WO2013136404A1 - 電気化学素子用セパレータ、その製造方法および電気化学素子 - Google Patents

電気化学素子用セパレータ、その製造方法および電気化学素子 Download PDF

Info

Publication number
WO2013136404A1
WO2013136404A1 PCT/JP2012/056233 JP2012056233W WO2013136404A1 WO 2013136404 A1 WO2013136404 A1 WO 2013136404A1 JP 2012056233 W JP2012056233 W JP 2012056233W WO 2013136404 A1 WO2013136404 A1 WO 2013136404A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
resin
solvent
electrochemical element
electrochemical
Prior art date
Application number
PCT/JP2012/056233
Other languages
English (en)
French (fr)
Inventor
児島映理
古谷隆博
渡辺利幸
小山邦彦
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to KR1020137001970A priority Critical patent/KR101370674B1/ko
Priority to JP2012552165A priority patent/JP5191022B1/ja
Priority to US13/810,421 priority patent/US20140030606A1/en
Priority to CN2012800021384A priority patent/CN103430350A/zh
Priority to PCT/JP2012/056233 priority patent/WO2013136404A1/ja
Publication of WO2013136404A1 publication Critical patent/WO2013136404A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/44Fibrous material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/403Manufacturing processes of separators, membranes or diaphragms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/414Synthetic resins, e.g. thermoplastics or thermosetting resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • H01M50/429Natural polymers
    • H01M50/4295Natural cotton, cellulose or wood
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/431Inorganic material
    • H01M50/434Ceramics
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/446Composite material consisting of a mixture of organic and inorganic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to an electrochemical element excellent in safety and reliability, a separator that can constitute the electrochemical element, and a method for manufacturing the separator.
  • Electrochemical elements using non-aqueous electrolytes such as lithium secondary batteries and non-aqueous electrolytes typified by supercapacitors are characterized by high energy density, and are used in mobile devices such as mobile phones and notebook personal computers. It is widely used as a power source, and there is a tendency that the capacity of the element further increases as the performance of the portable device increases, and ensuring further safety is an important issue.
  • a polyolefin-based porous film having a thickness of about 20 to 30 ⁇ m is used as a separator interposed between a positive electrode and a negative electrode.
  • a complicated process such as biaxial stretching or extraction of a pore opening agent is used in order to open fine and uniform holes, and the cost is high.
  • separators are expensive.
  • the constituent resin of the separator is melted below the thermal runaway temperature of the battery to close the pores, thereby increasing the internal resistance of the battery and improving the safety of the battery in the event of a short circuit.
  • polyethylene having a melting point of about 120 to 140 ° C. is used.
  • meltdown may occur in which the separator breaks down.
  • the positive and negative electrodes are in direct contact with each other, and the temperature rises. In the worst case, there is a risk of ignition.
  • Patent Document 1 discloses an isolation that includes a cross-linked resin and functions as a separator on the electrode surface by irradiating energy rays after applying a paint including a monomer or an oligomer to the electrode surface. Techniques for forming materials have been proposed. According to the technique described in Patent Document 1, a non-aqueous electrolyte secondary battery having good safety at high temperatures can be manufactured at low cost.
  • the electrochemical element may be excellent in reliability, for example, an internal short circuit (fine short circuit) due to generation of lithium dendrite does not occur during charging and discharging. Required.
  • Patent Document 1 Even with the technique described in Patent Document 1, it is possible to ensure the reliability of the electrochemical element to some extent, but there is room for improvement as compared with, for example, a battery using a conventional polyolefin-based porous film separator.
  • the present invention has been made in view of the above circumstances, and an object of the present invention is to provide an electrochemical element excellent in safety and reliability, a separator that can constitute the electrochemical element, and a method for manufacturing the same. .
  • the method for producing a separator for an electrochemical device according to the present invention includes a resin raw material comprising at least one of a monomer and an oligomer that can be polymerized by irradiation with energy rays, and a solvent that can dissolve the resin raw material.
  • A) and a solvent (b) that can agglomerate the resin raw material by solvent shock, and a ratio V sb / volume V sa of the solvent (a) to volume V sb of the solvent (b)
  • a step of forming a resin (A) having a crosslinked structure by irradiating a coating film of the product with an energy ray, and drying the coating film of the composition for forming a separator after irradiation with the energy beam to form holes. And having a degree.
  • the separator for electrochemical elements of the present invention is characterized by being manufactured by the method for manufacturing a separator for electrochemical elements of the present invention.
  • the electrochemical device of the present invention has a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte
  • the separator is the electrochemical device separator of the present invention.
  • an electrochemical element excellent in safety and reliability a separator that can constitute the electrochemical element, and a method for manufacturing the separator.
  • the separator for electrochemical devices of the present invention contains at least a resin raw material composed of at least one of a monomer and an oligomer that can be polymerized by irradiation with energy rays, and a solvent.
  • An energy ray is applied to the coating film of the separator forming composition applied to the substrate, the step (1) of preparing the separator forming composition, the step (2) of applying the separator forming composition to the substrate, and the separator forming composition.
  • a resin (A) having a crosslinked structure hereinafter sometimes simply referred to as “resin (A)”
  • the film is dried to produce pores (4) and is produced by the method of the present invention, and the resin containing the resin (A) formed in the step (3) is included as a constituent resin.
  • the resin (A) according to the separator of the present invention has a crosslinked structure in at least a part thereof. Therefore, even when the inside of the electrochemical device having the separator of the present invention (the electrochemical device of the present invention) is at a high temperature, the separator is not easily deformed due to shrinkage or melting of the resin (A), and the shape is maintained well. Therefore, occurrence of a short circuit between the positive electrode and the negative electrode is suppressed. Therefore, the electrochemical device of the present invention having the separator of the present invention has good safety at high temperatures.
  • the electrochemical device of the present invention having the separator of the present invention has good charge / discharge characteristics and excellent reliability.
  • Step (1) of the method of the present invention is a step of preparing a separator-forming composition containing at least a resin raw material composed of at least one of a monomer and an oligomer that can be polymerized by irradiation with energy rays, and a solvent.
  • Resin raw materials such as monomers and oligomers that can be polymerized by irradiation with energy rays are polymerized in the step (3) to form a resin (A) having a crosslinked structure.
  • the resin (A) include, for example, acrylic resin monomers [alkyl (meth) acrylates such as methyl methacrylate and methyl acrylate and derivatives thereof] and oligomers thereof, and an acrylic resin formed from a crosslinking agent; urethane acrylate And a crosslinking resin formed from an epoxy acrylate and a crosslinking agent; a crosslinking resin formed from a polyester acrylate and a crosslinking agent; and the like.
  • the crosslinking agent includes dioxane glycol diacrylate, tricyclodecane dimethanol diacrylate, ethylene oxide modified trimethylolpropane triacrylate, dipentaerythritol pentaacrylate, caprolactone modified dipentaerythritol hexaacrylate, ⁇ -Divalent or polyvalent acrylic monomers such as caprolactone modified dipentaerythritol hexaacrylate can be used.
  • the resin (A) formed in the step (3) is the acrylic resin
  • a monomer that can be polymerized by irradiation with energy rays used in the separator-forming composition prepared in the step (1) (Hereinafter simply referred to as “monomer”), the acrylic resin monomer and the cross-linking agent exemplified above can be used, and polymerization is performed by irradiation with energy rays related to the separator-forming composition used in step (1).
  • the possible oligomers hereinafter simply referred to as “oligomers”
  • the oligomers of the acrylic resin monomers exemplified above can be used.
  • the resin (A) formed in the step (3) is a cross-linked resin formed from the urethane acrylate and the cross-linking agent
  • the simple substance used in the separator-forming composition prepared in the step (1) can be used for the monomer, and urethane acrylate can be used for the oligomer used in the separator-forming composition prepared in step (1).
  • the resin (A) formed in the step (3) is a cross-linked resin formed from the epoxy acrylate and the cross-linking agent
  • the simple substance used in the separator-forming composition prepared in the step (1) can be used for the monomer, and epoxy acrylate can be used for the oligomer used in the separator-forming composition prepared in step (1).
  • the resin (A) formed in the step (3) is a cross-linked resin formed from the polyester acrylate and the cross-linking agent
  • the simple substance used in the separator-forming composition prepared in the step (1) can be used for the monomer, and polyester acrylate can be used for the oligomer used in the separator-forming composition prepared in step (1).
  • the resin (A) includes a crosslinked resin derived from an unsaturated polyester resin formed from a mixture of an ester composition produced by condensation polymerization of a divalent or polyvalent alcohol and a dicarboxylic acid and a styrene monomer; Resins formed from functional epoxies, polyfunctional oxetanes or mixtures thereof; various polyurethane resins produced by the reaction of polyisocyanates and polyols; and the like can also be used.
  • the resin (A) formed in the step (3) is a crosslinked resin derived from the unsaturated polyester resin
  • the monomer used for the separator-forming composition prepared in the step (1) A styrene monomer can be used, and the above-mentioned ester composition can be used for the oligomer used in the composition for forming a separator prepared in step (1).
  • the resin (A) is a resin formed from a polyfunctional epoxy, polyfunctional oxetane or a mixture thereof
  • examples of the polyfunctional epoxy include ethylene glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, Neopentyl glycol diglycidyl ether, glycerol polyglycidyl ether, sorbitol glycidyl ether, 3,4-epoxycyclohexenylmethyl-3 ′, 4′-epoxycyclohexene carboxylate, 1,2: 8,9 diepoxy limonene
  • Examples of the polyfunctional oxetane include 3-ethyl-3 ⁇ [(3-ethyloxetane-3-yl) methoxy] methyl ⁇ oxetane and xylene bisoxetane.
  • the separator-forming composition prepared in the step (1) is used.
  • the monomer to be used the above-described polyfunctional epoxy and polyfunctional oxetane can be used.
  • the resin (A) is various polyurethane resins produced by reaction of polyisocyanate and polyol
  • examples of the polyisocyanate include hexamethylene diisocyanate, phenylene diisocyanate, toluene diisocyanate (TDI), and 4.4′-diphenylmethane diisocyanate. (MDI), isophorone diisocyanate (IPDI), bis- (4-isocyanatocyclohexyl) methane, and the like.
  • the polyol include polyether polyol, polycarbonate polyol, and polyester polyol.
  • the resin (A) formed in the step (3) is various polyurethane resins produced by the reaction of polyisocyanate and polyol
  • the simple substance used in the separator-forming composition prepared in the step (1) can be used for the monomer, and the polyol exemplified above can be used for the oligomer used in the composition for forming a separator prepared in step (1).
  • each of the exemplified resins (A) monofunctional monomers such as isobornyl acrylate, methoxypolyethylene glycol acrylate, and phenoxypolyethylene glycol acrylate can be used in combination. Therefore, in the case where the resin (A) formed in the step (3) has a structural portion derived from these monofunctional monomers, in the composition for forming a separator prepared in the step (1), As the monomer, the exemplified monofunctional monomer can be used together with the other monomers and oligomers exemplified above.
  • the composition for forming a separator usually contains an energy ray-sensitive polymerization initiator.
  • the polymerization initiator include 2,4,6-trimethylbenzoylbisphenylphosphine oxide, 2,2-dimethoxy-2-phenylacetophenone, 2-hydroxy-2-methylpropiophenone, and the like.
  • the amount of the polymerization initiator used is preferably 1 to 10 parts by mass with respect to 100 parts by mass of the total amount of monomers and oligomers (in the case where only one of monomers and oligomers is used).
  • a solvent (a) capable of dissolving the resin raw material and a solvent (b) capable of aggregating the resin raw material by a solvent shock are used as the solvent.
  • the separator-forming composition is applied to the substrate in the step (2).
  • the uniformity of the formed coating film is improved, and the uniformity of the separator is also improved.
  • the resin raw material is aggregated to some extent by a solvent shock caused by the action of the solvent (b).
  • the aggregation of the resin raw material in the separator-forming composition does not impair the homogeneity of the coating film formed in the step (2), and the resin (A) is irradiated by energy irradiation in the step (3).
  • the separator When the solvent (a) and the solvent (b) are removed by drying in the subsequent step (4), the separator is finely and finely formed in the separator. Many homogeneous pores are formed. Therefore, the separator manufactured by the method of the present invention has excellent lithium ion permeability and excellent short circuit resistance during charging of the electrochemical device.
  • the solvent (a) related to the composition for forming a separator can dissolve resin raw materials such as monomers and oligomers satisfactorily.
  • a solubility parameter hereinafter referred to as “SP value”.
  • a solvent of 8.9 or more is preferred.
  • the SP value of the solvent (a) is preferably 9.9 or less.
  • the solvent (a) include, for example, toluene (SP value: 8.9), butyraldehyde (SP value: 9.0), ethyl acetate (SP value: 9.0), ethyl acetate (SP value: 9.1), tetrahydrofuran (SP value: 9.1), benzene (SP value: 9.2), methyl ethyl ketone (SP value: 9.3), benzaldehyde (SP value: 9.4), chlorobenzene (SP value: 9.5), ethylene glycol monobutyl ether (SP value: 9.5), 2-ethylhexanol (SP value: 9.5), methyl acetate (SP value: 9.6), dichloroethyl ether (SP value: 9) .8), 1,2-dichloroethane (SP value: 9.8), acetone (SP value: 9.8), cyclohexanone (SP value: 9.9), and the like.
  • SP value: 8.9 tolu
  • the solvent (b) related to the composition for forming a separator can be added to a resin raw material solution containing the resin raw material and the solvent (a), thereby aggregating the resin raw material by a solvent shock.
  • the value is preferably greater than 10 and 15 or less.
  • the solvent (b) include, for example, acetic acid (SP value: 10.1), m-cresol (SP value: 10.2), aniline (SP value: 10.3), i-octanol (SP value). : 10.3), cyclopentanone (SP value: 10.4), ethylene glycol monoethyl ether (SP value: 10.5), t-butyl alcohol (SP value: 10.6), pyridine (SP value: 10.7), propylonitrile (SP value: 10.8), N, N-dimethylacetamide (SP value: 10.8), 1-pentanol (SP value: 10.9), nitroethane (SP value: 11.1), furfural (SP value: 11.2), 1-butanol (SP value: 11.4), cyclohexanol (SP value: 11.4), isopropanol (SP value: 11.5), acetonitrile ( SP value 11.9), N, N-dimethylformamide (SP value: 11.9), benzyl alcohol (SP value
  • the ratio V sb / V sa of the volume V sa of the solvent (a) and the volume V sb of the solvent (b) used in the composition for forming a separator is fine and homogeneous in the separator by using the solvent (b). From the viewpoint of ensuring a good effect of forming a large number of holes, 0.04 to 0.2 is set.
  • the solvent used in the composition for forming a separator is used in combination with the solvent (a) and the solvent (b), so that it is not necessary to use a material for assisting such pore formation.
  • a separator having a large number of fine and homogeneous pores can be produced.
  • the separator of the present invention can also contain inorganic fine particles (B). By containing the inorganic fine particles (B), the strength and dimensional stability of the separator can be further increased.
  • the separator forming composition may contain inorganic fine particles (B).
  • the inorganic fine particles (B) include inorganic oxide fine particles such as iron oxide, silica (SiO 2 ), alumina (Al 2 O 3 ), TiO 2 (titania), BaTiO 3 ; aluminum nitride, silicon nitride, etc.
  • Inorganic nitride fine particles Inorganic nitride fine particles; poorly soluble ionic crystal fine particles such as calcium fluoride, barium fluoride and barium sulfate; covalently bonded crystal fine particles such as silicon and diamond; clay fine particles such as montmorillonite;
  • the inorganic oxide fine particles may be fine particles such as boehmite, zeolite, apatite, kaolin, mullite, spinel, olivine, mica, or a mineral resource-derived material or an artificial product thereof.
  • a conductive material exemplified by a metal a conductive oxide such as SnO 2 , tin-indium oxide (ITO), a carbonaceous material such as carbon black, graphite, or the like is used as a material having electrical insulation (
  • covering with the said inorganic oxide etc. may be sufficient.
  • the inorganic fine particles those exemplified above may be used alone or in combination of two or more.
  • inorganic fine particles exemplified above inorganic oxide fine particles are more preferable, and alumina, titania, silica, and boehmite are more preferable.
  • the average particle diameter of the inorganic fine particles (B) is preferably 0.001 ⁇ m or more, more preferably 0.1 ⁇ m or more, and preferably 15 ⁇ m or less, and 1 ⁇ m or less. It is more preferable.
  • the average particle size of the inorganic fine particles (B) was measured by, for example, dispersing the inorganic fine particles (B) in an undissolved medium using a laser scattering particle size distribution analyzer (for example, “LA-920” manufactured by HORIBA). It can be defined as the number average particle size [the average particle size of the inorganic fine particles (B) in the examples described later is a value measured by this method].
  • the inorganic fine particles (B) may have a shape close to a sphere, or may have a plate shape or a fiber shape. Is preferably a plate-like particle or a particle having a secondary particle structure in which primary particles are aggregated. In particular, from the viewpoint of improving the porosity of the separator, particles having a secondary particle structure in which primary particles are aggregated are more preferable.
  • the plate-like particles and secondary particles include plate-like alumina, plate-like boehmite, secondary particle-like alumina, and secondary particle-like boehmite.
  • the volume V A of resin (A), the the ratio V A / V B the volume V B of the inorganic fine particles (B), 0.6 or higher It is preferable that it is 3 or more.
  • V A / V B is at the above value, for example, a wound electrode group (especially a cross-section used for a prismatic battery or the like has a flat shape by the action of the flexible resin (A). Even when it is bent as in the case of the wound body electrode group), the occurrence of defects such as cracks can be suppressed more satisfactorily, and a separator with superior short circuit resistance can be obtained.
  • the V A / V B is preferably 9 or less, and more preferably 8 or less.
  • the separator can be improved in strength and dimensional stability by adding inorganic fine particles (B).
  • the resin (A) and the inorganic fine particles (B) are the main components of the separator when a porous substrate made of a fibrous material (C) described later is not used.
  • the total volume (V A + V B ) of the resin (A) and the inorganic fine particles (B) is the total volume of the constituent components of the separator (the volume excluding the pores).
  • the volume ratio of the constituent components of the separator. Preferably 50% by volume or more, more preferably 70% by volume or more (may be 100% by volume).
  • the separator of the present invention when a porous substrate made of a fibrous material (C) described later is used for the separator of the present invention, the total volume (V A + V B ) of the resin (A) and the inorganic fine particles (B) is The separator is preferably 20% by volume or more and more preferably 40% by volume or more in the total volume of the constituent components.
  • the V A / V B satisfies the above value and the V A + V B satisfies the above value in the manufactured separator. It is desirable to adjust the addition amount of the inorganic fine particles (B) so as to satisfy.
  • the separator of the present invention may contain a fibrous material (C).
  • the strength and dimensional stability of the separator can be further increased by including the fibrous material (C).
  • the fibrous material (C) is contained in the separator-forming composition or the substrate on which the separator-forming composition is applied.
  • a porous substrate formed of the fibrous material (C) may be used.
  • the fibrous material (C) has a heat resistant temperature (temperature at which no deformation is observed during visual observation) of 150 ° C. or more, has an electrical insulating property, is electrochemically stable, and is electrochemical.
  • the material is not particularly limited as long as it is stable to the non-aqueous electrolyte of the element and the solvent used in manufacturing the separator.
  • the “fibrous material” in the present invention means an aspect ratio [length in the long direction / width in the direction perpendicular to the long direction (diameter)] of 4 or more, and the aspect ratio Is preferably 10 or more.
  • constituent materials of the fibrous material (C) include, for example, cellulose and its modified products (carboxymethyl cellulose (CMC), hydroxypropyl cellulose (HPC), etc.), polyolefin (polypropylene (PP), and a copolymer of propylene. Etc.), polyester (polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polybutylene terephthalate (PBT), etc.), polyacrylonitrile (PAN), polyaramid, polyamideimide, polyimide and other resins, glass, alumina, zirconia, silica Inorganic oxides such as these can be used, and these constituent materials may contain two or more kinds. Further, the fibrous material (C) may contain various known additives (for example, an antioxidant in the case of a resin) as necessary.
  • CMC carboxymethyl cellulose
  • HPC hydroxypropyl cellulose
  • PP polypropylene
  • Etc. polyester
  • PET polyethylene terephthal
  • the diameter of the fibrous material (C) may be equal to or less than the thickness of the separator, but is preferably 0.01 to 5 ⁇ m, for example.
  • the diameter is too large, the entanglement between the fibrous materials is insufficient, and when the sheet substrate is formed to constitute the base of the separator, the strength may be reduced and handling may be difficult.
  • the diameter is too small, the pores of the separator become too small and the effect of improving lithium ion permeability may be reduced.
  • the state of the fibrous material (C) in the separator is, for example, that the angle of the long axis (long axis) with respect to the separator surface is preferably 30 ° or less on average, and 20 ° or less. Is more preferable.
  • the content of the fibrous material (C) in the separator is, for example, preferably 10% by volume or more, and more preferably 20% by volume or more, among all the constituent components.
  • the content of the fibrous material (C) in the separator is preferably 70% by volume or less, and preferably 60% by volume or less, but when used as a porous substrate described later, 90% by volume. % Or less, more preferably 80% by volume or less.
  • the fibrous material (C) is used so that the content of the fibrous material (C) satisfies the above value in the separator after production. It is desirable to adjust the amount of the composition for forming a separator applied to the surface of the porous substrate made of the fibrous material (C).
  • the separator of the present invention preferably has a shutdown function from the viewpoint of further improving the safety of the electrochemical device used.
  • a thermoplastic resin having a melting point of 80 ° C. or higher and 140 ° C. or lower [hereinafter referred to as “thermomeltable resin (D)]” is contained, or liquid non-liquidity is formed by heating.
  • the hot-melt resin (D) melts to close the pores of the separator, or the heat-swellable resin (E)
  • the non-aqueous electrolyte (liquid non-aqueous electrolyte) in the electrochemical element is absorbed to cause a shutdown that suppresses the progress of the electrochemical reaction.
  • a heat-meltable resin (D) or a heat-swellable resin (E) is added to the separator-forming composition. May be contained.
  • the heat-meltable resin (D) is a resin having a melting point, that is, a melting temperature measured using DSC of 80 ° C. or higher and 140 ° C. or lower according to JIS K 7121. It is preferable to use an electrochemically stable material that is stable with respect to the non-aqueous electrolyte of the electrochemical element and the solvent used in manufacturing the separator, and that is not easily oxidized and reduced within the operating voltage range of the electrochemical element. . Specific examples include polyethylene (PE), polypropylene (PP), copolymerized polyolefin, polyolefin derivatives (such as chlorinated polyethylene), polyolefin wax, petroleum wax, and carnauba wax.
  • copolymer polyolefin examples include ethylene-vinyl monomer copolymers, more specifically, ethylene-acrylic copolymers such as ethylene-propylene copolymers, EVA, ethylene-methyl acrylate copolymers, and ethylene-ethyl acrylate copolymers.
  • An acid copolymer can be illustrated.
  • the structural unit derived from ethylene in the copolymerized polyolefin is desirably 85 mol% or more.
  • polycycloolefin etc. can also be used.
  • the heat-meltable resin (D) the above-exemplified resins may be used alone or in combination of two or more.
  • the heat-meltable resin (D) among the materials exemplified above, PE, polyolefin wax, PP, or EVA having a structural unit derived from ethylene of 85 mol% or more is suitably used. Moreover, the heat-meltable resin (D) may contain various known additives (for example, antioxidants) added to the resin as necessary.
  • the heat-swellable resin (E) in the temperature range (approximately 70 ° C. or lower) where the battery is normally used, the electrolyte solution is not absorbed or the amount of absorption is limited. However, when heated to the required temperature (Tc), a resin is used that absorbs the electrolyte and swells greatly, and the degree of swelling increases with increasing temperature. In an electrochemical device using a separator containing a heat-swellable resin (E), a flowable electrolyte solution that is not absorbed by the heat-swellable resin (E) exists in the pores of the separator at a temperature lower than Tc. Therefore, the lithium ion conductivity inside the separator is increased, and an electrochemical device having good load characteristics is obtained.
  • thermal swelling increases as the temperature rises (hereinafter, referred to as “thermal swelling”). ).
  • the heat-swellable resin (E) absorbs the electrolyte in the element and swells greatly, and the swollen heat-swellable resin (E) closes the pores of the separator.
  • the flowable electrolytic solution is reduced and the electrochemical device is in a liquid withdrawn state, thereby suppressing the reactivity between the electrolytic solution and the active material and further improving the safety of the electrochemical device.
  • the temperature is higher than Tc, the liquid withering further proceeds due to thermal swellability, and the reaction of the battery is further suppressed, so that safety at high temperatures can be further enhanced.
  • the temperature at which the heat-swellable resin (E) starts to show heat-swellability is preferably 75 ° C. or higher.
  • the temperature (Tc) at which the internal resistance of the device increases due to a significant decrease in Li ion conductivity is about 80 ° C. This is because it can be set as described above.
  • the temperature at which the heat swellable resin (E) starts to exhibit the heat swellability is set to set Tc to about 130 ° C. or less. 125 ° C.
  • the temperature showing the thermal swellability is too high, the thermal runaway reaction of the active material in the device may not be sufficiently suppressed, and the safety improvement effect of the electrochemical device may not be sufficiently ensured. If the temperature shown is too low, the conductivity of lithium ions may be too low in the operating temperature range (approximately 70 ° C. or lower) of ordinary electrochemical devices.
  • the heat swellable resin (E) does not absorb the electrolyte solution as much as possible and has less swelling. This is because in an operating temperature range of an electrochemical element, for example, room temperature, it is more electrochemical that the electrolyte is held in a state where it can flow into the pores of the separator rather than taken into the heat-swellable resin (E). This is because the characteristics such as the load characteristics of the element are improved.
  • Electrolyte volume to heat swelling resin (E) absorption at room temperature (25 ° C.) may be assessed by the degree of swelling B R defined by the following equation represents the volume change of the thermal swelling resin (E) (1) it can.
  • B R (V 0 / V i ) -1 (1)
  • V 0 is the volume of the heat-swellable resin after 24 hours immersion at 25 ° C. in the electrolyte (E) (cm 3)
  • V i is the thermal swelling resin before immersion in electrolyte solution
  • the swelling degree B R cold heat swelling resin (E) at (25 ° C.) is preferably 1 or less, the absorption of the electrolyte solution it swelling by small, i.e., B R it is desirable that the smallest possible value close to 0. Further, it is desirable that the temperature change of the degree of swelling is as small as possible on the lower temperature side than the temperature exhibiting thermal swellability.
  • the degree of swelling of the heat-swellable resin (E) defined by the above formula (2) may be 10 or less because it may cause deformation of the electrochemical element if it becomes too large.
  • the degree of swelling defined by the above formula (2) is directly measured by measuring the change in size of the heat-swellable resin (E) by using a method such as light scattering or image analysis of an image taken with a CCD camera. Although it can estimate by doing, it can measure more correctly, for example using the following method.
  • a binder resin having a known degree of swelling at 25 ° C. and 120 ° C. which is defined in the same manner as in the above formulas (1) and (2), is mixed with the heat-swellable resin (E) in the solution or emulsion.
  • a slurry is prepared, this is apply
  • the film was immersed in an electrolyte at 25 ° C. for 24 hours to measure the mass, and the electrolyte was heated to 120 ° C., and the mass after holding at 120 ° C. for 1 hour was measured.
  • formula by (3) to (9) for calculating the swelling degree B T In the following formulas (3) to (9), the volume increase of components other than the electrolytic solution when the temperature is raised from 25 ° C. to 120 ° C. can be ignored.
  • V i M i ⁇ W / P A (3)
  • V b (M 0 ⁇ M i ) / P B (4)
  • V C M 1 / P C -M 0 / P B (5)
  • V V M i ⁇ (1 ⁇ W) / P V (6)
  • V 0 V i + V b ⁇ V V ⁇ (B B +1) (7)
  • V D V V ⁇ (B B +1) (8)
  • B T ⁇ V 0 + V C ⁇ V D ⁇ (B C +1) ⁇ / V 0 ⁇ 1 (9)
  • V i Volume (cm 3 ) of the heat-swellable resin (E) before being immersed in the electrolytic solution
  • V 0 volume (cm 3 ) of the heat-swellable resin (E) after being immersed in the electrolytic solution at 25 ° C.
  • V b volume of the electrolyte solution (cm 3 ) absorbed in the film after being immersed in the electrolyte solution at room temperature for 24 hours
  • V C The volume of the electrolyte solution absorbed by the film (cm) during the period from when the electrolyte solution was immersed in the electrolyte solution at room temperature for 24 hours until the electrolyte solution was heated to 120 ° C. and further passed at 120 ° C. for 1 hour.
  • V V volume (cm 3 ) of the binder resin before being immersed in the electrolytic solution
  • V D volume of the binder resin (cm 3 ) after being immersed in the electrolytic solution at room temperature for 24 hours
  • M i mass (g) of the film before being immersed in the electrolytic solution
  • M 0 mass (g) of the film after being immersed in the electrolytic solution at room temperature for 24 hours
  • M l After immersing in the electrolyte solution at room temperature for 24 hours, the electrolyte solution was heated to 120 ° C., and the film mass (g) after 1 hour at 120 ° C.
  • W Mass ratio of the heat-swellable resin (E) in the film before being immersed in the electrolytic solution
  • P A specific gravity (g / cm 3 ) of the heat-swellable resin (E) before being immersed in the electrolytic solution
  • P B Specific gravity of electrolyte at room temperature (g / cm 3 )
  • P C specific gravity of the electrolyte at a predetermined temperature (g / cm 3)
  • P V Specific gravity (g / cm 3 ) of the binder resin before being immersed in the electrolytic solution
  • B B degree of swelling of the binder resin after being immersed in the electrolyte at room temperature for 24 hours
  • B C The degree of swelling of the binder resin at the time of temperature increase defined by the above formula (2).
  • the heat-swellable resin (E) starts to show the heat-swellability when it reaches any temperature of 75 to 125 ° C. in an organic solvent solution of lithium salt, and preferably swells in the solution. what degree B R and B T may swell so as to satisfy the value of the is recommended.
  • the heat-swellable resin (E) is an electrochemically stable material that has heat resistance and electrical insulation, is stable with respect to the electrolyte, and is not easily oxidized or reduced in the operating voltage range of the battery.
  • a resin cross-linked body can be mentioned. More specifically, styrene resin [polystyrene (PS)], styrene butadiene rubber (SBR), acrylic resin [polymethyl methacrylate (PMMA), etc.], polyalkylene oxide [polyethylene oxide (PEO)], etc.
  • PVDF Polyvinylidene fluoride
  • urea resin polyurethane
  • E Polyvinylidene fluoride
  • the heat-swellable resin (E) may contain various known additives that are added to the resin, for example, an antioxidant, as necessary.
  • crosslinked styrene resin a crosslinked acrylic resin, and a crosslinked fluororesin are preferable, and crosslinked PMMA is particularly preferably used.
  • Tg glass transition temperature
  • the volume change accompanying the temperature change is reversible to some extent so that even if it expands due to the temperature rise, it shrinks again when the temperature is lowered.
  • a material that can be heated to 200 ° C or higher is used. You can choose. Therefore, even if heating is performed in the manufacturing process of the separator or the like, the resin is not dissolved or the thermal swellability of the resin is not impaired, and the handling in the manufacturing process including a general heating process becomes easy.
  • the form of the heat-meltable resin (D) or the heat-swellable resin (E) is particularly Although not limited, it is preferable to use particles having a fine particle shape.
  • the size of the particles should be smaller than the thickness of the separator when dried, and the average particle size is 1/100 to 1/3 of the thickness of the separator. Specifically, it is preferable that the average particle size is 0.1 to 20 ⁇ m. When the particle diameter of the shutdown resin particles is too small, the gap between the particles becomes small, the ion conduction path becomes long, and the characteristics of the electrochemical device may be deteriorated.
  • the average particle diameter of the shutdown resin particles is determined by, for example, using a laser scattering particle size distribution analyzer (for example, “LA-920” manufactured by HORIBA) and dispersing the fine particles in a medium that does not swell the shutdown resin (for example, water). It can prescribe
  • the shutdown resin may be in a form other than the above, and may be present in a state of being laminated and integrated on the surface of another constituent element, for example, inorganic fine particles or a fibrous material. Specifically, it may exist as core-shell structured particles having inorganic fine particles as a core and a shutdown resin as a shell, or may be a multi-layered fiber having a shutdown resin on the surface of a core material.
  • the content of the shutdown resin in the separator is preferably as follows, for example, in order to make it easier to obtain the shutdown effect.
  • the volume of the shutdown resin in the total volume of the constituent components of the separator is preferably 10% by volume or more, and more preferably 20% by volume or more.
  • the volume of the shutdown resin in the total volume of the constituent components of the separator is preferably 50% by volume or less, and more preferably 40% by volume or less. .
  • the shutdown resin when the shutdown resin is contained in the separator-forming composition, it is desirable to adjust the addition amount of the shutdown resin so that the shutdown resin content satisfies the above value in the manufactured separator. .
  • the solid content including a monomer, an oligomer, a polymerization initiator, and inorganic fine particles (B) used as necessary is preferably 10 to 50% by mass, for example.
  • step (2) of the method of the present invention the separator-forming composition prepared in step (1) is applied to a substrate to form a coating film.
  • an electrode for an electrochemical element positive electrode or negative electrode
  • a porous substrate a substrate such as a film or a metal foil, and the like
  • a substrate such as a film or a metal foil, and the like
  • a separator integrated with the electrode can be manufactured.
  • a porous substrate is used as the base material
  • a multilayer separator having a layer formed from the separator-forming composition and the porous substrate can be produced.
  • the formed separator can be peeled from the substrate to produce an independent membrane separator.
  • porous substrate used for the base material examples include a woven fabric composed of at least one fibrous material containing the above-mentioned exemplified materials as constituent components, and a nonwoven fabric having a structure in which these fibrous materials are entangled with each other. And a porous sheet. More specifically, non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.) and PAN non-woven fabric can be exemplified.
  • non-woven fabrics such as paper, PP non-woven fabric, polyester non-woven fabric (PET non-woven fabric, PEN non-woven fabric, PBT non-woven fabric, etc.) and PAN non-woven fabric can be exemplified.
  • a microporous film for example, a microporous film made of polyolefin such as PE or PP
  • the shutdown function can be imparted to the separator also by using such a porous substrate.
  • a porous substrate generally has low heat resistance and may cause a short circuit due to contact between the positive electrode and the negative electrode, for example, due to shrinkage due to an increase in temperature in the electrochemical element.
  • a layer containing the resin (A) having excellent heat resistance is formed on the surface of such a porous substrate. Since the shrinkage can be suppressed, a separator capable of constructing an electrochemical element excellent in safety is obtained.
  • the separator-forming composition When applying the separator-forming composition to the substrate, various known application methods can be employed. Moreover, when using an electrode for electrochemical devices or a porous substrate as a base material, the composition for forming a separator may be impregnated in the base material.
  • step (3) of the method of the present invention the resin (A) is formed by irradiating the coating film of the composition for forming a separator applied to the substrate with energy rays.
  • Examples of the energy rays applied to the coating film of the separator-forming composition include visible light, ultraviolet light, radiation, and electron beam. However, since safety is higher, it is more preferable to use visible light or ultraviolet light. preferable.
  • the wavelength of the energy beam can be 320 to 390 nm
  • the irradiation intensity can be 623 to 1081 mJ / cm 2 .
  • the energy beam irradiation conditions are not limited to the above-described conditions.
  • step (4) of the method of the present invention the coating film of the separator-forming composition after irradiation with energy rays is dried to remove the solvent and form pores.
  • the drying conditions may be appropriately selected according to the type of the solvent used in the separator-forming composition so that it can be removed satisfactorily. Specific examples include, for example, a drying temperature of 20 to 80 ° C. and a drying time of 30 minutes to 24 hours.
  • the drying method includes a thermostatic bath, a dryer, a hot plate ( A method using a method in which a separator is directly formed on the electrode surface can be employed.
  • the drying conditions in the step (4) are not limited to the above conditions.
  • the separator formed through the step (4) is peeled off from the base material and used for manufacturing an electrochemical element.
  • the formed separator (or layer) may be used for the production of an electrochemical element without peeling off from the substrate.
  • a layer containing the shutdown resin (a layer formed only with the shutdown resin, a layer containing the shutdown resin and the binder, or the like) is formed on one side or both sides of the manufactured separator, so that the shutdown resin is formed on the separator. May be provided.
  • the separator of the present invention has a porosity of 10% or more in order to ensure a sufficient amount of electrolyte solution and improve lithium ion permeability in a dry state.
  • the separator porosity is preferably 70% or less in a dry state.
  • the porosity of the separator in a dry state: P (%) is obtained by calculating the sum of each component i from the thickness of the separator, the mass per area, and the density of the constituent components using the following equation (10). Can be calculated.
  • a i ratio of component i when the total mass is 1
  • ⁇ i density of component i (g / cm 3 )
  • m mass per unit area of the separator (g / cm 2 )
  • t thickness of separator (cm).
  • the separator of the present invention is carried out by a method according to JIS P 8117, and has a Gurley value of 10 to 300 sec indicated by the number of seconds that 100 ml of air passes through the membrane under a pressure of 0.879 g / mm 2. It is desirable. When the Gurley value is too large, the lithium ion permeability is decreased. On the other hand, when the Gurley value is too small, the strength of the separator may be decreased. Further, the strength of the separator is desirably 50 g or more in terms of piercing strength using a needle having a diameter of 1 mm. If the piercing strength is too low, a short circuit may occur due to the breakthrough of the separator when lithium dendrite is generated. By employ
  • the thickness of the separator of the present invention is preferably 6 ⁇ m or more and more preferably 10 ⁇ m or more from the viewpoint of more reliably separating the positive electrode and the negative electrode. On the other hand, if the separator is too thick, the energy density of the battery may be reduced. Therefore, the thickness is preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less.
  • the electrochemical device of the present invention has a positive electrode, a negative electrode, a separator, and a non-aqueous electrolyte, and the separator only needs to be the separator of the present invention.
  • Various configurations and structures that are employed in the electrochemical devices that are used can be applied.
  • the electrochemical element of the present invention includes non-aqueous electrolyte secondary batteries, non-aqueous electrolyte primary batteries, supercapacitors, and the like, and can be preferably applied to applications that require safety at high temperatures.
  • the electrochemical device of the present invention is a non-aqueous electrolyte secondary battery will be described in detail.
  • non-aqueous electrolyte secondary battery examples include a cylindrical shape (such as a square cylindrical shape or a cylindrical shape) using a steel can or an aluminum can as an outer can. Moreover, it can also be set as the soft package battery which used the laminated film which vapor-deposited the metal as an exterior body.
  • the positive electrode is not particularly limited as long as it is a positive electrode used in conventionally known nonaqueous electrolyte secondary batteries, that is, a positive electrode containing an active material capable of occluding and releasing Li ions.
  • an active material a lithium-containing transition metal oxide having a layered structure represented by Li 1 + x MO 2 ( ⁇ 0.1 ⁇ x ⁇ 0.1, M: Co, Ni, Mn, Al, Mg, etc.), LiMn
  • spinel lithium manganese oxide in which 2 O 4 or a part of the element is substituted with another element, or an olivine type compound represented by LiMPO 4 (M: Co, Ni, Mn, Fe, etc.) It is.
  • lithium-containing transition metal oxide having a layered structure examples include LiCoO 2 and LiNi 1-x Co xy Al y O 2 (0.1 ⁇ x ⁇ 0.3, 0.01 ⁇ y ⁇ 0. 2) and other oxides containing at least Co, Ni and Mn (LiMn 1/3 Ni 1/3 Co 1/3 O 2 , LiMn 5/12 Ni 5/12 Co 1/6 O 2 , LiMn 3 / 5 Ni 1/5 Co 1/5 O 2 etc.).
  • a carbon material such as carbon black is used as the conductive auxiliary agent, and a fluorine resin such as PVDF is used as the binder.
  • the positive electrode active material-containing layer is formed by a positive electrode mixture in which these materials and an active material are mixed. For example, it is formed on a current collector.
  • a metal foil such as aluminum, a punching metal, a net, an expanded metal, or the like can be used.
  • an aluminum foil having a thickness of 10 to 30 ⁇ m is preferably used.
  • the lead portion on the positive electrode side is usually provided by leaving the exposed portion of the current collector without forming the positive electrode active material-containing layer on a part of the current collector and forming the lead portion at the time of producing the positive electrode.
  • the lead portion is not necessarily integrated with the current collector from the beginning, and may be provided by connecting an aluminum foil or the like to the current collector later.
  • the negative electrode is not particularly limited as long as it is a negative electrode used in a conventionally known non-aqueous electrolyte secondary battery, that is, a negative electrode containing an active material capable of occluding and releasing Li ions.
  • an active material capable of occluding and releasing Li ions for example, carbon that can occlude and release lithium, such as graphite, pyrolytic carbons, cokes, glassy carbons, fired organic polymer compounds, mesocarbon microbeads (MCMB), and carbon fibers as active materials
  • MCMB mesocarbon microbeads
  • elements such as Si, Sn, Ge, Bi, Sb, In and their alloys, lithium-containing nitrides, oxides and other compounds that can be charged and discharged at a low voltage close to lithium metal, or lithium metals and lithium / aluminum alloys can also be used as a negative electrode active material.
  • a negative electrode mixture obtained by appropriately adding a conductive additive (carbon material such as carbon black) or a binder such as PVDF to these negative electrode active materials is formed into a molded body (negative electrode active material-containing layer) using a current collector as a core material.
  • a finished product, or one obtained by laminating the above-mentioned various alloys or lithium metal foils alone or on a current collector is used.
  • the current collector When a current collector is used for the negative electrode, a copper or nickel foil, a punching metal, a net, an expanded metal, or the like can be used as the current collector, but a copper foil is usually used.
  • the upper limit of the thickness is preferably 30 ⁇ m, and the lower limit is preferably 5 ⁇ m.
  • the lead portion on the negative electrode side may be formed in the same manner as the lead portion on the positive electrode side.
  • the electrode can be used in the form of a stacked electrode group in which the positive electrode and the negative electrode are stacked via the separator of the present invention, or a wound electrode group in which the electrode is wound.
  • the separator of the present invention since the separator of the present invention has excellent short-circuit resistance at the time of bending due to the action of the flexible resin (A), in the electrochemical element of the present invention using such a separator, the separator is deformed.
  • the effect becomes more prominent, and when a flat wound electrode group (a wound electrode group having a flat cross section) that strongly bends the separator is used. The effect becomes particularly remarkable.
  • the non-aqueous electrolyte a solution (electrolytic solution) in which a lithium salt is dissolved in an organic solvent is used.
  • the lithium salt is not particularly limited as long as it dissociates in a solvent to form Li + ions and hardly causes side reactions such as decomposition in a voltage range used as a battery.
  • LiClO 4 , LiPF 6 , LiBF 4 , LiAsF 6 , LiSbF 6 and other inorganic lithium salts LiCF 3 SO 3 , LiCF 3 CO 2 , Li 2 C 2 F 4 (SO 3 ) 2 , LiN (CF 3 SO 2 ) 2 , LiC (CF 3 SO 2 ) 3 , LiC n F 2n + 1 SO 3 (n ⁇ 2), LiN (RfOSO 2 ) 2 [where Rf is a fluoroalkyl group] and the like can be used. .
  • the organic solvent used for the non-aqueous electrolyte is not particularly limited as long as it dissolves the lithium salt and does not cause a side reaction such as decomposition in a voltage range used as a battery.
  • cyclic carbonates such as ethylene carbonate, propylene carbonate, butylene carbonate and vinylene carbonate
  • chain carbonates such as dimethyl carbonate, diethyl carbonate and methyl ethyl carbonate
  • chain esters such as methyl propionate
  • cyclic esters such as ⁇ -butyrolactone
  • Chain ethers such as dimethoxyethane, diethyl ether, 1,3-dioxolane, diglyme, triglyme and tetraglyme
  • cyclic ethers such as dioxane, tetrahydrofuran and 2-methyltetrahydrofuran
  • nitriles such as acetonitrile, propionitrile and methoxypropionitrile Sulf
  • the concentration of the lithium salt in the electrolytic solution is preferably 0.5 to 1.5 mol / L, and more preferably 0.9 to 1.3 mol / L.
  • the above electrolytic solution may be used as a gel (gel electrolyte) by adding a known gelling agent such as a polymer.
  • Example 1 ⁇ Preparation of separator> Urethane acrylate as an oligomer: 7.2 parts by mass, dipentoxylated pentaerythritol diacrylate as a monomer: 2 parts by mass, 2,4,6-trimethylbenzoylbisphenylphosphine oxide as a photopolymerization initiator: 0.3 mass Parts, boehmite (average particle size 0.6 ⁇ m) as inorganic fine particles (B): 24 parts by mass, methyl ethyl ketone (SP value: 9.3) as solvent (a): 61 parts by mass, and solvent (b) Ethylene glycol (SP value: 14.1): 5.6 parts by mass of zirconia beads with a diameter of ⁇ 1 mm of 5 times the boehmite (mass basis) was added and stirred uniformly for 15 hours using a ball mill, followed by filtration. Thus, a slurry for forming a separator was prepared. The volume ratio V sb / V
  • a PET nonwoven fabric having a thickness of 12 ⁇ m is passed through the slurry, and the slurry is applied by pulling up and then passing through a gap having a predetermined interval, followed by UV light with a wavelength of 365 nm at an illuminance of 1081 mW / cm 2 for 10 seconds. Irradiation and then drying were performed to obtain a separator having a thickness of 20 ⁇ m.
  • the ratio V A / V B the volume V B of the volume V A and the inorganic fine particles of the resin (A) in the separator (B) was 1.22.
  • LiCoO 2 as a positive electrode active material 90 parts by mass
  • acetylene black as a conductive auxiliary agent 7 parts by mass
  • PVDF as a binder 3 parts by mass uniformly using N-methyl-2-pyrrolidone (NMP) as a solvent
  • NMP N-methyl-2-pyrrolidone
  • This paste is intermittently applied on both sides of an aluminum foil having a thickness of 15 ⁇ m as a current collector so that the coating length is 280 mm on the front surface and 210 mm on the back surface, dried, and then calendered so that the total thickness becomes 150 ⁇ m.
  • the thickness of the positive electrode active material-containing layer was adjusted and cut to a width of 43 mm to produce a positive electrode. Then, tab attachment was performed to the exposed part of the aluminum foil in a positive electrode.
  • a negative electrode active material-containing paste was prepared by mixing 95 parts by mass of graphite serving as the negative electrode active material and 5 parts by mass of PVDF so as to be uniform using NMP as a solvent. This paste is intermittently applied to both sides of a 10 ⁇ m thick collector made of copper foil so that the coating length is 290 mm on the front and 230 mm on the back, dried, and then calendered to a total thickness of 142 ⁇ m. The thickness of the negative electrode active material-containing layer was adjusted and cut to a width of 45 mm to produce a negative electrode. Then, tab attachment was performed to the exposed part of the copper foil in a negative electrode.
  • ⁇ Battery assembly> The positive electrode and the negative electrode obtained as described above were overlapped with the separator interposed therebetween and wound in a spiral shape to produce a wound body electrode group.
  • the obtained wound body electrode group was crushed into a flat shape, put into an aluminum outer can having a thickness of 4 mm, a height of 50 mm, and a width of 34 mm, and a non-aqueous electrolyte (ethylene carbonate and ethyl methyl carbonate in a volume ratio of 1: 2).
  • the LiPF 6 in a solvent mixture performing sealing after implantation of those) dissolved at a concentration of 1.2 mol / L, in the structure shown in FIG. 1, a prismatic nonaqueous electrolyte secondary battery of the appearance shown in FIG. 2 Produced.
  • the positive electrode 1 and the negative electrode 2 are not wound on the rectangular outer can 4 as the wound electrode group 6 wound in a spiral shape through the separator 3 as described above. Contained with water electrolyte. However, in FIG. 1, in order to avoid complication, a metal foil, a non-aqueous electrolyte, or the like as a current collector used for manufacturing the positive electrode 1 and the negative electrode 2 is not illustrated.
  • the outer can 4 is made of an aluminum alloy and constitutes the outer casing of the battery.
  • the outer can 4 also serves as a positive electrode terminal.
  • the insulator 5 which consists of a polyethylene sheet is arrange
  • a stainless steel terminal 11 is attached to an aluminum alloy cover plate 9 that seals the opening of the outer can 4 via a polypropylene insulating packing 10, and an insulator 12 is connected to the terminal 11.
  • a stainless steel lead plate (electrode terminal current collecting mechanism) 13 is attached.
  • the cover plate 9 is inserted into the opening of the outer can 4 and welded to join the opening of the outer can 4 so that the inside of the battery is sealed.
  • the lid plate 9 is provided with a liquid injection hole (14 in the figure). When the battery is assembled, a nonaqueous electrolyte is injected into the battery from the liquid injection hole, and then the liquid injection hole. Is sealed.
  • the cover plate 9 is provided with an explosion-proof safety valve 15.
  • the outer can 4 and the lid plate 9 function as positive terminals by directly welding the positive electrode current collector plate 7 to the lid plate 9, and the negative electrode current collector plate 8 is welded to the lead plate 13.
  • the terminal 11 functions as a negative electrode terminal by connecting the negative electrode current collector plate 8 and the terminal 11 through the lead plate 13.
  • the sign may be reversed. Sometimes it becomes.
  • FIG. 2 is a perspective view schematically showing the external appearance of the battery shown in FIG. 1.
  • FIG. 2 is shown for the purpose of showing that the battery is a square battery.
  • FIG. 1 schematically shows a battery, and only specific ones of the constituent members of the battery are shown. Also in FIG. 1, the inner peripheral portion of the electrode group is not cross-sectional.
  • Example 2 A separator having a thickness of 20 ⁇ m was produced in the same manner as in Example 1 except that the solvent (b) was changed to dimethyl sulfoxide (SP value: 12.9). And the nonaqueous electrolyte secondary battery was produced like Example 1 except having used this separator.
  • the volume ratio V sb / V sa between the solvent (a) and the solvent (b) used in the separator-forming slurry was 0.125.
  • Example 3 The same slurry for forming a separator as that prepared in Example 1 was applied to both surfaces of the same negative electrode as that prepared in Example 1 using a dip coater, and ultraviolet light having a wavelength of 365 nm was applied at an illuminance of 1081 mW / cm 2 . Irradiation was performed for 10 seconds, and then drying was performed to obtain a negative electrode having a separator having a thickness of 20 ⁇ m on both sides.
  • Example and Example 1 except having used the flat wound electrode group produced by overlapping the same positive electrode as that produced in Example 1 with the separator of the negative electrode interposed therebetween. Similarly, a nonaqueous electrolyte secondary battery was produced.
  • Example 4 The same slurry for forming the separator as that prepared in Example 1 was applied to both surfaces of the same positive electrode as that prepared in Example 1 using a dip coater, and ultraviolet light having a wavelength of 365 nm was applied at an illuminance of 1081 mW / cm 2 . Irradiation was performed for 10 seconds, and then drying was performed to obtain a positive electrode having a separator having a thickness of 21 ⁇ m on both surfaces.
  • Example and Example 1 except having used the flat wound electrode group produced by laminating
  • Comparative Example 1 A separator having a thickness of 21 ⁇ m was produced in the same manner as in Example 1 except that the amount of methyl ethyl ketone as the solvent (a) was changed to 66.6 parts by mass and the solvent (b) was not used. And the nonaqueous electrolyte secondary battery was produced like Example 1 except having used this separator.
  • Comparative Example 2 A thickness of 21 ⁇ m was obtained in the same manner as in Example 1 except that the amount of methyl ethyl ketone as the solvent (a) was changed to 63.6 parts by mass and the amount of ethylene glycol as the solvent (b) was changed to 3 parts by mass. A separator was produced. And the nonaqueous electrolyte secondary battery was produced like Example 1 except having used this separator. The volume ratio V sb / V sa between the solvent (a) and the solvent (b) used in the separator-forming slurry was 0.034.
  • Comparative Example 3 The thickness of the solvent (a) was changed to 51.6 parts by mass, and the amount of ethylene glycol as the solvent (b) was changed to 15 parts by mass. A separator was produced. And the nonaqueous electrolyte secondary battery was produced like Example 1 except having used this separator. The volume ratio V sb / V sa between the solvent (a) and the solvent (b) used in the separator-forming slurry was 4.76.
  • Comparative Example 4 A nonaqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a commercially available polyolefin microporous membrane (thickness 20 ⁇ m) was used as the separator.
  • each battery after discharge was charged under the same conditions as described above, and then discharged at a constant current of up to 2.5 V with a current of 0.2 C to obtain a discharge capacity (0.2 C discharge capacity). Furthermore, each battery after measuring the 0.2C discharge capacity was charged under the same conditions as described above, and then discharged at a constant current up to 2.5V with a current of 1C to obtain a discharge capacity (1C discharge capacity). And about each battery, the value which remove
  • ⁇ Temperature test> About the battery of an Example and a comparative example, it charged to 4.2V with the electric current of 0.5 C in the test chamber controlled by the temperature of 20 degreeC. Each battery in this charged state is put in a thermostat, the temperature in the bath is increased at a rate of 5 ° C./min and reaches 160 ° C., and then kept at 160 ° C. for 1 hour. Until the fixed-value operation was completed, the maximum temperature reached by the battery was measured by a thermocouple connected to the battery surface. Then, each battery was taken out from the thermostat, and after standing to cool at room temperature for 10 hours, the battery voltage was measured. For each of the examples and comparative examples, the above test was performed on three batteries, and the average value of the maximum temperature and the average value of the battery voltage were obtained. The average value of the battery voltage was used.
  • Table 1 shows the composition of the solvent related to the slurry for forming the separator used for forming the separator used in the nonaqueous electrolyte secondary batteries of Examples and Comparative Examples
  • Table 2 shows the structure and characteristics of the separator
  • Table 3 shows the evaluation results of the nonaqueous electrolyte secondary battery of the comparative example.
  • a slurry for forming a separator containing a solvent (a) capable of dissolving a resin raw material and a solvent (b) capable of aggregating the resin raw material by a solvent shock at an appropriate volume ratio is used.
  • the separators according to the non-aqueous electrolyte secondary batteries of Examples 1 to 4 formed in this way have high uniformity, low Gurley value, good air permeability, and fine and homogeneous pores. It is thought that it has been formed. Therefore, the nonaqueous electrolyte secondary batteries of Examples 1 to 4 using such a separator have a low internal resistance, a short-circuit rate of 0, and a high capacity retention rate during load characteristic evaluation, which is reliable. Are better.
  • non-aqueous electrolyte secondary batteries of Examples 1 to 4 differed from the battery of Comparative Example 4 using a normal polyolefin microporous membrane separator, and no voltage drop was observed after the temperature increase test.
  • the maximum temperature reached during the test is also lower than that of the battery of Comparative Example 4, and the safety is good.
  • the separators according to the non-aqueous electrolyte secondary batteries of Comparative Example 2 and Comparative Example 3 formed using various separator-forming slurries have a low porosity, a large Gurley value, and favorable pore formation. It is thought that there is not.
  • the batteries of Comparative Examples 1 to 3 using this separator have high internal resistance because the lithium ion permeability of the separator is inferior.
  • the batteries of Comparative Examples 1 and 2 cannot be charged or discharged because the current concentrates in a small number of holes in the separator, so that the lithium dendrite is easily formed.
  • the battery of Comparative Example 3 has a very short circuit rate. Both are high and inferior in reliability. Therefore, in the batteries of Comparative Examples 1 to 3, the load characteristics could not be evaluated and the temperature increase test could not be performed.
  • the electrochemical element of the present invention can be used for the same applications as conventionally known electrochemical elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本発明の電気化学素子用セパレータの製造方法は、単量体またはオリゴマーからなる樹脂原料と、これを溶解させ得る溶媒(a)と、ソルベントショックによって樹脂原料を凝集させる溶媒(b)とを含有し、かつ前記溶媒(a)の体積Vsaと前記溶媒(b)の体積Vsbとの比Vsb/Vsaが0.04~0.2であるセパレータ形成用組成物を得る工程、前記組成物を基材に塗布する工程、これにより形成された塗膜にエネルギー線を照射して架橋構造を有する樹脂(A)を形成する工程、および樹脂(A)形成後の塗膜を乾燥して、孔を形成する工程を有することを特徴とする。本発明の電気化学素子用セパレータは、本発明の製造方法により製造されるものであり、本発明の電気化学素子は、本発明の電気化学素子用セパレータを有するものである。 これにより、信頼性に優れた電気化学素子、該電気化学素子を構成し得るセパレータおよびその製造方法を提供する。

Description

電気化学素子用セパレータ、その製造方法および電気化学素子
 本発明は、安全性および信頼性に優れた電気化学素子、該電気化学素子を構成し得るセパレータおよびその製造方法に関するものである。
 リチウム二次電池などの非水電解質二次電池やスーパーキャパシタに代表される非水電解質を用いた電気化学素子は、エネルギー密度が高いという特徴から、携帯電話やノート型パーソナルコンピューターなどの携帯機器の電源として広く用いられており、携帯機器の高性能化に伴って素子の高容量化が更に進む傾向にあり、更なる安全性の確保が重要な課題となっている。
 現行のリチウム二次電池では、正極と負極の間に介在させるセパレータとして、例えば厚みが20~30μm程度のポリオレフィン系の多孔性フィルムが使用されている。しかし、このようなポリオレフィン系の多孔性フィルムを製造する際には、微細且つ均一な孔を開けるために、二軸延伸または開孔剤の抽出などの複雑な工程が用いられ、コストが高く、セパレータが高価になっていることが現状である。
 ところで、セパレータの素材としては、電池の熱暴走温度以下でセパレータの構成樹脂を溶融させて空孔を閉塞させ、これにより電池の内部抵抗を上昇させて短絡の際などに電池の安全性を向上させる所謂シャットダウン効果を確保するため、融点が120~140℃程度のポリエチレンが用いられている。しかし、シャットダウン後電池の温度が更に上昇した場合など、溶融したポリエチレンが流れやすくなり、セパレータが破膜する所謂メルトダウンが生じることがある。そのような場合には、正負極が直接接触し、更に温度が上昇して、最悪の場合発火の危険性がある。
 このようなメルトダウンによる短絡を防ぐために、耐熱性の樹脂を用いた微多孔膜や不織布をセパレータとして用いる方法も検討されているが、このようなセパレータの場合、材料が高価であることや製造の難しさなどが問題となる。
 こうした事情を受けて、例えば特許文献1には、モノマーやオリゴマーなどを含む塗料を電極表面に塗布した後にエネルギー線を照射するなどすることで、架橋樹脂を含み、電極表面にセパレータとして機能する隔離材を形成する技術が提案されている。特許文献1に記載の技術によれば、高温での安全性が良好な非水電解質二次電池を安価に製造することができる。
特開2010-170770号公報
 ところで、電気化学素子には、高温下での安全性以外にも、例えば、充放電時にリチウムデンドライトの発生に起因する内部短絡(微短絡)が生じないことなど、信頼性に優れていることも要求される。
 特許文献1に記載の技術でも、電気化学素子の信頼性をある程度確保することは可能であるが、例えば、従来のポリオレフィン系の多孔性フィルムセパレータを用いた電池と比較すると改善の余地がある。
 本発明は、前記事情に鑑みてなされたものであり、その目的は、安全性および信頼性に優れた電気化学素子、該電気化学素子を構成し得るセパレータおよびその製造方法を提供することにある。
 前記目的を達成し得た本発明の電気化学素子用セパレータの製造方法は、エネルギー線の照射により重合可能な単量体およびオリゴマーの少なくとも一方からなる樹脂原料と、前記樹脂原料を溶解させ得る溶媒(a)と、ソルベントショックによって前記樹脂原料を凝集させ得る溶媒(b)とを含有し、かつ前記溶媒(a)の体積Vsaと前記溶媒(b)の体積Vsbとの比Vsb/Vsaが0.04~0.2であるセパレータ形成用組成物を調製する工程と、前記セパレータ形成用組成物を、基材に塗布する工程と、前記基材に塗布した前記セパレータ形成用組成物の塗膜にエネルギー線を照射して、架橋構造を有する樹脂(A)を形成する工程と、エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して、孔を形成する工程とを有することを特徴とする。
 また、本発明の電気化学素子用セパレータは、本発明の電気化学素子用セパレータの製造方法により製造されたことを特徴とするものである。
 更に、本発明の電気化学素子は、正極、負極、セパレータおよび非水電解質を有しており、前記セパレータが、本発明の電気化学素子用セパレータであることを特徴とするものである。
 本発明によれば、安全性および信頼性に優れた電気化学素子、該電気化学素子を構成し得るセパレータおよびその製造方法を提供することができる。
本発明の電気化学素子(非水電解質二次電池)の一例を模式的に示す図で、(a)はその平面図、(b)はその部分縦断面図である。 図1に示す電気化学素子の斜視図である。
 本発明の電気化学素子用セパレータ(以下、単に「セパレータ」という場合がある)は、エネルギー線の照射により重合可能な単量体およびオリゴマーの少なくとも一方からなる樹脂原料と、溶媒とを少なくとも含有するセパレータ形成用組成物を調製する工程(1)と、前記セパレータ形成用組成物を基材に塗布する工程(2)と、前記基材に塗布した前記セパレータ形成用組成物の塗膜にエネルギー線を照射して、架橋構造を有する樹脂(A)[以下、単に「樹脂(A)」という場合がある]を形成する工程(3)と、エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して、孔を形成する工程(4)とを有する本発明法により製造されるものであり、その構成樹脂として、前記工程(3)で形成される樹脂(A)を含有している。
 本発明のセパレータに係る樹脂(A)は、その少なくとも一部に架橋構造を有している。そのため、本発明のセパレータを有する電気化学素子(本発明の電気化学素子)内が高温となっても、セパレータにおいて収縮や樹脂(A)の溶融による変形が生じ難く、その形状が良好に維持されることから、正極と負極との短絡の発生が抑制される。よって、本発明のセパレータを有する本発明の電気化学素子は、高温下における安全性が良好となる。
 また、本発明のセパレータを製造するための本発明法では、セパレータ形成用組成物に特定の溶媒を使用しており、これにより、均質な細孔の形成が可能である。そのため、本発明のセパレータにおいては、リチウムイオンの透過性が良好となることから、これを用いた電気化学素子では、リチウムデンドライトが生じ難く、充放電時におけるリチウムデンドライトに起因する微短絡の発生を良好に抑制できる。よって、本発明のセパレータを有する本発明の電気化学素子は、充放電特性が良好であり、優れた信頼性を有するものとなる。
 本発明法の工程(1)は、エネルギー線の照射により重合可能な単量体およびオリゴマーの少なくとも一方からなる樹脂原料と、溶媒とを少なくとも含有するセパレータ形成用組成物を調製する工程である。
 エネルギー線の照射により重合可能な単量体やオリゴマーといった樹脂原料は、前記工程(3)において重合して、架橋構造を有する樹脂(A)を形成するものである。
 樹脂(A)の具体例としては、例えば、アクリル樹脂モノマー[メチルメタクリレート、メチルアクリレートなどのアルキル(メタ)アクリレートおよびその誘導体]およびこれらのオリゴマーと、架橋剤とから形成されるアクリル樹脂;ウレタンアクリレートと架橋剤とから形成される架橋樹脂;エポキシアクリレートと架橋剤とから形成される架橋樹脂;ポリエステルアクリレートと架橋剤とから形成される架橋樹脂;などが挙げられる。前記のいずれの樹脂においても、架橋剤としては、ジオキサングリコールジアクリレート、トリシクロデカンジメタノールジアクリレート、エチレンオキサイド変性トリメチロールプロパントリアクリレート、ジペンタエリスリトールペンタアクリレート、カプロラクトン変性ジペンタエリスリトールヘキサアクリレート、ε-カプロラクトン変性ジペンタエリスリトールヘキサアクリレートなどの、2価または多価のアクリルモノマーを用いることができる。
 よって、工程(3)において形成する樹脂(A)が前記のアクリル樹脂である場合には、工程(1)で調製するセパレータ形成用組成物に使用するエネルギー線の照射により重合可能な単量体(以下、単に「単量体」という)には、前記例示のアクリル樹脂モノマーおよび架橋剤などが使用でき、また、工程(1)で使用するセパレータ形成用組成物に係るエネルギー線の照射により重合可能なオリゴマー(以下、単に「オリゴマー」という)には、前記例示のアクリル樹脂モノマーのオリゴマーなどが使用できる。
 更に、工程(3)において形成する樹脂(A)が前記のウレタンアクリレートと架橋剤とから形成される架橋樹脂である場合には、工程(1)で調製するセパレータ形成用組成物に使用する単量体には、前記例示の架橋剤などが使用でき、また、工程(1)で調製するセパレータ形成用組成物に使用するオリゴマーには、ウレタンアクリレートが使用できる。
 他方、工程(3)において形成する樹脂(A)が前記のエポキシアクリレートと架橋剤とから形成される架橋樹脂である場合には、工程(1)で調製するセパレータ形成用組成物に使用する単量体には、前記例示の架橋剤などが使用でき、また、工程(1)で調製するセパレータ形成用組成物に使用するオリゴマーには、エポキシアクリレートが使用できる。
 更に、工程(3)において形成する樹脂(A)が前記のポリエステルアクリレートと架橋剤とから形成される架橋樹脂である場合には、工程(1)で調製するセパレータ形成用組成物に使用する単量体には、前記例示の架橋剤などが使用でき、また、工程(1)で調製するセパレータ形成用組成物に使用するオリゴマーには、ポリエステルアクリレートが使用できる。
 また、樹脂(A)には、2価または多価のアルコールとジカルボン酸とを縮重合によって製造されたエステル組成物とスチレンモノマーの混合物とから形成される不飽和ポリエステル樹脂由来の架橋樹脂;多官能エポキシ、多官能オキセタンまたはこれらの混合物から形成される樹脂;ポリイソシアネートとポリオールとの反応によって生成する各種ポリウレタン樹脂;なども使用することができる。
 よって、工程(3)において形成する樹脂(A)が前記の不飽和ポリエステル樹脂由来の架橋樹脂である場合には、工程(1)で調製するセパレータ形成用組成物に使用する単量体には、スチレンモノマーが使用でき、また、工程(1)で調整するセパレータ形成用組成物に使用するオリゴマーには、前記のエステル組成物が使用できる。
 樹脂(A)が、多官能エポキシ、多官能オキセタンまたはこれらの混合物から形成される樹脂である場合、多官能エポキシとしては、例えば、エチレングリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリジルエーテル、ネオペンチルグリコールジグリジルエーテル、グリセロールポリグリシジルエーテル、ソルビトールグリシジルエーテル、3,4-エポキシシクロヘキセニルメチル-3’,4’-エポキシシクロヘキセンカルボキシレート、1,2:8,9ジエポキシリモネンなどが挙げられ、また、前記の多官能オキセタンとしては、例えば、3-エチル-3{[(3-エチルオキセタン-3-イル)メトキシ]メチル}オキセタン、キシレンビスオキセタンなどが挙げられる。
 よって、工程(3)において形成する樹脂(A)が、多官能エポキシ、多官能オキセタンまたはこれらの混合物から形成される樹脂である場合には、工程(1)で調製するセパレータ形成用組成物に使用する単量体には、前記例示の多官能エポキシや多官能オキセタンが使用できる。
 樹脂(A)が、ポリイソシアネートとポリオールとの反応によって生成する各種ポリウレタン樹脂である場合、ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、フェニレンジイソシアネート、トルエンジイソシアネート(TDI)、4.4’-ジフェニルメタンジイソシアネート(MDI)、イソホロンジイソシアネート(IPDI)またはビス-(4-イソシアナトシクロヘキシル)メタンなどが挙げられ、また、ポリオールとしては、例えば、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオールなどが挙げられる。
 よって、工程(3)において形成する樹脂(A)が、ポリイソシアネートとポリオールとの反応によって生成する各種ポリウレタン樹脂である場合には、工程(1)で調製するセパレータ形成用組成物に使用する単量体には、前記例示のポリイソシアネートが使用でき、また、工程(1)で調製するセパレータ形成用組成物に使用するオリゴマーには、前記例示のポリオールが使用できる。
 また、前記例示の各樹脂(A)の形成に際しては、イソボルニルアクリレート、メトキシポリエチレングリコールアクリレート、フェノキシポリエチレングリコールアクリレートなど単官能モノマーを併用することもできる。よって、工程(3)において形成する樹脂(A)が、これらの単官能モノマー由来の構造部分を有するものである場合には、工程(1)で調製するセパレータ形成用組成物においては、その単量体として、前記例示の単官能モノマーを、前記例示の他の単量体やオリゴマーと共に使用することができる。
 また、セパレータ形成用組成物には、通常、エネルギー線感応型の重合開始剤を含有させる。重合開始剤の具体例としては、例えば、2,4,6-トリメチルベンゾイルビスフェニルホスフィンオキシド、2,2-ジメトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノンなどが挙げられる。重合開始剤の使用量は、モノマーおよびオリゴマーの合計量(モノマーおよびオリゴマーのいずれか一方のみを使用する場合には、その量)100質量部に対し、1~10質量部とすることが好ましい。
 セパレータ形成用組成物を調製する工程(1)では、溶媒として、前記樹脂原料を溶解させ得る溶媒(a)と、ソルベントショックによって前記樹脂原料を凝集させ得る溶媒(b)とを使用する。
 前記の溶媒(a)は、セパレータ形成用組成物の含有する単量体やオリゴマーといった樹脂原料を良好に溶解させ得ることから、工程(2)においてセパレータ形成用組成物を基材に塗布して形成される塗膜の均質性が良好となり、セパレータの均質性も向上する。その一方で、セパレータ形成用組成物中で樹脂原料は、前記溶媒(b)の作用によるソルベントショックによって、ある程度凝集する。ここで、セパレータ形成用組成物中での樹脂原料の凝集は、工程(2)で形成される塗膜の均質性を損なわない程度で、かつ工程(3)でのエネルギー照射によって樹脂(A)を形成した際に塗膜中に微細な細孔を均一に形成できる程度で生じるため、その後の工程(4)における乾燥によって溶媒(a)および溶媒(b)を除去すると、セパレータ中に微細かつ均質な細孔が多数形成される。よって、本発明法により製造されるセパレータは、リチウムイオン透過性に優れ、かつ電気化学素子の充電時における耐短絡性にも優れたものとなる。
 セパレータ形成用組成物に係る溶媒(a)は、単量体やオリゴマーといった樹脂原料を良好に溶解させ得るものであり、具体的には、例えば、溶解パラメータ(以下、「SP値」という)が8.9以上の溶媒が好ましい。
 ただし、溶媒(a)のSP値が高すぎると、工程(3)において形成される樹脂(A)が膨潤したり溶解したりすることがあり、本発明法によるセパレータ中に微細かつ均質な孔を多数形成する効果が小さくなる虞がある。よって、溶媒(a)のSP値は、9.9以下であることが好ましい。
 溶媒(a)の具体例としては、例えば、トルエン(SP値:8.9)、ブチルアルデヒド(SP値:9.0)、エチルアセテート(SP値:9.0)、酢酸エチル(SP値:9.1)、テトラヒドロフラン(SP値:9.1)、ベンゼン(SP値:9.2)、メチルエチルケトン(SP値:9.3)、ベンズアルデヒド(SP値:9.4)、クロロベンゼン(SP値:9.5)、エチレングリコールモノブチルエーテル(SP値:9.5)、2-エチルヘキサノール(SP値:9.5)、メチルアセテート(SP値:9.6)、ジクロロエチルエーテル(SP値:9.8)、1,2-ジクロロエタン(SP値:9.8)、アセトン(SP値:9.8)、シクロヘキサノン(SP値:9.9)などが挙げられる。
 セパレータ形成用組成物に係る溶媒(b)は、樹脂原料と溶媒(a)とを含む樹脂原料溶液中に添加されることで、ソルベントショックによって樹脂原料を凝集させ得るものであるが、そのSP値が、10より大きく15以下であることが好ましい。
 溶媒(b)の具体例としては、例えば、酢酸(SP値:10.1)、m-クレゾール(SP値:10.2)、アニリン(SP値:10.3)、i-オクタノール(SP値:10.3)、シクロペンタノン(SP値:10.4)、エチレングリコールモノエチルエーテル(SP値:10.5)、t-ブチルアルコール(SP値:10.6)、ピリジン(SP値:10.7)、プロピロニトリル(SP値:10.8)、N,N-ジメチルアセトアミド(SP値:10.8)、1-ペンタノール(SP値:10.9)、ニトロエタン(SP値:11.1)、フルフラール(SP値:11.2)、1-ブタノール(SP値:11.4)、シクロヘキサノール(SP値:11.4)、イソプロパノール(SP値:11.5)、アセトニトリル(SP値:11.9)、N,N-ジメチルホルムアミド(SP値:11.9)、ベンジルアルコール(SP値:12.1)、ジエチレングリコール(SP値:12.1)、エタノール(SP値:12.7)、ジメチルスルホキシド(SP値:12.9)1,2-プロピレン炭素酸(SP値:13.3)、N-エチルホルムアミド(SP値:13.9)、エチレングリコール(SP値:14.1)、メタノール(SP値:14.5)などが挙げられる。
 セパレータ形成用組成物に使用する溶媒(a)の体積Vsaと溶媒(b)の体積Vsbとの比Vsb/Vsaは、溶媒(b)の使用によるセパレータ中に微細かつ均質な細孔が多数形成する効果を良好に確保する観点から、0.04~0.2とする。
 なお、例えば溶媒(b)を用いずに溶媒(a)のみを使用しても、例えば、無機微粒子などのような孔形成を補助する材料をセパレータ形成用組成物に含有させることで、微細かつ均質な細孔を有するセパレータを製造することは可能である。しかしながら、本発明法においては、セパレータ形成用組成物に使用する溶媒に、前記の溶媒(a)と溶媒(b)とを併用することで、こうした孔形成を補助する材料を使用しなくても、微細かつ均質な細孔を多数有するセパレータを製造することができる。
 また、本発明のセパレータには、無機微粒子(B)を含有させることもできる。無機微粒子(B)を含有させることで、セパレータの強度や寸法安定性をより高めることができる。
 本発明法によって無機微粒子(B)を含有するセパレータを製造するには、セパレータ形成用組成物に無機微粒子(B)を含有させればよい。
 無機微粒子(B)の具体例としては、酸化鉄、シリカ(SiO)、アルミナ(Al)、TiO(チタニア)、BaTiOなどの無機酸化物微粒子;窒化アルミニウム、窒化ケイ素などの無機窒化物微粒子;フッ化カルシウム、フッ化バリウム、硫酸バリウムなどの難溶性のイオン結晶微粒子;シリコン、ダイヤモンドなどの共有結合性結晶微粒子;モンモリロナイトなどの粘土微粒子;などが挙げられる。ここで、前記無機酸化物微粒子は、ベーマイト、ゼオライト、アパタイト、カオリン、ムライト、スピネル、オリビン、マイカなどの鉱物資源由来物質またはこれらの人造物などの微粒子であってもよい。また、金属、SnO、スズ-インジウム酸化物(ITO)などの導電性酸化物、カーボンブラック、グラファイトなどの炭素質材料などで例示される導電性材料の表面を、電気絶縁性を有する材料(例えば、前記の無機酸化物など)で被覆することにより電気絶縁性を持たせた粒子であってもよい。無機微粒子は、前記例示のものを1種単独で使用してもよく、2種以上を併用してもよい。前記例示の無機微粒子の中でも、無機酸化物微粒子がより好ましく、アルミナ、チタニア、シリカ、ベーマイトが更に好ましい。
 無機微粒子(B)の粒径は、平均粒径で、0.001μm以上であることが好ましく、0.1μm以上であることがより好ましく、また、15μm以下であることが好ましく、1μm以下であることがより好ましい。なお、無機微粒子(B)の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、無機微粒子(B)を溶解しない媒体に分散させて測定した数平均粒子径として規定することができる[後述する実施例における無機微粒子(B)の平均粒径は、この方法により測定した値である]。
 また、無機微粒子(B)の形態としては、例えば、球状に近い形状を有していてもよく、板状または繊維状の形状を有していてもよいが、セパレータの耐短絡性を高める観点からは、板状の粒子や、一次粒子が凝集した二次粒子構造の粒子であることが好ましい。特に、セパレータの空孔率の向上の点からは、一次粒子が凝集した二次粒子構造の粒子であることがより好ましい。前記の板状粒子や二次粒子の代表的なものとしては、板状のアルミナや板状のベーマイト、二次粒子状のアルミナや二次粒子状のベーマイトなどが挙げられる。
 本発明のセパレータにおいて無機微粒子(B)を含有させる場合には、樹脂(A)の体積Vと、無機微粒子(B)の体積Vとの比V/Vが、0.6以上であることが好ましく、3以上であることがより好ましい。前記V/Vが前記の値にある場合には、柔軟性に富む樹脂(A)の作用によって、例えば、巻回体電極群(特に角形電池などに使用される横断面が扁平状の巻回体電極群)を構成する場合のように折り曲げた場合にも、ひび割れなどの欠陥の発生をより良好に抑えることができ、耐短絡性により優れたセパレータとすることができる。
 また、本発明のセパレータにおいて無機微粒子(B)を含有させる場合には、前記V/Vが、9以下であることが好ましく、8以下であることがより好ましい。前記V/Vが前記の値にある場合には、無機微粒子(B)を含有させることによるセパレータの強度向上作用や寸法安定性向上作用を、より良好に発揮させることができる。
 更に、本発明のセパレータにおいて無機微粒子を含有させる場合、樹脂(A)と無機微粒子(B)とは、後述する繊維状物(C)からなる多孔質基体を使用しないときには、これらがセパレータの主体をなしていることが好ましく、具体的には、樹脂(A)と無機微粒子(B)との合計体積(V+V)が、セパレータの構成成分の全体積(空孔部分を除いた体積。セパレータの構成成分の体積比率に関して、以下同じ。)中、50体積%以上であることが好ましく、70体積%以上であることがより好ましい(100体積%であってもよい)。他方、本発明のセパレータに、後述する繊維状物(C)からなる多孔質基体を使用する場合には、樹脂(A)と無機微粒子(B)との合計体積(V+V)が、セパレータを構成成分の全体積中、20体積%以上であることが好ましく、40体積%以上であることがより好ましい。
 よって、セパレータ形成用組成物に無機微粒子(B)を含有させる場合には、製造後のセパレータにおいて、前記V/Vが前記の値を満たし、かつ前記V+Vが前記の値を満たすように、無機微粒子(B)の添加量を調整することが望ましい。
 更に、本発明のセパレータには、繊維状物(C)を含有させることもできる。繊維状物(C)を含有させることによっても、セパレータの強度や寸法安定性をより高めることができる。
 本発明法によって繊維状物(C)を含有するセパレータを製造するには、セパレータ形成用組成物に繊維状物(C)を含有させるか、または、セパレータ形成用組成物を塗布する基材に、繊維状物(C)で形成された多孔質基体を用いればよい。
 繊維状物(C)としては、耐熱温度(目視観察の際に変形が認められない温度)が150℃以上であって、電気絶縁性を有しており、電気化学的に安定で、電気化学素子の有する非水電解質やセパレータ製造の際に使用する溶剤に安定であれば、特に材質に制限はない。なお、本発明でいう「繊維状物」とは、アスペクト比[長尺方向の長さ/長尺方向に直交する方向の幅(直径)]が4以上のものを意味しており、アスペクト比は10以上であることが好ましい。
 繊維状物(C)の具体的な構成材料としては、例えば、セルロースおよびその変成体(カルボキシメチルセルロース(CMC)、ヒドロキシプロピルセルロース(HPC)など)、ポリオレフィン(ポリプロピレン(PP)、プロピレンの共重合体など)、ポリエステル(ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート(PEN)、ポリブチレンテレフタレート(PBT)など)、ポリアクリロニトリル(PAN)、ポリアラミド、ポリアミドイミド、ポリイミドなどの樹脂、ガラス、アルミナ、ジルコニア、シリカなどの無機酸化物などを挙げることができ、これらの構成材料は2種以上を含有していても構わない。また、繊維状物(C)は、必要に応じて、公知の各種添加剤(例えば、樹脂である場合には酸化防止剤など)を含有していても構わない。
 また、繊維状物(C)の直径は、セパレータの厚み以下であればよいが、例えば、0.01~5μmであることが好ましい。径が大きすぎると、繊維状物同士の絡み合いが不足して、シート状物を形成してセパレータの基体を構成する場合に、その強度が小さくなって取り扱いが困難となることがある。また、径が小さすぎると、セパレータの空孔が小さくなりすぎて、リチウムイオン透過性の向上効果を小さくしてしまう虞がある。
 セパレータ中での繊維状物(C)の存在状態は、例えば、長軸(長尺方向の軸)の、セパレータ面に対する角度が平均で30°以下であることが好ましく、20°以下であることがより好ましい。
 セパレータにおける繊維状物(C)の含有量は、全構成成分中、例えば、10体積%以上であることが好ましく、20体積%以上であることがより好ましい。なお、セパレータにおける繊維状物(C)の含有量は、70体積%以下であることが好ましく、60体積%以下であることが好ましいが、後述する多孔質基体として使用する場合には、90体積%以下であることが好ましく、80体積%以下であることがより好ましい。
 よって、セパレータ形成用組成物に繊維状物(C)を含有させる場合には、製造後のセパレータにおいて、繊維状物(C)の含有量が前記の値を満たすように、繊維状物(C)の添加量を調整したり、繊維状物(C)からなる多孔質基体の表面に塗布するセパレータ形成用組成物の量を調整したりすることが望ましい。
 また、本発明のセパレータは、使用される電気化学素子の安全性を更に高める観点から、シャットダウン機能を有していることが好ましい。セパレータにシャットダウン機能を付与するには、例えば、融点が80℃以上140℃以下の熱可塑性樹脂[以下、「熱溶融性樹脂(D)」という]を含有させるか、または、加熱によって液状の非水電解質(非水電解液。以下「電解液」と省略する場合がある。)を吸収して膨潤し且つ温度上昇とともに膨潤度が増大する樹脂[以下、「熱膨潤性樹脂(E)」という]を含有させることが挙げられる。前記の方法によりシャットダウン機能を持たせたセパレータでは、電気化学素子内が発熱した際に、熱溶融性樹脂(D)が溶融してセパレータの空孔を塞いだり、熱膨潤性樹脂(E)が電気化学素子内の非水電解質(液状の非水電解質)を吸収したりして、電気化学反応の進行を抑制するシャットダウンを生じる。
 本発明法によって熱溶融性樹脂(D)や熱膨潤性樹脂(E)を含有するセパレータを製造するには、セパレータ形成用組成物に熱溶融性樹脂(D)や熱膨潤性樹脂(E)を含有させればよい。
 熱溶融性樹脂(D)としては、融点、すなわちJIS K 7121の規定に準じて、DSCを用いて測定される融解温度が80℃以上140℃以下の樹脂であるが、電気絶縁性を有しており、電気化学素子の有する非水電解質やセパレータ製造の際に使用する溶剤に対して安定であり、更に、電気化学素子の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましい。具体的には、ポリエチレン(PE)、ポリプロピレン(PP)、共重合ポリオレフィン、ポリオレフィン誘導体(塩素化ポリエチレンなど)、ポリオレフィンワックス、石油ワックス、カルナバワックスなどが挙げられる。前記共重合ポリオレフィンとしては、エチレン-ビニルモノマー共重合体、より具体的には、エチレン-プロピレン共重合体、EVA、エチレン-メチルアクリレート共重合体やエチレン-エチルアクリレート共重合体などのエチレン-アクリル酸共重合体が例示できる。前記共重合ポリオレフィンにおけるエチレン由来の構造単位は、85モル%以上であることが望ましい。また、ポリシクロオレフィンなどを用いることもできる。熱溶融性樹脂(D)には、前記例示の樹脂を1種単独で用いてもよく、2種以上を用いても構わない。
 熱溶融性樹脂(D)としては、前記例示の材料の中でも、PE、ポリオレフィンワックス、PP、またはエチレン由来の構造単位が85モル%以上のEVAが好適に用いられる。また、熱溶融性樹脂(D)は、必要に応じて、樹脂に添加される公知の各種添加剤(例えば、酸化防止剤など)を含有していても構わない。
 熱膨潤性樹脂(E)としては、通常、電池が使用される温度領域(およそ70℃以下)では、電解液を吸収しないかまたは吸収量が限られており、従って膨潤の度合いが一定以下であるが、必要となる温度(Tc)まで加熱されたときには、電解液を吸収して大きく膨潤し且つ温度上昇と共に膨潤度が増大するような性質を有する樹脂が用いられる。熱膨潤性樹脂(E)を含有するセパレータを用いた電気化学素子では、Tcより低温側においては、熱膨潤性樹脂(E)に吸収されない流動可能な電解液がセパレータの空孔内に存在するため、セパレータ内部のリチウムイオンの伝導性が高くなり、良好な負荷特性を有する電気化学素子となるが、温度上昇に伴って膨潤度が増大する性質(以下、「熱膨潤性」という場合がある)が現れる温度以上に加熱された場合には、熱膨潤性樹脂(E)は素子内の電解液を吸収して大きく膨潤し、膨潤した熱膨潤性樹脂(E)がセパレータの空孔を塞ぐと共に、流動可能な電解液が減少して電気化学素子が液枯れ状態となることにより、電解液と活物質との反応性を抑制し電気化学素子の安全性がより高められる。しかも、Tcを超える高温となった場合、熱膨潤性により前記液枯れが更に進行し、電池の反応が更に抑制されることになるため、高温での安全性を更に高めることもできる。
 熱膨潤性樹脂(E)が熱膨潤性を示し始める温度は、75℃以上であることが好ましい。熱膨潤性樹脂(E)が熱膨潤性を示し始める温度を75℃以上とすることにより、Liイオンの伝導性が著しく減少して素子の内部抵抗が上昇する温度(Tc)を、およそ80℃以上に設定することができるからである。一方、熱膨潤性を示す温度の下限が高くなるほど、セパレータのTcが高くなるので、Tcをおよそ130℃以下に設定するために、熱膨潤性樹脂(E)の熱膨潤性を示し始める温度は、125℃以下とすることが好ましく、115℃以下とすることがより好ましい。熱膨潤性を示す温度が高すぎると、素子内の活物質の熱暴走反応を十分に抑制できず、電気化学素子の安全性向上効果が十分に確保できないことがあり、また、熱膨潤性を示す温度が低すぎると、通常の電気化学素子の使用温度域(およそ70℃以下)におけるリチウムイオンの伝導性が低くなりすぎることがある。
 また、熱膨潤性を示す温度より低い温度では、熱膨潤性樹脂(E)は電解液をできるだけ吸収せず、膨潤が少ない方が望ましい。これは、電気化学素子の使用温度領域、例えば室温では、電解液は、熱膨潤性樹脂(E)に取り込まれるよりもセパレータの空孔内に流動可能な状態で保持される方が、電気化学素子の負荷特性などの特性が良好になるからである。
 常温(25℃)において熱膨潤性樹脂(E)吸収する電解液量は、熱膨潤性樹脂(E)の体積変化を表す下記式(1)で定義される膨潤度Bにより評価することができる。
  B = (V/V)-1           (1)
[前記式中、Vは、電解液中に25℃で24時間浸漬後の熱膨潤性樹脂(E)の体積(cm)、Vは、電解液に浸漬する前の熱膨潤性樹脂(E)の体積(cm)をそれぞれ表す。]
 本発明のセパレータに熱膨潤性樹脂(E)を含有させる場合では、常温(25℃)における熱膨潤性樹脂(E)の膨潤度Bは、1以下であることが好ましく、電解液の吸収による膨潤が小さいこと、すなわち、Bはできるだけ0に近い小さな値となることが望まれる。また、熱膨潤性を示す温度より低温側では、膨潤度の温度変化ができるだけ小さくなるものが望ましい。
 その一方で、熱膨潤性樹脂(E)としては、熱膨潤性を示す温度の下限以上に加熱された時は、電解液の吸収量が大きくなり、熱膨潤性を示す温度範囲において、温度と共に膨潤度が増大するものが用いられる。例えば、120℃において測定される、下記式(2)で定義される膨潤度Bが、1以上であるものが好ましく用いられる。
  B = (V/V)-1           (2)
[前記式中、Vは、電解液中に25℃で24時間浸漬後の熱膨潤性樹脂(E)の体積(cm)、Vは、電解液中に25℃で24時間浸漬後、電解液を120℃に昇温させ、120℃で1時間経過後における熱膨潤性樹脂(E)の体積(cm)をそれぞれ表す。]
 一方、前記式(2)で定義される熱膨潤性樹脂(E)の膨潤度は、大きくなりすぎると電気化学素子の変形を発生させることもあるため、10以下であることが望ましい。
 前記式(2)で定義される膨潤度は、熱膨潤性樹脂(E)の大きさの変化を、光散乱法やCCDカメラなどにより撮影された画像の画像解析といった方法を用いて、直接測定することにより見積もることができるが、例えば以下の方法を用いてより正確に測定することができる。
 前記式(1)および式(2)と同様に定義される、25℃および120℃における膨潤度が既知のバインダ樹脂を用い、その溶液またはエマルジョンに、熱膨潤性樹脂(E)を混合してスラリーを調製し、これをPETシートやガラス板などの基材上に塗布してフィルムを作製し、その質量を測定する。次に、このフィルムを、25℃の電解液中に24時間浸漬して質量を測定し、更に、電解液を120℃に加熱昇温させ、120℃で1時間保持後における質量を測定し、下記式(3)~(9)によって膨潤度Bを算出する。なお、下記(3)~(9)式では、25℃から120℃までの昇温した際の、電解液以外の成分の体積増加は無視できるものとする。
  V = M×W/P                (3)
  V = (M-M)/P             (4)
  V = M/P-M/P            (5)
  V = M×(1-W)/P            (6)
  V = V+V-V×(B+1)         (7)
  V = V×(B+1)              (8)
  B = {V+V-V×(B+1)}/V-1  (9)
ここで、前記式(3)~(9)中、
:電解液に浸漬する前の熱膨潤性樹脂(E)の体積(cm)、
:電解液中に25℃で24時間浸漬後の熱膨潤性樹脂(E)の体積(cm)、
:電解液中に常温で24時間浸漬後に、フィルムに吸収された電解液の体積(cm)、
:電解液中に常温に24時間浸漬した時点から、電解液を120℃まで昇温させ、更に120℃で1時間経過するまでの間に、フィルムに吸収された電解液の体積(cm)、
:電解液に浸漬する前のバインダ樹脂の体積(cm)、
:電解液中に常温で24時間浸漬後のバインダ樹脂の体積(cm)、
:電解液に浸漬する前のフィルムの質量(g)、
:電解液中に常温で24時間浸漬後のフィルムの質量(g)、
:電解液中に常温で24時間浸漬した後、電解液を120℃まで昇温させ、更に120℃で1時間経過した後におけるフィルムの質量(g)、
W:電解液に浸漬する前のフィルム中の熱膨潤性樹脂(E)の質量比率、
:電解液に浸漬する前の熱膨潤性樹脂(E)の比重(g/cm)、
:常温における電解液の比重(g/cm)、
:所定温度での電解液の比重(g/cm)、
:電解液に浸漬する前のバインダ樹脂の比重(g/cm)、
:電解液中に常温で24時間浸漬後のバインダ樹脂の膨潤度、
:前記(2)式で定義される昇温時のバインダ樹脂の膨潤度
である。
 また、前記の方法により前記(3)式および前記(7)式から求められるVおよびVから、前記(1)式を用いて常温での膨潤度Bを求めることができる。
 本発明の電気化学素子は、従来から知られている電気化学素子と同様に、例えば、リチウム塩を有機溶剤に溶解した溶液が非水電解質として使用される(リチウム塩や有機溶剤の種類、リチウム塩濃度などの詳細は後述する)。よって、熱膨潤性樹脂(E)としては、リチウム塩の有機溶剤溶液中で、75~125℃のいずれかの温度に達した時に前記の熱膨潤性を示し始め、好ましくは該溶液中において膨潤度BおよびBが前記の値を満足するように膨潤し得るものが推奨される。
 熱膨潤性樹脂(E)としては、耐熱性および電気絶縁性を有しており、電解液に対して安定であり、更に、電池の作動電圧範囲において酸化還元されにくい電気化学的に安定な材料が好ましく、そのような材料としては、例えば、樹脂架橋体が挙げられる。より具体的には、スチレン樹脂[ポリスチレン(PS)]など、スチレンブタジエンゴム(SBR)、アクリル樹脂[ポリメチルメタクリレート(PMMA)など]、ポリアルキレンオキシド[ポリエチレンオキシド(PEO)]など、フッ素樹脂[ポリフッ化ビニリデン(PVDF)など]およびこれらの誘導体よりなる群から選ばれる少なくとも1種の樹脂の架橋体;尿素樹脂;ポリウレタン;などが例示できる。熱膨潤性樹脂(E)には、前記例示の樹脂を1種単独で用いてもよく、2種以上を併用してもよい。また、熱膨潤性樹脂(E)は、必要に応じて、樹脂に添加される公知の各種添加剤、例えば、酸化防止剤などを含有していても構わない。
 前記の構成材料の中でも、スチレン樹脂架橋体、アクリル樹脂架橋体およびフッ素樹脂架橋体が好ましく、架橋PMMAが特に好ましく用いられる。
 これら樹脂架橋体が、温度上昇により電解液を吸収して膨潤するメカニズムについては明らかでないが、ガラス転移温度(Tg)との相関が考えられる。すなわち、樹脂は、一般にそのTgまで加熱されたときに柔軟になるため、前記のような樹脂は、Tg以上の温度で多くの電解液の吸収が可能となり膨潤するのではないかと推定される。従って、熱膨潤性樹脂(E)としては、実際にシャットダウン作用が生じる温度が熱膨潤性樹脂(E)樹の熱膨潤性を示し始める温度より多少高くなることを考慮し、およそ75~125℃にTgを有する樹脂架橋体を用いることが望ましいと考えられる。なお、本明細書でいう熱膨潤性樹脂(E)である樹脂架橋体のTgは、JIS K 7121の規定に準じて、DSCを用いて測定される値である。
 前記樹脂架橋体では、電解液を含む前の所謂乾燥状態においては、温度上昇により膨張しても、温度を下げることにより再び収縮するというように、温度変化に伴う体積変化にある程度可逆性があり、また、熱膨潤性を示す温度よりもかなり高い耐熱温度を有するため、熱膨潤性を示す温度の下限が100℃くらいであっても、200℃またはそれ以上まで加熱することが可能な材料を選択することができる。そのため、セパレータの製造工程などで加熱を行っても、樹脂が溶解したり樹脂の熱膨潤性が損なわれたりすることがなく、一般の加熱プロセスを含む製造工程での取り扱いが容易となる。
 熱溶融性樹脂(D)や熱膨潤性樹脂(E)[以下、熱溶融性樹脂(D)と熱膨潤性樹脂(E)とを纏めて「シャットダウン樹脂」という場合がある]の形態は特に限定はされないが、微粒子の形状のものを用いることが好ましく、その大きさは、乾燥時における粒径がセパレータの厚みより小さければよく、セパレータの厚みの1/100~1/3の平均粒径を有することが好ましく、具体的には、平均粒径が0.1~20μmであることが好ましい。シャットダウン樹脂粒子の粒径が小さすぎる場合は、粒子同士の隙間が小さくなり、イオンの伝導パスが長くなって電気化学素子の特性が低下する虞がある。また、シャットダウン樹脂粒子の粒径が大きすぎると、隙間が大きくなってリチウムデンドライトなどに起因する短絡に対する耐性の向上効果が小さくなる虞がある。なお、シャットダウン樹脂粒子の平均粒径は、例えば、レーザー散乱粒度分布計(例えば、HORIBA社製「LA-920」)を用い、シャットダウン樹脂を膨潤させない媒体(例えば水)に当該微粒子を分散させて測定した数平均粒子径として規定することができる。
 また、シャットダウン樹脂は、前記以外の形態であってもよく、他の構成要素、例えば、無機微粒子や繊維状物の表面に積層され一体化された状態で存在していてもよい。具体的に、無機微粒子をコアとしシャットダウン樹脂をシェルとするコアシェル構造の粒子として存在してもよく、また、芯材の表面にシャットダウン樹脂を有する複層構造の繊維であってもよい。
 セパレータにおけるシャットダウン樹脂の含有量は、シャットダウンの効果をより得やすくするために、例えば、下記のようであることが好ましい。セパレータの構成成分の全体積中におけるシャットダウン樹脂の体積は、10体積%以上であることが好ましく、20体積%以上であることがより好ましい。一方、セパレータの高温時における形状安定性確保の点から、セパレータの構成成分の全体積中におけるシャットダウン樹脂の体積は、50体積%以下であることが好ましく、40体積%以下であることがより好ましい。
 よって、セパレータ形成用組成物に前記のシャットダウン樹脂を含有させる場合には、製造後のセパレータにおいて、シャットダウン樹脂の含有量が前記の値を満たすように、シャットダウン樹脂の添加量を調整することが望ましい。
 セパレータ形成用組成物においては、モノマーやオリゴマー、重合開始剤、更には必要に応じて使用される無機微粒子(B)などを含む固形分含量を、例えば10~50質量%とすることが好ましい。
 本発明法の工程(2)では、工程(1)で調製したセパレータ形成用組成物を基材に塗布して塗膜を形成する。
 セパレータ形成用組成物を塗布する基材には、例えば、電気化学素子用の電極(正極または負極)、多孔質基体、フィルムや金属箔などの基板などが使用できる。
 基材に電気化学素子用の電極を用いる場合には、電極と一体化したセパレータを製造することができる。また、基材に多孔質基体を用いる場合には、セパレータ形成用組成物により形成される層と多孔質基体とからなる多層構造のセパレータを製造することができる。更に、基材にフィルムや金属箔などの基板を用いる場合には、形成後のセパレータを基板から剥離して、独立膜のセパレータを製造することができる。
 基材に用いる多孔質基体としては、例えば、前記例示の各材料を構成成分に含む繊維状物の少なくとも1種で構成される織布や、これら繊維状物同士が絡み合った構造を有する不織布などの多孔質シートなどが挙げられる。より具体的には、紙、PP不織布、ポリエステル不織布(PET不織布、PEN不織布、PBT不織布など)、PAN不織布などの不織布を例示できる。
 また、多孔質基体には、非水電解質二次電池などの電気化学素子のセパレータとして汎用されている微多孔膜(例えば、PE、PPなどのポリオレフィン製の微多孔膜)を用いることもできる。こうした多孔質基体を用いることによっても、セパレータにシャットダウン機能を付与することができる。なお、このような多孔質基体は一般に耐熱性が低く、例えば、電気化学素子内の温度が上昇することで収縮するなどして、正極と負極との接触による短絡を引き起こすことがある。しかし、本発明法により製造されるセパレータの場合には、このような多孔質基体の表面に、耐熱性に優れる樹脂(A)を含む層が形成されるため、かかる層によって多孔質基体の熱収縮を抑制できることから、安全性に優れた電気化学素子を構成可能なセパレータとなる。
 セパレータ形成用組成物を基材に塗布する際には、公知の各種塗布方法が採用できる。また、電気化学素子用電極や多孔質基体を基材に用いる場合には、セパレータ形成用組成物をこれらの基材内に含浸させてもよい。
 本発明法の工程(3)では、基材に塗布したセパレータ形成用組成物の塗膜にエネルギー線を照射して、樹脂(A)を形成する。
 セパレータ形成用組成物の塗膜に照射するエネルギー線としては、例えば、可視光線、紫外線、放射線、電子線などが挙げられるが、より安全性が高いことから、可視光線または紫外線を用いることがより好ましい。
 エネルギー線の照射に際しては、波長や照射強度、照射時間などを、樹脂(A)を良好に形成できるように適宜調整することが好ましい。具体例を挙げると、例えば、エネルギー線の波長を320~390nmとし、照射強度を623~1081mJ/cmとすることができる。ただし、エネルギー線の照射条件は、前記の条件に限定される訳ではない。
 本発明法の工程(4)では、エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して溶媒を除去し、孔を形成する。乾燥の条件(温度、時間、乾燥方法)については、セパレータ形成用組成物に使用する溶媒の種類に応じて、これが良好に除去できる条件を適宜選択すればよい。具体例を挙げると、例えば、乾燥温度を20~80℃とし、乾燥時間を30分~24時間とすることができ、また、乾燥方法には、風乾の他、恒温槽、ドライヤー、ホットプレート(電極表面にセパレータを直接形成する場合)などを用いた方法を採用することができる。ただし、工程(4)での乾燥条件は、前記の条件に限定される訳ではない。
 フィルムや金属箔などの基板を基材に用いた場合には、前記の通り、工程(4)を経て形成されたセパレータを基材から剥離して、電気化学素子の製造に供する。他方、電極や多孔質基体を基材に用いた場合には、形成されたセパレータ(または層)を基材から剥離することなく、電気化学素子の製造に供すればよい。
 また、製造後のセパレータの片面または両面に、前記のシャットダウン樹脂を含む層(シャットダウン樹脂のみで形成された層や、シャットダウン樹脂とバインダとを含む層など)を形成することで、セパレータにシャットダウン樹脂を持たせてもよい。
 本発明のセパレータは、その空孔率が、乾燥した状態で、電解液の保液量を確保してリチウムイオン透過性を良好にするために、10%以上であることが好ましい。一方、セパレータ強度の確保と内部短絡の防止の観点から、セパレータの空孔率は、乾燥した状態で、70%以下であることが好ましい。乾燥した状態でのセパレータの空孔率:P(%)は、セパレータの厚み、面積あたりの質量、構成成分の密度から、下記(10)式を用いて各成分iについての総和を求めることにより計算できる。
  P ={1-(m/t)/(Σa・ρ)}×100  (10)
ここで、前記式中、a:全体の質量を1としたときの成分iの比率、ρ:成分iの密度(g/cm)、m:セパレータの単位面積あたりの質量(g/cm)、t:セパレータの厚み(cm)である。
 また、本発明のセパレータは、JIS P 8117に準拠した方法で行われ、0.879g/mmの圧力下で100mlの空気が膜を透過する秒数で示されるガーレー値が10~300secであることが望ましい。ガーレー値が大きすぎると、リチウムイオン透過性が小さくなり、他方、小さすぎると、セパレータの強度が小さくなることがある。さらに、セパレータの強度としては、直径1mmのニードルを用いた突き刺し強度で50g以上であることが望ましい。かかる突き刺し強度が小さすぎると、リチウムデンドライトが発生した場合に、セパレータの突き破れによる短絡が発生する場合がある。前記の構成を採用することにより、前記のガーレー値や突き刺し強度を有するセパレータとすることができる。
 本発明のセパレータの厚みは、正極と負極とをより確実に隔離する観点から、6μm以上であることが好ましく、10μm以上であることがより好ましい。他方、セパレータが厚すぎると、電池としたときのエネルギー密度が低下してしまうことがあるため、その厚みは、50μm以下であることが好ましく、30μm以下であることがより好ましい。
 本発明の電気化学素子は、正極、負極、セパレータおよび非水電解質を有しており、セパレータが本発明のセパレータであればよく、その他の構成および構造については特に制限はなく、従来から知られている電気化学素子で採用されている各種構成および構造を適用することができる。
 本発明の電気化学素子には、非水電解質二次電池の他、非水電解質一次電池やスーパーキャパシタなどが含まれ、特に高温での安全性が要求される用途に好ましく適用できる。以下、本発明の電気化学素子が非水電解質二次電池である場合を中心に詳述する。
 非水電解質二次電池の形態としては、スチール缶やアルミニウム缶などを外装缶として使用した筒形(角筒形や円筒形など)などが挙げられる。また、金属を蒸着したラミネートフィルムを外装体としたソフトパッケージ電池とすることもできる。
 正極としては、従来から知られている非水電解質二次電池に用いられている正極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する正極であれば特に制限はない。例えば、活物質として、Li1+xMO(-0.1<x<0.1、M:Co、Ni、Mn、Al、Mgなど)で表される層状構造のリチウム含有遷移金属酸化物、LiMnやその元素の一部を他元素で置換したスピネル構造のリチウムマンガン酸化物、LiMPO(M:Co、Ni、Mn、Feなど)で表されるオリビン型化合物などを用いることが可能である。前記層状構造のリチウム含有遷移金属酸化物の具体例としては、LiCoOやLiNi1-xCox-yAl(0.1≦x≦0.3、0.01≦y≦0.2)などのほか、少なくともCo、NiおよびMnを含む酸化物(LiMn1/3Ni1/3Co1/3、LiMn5/12Ni5/12Co1/6、LiMn3/5Ni1/5Co1/5など)などを例示することができる。
 導電助剤としては、カーボンブラックなどの炭素材料が用いられ、バインダとしては、PVDFなどのフッ素樹脂が用いられ、これらの材料と活物質とが混合された正極合剤により正極活物質含有層が、例えば集電体上に形成される。
 また、正極の集電体としては、アルミニウムなどの金属の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、厚みが10~30μmのアルミニウム箔が好適に用いられる。
 正極側のリード部は、通常、正極作製時に、集電体の一部に正極活物質含有層を形成せずに集電体の露出部を残し、そこをリード部とすることによって設けられる。ただし、リード部は必ずしも当初から集電体と一体化されたものであることは要求されず、集電体にアルミニウム製の箔などを後から接続することによって設けてもよい。
 負極としては、従来から知られている非水電解質二次電池に用いられている負極、すなわち、Liイオンを吸蔵放出可能な活物質を含有する負極であれば特に制限はない。例えば、活物質として、黒鉛、熱分解炭素類、コークス類、ガラス状炭素類、有機高分子化合物の焼成体、メソカーボンマイクロビーズ(MCMB)、炭素繊維などの、リチウムを吸蔵、放出可能な炭素系材料の1種または2種以上の混合物が用いられる。また、Si,Sn、Ge,Bi,Sb、Inなどの元素およびその合金、リチウム含有窒化物、または酸化物などのリチウム金属に近い低電圧で充放電できる化合物、もしくはリチウム金属やリチウム/アルミニウム合金も負極活物質として用いることができる。これらの負極活物質に導電助剤(カーボンブラックなどの炭素材料など)やPVDFなどのバインダなどを適宜添加した負極合剤を、集電体を芯材として成形体(負極活物質含有層)に仕上げたもの、または、前記の各種合金やリチウム金属の箔を単独、もしくは集電体上に積層したものなどが用いられる。
 負極に集電体を用いる場合には、集電体としては、銅製やニッケル製の箔、パンチングメタル、網、エキスパンドメタルなどを用い得るが、通常、銅箔が用いられる。この負極集電体は、高エネルギー密度の電池を得るために負極全体の厚みを薄くする場合、厚みの上限は30μmであることが好ましく、下限は5μmであることが望ましい。また、負極側のリード部は、正極側のリード部と同様にして形成すればよい。
 電極は、前記の正極と前記の負極とを、本発明のセパレータを介して積層した積層型の電極群や、更にこれを巻回した巻回体電極群の形態で用いることができる。なお、本発明のセパレータは、柔軟性に富む樹脂(A)の作用によって、折り曲げ時の耐短絡性も優れていることから、かかるセパレータを使用した本発明の電気化学素子では、セパレータに変形を加える巻回体電極群を用いた場合に、その効果がより顕著となり、セパレータを強く屈曲させる扁平状の巻回体電極群(横断面が扁平状の巻回体電極群)を用いた場合に、その効果が特に顕著となる。
 非水電解質としては、リチウム塩を有機溶媒に溶解した溶液(電解液)が用いられる。リチウム塩としては、溶媒中で解離してLiイオンを形成し、電池として使用される電圧範囲で分解などの副反応を起こしにくいものであれば特に制限は無い。例えば、LiClO、LiPF、LiBF、LiAsF、LiSbFなどの無機リチウム塩、LiCFSO、LiCFCO、Li(SO、LiN(CFSO、LiC(CFSO、LiC2n+1SO(n≧2)、LiN(RfOSO〔ここでRfはフルオロアルキル基〕などの有機リチウム塩などを用いることができる。
 非水電解質に用いる有機溶媒としては、前記のリチウム塩を溶解し、電池として使用される電圧範囲で分解などの副反応を起こさないものであれば特に限定されない。例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネートなどの環状カーボネート;ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどの鎖状カーボネート;プロピオン酸メチルなどの鎖状エステル;γ-ブチロラクトンなどの環状エステル;ジメトキシエタン、ジエチルエーテル、1,3-ジオキソラン、ジグライム、トリグライム、テトラグライムなどの鎖状エーテル;ジオキサン、テトラヒドロフラン、2-メチルテトラヒドロフランなどの環状エーテル;アセトニトリル、プロピオニトリル、メトキシプロピオニトリルなどのニトリル類;エチレングリコールサルファイトなどの亜硫酸エステル類などが挙げられ、これらは2種以上混合して用いることもできる。なお、より良好な特性の電池とするためには、エチレンカーボネートと鎖状カーボネートの混合溶媒など、高い導電率を得ることができる組み合わせで用いることが望ましい。また、これらの非水電解質に安全性や充放電サイクル性、高温貯蔵性といった特性を向上させる目的で、ビニレンカーボネート類、1,3-プロパンサルトン、ジフェニルジスルフィド、シクロヘキサン、ビフェニル、フルオロベンゼン、t-ブチルベンゼンなどの添加剤を適宜加えることもできる。
 このリチウム塩の電解液中の濃度としては、0.5~1.5mol/Lとすることが好ましく、0.9~1.3mol/Lとすることがより好ましい。
 また、前記の電解液は、ポリマーなどの公知のゲル化剤を加えてゲル状(ゲル状電解質)として用いてもよい。
 以下、実施例に基づいて本発明を詳細に述べる。ただし、下記実施例は、本発明を制限するものではない。
実施例1
<セパレータの作製>
 オリゴマーであるウレタンアクリレート:7.2質量部、モノマーであるジペントキシ化ペンタエリストールジアクリレート:2質量部、光重合開始剤である2,4,6-トリメチルベンゾイルビスフェニルホスフィンオキシド:0.3質量部、無機微粒子(B)であるベーマイト(平均粒径0.6μm):24質量部、溶媒(a)であるメチルエチルケトン(SP値:9.3):61質量部、および溶媒(b)であるエチレングリコール(SP値:14.1):5.6質量部に、ベーマイトに対して5倍量(質量基準)のφ1mmのジルコニアビーズを加え、ボールミルを用いて15時間均一に攪拌後、ろ過してセパレータ形成用のスラリーを調製した。前記のセパレータ形成用のスラリーに使用した溶媒(a)と溶媒(b)との体積比Vsb/Vsaは、0.127であった。
 前記のスラリー中に厚みが12μmのPET製不織布を通し、引き上げ塗布によりスラリーを塗布した後、所定の間隔を有するギャップの間を通し、続いて波長365nmの紫外線を照度1081mW/cmで10秒間照射し、その後乾燥して、厚みが20μmのセパレータを得た。このセパレータにおける樹脂(A)の体積Vと無機微粒子(B)の体積Vとの比V/Vは、1.22であった。
<正極の作製>
 正極活物質であるLiCoO:90質量部、導電助剤であるアセチレンブラック:7質量部、およびバインダであるPVDF:3質量部を、N-メチル-2-ピロリドン(NMP)を溶剤として均一になるように混合し、正極合剤含有ペーストを調製した。このペーストを集電体となる厚み15μmのアルミニウム箔の両面に、塗布長が表面280mm、裏面210mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が150μmになるように正極活物質含有層の厚みを調整し、幅43mmになるように切断して正極を作製した。その後、正極におけるアルミニウム箔の露出部にタブ付けを行った。
<負極の作製>
 負極活物質である黒鉛:95質量部とPVDF:5質量部とを、NMPを溶剤として均一になるように混合して負極合剤含有ペーストを調製した。このペーストを銅箔からなる厚み10μmの集電体の両面に、塗布長が表290mm、裏面230mmになるように間欠塗布し、乾燥した後、カレンダー処理を行って、全厚が142μmになるように負極活物質含有層の厚みを調整し、幅45mmになるように切断して負極を作製した。その後、負極における銅箔の露出部にタブ付けを行った。
<電池の組み立て>
 前記のようにして得た正極と負極とを、前記のセパレータを介在させつつ重ね、渦巻状に巻回して巻回体電極群を作製した。得られた巻回体電極群を押しつぶして扁平状にし、厚み4mm、高さ50mm、幅34mmのアルミニウム製外装缶に入れ、非水電解液(エチレンカーボネートとエチルメチルカーボネートを体積比で1対2に混合した溶媒にLiPFを濃度1.2mol/Lで溶解したもの)を注入した後に封止を行って、図1に示す構造で、図2に示す外観の角形非水電解質二次電池を作製した。
 ここで図1および図2に示す電池について説明すると、正極1と負極2は前記のようにセパレータ3を介して渦巻状に巻回した巻回体電極群6として、角形の外装缶4に非水電解液とともに収容されている。ただし、図1では、煩雑化を避けるため、正極1や負極2の作製にあたって使用した集電体としての金属箔や非水電解液などは図示していない。
 外装缶4はアルミニウム合金製で電池の外装材を構成するものであり、この外装缶4は正極端子を兼ねている。そして、外装缶4の底部にはポリエチレンシートからなる絶縁体5が配置され、前記正極1、負極2およびセパレータ3からなる電極群6からは、正極1および負極2のそれぞれ一端に接続された正極集電板7と負極集電板8が引き出されている。また、外装缶4の開口部を封口するアルミニウム合金製の蓋板9にはポリプロピレン製の絶縁パッキング10を介してステンレス鋼製の端子11が取り付けられ、この端子11には絶縁体12を介してステンレス鋼製のリード板(電極端子集電機構)13が取り付けられている。
 そして、この蓋板9は前記外装缶4の開口部に挿入され、両者の接合部を溶接することによって、外装缶4の開口部が封口され、電池内部が密閉されている。
 なお、蓋板9には注液孔が設けられており(図中、14)、電池組み立ての際には、この注液孔から電池内に非水電解液が注入され、その後、注液孔は封止される。また、蓋板9には、防爆用の安全弁15が設けられている。
 この実施例1の電池では、正極集電板7を蓋板9に直接溶接することによって外装缶4と蓋板9とが正極端子として機能し、負極集電板8をリード板13に溶接し、そのリード板13を介して負極集電板8と端子11とを導通させることによって端子11が負極端子として機能するようになっているが、外装缶4の材質などによっては、その正負が逆になる場合もある。
 図2は前記図1に示す電池の外観を模式的に示す斜視図であり、この図2は前記電池が角形電池であることを示すことを目的として図示されたものであって、この図2では電池を概略的に示しており、電池の構成部材のうち特定のものしか図示していない。また、図1においても、電極群の内周側の部分は断面にしていない。
実施例2
 溶媒(b)をジメチルスルホキシド(SP値:12.9)に変更した以外は実施例1と同様にして、厚みが20μmのセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。前記のセパレータ形成用のスラリーに使用した溶媒(a)と溶媒(b)との体積比Vsb/Vsaは、0.125であった。
実施例3
 実施例1で作製したものと同じ負極の両面に、実施例1で調製したものと同じセパレータ形成用のスラリーを、ディップ塗布機を用いて塗布し、波長365nmの紫外線を照度1081mW/cmで10秒間照射し、その後乾燥して、厚みが20μmのセパレータを両面に有する負極を得た。
 そして、この負極と、実施例1で作製したものと同じ正極とを、負極の有するセパレータを間にして重ね合わせて作製した扁平状の巻回体電極群を使用した以外は、実施例1と同様にして非水電解質二次電池を作製した。
実施例4
 実施例1で作製したものと同じ正極の両面に、実施例1で調製したものと同じセパレータ形成用のスラリーを、ディップ塗布機を用いて塗布し、波長365nmの紫外線を照度1081mW/cmで10秒間照射し、その後乾燥して、厚みが21μmのセパレータを両面に有する正極を得た。
 そして、この正極と、実施例1で作製したものと同じ負極とを、正極の有するセパレータを間にして重ね合わせて作製した扁平状の巻回体電極群を使用した以外は、実施例1と同様にして非水電解質二次電池を作製した。
比較例1
 溶媒(a)であるメチルエチルケトンの量を66.6質量部に変更し、溶媒(b)を使用しなかった以外は実施例1と同様にして、厚みが21μmのセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
比較例2
 溶媒(a)であるメチルエチルケトンの量を63.6質量部に変更し、溶媒(b)であるエチレングリコールの量を3質量部に変更した以外は実施例1と同様にして、厚みが21μmのセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。前記のセパレータ形成用のスラリーに使用した溶媒(a)と溶媒(b)との体積比Vsb/Vsaは、0.034であった。
比較例3
 溶媒(a)であるメチルエチルケトンの量を51.6質量部に変更し、溶媒(b)であるエチレングリコールの量を15質量部に変更した以外は実施例1と同様にして、厚みが50μmのセパレータを作製した。そして、このセパレータを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。前記のセパレータ形成用のスラリーに使用した溶媒(a)と溶媒(b)との体積比Vsb/Vsaは、4.76であった。
比較例4
 市販のポリオレフィン製微多孔膜(厚み20μm)をセパレータに用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
 実施例および比較例の非水電解質二次電池に使用したセパレータについて、均一性、ガーレー値および空孔率を求めた。均一性は目視で評価し、ガーレー値および空孔率は前記の方法により求めた(なお、負極または正極表面に形成した実施例3、4に係るセパレータについては、ガーレー値は測定していない)。
 また、実施例および比較例の非水電解質二次電池について、以下の充放電試験を行った。
<充放電試験>
 実施例および比較例の電池について、0.2Cの電流で4.2Vまで定電流充電し、その後4.2Vでの定電圧充電を行った。総充電時間は8時間とした。定電圧充電の終了時点で電流が0.02C以下にならなかった電池は微短絡が発生したものと判断し、微短絡により電圧が4.2Vに到達しなかった電池を1.0、電圧が4.2Vに到達しても電流値が減衰しない電池を0.5、電流値の減衰があり電圧も4.2Vに到達した電池を0としてポイント化し、ポイントの総和の測定電池数(実施例および比較例のそれぞれについて、各5個)で割って、短絡率を求めた。
 また、前記の定電圧充電後の各電池(微短絡が生じていなかった電池)について、内部抵抗を測定してから、0.2Cの電流値で2.5Vまで定電流放電を行った。
 次に、放電後の各電池について、前記と同じ条件で充電を行い、その後に0.2Cの電流で2.5Vまで定電流放電して、放電容量(0.2C放電容量)を求めた。更に、0.2C放電容量測定後の各電池について、前記と同じ条件で充電を行い、その後に1Cの電流で2.5Vまで定電流放電して、放電容量(1C放電容量)を求めた。そして、各電池について、1C放電容量を0.2C放電容量で除した値を百分率で表して、容量維持率を求めた。この容量維持率が高いほど、電池の負荷特性が良好であるといえる。
<昇温試験>
 実施例および比較例の電池について、温度20℃に制御された試験室内で、0.5Cの電流で4.2Vまで充電を行った。この充電状態の各電池を恒温槽に入れ、槽内温度を5℃/分の割合で温度上昇させて160℃に到達後、160℃で1時間温度を保ち、試験開始から160℃1時間の定値運転が終了するまでの間、電池表面に接続した熱電対により電池が到達した最高温度を測定した。その後、各電池を恒温槽から取り出し、10時間室温で放冷した後に電池電圧を測定した。各実施例および比較例のそれぞれについて、3個の電池で前記の試験を行い、それらの最高温度の平均値および電池電圧の平均値を求めて、各実施例および比較例の電池の最高温度および電池電圧の平均値とした。
 実施例および比較例の非水電解質二次電池に使用したセパレータの形成に用いたセパレータ形成用スラリーに係る溶媒の構成を表1に、前記セパレータの構造および特性を表2に示し、実施例および比較例の非水電解質二次電池の評価結果を表3に、それぞれ示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表1から表3に示す通り、樹脂原料を溶解し得る溶媒(a)と、ソルベントショックによって樹脂原料を凝集させ得る溶媒(b)とを適正な体積比で含有するセパレータ形成用のスラリーを用いて形成した実施例1~4の非水電解質二次電池に係るセパレータは、均一性が高く、また、ガーレー値が低く良好な透気度を有しており、微細かつ均質な細孔が良好に形成できていると考えられる。よって、このようなセパレータを用いた実施例1~4の非水電解質二次電池は、内部抵抗が低く、短絡率も0で、また、負荷特性評価時の容量維持率も高く、信頼性に優れている。更に、実施例1~4の非水電解質二次電池は、通常のポリオレフィン製の微多孔膜セパレータを用いた比較例4の電池とは異なり、昇温試験後の電圧低下が認められず、また、試験時の最高到達温度も比較例4の電池よりも低く、安全性が良好である。
 これに対し、溶媒(b)を含有しないセパレータ形成用スラリーを用いて形成した比較例1の非水電解質二次電池に係るセパレータ、並びに溶媒(a)と溶媒(b)との体積比率が不適なセパレータ形成用スラリーを用いて形成した比較例2および比較例3の非水電解質二次電池に係るセパレータは、空孔率が小さく、また、ガーレー値が大きく、空孔形成が良好に進んでいないと考えられる。このセパレータを用いた比較例1~3の電池は、セパレータのリチウムイオン透過性が劣っているためか内部抵抗が高い。また、セパレータ中の少ない孔に電流が集中するためにリチウムデンドライトが形成されやすいためか、比較例1、2の電池は充放電が不可能であり、比較例3の電池は短絡率が非常に高く、いずれも信頼性が劣っている。よって、これら比較例1~3の電池では、負荷特性の評価および昇温試験を実施できなかった。
 本発明は、その趣旨を逸脱しない範囲で、前記以外の形態としても実施が可能である。本出願に開示された実施形態は一例であって、本発明は、これらの実施形態には限定されない。本発明の範囲は、前記の明細書の記載よりも、添付されている請求の範囲の記載を優先して解釈され、請求の範囲と均等の範囲内での全ての変更は、請求の範囲に含まれる。
 本発明の電気化学素子は、従来から知られている電気化学素子と同様の用途に用いることができる。
 1  正極
 2  負極
 3  セパレータ

Claims (10)

  1.  電気化学素子用セパレータを製造する方法であって、
     エネルギー線の照射により重合可能な単量体およびオリゴマーの少なくとも一方からなる樹脂原料と、前記樹脂原料を溶解させ得る溶媒(a)と、ソルベントショックによって前記樹脂原料を凝集させ得る溶媒(b)とを含有し、かつ前記溶媒(a)の体積Vsaと前記溶媒(b)の体積Vsbとの比Vsb/Vsaが0.04~0.2であるセパレータ形成用組成物を調製する工程と、
     前記セパレータ形成用組成物を、基材に塗布する工程と、
     前記基材に塗布した前記セパレータ形成用組成物の塗膜にエネルギー線を照射して、架橋構造を有する樹脂(A)を形成する工程と、
     エネルギー線照射後の前記セパレータ形成用組成物の塗膜を乾燥して、孔を形成する工程とを有することを特徴とする電気化学素子用セパレータの製造方法。
  2.  溶媒(a)の溶解パラメータが8.9以上9.9以下であり、溶媒(b)の溶解パラメータが10より大きく15以下である請求項1に記載の電気化学素子用セパレータの製造方法。
  3.  無機微粒子(B)を更に含有するセパレータ形成用組成物を使用する請求項1または2に記載の電気化学素子用セパレータの製造方法。
  4.  無機微粒子(B)が、アルミナ、チタニア、シリカまたはベーマイトである請求項3に記載の電気化学素子用セパレータの製造方法。
  5.  繊維状物(C)を更に含有するセパレータ形成用組成物を使用する請求項1~4のいずれかに記載の電気化学素子用セパレータの製造方法。
  6.  融点が80~140℃の樹脂(D)、および加熱により液状の非水電解質を吸収して膨潤し且つ温度上昇と共に膨潤度が増大する樹脂(E)のうちの少なくとも一方を更に含有するセパレータ形成用組成物を使用する請求項1~5のいずれかに記載の電気化学素子用セパレータの製造方法。
  7.  請求項1~6のいずれかに記載の電気化学素子用セパレータの製造方法により製造されたものであることを特徴とする電気化学素子用セパレータ。
  8.  請求項4または5に記載の電気化学素子用セパレータの製造方法により製造され、樹脂(A)の体積Vと、無機微粒子(B)の体積Vとの比V/Vが、0.6~9である請求項7に記載の電気化学素子用セパレータ。
  9.  正極、負極、セパレータおよび非水電解質を有する電気化学素子であって、
     前記セパレータが、請求項7または8に記載の電気化学素子用セパレータであることを特徴とする電気化学素子。
  10.  セパレータが、正極および負極の少なくとも一方と一体化している請求項9に記載の電気化学素子。
     
PCT/JP2012/056233 2012-03-12 2012-03-12 電気化学素子用セパレータ、その製造方法および電気化学素子 WO2013136404A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137001970A KR101370674B1 (ko) 2012-03-12 2012-03-12 전기 화학 소자용 세퍼레이터, 그 제조 방법 및 전기 화학 소자
JP2012552165A JP5191022B1 (ja) 2012-03-12 2012-03-12 電気化学素子用セパレータ、その製造方法および電気化学素子
US13/810,421 US20140030606A1 (en) 2012-03-12 2012-03-12 Separator for electrochemical device, method for producing the same, and electrochemical device
CN2012800021384A CN103430350A (zh) 2012-03-12 2012-03-12 电化学元件用隔膜、其制造方法以及电化学元件
PCT/JP2012/056233 WO2013136404A1 (ja) 2012-03-12 2012-03-12 電気化学素子用セパレータ、その製造方法および電気化学素子

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/056233 WO2013136404A1 (ja) 2012-03-12 2012-03-12 電気化学素子用セパレータ、その製造方法および電気化学素子

Publications (1)

Publication Number Publication Date
WO2013136404A1 true WO2013136404A1 (ja) 2013-09-19

Family

ID=48481505

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/056233 WO2013136404A1 (ja) 2012-03-12 2012-03-12 電気化学素子用セパレータ、その製造方法および電気化学素子

Country Status (5)

Country Link
US (1) US20140030606A1 (ja)
JP (1) JP5191022B1 (ja)
KR (1) KR101370674B1 (ja)
CN (1) CN103430350A (ja)
WO (1) WO2013136404A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191777A (ja) * 2016-04-14 2017-10-19 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性耐熱層組成物、多孔性耐熱層を含む分離膜、および該分離膜を用いた電気化学電池
JP2020056000A (ja) * 2018-10-03 2020-04-09 株式会社リコー インクセット

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101460640B1 (ko) 2007-07-06 2014-12-02 소니 가부시끼가이샤 세퍼레이터, 세퍼레이터를 이용한 전지, 및 세퍼레이터를제조하는 방법
JP6337900B2 (ja) * 2013-08-27 2018-06-06 日本ゼオン株式会社 二次電池用多孔膜スラリー組成物、二次電池用セパレータ、二次電池用電極及び二次電池
CN107304260B (zh) * 2016-04-22 2020-03-24 上海恩捷新材料科技股份有限公司 一种宽温域低收缩隔离膜及其制备方法和用途
CN107452919B (zh) * 2016-06-01 2020-08-28 上海恩捷新材料科技有限公司 一种高浸润性隔离膜及其制备方法和用途
US10109843B2 (en) * 2016-08-17 2018-10-23 Hong Kong Applied Science and Technology Research Institute Company Limited Separator for a rechargeable battery
EP4037045A4 (en) * 2019-09-27 2022-12-28 Ohki Yamada SEPARATION MEMBRANE FOR REDOX FLOW BATTERY AND METHOD OF MAKING SUCH SEPARATION MEMBRANE
JP2022026935A (ja) * 2020-07-31 2022-02-10 帝人株式会社 非水系二次電池用セパレータ及び非水系二次電池

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193759A (ja) * 2008-02-13 2009-08-27 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれより得られる電極/セパレータ接合体。
JP2009270013A (ja) * 2008-05-08 2009-11-19 Asahi Kasei E-Materials Corp 無機粒子含有微多孔膜の製造方法
JP2011181195A (ja) * 2010-02-26 2011-09-15 Hitachi Maxell Energy Ltd リチウムイオン二次電池
JP2012033498A (ja) * 2010-04-08 2012-02-16 Hitachi Maxell Energy Ltd 電気化学素子

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040241550A1 (en) * 2003-05-28 2004-12-02 Wensley C. Glen Battery separator for lithium polymer battery
KR101223081B1 (ko) * 2006-09-07 2013-01-17 히다치 막셀 가부시키가이샤 전지용 세퍼레이터 및 리튬 2차 전지
JP5268673B2 (ja) * 2009-01-21 2013-08-21 日立マクセル株式会社 非水電解質二次電池の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009193759A (ja) * 2008-02-13 2009-08-27 Nitto Denko Corp 電池用セパレータのための反応性ポリマー担持多孔質フィルムとそれより得られる電極/セパレータ接合体。
JP2009270013A (ja) * 2008-05-08 2009-11-19 Asahi Kasei E-Materials Corp 無機粒子含有微多孔膜の製造方法
JP2011181195A (ja) * 2010-02-26 2011-09-15 Hitachi Maxell Energy Ltd リチウムイオン二次電池
JP2012033498A (ja) * 2010-04-08 2012-02-16 Hitachi Maxell Energy Ltd 電気化学素子

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017191777A (ja) * 2016-04-14 2017-10-19 三星エスディアイ株式会社Samsung SDI Co., Ltd. 多孔性耐熱層組成物、多孔性耐熱層を含む分離膜、および該分離膜を用いた電気化学電池
JP2020056000A (ja) * 2018-10-03 2020-04-09 株式会社リコー インクセット
JP7298359B2 (ja) 2018-10-03 2023-06-27 株式会社リコー インクセット、及び液体吐出方法

Also Published As

Publication number Publication date
CN103430350A (zh) 2013-12-04
KR20130131286A (ko) 2013-12-03
JPWO2013136404A1 (ja) 2015-07-30
US20140030606A1 (en) 2014-01-30
JP5191022B1 (ja) 2013-04-24
KR101370674B1 (ko) 2014-03-04

Similar Documents

Publication Publication Date Title
JP5191022B1 (ja) 電気化学素子用セパレータ、その製造方法および電気化学素子
JP5099938B1 (ja) 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池
KR101166091B1 (ko) 전기화학소자용 세퍼레이터
JP5165158B1 (ja) 非水電解質二次電池及びその製造方法
JP5219191B2 (ja) 電気化学素子用セパレータおよび電気化学素子
JP5525630B2 (ja) 非水電解質二次電池用電極、非水電解質二次電池及びその製造方法
JP5611505B2 (ja) 電池用セパレータおよびリチウム二次電池
JP5210461B1 (ja) 非水電解質二次電池用セパレータ、その製造方法および非水電解質二次電池
WO2013080946A1 (ja) 非水電解液電池用セパレータおよびそれを用いた非水電解液電池
WO2013042235A1 (ja) 電気化学素子用セパレータ、その製造方法および電気化学素子
WO2012053286A1 (ja) 電気化学素子用セパレータとその製造方法、電気化学素子用電極および電気化学素子
JP2009224341A (ja) 電池用セパレータとその製造方法、およびリチウム二次電池
JP2012033498A (ja) 電気化学素子
JP2008066094A (ja) 電池用セパレータおよびリチウム二次電池
JP2008027839A (ja) ライナー付き多孔質膜、多孔質膜の製造方法、およびリチウム二次電池の製造方法
JP5478733B2 (ja) 非水電解液電池用セパレータおよび非水電解液電池
JP2008004441A (ja) リチウム二次電池、リチウム二次電池用セパレータ、リチウム二次電池用電極、リチウム二次電池用非水電解液およびリチウム二次電池用外装体
JP5113944B1 (ja) 電気化学素子用セパレータ、その製造方法および電気化学素子
JP2008004440A (ja) リチウム二次電池、およびその使用方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2012552165

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13810421

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20137001970

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12871291

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12871291

Country of ref document: EP

Kind code of ref document: A1