WO2015043114A1 - 一种分子筛、其制造方法及其应用 - Google Patents

一种分子筛、其制造方法及其应用 Download PDF

Info

Publication number
WO2015043114A1
WO2015043114A1 PCT/CN2014/000867 CN2014000867W WO2015043114A1 WO 2015043114 A1 WO2015043114 A1 WO 2015043114A1 CN 2014000867 W CN2014000867 W CN 2014000867W WO 2015043114 A1 WO2015043114 A1 WO 2015043114A1
Authority
WO
WIPO (PCT)
Prior art keywords
molecular sieve
oxide
group
ratio
surface area
Prior art date
Application number
PCT/CN2014/000867
Other languages
English (en)
French (fr)
Inventor
杨为民
王振东
孙洪敏
张斌
宦明耀
沈震浩
薛明伟
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司上海石油化工研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司上海石油化工研究院 filed Critical 中国石油化工股份有限公司
Priority to DK14849642.5T priority Critical patent/DK3050848T3/da
Priority to US15/024,604 priority patent/US10099935B2/en
Priority to EP14849642.5A priority patent/EP3050848B1/en
Priority to JP2016516882A priority patent/JP6392860B2/ja
Priority to SG11201602303PA priority patent/SG11201602303PA/en
Priority to ES14849642T priority patent/ES2934225T3/es
Priority to KR1020167010568A priority patent/KR102230996B1/ko
Priority to BR112016006685A priority patent/BR112016006685B8/pt
Publication of WO2015043114A1 publication Critical patent/WO2015043114A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/46Other types characterised by their X-ray diffraction pattern and their defined composition
    • C01B39/48Other types characterised by their X-ray diffraction pattern and their defined composition using at least one organic template directing agent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28061Surface area, e.g. B.E.T specific surface area being in the range 100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28057Surface area, e.g. B.E.T specific surface area
    • B01J20/28064Surface area, e.g. B.E.T specific surface area being in the range 500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28054Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J20/28069Pore volume, e.g. total pore volume, mesopore volume, micropore volume
    • B01J20/28073Pore volume, e.g. total pore volume, mesopore volume, micropore volume being in the range 0.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3078Thermal treatment, e.g. calcining or pyrolizing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7038MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/90Regeneration or reactivation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/617500-1000 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/02Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J38/00Regeneration or reactivation of catalysts, in general
    • B01J38/04Gas or vapour treating; Treating by using liquids vaporisable upon contacting spent catalyst
    • B01J38/12Treating with free oxygen-containing gas
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G29/00Refining of hydrocarbon oils, in the absence of hydrogen, with other chemicals
    • C10G29/20Organic compounds not containing metal atoms
    • C10G29/205Organic compounds not containing metal atoms by reaction with hydrocarbons added to the hydrocarbon oil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/24After treatment, characterised by the effect to be obtained to stabilize the molecular sieve structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Definitions

  • the present invention relates to a molecular sieve, especially a SCM-1 molecular sieve or SCM-2 molecular sieve belonging to the MWW family.
  • the invention also relates to a process for the manufacture of these molecular sieves and to their use as adsorbents or catalysts and the like.
  • the MCM-22 molecular sieve belongs to the MWW topology and has two independent ten-membered ring tunnel systems: a set of two-dimensional sinusoidal channels with approximately elliptical cross-sections and apertures. Another set of ten-member ring channels contains dimensions of Approximate cylindrical twelve-element ring super cage, the super cage passes through a slightly twisted ten-membered ring window Connected with the outside world.
  • the MCM-22 molecular sieve also has a bowl-shaped twelve-membered ring semi-super cage located on the outer surface of the crystal.
  • MCM-22 molecular sieve The structure of MCM-22 molecular sieve was studied by high resolution electron microscopy and simultaneous X-ray powder diffraction. It was found that the MCM-22 molecular sieve raw powder (MCM-22(P)) without calcining to remove the template agent and the calcined MCM-22 molecular sieve ( MCM-22(C)) has significant structural differences.
  • the unit cell parameters a(b) are the same, both are 1.427nm, and the unit cell parameter c of MCM-22(C) is At 2.52 nm, the unit cell parameter c of MCM-22(P) was 2.68 nm, and the unit cell parameter a(b) was unchanged, indicating that the layered structure of MCM-22(P) already existing did not change during the calcination.
  • the mechanism for the conversion of MCM-22(P) to the MCM-22(C) by calcination is as follows: First, the interlayer templating agent desorbs and decomposes at high temperature, and at the same time forms silanol groups on the surface of the layer structure ( Si-OH) Finally, the surface Si-OH is dehydrated and condensed to form Si-O-Si bonds, and adjacent layer structures are joined to form a multilayer structure.
  • MCM-22 molecular sieve The morphology of MCM-22 molecular sieve is generally in the form of flakes or pancakes, with a size of about 2 microns and a thickness of about ten to several tens of nm. It is found by observation of MCM-22 molecular sieve crystals by transmission electron microscopy. MCM-22 molecular sieve flake crystals have multiple layers. In the structure, the multilayer structure is formed by a "base layer structure" having a thickness of about 2.5 nm connected by an oxygen bridge. Because of the different thickness of the molecular sieve crystals, the multilayer structure has a different number of basic layer structures, but more than 5 layers, even more than 10 layers.
  • MCM-22 molecular sieve Due to the multi-layer structure of the MCM-22 molecular sieve, the two sets of ten-membered ring channels are respectively located in the layer. There is a strict restriction on molecular diffusion between the interior of the structure and two adjacent base layer structures, while the twelve-membered ring semi-super cage on the surface of the crystal facilitates the diffusion of molecules.
  • MCM-22 molecular sieves were used to catalyze the liquid phase alkylation of benzene with ethylene. This reaction was confirmed to occur only in a bowl-shaped semi-super cage located on the surface of the crystal, and the 10-membered ring channel in the interlayer and the layer. Little contribution to activity.
  • the structure of the layered material has plasticity characteristics, such as the international patent application WO9717290.
  • MCM-22(P) is swollen, and then the swollen MCM-22(P) is sonicated to destroy the interaction between the base layer structures and disperse the base layer structure, thereby obtaining a single base layer structure.
  • single layer structure of the ITQ-2 molecular sieve.
  • the ITQ-2 molecular sieve has been identified as a novel MWW topology molecular sieve.
  • ITQ-2 molecular sieve has this special single-layer structure, its crystal thickness is only about 2.5nm. Compared with MCM-22 molecular sieve, ITQ-2 molecular sieve only retains the ten-membered ring channel located in the layer, and adjacent The 10-membered ring channel containing the cylindrical 12-membered ring super-cage between the layer structures is completely broken, and the super-cage is completely divided into two bowl-shaped semi-cage and is completely open.
  • ITQ-2 The external specific surface area of the molecular sieve is greatly increased (generally about 700 m 2 /g, while the external specific surface area of the MCM-22 molecular sieve is only about 100 m 2 g -1 ), which has no limitation on molecular diffusion, and thus exhibits significantly better than MCM-22.
  • the diffusion properties of molecular sieves are greatly increased (generally about 700 m 2 /g, while the external specific surface area of the MCM-22 molecular sieve is only about 100 m 2 g -1 ), which has no limitation on molecular diffusion, and thus exhibits significantly better than MCM-22.
  • the ITQ-2 molecular sieve has only a single layer of MWW topology, the three-dimensional structure of the MWW material is broken, that is, the complete one cylindrical super cage becomes two bowl-shaped semi-super cages, resulting in the original cage.
  • the B acid center becomes the L acid center ("IR study of the acidity of ITQ-2, an "all-surface” zeolitic system" Journal of Catalysis 214 (2003) 191-199), that is, the main acid center of the ITQ-2 molecular sieve is L acid, which is similar to the acid properties of mesoporous materials.
  • the ITQ-2 molecular sieve has the specific surface area comparable to the mesoporous material, the ITQ-2 molecular sieve is more like a mesoporous material than a crystalline microporous molecular sieve material. Therefore, for the ITQ-2 molecular sieve, due to the destruction of its microporous structure, the ITQ-2 molecular sieve has the same diffusion and adsorption properties as the mesoporous material, and no longer has the thermal stability and water of the crystalline microporous molecular sieve. Characteristics such as thermal stability and shape-selective catalytic properties.
  • the ITQ-2 molecular sieve can efficiently convert the reactants (ie, the reactant conversion ability is high) in the reaction of the acid center or the diffusion limit is serious, but the target product cannot be effectively realized.
  • Selective generation ie, poor product selectivity.
  • the reaction is a reaction catalyzed by a strong acid and a strong acid. Due to the weak acidity of the ITQ-2 molecular sieve, the ITQ-2 molecular sieve is not suitable for this reaction compared to the MCM-22 molecular sieve.
  • the manufacturing process of the ITQ-2 molecular sieve is very complicated, and must include at least the steps of MCM-22 molecular sieve precursor production, MCM-22 molecular sieve precursor swelling and sonication to obtain the ITQ-2 molecular sieve, thereby manufacturing the method.
  • MCM-22 molecular sieve precursor production MCM-22 molecular sieve precursor swelling and sonication to obtain the ITQ-2 molecular sieve, thereby manufacturing the method.
  • the crystal structure of the molecular sieve is often severely damaged, resulting in the loss of a large amount of silicon into the liquid phase, resulting in a product yield of ITQ-2 molecular sieve is difficult to exceed 50%.
  • a swelling agent such as cetyltrimethylammonium bromide (CTAB) is inevitably used.
  • CTAB cetyltrimethylammonium bromide
  • Such expanders have surface-active properties that cause silicon species in the liquid phase to assemble into mesoporous materials around their micelles, separate them from the liquid phase, and then mix them into the product ITQ-2 molecular sieve, thereby reducing the ITQ-2 molecular sieve. purity.
  • the specific surface area of mesoporous materials is much higher than that of microporous molecular sieves, the inclusion of mesoporous materials as impurities can increase the total specific surface area and external specific surface area of the product.
  • the pore walls of such mesoporous materials are amorphous, hydrothermal. Poor stability and poor acid and alkali resistance.
  • the ITQ-2 molecular sieve is a single-layer structure and inevitably is mixed with the aforementioned mesoporous material, if it is regenerated by conventional means such as high-temperature calcination, the surface of the silicon hydroxy (Si-OH), aluminum hydroxy group Dehydration condensation occurs in (Al-OH), and then the framework structure of the molecular sieve is sintered and fused, the pores are covered and blocked, and the active center is lost, resulting in a significant decrease in catalytic performance and difficulty in returning to the level of fresh catalyst.
  • the inventors have painstakingly studied on the basis of the prior art and found that by introducing a specific organic template combination into the molecular sieve manufacturing method, a novel molecular sieve (including SCM-) can be produced in a simple manner. 1 molecular sieve and SCM-2 molecular sieve, the same below), the molecular sieve shows at least equivalent reactant conversion ability compared with the prior art ITQ-2 molecular sieve even in the reaction limited by diffusion, and overcomes The aforementioned problems with the ITQ-2 molecular sieve.
  • the invention relates to the following aspects:
  • a molecular sieve characterized by having an exemplary chemical composition represented by the formula "first oxide ⁇ second oxide” or "first oxide ⁇ second oxide ⁇ organic template agent ⁇ water”
  • the molar ratio of the first oxide to the second oxide is 20-2000, preferably 25-200
  • the mass ratio of the organic templating agent to the first oxide is 0.03-0.38, preferably 0.07 -0.27
  • the mass ratio of water to the first oxide is 0-0.15, preferably 0.02-0.11
  • the first oxide is selected from at least one of silica and cerium oxide, preferably silica.
  • the second oxide is selected from at least one of alumina, boron oxide, iron oxide, gallium oxide, titanium oxide, rare earth oxide, indium oxide, and vanadium oxide, preferably alumina, and the molecular sieve has substantially the following The X-ray diffraction pattern shown in the table,
  • the total pore volume measured by the BET method is not less than 0.5 cm 3 /g, preferably 0.55 to 0.90 cm 3 /g, and the total specific surface area measured by the BET method is not Below 450 m 2 /g, preferably 480-680 m 2 /g, the external specific surface area measured by the BET method is not less than 185 m 2 /g, preferably 200-400 m 2 /g, and the external specific surface area accounts for The ratio of the specific surface area is not less than 40%, preferably 45 to 65%.
  • the molecular sieve of any of the preceding aspects having a MWW topological framework structure, at least 80%, preferably at least 85%, more preferably at least 90%, more preferably at least 95%, more preferably at least 99% of the crystals are about 5 nm (measured by TEM) flake crystals.
  • a method of making a molecular sieve comprising the steps of contacting a first oxide source, a second oxide source, an alkali source, an organic templating agent, an optional halogen source, and water under crystallization conditions to obtain a molecular sieve, And optionally, the step of calcining the obtained molecular sieve,
  • organic templating agent is selected from the group consisting of a first organic templating agent and a second organic templating agent.
  • the molar ratio of the first organic templating agent to the second organic templating agent is from 0.1 to 5.0, preferably from 0.3 to 3.5, more preferably from 0.4 to 1.5.
  • the first organic templating agent is selected from the group consisting of azamonocyclic C 5-15 cycloalkanes (preferably C 6-10 cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, cyclodecane and cyclodecane) At least one, preferably selected from the group consisting of monoaza, diaza or triaza monocyclic C 5-15 cycloalkanes (preferably C 6-10 cycloalkanes such as cyclohexane, cycloheptane, cyclooctane, ring) At least one of decane and cyclodecane, more preferably selected from the group consisting of n skeletons And m a saturated monocyclic compound (wherein each of R 1 and R 2 is independently selected from hydrogen, C 1-4 straight or branched alkyl and C 2-4 straight or branched alkenyl, preferably each independently It is selected from the group consisting
  • the second organic templating agent is at least one selected from the group consisting of an azaaromatic hydrocarbon and a compound represented by the following formula (I).
  • R 4 , R 5 and R 6 are each independently selected from hydrogen, C 1-12 straight or branched alkyl, C 2-12 straight or branched alkenyl, C 5-12 a cyclocycloalkyl group and a C 5-12 monocyclic cycloalkenyl group, provided that (1) at most one of R 4 , R 5 and R 6 is hydrogen, and (2) at least one of R 4 , R 5 and R 6 One (preferably at least two) is selected from the group consisting of the C 5-12 monocyclic cycloalkyl group and the C 5-12 monocyclic cycloalkenyl group, more preferably at least one of R 4 , R 5 and R 6 (preferably at least Two) selected from the C 5-12 monocyclic cycloalkyl group,
  • the compound represented by the formula (I) is more preferably selected from the group consisting of N,N-diethylcyclohexylamine (C/N ratio of 10), dicyclohexylamine (C/N ratio of 12) and N-methyl group. At least one of dicyclohexylamine (C/N ratio of 13),
  • the aza-aromatic hydrocarbon is selected from at least one of aza C 6-20 aromatic hydrocarbons (preferably C 6-14 aromatic hydrocarbons, especially benzene, naphthalene, anthracene and phenanthrene), optionally in each of its ring skeletons Further on the nitrogen atom, one further is selected from a C 1-12 straight or branched alkyl group, a C 2-12 straight or branched alkenyl group, a C 5-12 monocyclic cycloalkyl group, C 5-12 a substituent of a monocyclic cycloalkenyl group and a C 6-20 aryl group, preferably selected from a nitrogen aza, a diaza or a triaza C 6-20 aromatic hydrocarbon (preferably a C 6-14 aromatic hydrocarbon) At least one of benzene, naphthalene, anthracene and phenanthrene, more preferably selected from the group consisting of quinoline (C/N ratio of 9), N-phenylquino
  • the aza monocyclic cycloalkane has a C/N ratio of more than 2, more preferably 2.5 or more, of the compound of the formula (I).
  • the C/N ratio is 10 or higher, 12 or higher, or 13 or higher, and the aza aroma has a C/N ratio of 9 or higher, 10 or higher, or 11 or higher.
  • the first oxide source in terms of the first oxide
  • the second oxide source in the second oxide
  • the molar ratio of the alkali source, the organic template, the halogen source and water is 1: (0.0005-0.05): (0.01-0.3): (0.05-1.4): (0-0.5) : (5-100), preferably 1: (0.005-0.04): (0.05-0.2): (0.2-1.0): (0-0.3): (10-40)
  • the crystallization conditions include: crystallization temperature It is 140-180 ° C, preferably 145-170 ° C
  • the crystallization time is 1-6 days, preferably 2-5 days
  • the baking conditions include: baking temperature is 300-800 ° C, preferably 400-650 ° C, baking time It is 1-10 hours, preferably 3-6 hours.
  • a molecular sieve composition comprising the molecular sieve of any of the preceding aspects or the molecular sieve produced by the method of producing a molecular sieve according to any of the preceding aspects, and a binder.
  • the molecular sieve according to any of the preceding aspects wherein the manufacturing aspect according to any of the preceding aspects
  • the molecular sieve produced by the method of the sub-screen or the molecular sieve composition of any of the foregoing aspects is used as an adsorbent, an alkylation catalyst, an olefin hydration catalyst, an olefin oxidation catalyst, a hydrocracking catalyst or an olefin isomerization catalyst.
  • XRD X-ray diffraction spectrum
  • SCM-1 molecular sieve manufactured in Example I-1 an SCM-1 molecular sieve manufactured in Comparative Example I-1.
  • Figure 1 the XRD spectrum of the SCM-1 molecular sieve is compared to the MCM-22 molecular sieve at d-spacing. Apparent diffraction peaks appear at d-spacing with No diffraction peaks, at d-spacing The diffraction peaks overlap.
  • FIG. 2 is an X-ray diffraction spectrum (XRD) of the SCM-2 molecular sieve manufactured in Example II-1 and the MCM-22 molecular sieve manufactured in Comparative Example II-1.
  • XRD X-ray diffraction spectrum
  • Figure 2 the XRD spectrum of the SCM-2 molecular sieve is compared to the MCM-22 molecular sieve at d-spacing. with Apparent diffraction peaks appear at d-spacing with There are no diffraction peaks.
  • Figure 3a is a TEM photograph of a cross section of the SCM-1 molecular sieve crystal produced in Example I-1, by selecting the face having the smallest size of the plate crystal to visually display the thickness of the plate crystal;
  • Figure 3b is a comparative example I-1.
  • a TEM photograph of the crystal section of the MCM-22 molecular sieve is obtained by visually selecting the thickness of the sheet crystal by selecting the face having the smallest size of the plate crystal.
  • the SCM-1 molecular sieve in Figure 3a has two typical MWW structural base layer structures with a thickness of only about 5 nm.
  • the MCM-22 molecular sieve in Figure 3b is a multi-layered structure with more than 5 layers and a thickness of about 20 nm.
  • the molecular sieve according to the present invention has a MWW topology but has a significantly different layer structure compared to MCM-22 molecular sieve or ITQ-2 molecular sieve, which is reflected by its unique XRD diffraction spectrum.
  • the molecular sieve according to the present invention has a unique "double" base layer structure, while exposing as much as possible the twelve-membered ring semi-super cage of the MWW topology, while retaining the inter-layer containing the cylindrical twelve-membered ring supercage
  • the ten-membered ring channel allows it to exhibit both high reactant conversion capacity (reactant conversion) and high product selectivity and good stability in the catalytic reaction. Qualitative.
  • the molecular sieve according to the present invention exhibits at least comparable or even higher reactant conversion ability than the ITQ-2 molecular sieve even in reactions which are severely restricted by diffusion, such as the Beckmann rearrangement reaction of cyclohexanone oxime. .
  • the skeleton structure is stable, the carbon deposition resistance is strong, and carbon deposition is less likely to occur in the catalytic reaction, thereby exhibiting a significantly extended service life compared with the ITQ-2 molecular sieve.
  • the molecular sieve according to the present invention can be regenerated by high-temperature calcination after deactivation, and its catalytic performance can be easily restored to the same level as that of the fresh catalyst by the regeneration, thereby exhibiting good regenerability or recycling performance.
  • the manufacturing process is simple and easy, the reaction raw materials are simple and easy to obtain, and the operation steps are small, the operating conditions are mild, and therefore energy consumption and material consumption are low, which is suitable for industrial application and implementation.
  • the number of operation steps is small, and the material loss is small, whereby the yield of the molecular sieve product exceeds 80%, and sometimes it can reach 90% or even close to 100%.
  • the crystallization system of the molecular sieve is simple, the crystallization condition is mild, and the crystallization history is simple and controllable, so that the target molecular sieve product having extremely high purity can be obtained without worrying about the influence of harmful impurities.
  • the molecular sieve according to the present invention exhibits a platelet morphology having a uniform thickness (average thickness of about 5 nm) when observed by a transmission electron microscope (TEM), and the content of amorphous impurities is extremely low (preferably, 10% or less) , even less than 1%), showing extremely high crystal purity, which is beneficial to the full performance of its catalytic performance.
  • TEM transmission electron microscope
  • the ratio of the external specific surface area to the total specific surface area is not less than 40%, which is much higher than that of the MCM-22 molecular sieve (generally about 20%), thereby exhibiting a remarkable advantage over the MCM-22 molecular sieve.
  • the molecular sieve according to the invention has good acid catalytic ability, especially in liquid phase alkylation reaction of benzene with ethylene, liquid phase alkylation reaction of benzene and propylene, exhibits excellent catalytic performance and has good industrial application prospect. .
  • the molecular sieve according to the present invention has the advantages of low reaction temperature, high conversion rate, good selectivity, and stable operation when catalyzing the alkylation reaction of benzene.
  • halogen refers to fluorine, chlorine, bromine or iodine.
  • the C 1-4 linear or branched alkyl group for example, a methyl group, an ethyl group or a propyl group may be mentioned, and as a C 2-4 straight chain or branched olefin.
  • the group include a vinyl group, an allyl group or a propenyl group.
  • total specific surface area refers to the total area of a unit mass sample, including internal surface area and external surface area.
  • Non-porous samples have only external surface areas, such as Portland cement, some clay mineral particles, etc.; porous and porous samples have external surface area and internal surface area, such as asbestos fibers, diatomaceous earth and molecular sieves.
  • the surface area of pores having pore diameters less than 2 nm in porous and porous samples is the internal surface area, the surface area after deducting the internal surface area is referred to as the external surface area, and the external surface area per unit mass of sample is the external specific surface area.
  • the pore volume also known as pore volume, refers to the volume of pores per unit mass of porous material.
  • the total pore volume refers to the volume of all the pores (generally only the pores having a pore diameter of less than 50 nm) per unit mass of the molecular sieve.
  • Microporous Volume refers to the volume of all micropores (generally referred to as pores having a pore diameter of less than 2 nm) per unit mass of molecular sieve.
  • w, m, s, vs represent the intensity of the diffraction peak, w is weak, m is medium, s is strong, and vs is very strong, which is known to those skilled in the art.
  • w is less than 20; m is 20-40; s is 40-70; vs is greater than 70.
  • a SCM-1 molecular sieve there is directed to a SCM-1 molecular sieve.
  • the SCM-1 molecular sieve has an illustrative chemical composition as shown by the formula "first oxide ⁇ second oxide". It is known that molecular sieves sometimes contain a certain amount of water (especially just after synthesis), but the present invention does not consider it necessary to specify the amount of moisture because the presence or absence of the moisture does not substantially The XRD spectrum of the molecular sieve is affected. In view of this, the schematic chemical composition actually represents the anhydrous chemical composition of the molecular sieve. Moreover, it is apparent that the schematic chemical composition represents the framework chemical composition of the SCM-1 molecular sieve.
  • the molar ratio of the first oxide to the second oxide is generally from 20 to 2,000, preferably from 25 to 200.
  • the first oxide is at least one selected from the group consisting of silica and ceria, of which silica is preferred.
  • the second oxide is selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, titanium oxide, rare earth oxide, indium oxide, and oxidation. At least one of vanadium, of which alumina is preferred.
  • the SCM-1 molecular sieve has an X-ray diffraction pattern substantially as shown in the following table.
  • the X-ray diffraction pattern of the SCM-1 molecular sieve it is preferable to further include an X-ray diffraction peak substantially as shown in the following table.
  • the SCM-1 molecular sieve has a complete, novel crystalline structure distinct from many materials, particularly MCM-22 molecular sieves, as well as certain multilayer materials.
  • the XRD spectrum of the SCM-1 molecular sieve is in the d-spacing nearby, Apparent diffraction peaks appear nearby, while at d-spacing nearby, nearby, nearby, nearby, nearby, nearby, Nearby and No diffraction peaks nearby, at d-spacing The diffraction peaks overlap.
  • the total pore volume of the SCM-1 molecular sieve is generally not less than 0.5 cm 3 /g, preferably 0.55 to 0.90 cm 3 /g, wherein the micropore volume is generally not less than 0.06 cm 3 / gram, preferably 0.08-0.20 cm 3 /g.
  • the total specific surface area of the SCM-1 molecular sieve is generally not less than 450 m 2 /g, preferably 480-680 m 2 /g.
  • the external specific surface area of the SCM-1 molecular sieve is generally not lower than 185 m 2 /g, preferably 200 to 400 m 2 /g, and the ratio of the external specific surface area to the total specific surface area is generally Not less than 40%, preferably 45-65%.
  • the SCM-1 molecular sieve has a MWW topological framework as shown in its XRD spectrum.
  • At least 80%, preferably at least 85%, more preferably at least 90% of the total crystals of the SCM-1 molecular sieve are observed by transmission electron microscopy (TEM). More preferably, at least 95%, more preferably at least 99%, is a plate crystal having a thickness of about 5 nm (e.g., 5 ⁇ 0.8 nm), thereby exhibiting a nearly pure phase crystalline molecular sieve.
  • TEM transmission electron microscopy
  • the content of the amorphous impurities is very low, for example, the content of the amorphous impurities is generally 20% or less, preferably 15% or less, more preferably 10% or less, more preferably 5% or less, further It is preferably 1% or less.
  • a SCM-2 molecular sieve there is directed to a SCM-2 molecular sieve.
  • the SCM-2 molecular sieve has an illustrative chemical composition (ie, a skeleton chemical composition) as shown by the formula "first oxide ⁇ second oxide".
  • the SCM-2 molecular sieve after its synthesis, further contains an organic templating agent and water in its composition (generally contained or filled in its pores). Therefore, the SCM-2 molecular sieve generally also has an illustrative chemical composition as shown by the formula "first oxide, second oxide, organic template, water”.
  • the molar ratio of the first oxide to the second oxide is generally from 20 to 2,000, preferably from 25 to 200.
  • the mass ratio of the organic templating agent to the first oxide is generally from 0.03 to 0.38, preferably from 0.07 to 0.27.
  • the mass ratio of water to the first oxide in the SCM-2 molecular sieve is generally from 0 to 0.15, preferably from 0.02 to 0.11.
  • the first oxide is at least one selected from the group consisting of silica and ceria, of which silica is preferred.
  • the second oxide is selected from the group consisting of alumina, boron oxide, iron oxide, gallium oxide, titanium oxide, rare earth oxide, indium oxide, and oxidation. At least one of vanadium, of which alumina is preferred.
  • the SCM-2 molecular sieve has an X-ray diffraction pattern substantially as shown in the following table.
  • the SCM-2 molecular sieve has a complete, novel crystalline structure distinct from many materials, particularly MCM-22 molecular sieves, as well as certain multilayer materials.
  • the XRD spectrum of the SCM-2 molecular sieve is in the d-spacing nearby, A distinct diffraction peak appears nearby, while at d-spacing nearby, nearby, nearby, nearby, nearby, nearby, Nearby and There are no diffraction peaks nearby.
  • the total pore volume of the SCM-2 molecular sieve is generally not less than 0.5 cm 3 /g, preferably 0.55 to 0.90 cm 3 /g, wherein the micropore volume is generally not less than 0.06 cm 3 / gram, preferably 0.08-0.20 cm 3 /g.
  • the total specific surface area of the SCM-2 molecular sieve is generally not less than 450 m 2 /g, preferably 480-680 m 2 /g.
  • the external specific surface area of the SCM-2 molecular sieve is generally not lower than 185 m 2 /g, preferably 200-400 m 2 /g, and the ratio of the external specific surface area to the total specific surface area is generally Not less than 40%, preferably 45-65%.
  • the organic template agent for example, The exemplified below when describing the method for producing the molecular sieve of the present invention are exemplified.
  • the organic templating agent is typically a combination of a first organic templating agent and a second organic templating agent.
  • the molar ratio of the first organic templating agent to the second organic templating agent is generally from 0.1 to 5.0, preferably from 0.3 to 3.5, more preferably from 0.4 to 1.5.
  • the first organic templating agent is an azamonocyclic cycloalkane.
  • aza monocyclic cycloalkane is used in the conventional definition in the field of organic chemistry, for example, a compound obtained by substituting a ring carbon atom of a monocyclic cycloalkane with a nitrogen atom, such as an azacyclohexane (piperider). Acridine) or 1,4-diazepane (homopiperazine).
  • aza monocyclic cycloalkane for example, a nitrogen aza, a diaza or a triaza monocyclic cycloalkane can be mentioned.
  • cycloalkane for example, a C 5-15 cycloalkane may be mentioned, among which a C 6-10 cycloalkane is preferable, and more specifically, such as cyclohexane, cycloheptane, cyclooctane, cyclodecane, cyclodecane, and the like.
  • each of the carbon atoms constituting the ring skeleton of the azamonocyclic cycloalkane is further optionally further provided with a linear or branched alkyl group selected from a C 1-4 straight chain or a branched chain and a C 2-4 straight chain or a branched chain. a substituent of an alkenyl group.
  • These azamonocyclic naphthenes may be used alone or in combination of any ones in any ratio.
  • each of R 1 and R 2 is independently selected from hydrogen, C 1-4 straight or branched alkyl and C 2-4 straight or branched alkenyl, preferably each independently selected from hydrogen and methyl.
  • R 3 is hydrogen.
  • n is an integer of 4 to 12, preferably an integer of 5 to 8.
  • m is an integer of 1 to 3, preferably 1 or 2.
  • a carbon atom constituting a ring skeleton does not include any substituent (if any, such as the aforementioned R)
  • the ratio of the total number of carbon atoms of 1 and R 2 ) to the total number of nitrogen atoms is generally greater than 2, preferably 2.5 or higher.
  • the first organic templating agent more specifically, for example, hexamethyleneimine (C/N ratio of 6), piperidine (C/N ratio of 5), 2-methylpiperidone may be mentioned. Pyridine (C/N ratio of 5) and homopiperazine (C/N ratio of 2.5).
  • the second organic templating agent is selected from the group consisting of azaaromatic hydrocarbons and the following formula (I) At least one of the compounds shown.
  • R 4 , R 5 and R 6 are each independently selected from hydrogen, C 1-12 straight or branched alkyl, C 2-12 straight or branched alkenyl, C 5-12 monocyclic cycloalkyl and C 5-12 monocyclic cycloalkenyl.
  • the C 1-12 linear or branched alkyl group for example, a C 1-10 linear or branched alkyl group, a C 1-6 linear or branched alkyl group or a C 1-4 straight chain or More specifically, a branched alkyl group may, for example, be a methyl group, an ethyl group, a propyl group or a butyl group.
  • examples of the branched alkenyl group include a vinyl group, a propenyl group, an allyl group, and a butenyl group.
  • examples of the C 5-12 monocyclic cycloalkyl group include a C 6-10 monocyclic cycloalkyl group or a C 6-8 monocyclic cycloalkyl group, and more specifically, for example, a cyclopentyl group or a cyclohexyl group.
  • These monocyclic cycloalkyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight a substituent of a chain or branched alkenyl group.
  • Examples of the C 5-12 monocyclic cycloalkenyl group include a C 6-10 monocyclic cycloalkenyl group or a C 6-8 monocyclic cycloalkenyl group, and more specifically, for example, a cyclopentenyl group or a cyclopentane group. Dienyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptatrienyl, cyclooctenyl, cyclooctadecenyl, cyclodecenyl and cyclodecenyl, and the like.
  • These monocyclic cycloalkenyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight a substituent of a chain or branched alkenyl group.
  • the premise (1) is that at most one of R 4 , R 5 and R 6 is hydrogen, and the premise (2) is at least one of R 4 , R 5 and R 6 ( Preferably at least two) are selected from the group consisting of the C 5-12 monocyclic cycloalkyl group and the C 5-12 monocyclic cycloalkenyl group. More preferably, as the premise (2), at least one (preferably at least two) of R 4 , R 5 and R 6 is the C 5-12 monocyclic cycloalkyl group.
  • the ratio of the total number of carbon atoms (excluding carbon atoms of any substituent (if any)) to the total number of nitrogen atoms is generally 10 or higher, 12 or higher, or 13 or higher, and the like.
  • N,N-diethylcyclohexylamine (C/N ratio of 10) and dicyclohexylamine (C/N ratio of 12) can be mentioned.
  • the compounds represented by the formula (I) may be used alone or in combination of any ones in any ratio.
  • aza-aromatic hydrocarbon applies to conventional definitions in the field of organic chemistry, such as compounds obtained by substituting a carbon atom on the ring of an aromatic hydrocarbon with a nitrogen atom, such as, for example, azabenzene (pyridine) or Aza naphthalene (quinoline or isoquinoline).
  • aza-aromatic hydrocarbon for example, a monoaza, a diaza or a triazaaromatic hydrocarbon can be mentioned.
  • aromatic hydrocarbon for example, a C 6-20 aromatic hydrocarbon may be mentioned, and among them, a C 6-14 aromatic hydrocarbon, particularly benzene, naphthalene, anthracene, phenanthrene or the like is preferable.
  • each carbon atom constituting the ring skeleton of these aza-aromatic hydrocarbons it is further optionally substituted with a C 1-4 linear or branched alkyl group and a C 2-4 linear or branched alkenyl group.
  • Base hereinafter referred to as substituent A.
  • each of the nitrogen atoms constituting the ring skeleton of these aza-aromatic hydrocarbons is further optionally further provided with (a) a C 1-12 linear or branched alkyl group, a C 2-12 straight chain or a branch.
  • a substituent of an alkenyl group, a C 5-12 monocyclic cycloalkyl group, a C 5-12 monocyclic cycloalkenyl group, and a C 6-20 aryl group (referred to as a substituent B).
  • a substituent B As the C 1-12 linear or branched alkyl group, for example, a C 1-10 linear or branched alkyl group, a C 1-6 linear or branched alkyl group or a C 1-4 straight chain or More specifically, a branched alkyl group may, for example, be a methyl group, an ethyl group, a propyl group or a butyl group.
  • examples of the branched alkenyl group include a vinyl group, a propenyl group, an allyl group, and a butenyl group.
  • examples of the C 5-12 monocyclic cycloalkyl group include a C 6-10 monocyclic cycloalkyl group or a C 6-8 monocyclic cycloalkyl group, and more specifically, for example, a cyclopentyl group or a cyclohexyl group.
  • These monocyclic cycloalkyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight A substituent of a chain or a branched alkenyl group (hereinafter referred to as a substituent A).
  • Examples of the C 5-12 monocyclic cycloalkenyl group include a C 6-10 monocyclic cycloalkenyl group or a C 6-8 monocyclic cycloalkenyl group, and more specifically, for example, a cyclopentenyl group or a cyclopentane group. Dienyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptatrienyl, cyclooctenyl, cyclooctadecenyl, cyclodecenyl and cyclodecenyl, and the like.
  • These monocyclic cycloalkenyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight A substituent of a chain or a branched alkenyl group (hereinafter referred to as a substituent A).
  • the C 6-20 aryl group may, for example, be a C 6-14 aryl group or a C 6-10 aryl group, and more specifically, for example, a phenyl group, a naphthyl group, an anthracenyl group and a phenanthryl group may be mentioned.
  • aryl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight chains or branches.
  • a substituent of an alkenyl group hereinafter referred to as a substituent A).
  • a carbon atom excluding any substituent A (if any) but including any substituent B (if any) carbon atoms
  • the ratio of the total number to the total number of nitrogen atoms i.e., C/N ratio
  • C/N ratio is generally 9 or higher, 10 or higher, or 11 or higher.
  • aza-aromatic hydrocarbon examples include quinoline (C/N ratio of 9), N-phenylquinoline (C/N ratio of 15), and N-cyclohexylpyridine ( The C/N ratio is 11) and 6-methylquinoline (C/N ratio is 9) and the like.
  • these azaaromatic hydrocarbons may be used singly or in combination of plural kinds in any ratio.
  • the SCM-2 molecular sieve has a MWW topological framework structure as indicated by its XRD pattern.
  • TEM transmission electron microscope
  • the SCM-1 molecular sieve described in the foregoing first embodiment can be obtained by calcining the SCM-2 molecular sieve to remove any organic templating agent and water present in the pores thereof.
  • the calcination may be carried out in any manner conventionally known in the art, such as a calcination temperature of usually 300 to 800 ° C, preferably 400 to 650 ° C, and a calcination time of usually 1 to 10 hours, preferably 3 to 6 hours.
  • the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the SCM-1 molecular sieve or the SCM-2 molecular sieve in its composition (generally contained or filled in its pores), sometimes further contains an alkali metal and, depending on the starting materials used in its method of manufacture. / or a metal cation such as an alkaline earth metal cation as a constituent component.
  • the content of the metal cation at this time, for example, the mass ratio of the metal cation to the first oxide is generally from 0 to 0.02, preferably from 0,0002 to 0.006, but is not limited thereto.
  • the SCM-1 is dependent on the starting materials used in its method of manufacture.
  • the molecular sieve or the SCM-2 molecular sieve sometimes further contains halogen as a constituent component in its composition (generally contained or filled in its pores).
  • the content of the halogen at this time is, for example, such that the mass ratio of the halogen to the first oxide is generally from 0 to 0.15, preferably from 0 to 0.03, but is not limited thereto.
  • the SCM-1 molecular sieve or the SCM-2 molecular sieve can be produced by the following production method.
  • the present invention also relates to a method of producing a molecular sieve comprising the steps of contacting a first oxide source, a second oxide source, an alkali source, an organic templating agent, and water under crystallization conditions (hereinafter referred to as contact step).
  • the contacting step may be carried out in any manner conventionally known in the art, such as exemplifying the first oxide source, the second oxide source, The alkali source, the organic templating agent and water are mixed, and the mixture is crystallized under the crystallization conditions.
  • any oxide source conventionally used for this purpose in the art can be used.
  • the first oxide source include silicic acid, silica gel, silica sol, potassium silicate, water glass, or tetraalkoxy silicon.
  • the first oxide is cerium oxide
  • examples of the first oxide source include tetraalkoxy cerium, cerium oxide, cerium nitrate, and the like. These first oxide sources may be used singly or in combination of a plurality of them in a desired ratio.
  • any oxide source conventionally used for this purpose in the art may be used, including but not limited to the corresponding one of the second oxides.
  • the second oxide is alumina
  • examples of the second oxide source include aluminum hydroxide, sodium aluminate, aluminum salt, kaolin or montmorillonite.
  • examples of the second oxide source include boric acid, borate, borax, and boron trioxide.
  • examples of the second oxide source include iron nitrate, iron chloride, iron oxide, and the like.
  • examples of the second oxide source include gallium nitrate, gallium sulfate, gallium oxide, and the like.
  • examples of the second oxide source include titanium tetraalkoxide, titanium oxide, titanium nitrate, and the like.
  • examples of the second oxide source include cerium oxide and cerium oxide.
  • examples of the second oxide source include indium chloride, indium nitrate, indium oxide, and the like.
  • examples of the second oxide source include vanadium chloride, ammonium metavanadate, sodium vanadate, vanadium dioxide, vanadyl sulfate, and the like. These second oxide sources may be used singly or in combination of a plurality of them in a desired ratio.
  • any alkali source conventionally used for this purpose in the art may be used, including but not limited to an inorganic base which is a cation of an alkali metal or an alkaline earth metal, Especially sodium hydroxide and potassium hydroxide.
  • alkali sources may be used alone or in combination of any ones in any ratio.
  • the organic templating agent is a combination of a first organic templating agent and a second organic templating agent.
  • the molar ratio of the first organic templating agent to the second organic templating agent is generally from 0.1 to 5.0, preferably from 0.3 to 3.5, more preferably from 0.4 to 1.5.
  • the first organic templating agent is an azamonocyclic cycloalkane.
  • aza monocyclic cycloalkane is used in the conventional definition in the field of organic chemistry, for example, a compound obtained by substituting a ring carbon atom of a monocyclic cycloalkane with a nitrogen atom, such as an azacyclohexane (piperider). Acridine) or 1,4-diazepane (homopiperazine).
  • aza monocyclic cycloalkane for example, a nitrogen aza, a diaza or a triaza monocyclic cycloalkane can be mentioned.
  • cycloalkane for example, a C 5-15 cycloalkane may be mentioned, among which a C 6-10 cycloalkane is preferable, and more specifically, such as cyclohexane, cycloheptane, cyclooctane, cyclodecane, cyclodecane, and the like.
  • each of the carbon atoms constituting the ring skeleton of the azamonocyclic cycloalkane is further optionally further provided with a linear or branched alkyl group selected from a C 1-4 straight chain or a branched chain and a C 2-4 straight chain or a branched chain. a substituent of an alkenyl group.
  • These azamonocyclic naphthenes may be used alone or in combination of any ones in any ratio.
  • each of R 1 and R 2 is independently selected from hydrogen, C 1-4 straight or branched alkyl and C 2-4 straight or branched alkenyl, preferably each independently selected from hydrogen and methyl.
  • R 3 is hydrogen.
  • n is an integer of 4 to 12, preferably an integer of 5 to 8.
  • m is an integer of 1 to 3, preferably 1 or 2.
  • a carbon atom constituting a ring skeleton does not include any substituent (if any, such as the aforementioned R)
  • the ratio of the total number of carbon atoms of 1 and R 2 ) to the total number of nitrogen atoms is generally greater than 2, preferably 2.5 or higher.
  • the first organic templating agent more specifically, for example, hexamethyleneimine (C/N ratio of 6), piperidine (C/N ratio of 5), 2-methylpiperidone may be mentioned. Pyridine (C/N ratio of 5) and homopiperazine (C/N ratio of 2.5).
  • the second organic templating agent is at least one selected from the group consisting of an azaaromatic hydrocarbon and a compound represented by the following formula (I).
  • R 4 , R 5 and R 6 are each independently selected from hydrogen, C 1-12 straight or branched alkyl, C 2-12 straight or branched alkenyl, C 5-12 monocyclic cycloalkyl and C 5-12 monocyclic cycloalkenyl.
  • the C 1-12 linear or branched alkyl group for example, a C 1-10 linear or branched alkyl group, a C 1-6 linear or branched alkyl group or a C 1-4 straight chain or More specifically, a branched alkyl group may, for example, be a methyl group, an ethyl group, a propyl group or a butyl group.
  • examples of the branched alkenyl group include a vinyl group, a propenyl group, an allyl group, and a butenyl group.
  • examples of the C 5-12 monocyclic cycloalkyl group include a C 6-10 monocyclic cycloalkyl group or a C 6-8 monocyclic cycloalkyl group, and more specifically, for example, a cyclopentyl group or a cyclohexyl group.
  • These monocyclic cycloalkyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1 - 4 straight or branched alkyl groups and C 2-4 straight a substituent of a chain or branched alkenyl group.
  • Examples of the C 5-12 monocyclic cycloalkenyl group include a C 6-10 monocyclic cycloalkenyl group or a C 6-8 monocyclic cycloalkenyl group, and more specifically, for example, a cyclopentenyl group or a cyclopentane group. Dienyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptatrienyl, cyclooctenyl, cyclooctadecenyl, cyclodecenyl and cyclodecenyl, and the like.
  • These monocyclic cycloalkenyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight a substituent of a chain or branched alkenyl group.
  • the premise (1) is that at most one of R 4 , R 5 and R 6 is hydrogen, and the premise (2) is at least one of R 4 , R 5 and R 6 ( Preferably at least two) are selected from the group consisting of the C 5-12 monocyclic cycloalkyl group and the C 5-12 monocyclic cycloalkenyl group. More preferably, as the premise (2), at least one (preferably at least two) of R 4 , R 5 and R 6 is the C 5-12 monocyclic cycloalkyl group.
  • the ratio of the total number of carbon atoms (excluding carbon atoms of any substituent (if any)) to the total number of nitrogen atoms is generally 10 or higher, 12 or higher, or 13 or higher, and the like.
  • N,N-diethylcyclohexylamine (C/N ratio of 10) and dicyclohexylamine (C/N ratio of 12) can be mentioned.
  • the compounds represented by the formula (I) may be used alone or in combination of any ones in any ratio.
  • aza-aromatic hydrocarbon applies to conventional definitions in the field of organic chemistry, such as compounds obtained by substituting a carbon atom on the ring of an aromatic hydrocarbon with a nitrogen atom, such as, for example, azabenzene (pyridine) or Aza naphthalene (quinoline or isoquinoline).
  • aza-aromatic hydrocarbon for example, a monoaza, a diaza or a triazaaromatic hydrocarbon can be mentioned.
  • aromatic hydrocarbon for example, a C 6-20 aromatic hydrocarbon may be mentioned, and among them, a C 6-14 aromatic hydrocarbon, particularly benzene, naphthalene, anthracene, phenanthrene or the like is preferable.
  • each carbon atom constituting the ring skeleton of these aza-aromatic hydrocarbons it is further optionally substituted with a C 1-4 linear or branched alkyl group and a C 2-4 linear or branched alkenyl group.
  • Base hereinafter referred to as substituent A.
  • each of the nitrogen atoms constituting the ring skeleton of these aza-aromatic hydrocarbons is further optionally further provided with (a) a C 1-12 linear or branched alkyl group, a C 2-12 straight chain or a branch.
  • a substituent of an alkenyl group, a C 5-12 monocyclic cycloalkyl group, a C 5-12 monocyclic cycloalkenyl group, and a C 6-20 aryl group (referred to as a substituent B).
  • a substituent B As the C 1-12 linear or branched alkyl group, for example, a C 1-10 linear or branched alkyl group, a C 1-6 linear or branched alkyl group or a C 1-4 straight chain or More specifically, a branched alkyl group may, for example, be a methyl group, an ethyl group, a propyl group or a butyl group.
  • examples of the branched alkenyl group include a vinyl group, a propenyl group, an allyl group, and a butenyl group.
  • examples of the C 5-12 monocyclic cycloalkyl group include a C 6-10 monocyclic cycloalkyl group or a C 6-8 monocyclic cycloalkyl group, and more specifically, for example, a cyclopentyl group or a cyclohexyl group.
  • These monocyclic cycloalkyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight A substituent of a chain or a branched alkenyl group (hereinafter referred to as a substituent A).
  • Examples of the C 5-12 monocyclic cycloalkenyl group include a C 6-10 monocyclic cycloalkenyl group or a C 6-8 monocyclic cycloalkenyl group, and more specifically, for example, a cyclopentenyl group or a cyclopentane group. Dienyl, cyclohexenyl, cyclohexadienyl, cycloheptenyl, cycloheptatrienyl, cyclooctenyl, cyclooctadecenyl, cyclodecenyl and cyclodecenyl, and the like.
  • These monocyclic cycloalkenyl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight A substituent of a chain or a branched alkenyl group (hereinafter referred to as a substituent A).
  • a substituent A examples of the C 6-20 aryl group include a C 6-14 aryl group or a C 6-10 aryl group, and more specific examples thereof include a phenyl group, a naphthyl group, an anthracenyl group, and a phenanthryl group.
  • aryl groups are also optionally further provided with one or more (such as 1 to 5, 1 to 3 or 1) selected from C 1-4 straight or branched alkyl groups and C 2-4 straight chains or branches.
  • a substituent of an alkenyl group hereinafter referred to as a substituent A).
  • a carbon atom excluding any substituent A (if any) but including any substituent B (if any) of carbon atoms
  • the ratio of the total number to the total number of nitrogen atoms i.e., C/N ratio
  • C/N ratio is generally 9 or higher, 10 or higher, or 11 or higher.
  • aza-aromatic hydrocarbon examples include quinoline (C/N ratio of 9), N-phenylquinoline (C/N ratio of 15), and N-cyclohexylpyridine ( The C/N ratio is 11) and 6-methylquinoline (C/N ratio is 9) and the like.
  • these azaaromatic hydrocarbons may be used singly or in combination of plural kinds in any ratio.
  • a halogen source in the method of producing a molecular sieve, can be further introduced as needed, thereby introducing a halogen into the composition of the product molecular sieve.
  • a halogen source for example, an inorganic halogen source such as hydrofluoric acid, sodium chloride, ammonium fluoride, potassium fluoride or the like, or an organic halogen source, such as a halogenated C 1-3 alkane such as dichloro, may be mentioned. Methane, chloroform, dichloroethane, methyl iodide, etc. These halogen sources may be used alone or in combination of a plurality of them in a desired ratio.
  • the first oxide source in terms of the first oxide
  • the second oxide source in terms of the second oxide
  • the molar ratio of the alkali source, the organic template, the halogen source and water is generally 1: (0.0005-0.05): (0.01-0.3): (0.05-1.4): (0-0.5): ( 5-100), preferably 1: (0.005-0.04): (0.05-0.2): (0.2-1.0): (0-0.3): (10-40).
  • the crystallization conditions include a crystallization temperature of 140 to 180 ° C, preferably 145 to 170 ° C, and a crystallization time of 1 to 6 days, preferably 2 to 5 days.
  • the molecular sieve in the method of producing a molecular sieve, after the contacting step or the completion of the crystallization, the molecular sieve can be separated from the obtained reaction mixture by any conventionally known separation method (generally corresponding to the foregoing SCM-2 molecular sieves, sometimes referred to as molecular sieve precursors, are used as products.
  • the separation method for example, a method of filtering, washing, and drying the obtained reaction mixture can be mentioned.
  • the filtration, washing and drying may be carried out in any manner conventionally known in the art.
  • the obtained reaction mixture can be simply suction filtered.
  • the washing such as may be used include deionized water until the filtrate was washed with a pH of 7-9, preferably 8 - 9.
  • the drying temperature is, for example, 40 to 250 ° C, preferably 60 to 150 ° C, and the drying time is, for example, 8 to 30 hours, preferably 10 to 20 hours.
  • the drying can be carried out under normal pressure or under reduced pressure.
  • the obtained SCM-2 molecular sieve may be calcined as needed to remove the organic templating agent and moisture or the like which may be present, thereby obtaining a calcined Molecular sieves, which generally correspond to the aforementioned SCM-1 molecular sieves.
  • the firing may be performed in any conventional manner known in the art, such as the firing temperature is generally 300-800 deg.] C, preferably 400 - 650 °C, the calcination time is generally 1 - 10 hours, preferably 3-6 hours.
  • the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the SCM-1 molecular sieve, the SCM-2 molecular sieve or any molecular sieve produced by the method for producing a molecular sieve according to the present invention may be optionally used.
  • the ion exchange is carried out by any means conventionally known in the art, such as by ion exchange or solution impregnation (for example, see, for example, U.S. Patent Nos. 3,140,249 and 3,140,253, etc.), the metal cations (such as Na ions or The K ion, depending on its specific manufacturing method, is replaced in whole or in part by other cations.
  • Examples of the other cation include hydrogen ions, other alkali metal ions (including K ions, Rb ions, etc.), ammonium ions (including NH 4 ions, quaternary ammonium ions such as tetramethylammonium ions and tetraethylammonium ions). Etc.), alkaline earth metal ions (including Mg ions, Ca ions), Mn ions, Zn ions, Cd ions, noble metal ions (including Pt ions, Pd ions, Rh ions, etc.), Ni ions, Co ions, Ti ions, Sn ions , Fe ions and/or rare earth metal ions, and the like.
  • the molecular sieve according to the present invention may be treated by a dilute acid solution or the like as needed to increase the ratio of silicon to aluminum or treated with steam to improve the acid attack resistance of the molecular sieve crystal.
  • the method for producing a molecular sieve follows the reaction principle of a conventional hydrothermal method for producing a molecular sieve, and thus has a smaller number of operation steps, a simple crystallization system, and a mild crystallization condition as compared with a manufacturing method of an ITQ-2 molecular sieve or the like.
  • the crystallization process is simple and controllable, so the energy and material loss of the manufacturing method is small (the production cost is low), and the yield of the molecular sieve product can generally exceed 80%, sometimes even 90%, or close to 100%.
  • the molecular sieve product obtained by the present invention also has the advantage of extremely low impurity content.
  • the molecular sieve product such as SCM-1 molecular sieve or SCM-2 molecular sieve
  • TEM transmission electron microscopy
  • the content of the amorphous impurities is very low, for example, the content of the amorphous impurities is generally 20% or less, more preferably 15% or less, more preferably 10% or less, still more preferably 5% or less, further preferably 1 %the following.
  • the inventors of the present invention believe that the molecular sieve of the present invention has a "double" base layer structure because its thickness is approximately the thickness of the "base layer structure" constituting the MCM-22 molecular sieve (2.5 nm). 2 times the left and right).
  • the double base layer structure of the molecular sieve of the present invention is very unique, fully realizing the twelve-membered ring semi-super cage that exposes the MWW topology as much as possible, which has been desired in the art but has not been realized.
  • the goal of retaining the ten-membered ring channel is a new structure that has not been obtained so far in the field.
  • the present invention since a combined organic templating agent is used, different organic species are common (rather than a single species) inserted between the respective base layer structures of the molecular sieve, thereby resulting in the SCM-1 molecular sieve and the SCM-2 molecular sieve of the present invention.
  • the prior art MCM-22 molecular sieves make a difference in microstructure. Further, when these molecular sieves are separately characterized by X-ray diffraction (XRD), as described above, the difference in microstructure is represented by XRD spectrum. The difference in diffraction peaks on the graph.
  • the inventors of the present invention believe that the difference in these diffraction peaks (especially those related to the thickness of the stack of sheets or the thickness of the stack in the c-axis direction) directly reflects the molecular sieve and MCM of the present invention.
  • -22 molecular sieve or ITQ-2 molecular sieve differs in layer structure.
  • this difference in microstructure is further reflected as a significant difference in performance parameters such as specific surface area.
  • the ratio of the outer specific surface area to the total specific surface area of the molecular sieve of the present invention is generally not less than 40%, which is much higher than that of the prior art MCM-22 molecular sieve (generally about 20%).
  • the molecular sieve according to the present invention is particularly suitable as an adsorbent due to its high total specific surface area and external specific surface area, for example, for separating at least one component from a mixture of a plurality of components in a gas phase or a liquid phase. .
  • the ten-membered ring semi-super cage of the MWW topology is exposed as much as possible, and the ten-membered ring channel is retained, so that it is particularly suitable for use as a catalyst in the organic compound conversion reaction, and can exhibit High reactant conversion capacity, in turn, exhibits high product selectivity.
  • the organic compound conversion reaction for example, liquid phase alkylation of benzene with ethylene to produce ethylbenzene, liquid phase alkylation of benzene with propylene to produce cumene, butene isomerization, naphtha cracking Reaction, ethanol and benzene alkylation reaction, cyclohexene hydration reaction, and the like.
  • the catalyst include an alkylation catalyst, an olefin hydration catalyst, an olefin oxidation catalyst, a hydrocracking catalyst, and an olefin isomerization catalyst.
  • the molecular sieve according to the present invention exhibits at least comparable or even higher reactant conversion ability than the ITQ-2 molecular sieve even in reactions which are severely restricted by diffusion, such as the Beckmann rearrangement reaction of cyclohexanone oxime. This maximizes the original advantages of the ITQ-2 molecular sieve.
  • the molecular sieve of the present invention when the benzene alkylation reaction is catalyzed as a catalyst, it has the advantages of low reaction temperature, high conversion rate, good selectivity, and stable operation.
  • the molecular sieve according to the present invention has a stable skeleton structure, strong anti-coking ability, and is less likely to deposit carbon in the catalytic reaction, and thus can be used as a catalyst for a long period of time without being significantly deactivated.
  • the molecular sieve according to the present invention can be regenerated by simple calcination after deactivation, and by this regeneration, its catalytic performance can be restored to substantially the same level as that of the fresh catalyst.
  • the calcination conditions are such that the calcination temperature is usually from 300 to 800 ° C, preferably from 400 to 650 ° C, and the calcination time is usually from 1 to 10 hours, preferably from 3 to 6 hours.
  • the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the molecular sieve according to the present invention may be in any physical form such as a powder, a granule or a molded article (e.g., a strip, a clover, etc.). These physical forms can be obtained in any manner conventionally known in the art, and are not particularly limited.
  • the molecular sieve according to the present invention can be used in combination with other materials, thereby obtaining a molecular sieve composition.
  • other materials for example, an active material and an inactive material can be mentioned.
  • the active material include synthetic zeolite and natural zeolite.
  • the inactive material (generally referred to as a binder) include clay, clay, silica gel, and alumina. These other materials may be used alone or in combination of any ones in any ratio.
  • the amount of the other materials the conventional amounts in the art can be directly referred to, and are not particularly limited.
  • any of the foregoing molecular sieves or the aforementioned molecular sieve compositions can also be used as a carrier or carrier component of the catalyst, and the active component is supported thereon in any manner conventionally known in the art, such as solution impregnation.
  • These active components include, but are not limited to, active metal components (including Ni, Co, Mo, W or Cu, etc.), reactive inorganic auxiliaries (such as F, P, etc.) and organic compounds (such as organic acids, organic amines, etc.) .
  • active components may be used alone or in combination of any ones in any ratio.
  • As the amount of the active component it can be directly referred to the conventional amount in the art, and is not particularly limited.
  • the SCM-2 molecular sieve or molecular sieve composition containing the SCM-2 molecular sieve generally requires removal of any organic templating agent, water, and the like present in its pores by calcination.
  • the calcination may be performed in any conventional manner known in the art, such as the firing temperature is generally 300-800 deg.] C, preferably 400 - 650 °C, the calcination time is generally 1 to 10 hours, preferably 3-6 hours.
  • the calcination is generally carried out under an oxygen-containing atmosphere, such as an air or oxygen atmosphere.
  • the total pore volume, micropore volume, total specific surface area and external specific surface area of the molecular sieve are measured by a nitrogen physical adsorption-desorption method (BET method).
  • BET method nitrogen physical adsorption-desorption method
  • the experimental conditions for SCM-1 molecular sieve are: measuring temperature -169 ° C, the molecular sieve is pre-treated under vacuum at 300 ° C for 10 hours before measurement, and the experimental conditions for SCM - 2 molecular sieve are: measuring temperature -169 ° C, before measurement
  • the molecular sieve was heat-treated at 550 ° C for 5 hours in an air atmosphere, and then vacuum pretreated at 300 ° C for 10 hours.
  • the X-ray diffraction pattern (XRD) of the molecular sieve is determined by an X-ray powder diffractometer (such as the German Bruker D8 Advance powder diffractometer) using standard methods. Where a Cu-K ⁇ ray source, a nickel filter is used.
  • TEM transmission electron microscope
  • the molar ratio of the first oxide to the second oxide in the molecular sieve is obtained by inductively coupled plasma emission spectroscopy (for example, using the American Varian 725-ES inductive coupling) Plasma emission spectrometer) measurement.
  • the content of water and organic templating agent in the molecular sieve is determined by thermogravimetric analysis (for example, using a US TA company SDT Q600 synchronous thermal analyzer under an oxygen atmosphere) Measurements were taken from 25 ° C at a temperature increase rate of 10 ° C / min to 800 ° C test sample weight loss curve).
  • the yield of the molecular sieve is calculated by multiplying the ratio of the mass of the molecular sieve after calcination to the sum of the masses of the first oxide and the second oxide by 100%.
  • the crystal thickness of the molecular sieve is measured by using a transmission electron microscope (such as the Dutch FEI G2F30 transmission electron microscope, operating voltage 300 kV) at 100,000 times.
  • the molecular sieve was observed under magnification, and an observation field was randomly selected, and the average value of the sum of the thicknesses of all the plate crystals having a thickness of 5 ⁇ 0.8 nm in the observation field was calculated. Repeat this operation a total of 10 times. The average value of the sum of the average values of 10 times was taken as the crystal thickness.
  • the relative crystallinity of the molecular sieve is measured by using MCM-22 molecular sieve as a reference and selecting it.
  • the sum of the absolute peak intensities of the three diffraction peaks B is divided by A and multiplied by 100% to obtain the relative crystallinity of the molecular sieve to be tested.
  • the relative crystallinity is subtracted from 100%, that is, the content of the amorphous impurities of the molecular sieve to be tested is obtained.
  • the MCM-22 molecular sieve manufactured in Comparative Example I-1 was used as a reference.
  • the service life of the molecular sieve is evaluated by continuously performing the catalytic conversion reaction under the same reaction conditions with the same amount of molecular sieve as a catalyst, in the same The greater the decrease in the conversion of the reactants during the reaction time, the shorter the service life of the molecular sieve.
  • the following examples relate to the manufacture of SCM-1 molecular sieves.
  • sodium aluminate Al 2 O 3 43.0% by weight, Na 2 O 35.0% by weight 12.64 g was dissolved in 362.40 g of water, and then an organic template was added with stirring: 39.68 g of hexamethyleneimine aqueous solution ( Hexamethyleneimine (80.0% by weight), 101.54 g of dicyclohexylamine, and finally 240 g of silica sol (SiO 2 40.0% by weight), the material ratio (molar ratio) of the reactants is:
  • the XRD spectrum data of the product molecular sieve is shown in Table I-1, the XRD spectrum is shown in Figure 1, and the TEM photograph is shown in Figure 3a.
  • the molecular sieve has a total pore volume of 0.68 cm 3 g -1 , a micropore volume of 0.12 cm 3 g -1 , a total specific surface area of 524 m 2 ⁇ g -1 , and an external specific surface area of 248 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 47.3%, and the composition is: SiO 2 /Al 2 O 3 molar ratio is 29.3, molecular sieve yield is 92%, crystal thickness is 5.4 nm, relative crystallinity is 92.2%, amorphous The content of impurities was 7.8%.
  • sodium aluminate Al 2 O 3 43.0% by weight, Na 2 O 35.0% by weight 12.64 g was dissolved in 362.40 g of water, and then an organic template was added with stirring: 39.68 g of hexamethyleneimine aqueous solution (hexamethyleneimine 80.0% by weight), 145.06 g of dicyclohexylamine, and finally 240 g of silica sol (SiO 2 40.0% by weight), the material ratio (molar ratio) of the reactants is:
  • the XRD spectrum data of the product molecular sieve is shown in Table I-2, and the XRD spectrum is similar to Figure 1.
  • the molecular sieve has a total pore volume of 0.76 cm 3 g -1 , a micropore volume of 0.12 cm 3 g -1 , a total specific surface area of 533 m 2 ⁇ g -1 , and an external specific surface area of 257 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 48.2%, and the composition is: SiO 2 /Al 2 O 3 molar ratio is 28.6, molecular sieve yield is 82%, crystal thickness is 5.1 nm, relative crystallinity is 81.9%, amorphous The content of impurities was 18.1%.
  • the XRD spectrum data of the product molecular sieve is shown in Table I-3, and the XRD spectrum is similar to Figure 1.
  • the molecular sieve has a total pore volume of 0.88 cm 3 g -1 , a micropore volume of 0.13 cm 3 g -1 , a total specific surface area of 583 m 2 ⁇ g -1 , and an external specific surface area of 313 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 53.7%, and the composition is: SiO 2 /Al 2 O 3 molar ratio is 90.5, molecular sieve yield is 81%, crystal thickness is 5.6 nm, relative crystallinity is 84.4%, amorphous The content of impurities was 15.6%.
  • the XRD spectrum data of the product molecular sieve is shown in Table I-4, and the XRD spectrum is similar to that of Figure 1.
  • the total pore volume of the molecular sieve product is 0.80cm 3 g -1
  • the micropore volume was 0.11cm 3 g -1
  • total specific surface area of 511m 2 ⁇ g -1 an outer surface area of 224m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area is 43.8%
  • the composition is: SiO 2 /Al 2 O 3 molar ratio is 46.1
  • molecular sieve yield is 85%
  • crystal thickness is 5.1 nm
  • relative crystallinity is 77.9%
  • the content of impurities was 22.1%.
  • the XRD spectrum data of the product molecular sieve is shown in Table I-5, and the XRD spectrum is similar to Figure 1.
  • the total pore volume of the molecular sieve product is 0.66cm 3 g -1
  • the micropore volume was 0.12cm 3 g -1
  • total specific surface area of 501m 2 ⁇ g -1 an outer surface area of 232m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area is 46.3%
  • the composition is: SiO 2 /Al 2 O 3 molar ratio is 26.3
  • molecular sieve yield is 85%
  • crystal thickness is 5.7 nm
  • relative crystallinity is 85.7%
  • the content of impurities was 14.3%.
  • the XRD spectrum data of the product molecular sieve is shown in Table I-6, and the XRD spectrum is similar to Figure 1.
  • the molecular sieve has a total pore volume of 0.62 cm 3 g -1 , a micropore volume of 0.13 cm 3 g -1 , a total specific surface area of 496 m 2 ⁇ g -1 , and an external specific surface area of 227 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 45.8%, and the composition is: SiO 2 /Al 2 O 3 molar ratio is 39.7, molecular sieve yield is 89%, crystal thickness is 5.5 nm, relative crystallinity is 92.7%, amorphous The content of impurities was 7.3%.
  • the XRD spectrum data of the product molecular sieve is shown in Table I-7, and the XRD spectrum is similar to Figure 1.
  • the total pore volume of the molecular sieve product is 0.71cm 3 g -1
  • the micropore volume was 0.14cm 3 g -1
  • total specific surface area of 561m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area is 48.3%
  • the composition is: SiO 2 /Al 2 O 3 molar ratio is 39.0
  • molecular sieve yield is 88%
  • crystal thickness is 5.5 nm
  • relative crystallinity is 89.8%
  • the content of impurities was 10.2%.
  • the XRD spectrum data of the product molecular sieve is shown in Table I-8, and the XRD spectrum is similar to Figure 1.
  • the total pore volume of the molecular sieve product is 0.75cm 3 g -1
  • the micropore volume was 0.12cm 3 g -1
  • total specific surface area of 518m 2 ⁇ g -1 a specific surface area of the outer 240m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area is 46.3%
  • the composition is: SiO 2 /Al 2 O 3 molar ratio is 40.4
  • molecular sieve yield is 81%
  • crystal thickness is 5.3 nm
  • relative crystallinity is 82.9%
  • the content of impurities was 17.1%.
  • Example I-1 50 g of the molecular sieve synthesized in Example I-1 was taken, exchanged 4 times with a solution of ammonium nitrate having a concentration of 1 mol/L, filtered, and dried. After that, it is thoroughly mixed with 20 g of alumina, kneaded with 5% by weight of nitric acid, and extruded into a strip. The strips of millimeters were then dried at 120 ° C and calcined at 520 ° C for 6 hours to prepare the desired catalyst.
  • 0.3 g of the catalyst prepared above was charged in a fixed bed reactor, and then a mixture of benzene and ethylene was introduced.
  • the reaction results were: ethylene conversion rate of 90%, ethylbenzene weight selectivity of 88.1%, diethylbenzene weight selectivity of 9.3%, triethylbenzene weight selectivity of 0.3%, and the rest were by-products.
  • the ethylene conversion rate was reduced to 80% or less.
  • the catalyst at this time was taken out, the catalyst was black, and it was calcined in an air atmosphere at 550 ° C for 5 hours to be regenerated. The regenerated catalyst was again used in the liquid phase alkylation reaction of benzene with ethylene according to the above reaction conditions, and continuously operated for 24 hours.
  • reaction results were: ethylene conversion rate of 97%, ethylbenzene weight selectivity of 90.3%, and diethylbenzene weight selection.
  • Example I-2 50 g of the molecular sieve synthesized in Example I-2 was taken and exchanged 4 times with a solution of ammonium nitrate having a concentration of 1 mol/L, filtered, and dried. After that, it is thoroughly mixed with 20 g of alumina, kneaded with 5% by weight of nitric acid, and extruded into a strip. The strips of millimeters were then dried at 120 ° C and calcined at 520 ° C for 6 hours to prepare the desired catalyst.
  • 0.3 g of the catalyst prepared above was charged in a fixed bed reactor, and then a mixture of benzene and ethylene was introduced.
  • Example I-1 50 g of the molecular sieve synthesized in Example I-1 was taken, exchanged 4 times with a solution of ammonium nitrate having a concentration of 1 mol/L, filtered, and dried. After that, it is thoroughly mixed with 20 g of alumina, kneaded with 5% by weight of nitric acid, and extruded into a strip. The strip of glutinous rice was then dried at 120 ° C and calcined at 520 ° C for 6 hours to prepare the desired catalyst.
  • reaction results were: propylene conversion rate of 97%, cumene weight selectivity of 85%, diisopropylbenzene weight selectivity of 14.3%, triisopropylbenzene weight selectivity of 0.4%, and the balance being by-products.
  • reaction results were: propylene conversion 91%, cumene weight selectivity 83.2%, diisopropylbenzene weight selectivity 15.1%, triisopropylbenzene weight selectivity 0.3%, and the rest were by-products.
  • Example I-1 50 g of the molecular sieve synthesized in Example I-1 was taken, exchanged 4 times with a solution of ammonium nitrate having a concentration of 1 mol/L, filtered, and dried. Thereafter, the dried sample is tableted (pressure 15 MPa), sieved, and a sample between 20-40 mesh is taken, and calcined in an air atmosphere at 520 ° C for 6 hours to prepare a sample. The catalyst needed.
  • cyclohexanone oxime 10 g of benzonitrile (solvent) and 0.1 g of the catalyst prepared above were sequentially added to a 50 mL flask equipped with a reflux condenser, and reacted at 130 ° C for 2 h to carry out Beckmann weight of cyclohexanone oxime. Row reaction.
  • the reaction results were as follows: cyclohexanone oxime conversion rate was 67.3%, and caprolactam selectivity was 79.5%.
  • Example I-1 50 g of the molecular sieve synthesized in Example I-1 was taken, exchanged 4 times with a solution of ammonium nitrate having a concentration of 1 mol/L, filtered, and dried. Thereafter, the dried sample was tableted (pressure: 15 MPa), sieved, and a sample of between 20 and 40 mesh was taken, and calcined at 520 ° C for 6 hours in an air atmosphere to prepare a desired catalyst.
  • 0.1 g of the catalyst prepared above was charged in a fixed bed reactor, and then a mixture of biphenyl and propylene was introduced.
  • the reaction conditions were as follows: a biphenyl flow rate of 1.36 mol/h, a biphenyl to propylene molar ratio of 4.0, and a reaction temperature of 250 °C. After 10 minutes of continuous operation, the conversion of biphenyl was 3.7%. After 2 hours of continuous operation, the conversion of biphenyl was almost reduced to zero.
  • the catalyst was taken out and calcined in an air atmosphere at 550 ° C for 5 hours to be regenerated, and the regenerated catalyst was again used for the alkylation reaction of biphenyl and propylene under the above reaction conditions, and the continuous operation was carried out for 10 minutes, and the conversion of biphenyl was 3.6%. Restore to the level of fresh catalyst.
  • MCM-22 molecular sieves were synthesized in the same manner as in Example 1 of U.S. Patent No. 4,954,325.
  • the XRD spectrum data of the product MCM-22 molecular sieve is shown in Table I-9, the XRD spectrum is shown in Figure 1, and the TEM photograph is shown in Figure 3b.
  • the total pore volume of the molecular sieve MCM-22 was 0.46cm 3 g -1
  • the micropore volume was 0.18cm 3 g -1
  • total specific surface area 485m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area was 24.7%
  • the composition was: the SiO 2 /Al 2 O 3 molar ratio was 29.1, the relative crystallinity was 100.0%, and the amorphous impurity content was 0.0%.
  • Example I-1 Same as Example I-1 except that the templating agent was a single template piperidine.
  • the XRD spectrum data of the product molecular sieve is shown in Table I-10, and the XRD spectrum is significantly different from that of Figure 1.
  • the total pore volume of the molecular sieve product is 0.13cm 3 g -1
  • the micropore volume was 0.10cm 3 g -1
  • total specific surface area of 285m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area was 10.9%, and the composition was: the SiO 2 /Al 2 O 3 molar ratio was 28.1.
  • Example I-1 Same as Example I-1 except that the templating agent was a single templating agent dicyclohexylamine.
  • the XRD pattern of the obtained crystallized product did not have any significant diffraction peaks.
  • the MCM-22 molecular sieve was synthesized in the same manner as in Example 1 of U.S. Patent No. 4,954,325 except that the calcination step was omitted, thereby obtaining a MCM-22 molecular sieve precursor.
  • 100 g of the molecular sieve precursor was weighed (the weight loss rate was 18.8% by thermogravimetry, the actual weight of the precursor was 81.2 g after deducting water and organic matter) and 570 g of cetyltrimethyl bromide.
  • the molecular sieve has a total pore volume of 0.82 cm 3 g -1 , a micropore volume of 0.02 cm 3 g -1 , a total specific surface area of 750 m 2 g -1 , and an external specific surface area of 675 m 2 g -1 .
  • the ratio of specific surface area to total specific surface area is 90.0%, and the composition is: SiO 2 /Al 2 O 3 molar ratio is 31.8, product quality is 35 g, yield is 43.1%, crystal thickness is 2.5 nm, relative crystallinity is 52.5%, non- The content of the crystal impurities was 47.5%.
  • 0.3 g of the catalyst prepared above was charged in a fixed bed reactor, and then a mixture of benzene and ethylene was introduced.
  • the reaction results were: ethylene conversion rate of 80.5%, ethylbenzene weight selectivity of 85.5%, diethylbenzene weight selectivity of 10.6%, triethylbenzene weight selectivity of 0.4%, and the remainder as by-products.
  • the ethylene conversion rate was reduced to 70% or less.
  • the catalyst at this time was taken out, the catalyst was black, and it was calcined in an air atmosphere at 550 ° C for 5 hours to be regenerated. The regenerated catalyst was again used in the liquid phase alkylation reaction of benzene with ethylene according to the above reaction conditions, and continuously operated for 24 hours.
  • the reaction results were: ethylene conversion rate of 91.4%, ethylbenzene weight selectivity of 87.3%, and diethylbenzene weight selection.
  • the property is 7.4%, the weight selectivity of triethylbenzene is 0.3%, and the rest are by-products.
  • reaction results were: propylene conversion rate of 93%, cumene weight selectivity of 83%, diisopropylbenzene weight selectivity of 15.6%, triisopropylbenzene weight selectivity of 0.4%, and the balance being by-products.
  • reaction results were: propylene conversion rate of 85%, cumene weight selectivity of 81.3%, diisopropylbenzene weight selectivity of 15.9%, triisopropylbenzene weight selectivity of 0.4%, and the remainder being by-products.
  • 0.1 g of the catalyst prepared above was charged in a fixed bed reactor, and then a mixture of biphenyl and propylene was introduced.
  • the reaction conditions were as follows: a biphenyl flow rate of 1.36 mol/h, a biphenyl to propylene molar ratio of 4.0, and a reaction temperature of 250 °C. After 10 minutes of continuous operation, the conversion of biphenyl was 1.9%. After 2 hours of continuous operation, the conversion of biphenyl was almost reduced to zero.
  • the catalyst was taken out and calcined in an air atmosphere at 550 ° C for 5 hours for regeneration. The regenerated catalyst was again used for the alkylation reaction of biphenyl with propylene under the above reaction conditions, and the continuous operation was carried out for 10 minutes, and the conversion of biphenyl was 1.8%.
  • 0.3 g of the catalyst prepared above was charged in a fixed bed reactor, and then a mixture of benzene and ethylene was introduced.
  • the reaction results were: ethylene conversion rate of 71.6%, ethylbenzene weight selectivity of 85.8%, diethylbenzene weight selectivity of 13.7%, triethylbenzene weight selectivity of 0.3%, and the rest were by-products.
  • the reaction results were: ethylene conversion rate of 57.3%, ethylbenzene weight selectivity of 87.5%, diethylbenzene weight selectivity of 11.6%, triethylbenzene weight selectivity of 0.4%, and the remainder as by-products.
  • the ethylene conversion rate was reduced to 40% or less.
  • the catalyst at this time was taken out, the catalyst was black, and it was calcined in an air atmosphere at 550 ° C for 5 hours to be regenerated.
  • the regenerated catalyst was again used in the liquid phase alkylation reaction of benzene with ethylene according to the above reaction conditions, and the operation was continued for 24 hours.
  • the reaction result was: ethylene conversion rate of 62.4%, and the activity decreased significantly, and the level of fresh catalyst could not be restored.
  • reaction results were: propylene conversion rate of 74%, cumene weight selectivity of 87%, diisopropylbenzene weight selectivity of 12.1%, triisopropylbenzene weight selectivity of 0.3%, and the balance being by-products.
  • reaction results were: propylene conversion rate of 61%, cumene weight selectivity of 87.3%, diisopropylbenzene weight selectivity of 11.9%, triisopropylbenzene weight selectivity of 0.3%, and the remainder as by-products.
  • cyclohexanone oxime 10 g of benzonitrile (solvent) and 0.1 g of the catalyst prepared above were sequentially added to a 50 mL flask equipped with a reflux condenser, and reacted at 130 ° C for 2 h to carry out Beckmann weight of cyclohexanone oxime. Row reaction.
  • the reaction results were as follows: cyclohexanone oxime conversion rate was 65.5%, and caprolactam selectivity was 79.1%.
  • 0.1 g of the catalyst prepared above was charged in a fixed bed reactor, and then a mixture of biphenyl and propylene was introduced.
  • the reaction conditions were as follows: a biphenyl flow rate of 1.36 mol/h, a biphenyl to propylene molar ratio of 4.0, and a reaction temperature of 250 °C. After 10 minutes of continuous operation, the conversion of biphenyl was 4%. After 2 hours of continuous operation, the conversion of biphenyl was almost reduced to zero.
  • the catalyst was taken out and calcined in an air atmosphere at 550 ° C for 5 hours for regeneration. The regenerated catalyst was again used for the alkylation reaction of biphenyl with propylene under the above reaction conditions, and the continuous operation was carried out for 10 minutes.
  • the conversion of biphenyl was 2.8%, and the activity was markedly lowered, and the level of the fresh catalyst could not be recovered.
  • the following examples relate to the manufacture of SCM-2 molecular sieves.
  • sodium aluminate Al 2 O 3 43.0% by weight, Na 2 O 35.0% by weight 12.64 g was dissolved in 362.40 g of water, and then an organic template was added with stirring: 39.68 g of hexamethyleneimine aqueous solution (hexamethyleneimine 80.0% by weight), 101.54 g of dicyclohexylamine, and finally 240 g of silica sol (SiO 2 40.0% by weight), the material ratio (molar ratio) of the reactants is:
  • the XRD spectrum data of the product molecular sieve is shown in Table II-1, and the XRD spectrum is shown in Fig. 2.
  • the molecular sieve has a total pore volume of 0.68 cm 3 g -1 , a micropore volume of 0.12 cm 3 g -1 , a total specific surface area of 524 m 2 ⁇ g -1 , and an external specific surface area of 248 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 47.3%, and the composition is: the SiO 2 /Al 2 O 3 molar ratio is 29.3, the water/SiO 2 mass ratio is 0.07, and the organic template/SiO 2 mass ratio is 0.15.
  • the molecular sieve yield was 92%, and the crystal thickness was 5.4 nm.
  • sodium aluminate Al 2 O 3 43.0% by weight, Na 2 O 35.0% by weight 12.64 g was dissolved in 362.40 g of water, and then an organic template was added with stirring: 39.68 g of hexamethyleneimine aqueous solution (hexamethyleneimine 80.0% by weight), 145.06 g of dicyclohexylamine, and finally 240 g of silica sol (SiO 2 40.0% by weight), the material ratio (molar ratio) of the reactants is:
  • the XRD spectrum data of the product molecular sieve is shown in Table II-2, and the XRD spectrum is similar to FIG.
  • the molecular sieve has a total pore volume of 0.76 cm 3 g -1 , a micropore volume of 0.12 cm 3 g -1 , a total specific surface area of 533 m 2 ⁇ g -1 , and an external specific surface area of 257 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 48.2%, and the composition is: the SiO 2 /Al 2 O 3 molar ratio is 28.6, the water/SiO 2 mass ratio is 0.06, and the organic template/SiO 2 mass ratio is 0.17.
  • the molecular sieve yield was 82%, and the crystal thickness was 5.1 nm.
  • the XRD spectrum data of the product molecular sieve is shown in Table II-3, and the XRD spectrum is similar to Figure 2.
  • the molecular sieve has a total pore volume of 0.88 cm 3 g -1 , a micropore volume of 0.13 cm 3 g -1 , a total specific surface area of 583 m 2 ⁇ g -1 , and an external specific surface area of 313 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 53.7%, and the composition is: the SiO 2 /Al 2 O 3 molar ratio is 90.5, the water/SiO 2 mass ratio is 0.05, and the organic template/SiO 2 mass ratio is 0.15.
  • the molecular sieve yield was 81%, and the crystal thickness was 5.6 nm.
  • the XRD spectrum data of the product molecular sieve is shown in Table II-4, and the XRD spectrum is similar to FIG. Was measured, the total pore volume of the molecular sieve product is 0.80cm 3 g -1, the micropore volume was 0.11cm 3 g -1, total specific surface area of 511m 2 ⁇ g -1, an outer surface area of 224m 2 ⁇ g -1 The ratio of the external specific surface area to the total specific surface area is 43.8%, and the composition is: the SiO 2 /Al 2 O 3 molar ratio is 46.1, the water/SiO 2 mass ratio is 0.06, and the organic template/SiO 2 mass ratio is 0.16.
  • the molecular sieve yield was 85%, and the crystal thickness was 5.1 nm.
  • the XRD spectrum data of the product molecular sieve is shown in Table II-5, and the XRD spectrum is similar to FIG. Was measured, the total pore volume of the molecular sieve product is 0.66cm 3 g -1, the micropore volume was 0.12cm 3 g -1, total specific surface area of 501m 2 ⁇ g -1, an outer surface area of 232m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area is 46.3%, and the composition is: the SiO 2 /Al 2 O 3 molar ratio is 26.3, the water/SiO 2 mass ratio is 0.05, and the organic template/SiO 2 mass ratio is 0.18.
  • the molecular sieve yield was 85% and the crystal thickness was 5.7 nm.
  • the XRD spectrum data of the product molecular sieve is shown in Table II-6, and the XRD spectrum is similar to FIG.
  • the molecular sieve has a total pore volume of 0.62 cm 3 g -1 , a micropore volume of 0.13 cm 3 g -1 , a total specific surface area of 496 m 2 ⁇ g -1 , and an external specific surface area of 227 m 2 ⁇ g -1 .
  • the ratio of the external specific surface area to the total specific surface area is 45.8%, and the composition is: the SiO 2 /Al 2 O 3 molar ratio is 39.7, the water/SiO 2 mass ratio is 0.07, and the organic template/SiO 2 mass ratio is 0.17.
  • the molecular sieve yield was 89%, and the crystal thickness was 5.5 nm.
  • the XRD spectrum data of the product molecular sieve is shown in Table II-7, and the XRD spectrum is similar to that of Figure 2.
  • the total pore volume of the molecular sieve product is 0.71cm 3 g -1
  • the micropore volume was 0.14cm 3 g -1
  • total specific surface area of 561m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area is 48.3%
  • the composition is: the SiO 2 /Al 2 O 3 molar ratio is 39.0, the water/SiO 2 mass ratio is 0.07, and the organic template/SiO 2 mass ratio is 0.16.
  • the molecular sieve yield was 88% and the crystal thickness was 5.5 nm.
  • the XRD spectrum data of the product molecular sieve is shown in Table II-8, and the XRD spectrum is similar to FIG. Was measured, the total pore volume of the molecular sieve product is 0.75cm 3 g -1, the micropore volume was 0.12cm 3 g -1, total specific surface area of 518m 2 ⁇ g -1, a specific surface area of the outer 240m 2 ⁇ g -1 The ratio of the external specific surface area to the total specific surface area is 46.3%, and the composition is: the SiO 2 /Al 2 O 3 molar ratio is 40.4, the water/SiO 2 mass ratio is 0.06, and the organic template/SiO 2 mass ratio is 0.15.
  • the molecular sieve yield was 81%, and the crystal thickness was 5.3 nm.
  • Example II-1 50 g of the molecular sieve synthesized in Example II-1 was taken, heat-treated at 550 ° C for 5 hours in an air or oxygen atmosphere, and then exchanged 4 times with a 1 mol/L ammonium nitrate solution, filtered, and dried. After that, it is thoroughly mixed with 20 g of alumina, kneaded with 5% by weight of nitric acid, and extruded into a strip. The strips of millimeters were then dried at 120 ° C and calcined at 520 ° C for 6 hours to prepare the desired catalyst.
  • Example II-2 50 g of the molecular sieve synthesized in Example II-2 was taken, heat-treated at 550 ° C for 5 hours in an air or oxygen atmosphere, and then exchanged 4 times with a solution of 1 mol/L ammonium nitrate, filtered, and dried. After that, it is thoroughly mixed with 20 g of alumina, kneaded with 5% by weight of nitric acid, and extruded into a strip. The strips of millimeters were then dried at 120 ° C and calcined at 520 ° C for 6 hours to prepare the desired catalyst.
  • Example II-1 50 g of the molecular sieve synthesized in Example II-1 was taken, heat-treated at 550 ° C for 5 hours in an air or oxygen atmosphere, and then exchanged 4 times with a 1 mol/L ammonium nitrate solution, filtered, and dried. After that, it is thoroughly mixed with 20 g of alumina, kneaded with 5% by weight of nitric acid, and extruded into a strip. The strips of millimeters were then dried at 120 ° C and calcined at 520 ° C for 6 hours to prepare the desired catalyst.
  • MCM-22 molecular sieves were synthesized in the same manner as in Example 1 of U.S. Patent No. 4,954,325.
  • the XRD spectrum data of the product MCM-22 molecular sieve is shown in Table II-9, and the XRD spectrum is shown in Fig. 2.
  • the total pore volume of the molecular sieve MCM-22 was 0.46cm 3 g -1
  • the micropore volume was 0.18cm 3 g -1
  • total specific surface area of 485m 2 ⁇ g -1 an outer surface area of 120m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area was 24.7%
  • the composition was: the SiO 2 /Al 2 O 3 molar ratio was 29.1.
  • Example II-1 Same as Example II-1 except that the templating agent was a single template piperidine.
  • the XRD spectrum data of the product molecular sieve is shown in Table II-10, and the XRD spectrum is significantly different from that of Figure 2.
  • the total pore volume of the molecular sieve product is 0.13cm 3 g -1
  • the micropore volume was 0.10cm 3 g -1
  • total specific surface area of 285m 2 ⁇ g -1
  • the ratio of the external specific surface area to the total specific surface area was 10.9%, and the composition was: the SiO 2 /Al 2 O 3 molar ratio was 28.1.
  • Example II-1 Same as Example II-1 except that the templating agent is a single templating agent dicyclohexylamine.
  • the XRD pattern of the obtained crystallized product did not have any significant diffraction peaks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

提供一种分子筛,尤其是具有双基础层MWW拓扑骨架结构的分子筛,及其制造方法和应用。其制造方法包括在晶化条件下使第一氧化物源、第二氧化物源、碱源、有机模板剂、任选的卤素源和水接触,和任选的焙烧步骤,其中,有机模板剂选自第一有机模板剂与第二有机模板剂的组合,第一有机模板剂选自氮杂单环C 5-15环烷烃中的至少一种,第二有机模板剂选自氮杂芳香烃和NR 4R 5R 6中的至少一种。与MCM-22分子筛相比,该分子筛显示出改进的催化性能、良好的使用寿命和再生性能,而且制造方法简单,条件温和,损耗小,副反应少,容易以低成本高收率获得高纯度的产品。

Description

一种分子筛、其制造方法及其应用 技术领域
本发明涉及一种分子筛,尤其是一种属于MWW家族的SCM-1分子筛或SCM-2分子筛。本发明还涉及这些分子筛的制造方法及其作为吸附剂或催化剂等的应用。
背景技术
MCM-22分子筛属于MWW拓扑结构,具有两套独立的互不相通的十元环孔道体系:一套二维正弦孔道,孔道截面近似椭圆形,孔径
Figure PCTCN2014000867-appb-000001
另一套十元环孔道含有尺寸为
Figure PCTCN2014000867-appb-000002
的近似圆柱形十二元环超笼,该超笼通过略微扭曲的十元环窗口
Figure PCTCN2014000867-appb-000003
Figure PCTCN2014000867-appb-000004
与外界连通。此外,MCM-22分子筛还具有位于晶体外表面的碗状的十二元环半超笼。
通过高分辨电镜和同步X-射线粉末衍射研究MCM-22分子筛的结构发现,未经过焙烧除去模板剂的MCM-22分子筛原粉(MCM-22(P))与焙烧后的MCM-22分子筛(MCM-22(C))相比具有明显的结构差异。对比二者的晶胞参数发现,MCM-22(P)和MCM-22(C)的晶胞参数a(b)相同,均为1.427nm,而MCM-22(C)的晶胞参数c为2.52nm,MCM-22(P)的晶胞参数c为2.68nm,晶胞参数a(b)不变,说明在焙烧过程中MCM-22(P)已经存在的层状结构没有改变。据此得出MCM-22(P)经焙烧脱除模板剂向MCM-22(C)转变的机理是:首先,层间模板剂在高温下脱附分解,同时在层结构表面形成硅羟基(Si-OH),最后,表面的Si-OH脱水缩合形成Si-O-Si键,将相邻的层结构连接起来形成多层结构。
MCM-22分子筛的形貌一般为片状或薄饼状,尺寸2微米左右,厚度约十几到几十nm,通过透射电镜观测MCM-22分子筛晶体发现,MCM-22分子筛片状晶体具有多层结构,该多层结构是由厚度2.5nm左右的“基础层结构”通过氧桥键相连接而成。因为分子筛晶体的厚度不同,其多层结构所具有的基础层结构的数量也不同,但都多于5层,甚至达到10层以上。
由于MCM-22分子筛的多层结构,其两套十元环孔道分别位于层 结构内部和两个相邻的基础层结构之间,对分子扩散具有严格限制,而位于晶体表面的十二元环半超笼则利于分子的扩散。实际上,采用MCM-22分子筛催化苯与乙烯液相烷基化反应,该反应被证实是只能发生在位于晶体表面的碗状半超笼中,而层间和层内的十元环孔道对活性几乎没有贡献。
为了更有效地利用MCM-22分子筛层间的这些十元环孔道和更多地暴露其结构内部的十二元环超笼,根据层状材料的结构具有可塑性的特点,比如国际专利申请WO9717290对MCM-22(P)进行溶胀,然后对溶胀的MCM-22(P)进行超声处理,以破坏基础层结构之间的相互作用,使基础层结构分散,由此可以得到仅具有单一基础层结构(单层结构)的ITQ-2分子筛。该ITQ-2分子筛已经被确认是一种新型的MWW拓扑结构分子筛。由于ITQ-2分子筛具有这种特殊的单层结构,其晶体厚度仅为2.5nm左右,与MCM-22分子筛相比,ITQ-2分子筛仅保留了位于层内的十元环孔道,而相邻层结构之间的含有圆柱形十二元环超笼的十元环孔道则被完全破环,超笼被一分为二变成两个碗状半超笼而完全开放,因此,ITQ-2分子筛的外比表面积极大增加(一般为700m2/g左右,而MCM-22分子筛的外比表面积仅100m2g-1左右),对分子扩散没有限制,因而表现出显著优于MCM-22分子筛的扩散性能。
但是,由于ITQ-2分子筛仅具有单层的MWW拓扑结构,破环了MWW材料的三维结构,即完整的一个圆柱形超笼变为两个碗状半超笼,导致原来位于超笼内的B酸中心变成L酸中心(《IR study of the acidity of ITQ-2,an“all-surface”zeolitic system》Journal of Catalysis214(2003)191-199),即ITQ-2分子筛的主要酸中心为L酸,这与介孔材料的酸性质相似。考虑到ITQ-2分子筛具有与介孔材料相当的比表面积这一特点,ITQ-2分子筛更像是一个介孔材料,而非结晶型的微孔分子筛材料。因而,对于ITQ-2分子筛来说,由于其微孔结构的破坏,导致ITQ-2分子筛具有与介孔材料相当的扩散和吸附性能,而不再具备结晶型微孔分子筛的热稳定性及水热稳定性、择形催化性质等特性。鉴于此,ITQ-2分子筛在对酸中心的强度要求不高或者受扩散限制严重的反应中可以将反应物有效地转化(即,反应物转化能力较高),但却无法有效地实现目标产物的选择性生成(即,产物选择性较差)。比如,在苯与乙烯液相烷基化反应中,该反应是中强酸和强酸催化的反应, 由于ITQ-2分子筛的酸性较弱,因而与MCM-22分子筛相比,ITQ-2分子筛不适合应用于该反应。与此相反,环己酮肟的贝克曼重排反应制己内酰胺是典型的受扩散限制严重的反应,由于环己酮肟的分子尺寸大于MCM-22分子筛的十元环开口,并且产物为分子尺寸更大的己内酰胺,所以此反应主要发生在晶体外表面的碗状十二元环半超笼中,与MCM-22分子筛相比,ITQ-2分子筛具有更多的开放的十二元环半超笼,因而其具有明显优于MCM-22分子筛的催化性能。
另外,ITQ-2分子筛的制造过程非常复杂,必须至少包括MCM-22分子筛前驱体制造、MCM-22分子筛前驱体溶胀和超声处理等步骤,才可以得到ITQ-2分子筛,由此其制造方法还存在能量消耗和物料消耗过大的问题。而且,由于溶胀条件苛刻,分子筛的晶体结构往往被严重破坏,致使大量硅流失而进入液相,导致ITQ-2分子筛的产品收率很难超过50%。再者,在ITQ-2分子筛的制造过程中,不可避免地使用十六烷基三甲基溴化铵(CTAB)等膨胀剂。这类膨胀剂具有表面活性性能,会导致液相中的硅物种围绕其胶束组装成介孔材料,并与液相分离,进而混入产品ITQ-2分子筛中,由此降低ITQ-2分子筛的纯度。虽然介孔材料的比表面积远高于微孔分子筛,介孔材料作为杂质的混入能够增加产品的总比表面积和外比表面积,但是,这类介孔材料的孔壁为非晶型,水热稳定性差,同时耐酸和耐碱性也较差。但是,现有技术目前尚未发现任何有效的方法从ITQ-2分子筛中除去这类介孔材料。由于这类介孔材料(作为杂质)的存在,严重地损害了ITQ-2分子筛的催化性能表现。
而且,在实际应用中,除了要求分子筛具有良好的催化性能(包括反应物转化能力和产物选择性)外,还希望其具有良好的再生性能。由于ITQ-2分子筛是单层结构,且不可避免地混有前述的介孔材料,因此如果通过常规手段比如高温焙烧来对其进行再生,则其表面的硅羟基(Si-OH)、铝羟基(Al-OH)会发生脱水缩合,进而发生分子筛的骨架结构烧结融合,孔道被覆盖堵塞以及活性中心的流失,导致其催化性能下降明显而很难恢复到新鲜催化剂的水平。
鉴于前述的这些问题,自ITQ-2分子筛被首次报道合成至今已将近20年,虽然有多篇文献报道其高性能,但仍未商业化应用。
因此,现有技术目前的现状是,仍旧需要一种新型的分子筛,其 甚至是在受扩散限制严重的反应中也显示出与ITQ-2分子筛相当的反应物转化能力,同时又克服了ITQ-2分子筛存在的前述问题。
发明内容
本发明人在现有技术的基础上经过刻苦的研究发现,通过向分子筛的制造方法中引入一种特定的有机模板剂组合,就可以以简便的方式制造出一种新型的分子筛(包括SCM-1分子筛和SCM-2分子筛,以下同),该分子筛甚至是在受扩散限制严重的反应中也显示出与现有技术的ITQ-2分子筛相比至少相当的反应物转化能力,同时又克服了该ITQ-2分子筛存在的前述问题。
具体而言,本发明涉及以下方面的内容:
1.一种分子筛,其特征在于,具有如式“第一氧化物·第二氧化物”所示的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为20-2000,优选25-200,所述第一氧化物选自二氧化硅和二氧化锗中的至少一种,优选二氧化硅,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、氧化钛、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝,并且所述分子筛具有基本上如下表所示的X射线衍射图案,
Figure PCTCN2014000867-appb-000005
2.前述任一方面所述的分子筛,其中,所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2014000867-appb-000006
Figure PCTCN2014000867-appb-000007
3.一种分子筛,其特征在于,具有如式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所示的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为20-2000,优选25-200,所述有机模板剂与所述第一氧化物的质量比为0.03-0.38,优选0.07-0.27,水与所述第一氧化物的质量比为0-0.15,优选0.02-0.11,所述第一氧化物选自二氧化硅和二氧化锗中的至少一种,优选二氧化硅,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、氧化钛、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝,并且所述分子筛具有基本上如下表所示的X射线衍射图案,
Figure PCTCN2014000867-appb-000008
4.前述任一方面所述的分子筛,其中,所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
Figure PCTCN2014000867-appb-000009
5.前述任一方面所述的分子筛,其中,经BET法测得的总孔体积不低于0.5厘米3/克,优选0.55-0.90厘米3/克,经BET法测得的总比表面积不低于450米2/克,优选480-680米2/克,经BET法测得的外 比表面积不低于185米2/克,优选200-400米2/克,并且外比表面积占总比表面积的比例不低于40%,优选45-65%。
6.前述任一方面所述的分子筛,具有MWW拓扑骨架结构,其晶体的至少80%、优选至少85%、更优选至少90%、更优选至少95%、更优选至少99%是厚度约为5nm(TEM法测量)的片状晶体。
7.一种制造分子筛的方法,包括在晶化条件下使第一氧化物源、第二氧化物源、碱源、有机模板剂、任选的卤素源和水接触,以获得分子筛的步骤,和任选地,焙烧所述获得的分子筛的步骤,
其中,所述有机模板剂选自第一有机模板剂与第二有机模板剂的组合,
所述第一有机模板剂与所述第二有机模板剂的摩尔比为0.1-5.0,优选0.3-3.5,更优选0.4-1.5,
所述第一有机模板剂选自氮杂单环C5-15环烷烃(优选C6-10环烷烃,比如环己烷、环庚烷、环辛烷、环壬烷和环癸烷)中的至少一种,优选选自一氮杂、二氮杂或三氮杂单环C5-15环烷烃(优选C6-10环烷烃,比如环己烷、环庚烷、环辛烷、环壬烷和环癸烷)中的至少一种,更优选选自环骨架由n个
Figure PCTCN2014000867-appb-000010
和m个
Figure PCTCN2014000867-appb-000011
构成的饱和单环化合物(其中,各R1和R2各自独立地选自氢、C1-4直链或支链烷基和C2-4直链或支链烯基,优选各自独立地选自氢和甲基,最优选氢,各R3为氢,n为4至12的整数,优选5至8的整数,m为1至3的整数,优选1或2)中的至少一种,更优选选自六亚甲基亚胺(C/N比为6)、哌啶(C/N比为5)、2-甲基哌啶(C/N比为5)和高哌嗪(C/N比为2.5)中的至少一种,
所述第二有机模板剂选自氮杂芳香烃和下式(I)所示的化合物中的至少一种,
Figure PCTCN2014000867-appb-000012
式(I)中,R4、R5和R6各自独立地选自氢、C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基和C5-12单环环烯基,前提是(1)R4、R5和R6中的至多一个是氢,和(2)R4、R5和R6中的至少一个(优选至少两个)选自所述C5-12单环环烷基和所述C5-12单环环烯基,更优选R4、R5和R6中的至少一个(优选至少两个)选自所述C5-12单环环烷基,
所述式(I)所示的化合物更优选选自N,N-二乙基环己胺(C/N比为10)、二环己基胺(C/N比为12)和N-甲基二环己基胺(C/N比为13)中的至少一种,
所述氮杂芳香烃选自氮杂C6-20芳香烃(优选C6-14芳香烃,尤其是苯、萘、蒽和菲)中的至少一种,任选在构成其环骨架的每个氮原子上,还进一步带有一个选自C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基、C5-12单环环烯基和C6-20芳基的取代基,所述氮杂芳香烃优选选自一氮杂、二氮杂或三氮杂C6-20芳香烃(优选C6-14芳香烃,尤其是苯、萘、蒽和菲)中的至少一种,更优选选自喹啉(C/N比为9)、N-苯基喹啉(C/N比为15)、N-环己基吡啶(C/N比为11)和6-甲基喹啉(C/N比为9)中的至少一种。
8.前述任一方面所述的制造分子筛的方法,其中,所述氮杂单环环烷烃的C/N比大于2,更优选2.5或更高,所述式(I)所示的化合物的C/N比为10或更高、12或更高或者13或更高,并且所述氮杂芳香烃的C/N比为9或更高、10或更高或者11或更高。
9.前述任一方面所述的制造分子筛的方法,其中,所述第一氧化物源(以所述第一氧化物为计)、所述第二氧化物源(以所述第二氧化物为计)、所述碱源、所述有机模板剂、所述卤素源和水的摩尔比为1∶(0.0005-0.05)∶(0.01-0.3)∶(0.05-1.4)∶(0-0.5)∶(5-100),优选1∶(0.005-0.04)∶(0.05-0.2)∶(0.2-1.0)∶(0-0.3)∶(10-40),所述晶化条件包括:晶化温度为140-180℃,优选145-170℃,晶化时间为1-6天,优选2-5天,并且所述焙烧条件包括:焙烧温度为300-800℃,优选400-650℃,焙烧时间为1-10小时,优选3-6小时。
10.一种分子筛组合物,包含前述任一方面所述的分子筛或者按照前述任一方面所述的制造分子筛的方法制造的分子筛,以及粘结剂。
11.前述任一方面所述的分子筛、按照前述任一方面所述的制造分 子筛的方法制造的分子筛或者前述任一方面所述的分子筛组合物作为吸附剂、烷基化催化剂、烯烃水合催化剂、烯烃氧化催化剂、加氢裂化催化剂或者烯烃异构化催化剂的应用。
附图说明
图1为实施例I-1制造的SCM-1分子筛与比较例I-1制造的MCM-22分子筛的X射线衍射谱图(XRD)。图1中,SCM-1分子筛的XRD谱图与MCM-22分子筛相比,在d-间距
Figure PCTCN2014000867-appb-000013
出现明显的衍射峰,而在d-间距
Figure PCTCN2014000867-appb-000014
Figure PCTCN2014000867-appb-000015
Figure PCTCN2014000867-appb-000016
没有衍射峰,在d-间距
Figure PCTCN2014000867-appb-000017
之间的衍射峰发生交叠。
图2为实施例II-1制造的SCM-2分子筛与比较例II-1制造的MCM-22分子筛的X射线衍射谱图(XRD)。图2中,SCM-2分子筛的XRD谱图与MCM-22分子筛相比,在d-间距
Figure PCTCN2014000867-appb-000018
Figure PCTCN2014000867-appb-000019
出现明显的衍射峰,而在d-间距
Figure PCTCN2014000867-appb-000020
Figure PCTCN2014000867-appb-000021
Figure PCTCN2014000867-appb-000022
没有衍射峰。
图3a为实施例I-1制造的SCM-1分子筛晶体断面的TEM照片,通过选择片状晶体尺寸最小的面,以便直观地显示片状晶体的厚度;图3b为比较例I-1制造的MCM-22分子筛晶体断面的TEM照片,通过选择片状晶体尺寸最小的面,以便直观地显示片状晶体的厚度。图3a中SCM-1分子筛具有2层典型的MWW结构基础层结构,厚度仅5nm左右。图3b中的MCM-22分子筛则为多层结构,层数超过5层,厚度达到20nm左右。
技术效果
根据本发明的分子筛,具有MWW拓扑结构,但具有与MCM-22分子筛或ITQ-2分子筛相比显著不同的层结构,这一点从其独特的XRD衍射谱图得以反映。
根据本发明的分子筛,具有独特的“双”基础层结构,在尽可能多地暴露MWW拓扑结构的十二元环半超笼的同时,保留了层间的包含圆柱形十二元环超笼的十元环孔道,使得其在催化反应中既表现出高的反应物转化能力(反应物转化率),又表现出高的产物选择性和良好的稳 定性。
根据本发明的分子筛,即使是在受扩散限制严重的反应(比如环己酮肟的贝克曼重排反应)中,也显示出与ITQ-2分子筛相比至少相当甚至更高的反应物转化能力。
根据本发明的分子筛,骨架结构稳定,抗积炭能力强,在催化反应中不易积炭,由此表现出与ITQ-2分子筛相比明显延长的使用寿命。
根据本发明的分子筛,失活后可以通过高温焙烧进行再生,而且其催化性能能够容易地通过该再生而恢复到与新鲜催化剂相同的水平,由此表现出良好的再生性能或循环使用性能。
根据本发明的分子筛制造方法,制造过程简单易行,反应原料简单易得,而且操作步骤少,操作条件温和,因此能量消耗和物料消耗均较低,适合工业化应用和实施。
根据本发明的分子筛制造方法,操作步骤少,物料损耗小,由此分子筛产品的收率超过80%,有时可以达到90%,甚至接近100%。
根据本发明的分子筛制造方法,该分子筛的晶化体系简单,晶化条件温和,晶化历程简单可控,因此可以获得纯度极高的目标分子筛产品,而不必担心有害杂质的影响。
根据本发明的分子筛,在利用透射电子显微镜(TEM)进行观察时,呈现为厚度均一(平均厚度大约5nm)的片晶形态,非晶杂质的含量非常低(优选的情况下,为10%以下,甚至为1%以下),显示出极高的晶体纯度,从而有利于其催化性能的充分发挥。
根据本发明的分子筛,外比表面积占总比表面积的比例不低于40%,远高于MCM-22分子筛的该比例(一般为20%左右),由此表现出显著优于MCM-22分子筛的反应物转化能力。
根据本发明的分子筛,具有良好的酸催化能力,特别是在苯与乙烯液相烷基化反应、苯与丙烯液相烷基化反应中,表现出优异的催化性能,具有良好的工业应用前景。
根据本发明的分子筛,在催化苯烷基化反应时,具有反应温度低,转化率高,选择性好,运行稳定的优点。
具体实施方式
下面对本发明的具体实施方式进行详细说明,但是需要指出的是, 本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。
本说明书提到的所有出版物、专利申请、专利和其它参考文献全都引于此供参考。除非另有定义,本说明书所用的所有技术和科学术语都具有本领域技术人员常规理解的含义。在有冲突的情况下,以本说明书的定义为准。
当本说明书以词头“本领域技术人员公知”、“现有技术”或其类似用语来导出材料、物质、方法、步骤、装置或部件等时,该词头导出的对象涵盖本申请提出时本领域常规使用的那些,但也包括目前还不常用,却将变成本领域公认为适用于类似目的的那些。
在本说明书的上下文中,除了明确说明的内容之外,未提到的任何事宜或事项均直接适用本领域已知的那些而无需进行任何改变。而且,本文描述的任何实施方式均可以与本文描述的一种或多种其他实施方式自由结合,由此而形成的技术方案或技术思想均视为本发明原始公开或原始记载的一部分,而不应被视为是本文未曾披露或预期过的新内容,除非本领域技术人员认为该结合是明显不合理的。
在本发明的上下文中,表述“卤素”指的是氟、氯、溴或碘。
根据本发明,在本说明书的上下文中,作为C1-4直链或支链烷基,比如可以举出甲基、乙基或者丙基等,而作为C2-4直链或支链烯基,比如可以举出乙烯基、烯丙基或者丙烯基等。
在本说明书的上下文中,对于分子筛,在其孔道中的除水及金属离子以外的其他合成该分子筛时填充在孔道中的物质(比如有机模板剂分子、卤素等)未被脱除之前,称为“前驱体”。
在本说明书的上下文中,所谓总比表面积,是指单位质量样品所具有的总面积,包括内表面积和外表面积。非孔性样品只具有外表面积,如硅酸盐水泥、一些粘土矿物粉粒等;有孔和多孔样品具有外表面积和内表面积,如石棉纤维、硅藻土和分子筛等。有孔和多孔样品中孔径小于2nm的孔的表面积是内表面积,扣除内表面积后的表面积称为外表面积,单位质量样品具有的外表面积即外比表面积。
在本说明书的上下文中,所谓孔体积,亦称孔容,指单位质量多孔材料所具有的孔的容积。所谓总孔体积,是指单位质量分子筛所具有的全部孔(一般仅计入孔道直径小于50nm的孔)的容积。所谓微孔 体积,是指单位质量分子筛所具有的全部微孔(一般指的是孔道直径小于2nm的孔)的容积。
在本说明书的上下文中,在分子筛的XRD数据中,w、m、s、vs代表衍射峰强度,w为弱,m为中等,s为强,vs为非常强,这为本领域技术人员所熟知的。一般而言,w为小于20;m为20-40;s为40-70;vs为大于70。
在没有明确指明的情况下,本说明书内所提到的所有百分数、份数、比率等都是以重量为基准的,除非以重量为基准时不符合本领域技术人员的常规认识。
根据本发明的第一实施方式,涉及一种SCM-1分子筛。该SCM-1分子筛具有如式“第一氧化物·第二氧化物”所示的示意性化学组成。已知的是,分子筛中有时会(尤其是在刚合成之后)含有一定量的水分,但本发明认为并没有必要对该水分的量进行特定,因为该水分的存在与否并不会实质上影响该分子筛的XRD谱图。鉴于此,该示意性化学组成实际上代表的是该分子筛的无水化学组成。而且,显然的是,该示意性化学组成代表的是该SCM-1分子筛的骨架化学组成。
根据本发明的该第一实施方式,在所述SCM-1分子筛中,所述第一氧化物与所述第二氧化物的摩尔比一般为20-2000,优选25-200。
根据本发明的该第一实施方式,在所述SCM-1分子筛中,所述第一氧化物选自二氧化硅和二氧化锗中的至少一种,其中优选二氧化硅。
根据本发明的该第一实施方式,在所述SCM-1分子筛中,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、氧化钛、稀土氧化物、氧化铟和氧化钒中的至少一种,其中优选氧化铝。
根据本发明的该第一实施方式,所述SCM-1分子筛具有基本上如下表所示的X射线衍射图案。
Figure PCTCN2014000867-appb-000023
根据本发明的该第一实施方式,在所述SCM-1分子筛的前述X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2014000867-appb-000024
根据本发明的该第一实施方式,所述SCM-1分子筛具有与许多材料(尤其是MCM-22分子筛)以及某些多层材料有区别的完整、新颖的晶态结构。反映在XRD谱图中,如前所示,SCM-1分子筛的XRD谱图在d-间距
Figure PCTCN2014000867-appb-000025
附近、
Figure PCTCN2014000867-appb-000026
附近出现明显的衍射峰,而在d-间距
Figure PCTCN2014000867-appb-000027
附近、
Figure PCTCN2014000867-appb-000028
附近、
Figure PCTCN2014000867-appb-000029
附近、
Figure PCTCN2014000867-appb-000030
附近、
Figure PCTCN2014000867-appb-000031
附近、
Figure PCTCN2014000867-appb-000032
附近、
Figure PCTCN2014000867-appb-000033
附近和
Figure PCTCN2014000867-appb-000034
附近没有衍射峰,在d-间距
Figure PCTCN2014000867-appb-000035
之间的衍射峰发生交叠。
根据本发明的该第一实施方式,所述SCM-1分子筛的总孔体积一般不低于0.5厘米3/克,优选0.55-0.90厘米3/克,其中微孔体积一般不低于0.06厘米3/克,优选0.08-0.20厘米3/克。
根据本发明的该第一实施方式,所述SCM-1分子筛的总比表面积一般不低于450米2/克,优选480-680米2/克。
根据本发明的该第一实施方式,所述SCM-1分子筛的外比表面积 一般不低于185米2/克,优选200-400米2/克,并且外比表面积占总比表面积的比例一般不低于40%,优选45-65%。
根据本发明的该第一实施方式,如其XRD谱图所示,所述SCM-1分子筛具有MWW拓扑骨架结构。
根据本发明的该第一实施方式,在利用透射电子显微镜(TEM)进行观察时,发现在所述SCM-1分子筛的全部晶体中,至少80%、优选至少85%、更优选至少90%、更优选至少95%、更优选至少99%是厚度约为5nm(比如5±0.8nm)的片状晶体,由此呈现为近乎纯相的结晶型分子筛。相应地,在该SCM-1分子筛中,非晶杂质的含量非常低,比如该非晶杂质的含量一般为20%以下,优选15%以下,更优选10%以下,更优选5%以下,进一步优选1%以下。
根据本发明的第二实施方式,涉及一种SCM-2分子筛。该SCM-2分子筛具有如式“第一氧化物·第二氧化物”所示的示意性化学组成(即,骨架化学组成)。一般地,在刚合成后,所述SCM-2分子筛在其组成中(一般包含或填充在其孔道中)还进一步含有有机模板剂和水。因此,该SCM-2分子筛一般还可能具有如式“第一氧化物·第二氧化物·有机模板剂·水”所示的示意性化学组成。
根据本发明的该第二实施方式,在所述SCM-2分子筛中,所述第一氧化物与所述第二氧化物的摩尔比一般为20-2000,优选25-200。
根据本发明的该第二实施方式,在所述SCM-2分子筛中,所述有机模板剂与所述第一氧化物的质量比一般为0.03-0.38,优选0.07-0.27。
根据本发明的该第二实施方式,在所述SCM-2分子筛中,水与所述第一氧化物的质量比一般为0-0.15,优选0.02-0.11。
根据本发明的该第二实施方式,在所述SCM-2分子筛中,所述第一氧化物选自二氧化硅和二氧化锗中的至少一种,其中优选二氧化硅。
根据本发明的该第二实施方式,在所述SCM-2分子筛中,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、氧化钛、稀土氧化物、氧化铟和氧化钒中的至少一种,其中优选氧化铝。
根据本发明的该第二实施方式,所述SCM-2分子筛具有基本上如下表所示的X射线衍射图案。
Figure PCTCN2014000867-appb-000036
根据本发明的该第二实施方式,在所述SCM-2分子筛的前述X射线衍射图案中,优选还进一步包括基本上如下表所示的X射线衍射峰。
Figure PCTCN2014000867-appb-000037
根据本发明的该第二实施方式,所述SCM-2分子筛具有与许多材料(尤其是MCM-22分子筛)以及某些多层材料有区别的完整、新颖的晶态结构。反映在XRD谱图中,如前所示,SCM-2分子筛的XRD谱图在d-间距
Figure PCTCN2014000867-appb-000038
附近、
Figure PCTCN2014000867-appb-000039
附近出现一个明显的衍射峰,而在d-间距
Figure PCTCN2014000867-appb-000040
附近、
Figure PCTCN2014000867-appb-000041
附近、
Figure PCTCN2014000867-appb-000042
附近、
Figure PCTCN2014000867-appb-000043
附近、
Figure PCTCN2014000867-appb-000044
附近、
Figure PCTCN2014000867-appb-000045
附近、
Figure PCTCN2014000867-appb-000046
附近、
Figure PCTCN2014000867-appb-000047
附近和
Figure PCTCN2014000867-appb-000048
附近没有衍射峰。
根据本发明的该第二实施方式,所述SCM-2分子筛的总孔体积一般不低于0.5厘米3/克,优选0.55-0.90厘米3/克,其中微孔体积一般不低于0.06厘米3/克,优选0.08-0.20厘米3/克。
根据本发明的该第二实施方式,所述SCM-2分子筛的总比表面积一般不低于450米2/克,优选480-680米2/克。
根据本发明的该第二实施方式,所述SCM-2分子筛的外比表面积一般不低于185米2/克,优选200-400米2/克,并且外比表面积占总比表面积的比例一般不低于40%,优选45-65%。
根据本发明的该第二实施方式,作为所述有机模板剂,比如可以 举出下文描述本发明的分子筛的制造方法时所例举的那些。具体而言,所述有机模板剂一般是第一有机模板剂与第二有机模板剂的组合。
根据本发明,在所述组合中,所述第一有机模板剂与所述第二有机模板剂的摩尔比一般为0.1-5.0,优选0.3-3.5,更优选0.4-1.5。
根据本发明,所述第一有机模板剂是氮杂单环环烷烃。所谓“氮杂单环环烷烃”,适用有机化学领域的常规定义,比如指的是单环环烷烃的环上碳原子被氮原子取代而获得的化合物,具体比如一氮杂环己烷(哌啶)或者1,4-二氮杂环庚烷(高哌嗪)。作为所述氮杂单环环烷烃,比如可以举出一氮杂、二氮杂或三氮杂单环环烷烃。作为所述环烷烃,比如可以举出C5-15环烷烃,其中优选C6-10环烷烃,更具体比如环己烷、环庚烷、环辛烷、环壬烷和环癸烷等。另外,在构成这些氮杂单环环烷烃的环骨架的每个碳原子上,还任选进一步带有选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基。这些氮杂单环环烷烃可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,作为所述氮杂单环环烷烃,进一步比如可以举出环骨架由n个
Figure PCTCN2014000867-appb-000049
和m个
Figure PCTCN2014000867-appb-000050
构成的饱和单环化合物。在此,各R1和R2各自独立地选自氢、C1-4直链或支链烷基和C2-4直链或支链烯基,优选各自独立地选自氢和甲基,最优选氢,并且各R3为氢。n为4至12的整数,优选5至8的整数。m为1至3的整数,优选1或2。这些饱和单环化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个优选实施方式,在所述氮杂单环环烷烃或所述饱和单环化合物中,构成环骨架的碳原子(即,不包括任何取代基(如果有的话,比如前述R1和R2)的碳原子)的总数与氮原子的总数的比值(即C/N比)一般大于2,优选2.5或更高。
根据本发明,作为所述第一有机模板剂,更具体比如可以举出六亚甲基亚胺(C/N比为6)、哌啶(C/N比为5)、2-甲基哌啶(C/N比为5)和高哌嗪(C/N比为2.5)。
根据本发明,所述第二有机模板剂选自氮杂芳香烃和下式(I)所 示的化合物中的至少一种。
Figure PCTCN2014000867-appb-000051
根据本发明,在式(I)中,R4、R5和R6各自独立地选自氢、C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基和C5-12单环环烯基。作为所述C1-12直链或支链烷基,比如可以举出C1-10直链或支链烷基、C1-6直链或支链烷基或者C1-4直链或支链烷基,更具体比如可以举出甲基、乙基、丙基和丁基等。作为所述C2-12直链或支链烯基,比如可以举出C2-10直链或支链烯基、C2-6直链或支链烯基或者C2-4直链或支链烯基,更具体比如可以举出乙烯基、丙烯基、烯丙基和丁烯基等。作为所述C5-12单环环烷基,比如可以举出C6-10单环环烷基或者C6-8单环环烷基,更具体比如可以举出环戊基、环己基、环庚基、环辛基、环壬基和环癸基等,其中优选环己基和环庚基。这些单环环烷基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基。作为所述C5-12单环环烯基,比如可以举出C6-10单环环烯基或者C6-8单环环烯基,更具体比如可以举出环戊烯基、环戊二烯基、环己烯基、环己二烯基、环庚烯基、环庚三烯基、环辛烯基、环辛四烯基、环壬烯基和环癸烯基等。这些单环环烯基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基。
根据本发明,在式(I)中,前提(1)是R4、R5和R6中的至多一个是氢,并且前提(2)是R4、R5和R6中的至少一个(优选至少两个)选自所述C5-12单环环烷基和所述C5-12单环环烯基。作为所述前提(2)更优选的是,R4、R5和R6中的至少一个(优选至少两个)是所述C5-12单环环烷基。
根据本发明的一个优选实施方式,在所述式(I)所示的化合物中,碳原子(不包括任何取代基(如果有的话)的碳原子)的总数与氮原子的总数的比值(即C/N比)一般为10或更高、12或更高或者13或更高等。
根据本发明,作为式(I)所示的化合物,更具体比如可以举出N,N-二乙基环己胺(C/N比为10)、二环己基胺(C/N比为12)和N-甲基二环己基胺(C/N比为13)。
根据本发明,这些式(I)所示的化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,所谓“氮杂芳香烃”,适用有机化学领域的常规定义,比如指的是芳香烃的环上碳原子被氮原子取代而获得的化合物,具体比如一氮杂苯(吡啶)或者一氮杂萘(喹啉或者异喹啉)。作为所述氮杂芳香烃,比如可以举出一氮杂、二氮杂或三氮杂芳香烃。作为所述芳香烃,比如可以举出C6-20芳香烃,其中优选C6-14芳香烃,尤其是苯、萘、蒽和菲等。在构成这些氮杂芳香烃的环骨架的每个碳原子上,还任选进一步带有选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。另外,在构成这些氮杂芳香烃的环骨架的每个氮原子上,还任选进一步带有(一个)选自C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基、C5-12单环环烯基和C6-20芳基的取代基(称为取代基B)。作为所述C1-12直链或支链烷基,比如可以举出C1-10直链或支链烷基、C1-6直链或支链烷基或者C1-4直链或支链烷基,更具体比如可以举出甲基、乙基、丙基和丁基等。作为所述C2-12直链或支链烯基,比如可以举出C2-10直链或支链烯基、C2-6直链或支链烯基或者C2-4直链或支链烯基,更具体比如可以举出乙烯基、丙烯基、烯丙基和丁烯基等。作为所述C5-12单环环烷基,比如可以举出C6-10单环环烷基或者C6-8单环环烷基,更具体比如可以举出环戊基、环己基、环庚基、环辛基、环壬基和环癸基等,其中优选环己基和环庚基。这些单环环烷基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。作为所述C5-12单环环烯基,比如可以举出C6-10单环环烯基或者C6-8单环环烯基,更具体比如可以举出环戊烯基、环戊二烯基、环己烯基、环己二烯基、环庚烯基、环庚三烯基、环辛烯基、环辛四烯基、环壬烯基和环癸烯基等。这些单环环烯基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。作为所述C6-20芳基,比如可以举出C6-14芳基或者C6-10芳基,更具体 比如可以举出苯基、萘基、蒽基和菲基等。这些芳基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。
根据本发明的一个优选实施方式,在所述氮杂芳香烃中,碳原子(不包括任何取代基A(如果有的话)但包括任何取代基B(如果有的活)的碳原子)的总数与氮原子的总数的比值(即C/N比)一般为9或更高、10或更高或者11或更高。
根据本发明,作为所述氮杂芳香烃,更具体比如可以举出喹啉(C/N比为9)、N-苯基喹啉(C/N比为15)、N-环己基吡啶(C/N比为11)和6-甲基喹啉(C/N比为9)等。
根据本发明,这些氮杂芳香烃可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的该第二实施方式,如其XRD谱图所示,所述SCM-2分子筛具有MWW拓扑骨架结构。
根据本发明的该第二实施方式,在利用透射电子显微镜(TEM)进行观察时,发现在所述SCM-2分子筛的全部晶体中,至少80%、优选至少85%、更优选至少90%、更优选至少95%、更优选至少99%是厚度约为5nm(比如5±0.8nm)的片状晶体,由此呈现为近乎纯相的结晶型分子筛。
根据本发明的该第二实施方式,通过煅烧所述SCM-2分子筛,以便脱除其孔道中存在的任何有机模板剂和水等,即可获得前述第一实施方式所述的SCM-1分子筛。此时,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为300-800℃,优选400-650℃,而焙烧时间一般为1-10小时,优选3-6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明,取决于其制造方法所使用的起始原料,所述SCM-1分子筛或所述SCM-2分子筛在其组成中(一般包含或填充在其孔道中)有时还进一步含有碱金属和/或碱土金属阳离子等金属阳离子作为组成成分。作为所述金属阳离子此时的含量,比如所述金属阳离子与所述第一氧化物的质量比一般为0-0.02,优选0,0002-0.006,但有时并不限于此。
根据本发明,取决于其制造方法所使用的起始原料,所述SCM-1 分子筛或所述SCM-2分子筛在其组成中(一般包含或填充在其孔道中)有时还进一步含有卤素作为组成成分。作为所述卤素此时的含量,比如使得所述卤素与所述第一氧化物的质量比一般达到0-0.15,优选0-0.03,但有时并不限于此。
根据本发明,所述SCM-1分子筛或所述SCM-2分子筛可以通过如下的制造方法进行制造。鉴于此,本发明还涉及一种制造分子筛的方法,其包括在晶化条件下使第一氧化物源、第二氧化物源、碱源、有机模板剂和水接触的步骤(以下称为接触步骤)。
根据本发明,在所述制造分子筛的方法中,所述接触步骤可以按照本领域常规已知的任何方式进行,比如可以举出使所述第一氧化物源、所述第二氧化物源、所述碱源、所述有机模板剂和水混合,并使该混合物在所述晶化条件下晶化的方法。
根据本发明,在所述制造分子筛的方法中,作为所述第一氧化物源,可以使用本领域为此目的而常规使用的任何氧化物源。比如,当所述第一氧化物为二氧化硅时,作为该第一氧化物源,比如可以举出硅酸、硅胶、硅溶胶、硅酸钾、水玻璃或者四烷氧基硅等。当所述第一氧化物为二氧化锗时,作为该第一氧化物源,比如可以举出四烷氧基锗、氧化锗、硝酸锗等。这些第一氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明,在所述制造分子筛的方法中,作为所述第二氧化物源,可以使用本领域为此目的而常规使用的任何氧化物源,包括但不限于所述第二氧化物中相应金属的氧化物、氢氧化物、烷醇盐、金属含氧酸盐、乙酸盐、草酸盐、铵盐、硫酸盐、卤化盐和硝酸盐等。比如,当所述第二氧化物为氧化铝时,作为该第二氧化物源,比如可以举出氢氧化铝、铝酸钠、铝盐、高岭土或蒙脱土等。当所述第二氧化物为氧化硼时,作为该第二氧化物源,比如可以举出硼酸、硼酸盐、硼砂、三氧化二硼等。当所述第二氧化物为氧化铁时,作为该第二氧化物源,比如可以举出硝酸铁、氯化铁、氧化铁等。当所述第二氧化物为氧化镓时,作为该第二氧化物源,比如可以举出硝酸镓、硫酸镓、氧化镓等。当所述第二氧化物为氧化钛时,作为该第二氧化物源,比如可以举出四烷氧基钛、二氧化钛、硝酸钛等。当所述第二氧化物为稀土氧化物时,作为该第二氧化物源,比如可以举出氧化镧、氧化钕、 氧化钇、氧化铈、硝酸镧、硝酸钕、硝酸钇、硫酸铈铵等。当所述第二氧化物为氧化铟时,作为该第二氧化物源,比如可以举出氯化铟、硝酸铟、氧化铟等。当所述第二氧化物为氧化钒时,作为该第二氧化物源,比如可以举出氯化钒、偏钒酸铵、钒酸钠、二氧化钒、硫酸氧钒等。这些第二氧化物源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明,在所述制造分子筛的方法中,作为所述碱源,可以使用本领域为此目的而常规使用的任何碱源,包括但不限于以碱金属或碱土金属为阳离子的无机碱,特别是氢氧化钠和氢氧化钾等。这些碱源可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,在所述制造分子筛的方法中,所述有机模板剂是第一有机模板剂与第二有机模板剂的组合。
根据本发明,在所述组合中,所述第一有机模板剂与所述第二有机模板剂的摩尔比一般为0.1-5.0,优选0.3-3.5,更优选0.4-1.5。
根据本发明,所述第一有机模板剂是氮杂单环环烷烃。所谓“氮杂单环环烷烃”,适用有机化学领域的常规定义,比如指的是单环环烷烃的环上碳原子被氮原子取代而获得的化合物,具体比如一氮杂环己烷(哌啶)或者1,4-二氮杂环庚烷(高哌嗪)。作为所述氮杂单环环烷烃,比如可以举出一氮杂、二氮杂或三氮杂单环环烷烃。作为所述环烷烃,比如可以举出C5-15环烷烃,其中优选C6-10环烷烃,更具体比如环己烷、环庚烷、环辛烷、环壬烷和环癸烷等。另外,在构成这些氮杂单环环烷烃的环骨架的每个碳原子上,还任选进一步带有选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基。这些氮杂单环环烷烃可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,作为所述氮杂单环环烷烃,进一步比如可以举出环骨架由n个
Figure PCTCN2014000867-appb-000052
和m个
Figure PCTCN2014000867-appb-000053
构成的饱和单环化合物。在此,各R1和R2各自独立地选自氢、C1-4直链或支链烷基和C2-4直链或支链烯基,优选各自独立地选自氢和甲基,最优选氢,并且各R3为氢。n为4至12的整数,优选5至8的整数。m为1至3的整数,优选1或 2。这些饱和单环化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明的一个优选实施方式,在所述氮杂单环环烷烃或所述饱和单环化合物中,构成环骨架的碳原子(即,不包括任何取代基(如果有的话,比如前述R1和R2)的碳原子)的总数与氮原子的总数的比值(即C/N比)一般大于2,优选2.5或更高。
根据本发明,作为所述第一有机模板剂,更具体比如可以举出六亚甲基亚胺(C/N比为6)、哌啶(C/N比为5)、2-甲基哌啶(C/N比为5)和高哌嗪(C/N比为2.5)。
根据本发明,所述第二有机模板剂选自氮杂芳香烃和下式(I)所示的化合物中的至少一种。
Figure PCTCN2014000867-appb-000054
根据本发明,在式(I)中,R4、R5和R6各自独立地选自氢、C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基和C5-12单环环烯基。作为所述C1-12直链或支链烷基,比如可以举出C1-10直链或支链烷基、C1-6直链或支链烷基或者C1-4直链或支链烷基,更具体比如可以举出甲基、乙基、丙基和丁基等。作为所述C2-12直链或支链烯基,比如可以举出C2-10直链或支链烯基、C2-6直链或支链烯基或者C2-4直链或支链烯基,更具体比如可以举出乙烯基、丙烯基、烯丙基和丁烯基等。作为所述C5-12单环环烷基,比如可以举出C6-10单环环烷基或者C6-8单环环烷基,更具体比如可以举出环戊基、环己基、环庚基、环辛基、环壬基和环癸基等,其中优选环己基和环庚基。这些单环环烷基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基。作为所述C5-12单环环烯基,比如可以举出C6-10单环环烯基或者C6-8单环环烯基,更具体比如可以举出环戊烯基、环戊二烯基、环己烯基、环己二烯基、环庚烯基、环庚三烯基、环辛烯基、环辛四烯基、环壬烯基和环癸烯基等。这些单环环烯基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的 取代基。
根据本发明,在式(I)中,前提(1)是R4、R5和R6中的至多一个是氢,并且前提(2)是R4、R5和R6中的至少一个(优选至少两个)选自所述C5-12单环环烷基和所述C5-12单环环烯基。作为所述前提(2)更优选的是,R4、R5和R6中的至少一个(优选至少两个)是所述C5-12单环环烷基。
根据本发明的一个优选实施方式,在所述式(I)所示的化合物中,碳原子(不包括任何取代基(如果有的话)的碳原子)的总数与氮原子的总数的比值(即C/N比)一般为10或更高、12或更高或者13或更高等。
根据本发明,作为式(I)所示的化合物,更具体比如可以举出N,N-二乙基环己胺(C/N比为10)、二环己基胺(C/N比为12)和N-甲基二环己基胺(C/N比为13)。
根据本发明,这些式(I)所示的化合物可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,所谓“氮杂芳香烃”,适用有机化学领域的常规定义,比如指的是芳香烃的环上碳原子被氮原子取代而获得的化合物,具体比如一氮杂苯(吡啶)或者一氮杂萘(喹啉或者异喹啉)。作为所述氮杂芳香烃,比如可以举出一氮杂、二氮杂或三氮杂芳香烃。作为所述芳香烃,比如可以举出C6-20芳香烃,其中优选C6-14芳香烃,尤其是苯、萘、蒽和菲等。在构成这些氮杂芳香烃的环骨架的每个碳原子上,还任选进一步带有选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。另外,在构成这些氮杂芳香烃的环骨架的每个氮原子上,还任选进一步带有(一个)选自C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基、C5-12单环环烯基和C6-20芳基的取代基(称为取代基B)。作为所述C1-12直链或支链烷基,比如可以举出C1-10直链或支链烷基、C1-6直链或支链烷基或者C1-4直链或支链烷基,更具体比如可以举出甲基、乙基、丙基和丁基等。作为所述C2-12直链或支链烯基,比如可以举出C2-10直链或支链烯基、C2-6直链或支链烯基或者C2-4直链或支链烯基,更具体比如可以举出乙烯基、丙烯基、烯丙基和丁烯基等。作为所述C5-12单环环烷基,比如可以举出C6-10单环环烷基或者C6-8单环环烷基,更具体比如可以举出环戊基、环己 基、环庚基、环辛基、环壬基和环癸基等,其中优选环己基和环庚基。这些单环环烷基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。作为所述C5-12单环环烯基,比如可以举出C6-10单环环烯基或者C6-8单环环烯基,更具体比如可以举出环戊烯基、环戊二烯基、环己烯基、环己二烯基、环庚烯基、环庚三烯基、环辛烯基、环辛四烯基、环壬烯基和环癸烯基等。这些单环环烯基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。作为所述C6-20芳基,比如可以举出C6-14芳基或者C6-10芳基,更具体比如可以举出苯基、萘基、蒽基和菲基等。这些芳基还任选进一步带有一个或多个(比如1至5个、1至3个或者1个)选自C1-4直链或支链烷基和C2-4直链或支链烯基的取代基(以下称为取代基A)。
根据本发明的一个优选实施方式,在所述氮杂芳香烃中,碳原子(不包括任何取代基A(如果有的话)但包括任何取代基B(如果有的话)的碳原子)的总数与氮原子的总数的比值(即C/N比)一般为9或更高、10或更高或者11或更高。
根据本发明,作为所述氮杂芳香烃,更具体比如可以举出喹啉(C/N比为9)、N-苯基喹啉(C/N比为15)、N-环己基吡啶(C/N比为11)和6-甲基喹啉(C/N比为9)等。
根据本发明,这些氮杂芳香烃可以单独使用一种,或者以任意的比例组合使用多种。
根据本发明,在所述制造分子筛的方法中,还可以根据需要进一步引入卤素源,由此在产品分子筛的组成中引入卤素。作为所述卤素源,比如可以举出无机卤素源,具体比如氢氟酸、氯化钠、氟化铵、氟化钾等,或者有机卤素源,具体比如卤代C1-3烷烃如二氯甲烷、三氯甲烷、二氯乙烷、碘甲烷等。这些卤素源可以单独使用一种,或者以需要的比例组合使用多种。
根据本发明,在所述制造分子筛的方法中,所述第一氧化物源(以所述第一氧化物为计)、所述第二氧化物源(以所述第二氧化物为计)、所述碱源、所述有机模板剂、所述卤素源和水的摩尔比一般为1∶(0.0005-0.05)∶(0.01-0.3)∶(0.05-1.4)∶(0-0.5)∶(5-100),优选1∶ (0.005-0.04)∶(0.05-0.2)∶(0.2-1.0)∶(0-0.3)∶(10-40)。
根据本发明,在所述制造分子筛的方法中,所述晶化条件包括:晶化温度为140-180℃,优选145-170℃,晶化时间为1-6天,优选2-5天。
根据本发明,在所述制造分子筛的方法中,在所述接触步骤或者所述晶化完成之后,可以通过常规已知的任何分离方式从所获得的反应混合物中分离出分子筛(一般相应于前述的SCM-2分子筛,有时也称为分子筛前驱体)作为产品。作为所述分离方式,比如可以举出对所述获得的反应混合物进行过滤、洗涤和干燥的方法。
根据本发明,在所述制造分子筛的方法中,所述过滤、洗涤和干燥可以按照本领域常规已知的任何方式进行。具体举例而言,作为所述过滤,比如可以简单地抽滤所述获得的反应混合物。作为所述洗涤,比如可以举出使用去离子水进行洗涤直至滤出液的pH值达到7-9,优选8-9。作为所述干燥温度,比如可以举出40-250℃,优选60-150℃,作为所述干燥的时间,比如可以举出8-30小时,优选10-20小时。该干燥可以在常压下进行,也可以在减压下进行。
根据本发明,在所述制造分子筛的方法中,根据需要,可以将所述获得的SCM-2分子筛进行焙烧,以脱除所述有机模板剂和可能存在的水分等,由此获得焙烧后的分子筛,这一般相应于前述的SCM-1分子筛。
根据本发明,在所述制造分子筛的方法中,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为300-800℃,优选400-650℃,而焙烧时间一般为1-10小时,优选3-6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明,所述SCM-1分子筛、所述SCM-2分子筛或者根据本发明所述制造分子筛的方法所制造的任何分子筛(有时将三者统称为本发明的分子筛),根据需要,还可以通过本领域常规已知的任何方式进行离子交换,比如可以通过离子交换法或者溶液浸渍法(相关方法比如可以参见美国专利US3140249和US3140253等),将其组成中包含的金属阳离子(比如Na离子或者K离子,取决于其具体的制造方法)全部或者部分替换为其他阳离子。作为所述其他阳离子,比如可以举出氢离子、其他碱金属离子(包括K离子、Rb离子等)、铵离子(包括NH4 离子、季铵离子比如四甲基铵离子和四乙基铵离子等)、碱土金属离子(包括Mg离子、Ca离子)、Mn离子、Zn离子、Cd离子、贵金属离子(包括Pt离子、Pd离子、Rh离子等)、Ni离子、Co离子、Ti离子、Sn离子、Fe离子和/或稀土金属离子等。
根据本发明的分子筛,根据需要,还可以通过稀酸溶液等进行处理,以便提高硅铝比,或者用水蒸气进行处理,以提高分子筛晶体的抗酸侵蚀性。
根据本发明,所述制造分子筛的方法遵循了常规水热法制造分子筛的反应原理,因此与ITQ-2分子筛等的制造方法相比,具有操作步骤少,晶化体系简单,晶化条件温和,晶化历程简单可控等特点,因此该制造方法的能量和物料损耗小(生产成本低),分子筛产品的收率一般可超过80%,有时甚至可以达到90%,或者接近100%。而且,本发明所获得的分子筛产品还具有杂质含量极低的优点。比如,在利用透射电子显微镜(TEM)对刚合成的该分子筛产品(比如SCM-1分子筛或SCM-2分子筛)进行观察时,发现在这些分子筛的全部晶体中,至少80%、优选至少85%、更优选至少90%、更优选至少95%、更优选至少99%是厚度约为5nm(比如5±0.8nm)的片状晶体,由此呈现为近乎纯相的结晶型分子筛。相应地,在这些分子筛中,非晶杂质的含量非常低,比如该非晶杂质的含量一般为20%以下,更优选15%以下,更优选10%以下,更优选5%以下,进一步优选1%以下。
在不受任何理论限制的情况下,本发明的发明人认为,本发明的分子筛具有“双”基础层结构,因为其厚度大致是构成MCM-22分子筛的“基础层结构”的厚度(2.5nm左右)的2倍。本发明分子筛的该双基础层结构是非常独特的,完全实现了本领域中一直想要实现却一直以来没有实现的“在尽可能多地暴露MWW拓扑结构的十二元环半超笼的同时,保留了十元环孔道”的目标,是本领域中直到目前为止尚未获得的新型结构。
根据本发明,由于使用了组合的有机模板剂,不同有机物种共同(而非单一物种)插入到分子筛的各基础层结构之间,由此导致本发明的SCM-1分子筛和SCM-2分子筛与现有技术的MCM-22分子筛在微观结构上产生差别。进而,当采用X射线衍射(XRD)对这些分子筛分别进行表征时,如前所述,这种微观结构上的差别表现为XRD谱 图上多处衍射峰的不同。在不受任何理论限制的情况下,本发明的发明人认为,这些衍射峰(尤其是与片层堆叠或c轴方向堆叠厚度有关的那些衍射峰)的不同直接反映了本发明的分子筛与MCM-22分子筛或ITQ-2分子筛在层结构上的不同。另外,这种微观结构上的差别进一步体现为比表面积等性能参数的显著差异。比如,本发明的分子筛的外比表面积占总比表面积的比例一般不低于40%,该值远高于现有技术MCM-22分子筛的该比例(一般为20%左右)。
根据本发明的分子筛,由于具有较高的总比表面积和外比表面积,因此特别适合作为吸附剂,例如用来在气相或液相中从多种组分的混合物中分离出至少一种组分。
根据本发明的分子筛,在尽可能多地暴露MWW拓扑结构的十二元环半超笼的同时,保留了十元环孔道,因此特别适合在有机化合物转化反应中作为催化剂使用,可以既表现出高的反应物转化能力,又表现出高的产物选择性。作为所述有机化合物转化反应,比如可以举出苯与乙烯液相烷基化反应制乙苯、苯与丙烯液相烷基化反应制异丙苯、丁烯异构化反应、石脑油裂解反应、乙醇和苯烷基化反应、环己烯水合反应等。作为所述催化剂,比如可以举出烷基化催化剂、烯烃水合催化剂、烯烃氧化催化剂、加氢裂化催化剂或者烯烃异构化催化剂等。
根据本发明的分子筛,即使是在受扩散限制严重的反应(比如环己酮肟的贝克曼重排反应)中,也显示出与ITQ-2分子筛相比至少相当甚至更高的反应物转化能力,由此最大限度地保留了ITQ-2分子筛的原有优点。
根据本发明的分子筛,在作为催化剂而催化苯烷基化反应时,具有反应温度低,转化率高,选择性好,运行稳定的优点。
根据本发明的分子筛,其骨架结构稳定,抗积炭能力强,在催化反应中不易积炭,因此可以作为催化剂长期使用而不明显失活。
根据本发明的分子筛,在失活后可以通过简单地焙烧而再生,而且通过该再生,可以使其催化性能恢复到与新鲜催化剂基本相同的水平。此时,所述焙烧的条件是:焙烧温度一般为300-800℃,优选400-650℃,而焙烧时间一般为1-10小时,优选3-6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
根据本发明的分子筛,可以呈现为任何的物理形式,比如粉末状、颗粒状或者模制品状(比如条状、三叶草状等)。可以按照本领域常规已知的任何方式获得这些物理形式,并没有特别的限定。
根据本发明的分子筛,可以与其他材料复合使用,由此获得分子筛组合物。作为这些其他材料,比如可以举出活性材料和非活性材料。作为所述活性材料,比如可以举出合成沸石和天然沸石等,作为所述非活性材料(一般称为粘结剂),比如可以举出粘土、白土、硅胶和氧化铝等。这些其他材料可以单独使用一种,或者以任意的比例组合使用多种。作为所述其他材料的用量,可以直接参照本领域的常规用量,并没有特别的限制。
根据本发明,前述的任何分子筛或者前述的分子筛组合物还可以作为催化剂的载体或载体组分使用,并在其上按照本领域常规已知的任何方式(比如溶液浸渍法)负载活性组分。这些活性组分包括但不限于活性金属组分(包括Ni、Co、Mo、W或者Cu等)、活性无机助剂(比如F、P等)和有机化合物(比如有机酸、有机胺等)等。这些活性组分可以单独使用一种,或者以任意的比例组合使用多种。作为所述活性组分的用量,可以直接参照本领域的常规用量,并没有特别的限制。
根据本发明,在作为吸附剂或催化剂使用之前,所述SCM-2分子筛或者含有该SCM-2分子筛的分子筛组合物一般需要通过焙烧而脱除其孔道中存在的任何有机模板剂和水等。此时,所述焙烧可以按照本领域常规已知的任何方式进行,比如焙烧温度一般为300-800℃,优选400-650℃,而焙烧时间一般为1-10小时,优选3-6小时。另外,所述焙烧一般在含氧气氛下进行,比如空气或者氧气气氛下。
实施例
以下采用实施例进一步详细地说明本发明,但本发明并不限于这些实施例。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛的总孔体积、微孔体积、总比表面积和外比表面积是通过氮气物理吸脱附法(BET法)测得的:利用物理吸附仪(如美国麦克仪器公司的TriStar 3000物理吸附仪)测得分子筛的氮气物理吸脱附等温线,再经 BET方程式和t-plot方程式进行计算。针对SCM-1分子筛的实验条件为:测量温度-169℃,测量前将分子筛在300℃真空预处理10小时,而针对SCM-2分子筛的实验条件为:测量温度-169℃,测量前先将分子筛在550℃空气气氛下热处理5小时,再在300℃真空预处理10小时。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛的X-射线衍射谱图(XRD)采用标准方法由X-射线粉末衍射仪(比如德国Bruker公司D8Advance粉末衍射仪)测定,其中使用Cu-Kα射线源、镍滤光片。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛的透射电子显微镜(TEM)照片由透射电子显微镜(比如荷兰FEI公司G2F30透射电子显微镜,工作电压300kV)在10万倍的放大倍率下拍摄。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛中第一氧化物与第二氧化物的摩尔比通过电感耦合等离子发射光谱法(比如使用美国Varian公司725-ES电感耦合等离子发射光谱仪)测量。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛中水和有机模板剂的含量是通过热重分析法(比如使用美国TA公司SDT Q600同步热分析仪,在氧气氛下从25℃开始以10℃/分钟的升温速度升高至800℃测试样品的失重曲线)测量。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛的收率按照焙烧后分子筛的质量与第一氧化物与第二氧化物的投料质量之和的比值乘以100%计算。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛的晶体厚度的测量方法是:使用透射电子显微镜(比如荷兰FEI公司G2F30透射电子显微镜,工作电压300kV)在10万倍的放大倍率下观测分子筛,随机选取一个观测视野,计算该观测视野中所有厚度为5±0.8nm的片状晶体的厚度之和的平均值。重复该操作共计10次。以10次的平均值之和的平均值作为晶体厚度。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛的相对结晶度的测量方法是:采用MCM-22分子筛为参比,选取其 X射线衍射谱图中2θ=7.2°、25.0°、26.0°附近的三个MWW拓扑结构的特征衍射峰,将这三个衍射峰的绝对峰强度之和A作为基准,待测分子筛的相应这三个衍射峰的绝对峰强度之和B与A相除再乘以100%,即得到该待测分子筛的相对结晶度。从100%中减去该相对结晶度,即得到该待测分子筛的非晶杂质的含量。在以下的全部实施例和比较例中,以比较例I-1制造的MCM-22分子筛为参比。
在本说明书的上下文中,包括在以下的实施例和比较例中,分子筛的使用寿命的评估方法是:在相同的反应条件下,以相同用量的分子筛作为催化剂连续进行催化转化反应,在相同的反应时间内,反应物转化率的降低幅度越大,则该分子筛的使用寿命越短。
以下实施例涉及SCM-1分子筛的制造。
实施例I-1
首先将铝酸钠(Al2O343.0重量%,Na2O 35.0重量%)12.64克溶于362.40克水中,然后在搅拌的情况下加入有机模板剂:39.68克六亚甲基亚胺水溶液(六亚甲基亚胺80.0重量%)、101.54克二环己基胺,最后加入硅溶胶(SiO240.0重量%)240克,反应物的物料配比(摩尔比)为:
SiO2/Al2O3=30
NaOH/SiO2=0.09
六亚甲基亚胺/SiO2=0.2
二环己基胺/SiO2=0.35
H2O/SiO2=18
混合均匀后,装入不锈钢反应釜中,在搅拌情况下于150℃晶化4天。晶化结束后过滤、洗涤、干燥得到分子筛前驱体,再将前驱体在550℃空气中焙烧5小时得分子筛。
产品分子筛的XRD谱图数据如表I-1所示,XRD谱图如图1所示,TEM照片如图3a所示。经测量,该产品分子筛的总孔体积为0.68cm3g-1,微孔体积为0.12cm3g-1,总比表面积为524m2·g-1,外比表面积为248m2·g-1,外比表面积占总比表面积的比例为47.3%,组成是:SiO2/Al2O3摩尔比为29.3,分子筛收率为92%,晶体厚度5.4nm,相对结晶度为92.2%,非晶杂质的含量为7.8%。
表I-1
Figure PCTCN2014000867-appb-000055
实施例I-2
首先将铝酸钠(Al2O343.0重量%,Na2O35.0重量%)12.64克溶于362.40克水中,然后在搅拌的情况下加入有机模板剂:39.68克六亚甲基亚胺水溶液(六亚甲基亚胺80.0重量%)、145.06克二环己基胺,最后加入硅溶胶(SiO240.0重量%)240克,反应物的物料配比(摩尔比)为:
SiO2/Al2O3=30
NaOH/SiO2=0.09
六亚甲基亚胺/SiO2=0.2
二环己基胺/SiO2=0.50
H2O/SiO2=18
混合均匀后,装入不锈钢反应釜中,在搅拌情况下于150℃晶化108小时。晶化结束后过滤、洗涤、干燥得到分子筛前驱体,再将前驱体在550℃空气中焙烧5小时得分子筛。
产品分子筛的XRD谱图数据如表I-2所示,XRD谱图与图1相似。 经测量,该产品分子筛的总孔体积为0.76cm3g-1,微孔体积为0.12cm3g-1,总比表面积为533m2·g-1,外比表面积为257m2·g-1,外比表面积占总比表面积的比例为48.2%,组成是:SiO2/Al2O3摩尔比为28.6,分子筛收率为82%,晶体厚度5.1nm,相对结晶度为81.9%,非晶杂质的含量为18.1%。
表I-2
Figure PCTCN2014000867-appb-000056
实施例I-3
同实施例I-1,只是SiO2/Al2O3=100,NaOH/SiO2=0.20,高哌嗪/SiO2=0.35,二环己基胺/SiO2=0.20,H2O/SiO2=20,150℃晶化72小时。
产品分子筛的XRD谱图数据如表I-3所示,XRD谱图与图1相似。经测量,该产品分子筛的总孔体积为0.88cm3g-1,微孔体积为0.13cm3g-1,总比表面积为583m2·g-1,外比表面积为313m2·g-1,外比表面积占总比表面积的比例为53.7%,组成是:SiO2/Al2O3摩尔比为90.5,分子筛收率为81%,晶体厚度5.6nm,相对结晶度为84.4%,非晶杂质的含量为15.6%。
表I-3
Figure PCTCN2014000867-appb-000057
实施例I-4
同实施例I-1,只是SiO2/Al2O3=50,NaOH/SiO2=0.07,高哌嗪/SiO2=0.33,N,N-二乙基环己胺/SiO2=0.50,150℃晶化3天。
产品分子筛的XRD谱图数据如表I-4所示,XRD谱图与图1相似。经测量,该产品分子筛的总孔体积为0.80cm3g-1,微孔体积为0.11cm3g-1,总比表面积为511m2·g-1,外比表面积为224m2·g-1,外比表面积占总比表面积的比例为43.8%,组成是:SiO2/Al2O3摩尔比为46.1,分子筛收率为85%,晶体厚度5.1nm,相对结晶度为77.9%,非晶杂质的含量为22.1%。
表I-4
Figure PCTCN2014000867-appb-000058
实施例I-5
同实施例I-1,只是SiO2/Al2O3=26,KOH/SiO2=0.25,六亚甲基亚胺/SiO2=1.0,N-甲基二环己基胺/SiO2=0.60,H2O/SiO2=16,150℃晶化30小时。
产品分子筛的XRD谱图数据如表I-5所示,XRD谱图与图1相似。经测量,该产品分子筛的总孔体积为0.66cm3g-1,微孔体积为0.12cm3g-1,总比表面积为501m2·g-1,外比表面积为232m2·g-1,外比表面积占总比表面积的比例为46.3%,组成是:SiO2/Al2O3摩尔比为26.3,分子筛收率为85%,晶体厚度5.7nm,相对结晶度为85.7%,非晶杂质的含量为14.3%。
表I-5
Figure PCTCN2014000867-appb-000059
实施例I-6
同实施例I-1,只是SiO2/Al2O3=40,KOH/SiO2=0.2,哌啶/SiO2=0.8,喹啉/SiO2=0.65,H2O/SiO2=17,150℃晶化60小时。
产品分子筛的XRD谱图数据如表I-6所示,XRD谱图与图1相似。经测量,该产品分子筛的总孔体积为0.62cm3g-1,微孔体积为0.13cm3g-1,总比表面积为496m2·g-1,外比表面积为227m2·g-1,外比表面积占总比表面积的比例为45.8%,组成是:SiO2/Al2O3摩尔比为39.7,分子筛收率为89%,晶体厚度5.5nm,相对结晶度为92.7%,非晶杂质的含量为7.3%。
表I-6
Figure PCTCN2014000867-appb-000060
实施例I-7
同实施例I-1,只是SiO2/Al2O3=40,KOH/SiO2=0.2,六亚甲基亚胺/SiO2=0.2,哌啶/SiO2=0.2,二环己基胺/SiO2=0.4,H2O/SiO2=19,150℃晶化4天。
产品分子筛的XRD谱图数据如表I-7所示,XRD谱图与图1相似。经测量,该产品分子筛的总孔体积为0.71cm3g-1,微孔体积为0.14cm3g-1,总比表面积为561m2·g-1,外比表面积为271m2·g-1,外比表面积占总比表面积的比例为48.3%,组成是:SiO2/Al2O3摩尔比为39.0,分子筛收率为88%,晶体厚度5.5nm,相对结晶度为89.8%,非晶杂质的含量为10.2%。
表I-7
Figure PCTCN2014000867-appb-000061
实施例I-8
同实施例I-1,只是SiO2/Al2O3=40,KOH/SiO2=0.12,六亚甲基亚胺/SiO2=0.23,N,N-二乙基环己胺/SiO2=0.35,二环己基胺/SiO2=0.05,H2O/SiO2=19,150℃晶化80小时。
产品分子筛的XRD谱图数据如表I-8所示,XRD谱图与图1相似。经测量,该产品分子筛的总孔体积为0.75cm3g-1,微孔体积为0.12cm3g-1,总比表面积为518m2·g-1,外比表面积为240m2·g-1,外比表面积占总比表面积的比例为46.3%,组成是:SiO2/Al2O3摩尔比为40.4,分子筛收率为81%,晶体厚度5.3nm,相对结晶度为82.9%,非晶杂质的含量为17.1%。
表I-8
Figure PCTCN2014000867-appb-000062
实施例I-9
取50克实施例I-1合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000063
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.3克上述制备的催化剂装填在固定床反应器中,然后通入苯和乙烯的混合物料。反应条件为:乙烯重量空速=3.0小时-1,苯和乙烯摩尔比为3.0,反应温度205℃,反应压力3.5MPa。连续运转24h,反应结果为:乙烯转化率98%,乙苯重量选择性90.6%,二乙苯重量选择性9.0%,三乙苯重量选择性0.2%,其余为副产物。连续运转120h,反应结果为:乙烯转化率90%,乙苯重量选择性88.1%,二乙苯重量选择性9.3%,三乙苯重量选择性0.3%,其余为副产物。连续运转10天,乙烯转化率降至80%以下,将此时的催化剂取出,催化剂呈黑色,将其在550℃空气氛围焙烧5小时进行再生。将该再生后的催化剂按上述反应条件再次用于苯与乙烯液相烷基化反应,连续运转24h,反应结果 为:乙烯转化率97%,乙苯重量选择性90.3%,二乙苯重量选择性9.1%,三乙苯重量选择性0.3%,其余为副产物,恢复到新鲜催化剂的水平。
实施例I-10
取50克实施例I-2合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000064
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.3克上述制备的催化剂装填在固定床反应器中,然后通入苯和乙烯的混合物料。反应条件为:乙烯重量空速=5.0小时-1,苯和乙烯摩尔比为3.0,反应温度195℃,反应压力3.5MPa。连续运转24h,反应结果为:乙烯转化率98%,乙苯重量选择性93.6%,二乙苯重量选择性5.9%,三乙苯重量选择性0.1%,其余为副产物。
实施例I-11
取50克实施例I-1合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000065
亳米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.3克上述制备的催化剂装填在固定床反应器中,然后通入苯和丙烯的混合物料。反应条件为:丙烯重量空速=5.0小时-1,苯和丙烯摩尔比为3.0,反应温度170℃,反应压力3.0MPa。连续运转30小时,反应结果为:丙烯转化率97%,异丙苯重量选择性85%,二异丙苯重量选择性14.3%,三异丙苯重量选择性0.4%,其余为副产物。连续运转120h,反应结果为:丙烯转化率91%,异丙苯重量选择性83.2%,二异丙苯重量选择性15.1%,三异丙苯重量选择性0.3%,其余为副产物。
实施例I-12
取50克实施例I-1合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,将干燥好的样品压片(压力15MPa)、过筛,取20-40目之间的样品,在520℃空气氛围焙烧6小时,制备成 需要的催化剂。
将0.1克环己酮肟、10克苯腈(溶剂)和0.1克上述制备的催化剂依次加入到配有回流冷凝器的50mL烧瓶中,在130℃反应2h,进行环己酮肟的贝克曼重排反应。反应结果为:环己酮肟转化率67.3%,己内酰胺选择性79.5%。
实施例I-13
取50克实施例I-1合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,将干燥好的样品压片(压力15MPa)、过筛,取20-40目之间的样品,在520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.1克上述制备的催化剂装填在固定床反应器中,然后通入联苯和丙烯的混合物料。反应条件为:联苯流速1.36mol/h,联苯和丙烯摩尔比为4.0,反应温度250℃。连续运转10分钟后,联苯的转化率为3.7%。连续运转2h后,联苯转化率几乎降为0。将该催化剂取出在550℃空气氛围焙烧5小时进行再生,将再生后的催化剂按上述反应条件再次用于联苯与丙烯的烷基化反应,连续运转10分钟,联苯转化率为3.6%,恢复到新鲜催化剂的水平。
比较例I-1
按照与美国专利US4954325的实施例1相同的方式合成MCM-22分子筛。产品MCM-22分子筛的XRD谱图数据如表I-9所示,XRD谱图如图1所示,TEM照片如图3b所示。经测量,该MCM-22分子筛的总孔体积为0.46cm3g-1,微孔体积为0.18cm3g-1,总比表面积为485m2·g-1,外比表面积为120m2·g-1,外比表面积占总比表面积的比例为24.7%,组成是:SiO2/Al2O3摩尔比为29.1,相对结晶度为100.0%,非晶杂质的含量为0.0%。
表I-9
Figure PCTCN2014000867-appb-000066
比较例I-2
同实施例I-1,只是模板剂为单模板剂哌啶。
SiO2/Al2O3=30
NaOH/SiO2=0.15
哌啶/SiO2=0.2
H2O/SiO2=18
产品分子筛的XRD谱图数据如表I-10所示,XRD谱图与图1显著不同。经测量,该产品分子筛的总孔体积为0.13cm3g-1,微孔体积为0.10cm3g-1,总比表面积为285m2·g-1,外比表面积为31m2·g-1,外比表面积占总比表面积的比例为10.9%,组成是:SiO2/Al2O3摩尔比为28.1。
表I-10
Figure PCTCN2014000867-appb-000067
Figure PCTCN2014000867-appb-000068
比较例I-3
同实施例I-1,只是模板剂为单模板剂二环己基胺。
SiO2/Al2O3=30
NaOH/SiO2=0.09
二环己基胺/SiO2=0.35
H2O/SiO2=18
所获得的晶化产品的XRD图谱中没有任何明显的衍射峰。
比较例I-4
按照与美国专利US4954325的实施例1相同的方式合成MCM-22分子筛,只是省略焙烧步骤,由此获得MCM-22分子筛前驱体。称量100克该分子筛前驱体(通过热重测得其失重率为18.8%,在扣除了水和有机物后,该前驱体的实际重量为81.2克)和570克十六烷基三甲基溴化按(CTMABr),加入到1000克25%质量分数的四丙基氢氧化铵(TPAOH)水溶液和1400克水组成的溶液中,在80℃恒温搅拌16个小时后,超声波处理1小时,并用10%质量分数的硝酸溶液将PH值调至2以下。然后将所得的混合物洗去表面活性剂,用离心分离法收集。干燥后的固体样品在550℃、空气氛下焙烧6小时以除去有机物,所得样品ITQ-2分子筛的XRD谱图数据如表I-11所示。经测量,该产品分子筛的总孔体积为0.82cm3g-1,微孔体积为0.02cm3g-1,总比表面积为750m2g-1,外比表面积为675m2g-1,外比表面积占总比表面积的比例为90.0%,组成是:SiO2/Al2O3摩尔比为31.8,产品质量35克,收率43.1%,晶体厚度2.5nm,相对结晶度为52.5%,非晶杂质的含量为47.5%。
表I-11
Figure PCTCN2014000867-appb-000069
比较例I-5
取50克比较例I-1制备的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量 %硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000070
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.3克上述制备的催化剂装填在固定床反应器中,然后通入苯和乙烯的混合物料。反应条件为:乙烯重量空速=3.0小时-1,苯和乙烯摩尔比为3.0,反应温度205℃,反应压力3.5MPa。连续运转24h,反应结果为:乙烯转化率92.2%,乙苯重量选择性92.6%,二乙苯重量选择性7.1%,三乙苯重量选择性0.3%。连续运转120h,反应结果为:乙烯转化率80.5%,乙苯重量选择性85.5%,二乙苯重量选择性10.6%,三乙苯重量选择性0.4%,其余为副产物。连续运转10天,乙烯转化率降至70%以下,将此时的催化剂取出,催化剂呈黑色,将其在550℃空气氛围焙烧5小时进行再生。将该再生后的催化剂按上述反应条件再次用于苯与乙烯液相烷基化反应,连续运转24h,反应结果为:乙烯转化率91.4%,乙苯重量选择性87.3%,二乙苯重量选择性7.4%,三乙苯重量选择性0.3%,其余为副产物。
比较例I-6
取50克比较例I-1制备的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000071
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.3克上述制备的催化剂装填在固定床反应器中,然后通入苯和丙烯的混合物料。反应条件为:丙烯重量空速=5.0小时-1,苯和丙烯摩尔比为3.0,反应温度170℃,反应压力3.0MPa。连续运转30小时,反应结果为:丙烯转化率93%,异丙苯重量选择性83%,二异丙苯重量选择性15.6%,三异丙苯重量选择性0.4%,其余为副产物。连续运转120h,反应结果为:丙烯转化率85%,异丙苯重量选择性81.3%,二异丙苯重量选择性15.9%,三异丙苯重量选择性0.4%,其余为副产物。
比较例I-7
取50克比较例I-1合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,将干燥好的样品压片(压力15MPa)、 过筛,取20-40目之间的样品,在520℃空气氛围焙烧6小时,制备成需要的催化剂。
将0.1克环己酮肟、10克苯腈(溶剂)和0.1克上述制备的催化剂依次加入到配有回流冷凝器的50mL烧瓶中,在130℃反应2h,进行环己酮肟的贝克曼重排反应。反应结果为:环己酮肟转化率36.9%,己内酰胺选择性77.2%。
比较例I-8
取50克比较例I-1合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,将干燥好的样品压片(压力15MPa)、过筛,取20-40目之间的样品,在520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.1克上述制备的催化剂装填在固定床反应器中,然后通入联苯和丙烯的混合物料。反应条件为:联苯流速1.36mol/h,联苯和丙烯摩尔比为4.0,反应温度250℃。连续运转10分钟后,联苯的转化率为1.9%。连续运转2h后,联苯转化率几乎降为0。将催化剂取出在550℃空气氛围焙烧5小时进行再生。将该再生后的催化剂按上述反应条件再次用于联苯与丙烯的烷基化反应,连续运转10分钟,联苯转化率为1.8%。
比较例I-9
取25克比较例I-4制备的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与10克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000072
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.3克上述制备的催化剂装填在固定床反应器中,然后通入苯和乙烯的混合物料。反应条件为:乙烯重量空速=3.0小时-1,苯和乙烯摩尔比为3.0,反应温度205℃,反应压力3.5MPa。连续运转24h,反应结果为:乙烯转化率71.6%,乙苯重量选择性85.8%,二乙苯重量选择性13.7%,三乙苯重量选择性0.3%,其余为副产物。连续运转120h,反应结果为:乙烯转化率57.3%,乙苯重量选择性87.5%,二乙苯重量选择性11.6%,三乙苯重量选择性0.4%,其余为副产物。连续运转10 天,乙烯转化率降至40%以下,将此时的催化剂取出,催化剂呈黑色,将其在550℃空气氛围焙烧5小时进行再生。将该再生后的催化剂按上述反应条件再次用于苯与乙烯液相烷基化反应,连续运转24h,反应结果为:乙烯转化率62.4%,活性下降明显,无法恢复到新鲜催化剂的水平。
比较例I-10
取25克比较例I-4制备的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与10克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000073
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.3克上述制备的催化剂装填在固定床反应器中,然后通入苯和丙烯的混合物料。反应条件为:丙烯重量空速=5.0小时-1,苯和丙烯摩尔比为3.0,反应温度170℃,反应压力3.0MPa。连续运转30小时,反应结果为:丙烯转化率74%,异丙苯重量选择性87%,二异丙苯重量选择性12.1%,三异丙苯重量选择性0.3%,其余为副产物。连续运转120h,反应结果为:丙烯转化率61%,异丙苯重量选择性87.3%,二异丙苯重量选择性11.9%,三异丙苯重量选择性0.3%,其余为副产物。
比较例I-11
取8克比较例I-4合成的分子筛,用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,将干燥好的样品压片(压力15MPa)、过筛,取20-40目之间的样品,在520℃空气氛围焙烧6小时,制备成需要的催化剂。
将0.1克环己酮肟、10克苯腈(溶剂)和0.1克上述制备的催化剂依次加入到配有回流冷凝器的50mL烧瓶中,在130℃反应2h,进行环己酮肟的贝克曼重排反应。反应结果为:环己酮肟转化率65.5%,己内酰胺选择性79.1%。
比较例I-12
取8克比较例I-4合成的分子筛,用浓度为1mol/L的硝酸铵溶液 交换4次,过滤、干燥。之后,将干燥好的样品压片(压力15MPa)、过筛,取20-40目之间的样品,在520℃空气氛围焙烧6小时,制备成需要的催化剂。
取0.1克上述制备的催化剂装填在固定床反应器中,然后通入联苯和丙烯的混合物料。反应条件为:联苯流速1.36mol/h,联苯和丙烯摩尔比为4.0,反应温度250℃。连续运转10分钟后,联苯的转化率为4%。连续运转2h后,联苯转化率几乎降为0。将催化剂取出在550℃空气氛围焙烧5小时进行再生。将该再生后的催化剂按上述反应条件再次用于联苯与丙烯的烷基化反应,连续运转10分钟,联苯转化率为2.8%,活性下降明显,无法恢复到新鲜催化剂的水平。
以下实施例涉及SCM-2分子筛的制造。
实施例II-1
首先将铝酸钠(Al2O343.0重量%,Na2O35.0重量%)12.64克溶于362.40克水中,然后在搅拌的情况下加入有机模板剂:39.68克六亚甲基亚胺水溶液(六亚甲基亚胺80.0重量%)、101.54克二环己基胺,最后加入硅溶胶(SiO240.0重量%)240克,反应物的物料配比(摩尔比)为:
SiO2/Al2O3=30
NaOH/SiO2=0.09
六亚甲基亚胺/SiO2=0.2
二环己基胺/SiO2=0.35
H2O/SiO2=18
混合均匀后,装入不锈钢反应釜中,在搅拌情况下于150℃晶化4天。晶化结束后过滤、洗涤、干燥得到分子筛。
产品分子筛的XRD谱图数据如表II-1所示,XRD谱图如图2所示。经测量,该产品分子筛的总孔体积为0.68cm3g-1,微孔体积为0.12cm3g-1,总比表面积为524m2·g-1,外比表面积为248m2·g-1,外比表面积占总比表面积的比例为47.3%,组成是:SiO2/Al2O3摩尔比为29.3,水/SiO2的质量比为0.07,有机模板剂/SiO2的质量比为0.15,分子筛收率为92%,晶体厚度5.4nm。
表II-1
Figure PCTCN2014000867-appb-000074
Figure PCTCN2014000867-appb-000075
实施例II-2
首先将铝酸钠(Al2O343.0重量%,Na2O35.0重量%)12.64克溶于362.40克水中,然后在搅拌的情况下加入有机模板剂:39.68克六亚甲基亚胺水溶液(六亚甲基亚胺80.0重量%)、145.06克二环己基胺,最后加入硅溶胶(SiO240.0重量%)240克,反应物的物料配比(摩尔比)为:
SiO2/Al2O3=30
NaOH/SiO2=0.09
六亚甲基亚胺/SiO2=0.2
二环己基胺/SiO2=0.50
H2O/SiO2=18
混合均匀后,装入不锈钢反应釜中,在搅拌情况下于150℃晶化108小时。晶化结束后过滤、洗涤、干燥得到分子筛。
产品分子筛的XRD谱图数据如表II-2所示,XRD谱图与图2相似。经测量,该产品分子筛的总孔体积为0.76cm3g-1,微孔体积为0.12cm3g-1,总比表面积为533m2·g-1,外比表面积为257m2·g-1,外比表面积占总比表面积的比例为48.2%,组成是:SiO2/Al2O3摩尔比为28.6,水/SiO2的质量比为0.06,有机模板剂/SiO2的质量比为0.17,分子筛收率为82%,晶体厚度5.1nm。
表II-2
Figure PCTCN2014000867-appb-000076
实施例II-3
同实施例II-1,只是SiO2/Al2O3=100,NaOH/SiO2=0.20,高哌嗪/SiO2=0.35,二环己基胺/SiO2=0.2,H2O/SiO2=20,150℃晶化72小时。
产品分子筛的XRD谱图数据如表II-3所示,XRD谱图与图2相似。经测量,该产品分子筛的总孔体积为0.88cm3g-1,微孔体积为0.13cm3g-1,总比表面积为583m2·g-1,外比表面积为313m2·g-1,外比表面积占总比表面积的比例为53.7%,组成是:SiO2/Al2O3摩尔比为90.5,水/SiO2的质量比为0.05,有机模板剂/SiO2的质量比为0.15,分子筛收率为81%,晶体厚度5.6nm。
表II-3
Figure PCTCN2014000867-appb-000077
Figure PCTCN2014000867-appb-000078
实施例II-4
同实施例II-1,只是SiO2/Al2O3=50,NaOH/SiO2=0.07,高哌嗪/SiO2=0.33,N,N-二乙基环己胺/SiO2=0.50,H2O/SiO2=24,150℃晶化3天。
产品分子筛的XRD谱图数据如表II-4所示,XRD谱图与图2相似。经测量,该产品分子筛的总孔体积为0.80cm3g-1,微孔体积为0.11cm3g-1,总比表面积为511m2·g-1,外比表面积为224m2·g-1,外比表面积占总比表面积的比例为43.8%,组成是:SiO2/Al2O3摩尔比为46.1,水/SiO2的质量比为0.06,有机模板剂/SiO2的质量比为0.16,分子筛收率为85%,晶体厚度5.1nm。
表II-4
Figure PCTCN2014000867-appb-000079
Figure PCTCN2014000867-appb-000080
实施例II-5
同实施例II-1,只是SiO2/Al2O3=26,KOH/SiO2=0.25,六亚甲基亚胺/SiO2=1.0,N-甲基二环己基胺/SiO2=0.60,H2O/SiO2=16,150℃晶化30小时。
产品分子筛的XRD谱图数据如表II-5所示,XRD谱图与图2相似。经测量,该产品分子筛的总孔体积为0.66cm3g-1,微孔体积为0.12cm3g-1,总比表面积为501m2·g-1,外比表面积为232m2·g-1,外比表面积占总比表面积的比例为46.3%,组成是:SiO2/Al2O3摩尔比为26.3,水/SiO2的质量比为0.05,有机模板剂/SiO2的质量比为0.18,分子筛收率为85%,晶体厚度5.7nm。
表II-5
Figure PCTCN2014000867-appb-000081
实施例II-6
同实施例II-1,只是SiO2/Al2O3=40,KOH/SiO2=0.2,哌啶/SiO2=0.8,喹啉/SiO2=0.65,H2O/SiO2=17,150℃晶化60小时。
产品分子筛的XRD谱图数据如表II-6所示,XRD谱图与图2相似。经测量,该产品分子筛的总孔体积为0.62cm3g-1,微孔体积为0.13cm3g-1,总比表面积为496m2·g-1,外比表面积为227m2·g-1,外比表面积占总比表面积的比例为45.8%,组成是:SiO2/Al2O3摩尔比为39.7,水/SiO2的质量比为0.07,有机模板剂/SiO2的质量比为0.17,分子筛收率为89%,晶体厚度5.5nm。
表II-6
Figure PCTCN2014000867-appb-000082
实施例II-7
同实施例II-1,只是SiO2/Al2O3=40,KOH/SiO2=0.2,六亚甲基亚胺/SiO2=0.2,哌啶/SiO2=0.2,二环己基胺/SiO2=0.4,H2O/SiO2=19,150℃晶化4天。
产品分子筛的XRD谱图数据如表II-7所示,XRD谱图与图2相似。经测量,该产品分子筛的总孔体积为0.71cm3g-1,微孔体积为0.14cm3g-1,总比表面积为561m2·g-1,外比表面积为271m2·g-1,外比表面积占总比表面积的比例为48.3%,组成是:SiO2/Al2O3摩尔比为39.0,水/SiO2的质量比为0.07,有机模板剂/SiO2的质量比为0.16,分子筛收率为88%,晶体厚度5.5nm。
表II-7
Figure PCTCN2014000867-appb-000083
实施例II-8
同实施例II-1,只是SiO2/Al2O3=40,KOH/SiO2=0.12,六亚甲基亚胺/SiO2=0.23,N,N-二乙基环己胺/SiO2=0.35,二环己基胺/SiO2=0.05,H2O/SiO2=19,150℃晶化80小时。
产品分子筛的XRD谱图数据如表II-8所示,XRD谱图与图2相似。经测量,该产品分子筛的总孔体积为0.75cm3g-1,微孔体积为0.12cm3g-1,总比表面积为518m2·g-1,外比表面积为240m2·g-1,外比表面积占总比表面积的比例为46.3%,组成是:SiO2/Al2O3摩尔比为40.4,水/SiO2的质量比为0.06,有机模板剂/SiO2的质量比为0.15,分子筛收率为81%,晶体厚度5.3nm。
表II-8
Figure PCTCN2014000867-appb-000084
实施例II-9
取50克实施例II-1合成的分子筛,在550℃空气或氧气气氛热处理5小时,然后用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000085
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取1.0克上述制备的催化剂装填在固定床反应器中,然后通入苯和乙烯的混合物料。反应条件为:乙烯重量空速=3.0小时-1,苯和乙烯摩尔比为2.0,反应温度205℃,反应压力3.0MPa。连续运转4天,反应结果为:乙烯转化率98%,乙苯重量选择性90.6%,二乙苯重量选择性9.0%,三乙苯重量选择性0.2%,其余为副产物。
实施例II-10
取50克实施例II-2合成的分子筛,在550℃空气或氧气气氛热处理5小时,然后用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000086
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时, 制备成需要的催化剂。
取1.0克上述制备的催化剂装填在固定床反应器中,然后通入苯和乙烯的混合物料。反应条件为:乙烯重量空速=5.0小时-1,苯和乙烯摩尔比为3.0,反应温度195℃,反应压力3.5MPa。连续运转5天,反应结果为:乙烯转化率98%,乙苯重量选择性93.6%,二乙苯重量选择性5.9%,三乙苯重量选择性0.1%,其余为副产物。
实施例II-11
取50克实施例II-1合成的分子筛,在550℃空气或氧气气氛热处理5小时,然后用浓度为1mol/L的硝酸铵溶液交换4次,过滤、干燥。之后,与20克氧化铝充分混合,加入5重量%硝酸捏合、挤条成型为
Figure PCTCN2014000867-appb-000087
毫米的条状物,然后在120℃烘干,520℃空气氛围焙烧6小时,制备成需要的催化剂。
取1.0克上述制备的催化剂装填在固定床反应器中,然后通入苯和丙烯的混合物料。反应条件为:丙烯重量空速=5.0小时-1,苯和丙烯摩尔比为3.0,反应温度170℃,反应压力3.0MPa。连续运转48小时,反应结果为:丙烯转化率97%,异丙苯重量选择性85%,二异丙苯重量选择性14.3%,三异丙苯重量选择性0.4%,其余为副产物。
比较例II-1
按照与美国专利US4954325的实施例1相同的方式合成MCM-22分子筛。产品MCM-22分子筛的XRD谱图数据如表II-9所示,XRD谱图如图2所示。经测量,该MCM-22分子筛的总孔体积为0.46cm3g-1,微孔体积为0.18cm3g-1,总比表面积为485m2·g-1,外比表面积为120m2·g-1,外比表面积占总比表面积的比例为24.7%,组成是:SiO2/Al2O3摩尔比为29.1。
表II-9
Figure PCTCN2014000867-appb-000088
比较例II-2
同实施例II-1,只是模板剂为单模板剂哌啶。
SiO2/Al2O3=30
NaOH/SiO2=0.15
哌啶/SiO2=0.2
H2O/SiO2=18
产品分子筛的XRD谱图数据如表II-10所示,XRD谱图与图2明 显不同。经测量,该产品分子筛的总孔体积为0.13cm3g-1,微孔体积为0.10cm3g-1,总比表面积为285m2·g-1,外比表面积为31m2·g-1,外比表面积占总比表面积的比例为10.9%,组成是:SiO2/Al2O3摩尔比为28.1。
表II-10
Figure PCTCN2014000867-appb-000089
Figure PCTCN2014000867-appb-000090
比较例II-3
同实施例II-1,只是模板剂为单模板剂二环己基胺。
SiO2/Al2O3=30
NaOH/SiO2=0.09
二环己基胺/SiO2=0.35
H2O/SiO2=18
所获得的晶化产品的XRD图谱中没有任何明显的衍射峰。
以上虽然已结合实施例对本发明的具体实施方式进行了详细的说明,但是需要指出的是,本发明的保护范围并不受这些具体实施方式的限制,而是由附录的权利要求书来确定。本领域技术人员可在不脱 离本发明的技术思想和主旨的范围内对这些实施方式进行适当的变更,而这些变更后的实施方式显然也包括在本发明的保护范围之内。

Claims (11)

  1. 一种分子筛,其特征在于,具有如式“第一氧化物·第二氧化物”所示的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为20-2000,优选25-200,所述第一氧化物选自二氧化硅和二氧化锗中的至少一种,优选二氧化硅,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、氧化钛、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝,并且所述分子筛具有基本上如下表所示的X射线衍射图案,
    Figure PCTCN2014000867-appb-100001
  2. 权利要求1所述的分子筛,其中,所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
    Figure PCTCN2014000867-appb-100002
  3. 一种分子筛,其特征在于,具有如式“第一氧化物·第二氧化物”或式“第一氧化物·第二氧化物·有机模板剂·水”所示的示意性化学组成,其中所述第一氧化物与所述第二氧化物的摩尔比为20-2000,优选25-200,所述有机模板剂与所述第一氧化物的质量比为0.03-0.38,优选0.07-0.27,水与所述第一氧化物的质量比为0-0.15,优选0.02-0.11, 所述第一氧化物选自二氧化硅和二氧化锗中的至少一种,优选二氧化硅,所述第二氧化物选自氧化铝、氧化硼、氧化铁、氧化镓、氧化钛、稀土氧化物、氧化铟和氧化钒中的至少一种,优选氧化铝,并且所述分子筛具有基本上如下表所示的X射线衍射图案,
    Figure PCTCN2014000867-appb-100003
  4. 权利要求3所述的分子筛,其中,所述X射线衍射图案还包括基本上如下表所示的X射线衍射峰,
    Figure PCTCN2014000867-appb-100004
  5. 权利要求1或3所述的分子筛,其中,经BET法测得的总孔体积不低于0.5厘米3/克,优选0.55-0.90厘米3/克,经BET法测得的总比表面积不低于450米2/克,优选480-680米2/克,经BET法测得的外比表面积不低于185米2/克,优选200-400米2/克,并且外比表面积占总比表面积的比例不低于40%,优选45-65%。
  6. 权利要求1或3所述的分子筛,具有MWW拓扑骨架结构,其晶体的至少80%、优选至少85%、更优选至少90%、更优选至少95%、更优选至少99%是厚度约为5nm(TEM法测量)的片状晶体。
  7. 一种制造分子筛的方法,包括在晶化条件下使第一氧化物源、第二氧化物源、碱源、有机模板剂、任选的卤素源和水接触,以获得分子筛的步骤,和任选地,焙烧所述获得的分子筛的步骤,
    其中,所述有机模板剂选自第一有机模板剂与第二有机模板剂的 组合,
    所述第一有机模板剂与所述第二有机模板剂的摩尔比为0.1-5.0,优选0.3-3.5,更优选0.4-1.5,
    所述第一有机模板剂选自氮杂单环C5-15环烷烃(优选C6-10环烷烃,比如环己烷、环庚烷、环辛烷、环壬烷和环癸烷)中的至少一种,优选选自一氮杂、二氮杂或三氮杂单环C5-15环烷烃(优选C6-10环烷烃,比如环己烷、环庚烷、环辛烷、环壬烷和环癸烷)中的至少一种,更优选选自环骨架由n个
    Figure PCTCN2014000867-appb-100005
    和m个
    Figure PCTCN2014000867-appb-100006
    构成的饱和单环化合物(其中,各R1和R2各自独立地选自氢、C1-4直链或支链烷基和C2-4直链或支链烯基,优选各自独立地选自氢和甲基,最优选氢,各R3为氢,n为4至12的整数,优选5至8的整数,m为1至3的整数,优选1或2)中的至少一种,更优选选自六亚甲基亚胺(C/N比为6)、哌啶(C/N比为5)、2-甲基哌啶(C/N比为5)和高哌嗪(C/N比为2.5)中的至少一种,
    所述第二有机模板剂选自氮杂芳香烃和下式(I)所示的化合物中的至少一种,
    Figure PCTCN2014000867-appb-100007
    式(I)中,R4、R5和R6各自独立地选自氢、C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基和C5-12单环环烯基,前提是(1)R4、R5和R6中的至多一个是氢,和(2)R4、R5和R6中的至少一个(优选至少两个)选自所述C5-12单环环烷基和所述C5-12单环环烯基,更优选R4、R5和R6中的至少一个(优选至少两个)选自所述C5-12单环环烷基,
    所述式(I)所示的化合物更优选选自N,N-二乙基环己胺(C/N比为10)、二环己基胺(C/N比为12)和N-甲基二环己基胺(C/N比为13)中的至少一种,
    所述氮杂芳香烃选自氮杂C6-20芳香烃(优选C6-14芳香烃,尤其是苯、萘、蒽和菲)中的至少一种,任选在构成其环骨架的每个氮原子上,还进一步带有一个选自C1-12直链或支链烷基、C2-12直链或支链烯基、C5-12单环环烷基、C5-12单环环烯基和C6-20芳基的取代基,所述氮杂芳香烃优选选自一氮杂、二氮杂或三氮杂C6-20芳香烃(优选C6-14芳香烃,尤其是苯、萘、蒽和菲)中的至少一种,更优选选自喹啉(C/N比为9)、N-苯基喹啉(C/N比为15)、N-环己基吡啶(C/N比为11)和6-甲基喹啉(C/N比为9)中的至少一种。
  8. 权利要求7所述的制造分子筛的方法,其中,所述氮杂单环环烷烃的C/N比大于2,更优选2.5或更高,所述式(I)所示的化合物的C/N比为10或更高、12或更高或者13或更高,并且所述氮杂芳香烃的C/N比为9或更高、10或更高或者11或更高。
  9. 权利要求7所述的制造分子筛的方法,其中,所述第一氧化物源(以所述第一氧化物为计)、所述第二氧化物源(以所述第二氧化物为计)、所述碱源、所述有机模板剂、所述卤素源和水的摩尔比为1∶(0.0005-0.05)∶(0.01-0.3)∶(0.05-1.4)∶(0-0.5)∶(5-100),优选1∶(0.005-0.04)∶(0.05-0.2)∶(0.2-1.0)∶(0-0.3)∶(10-40),所述晶化条件包括:晶化温度为140-180℃,优选145-170℃,晶化时间为1-6天,优选2-5天,并且所述焙烧条件包括:焙烧温度为300-800℃,优选400-650℃,焙烧时间为1-10小时,优选3-6小时。
  10. 一种分子筛组合物,包含权利要求1-6任一所述的分子筛或者按照权利要求7-9任一项所述的制造分子筛的方法制造的分子筛,以及粘结剂。
  11. 权利要求1-6任一所述的分子筛、按照权利要求7-9任一项所述的制造分子筛的方法制造的分子筛或者权利要求10所述的分子筛组合物作为吸附剂、烷基化催化剂、烯烃水合催化剂、烯烃氧化催化剂、加氢裂化催化剂或者烯烃异构化催化剂的应用。
PCT/CN2014/000867 2013-09-24 2014-09-24 一种分子筛、其制造方法及其应用 WO2015043114A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
DK14849642.5T DK3050848T3 (da) 2013-09-24 2014-09-24 Molekylesi, fremstillingsfremgangsmåde og anvendelse deraf
US15/024,604 US10099935B2 (en) 2013-09-24 2014-09-24 Molecular sieve, manufacturing method therefor, and uses thereof
EP14849642.5A EP3050848B1 (en) 2013-09-24 2014-09-24 Molecular sieve, production and use thereof
JP2016516882A JP6392860B2 (ja) 2013-09-24 2014-09-24 モレキュラーシーブ、その製造及びその使用
SG11201602303PA SG11201602303PA (en) 2013-09-24 2014-09-24 Molecular sieve, production and use thereof
ES14849642T ES2934225T3 (es) 2013-09-24 2014-09-24 Tamiz molecular, producción y uso del mismo
KR1020167010568A KR102230996B1 (ko) 2013-09-24 2014-09-24 분자체, 이의 제조 방법 및 용도
BR112016006685A BR112016006685B8 (pt) 2013-09-24 2014-09-24 Peneira molecular, processo para produção, composição e uso desta

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310436076.4 2013-09-24
CN201310436460.4 2013-09-24
CN201310436460 2013-09-24
CN201310436076 2013-09-24

Publications (1)

Publication Number Publication Date
WO2015043114A1 true WO2015043114A1 (zh) 2015-04-02

Family

ID=52741927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/000867 WO2015043114A1 (zh) 2013-09-24 2014-09-24 一种分子筛、其制造方法及其应用

Country Status (11)

Country Link
US (1) US10099935B2 (zh)
EP (1) EP3050848B1 (zh)
JP (1) JP6392860B2 (zh)
KR (1) KR102230996B1 (zh)
CN (1) CN104511271B (zh)
BR (1) BR112016006685B8 (zh)
DK (1) DK3050848T3 (zh)
ES (1) ES2934225T3 (zh)
SG (1) SG11201602303PA (zh)
TW (1) TWI640362B (zh)
WO (1) WO2015043114A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774297A (zh) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 Scm‑12分子筛催化剂、制备方法及其应用
CN107777701A (zh) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 Scm‑12分子筛及其制备方法
CN108862313A (zh) * 2018-08-13 2018-11-23 海南医学院 一种hmi/pi复合模板剂合成mcm-56分子筛的方法
WO2022015491A1 (en) * 2020-07-16 2022-01-20 Exxonmobil Chemical Patents Inc. Method of synthesizing a molecular sieve of mww framework type

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9192924B1 (en) * 2014-06-04 2015-11-24 Chevron U.S.A. Inc. Molecular sieve SSZ-99
CN106536411B (zh) 2014-06-06 2020-05-12 巴斯夫欧洲公司 具有mww骨架结构的含硼沸石的合成
CN106168583B (zh) * 2015-05-19 2019-04-09 中国石油天然气股份有限公司 测定zsm-23分子筛相对结晶度的方法
CN106517232B (zh) * 2015-09-15 2019-01-25 中国石油化工股份有限公司 H-mcm-22分子筛的合成方法及其合成的分子筛
BR102016026135B1 (pt) * 2015-11-09 2021-09-21 Shanghai Research Institute Of Petrochemical Technology, Sinopec Peneira molecular que apresenta a estrutura sfe, processo para sua produção, composição e uso
BR102016026121B1 (pt) 2015-11-09 2021-09-14 China Petroleum & Chemical Corporation Peneira molecular scm-10, processo para sua produção, composição e uso
BR102016026128B1 (pt) * 2015-11-09 2022-10-04 Shanghai Research Institute Of Petrochemical Technology, Sinopec Peneiras moleculares scm-11, processo para a produção das mesmas, seus usos e composição de peneira molecular
WO2017185820A1 (zh) * 2016-04-27 2017-11-02 中国石油化工股份有限公司 一种分子筛、其制造方法及其应用
KR102590591B1 (ko) 2016-08-17 2023-10-16 한화오션 주식회사 복귀용 축압기가 구비되는 강제사출발사관 및 이를 이용한 무장 발사방법
CN107416858A (zh) * 2017-05-31 2017-12-01 天津理工大学 一种孔道结构可控的mcm‑22分子筛及其制备方法
CN109384637B (zh) * 2017-08-04 2021-06-11 中国石油化工股份有限公司 苯和乙烯液相烷基化制乙苯的方法
CN109777486B (zh) * 2017-11-14 2021-02-05 中国石油化工股份有限公司 加氢裂化开工方法
ES2739646B2 (es) * 2018-08-01 2021-01-18 Univ Valencia Politecnica Procedimiento de sintesis del material mww en su forma nanocristalina y su uso en aplicaciones cataliticas
CN111099621B (zh) * 2018-10-25 2021-10-01 中国石油化工股份有限公司 Mww结构超薄纳米片分子筛的合成方法
WO2021025836A1 (en) 2019-08-06 2021-02-11 Exxonmobil Research And Engineering Company Catalysts and multistage alkylation of isoparaffin
CN112390698B (zh) * 2019-08-16 2023-01-24 中国石油化工股份有限公司 一种烷基化方法
RU2740381C1 (ru) * 2019-12-09 2021-01-13 Федеральное государственное бюджетное образовательное учреждение высшего образования "Московский государственный университет имени М.В. Ломоносова" (МГУ) Цеолит типа mww и способ его получения
CN113831238B (zh) * 2020-06-24 2024-05-03 中国石油化工股份有限公司 一种催化转化碳水化合物制备乳酸甲酯的方法
CN114477223B (zh) * 2020-10-23 2023-09-08 中国石油化工股份有限公司 一种巯基功能化sba分子筛的制备方法及应用
CN114478181B (zh) * 2020-10-23 2024-03-12 中国石油化工股份有限公司 一种气相法制乙苯的方法及催化剂和催化剂的制法
CN114538466B (zh) * 2020-11-26 2023-11-10 安徽泽欧新材料技术有限公司 超大孔硅酸盐分子筛zeo-1,其合成方法及用途
EP4253321A1 (en) * 2020-11-26 2023-10-04 Anhui Zeo New Material Technology Co., Ltd Super-macroporous zeo-1 molecular sieve, synthesis method therefor and use thereof
CN115385354B (zh) * 2021-05-19 2024-01-09 中国石油化工股份有限公司 一种分子筛及其制备方法和应用
TW202334036A (zh) * 2021-10-20 2023-09-01 大陸商中國石油化工科技開發有限公司 一種scm-38分子篩及其製備方法和用途
CN115028176B (zh) * 2022-06-28 2023-11-28 安阳工学院 超高正弦孔道暴露比zsm-5分子筛及其制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140253A (en) 1964-05-01 1964-07-07 Socony Mobil Oil Co Inc Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
US3140249A (en) 1960-07-12 1964-07-07 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
CN1057641A (zh) * 1990-06-23 1992-01-08 美孚石油公司 异链烷烃-烯烃烷基化方法
WO1997017290A1 (en) 1995-11-08 1997-05-15 Shell Internationale Research Maatschappij B.V. Oxide materials and catalyst compositions containing them
CN1535918A (zh) * 2003-04-09 2004-10-13 中国科学院大连化学物理研究所 一种利用混合模板剂合成mww结构分子筛的方法
CN1565968A (zh) * 2003-06-13 2005-01-19 中国石化北京燕化石油化工股份有限公司 一种分子筛的合成方法
CN1843914A (zh) * 2005-04-08 2006-10-11 中国石油化工股份有限公司 一种mww结构硅铝分子筛及其制备方法
CN101239728A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 微孔沸石、制备方法及其应用
CN102452665A (zh) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 制备具有mww结构的层状沸石的方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1011223B (zh) * 1984-04-13 1991-01-16 联合碳化公司 铁-铝-磷-硅-氧化物分子筛的制备方法
CN85103846A (zh) * 1984-04-26 1986-11-05 联合碳化公司 钛-硅酸盐组合物
US5012033A (en) * 1988-10-06 1991-04-30 Mobil Oil Corp. Isoparaffin-olefin alkylation process and catalyst composition thereof
RO111184B1 (ro) * 1990-01-25 1996-07-30 Mobil Oil Corp Fairfax Procedeu pentru alchilarea compusilor aromatici
US5173281A (en) * 1991-10-07 1992-12-22 Mobil Oil Corp. Synthesis of a synthetic porous crystalline material
US5362697A (en) * 1993-04-26 1994-11-08 Mobil Oil Corp. Synthetic layered MCM-56, its synthesis and use
DE19524148C1 (de) * 1995-07-03 1996-08-29 Bosch Gmbh Robert Schwingungsaufnehmer
CN1116228C (zh) * 2000-06-15 2003-07-30 中国石油化工集团公司 Mcm-22分子筛的合成方法
US6710008B2 (en) * 2002-01-17 2004-03-23 Exxonmobil Chemical Patents Inc. Method of making molecular sieve catalyst
JP5485505B2 (ja) * 2001-10-11 2014-05-07 三菱樹脂株式会社 ゼオライト、及び該ゼオライトを含む水蒸気吸着材
CN1207202C (zh) * 2002-11-13 2005-06-22 中国石油化工股份有限公司 Mcm-56分子筛的合成方法
US7090814B2 (en) * 2004-11-10 2006-08-15 Exxonmobil Chemical Patents Inc. Method of synthesizing silicoaluminophosphate molecular sieves
CN100341784C (zh) * 2004-12-17 2007-10-10 中国科学院大连化学物理研究所 一种mcm-22分子筛的合成方法
US7799316B2 (en) * 2006-02-14 2010-09-21 Exxonmobil Chemical Patents Inc. Process for manufacturing MCM-22 family molecular sieves
CN101489677B (zh) * 2006-07-28 2012-12-26 埃克森美孚化学专利公司 Mcm-22家族分子筛组合物,其制造方法和用于烃转化的用途
EP1970350A1 (en) * 2007-03-13 2008-09-17 Total Petrochemicals Research Feluy Metalloaluminophosphate molecular sieves with lamellar crystal morphology and their preparation
EP2766118B1 (en) * 2011-10-12 2017-03-08 ExxonMobil Research and Engineering Company Synthesis of mse-framework type molecular sieves

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3140249A (en) 1960-07-12 1964-07-07 Socony Mobil Oil Co Inc Catalytic cracking of hydrocarbons with a crystalline zeolite catalyst composite
US3140253A (en) 1964-05-01 1964-07-07 Socony Mobil Oil Co Inc Catalytic hydrocarbon conversion with a crystalline zeolite composite catalyst
US4954325A (en) 1986-07-29 1990-09-04 Mobil Oil Corp. Composition of synthetic porous crystalline material, its synthesis and use
CN1057641A (zh) * 1990-06-23 1992-01-08 美孚石油公司 异链烷烃-烯烃烷基化方法
WO1997017290A1 (en) 1995-11-08 1997-05-15 Shell Internationale Research Maatschappij B.V. Oxide materials and catalyst compositions containing them
CN1535918A (zh) * 2003-04-09 2004-10-13 中国科学院大连化学物理研究所 一种利用混合模板剂合成mww结构分子筛的方法
CN1565968A (zh) * 2003-06-13 2005-01-19 中国石化北京燕化石油化工股份有限公司 一种分子筛的合成方法
CN1843914A (zh) * 2005-04-08 2006-10-11 中国石油化工股份有限公司 一种mww结构硅铝分子筛及其制备方法
CN101239728A (zh) * 2007-02-07 2008-08-13 中国石油化工股份有限公司 微孔沸石、制备方法及其应用
CN102452665A (zh) * 2010-10-21 2012-05-16 中国石油化工股份有限公司 制备具有mww结构的层状沸石的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"IR study of the acidity of ITQ-2, an ''all-surface'' zeolitic system", JOURNAL OF CATALYSIS, vol. 214, 2003, pages 191 - 199
See also references of EP3050848A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107774297A (zh) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 Scm‑12分子筛催化剂、制备方法及其应用
CN107777701A (zh) * 2016-08-30 2018-03-09 中国石油化工股份有限公司 Scm‑12分子筛及其制备方法
CN107774297B (zh) * 2016-08-30 2020-05-01 中国石油化工股份有限公司 Scm-12分子筛催化剂、制备方法及其应用
CN108862313A (zh) * 2018-08-13 2018-11-23 海南医学院 一种hmi/pi复合模板剂合成mcm-56分子筛的方法
CN108862313B (zh) * 2018-08-13 2021-09-03 海南医学院 一种hmi/pi复合模板剂合成mcm-56分子筛的方法
WO2022015491A1 (en) * 2020-07-16 2022-01-20 Exxonmobil Chemical Patents Inc. Method of synthesizing a molecular sieve of mww framework type

Also Published As

Publication number Publication date
EP3050848B1 (en) 2022-11-23
TW201524599A (zh) 2015-07-01
US10099935B2 (en) 2018-10-16
JP2016536240A (ja) 2016-11-24
KR102230996B1 (ko) 2021-03-22
BR112016006685B1 (pt) 2021-09-28
BR112016006685A2 (pt) 2017-08-01
BR112016006685B8 (pt) 2021-10-19
TWI640362B (zh) 2018-11-11
KR20160058930A (ko) 2016-05-25
EP3050848A1 (en) 2016-08-03
US20170001873A1 (en) 2017-01-05
JP6392860B2 (ja) 2018-09-19
ES2934225T3 (es) 2023-02-20
DK3050848T3 (da) 2022-12-19
CN104511271B (zh) 2017-12-15
EP3050848A4 (en) 2017-03-29
CN104511271A (zh) 2015-04-15
SG11201602303PA (en) 2016-05-30

Similar Documents

Publication Publication Date Title
TWI640362B (zh) Molecular sieve, manufacturing method thereof and use thereof
JP5571950B2 (ja) モレキュラーシーブ組成物(emm−10)とその製造方法、およびこの組成物を用いた炭化水素の転換方法
TWI678335B (zh) Scm-11分子篩、其製造方法及其用途
TWI674148B (zh) Scm-10分子篩、其製造方法及其用途
Mochizuki et al. Facile control of crystallite size of ZSM-5 catalyst for cracking of hexane
EP3165281B1 (en) A process for producing a molecular sieve having the sfe structure, a molecular sieve having the sfe structure and use thereof
JP5537813B2 (ja) Mcm−22型モレキュラーシーブの製造方法
RU2601462C2 (ru) Молекулярное сито емм-22, его синтез и применение
US10974967B2 (en) Molecular sieve SCM-15, synthesis method therefor and use thereof
JP5211049B2 (ja) モレキュラーシーブ組成物(emm−10−p)とその製造方法、およびこの組成物を用いた炭化水素の転換方法
Ge et al. One-pot synthesis of hierarchically structured ZSM-5 zeolites using single micropore-template
US20170001872A1 (en) Cit-10: a two dimensional layered crystalline microporous silicate composition and compositions derived therefrom
US7635462B2 (en) Method of making porous crystalline materials
CN112573535B (zh) Scm-32分子筛及其制备方法和应用
Shah et al. Synthesis and characterization of isomorphously zirconium substituted Mobil Five (MFI) zeolite
WO2023061256A1 (zh) 硅铝分子筛scm-36、其制造方法和应用
CN115959681A (zh) Scm-36分子筛、其制造方法及其用途
CN115504484A (zh) Scm-37分子筛、其制造方法及其用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14849642

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016516882

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15024604

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014849642

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014849642

Country of ref document: EP

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016006685

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20167010568

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016006685

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160324