (es) 2021-12-21
LT3467904T (lt) 2021-10-25
JP2019517731A (ja) 2019-06-24
HUE055939T2 (hu) 2022-01-28
DK3467904T3 (da) 2021-09-20
PL3467904T3 (pl) 2021-12-20
US20190157645A1 (en) 2019-05-23
CN107452919B (zh) 2020-08-28
KR20190025571A (ko) 2019-03-11
US11031654B2 (en) 2021-06-08
EP3467904B1 (en) 2021-08-04
PT3467904T (pt) 2021-09-21
EP3467904A4 (en) 2020-01-08
WO2017206593A1 (zh) 2017-12-07

Similar Documents

Publication Publication Date Title
JP6995845B2 (ja) 高ぬれ性セパレータおよびその製造方法
JP6148331B2 (ja) 水系コーティング液を用いたリチウム二次電池用有/無機複合コーティング多孔性分離膜の製造方法
JPWO2016104792A1 (ja) ポリオレフィン微多孔膜、その製造方法および電池用セパレータ
JP4940367B1 (ja) 非水電解質蓄電デバイス用セパレータ、非水電解質蓄電デバイス及びそれらの製造方法
Ren et al. A microporous gel electrolyte based on poly (vinylidene fluoride-co-hexafluoropropylene)/fully cyanoethylated cellulose derivative blend for lithium-ion battery
JP2009537637A (ja) ポリオレフィン微多孔膜、その製造方法、電池用セパレータ及び電池
CN107785521B (zh) 一种电池隔膜和锂离子电池及其制备方法
WO2018209794A1 (zh) 形成电池隔离膜的聚合物组合物、电池隔离膜及制备方法
JP2013142156A (ja) ポリオレフィン系微多孔膜及びその製造方法
KR20140003410A (ko) 비수 전해질 전지용 세퍼레이터 및 비수 전해질 이차 전지
JP2020527846A (ja) 分離膜を含むリチウム二次電池及びその製造方法
JP2014063676A (ja) 二次電池正極用水系バインダー液、およびこれを用いてなる二次電池正極用水系ペースト、二次電池正極、二次電池
JP6723052B2 (ja) 蓄電デバイス用セパレータ
WO2018120879A1 (zh) 一种电池隔离膜
JP4267634B2 (ja) 3次元延伸特性を有する微多孔性ポリオレフィン系隔離膜及びその製造方法
KR20200078407A (ko) 가교 폴리올레핀 분리막 및 이의 제조방법
JP2012234707A (ja) 二次電池電極のバインダー用樹脂組成物、及びこれを用いてなるバインダー液、二次電池電極、二次電池
TWI452755B (zh) 隔離膜及其製造方法
CN113105695B (zh) 聚乙烯树脂组合物和由其制造的二次电池用分离膜
KR101674985B1 (ko) 분리막 조성물, 상기 조성물로 형성된 분리막 및 이를 이용한 전지
JP5295857B2 (ja) 非水電解液電池用セパレータ及び非水電解液電池
JP2003231772A (ja) ポリオレフィン製微多孔膜
JP2012136704A (ja) ポリエチレン製微多孔膜及びそれを用いた電池
KR101529210B1 (ko) 리튬 이차 전지용 분리막과, 이를 포함하는 리튬 이차 전지
JP2021044153A (ja) 非水電解質電池用セパレータ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191101

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210126

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211006

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20211006

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20211019

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20211026

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211215

R150 Certificate of patent or registration of utility model

Ref document number: 6995845

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150