WO2017185820A1 - 一种分子筛、其制造方法及其应用 - Google Patents

一种分子筛、其制造方法及其应用 Download PDF

Info

Publication number
WO2017185820A1
WO2017185820A1 PCT/CN2017/000327 CN2017000327W WO2017185820A1 WO 2017185820 A1 WO2017185820 A1 WO 2017185820A1 CN 2017000327 W CN2017000327 W CN 2017000327W WO 2017185820 A1 WO2017185820 A1 WO 2017185820A1
Authority
WO
WIPO (PCT)
Prior art keywords
oxide
molecular sieve
source
group
molar ratio
Prior art date
Application number
PCT/CN2017/000327
Other languages
English (en)
French (fr)
Inventor
王永睿
祝进成
孙明毅
慕旭宏
舒兴田
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司石油化工科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司石油化工科学研究院 filed Critical 中国石油化工股份有限公司
Priority to EP17788483.0A priority Critical patent/EP3450396A4/en
Priority to KR1020187033906A priority patent/KR102359046B1/ko
Priority to US16/095,208 priority patent/US10737945B2/en
Priority to SG11201808701WA priority patent/SG11201808701WA/en
Priority to JP2018556388A priority patent/JP7051709B2/ja
Priority to BR112018071728-2A priority patent/BR112018071728B1/pt
Priority to CA3021606A priority patent/CA3021606C/en
Priority to RU2018141094A priority patent/RU2732141C2/ru
Publication of WO2017185820A1 publication Critical patent/WO2017185820A1/zh
Priority to ZA2018/06888A priority patent/ZA201806888B/en
Priority to US16/946,927 priority patent/US11091372B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0248Compounds of B, Al, Ga, In, Tl
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/165Natural alumino-silicates, e.g. zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/047Germanosilicates; Aluminogermanosilicates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B37/00Compounds having molecular sieve properties but not having base-exchange properties
    • C01B37/02Crystalline silica-polymorphs, e.g. silicalites dealuminated aluminosilicate zeolites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/026After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/04Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof using at least one organic template directing agent, e.g. an ionic quaternary ammonium compound or an aminated compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/02Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons
    • C07C2/04Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation
    • C07C2/06Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition between unsaturated hydrocarbons by oligomerisation of well-defined unsaturated hydrocarbons without ring formation of alkenes, i.e. acyclic hydrocarbons having only one carbon-to-carbon double bond
    • C07C2/08Catalytic processes
    • C07C2/12Catalytic processes with crystalline alumino-silicates or with catalysts comprising molecular sieves
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2/00Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms
    • C07C2/54Preparation of hydrocarbons from hydrocarbons containing a smaller number of carbon atoms by addition of unsaturated hydrocarbons to saturated hydrocarbons or to hydrocarbons containing a six-membered aromatic ring with no unsaturation outside the aromatic ring
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C4/00Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms
    • C07C4/02Preparation of hydrocarbons from hydrocarbons containing a larger number of carbon atoms by cracking a single hydrocarbon or a mixture of individually defined hydrocarbons or a normally gaseous hydrocarbon fraction
    • C07C4/06Catalytic processes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/22Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by isomerisation
    • C07C5/2206Catalytic processes not covered by C07C5/23 - C07C5/31
    • C07C5/222Catalytic processes not covered by C07C5/23 - C07C5/31 with crystalline alumino-silicates, e.g. molecular sieves
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G11/00Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils
    • C10G11/02Catalytic cracking, in the absence of hydrogen, of hydrocarbon oils characterised by the catalyst used
    • C10G11/04Oxides
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/58Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins
    • C10G45/60Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to change the structural skeleton of some of the hydrocarbon content without cracking the other hydrocarbons present, e.g. lowering pour point; Selective hydrocracking of normal paraffins characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/60Compounds characterised by their crystallite size
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/80Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70
    • C01P2002/82Crystal-structural characteristics defined by measured data other than those specified in group C01P2002/70 by IR- or Raman-data
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/90Other crystal-structural characteristics not specified above
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/40Particle morphology extending in three dimensions prism-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/54Particles characterised by their aspect ratio, i.e. the ratio of sizes in the longest to the shortest dimension
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2529/00Catalysts comprising molecular sieves
    • C07C2529/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites, pillared clays
    • C07C2529/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • C07C2529/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups C07C2529/08 - C07C2529/65

Definitions

  • the present invention relates to a molecular sieve, especially an ultra-large pore molecular sieve.
  • the invention also relates to a process for the manufacture of the molecular sieves and to their use as adsorbents or catalysts.
  • Molecular sieves are widely used, and different uses often impose different requirements on the skeleton pore structure of the molecular sieve.
  • Molecular sieves have four types of skeleton pore structure: small pore, medium pore, large pore and super large pore: small pore molecular sieve has to Apertures such as CHA, LEV, SOD, LTA, ERI, KFI; mesoporous molecular sieves have to Apertures such as MFI, MEL, EUO, MWW, TON, MTT, MFS, AEL, AFO, HEU, FER; large pore molecular sieves have Apertures such as FAU, BEA, MOR, LTL, VFI, MAZ; super-large pore molecular sieves have greater The aperture.
  • ultra-large pore molecular sieves have broken through the pore limitation of molecular sieves, and have shown many advantages in improving macromolecular reactivity, prolonging molecular sieve life and improving product selectivity, and are expected to be processed in heavy oil. Good application in the production of organic chemical raw materials.
  • the inventors have found through hard research on the basis of the prior art that a novel ultra-large pore molecular sieve has been discovered, and a new molecular sieve manufacturing method has also been discovered, thereby satisfying the aforementioned requirements of the prior art. .
  • the invention relates to the following aspects:
  • the first oxide has a molar ratio of from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5
  • the size of the crystal morphology comprises an effective diameter of from 100 nm to 1000 nm, preferably from 300 nm to 700 nm, a height of from 100 nm to 1000 nm, preferably from 150 nm to 700 nm,
  • the aspect ratio is from 1/3 to 8, preferably from 1.5 to 5 or from 2 to 5.
  • molecular sieve according to any of the preceding claims, wherein the molecular sieve has a total specific surface area of from 400 m 2 /g to 600 m 2 /g, preferably from 450 m 2 /g to 580 m 2 /g, and a pore volume of from 0.3 Ml/g to 0.5 ml/g, preferably from 0.30 ml/g to 0.40 ml/g.
  • a method of producing a molecular sieve comprising the steps of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve, and optionally Ground, the step of calcining the obtained molecular sieve, wherein the organic templating agent comprises a compound represented by the following formula (I),
  • the groups R 1 and R 2 are the same or different from each other, each independently selected from a C 3-12 straight or branched alkylene group and a C 3-12 straight or branched oxaalkylene group, preferably each independently Is selected from C 3-12 linear alkylene and C 3-12 linear oxaalkylene , or preferably one of them is selected from C 3-12 straight or branched alkylene and the other is selected from C 3 -12 linear or branched alkylene and C 3-12 linear or branched oxaalkylene, more preferably one selected from C 3-12 linear alkylene and the other selected from C 3-12 a linear alkylene group and a C 3-12 linear oxaalkylene group, particularly preferably one selected from the group consisting of C 3-12 linear alkylene groups and the other selected from C 4-6 linear alkylene groups and C 4 -6 linear oxaalkylene (preferably C 4-6 linear monooxaalkylene, more preferably -(CH 2 ) m
  • the first oxide source is at least one selected from the group consisting of a silica source, a ceria source, a tin dioxide source, a titania source, and a zirconia source.
  • a silica source or a combination of a silica source and a cerium oxide source the second oxide source being selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, a gallium oxide source, a rare earth oxide source, At least one of an indium oxide source and a vanadium oxide source, preferably an alumina source.
  • the crystallization conditions comprise: crystallization at a crystallization temperature of from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the time is at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or from 4 days to 6 days
  • the firing conditions include: the calcination temperature is from 300 ° C to 750 ° C, Preferably, from 400 ° C to 600 ° C, the calcination time is from 1 hour to 10 hours, preferably from 3 hours to 6 hours.
  • the first oxide source (in terms of the first oxide) and the second oxide source (in the second oxide The molar ratio of from 5 to ⁇ , preferably from 25 to 95, more preferably from 30 to 70; the molar ratio of water to the first oxide source (in terms of the first oxide) is from 5 To 50, preferably from 5 to 15; the molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5; the alkali source (in OH - as) molar ratio of the first oxide source (in the first oxide basis) is from 0 to 1, preferably from 0.04 To 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • a molecular sieve characterized by having a (native) sponge structure and having an X-ray diffraction pattern substantially as shown in the following table,
  • the sponge structure comprises coarse Holes and/or mesopores, preferably the coarse holes and/or the intermediate holes are open to the end faces and/or sides of the sponge structure.
  • the coarse pores have a diameter of from 80 nm to 2 ⁇ m, preferably from 80 nm to 1.5 ⁇ m
  • the mesopores have a diameter of from 2 nm to 30 nm, preferably from 2 nm to 4 nm and/or from 7 nm to 15 nm (preferably from 8 nm to 9 nm).
  • the mesopores have a total specific surface area of from 50 m 2 /g to 250 m 2 /g, preferably from 100 m 2 /g to 150 m 2 /g, and the pore volume is from 0.05 ml/g to 0.40 ml/g, preferably from 0.15 ml/g to 0.30 ml/g, and the total specific surface area of the coarse pores is from 10 m 2 /g to 100 m 2 /g, preferably from 50 m 2 /g to 100 m 2 /g, the pore volume is from 0.5 ml/g to 3.0 ml/g, preferably from 1.0 ml/g to 2.0 ml/g.
  • the sponge structure comprises microvoids, wherein the microvoids have a diameter of from 0.5 nm to less than 2 nm, preferably from 0.5 nm to 0.8 nm and/or from 1.1nm to 1.8nm, total specific surface area of from 100m 2 / g to 300m 2 / g, preferably from 150m 2 / g to 250m 2 / g, a pore volume of from 0.03ml / g to 0.20ml / g, preferably from 0.05 Ml/g to 0.15 ml/g.
  • the size of the crystal morphology comprises: an effective diameter of from 100 nm to 5000 nm, preferably from 1000 nm to 3000 nm, a height of from 500 nm to 3000 nm, preferably from 1000 nm to 3000 nm, high
  • the diameter ratio is from 1/3 to 5, preferably from 1/3 to 3.
  • first oxide ⁇ second oxide or the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water” a chemical composition, wherein a molar ratio of the first oxide to the second oxide is from 30 to 100, preferably from 55 to 100;
  • the first oxide is selected from the group consisting of silica, cerium oxide, and dioxide At least one of tin, titanium dioxide and zirconium dioxide, preferably silica or a combination of silica and ceria;
  • the second oxide is selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, rare earth oxidation At least one of, indium oxide and vanadium oxide, preferably alumina; a molar ratio of water to the first oxide of from 5 to 50, preferably from 5 to 15; the organic templating agent and the first The molar ratio of the oxide is from 0.02 to 0.5, preferably From 0.05 to 0.5, from 0.15
  • a method of producing a molecular sieve comprising the steps of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve, and optionally Ground, the step of calcining the obtained molecular sieve, wherein the organic templating agent comprises a compound represented by the following formula (I),
  • the groups R 1 and R 2 are different from each other, one of which is selected from a C 3-12 straight or branched alkylene group, and the other is selected from a C 3-12 straight or branched oxaalkylene group, preferably One selected from C 3-12 linear alkylene groups and the other selected from C 3-12 linear oxaalkylene groups (preferably C 4-6 linear oxaalkylene groups, more preferably C 4-6 linear chains) a monooxaalkylene group, more preferably -(CH 2 ) m -O-(CH 2 ) m -, wherein each value m is the same or different from each other, each independently representing 2 or 3); the plurality of groups R are identical to each other Or different, each independently selected from a C 1-4 straight or branched alkyl group, preferably each independently selected from the group consisting of methyl and ethyl, more preferably all methyl; X is OH.
  • the first oxide source is at least one selected from the group consisting of a silica source, a ceria source, a tin dioxide source, a titania source, and a zirconia source.
  • a silica source or a combination of a silica source and a cerium oxide source the second oxide source being selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, a gallium oxide source, a rare earth oxide source, At least one of an indium oxide source and a vanadium oxide source, preferably an alumina source.
  • the crystallization conditions comprise: crystallization at a crystallization temperature of from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the time is at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or from 4 days to 6 days
  • the firing conditions include: the calcination temperature is from 300 ° C to 750 ° C, Preferably, from 400 ° C to 600 ° C, the calcination time is from 1 hour to 10 hours, preferably from 3 hours to 6 hours.
  • the first oxide source (in terms of the first oxide) and the second oxide source (in the second oxide) The molar ratio is from 30 to 100, preferably from 55 to 100; the molar ratio of water to the first oxide source (in terms of the first oxide) is from 5 to 50, preferably from 5 to 15; a molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5, or from 0.3 to 0.5.
  • the molar ratio of the alkali source (calculated as OH - ) to the first oxide source (in terms of the first oxide) is from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1 From 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • the size of the crystal morphology comprises an effective diameter of from 100 nm to 1000 nm, preferably from 100 nm to 500 nm, a height of from 100 nm to 1000 nm, preferably from 150 nm to 300 nm,
  • the aspect ratio is from 0.1 to 0.9, preferably from 0.4 to 0.7.
  • molecular sieve according to any of the preceding claims, wherein the molecular sieve has a total specific surface area of from 400 m 2 /g to 600 m 2 /g, preferably from 450 m 2 /g to 580 m 2 /g, and a pore volume of from 0.3 Ml/g to 0.5 ml/g, preferably from 0.30 ml/g to 0.40 ml/g.
  • the molecular sieve according to any one of the preceding aspects having the schematic expression represented by the formula "first oxide ⁇ second oxide” or the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water” a chemical composition, wherein a molar ratio of the first oxide to the second oxide is from 40 to 200, preferably from 40 to 150; the first oxide is selected from the group consisting of silica, cerium oxide, and dioxide At least one of tin, titanium dioxide and zirconium dioxide, preferably silica or a combination of silica and ceria, the second oxide being selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, rare earth oxidation At least one of, indium oxide and vanadium oxide, preferably alumina; a molar ratio of water to the first oxide of from 5 to 50, preferably from 5 to 15; the organic templating agent and the first The molar ratio of the oxide is from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.
  • a method of producing a molecular sieve comprising the steps of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve, and optionally Ground, the step of calcining the obtained molecular sieve, wherein the organic templating agent comprises a compound represented by the following formula (I),
  • the groups R 1 and R 2 are the same or different from each other, each independently selected from a C 3-12 straight or branched alkylene group, preferably each independently selected from a C 3-12 linear alkylene group, particularly preferably One of them is selected from a C 3-12 linear alkylene group and the other is selected from a C 4-6 linear alkylene group;
  • the plurality of groups R are the same or different from each other, and are each independently selected from a C 1-4 straight chain or
  • the branched alkyl groups are preferably each independently selected from the group consisting of methyl and ethyl, more preferably all methyl;
  • X is OH.
  • the first oxide source is at least one selected from the group consisting of a silica source, a ceria source, a tin dioxide source, a titania source, and a zirconia source.
  • a silica source or a combination of a silica source and a cerium oxide source the second oxide source being selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, a gallium oxide source, a rare earth oxide source, At least one of an indium oxide source and a vanadium oxide source, preferably an alumina source.
  • the crystallization conditions comprise: crystallization at a crystallization temperature of from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the time is at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or from 4 days to 6 days
  • the firing conditions include: the calcination temperature is from 300 ° C to 750 ° C, Preferably, from 400 ° C to 600 ° C, the calcination time is from 1 hour to 10 hours, preferably from 3 hours to 6 hours.
  • the first oxide source (in terms of the first oxide) and the second oxide source (in the second oxide The molar ratio is from 40 to 200, preferably from 40 to 150; the molar ratio of water to the first oxide source (in terms of the first oxide) is from 5 to 50, preferably from 5 to 15; a molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.08 to 0.5, or from 0.3 to 0.5.
  • the molar ratio of the alkali source (calculated as OH - ) to the first oxide source (in terms of the first oxide) is from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1 From 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • a method for producing a molecular sieve comprising the steps of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent and water under crystallization conditions to obtain a molecular sieve, and optionally Ground, the step of calcining the obtained molecular sieve, wherein the organic templating agent comprises a compound represented by the following formula (I),
  • the groups R 1 and R 2 are the same or different from each other, each independently selected from a C 3-12 straight or branched alkylene group and a C 3-12 straight or branched oxaalkylene group, preferably each independently Is selected from a C 3-12 linear alkylene group and a C 3-12 linear oxaalkylene group, or preferably one of them is selected from a C 3-12 linear or branched alkylene group, and the other is selected from the group consisting of C 3 -12 linear or branched alkylene and C 3-12 linear or branched oxaalkylene, more preferably one selected from C 3-12 linear alkylene and the other selected from C 3-12 a linear alkylene group and a C 3-12 linear oxaalkylene group, particularly preferably one selected from the group consisting of C 3-12 linear alkylene groups and the other selected from C 4-6 linear alkylene groups and C 4 -6 linear oxaalkylene (preferably C 4-6 linear monooxaalkylene
  • the groups R 1 and R 2 are the same or different from each other, each independently selected from a C 3-12 straight or branched alkylene group, preferably each independently selected From the C 3-12 linear alkylene group, it is particularly preferred that one of them is selected from a C 3-12 linear alkylene group and the other is selected from a C 4-6 linear alkylene group; the plurality of groups R are the same or different from each other Each is independently selected from C 1-4 straight or branched alkyl groups, preferably each independently selected from the group consisting of methyl and ethyl, more preferably all methyl; X is OH.
  • the first source of oxide is selected from at least one of a source of silica, a source of cerium oxide, a source of tin dioxide, a source of titanium dioxide, and a source of zirconia.
  • a silica source or a group of silica source and cerium oxide source is selected from at least one of an alumina source, a boron oxide source, an iron oxide source, a gallium oxide source, a rare earth oxide source, an indium oxide source, and a vanadium oxide source, preferably an alumina source.
  • the crystallization conditions comprise: crystallization at a crystallization temperature of from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the time is at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or from 4 days to 6 days
  • the firing conditions include: the calcination temperature is from 300 ° C to 750 ° C, Preferably, from 400 ° C to 600 ° C, the calcination time is from 1 hour to 10 hours, preferably from 3 hours to 6 hours.
  • the molar ratio is from 5 to ⁇ , especially from 5 to less than 40 (such as from 20 to less than 40), from 40 to 200 (such as from 40 to 150), from more than 200 to ⁇ (such as from more than 200 to 700); a molar ratio of water to the first oxide source (in terms of the first oxide) of from 5 to 50, preferably from 5 to 15; the organic templating agent and the first oxide
  • the molar ratio of the source (in terms of the first oxide) is from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.08 to 0.5 or from 0.3 to 0.5; the alkali source (in terms of OH - ) and
  • the molar ratio of the first oxide source (calculated as the first oxide) is from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7, or from 0.45 to
  • the molar ratio is from 5 to ⁇ , especially from 5 to less than 30 (such as from 10 to less than 30), from 30 to 100 (such as from 55 to 100), from greater than 100 to ⁇ (such as from 200 to ⁇ ) Or from 200 to 700);
  • a molar ratio of water to the first oxide source (in terms of the first oxide) is from 5 to 50, preferably from 5 to 15;
  • the molar ratio of the first oxide source (calculated as the first oxide) is from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5;
  • the molar ratio to the first oxide source (in terms of the first oxide) is from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • a molecular sieve characterized by the production method according to any one of the preceding aspects obtain.
  • a molecular sieve composition comprising the molecular sieve according to any one of the preceding aspects, or the molecular sieve obtained by the production method according to any one of the preceding aspects, and a binder.
  • a process for the conversion of a hydrocarbon comprising the step of subjecting a hydrocarbon to a conversion reaction in the presence of a catalyst, wherein the catalyst comprises or is produced according to any one of the preceding aspects, according to any of the foregoing aspects
  • the molecular sieve according to the present invention has an ultra-large pore skeleton pore structure, which can be reflected at least from its higher pore volume data.
  • the molecular sieve according to the invention has good heat/water thermal stability and has a larger pore volume.
  • the molecular sieve of the present invention is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorption/catalytic properties.
  • the molecular sieve according to the present invention in one embodiment, has a unique X-ray diffraction spectrum (XRD) with a unique Si/Al 2 ratio. This is a molecular sieve that has not been produced in the prior art.
  • XRD X-ray diffraction spectrum
  • the molecular sieve according to the present invention in one embodiment, has a unique X-ray diffraction pattern (XRD) with a unique native crystal morphology, such as a crystal morphology from a flat prism to a flat cylinder.
  • XRD X-ray diffraction pattern
  • the molecular sieve according to the present invention in one embodiment, has a unique X-ray diffraction pattern (XRD) with a unique native crystal morphology, such as a crystal morphology with a sponge structure.
  • XRD X-ray diffraction pattern
  • This is a molecular sieve that has not been produced in the prior art.
  • the molecular sieve of the present invention exhibits the characteristics of the microporous material (i.e., the inherent characteristics of the conventional molecular sieve), and also has the characteristics of a mesoporous material and/or a macroporous material, and is capable of adsorbing more/larger. Molecules, thus exhibiting excellent adsorption/catalytic properties.
  • the molecular sieve according to the present invention in one embodiment, has a relatively strong acidity, particularly a large number of L acid centers. This is a molecular sieve that has not been produced in the prior art. As a result, the molecular sieve of the present invention has more excellent performance particularly in an acid-catalyzed reaction.
  • an organic template having a specific chemical structure is used, thereby exhibiting the characteristics that the process conditions are simple and the molecular sieve of the product is easily synthesized.
  • organic templating agents are sometimes referred to in the art as It is a structure directing agent or an organic guiding agent.
  • examples of the C 1-4 linear or branched alkyl group include a methyl group, an ethyl group or a propyl group.
  • linear or branched oxaalkylene means that the carbon chain structure of a straight or branched alkylene group is one or more (for example 1 to 3, 1 to 2) Or a divalent group obtained by interrupting the hetero group -O-. From the viewpoint of structural stability, it is preferred that when there are a plurality of, the two of the hetero groups are not directly bonded. It is apparent that the term “interruption” means that the hetero group is not at either end of the linear or branched alkylene group or the linear or branched oxaalkylene group.
  • a C 4 linear alkylene group (-CH 2 -CH 2 -CH 2 -CH 2 -) can be obtained by interrupting a hetero group -O- to obtain -CH 2 -O-CH 2 -CH 2 -CH 2 - or -CH 2 -CH 2 -O-CH 2 -CH 2 - C 4 straight chain and other oxaalkylene, after being two heteroaryl radicals interrupted with -O- can be obtained -CH 2 -O -CH 2 -O-CH 2 -CH 2 - or -CH 2 -O-CH 2 -CH 2 -O-CH 2 -etc.
  • C 4 straight-chain dioxaalkylene by three hetero-groups -O - after the interruption can be obtained -CH 2 -O-CH 2 -O- CH 2 -O-CH 2 - C 4 straight chain and other three oxaalkylene.
  • a C 4 branched alkylene group (-CH 2 (CH 3 )-CH 2 -CH 2 -) can be obtained by interrupting a hetero group -O---CH 2 (CH 3 )- O-CH 2 -CH 2 -, -CH 2 (CH 3 )-CH 2 -O-CH 2 - or -CH 2 (-O-CH 3 )-CH 2 -CH 2 -, etc.
  • a heteroalkylene group which is interrupted by two hetero groups -O- can be obtained as -CH 2 (CH 3 )-O-CH 2 -O-CH 2 -, -CH 2 (-O-CH 3 )-O- a C 4 -branched dioxaalkylene group such as CH 2 -CH 2 - or -CH 2 (-O-CH 3 )-CH 2 -O-CH 2 - may be interrupted by three hetero groups -O-
  • a C 4 branched trioxaalkylene group such as -CH 2 (-O-CH 3 )-O-CH 2 -O-CH 2 - is obtained.
  • total specific surface area refers to the total area of a unit mass molecular sieve, including internal surface area and external surface area.
  • Non-porous materials have only an external surface area, such as Portland cement, some clay mineral particles, etc.
  • porous materials have an external surface area and an internal surface area, such as asbestos fibers, diatomaceous earth, and molecular sieves.
  • pore volume also known as pore volume
  • micropore volume means the volume of all micropores (that is, pores having a pore diameter of less than 2 nm) per unit mass of molecular sieve.
  • w, m, s, vs represent the intensity of the diffraction peak, w is weak, m is medium, s is strong, and vs is very strong, which is known to those skilled in the art.
  • w is less than 20; m is 20-40; s is 40-70; The vs is greater than 70.
  • a molecular sieve wherein the molecular sieve has the schematic chemical composition represented by the formula "first oxide ⁇ second oxide". It is known that molecular sieves sometimes contain a certain amount of water (especially just after synthesis), but the present invention does not consider it necessary to specify the amount of moisture because the presence or absence of the moisture does not substantially The XRD spectrum of the molecular sieve is affected. In view of this, the schematic chemical composition actually represents the anhydrous chemical composition of the molecular sieve. Moreover, it is apparent that the schematic chemical composition represents the framework chemical composition of the molecular sieve.
  • the molecular sieve may, after synthesis, generally further comprise an organic templating agent and water or the like in the composition, such as those filled in its pores. Therefore, the molecular sieve may sometimes have an illustrative chemical composition represented by the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water".
  • the molecular sieve having the schematic chemical composition represented by the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water” is calcined to remove any organic templating agent and water present in the pores thereof.
  • the molecular sieve having the schematic chemical composition represented by the formula "first oxide ⁇ second oxide” can be obtained.
  • the calcination may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C, and a calcination time of generally from 1 hour to 10 hours, preferably From 3 hours to 6 hours.
  • the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the first oxide is generally a tetravalent oxide, and may be, for example, selected from the group consisting of silica, ceria, tin dioxide, titanium dioxide, and At least one of zirconia is preferably silica (SiO 2 ) or a combination of silica and ceria.
  • These first oxides may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxides is, for example, from 20:200 to 35:100.
  • silica and cerium oxide may be used in combination, and the molar ratio between the silica and the cerium oxide is, for example, from 20:200 to 35:100.
  • the second oxide is generally a trivalent oxide, and may be, for example, selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, and rare earth oxide. At least one of indium oxide and vanadium oxide is preferably alumina (Al 2 O 3 ). These second oxides may be used alone or in combination of any ones in any ratio. When a plurality of types are used in combination, the molar ratio between any two of the second oxides is, for example, from 30:200 to 60:150.
  • organic templating agent for example, any organic templating agent used in the production of the molecular sieve may be mentioned, and in particular, the molecular sieve of the present embodiment may be mentioned.
  • the organic templating agent used (see detailed description below). These organic templating agents may be used alone or in combination of any ones in any ratio. Specifically, specific examples of the organic templating agent include compounds represented by the following formula (I).
  • the groups R 1 and R 2 are the same or different from each other, each independently selected from C 3-12 straight or branched alkylene and C 3-12 straight chain Or a branched oxaalkylene group, the plurality of groups R being the same or different from each other, each independently selected from a C 1-4 straight or branched alkyl group, and X is OH.
  • a molar ratio of the first oxide to the second oxide is generally from 5 to Preferably, it is from 25 to 95, more preferably from 30 to 70.
  • the molar ratio is ⁇ , it means that the content of the second oxide or the second oxide in the schematic chemical composition is negligible.
  • the inventors of the present invention have found through careful investigation that the prior art has not produced, in particular, the molar ratio (such as the molar ratio of SiO 2 to Al 2 O 3 ) from 25 to 95 (more particularly from 30 to 70).
  • the molecular sieve is generally from 5 to Preferably, it is from 25 to 95, more preferably from 30 to 70.
  • water and said The molar ratio of the first oxide is generally from 5 to 50, preferably from 5 to 15.
  • the molar ratio of the organic templating agent to the first oxide is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • the molecular sieve may sometimes further contain metal cations such as alkali metals and/or alkaline earth metal cations in its composition (generally filled in its pores).
  • metal cations such as alkali metals and/or alkaline earth metal cations in its composition (generally filled in its pores).
  • the content of the metal cation at this time, for example, the mass ratio of the metal cation to the first oxide is generally from 0 to 0.02, preferably from 0.0002 to 0.006, but is not limited thereto.
  • the molecular sieve has an X-ray diffraction pattern substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the molecular sieve generally has a columnar crystal morphology when viewed using a scanning electron microscope (SEM).
  • the crystal morphology refers to the (overall) outer shape exhibited by a single molecular sieve crystal in the observation field of the scanning electron microscope.
  • a prismatic shape in particular, a hexagonal prism shape is preferable.
  • the prism refers to a convex prism and generally refers to a right prism and a regular polygonal prism (such as a regular hexagonal prism).
  • the actual crystal morphology may be compared with the geometric (true) straight prism or (true) regular polygonal prism.
  • any greater or lesser deviations do not depart from the scope of the invention.
  • the molecular sieve (single crystal) has an effective diameter generally ranging from 100 nm to 1000 nm, preferably from 300 nm to 700 nm, when observed using a scanning electron microscope (SEM).
  • the effective diameter means that two points are arbitrarily selected along the contour (edge) of the cross section of the molecular sieve (single crystal), and the linear distance between the two points is measured. The largest straight line distance is taken as the effective diameter.
  • the effective diameter generally refers to the linear distance (diagonal distance) between the two vertices furthest from the polygon.
  • the effective diameter corresponds substantially to the diameter of the circumcircle of the polygon represented by the contour of the cross section.
  • the molecular sieve (single crystal) has a height generally ranging from 100 nm to 1000 nm, preferably from 150 nm to 700 nm, when observed by a scanning electron microscope (SEM).
  • the term "height” refers to a linear distance between the centers of the two end faces of the column in a single crystal (columnar crystal) of the molecular sieve.
  • the two end faces of the molecular sieve column are substantially parallel to each other, and the linear distance is the vertical distance between the two end faces, but the invention is not limited thereto.
  • the molecular sieve (single crystal) has an aspect ratio of generally from 1/3 to 8, preferably from 1.5 to 5 or from 2 to 5 when observed by a scanning electron microscope (SEM).
  • the aspect ratio refers to the ratio of the height to the effective diameter.
  • the molecular sieve has a total specific surface area of generally from 400 m 2 /g to 600 m 2 /g, preferably from 450 m 2 /g to 580 m 2 /g.
  • the total specific surface area is obtained by a liquid nitrogen adsorption method, calculated by a BET model.
  • the molecular sieve has a pore volume (micropore volume) of generally from 0.3 ml/g to 0.5 ml/g, preferably from 0.30 ml/g to 0.40 ml/g.
  • the molecular sieve of the present invention has a very high micropore volume, which indicates that it belongs to an ultra-large pore molecular sieve.
  • the pore volume is a liquid nitrogen adsorption method, which is calculated according to the Horvath-Kawazoe model.
  • the molecular sieve can be produced by the following production method.
  • the manufacturing method includes a step of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve (hereinafter referred to as a contacting step) ).
  • the contacting step may be carried out in any manner conventionally known in the art, such as exemplifying the first oxide source, the second oxidation A method of mixing a source, the optional alkali source, the organic templating agent, and water, and subjecting the mixture to crystallization under the crystallization conditions.
  • the organic template agent comprises at least a compound represented by the following formula (I).
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the groups R 1 and R 2 are the same or different from each other, each independently selected from C 3-12 straight or branched alkylene groups and C 3-12 Linear or branched oxaalkylene.
  • the groups R 1 and R 2 are identical or different from each other, one of which is selected from a C 3-12 linear or branched alkylene group, The other is selected from a C 3-12 straight or branched alkylene group and a C 3-12 straight or branched oxaalkylene group.
  • the groups R 1 and R 2 are identical or different from one another, one of which is selected from the group consisting of C 3-12 linear alkylene groups, the other option From C 4-6 linear alkylene and C 4-6 linear oxaalkylene.
  • the groups R 1 and R 2 are identical or different from one another, each independently selected from C 3-12 straight or branched alkylene groups .
  • the groups R 1 and R 2 are identical or different from one another, one of which is selected from the group consisting of C 3-12 linear alkylene groups, the other option From C 4-6 linear alkylene.
  • the groups R 1 and R 2 are different from each other, one of which is selected from a C 3-12 linear or branched alkylene group, and the other It is selected from a C 3-12 linear or branched oxaalkylene group.
  • a C 3-12 linear or branched alkylene group for example, a C 3-12 linear alkylene group can be exemplified, and specific examples thereof include an n-propylene group and an isopropylidene group.
  • examples of the C 3-12 linear alkylene group include a C 4-6 linear alkylene group, and particularly, an n-n-n
  • a C 3-12 linear or branched oxaalkylene group for example, a C 3-12 linear oxaalkylene group can be mentioned, and specific examples thereof include -(CH 2 2 -O-(CH 2 )-, -(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 )-O-(CH 2 ) 3 -, -(CH 2 ) 2 -O -(CH 2 ) 3 -, -(CH 2 )-O-propylene-, -(CH 2 )-O-(CH 2 ) 4 -, -(CH 2 )-O-(CH 2 ) 2 - O-(CH 2 )-, -(CH 2 )-O-(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 )-O-tert-butyl-, -(CH 2 ) 2 -O-(CH 2
  • C 3-12 linear oxaalkylene group more specifically, a C 4-6 linear oxaalkylene group is exemplified, and a C 4-6 linear monooxaalkylene group is particularly exemplified.
  • an oxygen represented by the formula -(CH 2 ) m -O-(CH 2 ) m - (wherein the respective values m are the same or different from each other, each independently representing 2 or 3, such as 2) may be mentioned.
  • the heteroalkylene group is more specifically -(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 ) 2 -O-(CH 2 ) 3 -, -(CH 2 ) 3 -O -(CH 2 ) 3 - or -(CH 2 ) 2 -O-(CH 2 ) 4 -.
  • the plurality of groups R are the same or different from each other, each independently selected from a C 1-4 straight or branched alkyl group, preferably each independently selected from the group consisting of The group and the ethyl group are more preferably a methyl group.
  • X is OH
  • the molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent Preferably, in the contacting step, as the organic templating agent, only the compound represented by the formula (I) is used.
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the first oxide source is generally a tetravalent oxide source, and for example, may be selected from a silica source, a ceria source, a tin dioxide source, At least one of a source of titania and a source of zirconium dioxide is preferably a source of silica (SiO 2 ) or a combination of a source of silica and a source of cerium oxide.
  • These first oxide sources may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxide sources is, for example, from 20:200 to 35:100.
  • a silica source and a ceria source may be used in combination, and the molar ratio between the silica source and the ceria source is, for example, from 20:200. To 35:100.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the first oxide.
  • the first oxide is silica
  • examples of the first oxide source include silica sol, crude silica gel, tetraethyl orthosilicate, water glass, white carbon, and silicic acid. Silica gel or potassium silicate.
  • examples of the first oxide source include tetraalkoxy cerium, cerium oxide or cerium nitrate.
  • examples of the first oxide source include tin chloride, tin sulfate, tin nitrate, and the like.
  • examples of the first oxide source include titanium tetraalkoxide, titanium oxide, titanium nitrate, and the like.
  • examples of the first oxide source include zirconium sulfate, zirconium chloride, zirconium nitrate, and the like.
  • the second oxide source is generally a trivalent oxide source, and may be, for example, selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, and a gallium oxide source. At least one of a rare earth oxide source, an indium oxide source, and a vanadium oxide source is preferably an alumina (Al 2 O 3 ) source. These second oxide sources may be used alone or in combination of any ones in any ratio. When a plurality of combinations are used, the molar ratio between any two of the second oxide sources is, for example, from 30:200 to 60:150.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the second oxide.
  • the second oxide is alumina
  • examples of the second oxide source include aluminum chloride, aluminum sulfate, hydrated alumina, sodium metaaluminate, aluminum sol or aluminum hydroxide.
  • examples of the second oxide source include boric acid, borate, borax, and boron trioxide.
  • the second oxide is iron oxide
  • examples of the second oxide source include gallium nitrate, gallium sulfate, gallium oxide, and the like.
  • examples of the second oxide source include cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium nitrate, cerium nitrate, cerium nitrate, ammonium cerium sulfate, and the like. .
  • examples of the second oxide source include indium chloride, indium nitrate, indium oxide, and the like.
  • examples of the second oxide source include vanadium chloride, ammonium metavanadate, sodium vanadate, vanadium dioxide, vanadyl sulfate, and the like. These second oxide sources may be used singly or in combination of a plurality of them in a desired ratio.
  • the first oxide source (the count to the first oxide, such as SiO 2) and the second oxide source (in the second The molar ratio of the oxide such as Al 2 O 3 ) is generally from 5 to ⁇ , preferably from 25 to 95, more preferably from 30 to 70.
  • the molar ratio is ⁇ , it means that the second oxide source is not used or the second oxide source is not intentionally introduced into the contacting step.
  • the molar ratio of water to the first oxide source (in terms of the first oxide) is generally from 5 to 50, preferably from 5 to 15.
  • an alkali source may or may not be used.
  • the group X contained in the compound represented by the formula (I) can be used to provide the OH - which is required herein.
  • the alkali source any alkali source conventionally used for this purpose in the art may be used, including but not limited to inorganic bases which are cations of alkali metals or alkaline earth metals, particularly sodium hydroxide and potassium hydroxide. . These alkali sources may be used alone or in combination of any ones in any ratio.
  • a molar ratio of the alkali source (in terms of OH - ) to the first oxide source (in terms of the first oxide) is generally from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • the crystallization temperature is generally from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the crystallization time is generally at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 Days to 8 days or from 4 days to 6 days.
  • the molecular sieve in the method for producing the molecular sieve, after the contacting step is completed, the molecular sieve can be separated as a product from the obtained reaction mixture by any separation method conventionally known.
  • the molecular sieve product comprises the molecular sieve of the present invention.
  • the separation method for example, a method of filtering, washing, and drying the obtained reaction mixture can be mentioned.
  • the filtration, washing and drying may be carried out in any manner conventionally known in the art.
  • the filtration for example, the obtained reaction mixture can be simply suction filtered.
  • washing for example, washing with deionized water can be mentioned until the pH of the filtrate reaches 7-9, preferably 8-9.
  • the drying temperature is, for example, 40 to 250 ° C, preferably 60 to 150 ° C, and the drying time is, for example, 8 to 30 hours, preferably 10 to 20 hours.
  • the drying can be carried out under normal pressure or under reduced pressure.
  • the method for producing the molecular sieve may further include, as needed, a step of calcining the obtained molecular sieve (hereinafter referred to as a calcination step) to remove the organic template agent and possible moisture, and the like.
  • a calcination step a step of calcining the obtained molecular sieve
  • the molecular sieves before and after calcination are also collectively referred to as molecular sieves of the invention or molecular sieves according to the invention.
  • the calcination in the method of producing a molecular sieve, may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C. And the calcination time is generally from 1 hour to 10 hours, preferably from 3 hours to 6 hours. In addition, the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the molecular sieve of the present invention or any molecular sieve produced by the method for producing a molecular sieve according to the present invention are collectively referred to as the molecular sieve of the present invention or according to the present invention
  • Molecular sieves can also be ion exchanged by any means conventionally known in the art, such as by ion exchange or solution impregnation (for example, see, for example, U.S. Patents 3,140,249 and 3,140,253, etc.)
  • the metal cations (such as Na ions or K ions, depending on their specific manufacturing method) are replaced in whole or in part by other cations.
  • Examples of the other cation include hydrogen ions, other alkali metal ions (including K ions, Rb ions, etc.), ammonium ions (including NH 4 ions, quaternary ammonium ions such as tetramethylammonium ions and tetraethylammonium ions). Etc.), alkaline earth metal ions (including Mg ions, Ca ions), Mn ions, Zn ions, Cd ions, noble metal ions (including Pt ions, Pd ions, Rh ions, etc.), Ni ions, Co ions, Ti ions, Sn ions , Fe ions and/or rare earth metal ions, and the like.
  • the molecular sieve according to the present invention may be treated by a dilute acid solution or the like as needed to increase the ratio of silicon to aluminum or treated with steam to improve the acid attack resistance of the molecular sieve crystal.
  • the molecular sieve according to the invention has good heat/water thermal stability and has a larger pore volume.
  • the molecular sieve of the present invention is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorption/catalytic properties.
  • the molecular sieve according to the present invention has a strong acidity, particularly a large number of L acid centers. This is a molecular sieve that has not been produced in the prior art. As a result, the molecular sieve of the present invention has more excellent performance particularly in an acid-catalyzed reaction.
  • the molecular sieve according to the present invention may be in any physical form such as a powder, a granule or a molded article (e.g., a strip, a clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • a molecular sieve having an X-ray diffraction pattern substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the molecular sieve (referred to as a single crystal) has a crystal morphology of a sponge structure, particularly a native crystal morphology having a sponge structure, when observed using a scanning electron microscope (SEM).
  • the crystal morphology refers to the (overall) outer shape exhibited by a single molecular sieve crystal in the observation field of the scanning electron microscope.
  • the term "primary" refers to a structure in which molecular sieves are objectively presented directly after manufacture, and is not a structure in which molecular sieves are artificially processed after being manufactured.
  • the inventors of the present invention have found through careful investigation that the prior art has not produced a molecular sieve having both the aforementioned specific X-ray diffraction pattern and the aforementioned specific (native) crystal morphology.
  • the sponge structure generally comprises microvoids (skeletal holes). This is an inherent property of molecular sieves as microporous materials.
  • the diameter (average diameter) of the microvoids is generally from 0.5 nm to less than 2 nm.
  • the microvoids have a diameter of from 0.5 nm to 0.8 nm, or from 1.1 nm to 1.8 nm.
  • the diameter of the microvoids exhibits a bimodal distribution, including both diameters from 0.5 nm to 0.8 nm and from 1.1 nm to 1.8 nm.
  • the diameter is a DFT density functional theory by liquid nitrogen adsorption method. On the model calculation obtained.
  • the molecular sieve of the present invention is considered to belong to an ultra-large pore molecular sieve.
  • the total specific surface area of the micropores is generally from 100 m 2 /g to 300 m 2 /g, preferably from 150 m 2 /g to 250 m 2 /g.
  • the total specific surface area is obtained by a liquid nitrogen adsorption method as calculated by a BET model.
  • the pore volume of the micropores is generally from 0.03 ml/g to 0.20 ml/g, preferably from 0.05 ml/g to 0.15 ml/g.
  • the pore volume is obtained by measurement by the Horvath-Kawazoe method.
  • the inventors of the present invention believe that the pore volume of the micropores has such a low value because the coarse and/or mesopores as described below occupy Originally belonging to the location of the micro-hole. Therefore, if these coarse and medium holes are replaced with the micro holes, the pore volume of the micro holes may exhibit a very high value.
  • the sponge structure may also comprise coarse pores when viewed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the sponge structure of the molecular sieve (single crystal) of the present invention the coarse pores and the micropores communicate with each other and intersect each other to form a complicated network pore structure.
  • This is a coarse-pored super-large pore molecular sieve which has not been produced by the prior art.
  • the molecular sieve of the present invention exhibits the characteristics of the macroporous material while exhibiting the characteristics of the microporous material.
  • the sponge structure may also comprise mesopores when viewed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the mesopores and micropores communicate with each other and intersect to form a complex network pore structure.
  • This is a mesoporous ultra-large pore molecular sieve which has not been produced in the prior art.
  • the molecular sieve of the present invention exhibits the characteristics of the mesoporous material while exhibiting the characteristics of the microporous material.
  • the sponge structure may also comprise both coarse and medium pores when viewed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the molecular sieve of the present invention exhibits the characteristics of the microporous material as well as the characteristics of the macroporous material and the mesoporous material.
  • the coarse holes are opened at one end surface or both end faces of the sponge structure (in this case, the coarse holes become full through holes or half through holes).
  • the sponge structure can exhibit, for example, a crystal morphology similar to that of honeycomb coal.
  • the sponge structure belongs to an open or semi-open pore sponge structure.
  • the coarse holes may also open to one or more sides of the sponge structure, causing the sides to assume a hollowed out condition, thereby further increasing the permeability of the sponge structure.
  • the intermediate hole when viewed by a scanning electron microscope (SEM), the intermediate hole is opened at one end surface or both end faces of the sponge structure (at this time, the middle hole becomes a full through hole) Or a half through hole).
  • the sponge structure can exhibit, for example, a crystal morphology similar to that of honeycomb coal.
  • the open cell sponge structure is an open cell or semi-open cell sponge structure.
  • the intermediate hole may also open to one or more sides of the sponge structure, causing the side surface to assume a hollow state, thereby further increasing the permeability of the sponge structure.
  • the diameter (average diameter) of the coarse holes is generally from 80 nm to 2 ⁇ m, preferably from 80 nm to 1.5 ⁇ m.
  • the diameter is obtained by measurement by a mercury intrusion method.
  • the total specific surface area of the coarse pores is generally from 10 m 2 /g to 100 m 2 /g, preferably from 50 m 2 /g to 100 m 2 /g.
  • the total specific surface area is obtained by measurement by a mercury intrusion method.
  • the pore volume of the coarse pores is generally from 0.5 ml/g to 3.0 ml/g, preferably from 1.0 ml/g to 2.0 ml/g.
  • the pore volume is obtained by measurement by a mercury intrusion method.
  • the diameter (average diameter) of the mesopores is generally from 2 nm to 30 nm.
  • the mesopores have a diameter of from 2 nm to 4 nm, or from 7 nm to 15 nm, and the latter more preferably from 8 nm to 9 nm.
  • the diameter of the mesopores appears as a bimodal distribution, including both diameters from 2 nm to 4 nm and from 7 nm to 15 nm.
  • the diameter is obtained by a liquid nitrogen adsorption method as calculated by a BET model.
  • the total specific surface area of the mesopores is generally from 50 m 2 /g to 250 m 2 /g, preferably from 100 m 2 /g to 150 m 2 /g.
  • the total specific surface area is obtained by a liquid nitrogen adsorption method as measured by a BET model calculation method.
  • the pore volume of the mesopores is generally from 0.05 ml/g to 0.40 ml/g, preferably from 0.15 ml/g to 0.30 ml/g.
  • the pore volume is obtained by a liquid nitrogen adsorption method as measured by a BET model calculation method.
  • the sponge structure comprises both coarse, medium and micropores as previously described.
  • the coarse pores, the medium pores and the micropores communicate with each other and intersect each other to form a complicated network pore structure.
  • This is a porous grade ultra-large pore molecular sieve which has not been produced in the prior art.
  • the molecular sieve of the present invention exhibits the characteristics of the microporous material, and also has the characteristics of a mesoporous material and/or a macroporous material, capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorption/ Catalytic performance.
  • the molecular sieve generally also has a columnar crystal morphology when viewed using a scanning electron microscope (SEM).
  • SEM scanning electron microscope
  • the columnar shape a prismatic shape, in particular, a hexagonal prism shape is preferable.
  • the prism refers to a convex prism and generally refers to a right prism and a regular polygonal prism (such as a regular hexagonal prism). It should be specially pointed out that since the crystals of the molecular sieve may be disturbed by various factors during the growth process, the actual crystal morphology may be compared with the geometric (true) straight prism or (true) regular polygonal prism.
  • the molecular sieve (single crystal) has an effective diameter generally ranging from 100 nm to 5000 nm, preferably from 1000 nm to 3000 nm, when observed using a scanning electron microscope (SEM).
  • the effective diameter means that two points are arbitrarily selected along the contour (edge) of the cross section of the molecular sieve (single crystal), and the linear distance between the two points is measured. The largest straight line distance is taken as the effective diameter.
  • the effective diameter generally refers to the linear distance (diagonal distance) between the two vertices furthest from the polygon.
  • the effective diameter corresponds substantially to the diameter of the circumcircle of the polygon represented by the contour of the cross section.
  • the molecular sieve may exhibit a hollow column when the diameter of the coarse pore is sufficiently large (eg, as close to the effective diameter of the molecular sieve) Crystal shape.
  • the term "hollow column shape” means a cylindrical structure.
  • the wall thickness of the cylindrical structure may be, for example, from 50 nm to 400 nm, but the present invention is not limited thereto, and it is not intended to specifically specify the wall thickness.
  • the molecular sieve (single crystal) has a height generally ranging from 500 nm to 3000 nm, preferably from 1000 nm to 3000 nm, when observed using a scanning electron microscope (SEM).
  • the term "height” refers to a linear distance between the centers of the two end faces of the column in a single crystal (columnar crystal) of the molecular sieve.
  • the two end faces of the molecular sieve column are substantially parallel to each other, and the linear distance is the vertical distance between the two end faces, but the invention is not limited thereto.
  • the molecular sieve (single crystal) has an aspect ratio of generally from 1/3 to 5, preferably from 1/3 to 3, when observed by a scanning electron microscope (SEM).
  • the aspect ratio refers to the ratio of the height to the effective diameter.
  • the molecular sieve generally has the schematic chemical composition represented by the formula "first oxide ⁇ second oxide". It is known that molecular sieves sometimes contain a certain amount of water (especially just after synthesis), but the present invention does not consider it necessary to specify the amount of moisture because the presence or absence of the moisture does not substantially The XRD spectrum of the molecular sieve is affected. In view of this, the schematic chemical composition actually represents the anhydrous chemical composition of the molecular sieve. Moreover, it is apparent that the schematic chemical composition represents the framework chemical composition of the molecular sieve.
  • the molecular sieve may, in its composition, typically further comprise an organic templating agent and water or the like, such as those filled in its pores, just after synthesis. Therefore, the molecular sieve may sometimes have an illustrative chemical composition represented by the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water".
  • the molecular sieve having the schematic chemical composition represented by the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water” is calcined to remove any organic templating agent and water present in the pores thereof.
  • the molecular sieve having the schematic chemical composition represented by the formula "first oxide ⁇ second oxide” can be obtained.
  • the calcination may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C, and a calcination time of generally from 1 hour to 10 hours, preferably From 3 hours to 6 hours.
  • the said The calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the first oxide is generally a tetravalent oxide, and may be, for example, selected from the group consisting of silica, ceria, tin dioxide, titanium dioxide, and At least one of zirconia is preferably silica (SiO 2 ) or a combination of silica and ceria.
  • These first oxides may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxides is, for example, from 20:200 to 35:100.
  • silica and cerium oxide may be used in combination, and the molar ratio between the silica and the cerium oxide is, for example, from 20:200 to 35:100.
  • the second oxide is generally a trivalent oxide, and may be, for example, selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, and rare earth oxide. At least one of indium oxide and vanadium oxide is preferably alumina (Al 2 O 3 ). These second oxides may be used alone or in combination of any ones in any ratio. When a plurality of types are used in combination, the molar ratio between any two of the second oxides is, for example, from 30:200 to 60:150.
  • organic templating agent for example, any organic templating agent used in the production of the molecular sieve may be mentioned, and in particular, the molecular sieve of the present embodiment may be mentioned.
  • the organic templating agent used (see detailed description below). These organic templating agents may be used alone or in combination of any ones in any ratio. Specifically, specific examples of the organic templating agent include compounds represented by the following formula (I).
  • the groups R 1 and R 2 are different from each other, one of which is selected from a C 3-12 straight or branched alkylene group and the other is selected from the group consisting of C 3-12 straight A chain or branched oxaalkylene group, the plurality of groups R being the same or different from each other, each independently selected from a C 1-4 straight or branched alkyl group, and X is OH.
  • a molar ratio of the first oxide to the second oxide is generally from 30 to 100, preferably from 55 to 100.
  • the molar ratio of water to the first oxide is generally from 5 to 50, preferably from 5 to 15.
  • the molar ratio of the organic templating agent to the first oxide is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • the molecular sieve may sometimes further contain metal cations such as alkali metals and/or alkaline earth metal cations in its composition (generally filled in its pores).
  • metal cations such as alkali metals and/or alkaline earth metal cations in its composition (generally filled in its pores).
  • the content of the metal cation at this time, for example, the mass ratio of the metal cation to the first oxide is generally from 0 to 0.02, preferably from 0.0002 to 0.006, but is not limited thereto.
  • the molecular sieve can be produced by the following production method.
  • the manufacturing method includes a step of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve (hereinafter referred to as a contacting step) ).
  • the contacting step may be carried out in any manner conventionally known in the art, such as exemplifying the first oxide source, the second oxidation A method of mixing a source, the optional alkali source, the organic templating agent, and water, and subjecting the mixture to crystallization under the crystallization conditions.
  • the organic template agent comprises at least a compound represented by the following formula (I).
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the groups R 1 and R 2 are different from each other, one of which is selected from a C 3-12 straight or branched alkylene group and the other is selected from C 3 - 12 linear or branched oxaalkylene.
  • a C 3-12 linear or branched alkylene group for example, a C 3-12 linear alkylene group can be exemplified, and specific examples thereof include an n-propylene group and an isopropylidene group.
  • a C 3-12 linear or branched oxaalkylene group for example, a C 3-12 linear oxaalkylene group can be mentioned, and specific examples thereof include -(CH 2 2 -O-(CH 2 )-, -(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 )-O-(CH 2 ) 3 -, -(CH 2 ) 2 -O -(CH 2 ) 3 -, -(CH 2 )-O-propylene-, -(CH 2 )-O-(CH 2 ) 4 -, -(CH 2 )-O-(CH 2 ) 2 - O-(CH 2 )-, -(CH 2 )-O-(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 )-O-tert-butyl-, -(CH 2 ) 2 -O-(CH 2
  • C 3-12 linear oxaalkylene group more specifically, a C 4-6 linear oxaalkylene group is exemplified, and a C 4-6 linear monooxaalkylene group is particularly exemplified.
  • an oxygen represented by the formula -(CH 2 ) m -O-(CH 2 ) m - (wherein the respective values m are the same or different from each other, each independently representing 2 or 3, such as 2) may be mentioned.
  • the heteroalkylene group is more specifically -(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 ) 2 -O-(CH 2 ) 3 -, -(CH 2 ) 3 -O -(CH 2 ) 3 - or -(CH 2 ) 2 -O-(CH 2 ) 4 -.
  • the plurality of groups R are the same or different from each other, each independently selected from a C 1-4 straight or branched alkyl group, preferably each independently selected from the group consisting of The group and the ethyl group are more preferably a methyl group.
  • X is OH
  • the molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • the present invention in the contacting step, as the organic template agent, in addition to the compound represented by the formula (I), the present invention may be further used in combination Other organic templating agents conventionally used in the manufacture of molecular sieves.
  • the organic templating agent in addition to the compound represented by the formula (I), only the compound represented by the formula (I) is used.
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the first oxide source is generally a tetravalent oxide source, and for example, may be selected from a silica source, a ceria source, a tin dioxide source, At least one of a source of titania and a source of zirconium dioxide is preferably a source of silica (SiO 2 ) or a combination of a source of silica and a source of cerium oxide.
  • These first oxide sources may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxide sources is, for example, from 20:200 to 35:100.
  • a silica source and a ceria source may be used in combination, and the molar ratio between the silica source and the ceria source is, for example, from 20:200. To 35:100.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the first oxide.
  • the first oxide is silica
  • examples of the first oxide source include silica sol, crude silica gel, tetraethyl orthosilicate, water glass, white carbon, and silicic acid. Silica gel or potassium silicate.
  • examples of the first oxide source include tetraalkoxy cerium, cerium oxide or cerium nitrate.
  • examples of the first oxide source include tin chloride, tin sulfate, tin nitrate, and the like.
  • examples of the first oxide source include titanium tetraalkoxide, titanium oxide, titanium nitrate, and the like.
  • examples of the first oxide source include zirconium sulfate, zirconium chloride, zirconium nitrate, and the like.
  • the second oxide source is generally a trivalent oxide source, and may be, for example, selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, and a gallium oxide source. At least one of a rare earth oxide source, an indium oxide source, and a vanadium oxide source is preferably an alumina (Al 2 O 3 ) source. These second oxide sources may be used singly or in combination of any ones in any ratio. When a plurality of combinations are used, the molar ratio between any two of the second oxide sources is, for example, from 30:200 to 60:150.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the second oxide.
  • the second oxide is alumina
  • examples of the second oxide source include aluminum chloride, aluminum sulfate, hydrated alumina, sodium metaaluminate, aluminum sol or aluminum hydroxide.
  • examples of the second oxide source include boric acid, borate, borax, and boron trioxide.
  • examples of the second oxide source include iron nitrate, iron chloride, iron oxide, and the like.
  • examples of the second oxide source include gallium nitrate, gallium sulfate, gallium oxide, and the like.
  • examples of the second oxide source include cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium nitrate, cerium nitrate, cerium nitrate, cerium nitrate, ammonium cerium sulfate, and the like. .
  • examples of the second oxide source include indium chloride, indium nitrate, indium oxide, and the like.
  • examples of the second oxide source include vanadium chloride, ammonium metavanadate, sodium vanadate, vanadium dioxide, vanadyl sulfate, and the like. These second oxide sources may be used singly or in combination of a plurality of them in a desired ratio.
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide such as Al 2 O 3
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide such as Al 2 O 3
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide such as Al 2 O 3
  • the molar ratio of water to the first oxide source (in terms of the first oxide) is generally from 5 to 50, preferably from 5 to 15.
  • an alkali source may or may not be used.
  • the group X contained in the compound represented by the formula (I) can be used to provide the OH - which is required herein.
  • the alkali source any alkali source conventionally used for this purpose in the art may be used, including but not limited to inorganic bases which are cations of alkali metals or alkaline earth metals, particularly sodium hydroxide and potassium hydroxide. . These alkali sources may be used alone or in combination of any ones in any ratio.
  • a molar ratio of the alkali source (in terms of OH - ) to the first oxide source (in terms of the first oxide) is generally from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • the crystallization temperature is generally from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the crystallization time is generally at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or From 4 days to 6 days.
  • the molecular sieve in the method for producing the molecular sieve, after the contacting step is completed, the molecular sieve can be separated as a product from the obtained reaction mixture by any separation method conventionally known.
  • the molecular sieve product comprises the molecular sieve of the present invention.
  • the separation method for example, a method of filtering, washing, and drying the obtained reaction mixture can be mentioned.
  • the filtration, washing and drying may be carried out in any manner conventionally known in the art.
  • the filtration for example, the obtained reaction mixture can be simply suction filtered.
  • washing for example, washing with deionized water can be mentioned until the pH of the filtrate reaches 7-9, preferably 8-9.
  • the drying temperature is, for example, 40 to 250 ° C, preferably 60 to 150 ° C, and the drying time is, for example, 8 to 30 hours, preferably 10 to 20 hours.
  • the drying can be carried out under normal pressure or under reduced pressure.
  • the method for producing the molecular sieve may further include, as needed, a step of calcining the obtained molecular sieve (hereinafter referred to as a calcination step) to remove the organic template agent and possible moisture, and the like.
  • a calcination step a step of calcining the obtained molecular sieve
  • the molecular sieves before and after calcination are also collectively referred to as molecular sieves of the invention or molecular sieves according to the invention.
  • the calcination in the method of producing a molecular sieve, may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C. And the roasting time is generally from 1 hour to 10 hours, preferably from 3 hours to 6 hours. In addition, the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the molecular sieve of the present invention or any molecular sieve produced by the method for producing a molecular sieve according to the present invention are collectively referred to as the molecular sieve of the present invention or according to the present invention
  • Molecular sieves can also be ion exchanged by any means conventionally known in the art, such as by ion exchange or solution impregnation (for example, see, for example, U.S. Patents 3,140,249 and 3,140,253, etc.)
  • the metal cations (such as Na ions or K ions, depending on their specific manufacturing method) are replaced in whole or in part by other cations.
  • Examples of the other cation include hydrogen ions, other alkali metal ions (including K ions, Rb ions, etc.), ammonium ions (including NH 4 ions, quaternary ammonium ions such as tetramethylammonium ions and tetraethylammonium ions). Etc.), alkaline earth metal ions (including Mg ions, Ca ions), Mn ions, Zn ions, Cd ions, noble metal ions (including Pt ions, Pd ions, Rh ions, etc.), Ni ions, Co ions, Ti ions, Sn ions , Fe ions and/or rare earth metal ions, and the like.
  • the molecular sieve according to the present invention may be treated by a dilute acid solution or the like as needed to increase the ratio of silicon to aluminum or treated with steam to improve the acid attack resistance of the molecular sieve crystal.
  • the molecular sieve according to the invention has good heat/water thermal stability and has a larger pore volume.
  • the molecular sieve of the present invention is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorption/catalytic properties.
  • the molecular sieve according to the present invention has a strong acidity, particularly a large number of L acid centers. This is a molecular sieve that has not been produced in the prior art. As a result, the molecular sieve of the present invention has more excellent performance particularly in an acid-catalyzed reaction.
  • the molecular sieve according to the present invention may be in any physical form such as a powder, a granule or a molded article (e.g., a strip, a clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • a molecular sieve having an X-ray diffraction pattern substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the molecular sieve (referred to as a single crystal) has a crystal morphology from a flat prism to a flat cylinder when viewed by a scanning electron microscope (SEM), particularly having a flat prismatic shape.
  • SEM scanning electron microscope
  • the crystal morphology refers to the (overall) outer shape exhibited by a single molecular sieve crystal in the observation field of the scanning electron microscope.
  • the so-called "primary” refers to the appearance of molecular sieves that are objectively presented directly after manufacture. It is not the artificial manipulation of molecular sieves after they are manufactured. And the appearance of the appearance.
  • the term "prism” refers to a convex prism and generally refers to a straight prism and a regular polygonal prism (such as a regular hexagonal prism). It should be specially pointed out that since the crystals of the molecular sieve may be disturbed by various factors during the growth process, the actual crystal morphology and geometrical (true) straight prisms, (true) regular polygonal prisms or The cylinder may have a certain degree of deviation, such as a deviation of 30%, 20% or 5%, resulting in obtaining a beveled prism, an irregular polygon (or even a curved polygon) prism or an elliptical cylinder, but the invention is not intended Specifically, the degree of deviation is specified.
  • any greater or lesser deviations do not depart from the scope of the invention.
  • flat it is meant that the ratio of height to width (or diameter) (such as the aspect ratio as described below) is less than one.
  • flat prismatic to flat cylindrical it is meant that the crystal morphology of the molecular sieve may be a flat prismatic shape, a flat cylindrical shape, or any transition from a flat prism shape to a flat cylindrical shape. shape. Specific examples of the transition shape include a shape obtained by rounding one or more edges of the flat prism. It is obvious that by rounding all the edges of the flat prism, it is possible to obtain the flat cylinder.
  • the molecular sieve has a columnar crystal morphology when viewed using a scanning electron microscope (SEM).
  • a longitudinal section of the column can be obtained when longitudinally sectioning along the centerline of the column.
  • the longitudinal section has an end surface contour line on the upper and lower sides (a range surrounded by two broken lines) and a side contour line on the left and right sides (a range enclosed by two broken lines).
  • the molecular sieve of the present modified embodiment is unique in that one or both of the two end face contours have a convex shape, that is, a radius of curvature is a positive value.
  • the present invention is not intended to limit the specific range of the radius of curvature as long as it is a positive value.
  • the molecular sieve of the present modified embodiment generally has an outer shape obtained by rounding or chamfering the edge of one end surface or both end faces of the column.
  • This can be understood, for example, by referring to Figures VI-14(a) and VI-14(b).
  • the Figures VI-14(a) and VI-II(b) are only for explaining the present invention and are not intended to limit the present invention.
  • Fig. VI-14(c) exemplifies a case where the end face contour does not have a convex shape but a flat shape.
  • the inventors of the present invention have found through careful investigation that the prior art has not produced a molecular sieve having both the aforementioned specific X-ray diffraction pattern and the aforementioned specific (native) crystal morphology.
  • the observation is carried out using a scanning electron microscope (SEM)
  • the effective diameter of the molecular sieve (single crystal) is generally from 100 nm to 1000 nm, preferably from 100 nm to 500 nm.
  • the effective diameter means that two points are arbitrarily selected along the contour (edge) of the cross section of the molecular sieve (single crystal), and the linear distance between the two points is measured. The largest straight line distance is taken as the effective diameter. If the profile of the cross section of the molecular sieve is presented as a polygon such as a hexagon, the effective diameter generally refers to the linear distance (diagonal distance) between the two vertices furthest from the polygon.
  • the effective diameter corresponds substantially to the diameter of the circumcircle of the polygon represented by the contour of the cross section.
  • the effective diameter refers to the diameter of the circle.
  • the height of the molecular sieve is generally from 100 nm to 1000 nm, preferably from 150 nm to 300 nm, when observed using a scanning electron microscope (SEM).
  • the term "height” refers to a linear distance between the centers of the two end faces of the column in a single crystal (columnar crystal) of the molecular sieve.
  • the molecular sieve (single crystal) has an aspect ratio of generally from 0.1 to 0.9, preferably from 0.4 to 0.7, when observed by a scanning electron microscope (SEM).
  • the aspect ratio refers to the ratio of the height to the effective diameter.
  • the prior art has not produced a molecular sieve having both the aforementioned specific X-ray diffraction pattern and the aforementioned specific aspect ratio.
  • the crystal morphology of the molecular sieve at this time is similar to an oral tablet.
  • the molecular sieve has a total specific surface area of generally from 400 m 2 /g to 600 m 2 /g, preferably from 450 m 2 /g to 580 m 2 /g.
  • the total specific surface area is obtained by a liquid nitrogen adsorption method as calculated by a BET model.
  • the molecular sieve generally has a pore volume of from 0.3 ml/g to 0.5 ml/g, preferably from 0.30 ml/g to 0.40 ml/g.
  • the molecular sieve of the present invention has a very high pore volume, which indicates that it belongs to an ultra-large pore molecular sieve.
  • the pore volume is obtained by low temperature nitrogen adsorption and calculated by the BET model.
  • the molecular sieve may have the schematic chemical composition represented by the formula "first oxide ⁇ second oxide". It is known that molecular sieves sometimes contain a certain amount of water (especially just after synthesis), but the present invention does not consider it necessary to specify the amount of moisture because the presence or absence of the moisture does not substantially The XRD spectrum of the molecular sieve is affected. In view of this, the schematic chemical composition actually represents the molecule The anhydrous chemical composition of the sieve. Moreover, it is apparent that the schematic chemical composition represents the framework chemical composition of the molecular sieve.
  • the molecular sieve may, in its composition, typically further comprise an organic templating agent and water or the like, such as those filled in its pores, just after synthesis. Therefore, the molecular sieve may sometimes have an illustrative chemical composition represented by the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water".
  • the molecular sieve having the schematic chemical composition represented by the formula "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water” is calcined to remove any organic templating agent and water present in the pores thereof.
  • the molecular sieve having the schematic chemical composition represented by the formula "first oxide ⁇ second oxide” can be obtained.
  • the calcination may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C, and a calcination time of generally from 1 hour to 10 hours, preferably From 3 hours to 6 hours.
  • the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the first oxide is generally a tetravalent oxide, and may be, for example, selected from the group consisting of silica, ceria, tin dioxide, titanium dioxide, and At least one of zirconia is preferably silica (SiO 2 ) or a combination of silica and ceria.
  • These first oxides may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxides is, for example, from 20:200 to 35:100.
  • silica and cerium oxide may be used in combination, and the molar ratio between the silica and the cerium oxide is, for example, from 20:200 to 35:100.
  • the second oxide is generally a trivalent oxide, and may be, for example, selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, and rare earth oxide. At least one of indium oxide and vanadium oxide is preferably alumina (Al 2 O 3 ). These second oxides may be used alone or in combination of any ones in any ratio. When a plurality of types are used in combination, the molar ratio between any two of the second oxides is, for example, from 30:200 to 60:150.
  • organic templating agent for example, any organic templating agent used in the production of the molecular sieve may be mentioned, and in particular, the molecular sieve of the present embodiment may be mentioned.
  • the organic templating agent used (see detailed description below). These organic templating agents may be used alone or in any The ratio of the combinations is varied.
  • specific examples of the organic templating agent include compounds represented by the following formula (I).
  • the groups R 1 and R 2 are the same or different from each other, each independently selected from a C 3-12 straight or branched alkylene group, and the plurality of groups R are each other The same or different, each independently selected from a C 1-4 straight or branched alkyl group, and X is OH.
  • a molar ratio of the first oxide to the second oxide is generally from 40 to 200, preferably from 40 to 150.
  • the molar ratio of water to the first oxide is generally from 5 to 50, preferably from 5 to 15.
  • the molar ratio of the organic templating agent to the first oxide is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • the molecular sieve may sometimes further contain metal cations such as alkali metals and/or alkaline earth metal cations in its composition (generally filled in its pores).
  • metal cations such as alkali metals and/or alkaline earth metal cations in its composition (generally filled in its pores).
  • the content of the metal cation at this time, for example, the mass ratio of the metal cation to the first oxide is generally from 0 to 0.02, preferably from 0.0002 to 0.006, but is not limited thereto.
  • the molecular sieve can be produced by the following production method.
  • the manufacturing method includes a step of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve (hereinafter referred to as a contacting step) ).
  • the contacting step may be carried out in any manner conventionally known in the art, such as exemplifying the first oxide source, the second oxidation A method of mixing a source, the optional alkali source, the organic templating agent, and water, and subjecting the mixture to crystallization under the crystallization conditions.
  • the organic template agent comprises at least a compound represented by the following formula (I).
  • the compound represented by the formula (I) One type may be used alone or in combination in any ratio.
  • the groups R 1 and R 2 are the same or different from each other, and are each independently selected from a C 3-12 straight or branched alkylene group.
  • the groups R 1 and R 2 are identical or different from one another, one of which is selected from the group consisting of C 3-12 linear alkylene groups, the other option From C 4-6 linear alkylene.
  • a C 3-12 linear or branched alkylene group for example, a C 3-12 linear alkylene group can be exemplified, and specific examples thereof include an n-propylene group and an isopropylidene group.
  • the C 4-6 linear alkylene group specifically, an n-n-butyl group, a n-n-pentyl group or an n-hexylene group can be mentioned.
  • the plurality of groups R are the same or different from each other, each independently selected from a C 1-4 straight or branched alkyl group, preferably each independently selected from the group consisting of The group and the ethyl group are more preferably a methyl group.
  • X is OH
  • the molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent Preferably, in the contacting step, as the organic template agent, only the chemical represented by the formula (I) is used. Compound.
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the first oxide source is generally a tetravalent oxide source, and for example, may be selected from a silica source, a ceria source, a tin dioxide source, At least one of a source of titania and a source of zirconium dioxide is preferably a source of silica (SiO 2 ) or a combination of a source of silica and a source of cerium oxide.
  • These first oxide sources may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxide sources is, for example, from 30:200 to 60:150.
  • a silica source and a ceria source may be used in combination, and the molar ratio between the silica source and the ceria source is, for example, from 20:200. To 35:100.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the first oxide.
  • the first oxide is silica
  • examples of the first oxide source include silica sol, crude silica gel, tetraethyl orthosilicate, water glass, white carbon, and silicic acid. Silica gel or potassium silicate.
  • examples of the first oxide source include tetraalkoxy cerium, cerium oxide or cerium nitrate.
  • examples of the first oxide source include tin chloride, tin sulfate, tin nitrate, and the like.
  • examples of the first oxide source include titanium tetraalkoxide, titanium oxide, titanium nitrate, and the like.
  • examples of the first oxide source include zirconium chloride, zirconium sulfate, zirconium nitrate, and the like.
  • the second oxide source is generally a trivalent oxide source, and may be, for example, selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, and a gallium oxide source. At least one of a rare earth oxide source, an indium oxide source, and a vanadium oxide source is preferably an alumina (Al 2 O 3 ) source. These second oxide sources may be used alone or in combination of any ones in any ratio. When a plurality of types are used in combination, the molar ratio between any two of the second oxide sources is, for example, from 20:200 to 35:100.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the second oxide.
  • the second oxide is alumina
  • examples of the second oxide source include aluminum chloride, aluminum sulfate, hydrated alumina, sodium metaaluminate, aluminum sol or aluminum hydroxide.
  • examples of the second oxide source include boric acid, borate, borax, and boron trioxide.
  • examples of the second oxide source include iron nitrate, iron chloride, iron oxide, and the like.
  • examples of the second oxide source include gallium nitrate, gallium sulfate, gallium oxide, and the like.
  • examples of the second oxide source include cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium nitrate, cerium nitrate, cerium nitrate, cerium nitrate, ammonium cerium sulfate, and the like. .
  • examples of the second oxide source include indium chloride, indium nitrate, indium oxide, and the like.
  • examples of the second oxide source include vanadium chloride, ammonium metavanadate, sodium vanadate, vanadium dioxide, vanadyl sulfate, and the like. These second oxide sources may be used singly or in combination of a plurality of them in a desired ratio.
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide such as Al 2 O 3
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide such as Al 2 O 3
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide such as Al 2 O 3
  • the molar ratio of water to the first oxide source (in terms of the first oxide) is generally from 5 to 50, preferably from 5 to 15.
  • an alkali source may or may not be used.
  • the group X contained in the compound represented by the formula (I) can be used to provide the OH - which is required herein.
  • the alkali source any alkali source conventionally used for this purpose in the art may be used, including but not limited to inorganic bases which are cations of alkali metals or alkaline earth metals, particularly sodium hydroxide and potassium hydroxide. . These alkali sources may be used alone or in combination of any ones in any ratio.
  • a molar ratio of the alkali source (in terms of OH - ) to the first oxide source (in terms of the first oxide) is generally from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • the crystallization temperature is generally from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the crystallization time is generally at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or From 4 days to 6 days.
  • the molecular sieve in the method for producing the molecular sieve, after the contacting step is completed, the molecular sieve can be separated as a product from the obtained reaction mixture by any separation method conventionally known.
  • the molecular sieve product comprises the molecular sieve of the present invention.
  • the separation method for example, a method of filtering, washing, and drying the obtained reaction mixture can be mentioned.
  • the filtration, washing and drying may be carried out in any manner conventionally known in the art.
  • the filtration for example, the obtained reaction mixture can be simply suction filtered.
  • washing for example, washing with deionized water can be mentioned until the pH of the filtrate reaches 7-9, preferably 8-9.
  • the drying temperature is, for example, 40 to 250 ° C, preferably 60 to 150 ° C, and the drying time is, for example, 8 to 30 hours, preferably 10 to 20 hours.
  • the drying can be carried out under normal pressure or under reduced pressure.
  • the method for producing the molecular sieve may further include, as needed, a step of calcining the obtained molecular sieve (hereinafter referred to as a calcination step) to remove the organic template agent and possible moisture, and the like.
  • a calcination step a step of calcining the obtained molecular sieve
  • the molecular sieves before and after calcination are also collectively referred to as molecular sieves of the invention or molecular sieves according to the invention.
  • the calcination in the method of producing a molecular sieve, may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C. And the calcination time is generally from 1 hour to 10 hours, preferably from 3 hours to 6 hours. In addition, the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the molecular sieve of the present invention or any molecular sieve produced by the method for producing a molecular sieve according to the present invention are collectively referred to as the molecular sieve of the present invention or according to the present invention
  • Molecular sieves can also be ion exchanged by any means conventionally known in the art, such as by ion exchange or solution impregnation (for example, see, for example, U.S. Patents 3,140,249 and 3,140,253, etc.)
  • the metal cations (such as Na ions or K ions, depending on their specific manufacturing method) are replaced in whole or in part by other cations.
  • Examples of the other cation include hydrogen ions, other alkali metal ions (including K ions, Rb ions, etc.), ammonium ions (including NH 4 ions, quaternary ammonium ions such as tetramethylammonium ions and tetraethylammonium ions). Etc.), alkaline earth metal ions (including Mg ions, Ca ions), Mn ions, Zn ions, Cd ions, noble metal ions (including Pt ions, Pd ions, Rh ions, etc.), Ni ions, Co ions, Ti ions, Sn ions , Fe ions and/or rare earth metal ions, and the like.
  • the molecular sieve according to the present invention may be treated by a dilute acid solution or the like as needed to increase the ratio of silicon to aluminum or treated with steam to improve the acid attack resistance of the molecular sieve crystal.
  • the molecular sieve according to the invention has good heat/water thermal stability and has a larger pore volume.
  • the molecular sieve of the present invention is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorption/catalytic properties.
  • the molecular sieve according to the present invention has a strong acidity, particularly L acid (the number of centers is large. This is a molecular sieve which has not been produced in the prior art. As a result, the molecular sieve of the present invention has more in particular in an acid-catalyzed reaction. For excellent performance.
  • the molecular sieve according to the present invention may be in any physical form such as a powder, a granule or a molded article (e.g., a strip, a clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • a method of making a molecular sieve includes a step of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve (hereinafter referred to as a contacting step) ).
  • the contacting The step can be carried out in any manner conventionally known in the art, such as by mixing the first oxide source, the second oxide source, the optional alkali source, the organic template, and water. And a method of crystallizing the mixture under the crystallization conditions.
  • the organic template agent comprises at least a compound represented by the following formula (I).
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the groups R 1 and R 2 are the same or different from each other, and are each independently selected from a C 3-12 straight or branched alkylene group.
  • the groups R 1 and R 2 are identical or different from one another, one of which is selected from the group consisting of C 3-12 linear alkylene groups, the other option From C 4-6 linear alkylene.
  • a C 3-12 linear or branched alkylene group for example, a C 3-12 linear alkylene group can be exemplified, and specific examples thereof include an n-propylene group and an isopropylidene group.
  • the C 4-6 linear alkylene group specifically, an n-n-butyl group, a n-n-pentyl group or an n-hexylene group can be mentioned.
  • the plurality of groups R are the same or different from each other, each independently selected from a C 1-4 straight or branched alkyl group, preferably each independently selected from the group consisting of The group and the ethyl group are more preferably a methyl group.
  • X is OH
  • the molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent Preferably, in the contacting step, as the organic templating agent, only the compound represented by the formula (I) is used.
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the first oxide source is generally a tetravalent oxide source, and for example, may be selected from a silica source, a ceria source, a tin dioxide source, At least one of a source of titania and a source of zirconium dioxide is preferably a source of silica (SiO 2 ) or a combination of a source of silica and a source of cerium oxide.
  • These first oxide sources may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxide sources is, for example, from 20:200 to 35:100.
  • a silica source and a ceria source may be used in combination, and the molar ratio between the silica source and the ceria source is, for example, from 20:200. To 35:100.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the first oxide.
  • the first oxide is silica
  • examples of the first oxide source include silica sol, crude silica gel, tetraethyl orthosilicate, water glass, white carbon, and silicic acid. Silica gel or potassium silicate.
  • examples of the first oxide source include tetraalkoxy cerium, cerium oxide or cerium nitrate.
  • examples of the first oxide source include tin chloride, tin sulfate, tin nitrate, and the like.
  • examples of the first oxide source include titanium tetraalkoxide, titanium oxide, titanium nitrate, and the like.
  • examples of the first oxide source include zirconium chloride, zirconium sulfate, zirconium nitrate, and the like.
  • the second oxide source is generally a trivalent oxide source, and may be, for example, selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, and a gallium oxide source. At least one of a rare earth oxide source, an indium oxide source, and a vanadium oxide source is preferably an alumina (Al 2 O 3 ) source. These second oxide sources may be used alone or in combination of any ones in any ratio. When a plurality of combinations are used, the molar ratio between any two of the second oxide sources is, for example, from 30:200 to 60:150.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the second oxide.
  • the second oxide is alumina
  • examples of the second oxide source include aluminum chloride, aluminum sulfate, hydrated alumina, sodium metaaluminate, aluminum sol or aluminum hydroxide.
  • examples of the second oxide source include boric acid, borate, borax, and boron trioxide.
  • examples of the second oxide source include iron nitrate, iron chloride, iron oxide, and the like.
  • examples of the second oxide source include gallium nitrate, gallium sulfate, gallium oxide, and the like.
  • examples of the second oxide source include cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium nitrate, cerium nitrate, cerium nitrate, cerium nitrate, ammonium cerium sulfate, and the like. .
  • examples of the second oxide source include indium chloride, indium nitrate, indium oxide, and the like.
  • examples of the second oxide source include vanadium chloride, ammonium metavanadate, sodium vanadate, vanadium dioxide, vanadyl sulfate, and the like. These second oxide sources may be used singly or in combination of a plurality of them in a desired ratio.
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide, such as Al 2 O 3
  • the molar ratio is generally from 5 to ⁇ , especially from 5 to less than 40 (such as from 20 to less than 40), from 40 to 200 (such as from 40 to 150), from More than 200 to ⁇ (such as from more than 200 to 700).
  • the molar ratio is ⁇ , it means that the second oxide source is not used or the second oxide source is not intentionally introduced into the contacting step.
  • the molar ratio of water to the first oxide source (in terms of the first oxide) is generally from 5 to 50, preferably from 5 to 15.
  • an alkali source may or may not be used.
  • the group X contained in the compound represented by the formula (I) can be used to provide the OH - which is required herein.
  • the alkali source any alkali source conventionally used for this purpose in the art may be used, including but not limited to inorganic bases which are cations of alkali metals or alkaline earth metals, particularly sodium hydroxide and potassium hydroxide. . These alkali sources may be used alone or in combination of any ones in any ratio.
  • a molar ratio of the alkali source (in terms of OH - ) to the first oxide source (in terms of the first oxide) is generally from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • the crystallization temperature is generally from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the crystallization time is generally at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or From 4 days to 6 days.
  • the molecular sieve in the method for producing the molecular sieve, after the contacting step is completed, the molecular sieve can be separated as a product from the obtained reaction mixture by any separation method conventionally known.
  • the molecular sieve product comprises the molecular sieve of the present invention.
  • the separation method for example, a method of filtering, washing, and drying the obtained reaction mixture can be mentioned.
  • the filtration, washing and drying may be carried out in any manner conventionally known in the art.
  • the filtration for example, the obtained reaction mixture can be simply suction filtered.
  • washing for example, washing with deionized water can be mentioned until the pH of the filtrate reaches 7-9, preferably 8-9.
  • the drying temperature is, for example, 40 to 250 ° C, preferably 60 to 150 ° C, and the drying time is, for example, 8 to 30 hours, preferably 10 to 20 hours.
  • the drying can be carried out under normal pressure or under reduced pressure.
  • the method for producing the molecular sieve may further include, as needed, a step of calcining the obtained molecular sieve (hereinafter referred to as a calcination step) to remove the organic template agent and possible moisture, and the like.
  • a calcination step a step of calcining the obtained molecular sieve
  • the molecular sieves before and after calcination are collectively referred to as molecular sieves of the invention or molecular sieves according to the invention.
  • the calcination in the method of producing a molecular sieve, may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C. And the calcination time is generally from 1 hour to 10 hours, preferably from 3 hours to 6 hours. In addition, the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • any molecular sieve produced as previously described may, if desired, be ion exchanged by any means conventionally known in the art, such as
  • the metal cations such as Na ions or K ions, depending on the specific manufacturing method thereof
  • contained in the composition are replaced in whole or in part by ion exchange method or solution impregnation method (for example, see US Pat. No. 3,140,249 and US Pat. No. 3,140,253, etc.).
  • ion exchange method for example, see US Pat. No. 3,140,249 and US Pat. No. 3,140,253, etc.
  • Examples of the other cation include hydrogen ions, other alkali metal ions (including K ions, Rb ions, etc.), and ammonium ions (including NH4 ions, quaternary ammonium ions such as tetramethylammonium ions and tetraethylammonium ions, etc.). ), alkaline earth metal ions (including Mg ions, Ca ions), Mn ions, Zn ions, Cd ions, noble metal ions (including Pt ions, Pd ions, Rh ions, etc.), Ni ions, Co ions, Ti ions, Sn ions, Fe ions and/or rare earth metal ions, and the like.
  • the molecular sieve according to the present invention may be treated by a dilute acid solution or the like as needed to increase the ratio of silicon to aluminum or treated with steam to improve the acid attack resistance of the molecular sieve crystal.
  • the molecular sieve according to the present invention generally has an X-ray diffraction pattern substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the molecular sieve generally has a columnar crystal morphology when viewed using a scanning electron microscope (SEM).
  • the crystal morphology refers to the (overall) outer shape exhibited by a single molecular sieve crystal in the observation field of the scanning electron microscope.
  • a prismatic shape in particular, a hexagonal prism shape is preferable.
  • the prism refers to a convex prism and generally refers to a right prism and a regular polygonal prism (such as a regular hexagonal prism).
  • the actual crystal morphology may be compared with the geometric (true) straight prism or (true) regular polygonal prism.
  • any greater or lesser deviations do not depart from the scope of the invention.
  • the observation is carried out using a scanning electron microscope (SEM)
  • the molecular sieve single crystal
  • the effective diameter means that two points are arbitrarily selected along the contour (edge) of the cross section of the molecular sieve (single crystal), and the linear distance between the two points is measured. The largest straight line distance is taken as the effective diameter.
  • the effective diameter generally refers to the linear distance (diagonal distance) between the two vertices furthest from the polygon.
  • the effective diameter corresponds substantially to the diameter of the circumcircle of the polygon represented by the contour of the cross section.
  • the molecular sieve (single crystal) has a height generally ranging from 100 nm to 3000 nm when observed by a scanning electron microscope (SEM).
  • the term "height” refers to a linear distance between the centers of the two end faces of the column in a single crystal (columnar crystal) of the molecular sieve.
  • the two end faces of the molecular sieve column are substantially parallel to each other, and the linear distance is the vertical distance between the two end faces, but the invention is not limited thereto.
  • the molecular sieve (single crystal) has an aspect ratio of generally from 0.1 to 8 when observed by a scanning electron microscope (SEM).
  • the aspect ratio refers to the ratio of the height to the effective diameter.
  • the molecular sieve has a total specific surface area of generally from 400 m 2 /g to 600 m 2 /g, preferably from 450 m 2 /g to 580 m 2 /g.
  • the total specific surface area is obtained by a low-temperature nitrogen adsorption, calculated by a BET model.
  • the molecular sieve generally has a pore volume of from 0.3 ml/g to 0.5 ml/g, preferably from 0.30 ml/g to 0.40 ml/g.
  • the molecular sieve of the present invention has a very high pore volume, which indicates that it belongs to an ultra-large pore molecular sieve.
  • the pore volume is obtained by low temperature nitrogen adsorption and calculated by the BET model.
  • the molecular sieve according to the invention has good heat/water thermal stability and has a larger pore volume.
  • the molecular sieve of the present invention is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorption/catalytic properties.
  • the molecular sieve according to the present invention has a strong acidity, particularly L acid (the number of centers is large. This is a molecular sieve which has not been produced in the prior art. As a result, the molecular sieve of the present invention has more in particular in an acid-catalyzed reaction. For excellent performance.
  • the molecular sieve according to the present invention may be presented in any physical form such as a powder, Granular or molded (such as strips, clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • a method of making a molecular sieve includes a step of contacting a first oxide source, a second oxide source, an optional alkali source, an organic templating agent, and water under crystallization conditions to obtain a molecular sieve (hereinafter referred to as a contacting step) ).
  • the contacting step may be carried out in any manner conventionally known in the art, such as exemplifying the first oxide source, the second oxidation A method of mixing a source, the optional alkali source, the organic templating agent, and water, and subjecting the mixture to crystallization under the crystallization conditions.
  • the organic template agent comprises at least a compound represented by the following formula (I).
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the groups R1 and R2 are different from each other, one of which is selected from a C 3-12 straight or branched alkylene group and the other is selected from C 3 - 12 linear or branched oxaalkylene.
  • a C 3-12 linear or branched alkylene group for example, a C 3-12 linear alkylene group can be exemplified, and specific examples thereof include an n-propylene group and an isopropylidene group.
  • a C 3-12 linear or branched oxaalkylene group for example, a C 3-12 linear oxaalkylene group can be mentioned, and specific examples thereof include -(CH 2 2 -O-(CH 2 )-, -(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 )-O-(CH 2 ) 3 -, -(CH 2 ) 2 -O -(CH 2 ) 3 -, -(CH 2 )-O-propylene-, -(CH 2 )-O-(CH 2 ) 4 -, -(CH 2 )-O-(CH 2 ) 2 - O-(CH 2 )-, -(CH 2 )-O-(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 )-O-tert-butyl-, -(CH 2 ) 2 -O-(CH 2
  • C 3-12 linear oxaalkylene group more specifically, a C 4-6 linear oxaalkylene group is exemplified, and a C 4-6 linear monooxaalkylene group is particularly exemplified.
  • an oxygen represented by the formula -(CH 2 ) m -O-(CH 2 ) m - (wherein the respective values m are the same or different from each other, each independently representing 2 or 3, such as 2) may be mentioned.
  • the heteroalkylene group is more specifically -(CH 2 ) 2 -O-(CH 2 ) 2 -, -(CH 2 ) 2 -O-(CH 2 ) 3 -, -(CH 2 ) 3 -O -(CH 2 ) 3 - or -(CH 2 ) 2 -O-(CH 2 ) 4 -.
  • the plurality of groups R are the same or different from each other, each independently selected from a C 1-4 straight or branched alkyl group, preferably each independently selected from the group consisting of The group and the ethyl group are more preferably a methyl group.
  • X is OH
  • the molar ratio of the organic templating agent to the first oxide source (in terms of the first oxide) is generally from 0.02 to 0.5, preferably from 0.05 to 0.5, from 0.15 to 0.5 or from 0.3 to 0.5.
  • organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent in addition to the compound represented by the formula (I), other materials conventionally used in the art for producing molecular sieves may be further used in combination.
  • Organic templating agent Preferably, in the contacting step, as the organic templating agent, only the compound represented by the formula (I) is used.
  • the compound represented by the formula (I) may be used alone or in combination of plural kinds in any ratio.
  • the first oxide source is generally a tetravalent oxide source, and for example, may be selected from a silica source, a ceria source, a tin dioxide source, At least one of a source of titania and a source of zirconium dioxide is preferably a source of silica (SiO 2 ) or a combination of a source of silica and a source of cerium oxide.
  • These first oxide sources may be used alone or in combination of any ones in any ratio.
  • the molar ratio between any two of the first oxide sources is, for example, from 20:200 to 35:100.
  • a silica source and a ceria source may be used in combination, and the molar ratio between the silica source and the ceria source is, for example, from 20:200. To 35:100.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the first oxide.
  • the first oxide is silica
  • examples of the first oxide source include silica sol, crude silica gel, tetraethyl orthosilicate, water glass, white carbon, and silicic acid. Silica gel or potassium silicate.
  • examples of the first oxide source include tetraalkoxy cerium, cerium oxide or cerium nitrate.
  • examples of the first oxide source include tin chloride, tin sulfate, tin nitrate, and the like.
  • examples of the first oxide source include titanium tetraalkoxide, titanium oxide, titanium nitrate, and the like.
  • examples of the first oxide source include zirconium chloride, zirconium sulfate, zirconium nitrate, and the like.
  • the second oxide source is generally a trivalent oxide source, and may be, for example, selected from the group consisting of an alumina source, a boron oxide source, an iron oxide source, and a gallium oxide source. At least one of a rare earth oxide source, an indium oxide source, and a vanadium oxide source is preferably an alumina (Al 2 O 3 ) source. These second oxide sources may be used alone or in combination of any ones in any ratio. When a plurality of combinations are used, the molar ratio between any two of the second oxide sources is, for example, from 30:200 to 60:150.
  • any corresponding oxide source conventionally used for this purpose in the art may be used, including but not limited to the second oxide.
  • the second oxide is alumina
  • the second oxide source for example examples thereof include aluminum chloride, aluminum sulfate, hydrated alumina, sodium metaaluminate, aluminum sol or aluminum hydroxide.
  • examples of the second oxide source include boric acid, borate, borax, and boron trioxide.
  • examples of the second oxide source include iron nitrate, iron chloride, iron oxide, and the like.
  • examples of the second oxide source include gallium nitrate, gallium sulfate, gallium oxide, and the like.
  • examples of the second oxide source include cerium oxide, cerium oxide, cerium oxide, cerium oxide, cerium nitrate, cerium nitrate, cerium nitrate, cerium nitrate, ammonium cerium sulfate, and the like. .
  • examples of the second oxide source include indium chloride, indium nitrate, indium oxide, and the like.
  • examples of the second oxide source include vanadium chloride, ammonium metavanadate, sodium vanadate, vanadium dioxide, vanadyl sulfate, and the like. These second oxide sources may be used singly or in combination of a plurality of them in a desired ratio.
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide, such as Al 2 O 3
  • the first oxide source in terms of the first oxide, such as SiO 2
  • the second oxide source in the second The molar ratio of the oxide, such as Al 2 O 3
  • the molar ratio is ⁇ , it means that the second oxide source is not used or the second oxide source is not intentionally introduced into the contacting step.
  • the molar ratio of water to the first oxide source (in terms of the first oxide) is generally from 5 to 50, preferably from 5 to 15.
  • an alkali source may or may not be used.
  • the group X contained in the compound represented by the formula (I) can be used to provide the OH - which is required herein.
  • the alkali source any alkali source conventionally used for this purpose in the art may be used, including but not limited to inorganic bases which are cations of alkali metals or alkaline earth metals, particularly sodium hydroxide and potassium hydroxide. . These alkali sources may be used alone or in combination of any ones in any ratio.
  • a molar ratio of the alkali source (in terms of OH - ) to the first oxide source (in terms of the first oxide) is generally from 0 to 1, preferably from 0.04 to 1, from 0.1 to 1, from 0.2 to 1, from 0.3 to 0.7 or from 0.45 to 0.7.
  • the crystallization temperature is generally from 80 ° C to 120 ° C, preferably from 120 ° C to 170 ° C or from 120 ° C to 200 ° C.
  • the crystallization time is generally at least 1 day, preferably at least 2 days, preferably from 3 days to 8 days, from 5 days to 8 days or From 4 days to 6 days.
  • the molecular sieve in the method for producing the molecular sieve, after the contacting step is completed, the molecular sieve can be separated as a product from the obtained reaction mixture by any separation method conventionally known.
  • the molecular sieve product comprises the molecular sieve of the present invention.
  • the separation method for example, a method of filtering, washing, and drying the obtained reaction mixture can be mentioned.
  • the filtration, washing and drying may be carried out in any manner conventionally known in the art.
  • the filtration for example, the obtained reaction mixture can be simply suction filtered.
  • washing for example, washing with deionized water can be mentioned until the pH of the filtrate reaches 7-9, preferably 8-9.
  • the drying temperature is, for example, 40 to 250 ° C, preferably 60 to 150 ° C, and the drying time is, for example, 8 to 30 hours, preferably 10 to 20 hours.
  • the drying can be carried out under normal pressure or under reduced pressure.
  • the method for producing the molecular sieve may further include, as needed, a step of calcining the obtained molecular sieve (hereinafter referred to as a calcination step) to remove the organic template agent and possible moisture, and the like.
  • a calcination step a step of calcining the obtained molecular sieve
  • the molecular sieves before and after calcination are collectively referred to as molecular sieves of the invention or molecular sieves according to the invention.
  • the calcination in the method of producing a molecular sieve, may be carried out in any manner conventionally known in the art, such as a calcination temperature generally from 300 ° C to 750 ° C, preferably from 400 ° C to 600 ° C. And the calcination time is generally from 1 hour to 10 hours, preferably from 3 hours to 6 hours. In addition, the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • any molecular sieve produced as previously described may, if desired, be ion exchanged by any means conventionally known in the art, such as
  • the metal cations such as Na ions or K ions, depending on the specific manufacturing method thereof
  • contained in the composition are replaced in whole or in part by ion exchange method or solution impregnation method (for example, see US Pat. No. 3,140,249 and US Pat. No. 3,140,253, etc.).
  • ion exchange method for example, see US Pat. No. 3,140,249 and US Pat. No. 3,140,253, etc.
  • Examples of the other cation include hydrogen ions, other alkali metal ions (including K ions, Rb ions, etc.), ammonium ions (including NH 4 ions, quaternary ammonium ions such as tetramethylammonium ions and tetraethylammonium ions). Etc.), alkaline earth metal ions (including Mg ions, Ca ions), Mn ions, Zn ions, Cd ions, noble metal ions (including Pt ions, Pd ions, Rh ions, etc.), Ni ions, Co ions, Ti ions, Sn ions , Fe ions and/or rare earth metal ions, and the like.
  • the molecular sieve according to the present invention may be treated by a dilute acid solution or the like as needed to increase the ratio of silicon to aluminum or treated with steam to improve the acid attack resistance of the molecular sieve crystal.
  • the molecular sieve according to the present invention generally has an X-ray diffraction pattern substantially as shown in the following table.
  • the X-ray diffraction pattern of the molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the selection further includes an X-ray diffraction peak substantially as shown in the following table.
  • the molecular sieve generally has a columnar crystal morphology when viewed using a scanning electron microscope (SEM).
  • the crystal morphology refers to the (overall) outer shape exhibited by a single molecular sieve crystal in the observation field of the scanning electron microscope.
  • a prismatic shape in particular, a hexagonal prism shape is preferable.
  • the prism refers to a convex prism and generally refers to a right prism and a regular polygonal prism (such as a regular hexagonal prism).
  • the actual crystal morphology may be compared with the geometric (true) straight prism or (true) regular polygonal prism.
  • any greater or lesser deviations do not depart from the scope of the invention.
  • the molecular sieve (single crystal) has an effective diameter generally ranging from 100 nm to 5000 nm when observed using a scanning electron microscope (SEM).
  • the effective diameter means that two points are arbitrarily selected along the contour (edge) of the cross section of the molecular sieve (single crystal), and the linear distance between the two points is measured. The largest straight line distance is taken as the effective diameter.
  • the effective diameter generally refers to the linear distance (diagonal distance) between the two vertices furthest from the polygon.
  • the effective diameter corresponds substantially to the diameter of the circumcircle of the polygon represented by the contour of the cross section.
  • the observation is carried out using a scanning electron microscope (SEM)
  • SEM scanning electron microscope
  • the height of the molecular sieve is generally from 100 nm to 3000 nm.
  • the term "height" refers to a linear distance between the centers of the two end faces of the column in a single crystal (columnar crystal) of the molecular sieve.
  • the two end faces of the molecular sieve column are substantially parallel to each other, and the linear distance is the vertical distance between the two end faces, but the invention is not limited thereto.
  • the molecular sieve (single crystal) has an aspect ratio of generally from 0.1 to 8 when observed by a scanning electron microscope (SEM).
  • the aspect ratio refers to the ratio of the height to the effective diameter.
  • the molecular sieve has a total specific surface area of generally from 400 m 2 /g to 600 m 2 /g, preferably from 450 m 2 /g to 580 m 2 /g.
  • the total specific surface area is obtained by a liquid nitrogen adsorption method as calculated by a BET model.
  • the molecular sieve generally has a pore volume of from 0.3 ml/g to 0.5 ml/g, preferably from 0.30 ml/g to 0.40 ml/g.
  • the molecular sieve of the present invention has a very high micropore volume, which indicates that it belongs to an ultra-large pore molecular sieve.
  • the pore volume is obtained by a liquid nitrogen adsorption method as calculated by a BET model.
  • the molecular sieve according to the invention has good heat/water thermal stability and has a larger pore volume.
  • the molecular sieve of the present invention is capable of adsorbing more/larger molecules, thereby exhibiting excellent adsorption/catalytic properties.
  • the molecular sieve according to the present invention has a strong acidity, particularly a large number of L acid centers. This is a molecular sieve that has not been produced in the prior art. As a result, the molecular sieve of the present invention has more excellent performance particularly in an acid-catalyzed reaction.
  • the molecular sieve according to the present invention may be in any physical form such as a powder, a granule or a molded article (e.g., a strip, a clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • the molecular sieve according to the present invention can be used in combination with other materials, thereby obtaining a molecular sieve composition.
  • other materials for example, an active material and an inactive material can be mentioned.
  • the active material include synthetic zeolite and natural zeolite.
  • the inactive material (generally referred to as a binder) include clay, clay, silica gel, and alumina. These other materials may be used alone or in combination of any ones in any ratio.
  • As the amount of the other materials it can be directly referred to the conventional dosage in the art. There are no special restrictions.
  • the molecular sieve or molecular sieve composition according to the invention is particularly suitable for use as an adsorbent, for example for separating at least one component from a mixture of components in a gas phase or a liquid phase.
  • the molecular sieve or molecular sieve composition according to the invention is particularly suitable for use as a catalyst in the conversion of hydrocarbons.
  • Examples of the conversion reaction of the hydrocarbon include catalytic cracking, hydrocracking, disproportionation, alkylation, oligomerization, and isomerization.
  • the molecular sieve or molecular sieve composition according to the invention is particularly suitable for use as a carrier or carrier component of the catalyst, and the active component is supported thereon in any manner conventionally known in the art, such as solution impregnation.
  • active components include, but are not limited to, active metal components (including Ni, Co, Mo, W or Cu, etc.), reactive inorganic auxiliaries (such as F, P, etc.) and organic compounds (such as organic acids, organic amines, etc.) .
  • active components may be used alone or in combination of any ones in any ratio.
  • As the amount of the active component it can be directly referred to the conventional amount in the art, and is not particularly limited.
  • the American Microtek Autochem II 2920 temperature programmed desorber was used. Test conditions: Weigh 0.2g of 20-40 mesh molecular sieve into the sample tube, placed in the heating furnace, the carrier gas is He gas (25mL / min), the temperature is raised to 600 ° C at 20 ° C / min, and the surface of the molecular sieve is removed by blowing for 60 minutes. Impurities.
  • the temperature was lowered to 100 ° C, the temperature was kept for 10 min, and the mixture was switched to NH 3 -He mixture (10% NH 3 +90% He) for adsorption for 30 min, and then purged with He gas for 90 min until the baseline was stable to desorb the physically adsorbed NH 3 .
  • the temperature was increased to 600 ° C at a temperature increase rate of 10 ° C / min for desorption, and maintained for 30 min, and the desorption was completed.
  • the TCD detector is used to detect changes in gas composition, and the instrument automatically integrates to obtain an acid amount distribution.
  • XRD testing was performed using a Netherland, PANalytical Corporation equipment. Test conditions: Cu target, K ⁇ radiation, Ni filter, tube voltage 40 kV, tube current 40 mA, scanning range 2-50 °.
  • TECNAIG 2 F20 200 kV type scanning electron microscope from FEI Corporation of the United States was used.
  • Test conditions Using a suspension method, 0.01 g of a molecular sieve sample was placed in a 2 mL glass bottle. Disperse with absolute ethanol, shake evenly, take a drop with a dropper, drop on a 3 mm diameter sample net, dry it, place it in the sampler, and insert it into the electron microscope for observation. The observation may use a magnification of 10,000 times or a magnification of 50,000 times.
  • the molecular sieve was observed at a magnification of 50,000 times, and an observation field was randomly selected, and the average value of the sum of the average diameters and the sums of the heights of the total diameters of all the molecular sieve crystals in the observation field was calculated. Repeat this operation a total of 10 times. The average of the sum of the average values of 10 times is taken as the effective diameter and height, respectively.
  • BIO-RAD FTS300 type FT-IR spectrometer was used. Test conditions: vacuuming at 350 ° C to 10-3 Pa, wave number range 1300-3900 cm -1 . The sample was tableted and placed in an in-situ bath of an infrared spectrometer to seal. Vacuum was applied to 10 -3 Pa at 350 ° C for 1 h to desorb the gas molecules on the surface of the sample and cool to room temperature.
  • Pyridine/2,4,6-trimethylpyridine with a pressure of 2.67 Pa was introduced into the in-situ cell, and after adsorption for 30 min, the temperature was raised to 200 ° C, and vacuum was again applied to 10 -3 Pa for 30 min, and cooled to room temperature.
  • the infrared absorption spectrum of the adsorption of pyridine/2,4,6-trimethylpyridine at 200 ° C was recorded by scanning in the range of 1300-3900 cm -1 .
  • the sample in the infrared absorption cell was moved to the heat treatment zone, heated to 350 ° C, evacuated to 10 -3 Pa, held for 30 min, cooled to room temperature, and the infrared spectrum of the pyridine adsorption at 350 ° C was recorded.
  • the total specific surface area, pore volume and pore diameter of the molecular sieve were measured by the following analytical methods.
  • Measurement conditions The sample was placed in a sample processing system, vacuumed to 1.33 ⁇ 10 -2 Pa at 350 ° C, and held for 15 h at room temperature to purify the sample. At the liquid nitrogen temperature of -196 °C, the adsorption amount and desorption amount of nitrogen in the purified sample under different specific pressure P/P0 conditions were measured, and the adsorption-desorption isotherm curve was obtained. Then, the total specific surface area was calculated by the two-parameter BET formula. The adsorption capacity of the specific pressure P/P0 ⁇ 0.98 was taken as the pore volume of the sample, and the pore size distribution was calculated by the BJH model.
  • templating agent B Br replaces Br in templating agent A with OH by ion exchange; ion exchange resin is strongly alkaline styrene anion exchange resin, working solution is 15m% aqueous solution of templating agent A, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops / sec; the exchanged solution is dehydrated by a rotary evaporator to obtain the product.
  • the compound of the formula (I) wherein n is 4, m is 6, R is a methyl group, and X is OH has a relative molecular weight of 262.2, a purity of 99.21%, and a bromine content of 0.79 m%.
  • templating agent D replacing Br in templating agent C with OH by ion exchange; ion exchange resin is strong alkaline styrene anion exchange resin, working solution is 15m% templating solution C aqueous solution, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops/second; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, wherein n is 9, m in the formula (I)
  • the compound having a molecular weight of 332.4 and a purity of 99.8% and a bromine content of 0.2 m% is a compound having a methyl group of 6 and an OH group.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 180 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure I-1. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 600 nm, a height of 800 nm, and an aspect ratio of 1.33. The molecular sieve had a total specific surface area of 560 m 2 /g and a pore volume of 0.360 ml/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 110 ° C for 1 day and then heated to 160 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure I-3. It is obvious that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1800 nm, a height of 2400 nm, and an aspect ratio of 1.33. The molecular sieve had a total specific surface area of 560 m 2 /g and a pore volume of 0.496 ml/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 130 ° C for 2 days and then heated to 160 ° C. 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure I-5. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 700 nm, a height of 950 nm, and an aspect ratio of 1.36. The molecular sieve had a total specific surface area of 558 m 2 /g and a pore volume of 0.443 ml/g.
  • the XRD pattern of the product is shown in Figure I-6.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure I-7. It is obvious that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1200 nm, a height of 1400 nm, and a height to diameter ratio of 1.17. The molecular sieve had a total specific surface area of 533 m 2 /g and a pore volume of 0.295 ml/g.
  • the XRD pattern of the product is shown in Figure I-8.
  • the results of NH3-TPD indicate ( Figures I-12) that the molecular sieves have significant acidity.
  • the results of the infrared spectrum showed (Fig. I-13) that the molecular sieve had a low amount of B acid and a high acid acid amount.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 160 ° C for 6 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • Figure I-1 is a scanning electron micrograph of the molecular sieve produced in Example I-3.
  • Figure I-2 is an XRD pattern of the molecular sieve produced in Example I-3.
  • Figure I-3 is a scanning electron micrograph of the molecular sieve produced in Example I-4.
  • Figure I-4 is an XRD pattern of the molecular sieve produced in Example I-4.
  • Figure I-5 is a scanning electron micrograph of the molecular sieve produced in Example I-5.
  • Figure I-6 is an XRD pattern of the molecular sieve made in Example I-5.
  • Figure I-7 is a scanning electron micrograph of the molecular sieve made in Example I-6.
  • Figure I-8 is an XRD pattern of the molecular sieve made in Example I-6.
  • Figure I-9 is a scanning electron micrograph of the molecular sieve made in Example I-7.
  • Figure I-10 is an isotherm adsorption-desorption curve of the molecular sieve produced in Example I-7.
  • Figure I-11 is a graph showing the pore size distribution of the molecular sieves produced in Example I-7.
  • Figure I-12 is a NH3-TPD pattern of the molecular sieve made in Example I-6.
  • Figure I-13 is an IR plot of the molecular sieve made in Example I-6.
  • templating agent B Br replaces Br in templating agent A with OH by ion exchange; ion exchange resin is strongly alkaline styrene anion exchange resin, working solution is 15m% aqueous solution of templating agent A, operating temperature is 25 °C, the mass ratio of working fluid to ion exchange resin is 1:3; the flow rate is 3 drops / sec; the exchanged solution is dehydrated by rotary evaporator to obtain the product, where n is 4, m in formula (I)
  • the compound having a methyl group of 6 and R being an OH has a relative molecular weight of 262.2, a purity of 99.21%, and a bromine content of 0.79 m%.
  • templating agent D replacing Br in templating agent C with OH by ion exchange; ion exchange resin is strong alkaline styrene anion exchange resin, working solution is 15m% templating solution C aqueous solution, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops/second; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, wherein n is 9, m in the formula (I)
  • the compound having a molecular weight of 332.4 and a purity of 99.8% and a bromine content of 0.2 m% is a compound having a methyl group of 6 and an OH group.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-1. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 650 nm, a height of 600 nm, and a height to diameter ratio of 1. The molecular sieve had a total specific surface area of 553 m 2 /g and a pore volume of 0.295 ml/g.
  • the XRD pattern of the product is shown in Figure II-2. The product has a silicon to aluminum ratio of 35.20.
  • the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and heated to 150 ° C after 1 day of reaction at 120 ° C. The reaction was 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-3. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1200 nm, a height of 1000 nm, and an aspect ratio of 0.833. The molecular sieve had a total specific surface area of 558 m 2 /g and a pore volume of 0.51 ml/g.
  • the XRD pattern of the product is shown in Figure II-4. The product has a silicon to aluminum ratio of 36.38.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a speed of 20 rpm at 120 °C. After the reaction for 1 day, the temperature was raised to 150 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-5. It is obvious that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 900 nm, a height of 1000 nm, and an aspect ratio of 1.11. The molecular sieve had a total specific surface area of 543 m 2 /g and a pore volume of 0.304 ml/g.
  • the XRD pattern of the product is shown in Figure II-6. The product has a silicon to aluminum ratio of 33.68.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-7. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1200 nm, a height of 1300 nm, and a height to diameter ratio of 1.08. The molecular sieve had a total specific surface area of 534 m 2 /g and a pore volume of 0.304 ml/g.
  • the XRD pattern of the product is shown in Figure II-8. The product has a silicon to aluminum ratio of 30.21.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-9. It is obvious that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1500 nm, a height of 2000 nm, and an aspect ratio of 1.33. The molecular sieve had a total specific surface area of 560 m 2 /g and a pore volume of 0.342 ml/g.
  • the XRD pattern of the product is shown in Figure II-10. The product has a silicon to aluminum ratio of 35.29.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-11. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1000 nm, a height of 1400 nm, and a height to diameter ratio of 1.4. The molecular sieve had a total specific surface area of 498 m 2 /g and a pore volume of 0.403 ml/g.
  • the XRD pattern of the product is shown in Figure II-12. The product has a silicon to aluminum ratio of 34.20.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-13. It is obvious that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 800 nm, a height of 900 nm, and an aspect ratio of 1.125. The molecular sieve had a total specific surface area of 564 m 2 /g and a pore volume of 0.350 ml/g.
  • the XRD pattern of the product is shown in Figure II-14. The product has a silicon to aluminum ratio of 35.28.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 110 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure II-15. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 300 nm, a height of 900 nm, and an aspect ratio of 3.0. The molecular sieve had a total specific surface area of 473 m 2 /g and a pore volume of 0.356 ml/g.
  • the XRD pattern of the product is shown in Figure II-16. The product has a silicon to aluminum ratio of 35.38.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • This example is intended to illustrate the thermal stability (XRD) of the molecular sieves produced in Examples II-3 through II-8.
  • Figure II-18 shows that the molecular sieves having a silicon to aluminum ratio of 30 and 40 and a sodium to silicon ratio of 0.08 to 0.30 have good thermal stability after calcination at 550 ° C, 650 ° C and 750 ° C.
  • This example is intended to illustrate the acidity of the molecular sieves produced in Examples II-6 and II-8.
  • Table II-1 shows that molecular sieves with a silica to alumina ratio of 30 and 40 exhibit a higher B/L ratio and are expected to be used in acidic catalytic reactions.
  • Figure II-1 is a scanning electron micrograph of the molecular sieve produced in Example II-3.
  • Figure II-2 is an XRD pattern of the molecular sieve produced in Example II-3.
  • Figure II-3 is a scanning electron micrograph of the molecular sieve produced in Example II-4.
  • Figure II-4 is an XRD pattern of the molecular sieve produced in Example II-4.
  • Figure II-5 is a scanning electron micrograph of the molecular sieve produced in Example II-5.
  • Figure II-6 is an XRD pattern of the molecular sieve produced in Example II-5.
  • Figure II-7 is a scanning electron micrograph of the molecular sieve produced in Example II-6.
  • Figure II-8 is an XRD pattern of the molecular sieve made in Example II-6.
  • Figure II-9 is a scanning electron micrograph of the molecular sieve produced in Example II-7.
  • Figure II-10 is an XRD pattern of the molecular sieve made in Example II-7.
  • Figure II-11 is a scanning electron micrograph of the molecular sieve made in Example II-8.
  • Figure II-12 is an XRD pattern of the molecular sieve made in Example II-8.
  • Figure II-13 is a scanning electron micrograph of the molecular sieve made in Example II-9.
  • Figure II-14 is an XRD pattern of the molecular sieve made in Example II-9.
  • Figure II-15 is a scanning electron micrograph of the molecular sieve produced in Example II-10.
  • Figure II-16 is an XRD pattern of the molecular sieve made in Example II-10.
  • Figure II-17 is an XRD pattern of the molecular sieve made in Example II-11.
  • Figure II-18 is an XRD pattern of the molecular sieves produced in Examples II-3 to II-8 after firing.
  • the total specific surface area, pore volume and pore diameter of the molecular sieve were measured by the following analytical methods.
  • Measurement conditions The sample was placed in a sample processing system, vacuumed to 1.33 ⁇ 10 -2 Pa at 350 ° C, and held for 15 h at room temperature to purify the sample. At the liquid nitrogen temperature of -196 °C, the adsorption amount and desorption amount of nitrogen in the purified sample under different specific pressure P/P0 conditions were measured, and the adsorption-desorption isotherm curve was obtained. Then, the total specific surface area was calculated by the two-parameter BET formula, and the adsorption capacity of the specific pressure P/P0 ⁇ 0.98 was taken as the pore volume of the sample, and the pore diameter was calculated according to the BJH model.
  • templating agent A 15 g (0.094 mol) of bis[2-(N,N-dimethylaminoethyl)]ether was added to a two-necked flask, 100 mL of isopropanol was added, and 9.5 g of 9.5 g was added dropwise with stirring at 25 ° C ( 0.047mol) of 1,3-dibromopropane, after the addition was completed, the temperature was raised to reflux temperature, refluxed for 30 min, the solution changed from colorless to white turbid, and then reacted at reflux temperature for 12 h, cooled to 25 ° C, and added with 50 mL of acetic acid.
  • templating agent B Br replaces Br in templating agent A with OH by ion exchange; ion exchange resin is strongly alkaline styrene anion exchange resin, working solution is 15m% aqueous solution of templating agent A, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops/second; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, where n is 1, m in the formula (I) It is a compound in which 2 is a methyl group and X is OH, and the relative molecular weight is 236.2 and the purity is 98.2%. Its bromine content is 0.79 m%.
  • templating agent C A compound of the formula (I) wherein n is 6, m is 2, R is a methyl group, and X is Br is produced by the method of the template A in Example III-1, except that 12.78 is used. g (0.047 mol) of 1,8-dibromooctane was substituted for 1,3-dibromopropane.
  • the test yielded 17.6 g of product having a melting point of 288.2 ° C, a relative molecular weight of 432.2, a purity of 99.9 m%, a 1H-NMR spectrum chemical shift (300 MHZ, internal standard TMS, solvent CDCl 2 ) ⁇ (ppm): 1.29 (2H) , s), 1.39 (2H, m), 1.43 (2H, s), 2.27 (2H, m), 2.36 (2H, m), 2.55 (2H, m), 3.63 (4H, m).
  • templating agent D replacing Br in templating agent C with OH by ion exchange; ion exchange resin is strong alkaline styrene anion exchange resin, working solution is 15m% templating solution C aqueous solution, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops / sec; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, wherein n is 6, m in the formula (I) 2, R is a methyl group, X is OH, a relative molecular weight is 306.2, and a purity is 99.5 m%. Its bromine content is 0.2 m%.
  • the mixture was placed in a 45 mL steel autoclave lined with Teflon and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 150 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. III-3. It is obvious that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1000 nm, a height of 1200 nm and a height to diameter ratio of 1.2. The molecular sieve had a total specific surface area of 523 m 2 /g and a pore volume of 0.356 ml/g.
  • the XRD pattern of this product is shown in Figure III-4.
  • Figure III-1 shows the adsorption curve of 2,2-diethylbutane for the product after calcination at 550 °C for 3 h. It can be seen from the curve that the product adsorbs 2,2-diethylbutane. It is -55 mg/g.
  • the mixture was placed in a 45 mL steel autoclave lined with Teflon and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 150 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. III-6. It is obvious that the molecular sieve has a hexagonal columnar crystal morphology, and the effective diameter is 2200 nm, the height is 3000 nm, and the height to diameter ratio is 1.36.
  • the molecular sieve had a total specific surface area of 573 m 2 /g and a pore volume of 0.387 ml/g.
  • the mixture was placed in a 45 mL steel autoclave lined with Teflon and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 150 ° C for 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the mixture was placed in a 45 mL steel autoclave lined with Teflon and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 150 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • Figure III-5 shows the XRD pattern of the product after calcination at 550 °C for 3 h. It can be seen from the figure that the product is 3-propyl-4-butyloctyl.
  • the amount of adsorption of the alkane is as high as -102 mg/g.
  • the mixture was placed in a 45 mL steel autoclave lined with Teflon and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 150 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. III-9. It is obvious that the molecular sieve has a hexagonal columnar crystal morphology, and the effective diameter is 1200 nm, the height is 1400 nm, and the height to diameter ratio is 1.17.
  • the molecular sieve had a total specific surface area of 538 m 2 /g and a pore volume of 0.408 ml/g.
  • the results of NH3-TPD indicate ( Figures III-11) that the molecular sieves are significantly acidic.
  • the results of the infrared spectrum showed (Fig. III-12) that the molecular sieve had a low amount of B acid and a high acid acid amount.
  • the mixture was placed in a 45 mL steel autoclave lined with Teflon and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 150 ° C for 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • Figure III-1 is a graph showing the adsorption of 2,2-diethylbutane by the molecular sieve produced in Example III-3 after calcination.
  • Figure III-2 is an adsorption curve of the molecular sieve produced in Example III-6 after calcination to 3-propyl-4-butyloctane.
  • Figure III-3 is a scanning electron micrograph of the molecular sieve produced in Example III-3.
  • Figure III-4 is an XRD pattern of the molecular sieve produced in Example III-3.
  • Figure III-5 is an XRD pattern of the molecular sieve produced in Example III-6 after calcination.
  • Figure III-6 is a scanning electron micrograph of the molecular sieve produced in Example III-4.
  • Figure III-7 is a scanning electron micrograph of the molecular sieve produced in Example III-5.
  • Figure III-8 is a scanning electron micrograph of the molecular sieve made in Example III-6.
  • Figure III-9 is a scanning electron micrograph of the molecular sieve made in Example III-7.
  • Figure III-10 is a scanning electron micrograph of the molecular sieve made in Example III-8.
  • Figure III-11 is a NH3-TPD diagram of the molecular sieve made in Example III-7.
  • Figure III-12 is an IR plot of the molecular sieve made in Example III-7.
  • templating agent A 15 g (0.094 mol) of bis[2-(N,N-dimethylaminoethyl)]ether was added to a two-necked flask, 100 mL of isopropanol was added, and 9.5 g of 9.5 g was added dropwise with stirring at 25 ° C ( 0.047mol) of 1,3-dibromopropane, after the addition was completed, the temperature was raised to reflux temperature, refluxed for 30 min, the solution changed from colorless to white turbid, and then reacted at reflux temperature for 12 h, cooled to 25 ° C, and added with 50 mL of acetic acid.
  • templating agent B Br replaces Br in templating agent A with OH by ion exchange; ion exchange resin is strongly alkaline styrene anion exchange resin, working solution is 15m% aqueous solution of templating agent A, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops/second; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, where n is 1, m in the formula (I) It is a compound in which 2 is a methyl group and X is OH, and the relative molecular weight is 236.2 and the purity is 99.21%. Its bromine content is 0.79 m%.
  • templating agent C A compound of the formula (I) wherein n is 6, m is 2, R is a methyl group, and X is Br is produced by the method of the templating agent A in Example IV-1, except that 12.78 is used. g (0.047 mol) of 1,8-dibromooctane was substituted for 1,3-dibromopropane.
  • the test yielded 17.6 g of a product having a melting point of 288.2 ° C, a relative molecular weight of 432.2, a purity of 99.9%, a 1H-NMR spectrum chemical shift (300 MHZ, internal standard TMS, solvent CDCl 2 ) ⁇ (ppm): 1.29 (2H, s), 1.39 (2H, m), 1.43 (2H, s), 2.27 (2H, m), 2.36 (2H, m), 2.55 (2H, m), 3.63 (4H, m).
  • templating agent D replacing Br in templating agent C with OH by ion exchange; ion exchange resin is strong alkaline styrene anion exchange resin, working solution is 15m% templating solution C aqueous solution, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops / sec; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, wherein n is 6, m in the formula (I) 2, R is a methyl group, X is OH, a relative molecular weight is 306.2, and a purity is 99.8%. Its bromine content is 0.2 m%.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 160 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Figure IV-1. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 800 nm, a height of 1000 nm, and an aspect ratio of 1.25. The molecular sieve had a total specific surface area of 564 m 2 /g and a pore volume of 0.394 ml/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 110 ° C for 1 day and then heated to 170 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. IV-3. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 800 nm, a height of 1000 nm, and an aspect ratio of 1.25. The molecular sieve had a total specific surface area of 483 m 2 /g and a pore volume of 0.285 ml/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 160 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. IV-5. It is obvious that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 700 nm, a height of 900 nm, and an aspect ratio of 1.285. The molecular sieve had a total specific surface area of 464 m 2 /g and a pore volume of 0.384 ml/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. IV-7. It is apparent that the molecular sieve has a hexagonal prismatic crystal morphology with an effective diameter of 1000 nm, a height of 1000 nm, and an aspect ratio of 1.0. The molecular sieve had a total specific surface area of 538 m 2 /g and a pore volume of 0.376 ml/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm, and reacted at 120 ° C for 2 days and then heated to 150 ° C. 3 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 6 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the results of NH3-TPD indicate (Fig. IV-9) that the molecular sieve has significant acidity.
  • the results of the infrared spectrum showed (Fig. IV-10) that the molecular sieve had a low amount of B acid and a high acid acid amount.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 160 ° C. 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • Figure IV-1 is a scanning electron micrograph of the molecular sieve produced in Example IV-3.
  • Figure IV-2 is an XRD pattern of the molecular sieve produced in Example IV-3.
  • Figure IV-3 is a scanning electron micrograph of the molecular sieve produced in Example IV-4.
  • Figure IV-4 is an XRD pattern of the molecular sieve produced in Example IV-4.
  • Figure IV-5 is a scanning electron micrograph of the molecular sieve produced in Example IV-5.
  • Figure IV-6 is an XRD pattern of the molecular sieve produced in Example IV-5.
  • Figure IV-7 is a scanning electron micrograph of the molecular sieve produced in Example IV-6.
  • Figure IV-8 is an XRD pattern of the molecular sieve made in Example IV-6.
  • Figure IV-9 is a NH3-TPD pattern of the molecular sieve made in Example IV-8.
  • Figure IV-10 is an IR plot of the molecular sieve made in Example IV-8.
  • the total specific surface area, pore volume and pore diameter of the micropores of the molecular sieve were measured by the following analytical methods.
  • Measurement conditions The sample was placed in a sample processing system, and vacuum was evacuated to 1.33 ⁇ 10-2 Pa at 300 ° C, and the sample was purged for 8 hours to purify the sample. At the liquid nitrogen temperature of -196 °C, the adsorption amount and desorption amount of nitrogen in the purified sample under different specific pressure P/P0 conditions were measured, and the adsorption-desorption isotherm curve was obtained. Then, the two-parameter Horvath-Kawaioe formula was used to calculate the specific surface area. The adsorption capacity of the specific pressure P/P0 ⁇ 0.983 was taken as the pore volume of the sample, and the pore size was calculated according to the DFT density functional book theoretical model.
  • molecular sieves included in the following examples and comparative examples, molecular sieves The total specific surface area, pore volume and pore diameter of the mesopores were measured by the following analytical methods.
  • Measurement conditions The sample was placed in a sample processing system, vacuumed to 1.33 ⁇ 10 -2 Pa at 350 ° C, and held for 15 h at room temperature to purify the sample. At the liquid nitrogen temperature of -196 °C, the adsorption amount and desorption amount of nitrogen in the purified sample under different specific pressure P/P0 conditions were measured, and the adsorption-desorption isotherm curve was obtained. Then, the two-parameter BET formula was used to calculate the specific surface area, and the adsorption capacity of the specific pressure P/P0 ⁇ 0.98 was taken as the pore volume of the sample, and the pore diameter was calculated according to the Horvath-Kawaioe model.
  • the total specific surface area, pore volume and pore diameter of the coarse pores of the molecular sieve were measured by the following analytical methods.
  • Measurement conditions put the appropriate amount of dry sample into the sample tube and put it into the instrument and evacuate it to 50umg for low pressure operation. Weigh the pressure at low pressure, put the sample tube filled with mercury into the high pressure chamber and continue to pressurize it to 60,000 pisa. In the hole. According to the applied pressure P, the corresponding aperture r (nm) can be obtained. The pore volume of the corresponding size can be obtained from the amount of mercury intrusion, and the curve of the pore volume as a function of the pore size can be calculated, thereby obtaining a pore size distribution curve. The length of the hole is calculated from the pore volume and the pore diameter as calculated by the columnar through hole, and the surface area is obtained by the length of the hole and the length of the hole.
  • templating agent A 15 g (0.094 mol) of bis[2-(N,N-dimethylaminoethyl)]ether was added to a two-necked flask, 100 mL of isopropanol was added, and 9.5 g of 9.5 g was added dropwise with stirring at 25 ° C ( 0.047mol) of 1,3-dibromopropane, after the addition was completed, the temperature was raised to reflux temperature, refluxed for 30 min, the solution changed from colorless to white turbid, and then reacted at reflux temperature for 12 h, cooled to 25 ° C, and added with 50 mL of acetic acid.
  • templating agent B Br replaces Br in templating agent A with OH by ion exchange; ion exchange resin is strongly alkaline styrene anion exchange resin, working solution is 15m% aqueous solution of templating agent A, operating temperature is 25 °C, the mass ratio of working fluid to ion exchange resin is 1:3; the flow rate is 3 drops/sec; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, wherein n is 1 in the formula (I), 2 is R, and X is OH.
  • templating agent C A compound of the formula (I) wherein n is 6, m is 2, R is a methyl group, and X is Br is produced by the method of the templating agent A in Example V-1, except that 12.78 is used. g (0.047 mol) of 1,8-dibromooctane was substituted for 1,3-dibromopropane.
  • the test yielded 17.6 g of product having a melting point of 288.2 ° C, a relative molecular weight of 432.2, a purity of 99.9 m%, a 1H-NMR spectrum chemical shift (300 MHZ, internal standard TMS, solvent CDCl 2 ) ⁇ (ppm): 1.29 (2H) , s), 1.39 (2H, m), 1.43 (2H, s), 2.27 (2H, m), 2.36 (2H, m), 2.55 (2H, m), 3.63 (4H, m).
  • templating agent D replacing Br in templating agent C with OH by ion exchange; ion exchange resin is strong alkaline styrene anion exchange resin, working solution is 15m% templating solution C aqueous solution, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops / sec; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, wherein n is 6, m in the formula (I) 2, R is a methyl group, X is OH, a relative molecular weight is 306.2, and a purity is 99.5 m%. Its bromine content is 0.2 m%.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 160 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. V-3. It is obvious that the molecular sieve has a hexagonal columnar shape and a sponge structure crystal morphology, and has an effective diameter of 2500 nm, a height of 1000 nm, and a height-to-diameter ratio of 0.4.
  • the molecular sieve comprises a coarse pore, a medium pore and a microvoid, wherein the coarse pore has a diameter of 150 nm, a total specific surface area of 89 m 2 /g, a pore volume of 1.36 ml/g, and a diameter of the medium pore.
  • the total specific surface area is 126 m 2 /g
  • the pore volume is 0.29 ml/g
  • the micropores have a diameter of 0.5 nm and 1.2 nm, a total specific surface area of 163 m 2 /g, and a pore volume of 0.07 ml/ g.
  • Figure V-4 The XRD pattern of this product is shown in Figure V-4.
  • Figure V-1 shows the adsorption curve of 2,2-diethylbutane for the product after calcination at 550 °C for 3 h. It can be seen from the curve that the product adsorbs 2,2-diethylbutane. It is -55 mg/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 160 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. V-6. It is obvious that the molecular sieve has a hexagonal columnar shape and a sponge structure, and has an effective diameter of 2500 nm, a height of 850 nm, and an aspect ratio of 0.34.
  • the molecular sieve comprises a coarse pore, a medium pore and a micropore, wherein the coarse pore has a diameter of 400 nm, a total specific surface area of 65 m 2 /g, a pore volume of 0.387 ml/g, and a diameter of the medium pore.
  • the total specific surface area is 116 m 2 /g
  • the pore volume is 0.28 ml/g
  • the micropores have a diameter of 0.5 nm and 1.2 nm, a total specific surface area of 149 m 2 /g, and a pore volume of 0.107 ml/ g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 160 ° C for 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. V-7. It is obvious that the molecular sieve has a hexagonal columnar shape and a sponge structure crystal morphology, and the effective diameter is 2200 nm, the height is 3500 nm, and the height to diameter ratio is 1.59.
  • the molecular sieve comprises a coarse pore, a medium pore and a micropore, wherein the coarse pore has a diameter of 100 nm, a total specific surface area of 365 m 2 /g, a pore volume of 0.365 ml/g, and a diameter of the medium pore.
  • the total specific surface area is 115 m 2 /g
  • the pore volume is 0.22 ml/g
  • the micropores have a diameter of 4 nm and 1.2 nm, a total specific surface area of 280 m 2 /g, and a pore volume of 0.145 ml/g. .
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 160 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. V-8. It is obvious that the molecular sieve has a hexagonal columnar shape and a sponge structure, and the effective diameter is 1750 nm, the height is 4000 nm, and the height to diameter ratio is 2.29.
  • the molecular sieve comprises a coarse pore, a medium pore and a micropore, wherein the coarse pore has a diameter of 200 nm, a total specific surface area of 65 m 2 /g, a pore volume of 0.390 ml/g, and a diameter of the medium pore.
  • the total specific surface area is 145 m 2 /g
  • the pore volume is 0.16 ml/g
  • the micropores have a diameter of 4 nm and 1.2 nm, a total specific surface area of 220 m 2 /g, and a pore volume of 0.130 ml/g.
  • Figure V-5 is a graph showing the adsorption of 3-propyl-4-butyloctane to the product after calcination at 550 °C for 3 h. As can be seen from the figure, the product is 3-propyl-4-butyloctyl. The amount of adsorption of the alkane is as high as -102 mg/g.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed, and the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 160 ° C for 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. V-9. It is obvious that the molecular sieve has a hexagonal columnar shape and a sponge structure, and the effective diameter is 1200 nm, the height is 1500 nm, and the height to diameter ratio is 1.25.
  • the molecular sieve comprises a coarse pore, a medium pore and a microvoid, wherein the coarse pore has a diameter of 200 nm, a total specific surface area of 67 m 2 /g, a pore volume of 0.354 ml/g, and a diameter of the medium pore.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and After sealing, the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and reacted at 160 ° C for 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. V-10. It is obvious that the molecular sieve has a hexagonal columnar shape and a sponge structure, and has an effective diameter of 1200 nm, a height of 1700 nm, and an aspect ratio of 1.42.
  • the molecular sieve comprises a coarse pore, a medium pore and a microvoid, wherein the coarse pore has a diameter of 1000 nm, a total specific surface area of 26 m 2 /g, a pore volume of 0.253 ml/g, and a diameter of the medium pore.
  • the total specific surface area is 142 m 2 /g
  • the pore volume is 0.216 ml/g
  • the micropores have a diameter of 4 nm and 1.2 nm, a total specific surface area of 194 m 2 /g, and a pore volume of 0.037 ml/g.
  • Figure V-1 is a graph showing the adsorption of 2,2-diethylbutane by the molecular sieve produced in Example V-3 after calcination.
  • Figure V-2 is the adsorption curve of the molecular sieve produced in Example V-6 after calcination to 3-propyl-4-butyloctane.
  • Figure V-3 is a scanning electron micrograph of the molecular sieve produced in Example V-1.
  • Figure V-4 is an XRD pattern of the molecular sieve produced in Example V-3.
  • Figure V-5 is an XRD pattern of the molecular sieve produced in Example V-6 after calcination.
  • Figure V-6 is a scanning electron micrograph of the molecular sieve produced in Example V-4.
  • Figure V-7 is a scanning electron micrograph of the molecular sieve produced in Example V-5.
  • Figure V-8 is a scanning electron micrograph of the molecular sieve produced in Example V-6.
  • Figure V-9 is a scanning electron micrograph of the molecular sieve made in Example V-7.
  • Figure V-10 is a scanning electron micrograph of the molecular sieve produced in Example V-8.
  • Figure V-11(a) is a schematic view of a sponge structure containing coarse and/or mesopores
  • Figure V-11(b) is a scanning electron micrograph of the sponge structure containing coarse and/or mesopores.
  • Figure V-12(a) is a schematic view of the molecular sieve having a hollow columnar crystal morphology
  • Figure V-12(b) is a scanning electron micrograph of the molecular sieve having a hollow columnar crystal morphology.
  • Figure V-13 is a NH3-TPD diagram of the molecular sieve made in Example V-7.
  • Figure V-14 is an IR chart of the molecular sieve made in Example V-7.
  • the total specific surface area, pore volume and pore diameter of the molecular sieve were measured by the following analytical methods.
  • Measurement conditions The sample was placed in a sample processing system, vacuumed to 1.33 ⁇ 10 -2 Pa at 350 ° C, and held for 15 h at room temperature to purify the sample. At the liquid nitrogen temperature of -196 °C, the adsorption amount and desorption amount of nitrogen in the purified sample under different specific pressure P/P0 conditions were measured, and the adsorption-desorption isotherm curve was obtained. Then, the total specific surface area was calculated by the two-parameter BET formula. The adsorption capacity of the specific pressure P/P0 ⁇ 0.98 was taken as the pore volume of the sample, and the pore size distribution was calculated according to the BJH model.
  • templating agent B Br replaces Br in templating agent A with OH by ion exchange; ion exchange resin is strongly alkaline styrene anion exchange resin, working solution is 15m% aqueous solution of templating agent A, operating temperature is 25 °C, the mass ratio of working fluid to ion exchange resin is 1:3; the flow rate is 3 drops / sec; the exchanged solution is dehydrated by rotary evaporator to obtain the product, where n is 4, m in formula (I)
  • the compound having a methyl group of 6 and R being an OH has a relative molecular weight of 262.2, a purity of 99.21%, and a bromine content of 0.79 m%.
  • templating agent D replacing Br in templating agent C with OH by ion exchange; ion exchange resin is strong alkaline styrene anion exchange resin, working solution is 15m% templating solution C aqueous solution, operating temperature is 25 °C, the mass ratio of the working fluid to the ion exchange resin is 1:3; the flow rate is 3 drops/second; the exchanged solution is dehydrated by a rotary evaporator to obtain a product, wherein n is 9, m in the formula (I)
  • the compound having a molecular weight of 332.4 and a purity of 99.8% and a bromine content of 0.2 m% is a compound having a methyl group of 6 and an OH group.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the autoclave was placed in a rotating convection oven at a rotational speed of 20 rpm and heated to 150 ° C after 1 day of reaction at 120 ° C. The reaction was 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 4 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 110 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the scanning electron micrograph of the product is shown in Fig. VI-9. It is obvious that the molecular sieve has a flat prismatic or flat cylindrical crystal morphology with an effective diameter of 400 nm, a height of 200 nm and a height to diameter ratio of 0.5.
  • the molecular sieve had a total specific surface area of 412 m 2 /g and a pore volume of 0.372 ml/g.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the XRD pattern of this product is shown in Figure VI-12.
  • the above mixture was placed in a 45 mL steel autoclave with a Teflon liner and capped and sealed.
  • the autoclave was placed in a rotating convection oven at a rotation speed of 20 rpm, and reacted at 120 ° C for 1 day and then heated to 150 ° C. 5 days.
  • the autoclave was taken out and rapidly cooled to room temperature, and the mixture was separated on a high-speed centrifuge at 5000 rpm, and the solid was collected, washed thoroughly with deionized water, and dried at 100 ° C for 5 hours to obtain a product.
  • the XRD pattern of this product is shown in Figure VI-13.
  • Figure VI-1 is a scanning electron micrograph of the molecular sieve produced in Example VI-3.
  • Figure VI-2 is an XRD pattern of the molecular sieve produced in Example VI-3.
  • Figure VI-3 is a NH3-TPD diagram of the molecular sieve produced in Example VI-3.
  • Figure VI-4 is an infrared spectrum of the molecular sieve produced in Example VI-3.
  • Figure VI-5 is a scanning electron micrograph of the molecular sieve produced in Example VI-4.
  • Figure VI-6 is an XRD pattern of the molecular sieve produced in Example VI-4.
  • Figure VI-7 is a scanning electron micrograph of the molecular sieve produced in Example VI-5.
  • Figure VI-8 is a scanning electron micrograph of the molecular sieve produced in Example VI-6.
  • Figure VI-9 is a scanning electron micrograph of the molecular sieve produced in Example VI-7.
  • Figure VI-10 is a scanning electron micrograph of the molecular sieve produced in Example VI-8.
  • Figure VI-11 is an XRD pattern of the molecular sieve made in Example VI-9.
  • Figure VI-12 is an XRD pattern of the molecular sieve produced in Example VI-10.
  • Figure VI-13 is an XRD pattern of the molecular sieve produced in Example VI-11.
  • Figure VI-14 (a) is a schematic view showing the end face contour of the molecular sieve of the present invention having a convex shape
  • Figure VI-14 (b) is a schematic view showing the end face contour of the molecular sieve of the present invention having another convex shape
  • Fig. VI-14(c) is a schematic view showing that the end face contour of the molecular sieve of the present invention does not have a convex shape but a flat shape.

Abstract

提供一种超大孔分子筛、其制造方法及其应用。该分子筛包含第一氧化物和第二氧化物,以及可能的有机模板剂和水,其中第一氧化物选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种。该分子筛的总比表面积为400-600m2/g,孔容为0.3-0.5ml/g,具有海绵结构,以及开口于海绵结构表面的粗孔和/或中孔,并具有柱状晶体形貌。该分子筛可通过使用下式(I)所代表的化合物作为有机模板剂而制造。该分子筛能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。

Description

一种分子筛、其制造方法及其应用 技术领域
本发明涉及一种分子筛,尤其是一种超大孔分子筛。本发明还涉及所述分子筛的制造方法及其作为吸附剂或催化剂等的应用。
背景技术
分子筛的用途广泛,不同的用途往往对分子筛的骨架孔结构提出不同的要求。分子筛具有小孔、中孔、大孔和超大孔四种骨架孔结构类型:小孔分子筛具有从
Figure PCTCN2017000327-appb-000001
Figure PCTCN2017000327-appb-000002
的孔径,比如CHA、LEV、SOD、LTA、ERI、KFI;中孔分子筛具有从
Figure PCTCN2017000327-appb-000003
Figure PCTCN2017000327-appb-000004
的孔径,比如MFI、MEL、EUO、MWW、TON、MTT、MFS、AEL、AFO、HEU、FER;大孔分子筛具有
Figure PCTCN2017000327-appb-000005
的孔径,比如FAU、BEA、MOR、LTL、VFI、MAZ;超大孔分子筛具有大于
Figure PCTCN2017000327-appb-000006
的孔径。在这些不同骨架孔结构类型的分子筛中,超大孔分子筛突破了分子筛的孔道限制,在提高大分子反应活性、延长分子筛寿命和改善产物选择性等方面已经表现出诸多优势,并且有望在重油加工和有机化工原料生产中获得良好应用。
在目前的232种分子筛的骨架孔结构中,超大孔分子筛仅占10余种,主要包括三种类型:磷铝/镓分子筛,比如AlPO-8(AET,14-ring,
Figure PCTCN2017000327-appb-000007
)、VPI-5(VFI,18-ring,
Figure PCTCN2017000327-appb-000008
)、Cloverite(-CLO,20-ring,
Figure PCTCN2017000327-appb-000009
)、JDF-20(20-ring)和ND-1(24-ring,
Figure PCTCN2017000327-appb-000010
);硅锗/镓分子筛,比如OSB-1(OSO,14-ring,Si/Be=2,
Figure PCTCN2017000327-appb-000011
)、ECR-34(ETR,18-ring,10.5A,Si/Ga=3)、ITQ-37(30-ring)、ITQ-43(28-ring)、ITQ-33(18-ring)、ITQ-44(18-ring)、ITQ-40(16-ring)SSZ-53(14-ring)和SSZ-59(14-ring);以及硅铝分子筛,比如UTD-1(DON,14-ring,Si/Al2=∞,
Figure PCTCN2017000327-appb-000012
)和CIT-5(CFI,14-ring,
Figure PCTCN2017000327-appb-000013
Si/Al2=190)。
鉴于其良好的性能表现和应用前景,现有技术仍然需要开发更多种类的超大孔分子筛。
发明内容
本发明人在现有技术的基础上经过刻苦的研究发现,发现了一种新型的超大孔分子筛,同时还发现了一种新的分子筛的制造方法,由此满足了现有技术提出的前述要求。
具体而言,本发明涉及以下方面的内容:
第一实施方式
1.一种分子筛,其特征在于,具有式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为从5至∞,优选从25至95,更优选从30至70;所述第一氧化物选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅或者二氧化硅与二氧化锗的组合,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝;水与所述第一氧化物的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5,并且具有基本上如下表所示的X射线衍射图案,
Figure PCTCN2017000327-appb-000014
2.按照前述方面任一项所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2017000327-appb-000015
Figure PCTCN2017000327-appb-000016
3.按照前述方面任一项所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2017000327-appb-000017
4.按照前述方面任一项所述的分子筛,具有柱状(优选棱柱状,更优选六棱柱状)的晶体形貌。
5.按照前述方面任一项所述的分子筛,其中所述晶体形貌的尺寸包括:有效直径为从100nm至1000nm,优选从300nm至700nm,高度为从100nm至1000nm,优选从150nm至700nm,高径比为从1/3至8,优选从1.5至5或者从2至5。
6.按照前述方面任一项所述的分子筛,其中所述分子筛的总比表面积为从400m2/g至600m2/g,优选从450m2/g至580m2/g,孔容为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。
7.一种分子筛的制造方法,包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤,和任选地,焙烧所述获得的分子筛的步骤,其中所述有机模板剂包含下式(I)所代表的化合物,
Figure PCTCN2017000327-appb-000018
其中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基,优选各自独立地选自 C3-12直链亚烷基和C3-12直链氧杂亚烷基,或者优选其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基,更优选其中一个选自C3-12直链亚烷基,另一个选自C3-12直链亚烷基和C3-12直链氧杂亚烷基,特别优选其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基和C4-6直链氧杂亚烷基(优选C4-6直链一氧杂亚烷基,更优选-(CH2)m-O-(CH2)m-,其中各数值m彼此相同或不同,各自独立地代表2或3);多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
8.按照前述方面任一项所述的制造方法,其中所述第一氧化物源选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅源或者二氧化硅源与二氧化锗源的组合,所述第二氧化物源选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝源。
9.按照前述方面任一项所述的制造方法,其中所述晶化条件包括:晶化温度为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃,晶化时间为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天,并且所述焙烧条件包括:焙烧温度为从300℃至750℃,优选从400℃至600℃,焙烧时间为从1小时至10小时,优选从3小时至6小时。
10.按照前述方面任一项所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从5至∞,优选从25至95,更优选从30至70;水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
第二实施方式
1.一种分子筛,其特征在于,具有(原生)海绵结构,并具有基本上如下表所示的X射线衍射图案,
Figure PCTCN2017000327-appb-000019
2.按照前述方面任一项所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2017000327-appb-000020
3.按照前述方面任一项所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2017000327-appb-000021
4.按照前述方面任一项所述的分子筛,其中所述海绵结构包含粗 孔洞和/或中孔洞,优选所述粗孔洞和/或所述中孔洞开口于所述海绵结构的端面和/或侧面。
5.按照前述方面任一项所述的分子筛,其中所述粗孔洞的直径为从80nm至2μm,优选从80nm至1.5μm,并且所述中孔洞的直径为从2nm至30nm,优选从2nm至4nm和/或从7nm至15nm(优选从8nm至9nm)。
6.按照前述方面任一项所述的分子筛,其中所述中孔洞的总比表面积为从50m2/g至250m2/g,优选从100m2/g至150m2/g,孔容为从0.05ml/g至0.40ml/g,优选从0.15ml/g至0.30ml/g,并且所述粗孔洞的总比表面积为从10m2/g至100m2/g,优选从50m2/g至100m2/g,孔容为从0.5ml/g至3.0ml/g,优选从1.0ml/g至2.0ml/g。
7.按照前述方面任一项所述的分子筛,其中所述海绵结构包含微孔洞,其中所述微孔洞的直径为从0.5nm至小于2nm,优选从0.5nm至0.8nm和/或从1.1nm至1.8nm,总比表面积为从100m2/g至300m2/g,优选从150m2/g至250m2/g,孔容为从0.03ml/g至0.20ml/g,优选从0.05ml/g至0.15ml/g。
8.按照前述方面任一项所述的分子筛,具有柱状(优选棱柱状,更优选六棱柱状)的晶体形貌,优选具有空心柱状的晶体形貌。
9.按照前述方面任一项所述的分子筛,所述晶体形貌的尺寸包括:有效直径为从100nm至5000nm,优选从1000nm至3000nm,高度为从500nm至3000nm,优选从1000nm至3000nm,高径比为从1/3至5,优选从1/3至3。
10.按照前述方面任一项所述的分子筛,具有式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为从30至100,优选从55至100;所述第一氧化物选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅或者二氧化硅与二氧化锗的组合;所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝;水与所述第一氧化物的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物的摩尔比为从0.02至0.5,优选 从0.05至0.5、从0.15至0.5或者从0.3至0.5。
11.一种分子筛的制造方法,包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤,和任选地,焙烧所述获得的分子筛的步骤,其中所述有机模板剂包含下式(I)所代表的化合物,
Figure PCTCN2017000327-appb-000022
其中,基团R1和R2彼此不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链氧杂亚烷基,优选其中一个选自C3-12直链亚烷基,另一个选自C3-12直链氧杂亚烷基(优选C4-6直链氧杂亚烷基,更优选C4-6直链一氧杂亚烷基,更优选-(CH2)m-O-(CH2)m-,其中各数值m彼此相同或不同,各自独立地代表2或3);多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
12.按照前述方面任一项所述的制造方法,其中所述第一氧化物源选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅源或者二氧化硅源与二氧化锗源的组合,所述第二氧化物源选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝源。
13.按照前述方面任一项所述的制造方法,其中所述晶化条件包括:晶化温度为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃,晶化时间为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天,并且所述焙烧条件包括:焙烧温度为从300℃至750℃,优选从400℃至600℃,焙烧时间为从1小时至10小时,优选从3小时至6小时。
14.按照前述方面任一项所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从30至100,优选从55至100;水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15; 所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
第三实施方式
1.一种分子筛,具有从扁棱柱状至扁圆柱状的(原生)晶体形貌,优选其纵剖面上端面轮廓线中的一条或两条具有外凸形状,并具有基本上如下表所示的X射线衍射图案,
Figure PCTCN2017000327-appb-000023
2.按照前述方面任一项所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2017000327-appb-000024
3.按照前述方面任一项所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2017000327-appb-000025
Figure PCTCN2017000327-appb-000026
4.按照前述方面任一项所述的分子筛,其中所述晶体形貌的尺寸包括:有效直径为从100nm至1000nm,优选从100nm至500nm,高度为从100nm至1000nm,优选从150nm至300nm,高径比为从0.1至0.9,优选从0.4至0.7。
5.按照前述方面任一项所述的分子筛,其中所述分子筛的总比表面积为从400m2/g至600m2/g,优选从450m2/g至580m2/g,孔容为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。
6.按照前述方面任一项所述的分子筛,具有式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为从40至200,优选从40至150;所述第一氧化物选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅或者二氧化硅与二氧化锗的组合,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝;水与所述第一氧化物的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.08至0.5或者从0.3至0.5。
7.一种分子筛的制造方法,包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤,和任选地,焙烧所述获得的分子筛的步骤,其中所述有机模板剂包含下式(I)所代表的化合物,
Figure PCTCN2017000327-appb-000027
其中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链 或支链亚烷基,优选各自独立地选自C3-12直链亚烷基,特别优选其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基;多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
8.按照前述方面任一项所述的制造方法,其中所述第一氧化物源选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅源或者二氧化硅源与二氧化锗源的组合,所述第二氧化物源选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝源。
9.按照前述方面任一项所述的制造方法,其中所述晶化条件包括:晶化温度为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃,晶化时间为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天,并且所述焙烧条件包括:焙烧温度为从300℃至750℃,优选从400℃至600℃,焙烧时间为从1小时至10小时,优选从3小时至6小时。
10.按照前述方面任一项所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从40至200,优选从40至150;水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.08至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
第四实施方式和第五实施方式
1.一种分子筛的制造方法,包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤,和任选地,焙烧所述获得的分子筛的步骤,其中所述有机模板剂包含下式(I)所代表的化合物,
Figure PCTCN2017000327-appb-000028
其中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基,优选各自独立地选自C3-12直链亚烷基和C3-12直链氧杂亚烷基,或者优选其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基,更优选其中一个选自C3-12直链亚烷基,另一个选自C3-12直链亚烷基和C3-12直链氧杂亚烷基,特别优选其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基和C4-6直链氧杂亚烷基(优选C4-6直链一氧杂亚烷基,更优选-(CH2)m-O-(CH2)m-,其中各数值m彼此相同或不同,各自独立地代表2或3);多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
2.按照前述方面任一项所述的制造方法,其中基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基,优选各自独立地选自C3-12直链亚烷基,特别优选其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基;多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
3.按照前述方面任一项所述的制造方法,其中基团R1和R2彼此不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链氧杂亚烷基,优选其中一个选自C3-12直链亚烷基,另一个选自C3-12直链氧杂亚烷基(优选C4-6直链氧杂亚烷基,更优选C4-6直链一氧杂亚烷基,更优选-(CH2)m-O-(CH2)m-,其中各数值m彼此相同或不同,各自独立地代表2或3);多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
4.按照前述方面任一项所述的制造方法,其中所述第一氧化物源选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅源或者二氧化硅源与二氧化锗源的组 合,所述第二氧化物源选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝源。
5.按照前述方面任一项所述的制造方法,其中所述晶化条件包括:晶化温度为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃,晶化时间为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天,并且所述焙烧条件包括:焙烧温度为从300℃至750℃,优选从400℃至600℃,焙烧时间为从1小时至10小时,优选从3小时至6小时。
6.按照前述方面任一项所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从5至∞,特别是从5至小于40(比如从20至小于40)、从40至200(比如从40至150)、从大于200至∞(比如从大于200至700);水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.08至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
7.按照前述方面任一项所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从5至∞,特别是从5至小于30(比如从10至小于30)、从30至100(比如从55至100)、从大于100至∞(比如从200至∞,或者从200至700);水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
8.一种分子筛,其特征在于,由前述方面任一项所述的制造方法 获得。
9.按照前述方面任一项所述的分子筛,具有基本上如下表所示的X射线衍射图案,
Figure PCTCN2017000327-appb-000029
第六实施方式
1.一种分子筛组合物,其特征在于,包含前述方面任一项所述的分子筛或者按照前述方面任一项所述的制造方法获得的分子筛,以及粘结剂。
2.一种烃的转化方法,其特征在于,包括在催化剂的存在下使烃发生转化反应的步骤,其中所述催化剂包含或制造自前述方面任一项所述的分子筛、按照前述方面任一项所述的制造方法获得的分子筛、或者前述方面任一项所述的分子筛组合物。
3.按照前述方面任一项所述的转化方法,其中所述转化反应选自催化裂化、加氢裂化、歧化、烷基化、低聚和异构化。
技术效果
根据本发明的分子筛,具有超大孔的骨架孔结构,这一点至少可以从其较高的孔容数据得以反映。
根据本发明的分子筛,具有良好的热/水热稳定性,并且具有更大的孔容。结果是,本发明的分子筛能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的分子筛,在一个实施方式中,具有独特的X射线衍射谱图(XRD),同时具有独特的Si/Al2比。这是现有技术未曾制造过的分子筛。
根据本发明的分子筛,在一个实施方式中,具有独特的X射线衍射谱图(XRD),同时具有独特的原生晶体形貌,比如具有从扁棱柱状至扁圆柱状的晶体形貌。这是现有技术未曾制造过的分子筛。
根据本发明的分子筛,在一个实施方式中,具有独特的X射线衍射谱图(XRD),同时具有独特的原生晶体形貌,比如具有海绵结构的晶体形貌。这是现有技术未曾制造过的分子筛。结果是,本发明的分子筛在表现出微孔材料的特性(即,常规分子筛的固有特性)的同时,还兼具介孔材料和/或大孔材料的特点,能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的分子筛,在一个实施方式中,具有较强的酸性,特别是L酸中心的数量较多。这是现有技术未曾制造过的分子筛。结果是,本发明的分子筛特别是在酸催化反应中具有更为优异的性能表现。
根据本发明的分子筛的制造方法,使用了一种特定化学结构的有机模板剂,由此表现出工艺条件简单、产品分子筛容易合成的特点。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,符号“/”通常被理解为“和/或”,比如表述“更多/更大”的含义是“更多和/或更大”,除非该理解不符合本领域技术人员的常规认识。
在本说明书的上下文中,所谓有机模板剂,在本领域中有时也称 为结构导向剂或有机导向剂。
在本说明书的上下文中,作为C1-4直链或支链烷基,比如可以举出甲基、乙基或者丙基等。
在本发明的上下文中,术语“直链或支链氧杂亚烷基”指的是直链或支链亚烷基的碳链结构被一个或多个(比如1至3个、1至2个或者1个)杂基团-O-中断而获得的二价基团。从结构稳定性角度出发优选的是,在存在多个时,任意两个所述杂基团之间不直接键合。显然的是,所谓中断,指的是所述杂基团不处于所述直链或支链亚烷基或所述直链或支链氧杂亚烷基的任何一个末端。具体举例而言,C4直链亚烷基(-CH2-CH2-CH2-CH2-)被一个杂基团-O-中断后可以获得-CH2-O-CH2-CH2-CH2-或者-CH2-CH2-O-CH2-CH2-等C4直链一氧杂亚烷基,被两个杂基团-O-中断后可以获得-CH2-O-CH2-O-CH2-CH2-或者-CH2-O-CH2-CH2-O-CH2-等C4直链二氧杂亚烷基,被三个杂基团-O-中断后可以获得-CH2-O-CH2-O-CH2-O-CH2-等C4直链三氧杂亚烷基。或者,具体举例而言,C4支链亚烷基(-CH2(CH3)-CH2-CH2-)被一个杂基团-O-中断后可以获得-CH2(CH3)-O-CH2-CH2-、-CH2(CH3)-CH2-O-CH2-或者-CH2(-O-CH3)-CH2-CH2-等C4支链一氧杂亚烷基,被两个杂基团-O-中断后可以获得-CH2(CH3)-O-CH2-O-CH2-、-CH2(-O-CH3)-O-CH2-CH2-或者-CH2(-O-CH3)-CH2-O-CH2-等C4支链二氧杂亚烷基,被三个杂基团-O-中断后可以获得-CH2(-O-CH3)-O-CH2-O-CH2-等C4支链三氧杂亚烷基。
在本说明书的上下文中,所谓总比表面积,是指单位质量分子筛所具有的总面积,包括内表面积和外表面积。无孔材料只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等,而多孔材料具有外表面积和内表面积,如石棉纤维、硅藻土和分子筛等。
在本说明书的上下文中,所谓孔容,亦称孔体积,指单位质量分子筛所具有的孔的容积。而且,所谓微孔容,是指单位质量分子筛所具有的全部微孔(即,孔道直径小于2nm的孔)的容积。
在本说明书的上下文中,在分子筛的XRD数据中,w、m、s、vs代表衍射峰强度,w为弱,m为中等,s为强,vs为非常强,这为本领域技术人员所熟知的。一般而言,w为小于20;m为20-40;s为40-70; vs为大于70。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
在本说明书的上下文中,本发明的任何两个或多个方面都可以任意组合,由此而形成的技术方案属于本说明书原始公开内容的一部分,同时也落入本发明的保护范围。
根据本发明,至少涉及如下的第一实施方式至第六实施方式。
第一实施方式
根据本发明的一个方面,涉及一种分子筛,其中所述分子筛具有式“第一氧化物·第二氧化物”所代表的示意性化学组成。已知的是,分子筛中有时会(尤其是在刚合成之后)含有一定量的水分,但本发明认为并没有必要对该水分的量进行特定,因为该水分的存在与否并不会实质上影响该分子筛的XRD谱图。鉴于此,该示意性化学组成实际上代表的是该分子筛的无水化学组成。而且,显然的是,该示意性化学组成代表的是所述分子筛的骨架化学组成。
根据本发明的一个方面,在刚合成后,所述分子筛在组成中一般还可能进一步含有有机模板剂和水等,比如填充在其孔道中的那些。因此,所述分子筛有时还可能具有式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成。在此,通过焙烧所述具有式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成的分子筛,以便脱除其孔道中存在的任何有机模板剂和水等,就可以获得所述具有式“第一氧化物·第二氧化物”所代表的示意性化学组成的分子筛。另外,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至10小时,优选从3小时至6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,在前述的示意性化学组成中,所述第一氧化物一般是四价氧化物,比如可以举出选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅(SiO2)或者二氧化硅与二氧化锗的组合。这些第一氧化物可以单独使用一种, 或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物之间的摩尔比比如是从20∶200至35∶100。作为所述组合使用的例子,比如可以举出组合使用二氧化硅和二氧化锗,此时所述二氧化硅与所述二氧化锗之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在前述的示意性化学组成中,所述第二氧化物一般是三价氧化物,比如可以举出选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝(Al2O3)。这些第二氧化物可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物之间的摩尔比比如是从30∶200至60∶150。
根据本发明的一个方面,在前述的示意性化学组成中,作为所述有机模板剂,比如可以举出在制造所述分子筛时使用的任何有机模板剂,特别可以举出本实施方式在制造分子筛时使用的有机模板剂(参见下文的详细描述)。这些有机模板剂可以单独使用一种,或者以任意的比例组合使用多种。具体而言,作为所述有机模板剂,具体比如可以举出下式(I)所代表的化合物。
Figure PCTCN2017000327-appb-000030
根据本发明的一个方面,在式(I)中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,并且X为OH。
根据本发明的一个方面,在前述的示意性化学组成中,所述第一氧化物与所述第二氧化物的摩尔比(比如SiO2与Al2O3的摩尔比)一般为从5至∞,优选从25至95,更优选从30至70。在此,在所述摩尔比是∞时,表示不存在所述第二氧化物或者所述第二氧化物在所述示意性化学组成中的含量可以忽略。本发明的发明人经过认真调查之后发现,现有技术未曾制造出特别是所述摩尔比(比如SiO2与Al2O3的摩尔比)为从25至95(更特别是从30至70)的所述分子筛。
根据本发明的一个方面,在前述的示意性化学组成中,水与所述 第一氧化物的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在前述的示意性化学组成中,所述有机模板剂与所述第一氧化物的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,取决于其制造方法所使用的起始原料,所述分子筛在其组成中(一般填充在其孔道中)有时还可能进一步含有碱金属和/或碱土金属阳离子等金属阳离子作为组成成分。作为所述金属阳离子此时的含量,比如所述金属阳离子与所述第一氧化物的质量比一般为从0至0.02,优选从0.0002至0.006,但有时并不限于此。
根据本发明的一个方面,所述分子筛具有基本上如下表所示的X射线衍射图案。
Figure PCTCN2017000327-appb-000031
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000032
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000033
Figure PCTCN2017000327-appb-000034
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛一般具有柱状的晶体形貌。在此,所谓晶体形貌,指的是在所述扫描电子显微镜的观察视野中,单个分子筛晶体所呈现的(整体)外部形状。另外,作为所述柱状,优选棱柱状,特别是六棱柱状。在此,所述棱柱指的是凸棱柱,并且一般指的是直棱柱和正多边形棱柱(比如正六棱柱)。需要特别指出的是,由于分子筛的晶体在生长过程中可能会受到各种因素的干扰,因此其实际的晶体形貌与几何意义上的(真正)直棱柱或(真正)正多边形棱柱相比可能会存在一定程度的偏离,比如偏离30%、20%或5%,导致获得斜棱柱、或者不规则多边形(甚至是曲边多边形)棱柱,但本发明并不旨在具体明确该偏离程度。而且,任何更大或更小的偏离也都未脱离本发明的保护范围。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的有效直径一般为从100nm至1000nm,优选从300nm至700nm。在此,所谓有效直径,指的是在所述分子筛(单个晶体)的横截面上,沿着该横截面的轮廓(边缘)任意选择两个点,测量这两个点之间的直线距离,以其中最大的直线距离作为有效直径。如果所述分子筛的横截面的轮廓呈现为多边形比如六边形,所述有效直径一般指的是所述多边形上距离最远的两个顶点之间的直线距离(对角线距离)。简单而言,所述有效直径基本上相当于所述横截面的轮廓所代表的多边形的外接圆的直径。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高度一般为从100nm至1000nm,优选从150nm至700nm。在此,所谓高度,指的是在所述分子筛的单个晶体(柱状晶体)中,所述柱的两个端面中心之间的直线距离。在通 常情况下,所述分子筛柱的两个端面基本上是彼此平行的,此时所述直线距离即为所述两个端面之间的垂直距离,但本发明并不限于此。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高径比一般为从1/3至8,优选从1.5至5或者从2至5。在此,所谓高径比,指的是所述高度与所述有效直径的比值。
根据本发明的一个方面,所述分子筛的总比表面积一般为从400m2/g至600m2/g,优选从450m2/g至580m2/g。在此,所述总比表面积是通过液氮吸附方法,按BET模型计算获得的。
根据本发明的一个方面,所述分子筛的孔容(微孔容)一般为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。本发明的分子筛具有非常高的微孔容,这表明其属于超大孔分子筛。在此,所述孔容是液氮吸附方法,按Horvath-Kawazoe模型计算获得的。
根据本发明的一个方面,所述分子筛可以通过如下的制造方法进行制造。在此,所述制造方法包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤(以下称为接触步骤)。
根据本发明的一个方面,在所述分子筛的制造方法中,所述接触步骤可以按照本领域常规已知的任何方式进行,比如可以举出使所述第一氧化物源、所述第二氧化物源、所述任选的碱源、所述有机模板剂和水混合,并使该混合物在所述晶化条件下进行晶化的方法。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂至少包含下式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
Figure PCTCN2017000327-appb-000035
根据本发明的一个方面,在所述式(I)中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基。
根据本发明的一种变形实施方式,在所述式(I)中,所述基团R1和R2彼此相同或不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基。
根据本发明的一种变形实施方式,在所述式(I)中,所述基团R1和R2彼此相同或不同,其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基和C4-6直链氧杂亚烷基。
根据本发明的一种变形实施方式,在所述式(I)中,所述基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基。
根据本发明的一种变形实施方式,在所述式(I)中,所述基团R1和R2彼此相同或不同,其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基。
根据本发明的一种变形实施方式,在所述式(I)中,所述基团R1和R2彼此不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链氧杂亚烷基。
根据本发明的一个方面,作为所述C3-12直链或支链亚烷基,比如可以举出C3-12直链亚烷基,具体比如可以举出亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚叔丁基、亚正戊基、亚异戊基、亚新戊基、亚正己基、亚异己基、亚正辛基、亚异辛基、亚新辛基、亚壬基(或其异构体)、亚癸基(或其异构体)、亚十一烷基(或其异构体)或者亚十二烷基(或其异构体),优选亚正丙基、亚正丁基、亚正戊基、亚正己基、亚正庚基、亚正辛基、亚正壬基、亚正癸基、亚正十一烷基或者亚正十二烷基。另外,作为所述C3-12直链亚烷基,更具体比如可以举出C4-6直链亚烷基,特别可以举出亚正丁基、亚正戊基或者亚正己基。
根据本发明的一个方面,作为所述C3-12直链或支链氧杂亚烷基,比如可以举出C3-12直链氧杂亚烷基,具体比如可以举出-(CH2)2-O-(CH2)-、-(CH2)2-O-(CH2)2-、-(CH2)-O-(CH2)3-、-(CH2)2-O-(CH2)3-、-(CH2)-O-亚丙基-、-(CH2)-O-(CH2)4-、-(CH2)-O-(CH2)2-O-(CH2)-、-(CH2)-O-(CH2)2-O-(CH2)2-、-(CH2)-O-亚叔丁基-、-(CH2)2-O-(CH2)4-、、-(CH2)3-O-(CH2)3-、-(CH2)-O-亚新戊基-、-(CH2)2-O-(CH2)6-、-(CH2)2-O-(CH2)7-、-(CH2)-O-(CH2)8-、-(CH2)-O-亚 异辛基-、-(CH2)-O-(CH2)10-、-(CH2)2-O-亚癸基或其异构体-、-(CH2)-O-(CH2)6-、-(CH2)-O-(CH2)7-、-(CH2)-O-(CH2)8-、-(CH2)-O-(CH2)11-、-(CH2)-O-(CH2)2-O-(CH2)-、-(CH2)2-O-(CH2)2-O-(CH2)2-、-(CH2)2-O-(CH2)4-O-(CH2)2-、-(CH2)2-O-(CH2)6-O-(CH2)2-或者-(CH2)2-O-(CH2)8-O-(CH2)2-。另外,作为所述C3-12直链氧杂亚烷基,更具体比如可以举出C4-6直链氧杂亚烷基,特别可以举出C4-6直链一氧杂亚烷基,更特别可以举出式-(CH2)m-O-(CH2)m-(其中,各数值m彼此相同或不同,各自独立地代表2或3,比如2)所代表的一氧杂亚烷基,更特别可以举出-(CH2)2-O-(CH2)2-、-(CH2)2-O-(CH2)3-、-(CH2)3-O-(CH2)3-或者-(CH2)2-O-(CH2)4-。
根据本发明的一个方面,在所述式(I)中,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基。
根据本发明的一个方面,在所述式(I)中,X为OH。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,在所述接触步骤中,作为所述有机模板剂,除了所述式(I)所代表的化合物之外,还可以进一步配合使用本领域在制造分子筛时常规使用的其他有机模板剂。优选的是,在所述接触步骤中,作为所述有机模板剂,仅仅使用所述式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源一般是四价氧化物源,比如可以举出选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅(SiO2)源或者二氧化硅源与二氧化锗源的组合。这些第一氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物源之间的摩尔比比如是从20∶200至35∶100。作为所述组合使用的例子,比如可以举出组合使用二氧化硅源和二氧 化锗源,此时所述二氧化硅源与所述二氧化锗源之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在所述接触步骤中,作为所述第一氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第一氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第一氧化物为二氧化硅时,作为该第一氧化物源,比如可以举出硅溶胶、粗块硅胶、正硅酸乙酯、水玻璃、白炭黑、硅酸、硅胶或者硅酸钾等。当所述第一氧化物为二氧化锗时,作为该第一氧化物源,比如可以举出四烷氧基锗、氧化锗或者硝酸锗等。当所述第一氧化物为二氧化锡源时,作为该第一氧化物源,比如可以举出氯化锡、硫酸锡、硝酸锡等。当所述第一氧化物为氧化钛时,作为该第一氧化物源,比如可以举出四烷氧基钛、二氧化钛、硝酸钛等。当所述第一氧化物为二氧化锆时,作为该第一氧化物源,比如可以举出硫酸锆、氯化锆、硝酸锆等。这些第一氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第二氧化物源一般是三价氧化物源,比如可以举出选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝(Al2O3)源。这些第二氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物源之间的摩尔比比如是从30∶200至60∶150。
根据本发明的一个方面,在所述接触步骤中,作为所述第二氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第二氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第二氧化物为氧化铝时,作为该第二氧化物源,比如可以举出氯化铝、硫酸铝、水合氧化铝、偏铝酸钠、铝溶胶或者氢氧化铝等。当所述第二氧化物为氧化硼时,作为该第二氧化物源,比如可以举出硼酸、硼酸盐、硼砂、三氧化二硼等。当所述第二氧化物为氧化铁时,作为该第二氧化物源,比如可以举出硝酸铁、氯化铁、氧化 铁等。当所述第二氧化物为氧化镓时,作为该第二氧化物源,比如可以举出硝酸镓、硫酸镓、氧化镓等。当所述第二氧化物为稀土氧化物时,作为该第二氧化物源,比如可以举出氧化镧、氧化钕、氧化钇、氧化铈、硝酸镧、硝酸钕、硝酸钇、硫酸铈铵等。当所述第二氧化物为氧化铟时,作为该第二氧化物源,比如可以举出氯化铟、硝酸铟、氧化铟等。当所述第二氧化物为氧化钒时,作为该第二氧化物源,比如可以举出氯化钒、偏钒酸铵、钒酸钠、二氧化钒、硫酸氧钒等。这些第二氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源(以所述第一氧化物为计,比如SiO2)与所述第二氧化物源(以所述第二氧化物为计,比如Al2O3)的摩尔比一般为从5至∞,优选从25至95,更优选从30至70。在此,在所述摩尔比是∞时,表示未使用所述第二氧化物源或者未向所述接触步骤中有意引入所述第二氧化物源。
根据本发明的一个方面,在所述接触步骤中,水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在所述接触步骤中,可以使用碱源,也可以不使用碱源。在不特意使用碱源时,所述式(I)所代表的化合物所包含的基团X可以用于提供在此所需要的OH-。在此,作为所述碱源,可以使用本领域为此目的而常规使用的任何碱源,包括但不限于以碱金属或碱土金属为阳离子的无机碱,特别是氢氧化钠和氢氧化钾等。这些碱源可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化温度一般为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化时间一般为至少1天,优选至少2天,优选从3天至8天、从5 天至8天或者从4天至6天。
根据本发明的一个方面,在所述分子筛的制造方法中,在所述接触步骤完成之后,可以通过常规已知的任何分离方式从所获得的反应混合物中分离出分子筛作为产品。在此,所述分子筛产品包括本发明的分子筛。另外,作为所述分离方式,比如可以举出对所述获得的反应混合物进行过滤、洗涤和干燥的方法。
根据本发明的一个方面,在所述分子筛的制造方法中,所述过滤、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所述获得的反应混合物。作为所述洗涤,比如可以举出使用去离子水进行洗涤直至滤出液的pH值达到7-9,优选8-9。作为所述干燥温度,比如可以举出40-250℃,优选60-150℃,作为所述干燥的时间,比如可以举出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
根据本发明的一个方面,所述分子筛的制造方法根据需要还可以包括将所述获得的分子筛进行焙烧的步骤(以下称为焙烧步骤),以脱除所述有机模板剂和可能存在的水分等,由此获得焙烧后的分子筛。在本说明书的上下文中,将所述焙烧之前和焙烧之后的分子筛也统称为本发明的分子筛或者根据本发明的分子筛。
根据本发明的一个方面,在所述制造分子筛的方法中,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至10小时,优选从3小时至6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,本发明的分子筛或者根据本发明所述的分子筛的制造方法所制造的任何分子筛(在本说明书的上下文中,将二者也统称为本发明的分子筛或者根据本发明的分子筛),根据需要,还可以通过本领域常规已知的任何方式进行离子交换,比如可以通过离子交换法或者溶液浸渍法(相关方法比如可以参见美国专利US3140249和US3140253等),将其组成中包含的金属阳离子(比如Na离子或者K离子,取决于其具体的制造方法)全部或者部分替换为其他阳离子。作为所述其他阳离子,比如可以举出氢离子、其他碱金属离 子(包括K离子、Rb离子等)、铵离子(包括NH4离子、季铵离子比如四甲基铵离子和四乙基铵离子等)、碱土金属离子(包括Mg离子、Ca离子)、Mn离子、Zn离子、Cd离子、贵金属离子(包括Pt离子、Pd离子、Rh离子等)、Ni离子、Co离子、Ti离子、Sn离子、Fe离子和/或稀土金属离子等。
根据本发明的分子筛,根据需要,还可以通过稀酸溶液等进行处理,以便提高硅铝比,或者用水蒸气进行处理,以提高分子筛晶体的抗酸侵蚀性。
根据本发明的分子筛,具有良好的热/水热稳定性,并且具有更大的孔容。结果是,本发明的分子筛能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的分子筛,具有较强的酸性,特别是L酸中心的数量较多。这是现有技术未曾制造过的分子筛。结果是,本发明的分子筛特别是在酸催化反应中具有更为优异的性能表现。
根据本发明的分子筛,可以呈现为任何的物理形式,比如粉末状、颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
第二实施方式
根据本发明的一个方面,涉及一种分子筛,所述分子筛具有基本上如下表所示的X射线衍射图案。
Figure PCTCN2017000327-appb-000036
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000037
Figure PCTCN2017000327-appb-000038
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000039
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(指的是单个晶体)具有海绵结构的晶体形貌,特别是具有海绵结构的原生晶体形貌。在此,所谓晶体形貌,指的是在所述扫描电子显微镜的观察视野中,单个分子筛晶体所呈现的(整体)外部形状。另外,所谓原生,指的是分子筛在制造后客观上直接呈现的结构,并不是分子筛在制造之后再行人为处理而呈现的结构。
本发明的发明人经过认真调查之后发现,现有技术未曾制造出同时具有前述特定的X射线衍射图案和前述特定的(原生)晶体形貌的分子筛。
根据本发明的一个方面,所述海绵结构一般包含微孔洞(骨架孔)。这是分子筛作为微孔材料的固有特性。
根据本发明的一个方面,所述微孔洞的直径(平均直径)一般为从0.5nm至小于2nm。在优选的情况下,所述微孔洞的直径为从0.5nm至0.8nm,或者从1.1nm至1.8nm。在更优选的情况下,所述微孔洞的直径呈现为双峰分布,同时包括从0.5nm至0.8nm和从1.1nm至1.8nm这两种直径。在此,所述直径是通过液氮吸附方法按DFT密度泛函理 论模型计算获得的。鉴于具有数值如此大的微孔洞直径,本发明的分子筛被认定为属于超大孔分子筛。
根据本发明的一个方面,所述微孔洞的总比表面积一般为从100m2/g至300m2/g,优选从150m2/g至250m2/g。在此,所述总比表面积是通过液氮吸附方法按BET模型计算获得的。
根据本发明的一个方面,所述微孔洞的孔容一般为从0.03ml/g至0.20ml/g,优选从0.05ml/g至0.15ml/g。在此,所述孔容是通过Horvath-Kawazoe法测量获得的。另外,在不受任何理论限制的情况下,本发明的发明人认为,所述微孔洞的孔容之所以具有如此低的数值,是因为如下所述的粗孔洞和/或中孔洞占据了原本属于微孔洞的位置之故。因此,如果将这些粗孔洞和中孔洞用所述微孔洞进行替代,所述微孔洞的孔容可能会表现出非常高的数值。
根据本发明的一个变形实施方式,在利用扫描电子显微镜(SEM)进行观察时,所述海绵结构还可以包含粗孔洞。这一点比如可以参照图V-11(a)和图V-11(b)进行理解。在此,所述图V-11(a)和图V-11(b)仅用于解释本发明,而不用于限定本发明。在本发明的分子筛(单个晶体)的所述海绵结构中,粗孔洞和微孔洞彼此互通和交叉,形成复杂的网络孔道结构。这是现有技术未曾制造过的粗孔型超大孔分子筛。结果是,本发明的分子筛在表现出微孔材料的特性的同时,还表现出大孔材料的特性。
根据本发明的一个变形实施方式,在利用扫描电子显微镜(SEM)进行观察时,所述海绵结构还可以包含中孔洞。在本发明的分子筛(单个晶体)的所述海绵结构中,中孔洞和微孔洞彼此互通和交叉,形成复杂的网络孔道结构。这是现有技术未曾制造过的介孔型超大孔分子筛。结果是,本发明的分子筛在表现出微孔材料的特性的同时,还表现出介孔材料的特性。
根据本发明的一个变形实施方式,在利用扫描电子显微镜(SEM)进行观察时,所述海绵结构还可以同时包含粗孔洞和中孔洞。这是现有技术未曾制造过的多孔级超大孔分子筛。结果是,本发明的分子筛在表现出微孔材料的特性的同时,还兼具大孔材料和介孔材料的特性。
根据本发明的一个变形实施方式,在利用扫描电子显微镜(SEM) 进行观察时,所述粗孔洞开口于所述海绵结构的一个端面或者两个端面(此时,所述粗孔洞成为全通孔或半通孔)。此时,所述海绵结构比如可以呈现为一种近似于蜂窝煤的晶体形貌。而且,所述海绵结构属于开孔或半开孔海绵结构。另外,所述粗孔洞还可以开口于所述海绵结构的一个或多个侧面,导致所述侧面呈现为一种镂空状态,由此进一步增大所述海绵结构的通透性。
根据本发明的一个变形实施方式,在利用扫描电子显微镜(SEM)进行观察时,所述中孔洞开口于所述海绵结构的一个端面或者两个端面(此时,所述中孔洞成为全通孔或半通孔)。此时,所述海绵结构比如可以呈现为一种近似于蜂窝煤的晶体形貌。而且,所述开孔海绵结构属于开孔或半开孔海绵结构。另外,所述中孔洞还可以开口于所述海绵结构的一个或多个侧面,导致所述侧面呈现为一种镂空状态,由此进一步增大所述海绵结构的通透性。
根据本发明的一个方面,所述粗孔洞的直径(平均直径)一般为从80nm至2μm,优选从80nm至1.5μm。在此,所述直径是通过压汞法测量获得的。
根据本发明的一个方面,所述粗孔洞的总比表面积一般为从10m2/g至100m2/g,优选从50m2/g至100m2/g。在此,所述总比表面积是通过压汞法测量获得的。
根据本发明的一个方面,所述粗孔洞的孔容一般为从0.5ml/g至3.0ml/g,优选从1.0ml/g至2.0ml/g。在此,所述孔容是通过压汞法测量获得的。
根据本发明的一个方面,所述中孔洞的直径(平均直径)一般为从2nm至30nm。在优选的情况下,所述中孔洞的直径为从2nm至4nm,或者从7nm至15nm,后者更优选从8nm至9nm。在更优选的情况下,所述中孔洞的直径呈现为双峰分布,同时包括从2nm至4nm和从7nm至15nm这两种直径。在此,所述直径是通过液氮吸附方法按BET模型计算获得的。
根据本发明的一个方面,所述中孔洞的总比表面积一般为从50m2/g至250m2/g,优选从100m2/g至150m2/g。在此,所述总比表面积是通过液氮吸附方法按BET模型计算法测量获得的。
根据本发明的一个方面,所述中孔洞的孔容一般为从0.05ml/g至0.40ml/g,优选从0.15ml/g至0.30ml/g。在此,所述孔容是通过液氮吸附方法按BET模型计算法测量获得的。
根据本发明的一个变形实施方式,所述海绵结构同时包含如前所述的粗孔洞、中孔洞和微孔洞。在本发明的分子筛(单个晶体)的所述海绵结构中,粗孔洞、中孔洞和微孔洞彼此互通和交叉,形成复杂的网络孔道结构。这是现有技术未曾制造过的多孔级超大孔分子筛。结果是,本发明的分子筛在表现出微孔材料的特性的同时,还兼具介孔材料和/或大孔材料的特点,能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛一般还具有柱状的晶体形貌。在此,作为所述柱状,优选棱柱状,特别是六棱柱状。另外,所述棱柱指的是凸棱柱,并且一般指的是直棱柱和正多边形棱柱(比如正六棱柱)。需要特别指出的是,由于分子筛的晶体在生长过程中可能会受到各种因素的干扰,因此其实际的晶体形貌与几何意义上的(真正)直棱柱或(真正)正多边形棱柱相比可能会存在一定程度的偏离,比如偏离30%、20%或5%,导致获得斜棱柱、或者不规则多边形(甚至是曲边多边形)棱柱,但本发明并不旨在具体明确该偏离程度。而且,任何更大或更小的偏离也都未脱离本发明的保护范围。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的有效直径一般为从100nm至5000nm,优选从1000nm至3000nm。在此,所谓有效直径,指的是在所述分子筛(单个晶体)的横截面上,沿着该横截面的轮廓(边缘)任意选择两个点,测量这两个点之间的直线距离,以其中最大的直线距离作为有效直径。如果所述分子筛的横截面的轮廓呈现为多边形比如六边形,所述有效直径一般指的是所述多边形上距离最远的两个顶点之间的直线距离(对角线距离)。简单而言,所述有效直径基本上相当于所述横截面的轮廓所代表的多边形的外接圆的直径。
根据本发明的一个方面,在所述粗孔洞的直径足够大(比如大到接近所述分子筛的所述有效直径)时,所述分子筛可以呈现出空心柱 状的晶体形貌。这一点比如可以参照图V-12(a)和图V-12(b)进行理解。在此,所述图V-12(a)和图V-12(b)仅用于解释本发明,而不用于限定本发明。在此,所谓空心柱状,指的是筒状结构。在此,所述筒状结构的壁厚比如可以是从50nm至400nm,但本发明并不限于此,也不旨在具体明确所述壁厚。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高度一般为从500nm至3000nm,优选从1000nm至3000nm。在此,所谓高度,指的是在所述分子筛的单个晶体(柱状晶体)中,所述柱的两个端面中心之间的直线距离。在通常情况下,所述分子筛柱的两个端面基本上是彼此平行的,此时所述直线距离即为所述两个端面之间的垂直距离,但本发明并不限于此。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高径比一般为从1/3至5,优选从1/3至3。在此,所谓高径比,指的是所述高度与所述有效直径的比值。
根据本发明的一个方面,所述分子筛一般具有式“第一氧化物·第二氧化物”所代表的示意性化学组成。已知的是,分子筛中有时会(尤其是在刚合成之后)含有一定量的水分,但本发明认为并没有必要对该水分的量进行特定,因为该水分的存在与否并不会实质上影响该分子筛的XRD谱图。鉴于此,该示意性化学组成实际上代表的是该分子筛的无水化学组成。而且,显然的是,该示意性化学组成代表的是所述分子筛的骨架化学组成。
根据本发明的一个方面,在刚合成后,所述分子筛在其组成中一般还可能进一步含有有机模板剂和水等,比如填充在其孔道中的那些。因此,所述分子筛有时还可能具有式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成。在此,通过焙烧所述具有式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成的分子筛,以便脱除其孔道中存在的任何有机模板剂和水等,就可以获得所述具有式“第一氧化物·第二氧化物”所代表的示意性化学组成的分子筛。另外,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至10小时,优选从3小时至6小时。另外,所述 焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,在前述的示意性化学组成中,所述第一氧化物一般是四价氧化物,比如可以举出选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅(SiO2)或者二氧化硅与二氧化锗的组合。这些第一氧化物可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物之间的摩尔比比如是从20∶200至35∶100。作为所述组合使用的例子,比如可以举出组合使用二氧化硅和二氧化锗,此时所述二氧化硅与所述二氧化锗之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在前述的示意性化学组成中,所述第二氧化物一般是三价氧化物,比如可以举出选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝(Al2O3)。这些第二氧化物可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物之间的摩尔比比如是从30∶200至60∶150。
根据本发明的一个方面,在前述的示意性化学组成中,作为所述有机模板剂,比如可以举出在制造所述分子筛时使用的任何有机模板剂,特别可以举出本实施方式在制造分子筛时使用的有机模板剂(参见下文的详细描述)。这些有机模板剂可以单独使用一种,或者以任意的比例组合使用多种。具体而言,作为所述有机模板剂,具体比如可以举出下式(I)所代表的化合物。
Figure PCTCN2017000327-appb-000040
根据本发明的一个方面,在式(I)中,基团R1和R2彼此不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链氧杂亚烷基,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,并且X为OH。
根据本发明的一个方面,在前述的示意性化学组成中,所述第一氧化物与所述第二氧化物的摩尔比(比如SiO2与Al2O3的摩尔比)一般为从30至100,优选从55至100。
根据本发明的一个方面,在前述的示意性化学组成中,水与所述第一氧化物的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在前述的示意性化学组成中,所述有机模板剂与所述第一氧化物的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,取决于其制造方法所使用的起始原料,所述分子筛在其组成中(一般填充在其孔道中)有时还可能进一步含有碱金属和/或碱土金属阳离子等金属阳离子作为组成成分。作为所述金属阳离子此时的含量,比如所述金属阳离子与所述第一氧化物的质量比一般为从0至0.02,优选从0.0002至0.006,但有时并不限于此。
根据本发明的一个方面,所述分子筛可以通过如下的制造方法进行制造。在此,所述制造方法包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤(以下称为接触步骤)。
根据本发明的一个方面,在所述分子筛的制造方法中,所述接触步骤可以按照本领域常规已知的任何方式进行,比如可以举出使所述第一氧化物源、所述第二氧化物源、所述任选的碱源、所述有机模板剂和水混合,并使该混合物在所述晶化条件下进行晶化的方法。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂至少包含下式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
Figure PCTCN2017000327-appb-000041
根据本发明的一个方面,在所述式(I)中,基团R1和R2彼此不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链氧杂亚烷基。
根据本发明的一个方面,作为所述C3-12直链或支链亚烷基,比如可以举出C3-12直链亚烷基,具体比如可以举出亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚叔丁基、亚正戊基、亚异戊基、亚新戊基、亚正己基、亚异己基、亚正辛基、亚异辛基、亚新辛基、亚壬基(或 其异构体)、亚癸基(或其异构体)、亚十一烷基(或其异构体)或者亚十二烷基(或其异构体),优选亚正丙基、亚正丁基、亚正戊基、亚正己基、亚正庚基、亚正辛基、亚正壬基、亚正癸基、亚正十一烷基或者亚正十二烷基。
根据本发明的一个方面,作为所述C3-12直链或支链氧杂亚烷基,比如可以举出C3-12直链氧杂亚烷基,具体比如可以举出-(CH2)2-O-(CH2)-、-(CH2)2-O-(CH2)2-、-(CH2)-O-(CH2)3-、-(CH2)2-O-(CH2)3-、-(CH2)-O-亚丙基-、-(CH2)-O-(CH2)4-、-(CH2)-O-(CH2)2-O-(CH2)-、-(CH2)-O-(CH2)2-O-(CH2)2-、-(CH2)-O-亚叔丁基-、-(CH2)2-O-(CH2)4-、、-(CH2)3-O-(CH2)3-、-(CH2)-O-亚新戊基-、-(CH2)2-O-(CH2)6-、-(CH2)2-O-(CH2)7-、-(CH2)-O-(CH2)8-、-(CH2)-O-亚异辛基-、-(CH2)-O-(CH2)10-、-(CH2)2-O-亚癸基或其异构体-、-(CH2)-O-(CH2)6-、-(CH2)-O-(CH2)7-、-(CH2)-O-(CH2)8-、-(CH2)-O-(CH2)11-、-(CH2)-O-(CH2)2-O-(CH2)-、-(CH2)2-O-(CH2)2-O-(CH2)2-、-(CH2)2-O-(CH2)4-O-(CH2)2-、-(CH2)2-O-(CH2)6-O-(CH2)2-或者-(CH2)2-O-(CH2)8-O-(CH2)2-。另外,作为所述C3-12直链氧杂亚烷基,更具体比如可以举出C4-6直链氧杂亚烷基,特别可以举出C4-6直链一氧杂亚烷基,更特别可以举出式-(CH2)m-O-(CH2)m-(其中,各数值m彼此相同或不同,各自独立地代表2或3,比如2)所代表的一氧杂亚烷基,更特别可以举出-(CH2)2-O-(CH2)2-、-(CH2)2-O-(CH2)3-、-(CH2)3-O-(CH2)3-或者-(CH2)2-O-(CH2)4-。
根据本发明的一个方面,在所述式(I)中,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基。
根据本发明的一个方面,在所述式(I)中,X为OH。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,在所述接触步骤中,作为所述有机模板剂,除了所述式(I)所代表的化合物之外,还可以进一步配合使用本 领域在制造分子筛时常规使用的其他有机模板剂。优选的是,在所述接触步骤中,作为所述有机模板剂,仅仅使用所述式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源一般是四价氧化物源,比如可以举出选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅(SiO2)源或者二氧化硅源与二氧化锗源的组合。这些第一氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物源之间的摩尔比比如是从20∶200至35∶100。作为所述组合使用的例子,比如可以举出组合使用二氧化硅源和二氧化锗源,此时所述二氧化硅源与所述二氧化锗源之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在所述接触步骤中,作为所述第一氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第一氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第一氧化物为二氧化硅时,作为该第一氧化物源,比如可以举出硅溶胶、粗块硅胶、正硅酸乙酯、水玻璃、白炭黑、硅酸、硅胶或者硅酸钾等。当所述第一氧化物为二氧化锗时,作为该第一氧化物源,比如可以举出四烷氧基锗、氧化锗或者硝酸锗等。当所述第一氧化物为二氧化锡源时,作为该第一氧化物源,比如可以举出氯化锡、硫酸锡、硝酸锡等。当所述第一氧化物为氧化钛时,作为该第一氧化物源,比如可以举出四烷氧基钛、二氧化钛、硝酸钛等。当所述第一氧化物为二氧化锆时,作为该第一氧化物源,比如可以举出硫酸锆、氯化锆、硝酸锆等。这些第一氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第二氧化物源一般是三价氧化物源,比如可以举出选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝(Al2O3)源。这些第二氧化物源可以单独使用一种,或者 以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物源之间的摩尔比比如是从30∶200至60∶150。
根据本发明的一个方面,在所述接触步骤中,作为所述第二氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第二氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第二氧化物为氧化铝时,作为该第二氧化物源,比如可以举出氯化铝、硫酸铝、水合氧化铝、偏铝酸钠、铝溶胶或者氢氧化铝等。当所述第二氧化物为氧化硼时,作为该第二氧化物源,比如可以举出硼酸、硼酸盐、硼砂、三氧化二硼等。当所述第二氧化物为氧化铁时,作为该第二氧化物源,比如可以举出硝酸铁、氯化铁、氧化铁等。当所述第二氧化物为氧化镓时,作为该第二氧化物源,比如可以举出硝酸镓、硫酸镓、氧化镓等。当所述第二氧化物为稀土氧化物时,作为该第二氧化物源,比如可以举出氧化镧、氧化钕、氧化钇、氧化铈、硝酸镧、硝酸钕、硝酸钇、硫酸铈铵等。当所述第二氧化物为氧化铟时,作为该第二氧化物源,比如可以举出氯化铟、硝酸铟、氧化铟等。当所述第二氧化物为氧化钒时,作为该第二氧化物源,比如可以举出氯化钒、偏钒酸铵、钒酸钠、二氧化钒、硫酸氧钒等。这些第二氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源(以所述第一氧化物为计,比如SiO2)与所述第二氧化物源(以所述第二氧化物为计,比如Al2O3)的摩尔比一般为从30至100,优选从55至100。
根据本发明的一个方面,在所述接触步骤中,水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在所述接触步骤中,可以使用碱源,也可以不使用碱源。在不特意使用碱源时,所述式(I)所代表的化合物所包含的基团X可以用于提供在此所需要的OH-。在此,作为所述碱源,可以使用本领域为此目的而常规使用的任何碱源,包括但不限于以碱金属或碱土金属为阳离子的无机碱,特别是氢氧化钠和氢氧化钾 等。这些碱源可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化温度一般为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化时间一般为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天。
根据本发明的一个方面,在所述分子筛的制造方法中,在所述接触步骤完成之后,可以通过常规已知的任何分离方式从所获得的反应混合物中分离出分子筛作为产品。在此,所述分子筛产品包括本发明的分子筛。另外,作为所述分离方式,比如可以举出对所述获得的反应混合物进行过滤、洗涤和干燥的方法。
根据本发明的一个方面,在所述分子筛的制造方法中,所述过滤、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所述获得的反应混合物。作为所述洗涤,比如可以举出使用去离子水进行洗涤直至滤出液的pH值达到7-9,优选8-9。作为所述干燥温度,比如可以举出40-250℃,优选60-150℃,作为所述干燥的时间,比如可以举出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
根据本发明的一个方面,所述分子筛的制造方法根据需要还可以包括将所述获得的分子筛进行焙烧的步骤(以下称为焙烧步骤),以脱除所述有机模板剂和可能存在的水分等,由此获得焙烧后的分子筛。在本说明书的上下文中,将所述焙烧之前和焙烧之后的分子筛也统称为本发明的分子筛或者根据本发明的分子筛。
根据本发明的一个方面,在所述制造分子筛的方法中,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至 10小时,优选从3小时至6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,本发明的分子筛或者根据本发明所述的分子筛的制造方法所制造的任何分子筛(在本说明书的上下文中,将二者也统称为本发明的分子筛或者根据本发明的分子筛),根据需要,还可以通过本领域常规已知的任何方式进行离子交换,比如可以通过离子交换法或者溶液浸渍法(相关方法比如可以参见美国专利US3140249和US3140253等),将其组成中包含的金属阳离子(比如Na离子或者K离子,取决于其具体的制造方法)全部或者部分替换为其他阳离子。作为所述其他阳离子,比如可以举出氢离子、其他碱金属离子(包括K离子、Rb离子等)、铵离子(包括NH4离子、季铵离子比如四甲基铵离子和四乙基铵离子等)、碱土金属离子(包括Mg离子、Ca离子)、Mn离子、Zn离子、Cd离子、贵金属离子(包括Pt离子、Pd离子、Rh离子等)、Ni离子、Co离子、Ti离子、Sn离子、Fe离子和/或稀土金属离子等。
根据本发明的分子筛,根据需要,还可以通过稀酸溶液等进行处理,以便提高硅铝比,或者用水蒸气进行处理,以提高分子筛晶体的抗酸侵蚀性。
根据本发明的分子筛,具有良好的热/水热稳定性,并且具有更大的孔容。结果是,本发明的分子筛能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的分子筛,具有较强的酸性,特别是L酸中心的数量较多。这是现有技术未曾制造过的分子筛。结果是,本发明的分子筛特别是在酸催化反应中具有更为优异的性能表现。
根据本发明的分子筛,可以呈现为任何的物理形式,比如粉末状、颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
第三实施方式
根据本发明的一个方面,涉及一种分子筛,所述分子筛具有基本上如下表所示的X射线衍射图案。
Figure PCTCN2017000327-appb-000042
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000043
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000044
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(指的是单个晶体)具有从扁棱柱状至扁圆柱状的晶体形貌,特别是具有从扁棱柱状至扁圆柱状的原生晶体形貌。在此,所谓晶体形貌,指的是在所述扫描电子显微镜的观察视野中,单个分子筛晶体所呈现的(整体)外部形状。所谓原生,指的是分子筛在制造后客观上直接呈现的形貌,并不是分子筛在制造之后再行人为处理 而呈现的形貌。所谓棱柱,指的是凸棱柱,并且一般指的是直棱柱和正多边形棱柱(比如正六棱柱)。需要特别指出的是,由于分子筛的晶体在生长过程中可能会受到各种因素的干扰,因此其实际的晶体形貌与几何意义上的(真正)直棱柱、(真正)正多边形棱柱或者(真正)圆柱相比可能会存在一定程度的偏离,比如偏离30%、20%或5%,导致获得斜棱柱、不规则多边形(甚至是曲边多边形)棱柱或者椭圆柱,但本发明并不旨在具体明确该偏离程度。而且,任何更大或更小的偏离也都未脱离本发明的保护范围。所谓“扁”,指的是高度与宽度(或直径)之比(比如如下所述的高径比)小于1。所谓“从扁棱柱状至扁圆柱状”,指的是所述分子筛的晶体形貌可以是扁棱柱状,也可以是扁圆柱状,或者也可以是从扁棱柱状向扁圆柱状过渡的任何形状。作为所述过渡形状,具体比如可以举出通过将所述扁棱柱的一个或多个棱边磨圆而获得的形状。显然的是,通过将所述扁棱柱的全部棱边进行磨圆,就有可能获得所述扁圆柱。
根据本发明的一个变形实施方式,如前所述,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛具有柱状的晶体形貌。在沿着所述柱的中心线进行纵剖时,可以获得所述柱的纵剖面。所述纵剖面具有处于上下两侧的端面轮廓线(两条虚线包围以外的范围)和处于左右两侧的侧面轮廓线(两条虚线包围以内的范围)。本变形实施方式的分子筛的独特性在于,所述两条端面轮廓线中的一条或两条具有外凸形状,即曲率半径为正值。本发明并不旨在限定所述曲率半径的具体取值范围,只要其是正值即可。或者可以说,本变形实施方式的分子筛大体上具有将柱的一个端面或两个端面的边缘进行磨圆或倒角而获得的外部形状。这一点比如可以参考图VI-14(a)和图VI-14(b)进行理解。在此,所述图VI-14(a)和图VI-14(b)仅用于解释本发明,而不用于限定本发明。另外,图VI-14(c)举例说明了端面轮廓线不具有外凸形状而是平坦形状的情况。
本发明的发明人经过认真调查之后发现,现有技术未曾制造出同时具有前述特定的X射线衍射图案和前述特定的(原生)晶体形貌的分子筛。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观 察时,所述分子筛(单个晶体)的有效直径一般为从100nm至1000nm,优选从100nm至500nm。在此,所谓有效直径,指的是在所述分子筛(单个晶体)的横截面上,沿着该横截面的轮廓(边缘)任意选择两个点,测量这两个点之间的直线距离,以其中最大的直线距离作为有效直径。如果所述分子筛的横截面的轮廓呈现为多边形比如六边形,所述有效直径一般指的是所述多边形上距离最远的两个顶点之间的直线距离(对角线距离)。简单而言,所述有效直径基本上相当于所述横截面的轮廓所代表的多边形的外接圆的直径。或者,如果所述分子筛的横截面的轮廓呈现为圆形,所述有效直径则指的是所述圆的直径。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高度一般为从100nm至1000nm,优选从150nm至300nm。在此,所谓高度,指的是在所述分子筛的单个晶体(柱状晶体)中,所述柱的两个端面中心之间的直线距离。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高径比一般为从0.1至0.9,优选从0.4至0.7。在此,所谓高径比,指的是所述高度与所述有效直径的比值。现有技术未曾制造出同时具有前述特定的X射线衍射图案和前述特定的高径比的分子筛。举例而言,此时所述分子筛的晶体形貌类似于口服药片。
根据本发明的一个方面,所述分子筛的总比表面积一般为从400m2/g至600m2/g,优选从450m2/g至580m2/g。在此,所述总比表面积是通过液氮吸附方法按BET模型计算获得的。
根据本发明的一个方面,所述分子筛的孔容一般为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。本发明的分子筛具有非常高的孔容,这表明其属于超大孔分子筛。在此,所述孔容是通过低温氮气吸附,以BET模型计算获得的。
根据本发明的一个方面,所述分子筛可以具有式“第一氧化物·第二氧化物”所代表的示意性化学组成。已知的是,分子筛中有时会(尤其是在刚合成之后)含有一定量的水分,但本发明认为并没有必要对该水分的量进行特定,因为该水分的存在与否并不会实质上影响该分子筛的XRD谱图。鉴于此,该示意性化学组成实际上代表的是该分子 筛的无水化学组成。而且,显然的是,该示意性化学组成代表的是所述分子筛的骨架化学组成。
根据本发明的一个方面,在刚合成后,所述分子筛在其组成中一般还可能进一步含有有机模板剂和水等,比如填充在其孔道中的那些。因此,所述分子筛有时还可能具有式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成。在此,通过焙烧所述具有式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成的分子筛,以便脱除其孔道中存在的任何有机模板剂和水等,就可以获得所述具有式“第一氧化物·第二氧化物”所代表的示意性化学组成的分子筛。另外,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至10小时,优选从3小时至6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,在前述的示意性化学组成中,所述第一氧化物一般是四价氧化物,比如可以举出选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅(SiO2)或者二氧化硅与二氧化锗的组合。这些第一氧化物可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物之间的摩尔比比如是从20∶200至35∶100。作为所述组合使用的例子,比如可以举出组合使用二氧化硅和二氧化锗,此时所述二氧化硅与所述二氧化锗之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在前述的示意性化学组成中,所述第二氧化物一般是三价氧化物,比如可以举出选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝(Al2O3)。这些第二氧化物可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物之间的摩尔比比如是从30∶200至60∶150。
根据本发明的一个方面,在前述的示意性化学组成中,作为所述有机模板剂,比如可以举出在制造所述分子筛时使用的任何有机模板剂,特别可以举出本实施方式在制造分子筛时使用的有机模板剂(参见下文的详细描述)。这些有机模板剂可以单独使用一种,或者以任意 的比例组合使用多种。具体而言,作为所述有机模板剂,具体比如可以举出下式(I)所代表的化合物。
Figure PCTCN2017000327-appb-000045
根据本发明的一个方面,在式(I)中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,并且X为OH。
根据本发明的一个方面,在前述的示意性化学组成中,所述第一氧化物与所述第二氧化物的摩尔比(比如SiO2与Al2O3的摩尔比)一般为从40至200,优选从40至150。
根据本发明的一个方面,在前述的示意性化学组成中,水与所述第一氧化物的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在前述的示意性化学组成中,所述有机模板剂与所述第一氧化物的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,取决于其制造方法所使用的起始原料,所述分子筛在其组成中(一般填充在其孔道中)有时还可能进一步含有碱金属和/或碱土金属阳离子等金属阳离子作为组成成分。作为所述金属阳离子此时的含量,比如所述金属阳离子与所述第一氧化物的质量比一般为从0至0.02,优选从0.0002至0.006,但有时并不限于此。
根据本发明的一个方面,所述分子筛可以通过如下的制造方法进行制造。在此,所述制造方法包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤(以下称为接触步骤)。
根据本发明的一个方面,在所述分子筛的制造方法中,所述接触步骤可以按照本领域常规已知的任何方式进行,比如可以举出使所述第一氧化物源、所述第二氧化物源、所述任选的碱源、所述有机模板剂和水混合,并使该混合物在所述晶化条件下进行晶化的方法。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂至少包含下式(I)所代表的化合物。在此,所述式(I)所代表的化合物 可以单独使用一种,或者以任意的比例组合使用多种。
Figure PCTCN2017000327-appb-000046
根据本发明的一个方面,在所述式(I)中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基。
根据本发明的一种变形实施方式,在所述式(I)中,所述基团R1和R2彼此相同或不同,其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基。
根据本发明的一个方面,作为所述C3-12直链或支链亚烷基,比如可以举出C3-12直链亚烷基,具体比如可以举出亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚叔丁基、亚正戊基、亚异戊基、亚新戊基、亚正己基、亚异己基、亚正辛基、亚异辛基、亚新辛基、亚壬基(或其异构体)、亚癸基(或其异构体)、亚十一烷基(或其异构体)或者亚十二烷基(或其异构体),优选亚正丙基、亚正丁基、亚正戊基、亚正己基、亚正庚基、亚正辛基、亚正壬基、亚正癸基、亚正十一烷基或者亚正十二烷基。
根据本发明的一个方面,作为所述C4-6直链亚烷基,特别可以举出亚正丁基、亚正戊基或者亚正己基。
根据本发明的一个方面,在所述式(I)中,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基。
根据本发明的一个方面,在所述式(I)中,X为OH。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,在所述接触步骤中,作为所述有机模板剂,除了所述式(I)所代表的化合物之外,还可以进一步配合使用本领域在制造分子筛时常规使用的其他有机模板剂。优选的是,在所述接触步骤中,作为所述有机模板剂,仅仅使用所述式(I)所代表的化 合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源一般是四价氧化物源,比如可以举出选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅(SiO2)源或者二氧化硅源与二氧化锗源的组合。这些第一氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物源之间的摩尔比比如是从30∶200至60∶150。作为所述组合使用的例子,比如可以举出组合使用二氧化硅源和二氧化锗源,此时所述二氧化硅源与所述二氧化锗源之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在所述接触步骤中,作为所述第一氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第一氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第一氧化物为二氧化硅时,作为该第一氧化物源,比如可以举出硅溶胶、粗块硅胶、正硅酸乙酯、水玻璃、白炭黑、硅酸、硅胶或者硅酸钾等。当所述第一氧化物为二氧化锗时,作为该第一氧化物源,比如可以举出四烷氧基锗、氧化锗或者硝酸锗等。当所述第一氧化物为二氧化锡源时,作为该第一氧化物源,比如可以举出氯化锡、硫酸锡、硝酸锡等。当所述第一氧化物为氧化钛时,作为该第一氧化物源,比如可以举出四烷氧基钛、二氧化钛、硝酸钛等。当所述第一氧化物为二氧化锆时,作为该第一氧化物源,比如可以举出氯化锆、硫酸锆、硝酸锆等。这些第一氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第二氧化物源一般是三价氧化物源,比如可以举出选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝(Al2O3)源。这些第二氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物源之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在所述接触步骤中,作为所述第二氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第二氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第二氧化物为氧化铝时,作为该第二氧化物源,比如可以举出氯化铝、硫酸铝、水合氧化铝、偏铝酸钠、铝溶胶或者氢氧化铝等。当所述第二氧化物为氧化硼时,作为该第二氧化物源,比如可以举出硼酸、硼酸盐、硼砂、三氧化二硼等。当所述第二氧化物为氧化铁时,作为该第二氧化物源,比如可以举出硝酸铁、氯化铁、氧化铁等。当所述第二氧化物为氧化镓时,作为该第二氧化物源,比如可以举出硝酸镓、硫酸镓、氧化镓等。当所述第二氧化物为稀土氧化物时,作为该第二氧化物源,比如可以举出氧化镧、氧化钕、氧化钇、氧化钸、硝酸镧、硝酸钕、硝酸钇、硫酸铈铵等。当所述第二氧化物为氧化铟时,作为该第二氧化物源,比如可以举出氯化铟、硝酸铟、氧化铟等。当所述第二氧化物为氧化钒时,作为该第二氧化物源,比如可以举出氯化钒、偏钒酸铵、钒酸钠、二氧化钒、硫酸氧钒等。这些第二氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源(以所述第一氧化物为计,比如SiO2)与所述第二氧化物源(以所述第二氧化物为计,比如Al2O3)的摩尔比一般为从40至200,优选从40至150。
根据本发明的一个方面,在所述接触步骤中,水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在所述接触步骤中,可以使用碱源,也可以不使用碱源。在不特意使用碱源时,所述式(I)所代表的化合物所包含的基团X可以用于提供在此所需要的OH-。在此,作为所述碱源,可以使用本领域为此目的而常规使用的任何碱源,包括但不限于以碱金属或碱土金属为阳离子的无机碱,特别是氢氧化钠和氢氧化钾等。这些碱源可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述碱源(以OH- 为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化温度一般为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化时间一般为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天。
根据本发明的一个方面,在所述分子筛的制造方法中,在所述接触步骤完成之后,可以通过常规已知的任何分离方式从所获得的反应混合物中分离出分子筛作为产品。在此,所述分子筛产品包括本发明的分子筛。另外,作为所述分离方式,比如可以举出对所述获得的反应混合物进行过滤、洗涤和干燥的方法。
根据本发明的一个方面,在所述分子筛的制造方法中,所述过滤、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所述获得的反应混合物。作为所述洗涤,比如可以举出使用去离子水进行洗涤直至滤出液的pH值达到7-9,优选8-9。作为所述干燥温度,比如可以举出40-250℃,优选60-150℃,作为所述干燥的时间,比如可以举出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
根据本发明的一个方面,所述分子筛的制造方法根据需要还可以包括将所述获得的分子筛进行焙烧的步骤(以下称为焙烧步骤),以脱除所述有机模板剂和可能存在的水分等,由此获得焙烧后的分子筛。在本说明书的上下文中,将所述焙烧之前和焙烧之后的分子筛也统称为本发明的分子筛或者根据本发明的分子筛。
根据本发明的一个方面,在所述制造分子筛的方法中,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至10小时,优选从3小时至6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,本发明的分子筛或者根据本发明所述的分子筛的制造方法所制造的任何分子筛(在本说明书的上下文中,将二者也统称为本发明的分子筛或者根据本发明的分子筛),根据需要,还可以通过本领域常规已知的任何方式进行离子交换,比如可以通过离子交换法或者溶液浸渍法(相关方法比如可以参见美国专利US3140249和US3140253等),将其组成中包含的金属阳离子(比如Na离子或者K离子,取决于其具体的制造方法)全部或者部分替换为其他阳离子。作为所述其他阳离子,比如可以举出氢离子、其他碱金属离子(包括K离子、Rb离子等)、铵离子(包括NH4离子、季铵离子比如四甲基铵离子和四乙基铵离子等)、碱土金属离子(包括Mg离子、Ca离子)、Mn离子、Zn离子、Cd离子、贵金属离子(包括Pt离子、Pd离子、Rh离子等)、Ni离子、Co离子、Ti离子、Sn离子、Fe离子和/或稀土金属离子等。
根据本发明的分子筛,根据需要,还可以通过稀酸溶液等进行处理,以便提高硅铝比,或者用水蒸气进行处理,以提高分子筛晶体的抗酸侵蚀性。
根据本发明的分子筛,具有良好的热/水热稳定性,并且具有更大的孔容。结果是,本发明的分子筛能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的分子筛,具有较强的酸性,特别是L酸(中心的数量较多。这是现有技术未曾制造过的分子筛。结果是,本发明的分子筛特别是在酸催化反应中具有更为优异的性能表现。
根据本发明的分子筛,可以呈现为任何的物理形式,比如粉末状、颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
第四实施方式
根据本发明的一个方面,涉及一种分子筛的制造方法。在此,所述制造方法包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤(以下称为接触步骤)。
根据本发明的一个方面,在所述分子筛的制造方法中,所述接触 步骤可以按照本领域常规已知的任何方式进行,比如可以举出使所述第一氧化物源、所述第二氧化物源、所述任选的碱源、所述有机模板剂和水混合,并使该混合物在所述晶化条件下进行晶化的方法。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂至少包含下式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
Figure PCTCN2017000327-appb-000047
根据本发明的一个方面,在所述式(I)中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基。
根据本发明的一种变形实施方式,在所述式(I)中,所述基团R1和R2彼此相同或不同,其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基。
根据本发明的一个方面,作为所述C3-12直链或支链亚烷基,比如可以举出C3-12直链亚烷基,具体比如可以举出亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚叔丁基、亚正戊基、亚异戊基、亚新戊基、亚正己基、亚异己基、亚正辛基、亚异辛基、亚新辛基、亚壬基(或其异构体)、亚癸基(或其异构体)、亚十一烷基(或其异构体)或者亚十二烷基(或其异构体),优选亚正丙基、亚正丁基、亚正戊基、亚正己基、亚正庚基、亚正辛基、亚正壬基、亚正癸基、亚正十一烷基或者亚正十二烷基。
根据本发明的一个方面,作为所述C4-6直链亚烷基,特别可以举出亚正丁基、亚正戊基或者亚正己基。
根据本发明的一个方面,在所述式(I)中,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基。
根据本发明的一个方面,在所述式(I)中,X为OH。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,在所述接触步骤中,作为所述有机模板剂,除了所述式(I)所代表的化合物之外,还可以进一步配合使用本领域在制造分子筛时常规使用的其他有机模板剂。优选的是,在所述接触步骤中,作为所述有机模板剂,仅仅使用所述式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源一般是四价氧化物源,比如可以举出选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅(SiO2)源或者二氧化硅源与二氧化锗源的组合。这些第一氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物源之间的摩尔比比如是从20∶200至35∶100。作为所述组合使用的例子,比如可以举出组合使用二氧化硅源和二氧化锗源,此时所述二氧化硅源与所述二氧化锗源之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在所述接触步骤中,作为所述第一氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第一氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第一氧化物为二氧化硅时,作为该第一氧化物源,比如可以举出硅溶胶、粗块硅胶、正硅酸乙酯、水玻璃、白炭黑、硅酸、硅胶或者硅酸钾等。当所述第一氧化物为二氧化锗时,作为该第一氧化物源,比如可以举出四烷氧基锗、氧化锗或者硝酸锗等。当所述第一氧化物为二氧化锡源时,作为该第一氧化物源,比如可以举出氯化锡、硫酸锡、硝酸锡等。当所述第一氧化物为氧化钛时,作为该第一氧化物源,比如可以举出四烷氧基钛、二氧化钛、硝酸钛等。当所述第一氧化物为二氧化锆时,作为该第一氧化物源,比如可以举出氯化锆、硫酸锆、硝酸锆等。这些第一氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第二氧化物源一般是三价氧化物源,比如可以举出选自氧化铝源、氧化硼源、氧化 铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝(Al2O3)源。这些第二氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物源之间的摩尔比比如是从30∶200至60∶150。
根据本发明的一个方面,在所述接触步骤中,作为所述第二氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第二氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第二氧化物为氧化铝时,作为该第二氧化物源,比如可以举出氯化铝、硫酸铝、水合氧化铝、偏铝酸钠、铝溶胶或者氢氧化铝等。当所述第二氧化物为氧化硼时,作为该第二氧化物源,比如可以举出硼酸、硼酸盐、硼砂、三氧化二硼等。当所述第二氧化物为氧化铁时,作为该第二氧化物源,比如可以举出硝酸铁、氯化铁、氧化铁等。当所述第二氧化物为氧化镓时,作为该第二氧化物源,比如可以举出硝酸镓、硫酸镓、氧化镓等。当所述第二氧化物为稀土氧化物时,作为该第二氧化物源,比如可以举出氧化镧、氧化钕、氧化钇、氧化铈、硝酸镧、硝酸钕、硝酸钇、硫酸铈铵等。当所述第二氧化物为氧化铟时,作为该第二氧化物源,比如可以举出氯化铟、硝酸铟、氧化铟等。当所述第二氧化物为氧化钒时,作为该第二氧化物源,比如可以举出氯化钒、偏钒酸铵、钒酸钠、二氧化钒、硫酸氧钒等。这些第二氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源(以所述第一氧化物为计,比如SiO2)与所述第二氧化物源(以所述第二氧化物为计,比如Al2O3)的摩尔比一般为从5至∞,特别是从5至小于40(比如从20至小于40)、从40至200(比如从40至150)、从大于200至∞(比如从大于200至700)。在此,在所述摩尔比是∞时,表示未使用所述第二氧化物源或者未向所述接触步骤中有意引入所述第二氧化物源。
根据本发明的一个方面,在所述接触步骤中,水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在所述接触步骤中,可以使用碱源,也可以不使用碱源。在不特意使用碱源时,所述式(I)所代表的化合物所包含的基团X可以用于提供在此所需要的OH-。在此,作为所述碱源,可以使用本领域为此目的而常规使用的任何碱源,包括但不限于以碱金属或碱土金属为阳离子的无机碱,特别是氢氧化钠和氢氧化钾等。这些碱源可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化温度一般为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化时间一般为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天。
根据本发明的一个方面,在所述分子筛的制造方法中,在所述接触步骤完成之后,可以通过常规已知的任何分离方式从所获得的反应混合物中分离出分子筛作为产品。在此,所述分子筛产品包括本发明的分子筛。另外,作为所述分离方式,比如可以举出对所述获得的反应混合物进行过滤、洗涤和干燥的方法。
根据本发明的一个方面,在所述分子筛的制造方法中,所述过滤、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所述获得的反应混合物。作为所述洗涤,比如可以举出使用去离子水进行洗涤直至滤出液的pH值达到7-9,优选8-9。作为所述干燥温度,比如可以举出40-250℃,优选60-150℃,作为所述干燥的时间,比如可以举出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
根据本发明的一个方面,所述分子筛的制造方法根据需要还可以包括将所述获得的分子筛进行焙烧的步骤(以下称为焙烧步骤),以脱除所述有机模板剂和可能存在的水分等,由此获得焙烧后的分子筛。 在本说明书的上下文中,将所述焙烧之前和焙烧之后的分子筛均统称为本发明的分子筛或者根据本发明的分子筛。
根据本发明的一个方面,在所述制造分子筛的方法中,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至10小时,优选从3小时至6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,如前所述制造的任何分子筛(称为本发明的分子筛或者根据本发明的分子筛),根据需要,还可以通过本领域常规已知的任何方式进行离子交换,比如可以通过离子交换法或者溶液浸渍法(相关方法比如可以参见美国专利US3140249和US3140253等),将其组成中包含的金属阳离子(比如Na离子或者K离子,取决于其具体的制造方法)全部或者部分替换为其他阳离子。作为所述其他阳离子,比如可以举出氢离子、其他碱金属离子(包括K离子、Rb离子等)、铵离子(包括NH4离子、季铵离子比如四甲基铵离子和四乙基铵离子等)、碱土金属离子(包括Mg离子、Ca离子)、Mn离子、Zn离子、Cd离子、贵金属离子(包括Pt离子、Pd离子、Rh离子等)、Ni离子、Co离子、Ti离子、Sn离子、Fe离子和/或稀土金属离子等。
根据本发明的分子筛,根据需要,还可以通过稀酸溶液等进行处理,以便提高硅铝比,或者用水蒸气进行处理,以提高分子筛晶体的抗酸侵蚀性。
根据本发明的分子筛,一般具有基本上如下表所示的X射线衍射图案。
Figure PCTCN2017000327-appb-000048
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000049
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000050
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛一般具有柱状的晶体形貌。在此,所谓晶体形貌,指的是在所述扫描电子显微镜的观察视野中,单个分子筛晶体所呈现的(整体)外部形状。另外,作为所述柱状,优选棱柱状,特别是六棱柱状。在此,所述棱柱指的是凸棱柱,并且一般指的是直棱柱和正多边形棱柱(比如正六棱柱)。需要特别指出的是,由于分子筛的晶体在生长过程中可能会受到各种因素的干扰,因此其实际的晶体形貌与几何意义上的(真正)直棱柱或(真正)正多边形棱柱相比可能会存在一定程度的偏离,比如偏离30%、20%或5%,导致获得斜棱柱、或者不规则多边形(甚至是曲边多边形)棱柱,但本发明并不旨在具体明确该偏离程度。而且,任何更大或更小的偏离也都未脱离本发明的保护范围。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观 察时,所述分子筛(单个晶体)的有效直径一般为从100nm至5000nm。在此,所谓有效直径,指的是在所述分子筛(单个晶体)的横截面上,沿着该横截面的轮廓(边缘)任意选择两个点,测量这两个点之间的直线距离,以其中最大的直线距离作为有效直径。如果所述分子筛的横截面的轮廓呈现为多边形比如六边形,所述有效直径一般指的是所述多边形上距离最远的两个顶点之间的直线距离(对角线距离)。简单而言,所述有效直径基本上相当于所述横截面的轮廓所代表的多边形的外接圆的直径。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高度一般为从100nm至3000nm。在此,所谓高度,指的是在所述分子筛的单个晶体(柱状晶体)中,所述柱的两个端面中心之间的直线距离。在通常情况下,所述分子筛柱的两个端面基本上是彼此平行的,此时所述直线距离即为所述两个端面之间的垂直距离,但本发明并不限于此。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高径比一般为从0.1至8。在此,所谓高径比,指的是所述高度与所述有效直径的比值。
根据本发明的一个方面,所述分子筛的总比表面积一般为从400m2/g至600m2/g,优选从450m2/g至580m2/g。在此,所述总比表面积是通过低温氮气吸附,以BET模型计算获得的。
根据本发明的一个方面,所述分子筛的孔容一般为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。本发明的分子筛具有非常高的孔容,这表明其属于超大孔分子筛。在此,所述孔容是通过低温氮气吸附,以BET模型计算获得的。
根据本发明的分子筛,具有良好的热/水热稳定性,并且具有更大的孔容。结果是,本发明的分子筛能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的分子筛,具有较强的酸性,特别是L酸(中心的数量较多。这是现有技术未曾制造过的分子筛。结果是,本发明的分子筛特别是在酸催化反应中具有更为优异的性能表现。
根据本发明的分子筛,可以呈现为任何的物理形式,比如粉末状、 颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
第五实施方式
根据本发明的一个方面,涉及一种分子筛的制造方法。在此,所述制造方法包括在晶化条件下使第一氧化物源、第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤(以下称为接触步骤)。
根据本发明的一个方面,在所述分子筛的制造方法中,所述接触步骤可以按照本领域常规已知的任何方式进行,比如可以举出使所述第一氧化物源、所述第二氧化物源、所述任选的碱源、所述有机模板剂和水混合,并使该混合物在所述晶化条件下进行晶化的方法。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂至少包含下式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
Figure PCTCN2017000327-appb-000051
根据本发明的一个方面,在所述式(I)中,所述基团R1和R2彼此不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链氧杂亚烷基。
根据本发明的一个方面,作为所述C3-12直链或支链亚烷基,比如可以举出C3-12直链亚烷基,具体比如可以举出亚正丙基、亚异丙基、亚正丁基、亚异丁基、亚叔丁基、亚正戊基、亚异戊基、亚新戊基、亚正己基、亚异己基、亚正辛基、亚异辛基、亚新辛基、亚壬基(或其异构体)、亚癸基(或其异构体)、亚十一烷基(或其异构体)或者亚十二烷基(或其异构体),优选亚正丙基、亚正丁基、亚正戊基、亚正己基、亚正庚基、亚正辛基、亚正壬基、亚正癸基、亚正十一烷基或者亚正十二烷基。
根据本发明的一个方面,作为所述C3-12直链或支链氧杂亚烷基,比如可以举出C3-12直链氧杂亚烷基,具体比如可以举出-(CH2)2-O-(CH2)-、-(CH2)2-O-(CH2)2-、-(CH2)-O-(CH2)3-、 -(CH2)2-O-(CH2)3-、-(CH2)-O-亚丙基-、-(CH2)-O-(CH2)4-、-(CH2)-O-(CH2)2-O-(CH2)-、-(CH2)-O-(CH2)2-O-(CH2)2-、-(CH2)-O-亚叔丁基-、-(CH2)2-O-(CH2)4-、、-(CH2)3-O-(CH2)3-、-(CH2)-O-亚新戊基-、-(CH2)2-O-(CH2)6-、-(CH2)2-O-(CH2)7-、-(CH2)-O-(CH2)8-、-(CH2)-O-亚异辛基-、-(CH2)-O-(CH2)10-、-(CH2)2-O-亚癸基或其异构体-、-(CH2)-O-(CH2)6-、-(CH2)-O-(CH2)7-、-(CH2)-O-(CH2)8-、-(CH2)-O-(CH2)11-、-(CH2)-O-(CH2)2-O-(CH2)-、-(CH2)2-O-(CH2)2-O-(CH2)2-、-(CH2)2-O-(CH2)4-O-(CH2)2-、-(CH2)2-O-(CH2)6-O-(CH2)2-或者-(CH2)2-O-(CH2)8-O-(CH2)2-。另外,作为所述C3-12直链氧杂亚烷基,更具体比如可以举出C4-6直链氧杂亚烷基,特别可以举出C4-6直链一氧杂亚烷基,更特别可以举出式-(CH2)m-O-(CH2)m-(其中,各数值m彼此相同或不同,各自独立地代表2或3,比如2)所代表的一氧杂亚烷基,更特别可以举出-(CH2)2-O-(CH2)2-、-(CH2)2-O-(CH2)3-、-(CH2)3-O-(CH2)3-或者-(CH2)2-O-(CH2)4-。
根据本发明的一个方面,在所述式(I)中,多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基。
根据本发明的一个方面,在所述式(I)中,X为OH。
根据本发明的一个方面,在所述接触步骤中,所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
根据本发明的一个方面,在所述接触步骤中,作为所述有机模板剂,除了所述式(I)所代表的化合物之外,还可以进一步配合使用本领域在制造分子筛时常规使用的其他有机模板剂。优选的是,在所述接触步骤中,作为所述有机模板剂,仅仅使用所述式(I)所代表的化合物。在此,所述式(I)所代表的化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源一般是四价氧化物源,比如可以举出选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅 (SiO2)源或者二氧化硅源与二氧化锗源的组合。这些第一氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第一氧化物源之间的摩尔比比如是从20∶200至35∶100。作为所述组合使用的例子,比如可以举出组合使用二氧化硅源和二氧化锗源,此时所述二氧化硅源与所述二氧化锗源之间的摩尔比比如是从20∶200至35∶100。
根据本发明的一个方面,在所述接触步骤中,作为所述第一氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第一氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第一氧化物为二氧化硅时,作为该第一氧化物源,比如可以举出硅溶胶、粗块硅胶、正硅酸乙酯、水玻璃、白炭黑、硅酸、硅胶或者硅酸钾等。当所述第一氧化物为二氧化锗时,作为该第一氧化物源,比如可以举出四烷氧基锗、氧化锗或者硝酸锗等。当所述第一氧化物为二氧化锡源时,作为该第一氧化物源,比如可以举出氯化锡、硫酸锡、硝酸锡等。当所述第一氧化物为氧化钛时,作为该第一氧化物源,比如可以举出四烷氧基钛、二氧化钛、硝酸钛等。当所述第一氧化物为二氧化锆时,作为该第一氧化物源,比如可以举出氯化锆、硫酸锆、硝酸锆等。这些第一氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第二氧化物源一般是三价氧化物源,比如可以举出选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝(Al2O3)源。这些第二氧化物源可以单独使用一种,或者以任意的比例组合使用多种。在组合使用多种时,任意两种第二氧化物源之间的摩尔比比如是从30∶200至60∶150。
根据本发明的一个方面,在所述接触步骤中,作为所述第二氧化物源,可以使用本领域为此目的而常规使用的任何相应氧化物源,包括但不限于所述第二氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第二氧化物为氧化铝时,作为该第二氧化物源,比如可 以举出氯化铝、硫酸铝、水合氧化铝、偏铝酸钠、铝溶胶或者氢氧化铝等。当所述第二氧化物为氧化硼时,作为该第二氧化物源,比如可以举出硼酸、硼酸盐、硼砂、三氧化二硼等。当所述第二氧化物为氧化铁时,作为该第二氧化物源,比如可以举出硝酸铁、氯化铁、氧化铁等。当所述第二氧化物为氧化镓时,作为该第二氧化物源,比如可以举出硝酸镓、硫酸镓、氧化镓等。当所述第二氧化物为稀土氧化物时,作为该第二氧化物源,比如可以举出氧化镧、氧化钕、氧化钇、氧化铈、硝酸镧、硝酸钕、硝酸钇、硫酸铈铵等。当所述第二氧化物为氧化铟时,作为该第二氧化物源,比如可以举出氯化铟、硝酸铟、氧化铟等。当所述第二氧化物为氧化钒时,作为该第二氧化物源,比如可以举出氯化钒、偏钒酸铵、钒酸钠、二氧化钒、硫酸氧钒等。这些第二氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述第一氧化物源(以所述第一氧化物为计,比如SiO2)与所述第二氧化物源(以所述第二氧化物为计,比如Al2O3)的摩尔比一般为从5至∞,特别是从5至小于30(比如从10至小于30)、从30至100(比如从55至100)、从大于100至∞(比如从200至∞,或者从200至700)。在此,在所述摩尔比是∞时,表示未使用所述第二氧化物源或者未向所述接触步骤中有意引入所述第二氧化物源。
根据本发明的一个方面,在所述接触步骤中,水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从5至50,优选从5至15。
根据本发明的一个方面,在所述接触步骤中,可以使用碱源,也可以不使用碱源。在不特意使用碱源时,所述式(I)所代表的化合物所包含的基团X可以用于提供在此所需要的OH-。在此,作为所述碱源,可以使用本领域为此目的而常规使用的任何碱源,包括但不限于以碱金属或碱土金属为阳离子的无机碱,特别是氢氧化钠和氢氧化钾等。这些碱源可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个方面,在所述接触步骤中,所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比一般为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7 或者从0.45至0.7。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化温度一般为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃。
根据本发明的一个方面,在所述接触步骤中,作为所述晶化条件,晶化时间一般为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天。
根据本发明的一个方面,在所述分子筛的制造方法中,在所述接触步骤完成之后,可以通过常规已知的任何分离方式从所获得的反应混合物中分离出分子筛作为产品。在此,所述分子筛产品包括本发明的分子筛。另外,作为所述分离方式,比如可以举出对所述获得的反应混合物进行过滤、洗涤和干燥的方法。
根据本发明的一个方面,在所述分子筛的制造方法中,所述过滤、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所述获得的反应混合物。作为所述洗涤,比如可以举出使用去离子水进行洗涤直至滤出液的pH值达到7-9,优选8-9。作为所述干燥温度,比如可以举出40-250℃,优选60-150℃,作为所述干燥的时间,比如可以举出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
根据本发明的一个方面,所述分子筛的制造方法根据需要还可以包括将所述获得的分子筛进行焙烧的步骤(以下称为焙烧步骤),以脱除所述有机模板剂和可能存在的水分等,由此获得焙烧后的分子筛。在本说明书的上下文中,将所述焙烧之前和焙烧之后的分子筛均统称为本发明的分子筛或者根据本发明的分子筛。
根据本发明的一个方面,在所述制造分子筛的方法中,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为从300℃至750℃,优选从400℃至600℃,而焙烧时间一般为从1小时至10小时,优选从3小时至6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的一个方面,如前所述制造的任何分子筛(称为本发明的分子筛或者根据本发明的分子筛),根据需要,还可以通过本领域 常规已知的任何方式进行离子交换,比如可以通过离子交换法或者溶液浸渍法(相关方法比如可以参见美国专利US3140249和US3140253等),将其组成中包含的金属阳离子(比如Na离子或者K离子,取决于其具体的制造方法)全部或者部分替换为其他阳离子。作为所述其他阳离子,比如可以举出氢离子、其他碱金属离子(包括K离子、Rb离子等)、铵离子(包括NH4离子、季铵离子比如四甲基铵离子和四乙基铵离子等)、碱土金属离子(包括Mg离子、Ca离子)、Mn离子、Zn离子、Cd离子、贵金属离子(包括Pt离子、Pd离子、Rh离子等)、Ni离子、Co离子、Ti离子、Sn离子、Fe离子和/或稀土金属离子等。
根据本发明的分子筛,根据需要,还可以通过稀酸溶液等进行处理,以便提高硅铝比,或者用水蒸气进行处理,以提高分子筛晶体的抗酸侵蚀性。
根据本发明的分子筛,一般具有基本上如下表所示的X射线衍射图案。
Figure PCTCN2017000327-appb-000052
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000053
根据本发明的一个方面,在所述分子筛的X射线衍射图案中,优 选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2017000327-appb-000054
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛一般具有柱状的晶体形貌。在此,所谓晶体形貌,指的是在所述扫描电子显微镜的观察视野中,单个分子筛晶体所呈现的(整体)外部形状。另外,作为所述柱状,优选棱柱状,特别是六棱柱状。在此,所述棱柱指的是凸棱柱,并且一般指的是直棱柱和正多边形棱柱(比如正六棱柱)。需要特别指出的是,由于分子筛的晶体在生长过程中可能会受到各种因素的干扰,因此其实际的晶体形貌与几何意义上的(真正)直棱柱或(真正)正多边形棱柱相比可能会存在一定程度的偏离,比如偏离30%、20%或5%,导致获得斜棱柱、或者不规则多边形(甚至是曲边多边形)棱柱,但本发明并不旨在具体明确该偏离程度。而且,任何更大或更小的偏离也都未脱离本发明的保护范围。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的有效直径一般为从100nm至5000nm。在此,所谓有效直径,指的是在所述分子筛(单个晶体)的横截面上,沿着该横截面的轮廓(边缘)任意选择两个点,测量这两个点之间的直线距离,以其中最大的直线距离作为有效直径。如果所述分子筛的横截面的轮廓呈现为多边形比如六边形,所述有效直径一般指的是所述多边形上距离最远的两个顶点之间的直线距离(对角线距离)。简单而言,所述有效直径基本上相当于所述横截面的轮廓所代表的多边形的外接圆的直径。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观 察时,所述分子筛(单个晶体)的高度一般为从100nm至3000nm。在此,所谓高度,指的是在所述分子筛的单个晶体(柱状晶体)中,所述柱的两个端面中心之间的直线距离。在通常情况下,所述分子筛柱的两个端面基本上是彼此平行的,此时所述直线距离即为所述两个端面之间的垂直距离,但本发明并不限于此。
根据本发明的一个方面,在利用扫描电子显微镜(SEM)进行观察时,所述分子筛(单个晶体)的高径比一般为从0.1至8。在此,所谓高径比,指的是所述高度与所述有效直径的比值。
根据本发明的一个方面,所述分子筛的总比表面积一般为从400m2/g至600m2/g,优选从450m2/g至580m2/g。在此,所述总比表面积是通过液氮吸附方法按BET模型计算获得的。
根据本发明的一个方面,所述分子筛的孔容一般为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。本发明的分子筛具有非常高的微孔容,这表明其属于超大孔分子筛。在此,所述孔容是通过液氮吸附方法按BET模型计算获得的。
根据本发明的分子筛,具有良好的热/水热稳定性,并且具有更大的孔容。结果是,本发明的分子筛能够吸附更多/更大的分子,从而表现出优异的吸附/催化性能。
根据本发明的分子筛,具有较强的酸性,特别是L酸中心的数量较多。这是现有技术未曾制造过的分子筛。结果是,本发明的分子筛特别是在酸催化反应中具有更为优异的性能表现。
根据本发明的分子筛,可以呈现为任何的物理形式,比如粉末状、颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
第六实施方式
根据本发明的分子筛,可以与其他材料复合使用,由此获得分子筛组合物。作为这些其他材料,比如可以举出活性材料和非活性材料。作为所述活性材料,比如可以举出合成沸石和天然沸石等,作为所述非活性材料(一般称为粘结剂),比如可以举出粘土、白土、硅胶和氧化铝等。这些其他材料可以单独使用一种,或者以任意的比例组合使用多种。作为所述其他材料的用量,可以直接参照本领域的常规用量, 并没有特别的限制。
根据本发明的分子筛或者分子筛组合物,特别适合作为吸附剂使用,例如用来在气相或液相中从多种组分的混合物中分离出至少一种组分。
根据本发明的分子筛或者分子筛组合物,特别适合在烃的转化反应中作为催化剂使用。作为所述烃的转化反应,比如可以举出催化裂化、加氢裂化、歧化、烷基化、低聚和异构化等。
根据本发明的分子筛或者分子筛组合物,特别适合作为催化剂的载体或载体组分使用,并在其上按照本领域常规已知的任何方式(比如溶液浸渍法)负载活性组分。这些活性组分包括但不限于活性金属组分(包括Ni、Co、Mo、W或者Cu等)、活性无机助剂(比如F、P等)和有机化合物(比如有机酸、有机胺等)等。这些活性组分可以单独使用一种,或者以任意的比例组合使用多种。作为所述活性组分的用量,可以直接参照本领域的常规用量,并没有特别的限制。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在本说明书的上下文中,包括在以下的实施例和比较例中,采用美国麦克公司Autochem II 2920程序升温脱附仪。测试条件:称取0.2g20-40目的分子筛装入样品管,置于加热炉,载气为He气(25mL/min),以20℃/min升温至600℃,吹扫60min驱除分子筛表面吸附的杂质。然后降温至100℃,恒温10min,切换成NH3-He混合气(10%NH3+90%He)吸附30min,再继续以He气吹扫90min至基线平稳,以脱附物理吸附的NH3。以10℃/min升温速率程序升温至600℃进行脱附,保持30min,脱附结束。采用TCD检测器检测气体组分变化,仪器自动积分得到酸量分布。
在本说明书的上下文中,包括在以下的实施例和比较例中,采用Netherland,PANalytical Corporation设备进行XRD测试。测试条件:Cu靶,Kα辐射,Ni滤波片,管电压40kV,管电流为40mA,扫描范围为2-50°。
在本说明书的上下文中,包括在以下的实施例和比较例中,采用美国FEI公司的TECNAIG2F20(200kv)型扫描电子显微镜。测试条件:采用悬浮法制样,将分子筛样品0.01g放入2mL玻璃瓶。用无水乙醇分散,振荡均匀,用滴管取一滴,滴在直径3mm样品网上,待干燥后,放在进样器中,然后插入电镜进行观察。所述观察可以使用1万倍的放大倍率或者5万倍的放大倍率。另外,在5万倍的放大倍率下观测分子筛,随机选取一个观测视野,计算该观测视野中全部分子筛晶体的有效直径之和的平均值和高度之和的平均值。重复该操作共计10次。以10次的平均值之和的平均值分别作为有效直径和高度。
在本说明书的上下文中,包括在以下的实施例和比较例中,采用美国Varian UNITY INOVA 500MHz型核磁共振波谱仪。测试条件:采用固体双共振探头,Φ4mm ZrO2转子。实验参数:测试温度为室温,扫描次数nt=5000,脉冲宽度pw=3.9μs,谱宽sw=31300Hz,观测核的共振频率Sfrq=125.64MHz,采样时间at=0.5s,化学位移定标δTMS=0,延迟时间d1=4.0s,去偶方式dm=nny(反门控去偶),氘代氯仿锁场。
在本说明书的上下文中,包括在以下的实施例和比较例中,采用日本理学电机株氏会社3013型X射线荧光光谱仪。测试条件:钨靶,激发电压40kV,激发电流50mA。实验过程:样品压片后装在X射线荧光光谱仪上,在X射线的照射下发射荧光,荧光波长λ与元素的原子序数Z之间存在如下关系:λ=K(Z-S)-2,K为常数,只要测定到荧光的波长λ,就可确定该种元素。以闪烁计数器和正比计数器测定各元素特征谱线的强度,进行元素定量或半定量分析。
在本说明书的上下文中,包括在以下的实施例和比较例中,采用美国BIO-RAD公司FTS3O00型傅立叶红外光谱仪。测试条件:350℃下抽真空至10-3Pa,波数范围1300-3900cm-1。将样品压片后置于红外光谱仪的原位池中密封。在350℃下抽真空到10-3Pa,保持1h,使样品表面的气体分子脱附干净,冷却至室温。向原位池中导入压力为2.67Pa的吡啶/2,4,6-三甲基吡啶,平衡吸附30min后,升温到200℃,再次抽真空至10-3Pa,保持30min,冷却至室温,在1300-3900cm-1波数范围内扫描,记录下200℃吡啶/2,4,6-三甲基吡啶吸附的红外吸收谱图。再将红外吸收池中的样品移至热处理区,升温至350℃,抽 真空至10-3Pa,保持30min,冷至室温,记录下350℃吡啶吸附的红外谱图。
在本说明书的上下文中,包括在以下的实施例和比较例中,所有的药剂和原料既可以商购获得,也可以根据已有知识制造。
第一实施方式、第四实施方式和第六实施方式
在本实施方式的上下文中,包括在以下的实施例和比较例中,分子筛的总比表面积、孔容和孔直径按照以下分析方法进行测量。
设备:Micromeritic ASAP2010静态氮吸附仪
测量条件:将样品置于样品处理系统,在350℃下抽真空至1.33×10-2Pa,保温保压15h,净化样品。在液氮温度-196℃下,测量净化样品在不同比压P/P0条件下对氮气的吸附量和脱附量,得到吸附-脱附等温曲线。然后利用两参数BET公式计算总比表面积,取比压P/P0≈0.98以下的吸附量为样品的孔容,以BJH模型计算孔径分布。
实施例I系列
实施例I-1
模板剂A的制造:
将15g(0.087mol)四甲基己二胺加入500ml三口瓶中,加入250ml异丙醇,室温下滴加18.8g(0.087mol)1,4-二溴丁烷,15min后滴加完毕,升温至回流,溶液由无色透明逐渐变成白色浑浊,用高效液相色谱法(HPLC)跟踪原料反应完全后向反应液中加入200ml乙酸乙酯,回流1h,冷却后抽滤,所得固体依次用乙酸乙酯、乙醚洗涤,得白色固体产品30g,为1,1,6,6-四甲基-1,6-二氮杂十二元环-1,6-二溴盐(n为4、m为6、R为甲基、X为Br的化合物),相对分子量为388.2,其熔点273.7℃,1HNMR谱图化学位移(300MHz,CDCl3)δ1.50(t,4H),1.90(t,8H),3.14(s,12H),3.40(t,8H)。
模板剂B的制造:采用离子交换法将模板剂A中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂A水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品, 为式(I)中n为4、m为6、R为甲基、X为OH的化合物,相对分子量为262.2,纯度为99.21%,其溴含量为0.79m%。
实施例I-2
模板剂C的制造
将10g(0.058mol)四甲基己二胺加入500ml三口瓶中,加入250ml异丙醇,室温下滴加16.6g(0.058mol)1,9-二溴壬烷,15min后滴加完毕,升温至回流,溶液由无色透明逐渐变成白色浑浊,用高效液相色谱法(HPLC)跟踪原料反应完全后向反应液中加入200ml乙酸乙酯,回流1h,冷却后抽滤,所得固体依次用乙酸乙酯、乙醚洗,得白色固体产品25g,为1,1,8,8-四甲基-1,8-二氮杂十七元环-1,8-二溴盐((n为9、m为6、R为甲基、X为Br的化合物)),相对分子量为458.4,其1HNMR谱图化学位移(300MHz,CDCl3)δ1.51(t,14H),1.92(t,8H),3.16(s,12H),3.40(t,8H)。
模板剂D的制造:采用离子交换法将模板剂C中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂C水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为9、m为6、R为甲基、X为OH的化合物,相对分子量为332.4,纯度为99.8%化合物,其溴含量为0.2m%。
实施例I-3
将5.35g模板剂D加入45mL的Teflon容器中,加入氢氧化钠0.157g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%),以及0.033g固体NaAlO2。静置陈化1h充分混合,其中各组分的摩尔比为:H2O/SiO2=6、模板剂D/SiO2=0.10,NaOH/SiO2=0.08。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至180℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图I-1,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为600nm,高度为800nm,高径比为1.33。经过测量,所述分子筛的总比表面积为560m2/g,孔容为0.360ml/g。产品的XRD图见图I-2。XRF分析结果显示分子筛Si/Al2=210。
实施例I-4
将8.024g模板剂D加入45mL的Teflon容器中,加入氢氧化钠0.157g,搅拌30分钟至均匀,然后加入3g白炭黑(青岛海洋化工有限公司,工业品,SiO2含量为98%),静置陈化1h充分混合,其中各组分的摩尔比为:H2O/SiO2=10、模板剂D/SiO2=0.15,NaOH/SiO2=0.08。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在110℃反应1天后升温至160℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图I-3,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1800nm,高度为2400nm,高径比为1.33。经过测量,所述分子筛的总比表面积为560m2/g,孔容为0.496ml/g。产品的XRD图见图I-4。XRF分析结果显示分子筛Si/Al2=∞。
实施例I-5
将7.157g模板剂B加入45mL的Teflon容器中,加入氢氧化钠0.157g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%),静置陈化1h充分混合,其中各组分的摩尔比为:H2O/SiO2=7.3、模板剂D/SiO2=0.15,NaOH/SiO2=0.08。XRF分析结果显示分子筛Si/Al2=625。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在130℃反应2天后升温至160℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图I-5,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为700nm,高度为950nm,高径比为1.36。 经过测量,所述分子筛的总比表面积为558m2/g,孔容为0.443ml/g。产品的XRD图见图I-6。
实施例I-6
将8.024g模板剂D加入45mL的Teflon容器中,加入氢氧化钠0.157g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%),静置陈化1h充分混合,其中各组分的摩尔比为:H2O/SiO2=7.3、模板剂D/SiO2=0.15,NaOH/SiO2=0.08。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图I-7,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1200nm,高度为1400nm,高径比为1.17。经过测量,所述分子筛的总比表面积为533m2/g,孔容为0.295ml/g。产品的XRD图见图I-8。NH3-TPD的结果表明(图I-12),所述分子筛具有明显的酸性。红外光谱的结果表明(图I-13),所述分子筛的B酸酸量低,L酸酸量高。
实施例I-7
将7.157g模板剂B加入45mL的Teflon容器中,加入氢氧化钠0.314g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%),静置陈化1h充分混合,其中各组分的摩尔比为:H2O/SiO2=7.3、模板剂B/SiO2=0.15,NaOH/SiO2=0.16。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在160℃反应6天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图I-9,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为400nm,高度为600nm,高径比为1.50。经过测量,所述分子筛的总比表面积为568m2/g,孔容为0.309ml/g。XRF分析结果显示Si/Al2=521。BET等温吸附曲线及孔径分布曲线分别见图I-10和图I-11。
附图说明
图I-1为实施例I-3制造的分子筛的扫描电镜图。
图I-2为实施例I-3制造的分子筛的XRD图。
图I-3为实施例I-4制造的分子筛的扫描电镜图。
图I-4为实施例I-4制造的分子筛的XRD图。
图I-5为实施例I-5制造的分子筛的扫描电镜图。
图I-6为实施例I-5制造的分子筛的XRD图。
图I-7为实施例I-6制造的分子筛的扫描电镜图。
图I-8为实施例I-6制造的分子筛的XRD图。
图I-9为实施例I-7制造的分子筛的扫描电镜图。
图I-10为实施例I-7制造的分子筛的等温吸附-脱附曲线图。
图I-11为实施例I-7制造的分子筛的孔径分布曲线图。
图I-12为实施例I-6制造的分子筛的NH3-TPD图。
图I-13为实施例I-6制造的分子筛的IR图。
实施例II系列
实施例II-1
模板剂A的制造:
将15g(0.087mol)四甲基己二胺加入500ml三口瓶中,加入250ml异丙醇,室温下滴加18.8g(0.087mol)1,4-二溴丁烷,15min后滴加完毕,升温至回流,溶液由无色透明逐渐变成白色浑浊,用高效液相色谱法(HPLC)跟踪原料反应完全后向反应液中加入200ml乙酸乙酯,回流1h,冷却后抽滤,所得固体依次用乙酸乙酯、乙醚洗涤,得白色固体产品30g,为1,1,6,6-四甲基-1,6-二氮杂十二元环-1,6-二溴盐(n为4、m为6、R为甲基、X为Br的化合物),相对分子量为388.2,其 熔点273.7℃,1HNMR谱图化学位移(300MHz,CDCl3)δ1.50(t,4H),1.90(t,8H),3.14(s,12H),3.40(t,8H)。
模板剂B的制造:采用离子交换法将模板剂A中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂A水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为4、m为6、R为甲基、X为OH的化合物,相对分子量为262.2,纯度为99.21%,其溴含量为0.79m%。
实施例II-2
模板剂C的制造
将10g(0.058mol)四甲基己二胺加入500ml三口瓶中,加入250ml异丙醇,室温下滴加16.6g(0.058mol)1,9-二溴壬烷,15min后滴加完毕,升温至回流,溶液由无色透明逐渐变成白色浑浊,用高效液相色谱法(HPLC)跟踪原料反应完全后向反应液中加入200ml乙酸乙酯,回流1h,冷却后抽滤,所得固体依次用乙酸乙酯、乙醚洗,得白色固体产品25g,为1,1,8,8-四甲基-1,8-二氮杂十七元环-1,8-二溴盐((n为9、m为6、R为甲基、X为Br的化合物)),相对分子量为458.4,其1HNMR谱图化学位移(300MHz,CDCl3)δ1.51(t,14H),1.92(t,8H),3.16(s,12H),3.40(t,8H)。
模板剂D的制造:采用离子交换法将模板剂C中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂C水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为9、m为6、R为甲基、X为OH的化合物,相对分子量为332.4,纯度为99.8%化合物,其溴含量为0.2m%。
实施例II-3
将1.467g偏铝酸钠加入45mL的Teflon容器中,加入1.925g模板剂B,然后加入3g硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=35、H2O/SiO2=6.5、模板剂B/SiO2=0.15,NaOH/SiO2=0.08。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图II-1,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为650nm,高度为600nm,高径比为1。经过测量,所述分子筛的总比表面积为553m2/g,孔容为0.295ml/g。产品的XRD图见图II-2。产品的硅铝比为35.20。
实施例II-4
将1.23g偏铝酸钠加入45mL的Teflon容器中,加入1.925g模板剂B,然后加入9g硅溶胶(青岛海洋化工有限公司,工业品,SiO2含量为30%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=35、H2O/SiO2=7.1、模板剂B/SiO2=0.15,NaOH/SiO2=0.12。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天之后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图II-3,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1200nm,高度为1000nm,高径比为0.833。经过测量,所述分子筛的总比表面积为558m2/g,孔容为0.51ml/g。产品的XRD图见图II-4。产品的硅铝比为36.38。
实施例II-5
将1.957g偏铝酸钠加入45mL的Teflon容器中,加入2.44g模板剂D,氢氧化钠0.157g,搅拌30分钟至均匀,然后加入9g硅溶胶(青岛海洋化工有限公司,工业品,SiO2含量为30%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=30、H2O/SiO2=7.1、模板剂D/SiO2=0.15,NaOH/SiO2=0.2。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃ 反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图II-5,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为900nm,高度为1000nm,高径比为1.11。经过测量,所述分子筛的总比表面积为543m2/g,孔容为0.304ml/g。产品的XRD图见图II-6。产品的硅铝比为33.68。
实施例II-6
将1.23g偏铝酸钠加入45mL的Teflon容器中,加入2.44g模板剂D,氢氧化钠0.353g,然后加入3g白炭黑(青岛海洋化工有限公司,工业品,SiO2含量为98%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=35、H2O/SiO2=6.5、模板剂D/SiO2=0.15、NaOH/SiO2=0.30。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图II-7,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1200nm,高度为1300nm,高径比为1.08。经过测量,所述分子筛的总比表面积为534m2/g,孔容为0.304ml/g。产品的XRD图见图II-8。产品的硅铝比为30.21。
实施例II-7
将0.75g SB粉(德国进口,Al2O3含量为76.5%)加入到45mL的Teflon容器中,加入2.85g模板剂A,然后加入3g硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=30、H2O/SiO2=6.5、模板剂B/SiO2=0.15,NaOH/SiO2=0.08。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即 得产品。
该产品的扫描电镜图见图II-9,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1500nm,高度为2000nm,高径比为1.33。经过测量,所述分子筛的总比表面积为560m2/g,孔容为0.342ml/g。产品的XRD图见图II-10。产品的硅铝比为35.29。
实施例II-8
将1.957g偏铝酸钠加入到45mL的Teflon容器中,加入3.37g模板剂C,氢氧化钠0.274g,然后加入3g硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=30、H2O/SiO2=6.5、模板剂B/SiO2=0.15,NaOH/SiO2=0.30。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图II-11,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1000nm,高度为1400nm,高径比为1.4。经过测量,所述分子筛的总比表面积为498m2/g,孔容为0.403ml/g。产品的XRD图见图II-12。产品的硅铝比为34.20。
实施例II-9
将1.957g偏铝酸钠加入到45mL的Teflon容器中,加入3.365g模板剂C,氢氧化钠0.0784g,然后加入9g硅溶胶(青岛海洋化工有限公司,工业品,SiO2含量为30%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=30、H2O/SiO2=6.5、模板剂C/SiO2=0.15,NaOH/SiO2=0.20。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图II-13,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为800nm,高度为900nm,高径比为1.125。 经过测量,所述分子筛的总比表面积为564m2/g,孔容为0.350ml/g。产品的XRD图见图II-14。产品的硅铝比为35.28。
实施例II-10
将0.187gSB粉(德国进口,Al2O3含量为76.5%)加入45mL的Teflon容器中,加入1.925g模板剂B,然后加入3g硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=20、H2O/SiO2=6.5、模板剂B/SiO2=0.15,NaOH/SiO2=0.08。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在110℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图II-15,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为300nm,高度为900nm,高径比为3.0。经过测量,所述分子筛的总比表面积为473m2/g,孔容为0.356ml/g。产品的XRD图见图II-16。产品的硅铝比为35.38。
实施例II-11
将5.87g偏铝酸钠加入45mL的Teflon容器中,加入1.925g模板剂B,然后加入3g硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=10、H2O/SiO2=6.5、模板剂B/SiO2=0.15,NaOH/SiO2=0.487。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的XRD图见图II-17,为ANA分子筛。
实施例II-12
本实施例用于说明实施例II-3至实施例II-8制造的分子筛的热稳定性(XRD)。图II-18表明,硅铝比为30和40,钠硅比为0.08-0.30的分子筛在550℃,650℃和750℃焙烧6后的热稳定性好。
实施例II-13
本实施例用于说明实施例II-6和实施例II-8制造的分子筛的酸性。表II-1表明,硅铝比为30和40的分子筛表现出较高的B/L比值,有望应用于酸性催化反应中。
表II-1
Figure PCTCN2017000327-appb-000055
附图说明
图II-1为实施例II-3制造的分子筛的扫描电镜图。
图II-2为实施例II-3制造的分子筛的XRD图。
图II-3为实施例II-4制造的分子筛的扫描电镜图。
图II-4为实施例II-4制造的分子筛的XRD图。
图II-5为实施例II-5制造的分子筛的扫描电镜图。
图II-6为实施例II-5制造的分子筛的XRD图。
图II-7为实施例II-6制造的分子筛的扫描电镜图。
图II-8为实施例II-6制造的分子筛的XRD图。
图II-9为实施例II-7制造的分子筛的扫描电镜图。
图II-10为实施例II-7制造的分子筛的XRD图。
图II-11为实施例II-8制造的分子筛的扫描电镜图。
图II-12为实施例II-8制造的分子筛的XRD图。
图II-13为实施例II-9制造的分子筛的扫描电镜图。
图II-14为实施例II-9制造的分子筛的XRD图。
图II-15为实施例II-10制造的分子筛的扫描电镜图。
图II-16为实施例II-10制造的分子筛的XRD图。
图II-17为实施例II-11制造的分子筛的XRD图。
图II-18为实施例II-3至实施例II-8制造的分子筛焙烧后的XRD图。
第一实施方式、第五实施方式和第六实施方式
在本实施方式的上下文中,包括在以下的实施例和比较例中,分子筛的总比表面积、孔容和孔直径按照以下分析方法进行测量。
设备:Micromeritic ASAP2010静态氮吸附仪
测量条件:将样品置于样品处理系统,在350℃下抽真空至1.33×10-2Pa,保温保压15h,净化样品。在液氮温度-196℃下,测量净化样品在不同比压P/P0条件下对氮气的吸附量和脱附量,得到吸附-脱附等温曲线。然后利用两参数BET公式计算总比表面积,取比压P/P0≈0.98以下的吸附量为样品的孔容,按照BJH模型计算孔径。
实施例III系列
实施例III-1
模板剂A的制造:将15g(0.094mol)二[2-(N,N-二甲氨基乙基)]醚加入两口瓶中,加入100mL异丙醇,在25℃搅拌下滴加9.5g(0.047mol)的1,3-二溴丙烷,滴加完毕,升温至回流温度,回流30min,溶液由无色变成白色浑浊,再在回流温度下反应12h,降温至25℃,加入50mL的乙酸乙酯搅拌15min形成白色浑浊液,过滤,所得固体用乙酸乙酯洗涤,得产品13.2g,为式(I)中n为1、m为2、R为甲基、X为Br的化合物。其熔点为250.3℃,纯度为99.9m%,相对分子量为362.2,1H-NMR谱图化学位移(300MHZ,内标TMS,溶剂CDCl2)δ(ppm)为:1.49(2H,m),2.27(4H,m),2.36(4H,t),2.53(4H,t),3.47(4H,t)。
模板剂B的制造:采用离子交换法将模板剂A中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂A水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为1、m为2、R为甲基、X为OH的、相对分子量为236.2、纯度为98.2m%的化合物。其溴含量为0.79m%。
实施例III-2
模板剂C的制造:按实施例III-1中模板剂A的方法制造式(I)中n为6、m为2、R为甲基、X为Br的化合物,不同之处在于,用 12.78g(0.047mol)的1,8-二溴辛烷代替1,3-二溴丙烷。试验得到17.6g产品,其熔点为288.2℃,相对分子量为432.2,纯度为99.9m%,1H-NMR谱图化学位移(300MHZ,内标TMS,溶剂CDCl2)δ(ppm)为:1.29(2H,s),1.39(2H,m),1.43(2H,s),2.27(2H,m),2.36(2H,m),2.55(2H,m),3.63(4H,m)。
模板剂D的制造:采用离子交换法将模板剂C中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂C水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为6、m为2、R为甲基、X为OH、相对分子量为306.2、纯度为99.5m%化合物。其溴含量为0.2m%。
实施例III-3
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入1.81g模板剂B,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)和6.3g去离子水,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=25、H2O/SiO2=7、模板剂B/SiO2=0.16、OH-/SiO2=0.31。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图III-3,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1000nm,高度为1200nm,高径比为1.2。经过测量,所述分子筛的总比表面积为523m2/g,孔容为0.356ml/g。XRF分析结果显示Si/Al2=23。该产品的XRD图见图III-4。图III-1为在550℃焙烧3h后的产品对2,2-二乙基丁烷的吸附曲线图,从曲线上可以看出,该产品对2,2-二乙基丁烷的吸附量为-55mg/g。
实施例III-4
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入3.0g模板剂D、9.31g去离子水、搅拌30分钟至均匀,然后加入4g粗块硅胶(青 岛海洋化工有限公司,工业品,SiO2含量为98.05%),搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=21、H2O/SiO2=8、模板剂D/SiO2=0.15、OH-/SiO2=0.30。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图III-6,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为2200nm,高度为3000nm,高径比为1.36。经过测量,所述分子筛的总比表面积为573m2/g,孔容为0.387ml/g。XRF分析结果显示Si/Al2=25。
实施例III-5
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入1.78g模板剂A,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)、去离子水6.98g、NaOH 0.4g,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=23、H2O/SiO2=8、模板剂A/SiO2=0.10、OH-/SiO2=0.20。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在150℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图III-7,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为900nm,高度为1200nm,高径比为1.33。经过测量,所述分子筛的总比表面积为520m2/g,孔容为0.367ml/g。XRF分析结果显示Si/Al2=24。
实施例III-6
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入3.70g模板剂B,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)和6.11g去离子水,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=26、H2O/SiO2=7、模板剂B/SiO2=0.32、OH-/SiO2=0.64。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图III-8,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1000nm,高度为1500nm,高径比为1.5。经过测量,所述分子筛的总比表面积为537m2/g,孔容为0.389ml/g。XRF分析结果显示Si/Al2=24。
将该产品分别在550℃、650℃、750℃下焙烧3h,焙烧后产品的XRD图见图III-5,各特征峰仍然存在。图III-2为在550℃焙烧3h后的产品对3-丙基-4-丁基辛烷的吸附曲线图,从图中可以看出,该产品对3-丙基-4-丁基辛烷的吸附量高达-102mg/g。
实施例III-7
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入7.0g模板剂D、去离子水9.31g,搅拌30分钟至均匀,然后加入4g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=22、H2O/SiO2=8、模板剂D/SiO2=0.35、OH-/SiO2=0.70。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图III-9,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1200nm,高度为1400nm,高径比为1.17。经过测量,所述分子筛的总比表面积为538m2/g,孔容为0.408ml/g。XRF分析结果显示Si/Al2=23。NH3-TPD的结果表明(图III-11),所述分子筛具有明显的酸性。红外光谱的结果表明(图III-12),所述分子筛的B酸酸量低,L酸酸量高。
实施例III-8
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入7.41g模板 剂C,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)、去离子水6.98g、NaOH 0.4g,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=21、H2O/SiO2=8、模板剂C/SiO2=0.35、OH-/SiO2=0.20。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在150℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图III-10,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1200nm,高度为1600nm,高径比为1.33。经过测量,所述分子筛的总比表面积为546m2/g,孔容为0.397ml/g。XRF分析结果显示Si/Al2=28。
附图说明
图III-1为焙烧后的实施例III-3制造的分子筛对2,2-二乙基丁烷的吸附曲线。
图III-2为焙烧后的实施例III-6制造的分子筛对3-丙基-4-丁基辛烷的吸附曲线。
图III-3为实施例III-3制造的分子筛的扫描电镜图。
图III-4为实施例III-3制造的分子筛的XRD图。
图III-5为焙烧后的实施例III-6制造的分子筛的XRD图。
图III-6为实施例III-4制造的分子筛的扫描电镜图。
图III-7为实施例III-5制造的分子筛的扫描电镜图。
图III-8为实施例III-6制造的分子筛的扫描电镜图。
图III-9为实施例III-7制造的分子筛的扫描电镜图。
图III-10为实施例III-8制造的分子筛的扫描电镜图。
图III-11为实施例III-7制造的分子筛的NH3-TPD图。
图III-12为实施例III-7制造的分子筛的IR图。
实施例IV系列
实施例IV-1
模板剂A的制造:将15g(0.094mol)二[2-(N,N-二甲氨基乙基)]醚加入两口瓶中,加入100mL异丙醇,在25℃搅拌下滴加9.5g(0.047mol)的1,3-二溴丙烷,滴加完毕,升温至回流温度,回流30min,溶液由无色变成白色浑浊,再在回流温度下反应12h,降温至25℃,加入50mL的乙酸乙酯搅拌15min形成白色浑浊液,过滤,所得固体用乙酸乙酯洗涤,得产品13.2g,为式(I)中n为1、m为2、R为甲基、X为Br的化合物。其熔点为250.3℃,纯度为99.9%,相对分子量为362.2,1H-NMR谱图化学位移(300MHZ,内标TMS,溶剂CDCl2)δ(ppm)为:1.49(2H,m),2.27(4H,m),2.36(4H,t),2.53(4H,t),3.47(4H,t)。
模板剂B的制造:采用离子交换法将模板剂A中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂A水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为1、m为2、R为甲基、X为OH的、相对分子量为236.2、纯度为99.21%的化合物。其溴含量为0.79m%。
实施例IV-2
模板剂C的制造:按实施例IV-1中模板剂A的方法制造式(I)中n为6、m为2、R为甲基、X为Br的化合物,不同之处在于,用12.78g(0.047mol)的1,8-二溴辛烷代替1,3-二溴丙烷。试验得到17.6g产品,其熔点为288.2℃,相对分子量为432.2,纯度为99.9%,1H-NMR谱图化学位移(300MHZ,内标TMS,溶剂CDCl2)δ(ppm)为:1.29(2H,s),1.39(2H,m),1.43(2H,s),2.27(2H,m),2.36(2H,m),2.55(2H,m),3.63(4H,m)。
模板剂D的制造:采用离子交换法将模板剂C中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂C水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为6、m为2、R为甲基、X为OH、相对分子量为306.2、纯度为99.8%化合物。其溴含量为0.2m%。
实施例IV-3
将6.975g模板剂D加入45mL的Teflon容器中,加入偏铝酸钠0.296g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%)。静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=201,H2O/SiO2=5.8,模板剂D/SiO2=0.15,NaOH/SiO2=0.05。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至160℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图IV-1,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为800nm,高度为1000nm,高径比为1.25。经过测量,所述分子筛的总比表面积为564m2/g,孔容为0.394ml/g。产品的XRD图见图IV-2。XRF分析结果显示分子筛Si/Al2=203。
实施例IV-4
将3.71g模板剂B加入45mL的Teflon容器中,加入偏铝酸钠0.246g,搅拌30分钟至均匀,然后加入3g白炭黑(青岛海洋化工有限公司,工业品,SiO2含量为98%)和6.02g去离子水,静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=240,H2O/SiO2=7.1、模板剂B/SiO2=0.15,NaOH/SiO2=0.04。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在110℃反应1天后升温至170℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图IV-3,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为800nm,高度为1000nm,高径比为1.25。经过测量,所述分子筛的总比表面积为483m2/g,孔容为0.285ml/g。产品的XRD图见图IV-4。XRF分析结果显示分子筛Si/Al2=226。
实施例IV-5
将4.65g模板剂D加入45mL的Teflon容器中,加入偏铝酸钠0.245g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%)和6g去离子水。静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=242,H2O/SiO2=9.5,模板剂D/SiO2=0.10,NaOH/SiO2=0.03。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至160℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图IV-5,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为700nm,高度为900nm,高径比为1.285。经过测量,所述分子筛的总比表面积为464m2/g,孔容为0.384ml/g。产品的XRD图见图IV-6。XRF分析结果显示分子筛Si/Al2=253。
实施例IV-6
将5g模板剂B加入45mL的Teflon容器中,加入偏铝酸钠0.196g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=300,H2O/SiO2=7.3、模板剂B/SiO2=0.15,NaOH/SiO2=0.03。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图IV-7,图中明显可见分子筛具有六棱柱状的晶体形貌,并且有效直径为1000nm,高度为1000nm,高径比为1.0。经过测量,所述分子筛的总比表面积为538m2/g,孔容为0.376ml/g。产品的XRD图见图IV-8。XRF分析结果显示分子筛Si/Al2=304。
实施例IV-7
将6.975g模板剂D加入45mL的Teflon容器中,加入偏铝酸钠0.295g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%)和3.5g去离子水。静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=201,H2O/SiO2=9.8,模板剂D/SiO2=0.15,NaOH/SiO2=0.025。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应2天后升温至150℃反应3天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。XRF分析结果显示Si/Al2=207。
实施例IV-8
将3.70g模板剂B加入45mL的Teflon容器中,加入偏铝酸钠0.288g,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98%,Al2O3含量为0.253%)和3.2g去离子水。静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=205,H2O/SiO2=8.2,模板剂D/SiO2=0.15,NaOH/SiO2=0.025。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应6天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。XRF分析结果显示Si/Al2=211。NH3-TPD的结果表明(图IV-9),所述分子筛具有明显的酸性。红外光谱的结果表明(图IV-10),所述分子筛的B酸酸量低,L酸酸量高。
实施例IV-9
将4.65g模板剂D加入45mL的Teflon容器中,加入偏铝酸钠0.297g,搅拌30分钟至均匀,然后加入3g白炭黑(青岛海洋化工有限公司,工业品,SiO2含量为98%)和4g去离子水。静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=204,H2O/SiO2=8.4,模板剂D/SiO2=0.10,NaOH/SiO2=0.05。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至160℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。XRF分析结果显示Si/Al2=207。
附图说明
图IV-1为实施例IV-3制造的分子筛的扫描电镜图。
图IV-2为实施例IV-3制造的分子筛的XRD图。
图IV-3为实施例IV-4制造的分子筛的扫描电镜图。
图IV-4为实施例IV-4制造的分子筛的XRD图。
图IV-5为实施例IV-5制造的分子筛的扫描电镜图。
图IV-6为实施例IV-5制造的分子筛的XRD图。
图IV-7为实施例IV-6制造的分子筛的扫描电镜图。
图IV-8为实施例IV-6制造的分子筛的XRD图。
图IV-9为实施例IV-8制造的分子筛的NH3-TPD图。
图IV-10为实施例IV-8制造的分子筛的IR图。
第二实施方式和第六实施方式
在本实施方式的上下文中,包括在以下的实施例和比较例中,分子筛的微孔洞的总比表面积、孔容和孔直径按照以下分析方法进行测量。
设备:Micromeritic ASAP2010静态氮吸附仪
测量条件:将样品置于样品处理系统,在300℃下抽真空至1.33×10-2Pa,保温保压8h,净化样品。在液氮温度-196℃下,测量净化样品在不同比压P/P0条件下对氮气的吸附量和脱附量,得到吸附-脱附等温曲线。然后利用两参数Horvath-Kawaioe公式计算比表面积,取比压P/P0≈0.983以下的吸附量为样品的孔容,按照DFT密度泛函书理论模型计算孔径。
在这些实施方式中,包括在以下的实施例和比较例中,分子筛的 中孔洞的总比表面积、孔容和孔直径按照以下分析方法进行测量。
设备:Micromeritic ASAP2010静态氮吸附仪
测量条件:将样品置于样品处理系统,在350℃下抽真空至1.33×10-2Pa,保温保压15h,净化样品。在液氮温度-196℃下,测量净化样品在不同比压P/P0条件下对氮气的吸附量和脱附量,得到吸附-脱附等温曲线。然后利用两参数BET公式计算比表面积,取比压P/P0≈0.98以下的吸附量为样品的孔容,按照Horvath-Kawaioe模型计算孔径。
在这些实施方式中,包括在以下的实施例和比较例中,分子筛的粗孔洞的总比表面积、孔容和孔直径按照以下分析方法进行测量。
设备:Micromeritic AutoPore IV 9510压汞仪
测量条件:将干燥的适量样品放进样品管密封再放到仪器抽真空到50umg进行低压操做,低压完成称重,将充满汞的样品管放进高压仓继续加压到60000pisa将汞压入孔中。根据施加压力P,便可求出对应的孔径r(nm)。由汞压入量便可求出对应尺寸的孔容,由此可以算出孔体积随孔径大小变化的曲线,从而得出孔径分布曲线。按柱状通孔计算,由孔体积和孔直径计算孔长度,孔周长乘孔长度得到表面积。
实施例V-1
模板剂A的制造:将15g(0.094mol)二[2-(N,N-二甲氨基乙基)]醚加入两口瓶中,加入100mL异丙醇,在25℃搅拌下滴加9.5g(0.047mol)的1,3-二溴丙烷,滴加完毕,升温至回流温度,回流30min,溶液由无色变成白色浑浊,再在回流温度下反应12h,降温至25℃,加入50mL的乙酸乙酯搅拌15min形成白色浑浊液,过滤,所得固体用乙酸乙酯洗涤,得产品13.2g,为式(I)中n为1、m为2、R为甲基、X为Br的化合物。其熔点为250.3℃,纯度为99.9m%,相对分子量为362.2,1H-NMR谱图化学位移(300MHZ,内标TMS,溶剂CDCl2)δ(ppm)为:1.49(2H,m),2.27(4H,m),2.36(4H,t),2.53(4H,t),3.47(4H,t)。
模板剂B的制造:采用离子交换法将模板剂A中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂A水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为 1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为1、m为2、R为甲基、X为OH的、相对分子量为236.2、纯度为98.2m%的化合物。其溴含量为0.79m%。
实施例V-2
模板剂C的制造:按实施例V-1中模板剂A的方法制造式(I)中n为6、m为2、R为甲基、X为Br的化合物,不同之处在于,用12.78g(0.047mol)的1,8-二溴辛烷代替1,3-二溴丙烷。试验得到17.6g产品,其熔点为288.2℃,相对分子量为432.2,纯度为99.9m%,1H-NMR谱图化学位移(300MHZ,内标TMS,溶剂CDCl2)δ(ppm)为:1.29(2H,s),1.39(2H,m),1.43(2H,s),2.27(2H,m),2.36(2H,m),2.55(2H,m),3.63(4H,m)。
模板剂D的制造:采用离子交换法将模板剂C中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂C水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为6、m为2、R为甲基、X为OH、相对分子量为306.2、纯度为99.5m%化合物。其溴含量为0.2m%。
实施例V-3
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入1.81g模板剂B,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)和6.3g去离子水,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=61、H2O/SiO2=7、模板剂B/SiO2=0.16、OH-/SiO2=0.31。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在160℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图V-3,图中明显可见分子筛具有六棱柱状和海绵结构的晶体形貌,并且有效直径为2500nm,高度为1000nm,高径比为0.4。经过测量,所述分子筛包含粗孔洞、中孔洞和微孔洞, 其中所述粗孔洞的直径为150nm,总比表面积为89m2/g,孔容为1.36ml/g,所述中孔洞的直径为4nm,总比表面积为126m2/g,孔容为0.29ml/g,并且所述微孔洞的直径为0.5nm和1.2nm,总比表面积为163m2/g,孔容为0.07ml/g。XRF分析结果显示Si/Al2=48。
该产品的XRD图见图V-4。图V-1为在550℃焙烧3h后的产品对2,2-二乙基丁烷的吸附曲线图,从曲线上可以看出,该产品对2,2-二乙基丁烷的吸附量为-55mg/g。
实施例V-4
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入3.0g模板剂D、9.31g去离子水、搅拌30分钟至均匀,然后加入4g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=81、H2O/SiO2=8、模板剂D/SiO2=0.15、OH-/SiO2=0.30。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在160℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图V-6,图中明显可见分子筛具有六棱柱状和海绵结构的晶体形貌,并且有效直径为2500nm,高度为850nm,高径比为0.34。经过测量,所述分子筛包含粗孔洞、中孔洞和微孔洞,其中所述粗孔洞的直径为400nm,总比表面积为65m2/g,孔容为0.387ml/g,所述中孔洞的直径为5nm,总比表面积为116m2/g,孔容为0.28ml/g,并且所述微孔洞的直径为0.5nm和1.2nm,总比表面积为149m2/g,孔容为0.107ml/g。XRF分析结果显示Si/Al2=75。
实施例V-5
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入1.78g模板剂A,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)、去离子水6.98g、NaOH 0.4g,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=61、H2O/SiO2=8、模板剂A/SiO2=0.10、OH-/SiO2=0.20。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在160℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图V-7,图中明显可见分子筛具有六棱柱状和海绵结构的晶体形貌,并且有效直径为2200nm,高度为3500nm,高径比为1.59。经过测量,所述分子筛包含粗孔洞、中孔洞和微孔洞,其中所述粗孔洞的直径为100nm,总比表面积为365m2/g,孔容为0.365ml/g,所述中孔洞的直径为8nm,总比表面积为115m2/g,孔容为0.22ml/g,并且所述微孔洞的直径为4nm和1.2nm,总比表面积为280m2/g,孔容为0.145ml/g。XRF分析结果显示Si/Al2=56。
实施例V-6
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入3.70g模板剂B,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)和6.11g去离子水,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=61、H2O/SiO2=7、模板剂B/SiO2=0.32、OH-/SiO2=0.64。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在160℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图V-8,图中明显可见分子筛具有六棱柱状和海绵结构的晶体形貌,并且有效直径为1750nm,高度为4000nm,高径比为2.29。经过测量,所述分子筛包含粗孔洞、中孔洞和微孔洞,其中所述粗孔洞的直径为200nm,总比表面积为65m2/g,孔容为0.390ml/g,所述中孔洞的直径为9nm,总比表面积为145m2/g,孔容为0.16ml/g,并且所述微孔洞的直径为4nm和1.2nm,总比表面积为220m2/g,孔容为0.130ml/g。XRF分析结果显示Si/Al2=54。
将该产品分别在550℃、650℃、750℃下焙烧3h,焙烧后产品的XRD图见图V-5,各特征峰仍然存在。图V-2为在550℃焙烧3h后的产品对3-丙基-4-丁基辛烷的吸附曲线图,从图中可以看出,该产品对3-丙基-4-丁基辛烷的吸附量高达-102mg/g。
实施例V-7
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入7.0g模板剂D、去离子水9.31g,搅拌30分钟至均匀,然后加入4g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=82、H2O/SiO2=8、模板剂D/SiO2=0.35、OH-/SiO2=0.70。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在160℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图V-9,图中明显可见分子筛具有六棱柱状和海绵结构的晶体形貌,并且有效直径为1200nm,高度为1500nm,高径比为1.25。经过测量,所述分子筛包含粗孔洞、中孔洞和微孔洞,其中所述粗孔洞的直径为200nm,总比表面积为67m2/g,孔容为0.354ml/g,所述中孔洞的直径为8nm,总比表面积为116m2/g,孔容为0.18ml/g,并且所述微孔洞的直径为4.2nm和1.2nm,总比表面积为151m2/g,孔容为0.074ml/g。XRF分析结果显示Si/Al2=74。NH3-TPD的结果表明(图V-13),所述分子筛具有明显的酸性。红外光谱的结果表明(图V-14),所述分子筛的B酸酸量低,L酸酸量高。
实施例V-8
将0.134g偏铝酸钠加入45mL的Teflon容器中,加入7.41g模板剂C,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%)、去离子水6.98g、NaOH 0.4g,搅拌5分钟充分混合,其中各组分的摩尔比为:SiO2/Al2O3=61、H2O/SiO2=8、模板剂C/SiO2=0.35、OH-/SiO2=0.20。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并 密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在160℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图V-10,图中明显可见分子筛具有六棱柱状和海绵结构的晶体形貌,并且有效直径为1200nm,高度为1700nm,高径比为1.42。经过测量,所述分子筛包含粗孔洞、中孔洞和微孔洞,其中所述粗孔洞的直径为1000nm,总比表面积为26m2/g,孔容为0.253ml/g,所述中孔洞的直径为8nm,总比表面积为142m2/g,孔容为0.216ml/g,并且所述微孔洞的直径为4nm和1.2nm,总比表面积为194m2/g,孔容为0.037ml/g。XRF分析结果显示Si/Al2=54。
附图说明
图V-1为焙烧后的实施例V-3制造的分子筛对2,2-二乙基丁烷的吸附曲线。
图V-2为焙烧后的实施例V-6制造的分子筛对3-丙基-4-丁基辛烷的吸附曲线。
图V-3为实施例V-1制造的分子筛的扫描电镜图。
图V-4为实施例V-3制造的分子筛的XRD图。
图V-5为焙烧后的实施例V-6制造的分子筛的XRD图。
图V-6为实施例V-4制造的分子筛的扫描电镜图。
图V-7为实施例V-5制造的分子筛的扫描电镜图。
图V-8为实施例V-6制造的分子筛的扫描电镜图。
图V-9为实施例V-7制造的分子筛的扫描电镜图。
图V-10为实施例V-8制造的分子筛的扫描电镜图。
图V-11(a)为海绵结构包含粗孔洞和/或中孔洞的示意图,图V-11(b)为海绵结构包含粗孔洞和/或中孔洞的扫描电镜图。
图V-12(a)为分子筛具有空心柱状晶体形貌的示意图,图V-12(b)为分子筛具有空心柱状晶体形貌的扫描电镜图。
图V-13为实施例V-7制造的分子筛的NH3-TPD图。
图V-14为实施例V-7制造的分子筛的IR图。
第三实施方式和第六实施方式
在本实施方式的上下文中,包括在以下的实施例和比较例中,分子筛的总比表面积、孔容和孔直径按照以下分析方法进行测量。
设备:Micromeritic ASAP2010静态氮吸附仪
测量条件:将样品置于样品处理系统,在350℃下抽真空至1.33×10-2Pa,保温保压15h,净化样品。在液氮温度-196℃下,测量净化样品在不同比压P/P0条件下对氮气的吸附量和脱附量,得到吸附-脱附等温曲线。然后利用两参数BET公式计算总比表面积,取比压P/P0≈0.98以下的吸附量为样品的孔容,按照BJH模型计算孔径分布。
实施例VI-1
模板剂A的制造:
将15g(0.087mol)四甲基己二胺加入500ml三口瓶中,加入250ml异丙醇,室温下滴加18.8g(0.087mol)1,4-二溴丁烷,15min后滴加完毕,升温至回流,溶液由无色透明逐渐变成白色浑浊,用高效液相色谱法(HPLC)跟踪原料反应完全后向反应液中加入200ml乙酸乙酯,回流1h,冷却后抽滤,所得固体依次用乙酸乙酯、乙醚洗涤,得白色固体产品30g,为1,1,6,6-四甲基-1,6-二氮杂十二元环-1,6-二溴盐(n为4、m为6、R为甲基、X为Br的化合物),相对分子量为388.2,其熔点273.7℃,1HNMR谱图化学位移(300MHz,CDCl3)δ1.50(t,4H),1.90(t,8H),3.14(s,12H),3.40(t,8H)。
模板剂B的制造:采用离子交换法将模板剂A中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂A水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为4、m为6、R为甲基、X为OH的化合物,相对分子量为262.2,纯度为99.21%,其溴含量为0.79m%。
实施例VI-2
模板剂C的制造
将10g(0.058mol)四甲基己二胺加入500ml三口瓶中,加入250ml异丙醇,室温下滴加16.6g(0.058mol)1,9-二溴壬烷,15min后滴加完毕,升温至回流,溶液由无色透明逐渐变成白色浑浊,用高效液相色谱法(HPLC)跟踪原料反应完全后向反应液中加入200ml乙酸乙酯,回流1h,冷却后抽滤,所得固体依次用乙酸乙酯、乙醚洗,得白色固体产品25g,为1,1,8,8-四甲基-1,8-二氮杂十七元环-1,8-二溴盐((n为9、m为6、R为甲基、X为Br的化合物)),相对分子量为458.4,其1HNMR谱图化学位移(300MHz,CDCl3)δ1.51(t,14H),1.92(t,8H),3.16(s,12H),3.40(t,8H)。
模板剂D的制造:采用离子交换法将模板剂C中的Br置换为OH;离子交换树脂为强碱性苯乙烯系阴离子交换树脂,工作液为15m%的模板剂C水溶液,操作温度为25℃,工作液与离子交换树脂的质量比为1∶3;流速为3滴/秒;将交换后的溶液用旋转蒸发仪除水,即得产品,为式(I)中n为9、m为6、R为甲基、X为OH的化合物,相对分子量为332.4,纯度为99.8%化合物,其溴含量为0.2m%。
实施例VI-3
将0.132g偏铝酸钠加入45mL的Teflon容器中,加入8.024g模板剂B,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=60、H2O/SiO2=7.8、模板剂B/SiO2=0.15。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图VI-1,图中明显可见分子筛具有扁棱柱状或扁圆柱状的晶体形貌,并且有效直径为600nm,高度为300nm,高径比为0.5。经过测量,所述分子筛的总比表面积为518m2/g,孔容为0.351ml/g。XRF分析结果显示Si/Al2=63。产品的XRD图见图VI-2。NH3-TPD的结果表明(图VI-3),所述分子筛具有明显的酸性。红外光谱的结果表明(图VI-4),所述分子筛的B酸酸量低,L酸酸量高。
实施例VI-4
将0.735g偏铝酸钠加入45mL的Teflon容器中,加入8.024g模板剂B,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=80、H2O/SiO2=7.5、模板剂B/SiO2=0.15。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天之后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图VI-5,图中明显可见分子筛具有扁棱柱状或扁圆柱状的晶体形貌,并且有效直径为300nm,高度为200nm,高径比为0.67。经过测量,所述分子筛的总比表面积为482m2/g,孔容为0.346ml/g。XRF分析结果显示Si/Al2=84。产品的XRD图见图VI-6。
实施例VI-5
将0.132g偏铝酸钠加入45mL的Teflon容器中,加入8.731g模板剂D,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=60、H2O/SiO2=8、模板剂D/SiO2=0.15。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应4天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的扫描电镜图见图VI-7,图中明显可见分子筛具有扁棱柱状或扁圆柱状的晶体形貌,并且有效直径为300nm,高度为200nm,高径比为0.67。经过测量,所述分子筛的总比表面积为452m2/g,孔容为0.385ml/g。XRF分析结果显示Si/Al2=62。
实施例VI-6
将0.132g偏铝酸钠加入45mL的Teflon容器中,加入4.1g模板剂D,搅拌30分钟至均匀,然后加入3g粗块硅胶(青岛海洋化工有限公 司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=60、H2O/SiO2=7、模板剂D/SiO2=0.32。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图VI-8,图中明显可见分子筛具有扁棱柱状或扁圆柱状的晶体形貌,并且有效直径为600nm,高度为400nm,高径比为0.67。经过测量,所述分子筛的总比表面积为487m2/g,孔容为0.387ml/g。XRF分析结果显示Si/Al2=63。
实施例VI-7
将0.132g偏铝酸钠加入45mL的Teflon容器中,加入6.0g模板剂C,然后加入4g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=80、H2O/SiO2=5、模板剂C/SiO2=0.2。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在110℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图VI-9,图中明显可见分子筛具有扁棱柱状或扁圆柱状的晶体形貌,并且有效直径为400nm,高度为200nm,高径比为0.5。经过测量,所述分子筛的总比表面积为412m2/g,孔容为0.372ml/g。XRF分析结果显示Si/Al2=83。
实施例VI-8
将0.132g偏铝酸钠加入45mL的Teflon容器中,加入4g模板剂A,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=60、H2O/SiO2=5、模板剂C/SiO2=0.2。将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转 动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃下干燥5小时后,即得产品。
该产品的扫描电镜图见图VI-10,图中明显可见分子筛具有扁棱柱状或扁圆柱状的晶体形貌,并且有效直径为400nm,高度为250nm,高径比为0.625。经过测量,所述分子筛的总比表面积为427m2/g,孔容为0.418ml/g。XRF分析结果显示Si/Al2=58。
实施例VI-9
将0.588g偏铝酸钠加入45mL的Teflon容器中,加入8.024g模板剂B,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=100、H2O/SiO2=7.6、模板剂B/SiO2=0.15。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。
该产品的XRD图见图VI-11。
实施例VI-10
将0.49g偏铝酸钠加入45mL的Teflon容器中,加入8.024g模板剂B,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=120、H2O/SiO2=7.5、模板剂B/SiO2=0.15。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。该产品的XRD图见图VI-12。
实施例VI-11
将0.392g偏铝酸钠加入45mL的Teflon容器中,加入8.024g模板剂B,然后加入3g粗块硅胶(青岛海洋化工有限公司,工业品,SiO2含量为98.05%),静置陈化1h充分混合,其中各组分的摩尔比为:SiO2/Al2O3=150、H2O/SiO2=7.3、模板剂B/SiO2=0.15。
将上述混合物装入45mL的带Teflon内衬的钢制高压釜中加盖并密封,将高压釜放置于转动的对流烘箱中,转速设定为20rpm,在120℃反应1天后升温至150℃反应5天。取出高压釜并使其迅速冷却至室温,将混合物在5000rpm的高速离心机上分离,收集固体,用去离子水充分洗涤,在100℃干燥5小时后,即得产品。该产品的XRD图见图VI-13。
附图说明
图VI-1为实施例VI-3制造的分子筛的扫描电镜图。
图VI-2为实施例VI-3制造的分子筛的XRD图。
图VI-3为实施例VI-3制造的分子筛的NH3-TPD图。
图VI-4为实施例VI-3制造的分子筛的红外光谱图。
图VI-5为实施例VI-4制造的分子筛的扫描电镜图。
图VI-6为实施例VI-4制造的分子筛的XRD图。
图VI-7为实施例VI-5制造的分子筛的扫描电镜图。
图VI-8为实施例VI-6制造的分子筛的扫描电镜图。
图VI-9为实施例VI-7制造的分子筛的扫描电镜图。
图VI-10为实施例VI-8制造的分子筛的扫描电镜图。
图VI-11为实施例VI-9制造的分子筛的XRD图。
图VI-12为实施例VI-10制造的分子筛的XRD图。
图VI-13为实施例VI-11制造的分子筛的XRD图。
图VI-14(a)为本发明的分子筛的端面轮廓线具有一种外凸形状的示意图,图VI-14(b)为本发明的分子筛的端面轮廓线具有另一种外凸形状的示意图,图VI-14(c)为本发明的分子筛的端面轮廓线不具有外凸形状而是平坦形状的示意图。
本公开的说明书中,说明了大量具体细节。然而,能够理解,本公开的实施例可以在没有这些具体细节的情况下实践。在一些实例中, 并未详细示出公知的方法、结构和技术,以便不模糊对本说明书的理解。
类似地,应当理解,为了精简本公开并帮助理解所公开的方面中的一个或多个,在上面对本公开的示例性实施例的描述中,各个特征有时被一起分组到单个实施例、图、或者对其的描述中。然而,并不应将该公开的内容解释成反映如下意图:即所要求保护的本发明要求比在每个权利要求中所明确记载的特征更多的特征。更确切地说,如权利要求书所反映的那样,要求保护的技术方案可少于说明书中所描述的单个实施例的所有特征。因此,遵循具体实施方式的权利要求书由此明确地并入该具体实施方式,其中每个权利要求本身都刻作为本发明的单独实施例。
还需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限定的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本公开的实施例的技术方案,而非对其进行限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围。

Claims (30)

  1. 一种分子筛,其特征在于,具有(原生)海绵结构,并具有基本上如下表所示的X射线衍射图案,
    Figure PCTCN2017000327-appb-100001
  2. 按照权利要求1所述的分子筛,其中所述海绵结构包含粗孔洞和/或中孔洞,优选所述粗孔洞和/或所述中孔洞开口于所述海绵结构的端面和/或侧面。
  3. 按照权利要求2所述的分子筛,其中所述粗孔洞的直径为从80nm至2μm,优选从80nm至1.5μm,并且所述中孔洞的直径为从2nm至30nm,优选从2nm至4nm和/或从7nm至15nm(优选从8nm至9nm)。
  4. 按照权利要求2所述的分子筛,其中所述中孔洞的总比表面积为从50m2/g至250m2/g,优选从100m2/g至150m2/g,孔容为从0.05ml/g至0.40ml/g,优选从0.15ml/g至0.30ml/g,并且所述粗孔洞的总比表面积为从10m2/g至100m2/g,优选从50m2/g至100m2/g,孔容为从0.5ml/g至3.0ml/g,优选从1.0ml/g至2.0ml/g。
  5. 按照权利要求1所述的分子筛,其中所述海绵结构包含微孔洞,其中所述微孔洞的直径为从0.5nm至小于2nm,优选从0.5nm至0.8nm和/或从1.1nm至1.8nm,总比表面积为从100m2/g至300m2/g,优选从150m2/g至250m2/g,孔容为从0.03ml/g至0.20ml/g,优选从0.05ml/g至0.15ml/g。
  6. 按照权利要求1所述的分子筛,具有柱状(优选棱柱状,更优选六棱柱状)的晶体形貌,优选具有空心柱状的晶体形貌。
  7. 按照权利要求6所述的分子筛,所述晶体形貌的尺寸包括:有效直径为从100nm至5000nm,优选从1000nm至3000nm,高度为从500nm至3000nm,优选从1000nm至3000nm,高径比为从1/3至5,优选从1/3至3。
  8. 按照权利要求1所述的分子筛,具有式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为从30至100,优选从55至100;所述第一氧化物选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅或者二氧化硅与二氧化锗的组合;所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝;水与所述第一氧化物的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5。
  9. 一种分子筛,具有从扁棱柱状至扁圆柱状的(原生)晶体形貌,优选其纵剖面上端面轮廓线中的一条或两条具有外凸形状,并具有基本上如下表所示的X射线衍射图案,
    Figure PCTCN2017000327-appb-100002
  10. 按照权利要求9所述的分子筛,其中所述晶体形貌的尺寸包括:有效直径为从100nm至1000nm,优选从100nm至500nm,高度为从100nm至1000nm,优选从150nm至300nm,高径比为从0.1至0.9,优选从0.4至0.7。
  11. 按照权利要求9所述的分子筛,其中所述分子筛的总比表面积 为从400m2/g至600m2/g,优选从450m2/g至580m2/g,孔容为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。
  12. 按照权利要求9所述的分子筛,具有式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为从40至200,优选从40至150;所述第一氧化物选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅或者二氧化硅与二氧化锗的组合,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝;水与所述第一氧化物的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.08至0.5或者从0.3至0.5。
  13. 一种分子筛,其特征在于,具有式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所代表的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为从5至∞,优选从25至95,更优选从30至70;所述第一氧化物选自二氧化硅、二氧化锗、二氧化锡、二氧化钛和二氧化锆中的至少一种,优选二氧化硅或者二氧化硅与二氧化锗的组合,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝;水与所述第一氧化物的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5,并且具有基本上如下表所示的X射线衍射图案,
    Figure PCTCN2017000327-appb-100003
    Figure PCTCN2017000327-appb-100004
  14. 按照权利要求13所述的分子筛,具有柱状(优选棱柱状,更优选六棱柱状)的晶体形貌。
  15. 按照权利要求14所述的分子筛,其中所述晶体形貌的尺寸包括:有效直径为从100nm至1000nm,优选从300nm至700nm,高度为从100nm至1000nm,优选从150nm至700nm,高径比为从1/3至8,优选从1.5至5或者从2至5。
  16. 按照权利要求13所述的分子筛,其中所述分子筛的总比表面积为从400m2/g至600m2/g,优选从450m2/g至580m2/g,孔容为从0.3ml/g至0.5ml/g,优选从0.30ml/g至0.40ml/g。
  17. 按照权利要求1、9或13所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
    Figure PCTCN2017000327-appb-100005
  18. 按照权利要求1、9或13所述的分子筛,其中所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
    Figure PCTCN2017000327-appb-100006
  19. 一种分子筛的制造方法,包括在晶化条件下使第一氧化物源、 第二氧化物源、任选的碱源、有机模板剂和水接触,以获得分子筛的步骤,和任选地,焙烧所述获得的分子筛的步骤,其中所述有机模板剂包含下式(I)所代表的化合物,
    Figure PCTCN2017000327-appb-100007
    其中,基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基,优选各自独立地选自C3-12直链亚烷基和C3-12直链氧杂亚烷基,或者优选其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链亚烷基和C3-12直链或支链氧杂亚烷基,更优选其中一个选自C3-12直链亚烷基,另一个选自C3-12直链亚烷基和C3-12直链氧杂亚烷基,特别优选其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基和C4-6直链氧杂亚烷基(优选C4-6直链一氧杂亚烷基,更优选-(CH2)m-O-(CH2)m-,其中各数值m彼此相同或不同,各自独立地代表2或3);多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
  20. 按照权利要求19所述的制造方法,其中基团R1和R2彼此相同或不同,各自独立地选自C3-12直链或支链亚烷基,优选各自独立地选自C3-12直链亚烷基,特别优选其中一个选自C3-12直链亚烷基,另一个选自C4-6直链亚烷基;多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
  21. 按照权利要求19所述的制造方法,其中基团R1和R2彼此不同,其中一个选自C3-12直链或支链亚烷基,另一个选自C3-12直链或支链氧杂亚烷基,优选其中一个选自C3-12直链亚烷基,另一个选自C3-12直链氧杂亚烷基(优选C4-6直链氧杂亚烷基,更优选C4-6直链一氧杂亚烷基,更优选-(CH2)m-O-(CH2)m-,其中各数值m彼此相同或不同,各自独立地代表2或3);多个基团R彼此相同或不同,各自独立地选自C1-4直链或支链烷基,优选各自独立地选自甲基和乙基,更优选均为甲基;X为OH。
  22. 按照权利要求19所述的制造方法,其中所述第一氧化物源选自二氧化硅源、二氧化锗源、二氧化锡源、二氧化钛源和二氧化锆源中的至少一种,优选二氧化硅源或者二氧化硅源与二氧化锗源的组合,所述第二氧化物源选自氧化铝源、氧化硼源、氧化铁源、氧化镓源、稀土氧化物源、氧化铟源和氧化钒源中的至少一种,优选氧化铝源。
  23. 按照权利要求19所述的制造方法,其中所述晶化条件包括:晶化温度为从80℃至120℃,优选从120℃至170℃或者从120℃至200℃,晶化时间为至少1天,优选至少2天,优选从3天至8天、从5天至8天或者从4天至6天,并且所述焙烧条件包括:焙烧温度为从300℃至750℃,优选从400℃至600℃,焙烧时间为从1小时至10小时,优选从3小时至6小时。
  24. 按照权利要求20所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从5至∞,特别是从5至小于40(比如从20至小于40)、从40至200(比如从40至150)、从大于200至∞(比如从大于200至700);水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.08至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
  25. 按照权利要求21所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从5至∞,特别是从5至小于30(比如从10至小于30)、从30至100(比如从55至100)、从大于100至∞(比如从200至∞,或者从200至700);水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45 至0.7。
  26. 按照权利要求19所述的制造方法,其中所述第一氧化物源(以所述第一氧化物为计)与所述第二氧化物源(以所述第二氧化物为计)的摩尔比为从5至∞,优选从25至95,更优选从30至70;水与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从5至50,优选从5至15;所述有机模板剂与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0.02至0.5,优选从0.05至0.5、从0.15至0.5或者从0.3至0.5;所述碱源(以OH-为计)与所述第一氧化物源(以所述第一氧化物为计)的摩尔比为从0至1,优选从0.04至1、从0.1至1、从0.2至1、从0.3至0.7或者从0.45至0.7。
  27. 一种分子筛,其特征在于,由按照权利要求19至26任一项所述的制造方法获得。
  28. 一种分子筛组合物,其特征在于,包含按照权利要求1至18和27任一项所述的分子筛或者按照权利要求19至26任一项所述的制造方法获得的分子筛,以及粘结剂。
  29. 一种烃的转化方法,其特征在于,包括在催化剂的存在下使烃发生转化反应的步骤,其中所述催化剂包含或制造自按照权利要求1至18和27任一项所述的分子筛、按照权利要求19至26任一项所述的制造方法获得的分子筛、或者权利要求28所述的分子筛组合物。
  30. 按照权利要求29所述的转化方法,其中所述转化反应选自催化裂化、加氢裂化、歧化、烷基化、低聚和异构化。
PCT/CN2017/000327 2016-04-27 2017-04-26 一种分子筛、其制造方法及其应用 WO2017185820A1 (zh)

Priority Applications (10)

Application Number Priority Date Filing Date Title
EP17788483.0A EP3450396A4 (en) 2016-04-27 2017-04-26 MOLECULAR SIEVE, METHOD FOR THE PRODUCTION THEREOF AND APPLICATION THEREOF
KR1020187033906A KR102359046B1 (ko) 2016-04-27 2017-04-26 분자체, 그 제조 방법 및 용도
US16/095,208 US10737945B2 (en) 2016-04-27 2017-04-26 Molecular sieve, its preparation and application thereof
SG11201808701WA SG11201808701WA (en) 2016-04-27 2017-04-26 Molecular sieve, its preparation and application thereof
JP2018556388A JP7051709B2 (ja) 2016-04-27 2017-04-26 分子篩、その製造方法および応用
BR112018071728-2A BR112018071728B1 (pt) 2016-04-27 2017-04-26 Peneira molecular, processo para sua preparação, composição de peneira molecular e processo para a conversão de um hidrocarboneto
CA3021606A CA3021606C (en) 2016-04-27 2017-04-26 Molecular sieve, method for manufacture thereof, and application thereof
RU2018141094A RU2732141C2 (ru) 2016-04-27 2017-04-26 Молекулярное сито, его получение и применение
ZA2018/06888A ZA201806888B (en) 2016-04-27 2018-10-16 Molecular sieve, its preparation and application thereof
US16/946,927 US11091372B2 (en) 2016-04-27 2020-07-11 Molecular sieve, its preparation and application thereof

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN201610267141.9 2016-04-27
CN201610267143 2016-04-27
CN201610267143.8 2016-04-27
CN201610267141 2016-04-27
CN201611204950.1 2016-12-23
CN201611204950 2016-12-23

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/095,208 A-371-Of-International US10737945B2 (en) 2016-04-27 2017-04-26 Molecular sieve, its preparation and application thereof
US16/946,927 Continuation US11091372B2 (en) 2016-04-27 2020-07-11 Molecular sieve, its preparation and application thereof

Publications (1)

Publication Number Publication Date
WO2017185820A1 true WO2017185820A1 (zh) 2017-11-02

Family

ID=60160676

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/000327 WO2017185820A1 (zh) 2016-04-27 2017-04-26 一种分子筛、其制造方法及其应用

Country Status (12)

Country Link
US (2) US10737945B2 (zh)
EP (1) EP3450396A4 (zh)
JP (1) JP7051709B2 (zh)
KR (1) KR102359046B1 (zh)
CN (1) CN107311198B (zh)
BR (1) BR112018071728B1 (zh)
CA (1) CA3021606C (zh)
RU (1) RU2732141C2 (zh)
SG (1) SG11201808701WA (zh)
TW (1) TWI736616B (zh)
WO (1) WO2017185820A1 (zh)
ZA (1) ZA201806888B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111346664A (zh) * 2018-12-24 2020-06-30 中国石油化工股份有限公司 改性钒硅分子筛及其制备方法以及硫醚氧化方法
RU2815006C1 (ru) * 2020-05-11 2024-03-11 Чайна Петролеум Энд Кемикал Корпорейшн Молекулярное сито scm-33, способ его приготовления и его применение

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115231583B (zh) * 2021-04-22 2024-01-30 中国石油化工股份有限公司 一种eri骨架单晶分子筛及其制备方法和应用
CN115676848A (zh) * 2021-07-29 2023-02-03 中国石油化工股份有限公司 Zsm-48分子筛及其制备方法
CN114212800B (zh) * 2022-01-13 2023-05-30 万华化学(宁波)有限公司 一种新型高硅y型沸石及其制备方法与应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538711A (en) * 1995-01-23 1996-07-23 Mobil Oil Corporation Foam reduction during synthesis of MCM-41
CN104370296A (zh) * 2014-02-13 2015-02-25 南京大学 一种超大孔硅酸盐分子筛nud-1及其制备方法
CN105129816A (zh) * 2015-08-19 2015-12-09 青岛大学 18元环超大孔道亚磷酸铍分子筛及其制备方法
CN106542539A (zh) * 2016-10-25 2017-03-29 浙江大学 以聚季铵盐模板剂合成大孔emm‑23沸石分子筛的方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140249A (en) 1960-07-12 1964-07-07 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US3140253A (en) 1964-05-01 1964-07-07 Socony Mobil Oil Co Inc Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
US5167942A (en) * 1990-11-21 1992-12-01 Board Of Regents, The University Of Texas System Methods for the preparation of molecular sieves, including zeolites, using metal chelate complexes
US5271922A (en) * 1992-10-09 1993-12-21 Chevron Research And Technology Company Process for preparing molecular sieves using a sparteine template
US5362695A (en) * 1993-04-13 1994-11-08 Mobil Oil Corp. Inorganic molecular sieves encapsulating chelates
US5362697A (en) 1993-04-26 1994-11-08 Mobil Oil Corp. Synthetic layered MCM-56, its synthesis and use
JPH09512782A (ja) * 1994-05-10 1997-12-22 シエル・インターナシヨネイル・リサーチ・マーチヤツピイ・ベー・ウイ 細孔の径が大きい分子ふるいの製造方法
US5689024A (en) 1994-06-03 1997-11-18 Mobil Oil Corporation Use of crystalline SUZ-9
US5840264A (en) 1994-08-22 1998-11-24 Board Of Trustees Operating Michigan State University Crystalline inorganic oxide compositions prepared by neutral templating route
DE19524148C1 (de) * 1995-07-03 1996-08-29 Bosch Gmbh Robert Schwingungsaufnehmer
FR2754809B1 (fr) 1996-10-21 2003-04-04 Inst Francais Du Petrole Zeolithe im-5, son procede de preparation et ses applications catalytiques
DK0999182T3 (da) 1998-11-02 2003-07-14 Inst Francais Du Petrole Fremgangsmåde til fremstilling af en zeolit af strukturtypen EUO ved hjælp af kim af zeolitiske materialer og anvendelse heraf som katalysator til isomerisering af aromatiske forbindelser med otte carbonatomer
US6800266B2 (en) * 2000-04-13 2004-10-05 Board Of Trustees Of Michigan State University Process for the preparation of hybrid mesoporous molecular sieve silicas from amine surfactants
ES2186488B1 (es) * 2000-10-11 2004-01-16 Univ Valencia Politecnica Zeolita itq-17.
CA2359825C (en) * 2000-10-26 2008-09-23 Quanjie Liu A mesoporous aluminum based molecular sieve and a process for the preparation of the same
JP2002356323A (ja) * 2001-06-01 2002-12-13 Nagoya Industrial Science Research Inst 新規な〔Al〕−SSZ−31(ゼオライト)及びその製造方法
JP5485505B2 (ja) 2001-10-11 2014-05-07 三菱樹脂株式会社 ゼオライト、及び該ゼオライトを含む水蒸気吸着材
CN100569647C (zh) * 2007-02-02 2009-12-16 华东理工大学 一种mww分子筛的合成方法
KR101147007B1 (ko) * 2009-02-02 2012-05-22 한국과학기술원 싸이클릭다이암모늄을 이용한 메조기공 및 마크로기공을 추가적으로 포함하는 bea, mtw, mfi 구조의 제올라이트의 제조과정
KR101923248B1 (ko) 2011-08-04 2018-11-28 엑손모빌 케미칼 패턴츠 인코포레이티드 Emm-23 분자체 물질, 그의 합성 및 용도
US10239051B2 (en) * 2013-07-04 2019-03-26 Total Research & Technology Feluy Catalyst compositions comprising small size molecular sieves crystals deposited on a porous material
CN104511271B (zh) * 2013-09-24 2017-12-15 中国石油化工股份有限公司 一种分子筛、其制造方法及其应用
US10173903B2 (en) 2014-06-16 2019-01-08 University Of Houston System Zeolite compositions and methods for tailoring zeolite crystal habits with growth modifiers
WO2015198268A1 (en) 2014-06-27 2015-12-30 Sabic Global Technologies B.V. Processes and systems for preparing glycerol tert-butyl ethers from glycerol and isobutylene
CN105312024B (zh) * 2014-07-11 2019-04-16 中国石油化工股份有限公司 一种mww结构分子筛及其制备方法
CN106608636B (zh) * 2015-10-27 2019-02-01 中国石油化工股份有限公司 一种euo或nes结构分子筛的制备方法
CN106608857B (zh) * 2015-10-27 2018-11-02 中国石油化工股份有限公司 一种二氮氧杂环烷二溴盐及制备方法与应用
US10449528B2 (en) * 2016-03-04 2019-10-22 Uop Llc High charge density silicometallophosphate molecular sieves
CN107285330B (zh) * 2016-03-30 2019-04-16 中国石油化工股份有限公司 一种nu-88分子筛的制备方法
CN107445178B (zh) * 2016-06-01 2019-08-16 中国石油化工股份有限公司 一种ssz-26分子筛的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5538711A (en) * 1995-01-23 1996-07-23 Mobil Oil Corporation Foam reduction during synthesis of MCM-41
CN104370296A (zh) * 2014-02-13 2015-02-25 南京大学 一种超大孔硅酸盐分子筛nud-1及其制备方法
CN105129816A (zh) * 2015-08-19 2015-12-09 青岛大学 18元环超大孔道亚磷酸铍分子筛及其制备方法
CN106542539A (zh) * 2016-10-25 2017-03-29 浙江大学 以聚季铵盐模板剂合成大孔emm‑23沸石分子筛的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3450396A4 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111346664A (zh) * 2018-12-24 2020-06-30 中国石油化工股份有限公司 改性钒硅分子筛及其制备方法以及硫醚氧化方法
CN111346664B (zh) * 2018-12-24 2022-11-15 中国石油化工股份有限公司 改性钒硅分子筛及其制备方法以及硫醚氧化方法
RU2815006C1 (ru) * 2020-05-11 2024-03-11 Чайна Петролеум Энд Кемикал Корпорейшн Молекулярное сито scm-33, способ его приготовления и его применение

Also Published As

Publication number Publication date
JP2019514828A (ja) 2019-06-06
KR20180137004A (ko) 2018-12-26
RU2018141094A (ru) 2020-05-27
EP3450396A1 (en) 2019-03-06
US20190144289A1 (en) 2019-05-16
JP7051709B2 (ja) 2022-04-11
RU2732141C2 (ru) 2020-09-11
CA3021606A1 (en) 2017-11-02
TWI736616B (zh) 2021-08-21
US20200339433A1 (en) 2020-10-29
RU2018141094A3 (zh) 2020-05-27
BR112018071728A2 (pt) 2019-02-19
SG11201808701WA (en) 2018-11-29
CA3021606C (en) 2024-01-09
CN107311198B (zh) 2020-06-16
CN107311198A (zh) 2017-11-03
US11091372B2 (en) 2021-08-17
BR112018071728B1 (pt) 2022-09-27
EP3450396A4 (en) 2019-12-04
KR102359046B1 (ko) 2022-02-04
TW201806866A (zh) 2018-03-01
US10737945B2 (en) 2020-08-11
ZA201806888B (en) 2020-07-29

Similar Documents

Publication Publication Date Title
US11091372B2 (en) Molecular sieve, its preparation and application thereof
JP6697481B2 (ja) 新規cit−13位相の結晶質ゲルマノケイ酸塩物質およびその調製方法
CN108238611B (zh) 一种分子筛的制造方法及其产品和产品的应用
US6346140B2 (en) Porous solid for gas adsorption separation and gas adsorption separation process employing it
ES2711549T3 (es) Tamiz molecular SCM-10, procedimiento para producirlo y uso del mismo
WO2015043114A1 (zh) 一种分子筛、其制造方法及其应用
Yuan et al. Synthesis and application of metal-containing ZSM-5 for the selective catalytic reduction of NOx with NH3
Rodrıguez-Castellón et al. Textural and structural properties and surface acidity characterization of mesoporous silica-zirconia molecular sieves
Li et al. Ionothermal syntheses and characterizations of cobalt-substituted extra-large pore aluminophosphate molecular sieves with-CLO topology
CN106276964B (zh) 一种晶内含磷的zsm-5分子筛及其制备方法
US11065606B2 (en) Metal-substituted beta zeolite and method for producing same
JPH0859223A (ja) 微小−中間細孔ゲルおよびその製造方法
CN109384637B (zh) 苯和乙烯液相烷基化制乙苯的方法
Liu et al. A facile strategy of preparing nanosized NaY zeolite by stimulating negative crystals to accelerate the formation of D6R units
KR101816097B1 (ko) 나노 크기를 갖는 제올라이트 입자를 포함하는 경질 올레핀의 올리고머화 반응용 촉매 및 이의 용도
Chen et al. Direct synthesis of core–shell MFI zeolites with spatially tapered trimodal mesopores via controlled orthogonal self-assembly
KR102416759B1 (ko) Cha 제올라이트 제조방법 및 이로부터 제조된 거대입자의 cha 제올라이트
CN111099613B (zh) 分子筛、其合成方法及其用途
CN107311190B (zh) 一种分子筛、其制造方法及其应用
CN114477209A (zh) 一种硅铝分子筛及其制备方法和应用
KR20220048255A (ko) 높은 실리카 골격조성을 갖는 kfi형 제올라이트 및 그 제조방법, 이를 이용한 프로필렌의 선택적 분리 방법

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 3021606

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018556388

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018071728

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20187033906

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2017788483

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17788483

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017788483

Country of ref document: EP

Effective date: 20181127

ENP Entry into the national phase

Ref document number: 112018071728

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181023