WO2017170781A1 - セルロース微細繊維層を含む樹脂複合フィルム - Google Patents

セルロース微細繊維層を含む樹脂複合フィルム Download PDF

Info

Publication number
WO2017170781A1
WO2017170781A1 PCT/JP2017/013086 JP2017013086W WO2017170781A1 WO 2017170781 A1 WO2017170781 A1 WO 2017170781A1 JP 2017013086 W JP2017013086 W JP 2017013086W WO 2017170781 A1 WO2017170781 A1 WO 2017170781A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composite
composite film
resin
less
cellulose
Prior art date
Application number
PCT/JP2017/013086
Other languages
English (en)
French (fr)
Inventor
大和 齋藤
中谷 雅行
寛子 川路
洋子 藤本
博文 小野
一文 河原
Original Assignee
旭化成株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成株式会社 filed Critical 旭化成株式会社
Priority to JP2018509388A priority Critical patent/JP6626190B2/ja
Priority to US16/089,508 priority patent/US10703070B2/en
Priority to CN201780022099.7A priority patent/CN108884251B/zh
Priority to EP17775315.9A priority patent/EP3438166B1/en
Priority to KR1020187028033A priority patent/KR102245529B1/ko
Publication of WO2017170781A1 publication Critical patent/WO2017170781A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/045Reinforcing macromolecular compounds with loose or coherent fibrous material with vegetable or animal fibrous material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/245Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using natural fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/047Reinforcing macromolecular compounds with loose or coherent fibrous material with mixed fibrous material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/247Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using fibres of at least two types
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R7/00Diaphragms for electromechanical transducers; Cones
    • H04R7/02Diaphragms for electromechanical transducers; Cones characterised by the construction
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/036Multilayers with layers of different types
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4626Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/06Vegetal fibres
    • B32B2262/062Cellulose fibres, e.g. cotton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • B32B2457/08PCBs, i.e. printed circuit boards
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R2307/00Details of diaphragms or cones for electromechanical transducers, their suspension or their manufacture covered by H04R7/00 or H04R31/003, not provided for in any of its subgroups
    • H04R2307/025Diaphragms comprising polymeric materials

Definitions

  • the present invention relates to a resin composite film containing a cellulose fine fiber sheet and a resin, and a resin laminated film, a resin composite film laminated board, a multilayer printed wiring board, a semiconductor package substrate, and a communication terminal using the same.
  • Fiber reinforced plastic FRP: Fiber Reinforced Plastics
  • FRP Fiber Reinforced Plastics
  • Fiber reinforced composite materials consisting of glass fibers, carbon fibers, aramid fibers, etc. and matrix resins are lightweight compared to competing metals, etc., but have excellent mechanical properties such as strength and elastic modulus. It is used in many fields such as spacecraft members, automobile members, ship members, civil engineering and building materials, and sports equipment. Particularly in applications where high performance is required, carbon fibers excellent in specific strength and specific elastic modulus are often used as reinforcing fibers.
  • thermosetting resins such as unsaturated polyester resins, vinyl ester resins, epoxy resins, phenol resins, cyanate ester resins, and bismaleimide resins are often used as matrix resins, with excellent adhesion to carbon fibers. Many epoxy resins are used.
  • a vacuum impregnation molding method (VaTM Vaum assist Resin Transfer Molding) has been adopted. (For example, see the following Patent Document 1).
  • Patent Document 2 can provide a wiring board that is lightweight and hardly cracked, suppresses generation of CAF (Conductive Anodic Filaments) and smear in a via formation process, and further has a low filler filling rate and low linear expansion. It is described as an effect. Therefore, the embedding property superior in moisture proofness is ensured and embedded when embedding the electrode in the resin composite film, which exceeds the level of the conventional electronic component described in Patent Document 2 and is particularly suitable for in-vehicle use. It is required to maintain the flatness at the time and improve the thermal shock resistance.
  • CAF Conduct Anodic Filaments
  • an object of the present invention is to provide a resin composite film excellent in electrode embedding property, flatness during electrode embedding, and thermal shock resistance.
  • the present inventors control the fiber diameter of the fibers constituting the cellulose fine fiber sheet, the thickness of the overcoat resin layer, and the linear thermal expansion coefficient obtained by AFM measurement of the resin composite film containing the cellulose fine fiber sheet and the resin. As a result, the present inventors have found that the above problems can be solved and completed the present invention.
  • the present invention is as follows: [1] A resin composite film comprising a cellulose fine fiber sheet and a resin, wherein: (1) In elastic modulus mapping obtained by AFM measurement in the cross-sectional thickness direction, the average fiber diameter of the fibers constituting the cellulose fine fiber sheet calculated from image analysis is 0.01 ⁇ m or more and 2.0 ⁇ m or less, and the maximum (2) The average thickness of the overcoat resin layer of the resin composite film observed by elastic modulus mapping is 0.3 ⁇ m or more and 100 ⁇ m or less on at least one side of the resin composite film; Satisfying resin composite film.
  • any one of [1] to [6], wherein an area ratio of a fiber constituting the cellulose fine fiber sheet to an entire cross section of the resin composite film is 5% or more and 60% or less.
  • the resin composite film according to [8], wherein an area ratio of the inorganic filler to the entire cross-section of the resin composite film is 5% or more and 50% or less.
  • the resin composite film according to [8] or [9] In the image analysis of the elastic modulus mapping, the resin composite film according to [8] or [9], wherein an area ratio of the inorganic filler to the entire cross section of the resin composite film is 5% or more and 50% or less.
  • a communication terminal including the semiconductor package substrate according to [23].
  • a resin composite film laminate in which a plurality of resin composite films containing a cellulose fine fiber sheet and a resin are laminated, and the following: (1) In elastic modulus mapping obtained by AFM measurement in the cross-sectional thickness direction of the resin composite film laminate, the average fiber diameter of fibers constituting the cellulose fine fiber sheet calculated from image analysis is 0.01 ⁇ m or more.
  • the average thickness of the overcoat resin layer of the resin composite film calculated by the elastic modulus mapping is 0.8 ⁇ m or more and 30 ⁇ m or less on at least one side of the resin composite film; and (3) the resin composite film
  • the surface roughness of the laminate is 0.1 ⁇ m or more and 2.0 ⁇ m or less; The resin composite film laminate satisfying the requirements.
  • a multilayer printed wiring board comprising the resin composite film laminate according to [26].
  • a semiconductor package substrate comprising the multilayer printed wiring board according to [27].
  • a communication terminal including the semiconductor package substrate according to [28].
  • a resin composite film comprising cellulose fine fibers in a matrix resin, the following: (1) In elastic modulus mapping obtained by atomic force microscope (AFM) measurement in the cross-sectional thickness direction of the resin composite film, the average fiber diameter of the cellulose fine fibers calculated from image analysis is 0.01 ⁇ m to 2.0 ⁇ m. And the maximum fiber diameter is 15 ⁇ m or less; (2) The glass transition temperature (Tg) of the resin composite film is 80 ° C. or higher, or does not exist; (3) The storage elastic modulus (E′200) at 200 ° C.
  • AFM atomic force microscope
  • the ratio (E′150 / E′200) of the storage elastic modulus (E′150) at 150 ° C. of the film is 1 or more and 4.5 or less;
  • the said resin composite film satisfy
  • the area ratio of the cellulose fine fibers to the entire cross section of the resin composite film is 5% to 60%, according to [30] or [31] Resin composite film.
  • the linear thermal expansion coefficient CTE200 of the XY plane at 200 ° C. is 100 ppm / ° C. or less; and (6) the linear thermal expansion coefficient CTE150 of the XY plane at 150 ° C. and the XY plane at 200 ° C.
  • the absolute value of the numerical difference from the linear thermal expansion coefficient CTE200 is 40 or less;
  • the area ratio of the inorganic filler to the entire cross section of the resin composite film is 5% to 50% in a scanning electron microscope (SEM) observation in the cross-sectional thickness direction of the resin composite film.
  • Resin composite film. [37] In the image analysis of the elastic modulus mapping, the resin composite film according to [35] or [36], wherein 20% or less of the inorganic filler is contained in the cellulose fine fiber layer.
  • the resin composite film according to any one of [30] to [41] which has a thickness of 5 ⁇ m to 1500 ⁇ m.
  • the resin composite film according to [42] wherein the thickness is 5 ⁇ m to 200 ⁇ m.
  • the resin composite film of the present invention is a resin composite capable of ensuring the area and embedding property when the electrode is embedded in the resin composite film, and maintaining the flatness when embedding and improving the thermal shock resistance.
  • a film can be provided.
  • FIG. 1 (a) is an AFM elastic modulus mapping image of the resin composite film obtained in Example 1 of Embodiments I to IV
  • FIG. 1 (b) is an AFM elastic modulus mapping image of FIG. 1 (a).
  • FIG. 1C is a binarized image of the AFM elastic modulus mapping image of FIG.
  • FIG. 2 is an image after performing processing for defining a cellulose fine fiber layer on the AFM elastic modulus mapping image of FIG.
  • FIG. 3 is a conceptual diagram for explaining the deflection (h) and length (L) of the thick resin composite film.
  • the present embodiment a mode for carrying out the present invention (hereinafter referred to as “the present embodiment”) will be described in detail.
  • this invention is not limited to the following embodiment, It can implement by changing variously within the range of the summary.
  • the resin composite film of the present embodiment is a resin composite film containing a cellulose fine fiber sheet and a resin, and includes the following: (1) In elastic modulus mapping obtained by AFM measurement in the cross-sectional thickness direction, the average fiber diameter of the fibers constituting the cellulose fine fiber sheet calculated from image analysis is 0.01 ⁇ m or more and 2.0 ⁇ m or less, and the maximum (2) The average thickness of the overcoat resin layer of the resin composite film observed by elastic modulus mapping is 0.3 ⁇ m or more and 100 ⁇ m or less on at least one side of the resin composite film; Satisfied.
  • the resin composite film of this embodiment is excellent in low linear thermal expansibility by including a cellulose fine fiber sheet and a resin, and a resin layer (in this specification, 0.3 ⁇ m or more and 100 ⁇ m or less on at least one side of the resin composite film).
  • a resin layer in this specification, 0.3 ⁇ m or more and 100 ⁇ m or less on at least one side of the resin composite film.
  • the cellulose fine fiber sheet (hereinafter, also simply referred to as “fiber sheet”) used in the present embodiment is composed of cellulose fine fibers. If desired, the fiber sheet may include fine fibers made of an organic polymer other than cellulose.
  • Examples of cellulose include natural cellulose and regenerated cellulose.
  • Natural cellulose includes wood pulp obtained from hardwoods or conifers, refined linters, refined pulps from various plant species (bamboo, hemp fiber, bagasse, kenaf, linters, etc.), so-called wood pulps such as coniferous pulps and hardwood pulps. Also non-wood pulp can be used. As non-wood pulp, cotton-derived pulp including cotton linter pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, straw-derived pulp, and the like can also be used.
  • Cotton-derived pulp, hemp-derived pulp, bagasse-derived pulp, kenaf-derived pulp, bamboo-derived pulp, straw-derived pulp are cotton lint and cotton linter, hemp-based abaca (for example, many from Ecuador or Philippines), It means a refined pulp obtained through a refining process such as delignification by a digestion process or a bleaching process for raw materials such as zaisal, bagasse, kenaf, bamboo, and straw.
  • seaweed-derived cellulose or purified product of sea squirt cellulose can also be used.
  • it is an aggregate of never-dry and fine fibers such as bacterial cellulose (BC) produced by cellulose-producing bacteria (bacteria).
  • regenerated cellulose is a substance obtained by dissolving natural cellulose or regenerating it by crystal swelling (mercelization) treatment, and corresponds to a lattice spacing of 0.73 nm, 0.44 nm, and 0.40 nm by particle beam diffraction.
  • a ⁇ -1,4-bonded glucan (glucose polymer) having a molecular arrangement that gives a crystal diffraction pattern (cellulose type II crystal) with the diffraction angle as the apex.
  • regenerated cellulose is an X-ray diffraction pattern in which an X-ray diffraction pattern in which the range of 2 ⁇ ranges from 0 ° to 30 ° has one peak at 10 ° ⁇ 2 ⁇ ⁇ 19 °, and 19 ° ⁇ 2 ⁇ ⁇ 30 °.
  • regenerated cellulose fibers such as rayon, cupra and tencel.
  • a fiber refined using cupra or tencel having a high molecular orientation in the fiber axis direction as a raw material.
  • a cut yarn of regenerated cellulose fiber or a cut yarn of cellulose derivative fiber can also be used.
  • the number average fiber diameter of the fine cellulose fibers is preferably 0.01 ⁇ m or more and 2.0 ⁇ m or less, more preferably 0.02 ⁇ m or more and 1.5 ⁇ m or less, and further preferably 0.02 ⁇ m or more and 1.0 ⁇ m or less. It is preferable that the number average fiber diameter of the cellulose fine fibers is 0.01 ⁇ m or more because the fiber sheet has a moderately large pore diameter, so that the resin is easily impregnated and the thermal stability of the resin composite film is increased. Further, when the number average fiber diameter of the cellulose fine fibers is 2.0 ⁇ m or less, the number of cellulose fine fibers per unit weight of the cellulose fine fiber sheet is very large, and the number of entanglement points between the fine fibers is increased.
  • the maximum fiber diameter of the cellulose fine fibers is preferably 15 ⁇ m or less, more preferably 10 ⁇ m or less, still more preferably 5 ⁇ m or less, and most preferably 3 ⁇ m or less.
  • the maximum fiber diameter is 15 ⁇ m or less because the thickness of the fiber sheet can be reduced and uniformity of the hole diameter and the like can be easily ensured when producing a thin resin composite film.
  • the total light transmittance when the resin composite film is obtained can be designed to be 80% or more.
  • the control method is not particularly limited, and examples thereof include a method using a TEMPO oxidation catalyst, which will be described later, or a method of adjusting by the above-described fibrillation treatment or refinement treatment. Designing the total light transmittance to 80% or more is useful as a transparent film, and it is more preferable to design the total light transmittance to 90% or more.
  • the measurement method of the total light transmittance can be measured by a light transmittance test using a haze meter NDH7000SP CU2II (product name) (manufactured by Nippon Denshoku Industries Co., Ltd.) based on ASTM D1003.
  • the number average fiber diameter will be described.
  • SEM scanning electron microscope
  • the number average fiber diameter is calculated in the same manner for the other two extracted SEM images, and the results for a total of 10 images are averaged to obtain the average fiber diameter of the target sample.
  • SEM observation is performed from the cellulose fine fiber sheet side.
  • the number average fiber diameter and the maximum fiber diameter of the fine cellulose fibers are measured according to the methods described in the following examples.
  • the maximum fiber thickness of 15 ⁇ m or less means that an electron microscope (SEM) is used at a magnification equivalent to 1,000 to 100,000 at any 10 positions on the fiber sheet surface when measuring the number average fiber diameter described above. ) It means that the fiber diameter is 15 ⁇ m or less for any entangled fibers contained in the image obtained by observation.
  • fibers (bundles) that can clearly confirm that several fibers are bundled in the image to have a fiber diameter of 15 ⁇ m or more are not assumed to be fibers having a fiber diameter of 15 ⁇ m or more.
  • it can be clearly confirmed that several fibers are bundled and have a fiber diameter of 15 ⁇ m or more in the image it is not considered as a fiber having a fiber diameter of 15 ⁇ m or more.
  • cellulose fibers having a maximum fiber diameter of more than 2 ⁇ m and not more than 15 ⁇ m may be mixed with cellulose fine fibers, or cellulose fibers having a maximum fiber diameter of more than 2 ⁇ m and not more than 15 ⁇ m may remain after refinement.
  • the content of cellulose fibers having a maximum fiber diameter of more than 2 ⁇ m and not more than 15 ⁇ m is preferably more than 0% and not more than 30%, more preferably not more than 20%. If the content is more than 0% and 30% or less, the surface area and the entanglement points of the cellulose fine fibers are relatively increased, and a hydrogen bond network is formed between the cellulose fine fibers, which is effective for the linear thermal expansion coefficient.
  • the content ratio of the maximum fiber diameter is an area ratio calculated by the following (1) to (5).
  • a CNF basis weight of 10 g / m 2 and a 20 cm fiber sheet are calendered (model: H2TEM300, manufactured by Yuri Roll Co., Ltd.) at 3 t / 30 cm and a speed of 2 m / min.
  • Thick fiber amount evaluation Draw a 2 mm square frame as an actual size on each of the nine images for the nine-point 100 ⁇ optical microscope observation results.
  • the area of the cellulose fiber having a fiber diameter of 3 ⁇ m or more and 15 ⁇ m or less confirmed in the frame line is calculated using image analysis software (imageJ). (5) Calculate the area / 4 mm 2 .
  • the content of cellulose fine fibers in the fiber sheet is not particularly limited, but is preferably 30% by weight or more. More preferably, it is 40 weight%, More preferably, it is 50 weight% or more. By including 30% by weight or more of cellulose fine fibers, the number of entanglement points of cellulose fine fibers is larger than that of ordinary fiber sheets, so that the thermal stability (linear thermal expansion coefficient) when combined with resin is increased. Can be increased.
  • the fiber sheet can be obtained by processing cellulose fine fibers into a sheet shape as described above.
  • the thickness after processing into a sheet shape is preferably 2 ⁇ m or more and 1000 ⁇ m or less.
  • the thickness is measured using a surface contact type film thickness meter, for example, a thickness meter manufactured by Mitutoyo (Model ID-C112XB) or the like.
  • the average value of the five measured values for the position is defined as thickness T ( ⁇ m).
  • the thickness of the fiber sheet is more preferably 2 ⁇ m or more and 1000 ⁇ m or less, further preferably 5 ⁇ m or more and 500 ⁇ m or less, and most preferably 5 ⁇ m or more and 100 ⁇ m or less.
  • the thickness can be minimized when the resin composite film is produced, which is effective in terms of weight reduction and compactness.
  • the basis weight of the fiber sheet is 1 g / m 2 or more and 200 g / m 2 or less, more preferably 3 g / m 2 or more and 150 g / m 2 or less, and further preferably 4 g / m 2 or more and 100 g / m 2 or less.
  • a basis weight of 1 g / m 2 or more is preferable from the viewpoint of handling in an assembly process for various devices.
  • a basis weight of 200 g / m 2 or less is preferable from the viewpoint of film thickness control.
  • the basis weight of the fine cellulose fibers is preferably 1 g / m 2 or more and 50 g / m 2 or less, more preferably 3 g / m 2 or more and 40 g / m 2 or less, and further preferably 4 g / m 2 or more and 30 g / m 2 or less. is there.
  • a basis weight of 1 g / m 2 or more is preferable from the viewpoint of handling in an assembly process for various devices.
  • a basis weight of 50 g / m 2 or less is preferable from the viewpoint of film thickness control.
  • the porosity of the fiber sheet is preferably 35% to 95%, more preferably 40% to 90%. As an upper limit, More preferably, it is 80%, Most preferably, it is 50% or less. A porosity of 35% or more is preferable because the resin is easily impregnated. A porosity of 95% or less is preferable from the viewpoint of the handleability of the sheet and the viewpoint of improving the heat resistance of the composite film of the fiber sheet and the resin.
  • the air resistance of the fiber sheet is preferably 1 sec / 100 ml or more and 400,000 sec / 100 ml or less, more preferably 100,000 sec / 100 ml or less, and further preferably 20,000 sec / 100 ml or less.
  • the air resistance means a numerical value measured based on the Gurley tester method described in JIS P8117.
  • the air resistance is more preferably 2 sec / 100 ml or more, and further preferably 5 sec / 100 ml or more.
  • a fiber sheet having an air permeability resistance of 1 sec / 100 ml or more is preferable from the viewpoint of strength when it is composed of fine fibers and can produce a uniform fiber sheet with fewer defects and used as a resin composite film. .
  • the air permeability resistance is 400,000 sec / 100 ml or less, the porosity is maintained, so that the resin impregnation property when using the fiber sheet as a resin composite film is good and the thermal stability is excellent. preferable.
  • the fiber sheet may further include fine fibers made of an organic polymer other than cellulose in addition to the cellulose fine fibers.
  • the content of fine fibers made of an organic polymer other than cellulose in the fiber sheet is preferably less than 70% by weight, more preferably less than 60% by weight, and even more preferably less than 50% by weight.
  • the organic polymer may be any organic polymer that can produce fine fibers.
  • organic polymer such as aromatic or aliphatic polyester, nylon, polyacrylonitrile, cellulose acetate, polyurethane, polyethylene, polypropylene, polyketone, aromatic polyamide, polyimide And natural organic polymers other than cellulose, such as silk and wool.
  • Fine fibers made of organic polymer are fine fibers obtained by beating organic fibers, finely fibrillated or refined by high-pressure homogenizer, etc., fine fibers obtained by electrospinning using various polymers as raw materials, and various polymers. Examples of the raw material include fine fibers obtained by a melt blown method, but are not limited thereto.
  • polyacrylonitrile fine fibers and aramid fine fibers obtained by refining aramid fibers, which are wholly aromatic polyamides, with a high-pressure homogenizer are particularly preferable because they have high heat resistance and high chemical stability.
  • the maximum fiber diameter of these organic polymers is preferably 15 ⁇ m or less. It is preferable that the maximum fiber diameter is 15 ⁇ m or less because the thickness of the fiber sheet can be reduced and uniformity of the hole diameter and the like can be easily ensured when producing a thin resin composite film.
  • the aramid fine fibers may be made from aramid short fibers.
  • aramid a linear polymer compound in which 60% or more of the amide bonds are directly bonded to the aromatic ring may be used.
  • examples of such aramids include polymetaphenylene isophthalamide and copolymers thereof, polyparaphenylene terephthalamide and copolymers thereof, and copolyparaphenylene 3,4'-diphenyl ether terephthalamide.
  • Examples of the aramid short fibers include those obtained by cutting a fiber made of aramid into a predetermined length.
  • Examples of such fibers include “Teijin Conex (registered trademark)” of Teijin Techno Products Co., Ltd. , “Technora (registered trademark)”, DuPont “Nomex (registered trademark)”, “Kevlar (registered trademark)”, Teijin Aramid “Twaron (registered trademark)”, etc.
  • the length of the aramid short fibers can be selected from the range of generally 1 mm or more and less than 50 mm, preferably 2 to 10 mm.
  • the cellulose fine fiber sheet of the present embodiment may be a laminated structure (also referred to as a laminated sheet) laminated on a sheet made of an organic polymer (hereinafter abbreviated as an organic polymer sheet).
  • an organic polymer sheet When the cellulose fine fiber sheet is laminated on the organic polymer sheet, the tensile strength and the like are strengthened and become strong, so that the handleability as a sheet is improved.
  • the organic polymer sheet is more preferably a porous sheet from the viewpoint of producing by filtering cellulose fine fibers by a papermaking method and from the viewpoint of impregnating the resin.
  • the porous sheet include woven fabrics, knitted fabrics, nets, long fiber nonwoven fabrics, short fiber nonwoven fabrics, or polymer microporous membranes or films produced by resin phase separation or stretching. Can be mentioned.
  • the organic polymer sheet is preferably hydrophilic in order to improve papermaking properties and adhesion to the cellulose fine fiber sheet, and surface modification of the sheet surface such as corona discharge treatment or plasma treatment to make it hydrophilic. It may be done.
  • composition of the organic polymer constituting the organic polymer sheet is not particularly specified, but for example, polyethylene, polypropylene, ethylene-propylene copolymer, polyvinyl chloride, polyvinylidene chloride, polyvinyl acetate, ethylene- Fluorine resin such as vinyl acetate copolymer, polyvinyl alcohol, polyacetal, polyvinylidene fluoride, polyethylene terephthalate, polybutylene terephthalate, polyethylene naphthalate, polystyrene, polyacrylonitrile, styrene-acrylonitrile copolymer, ABS resin, polyphenylene ether (PPE) Resin, polyimide, polyamideimide, polymethacrylic acid, polyacrylic acid, polycarbonate, polyphenylene sulfide, polysulfone, polyethersulfone, polyether Nitrile, polyether ketone, polyketone, liquid crystal polymer, silicone resin, ionomer, cellulose
  • Fiber can also be used.
  • carboxyl groups including acid type and salt type
  • Fiber can also be used.
  • some or most of the hydroxyl groups present on the surface of the cellulose fine fiber are esterified including acetate ester, nitrate ester, sulfate ester.
  • etherified products including alkyl ethers typified by methyl ether, carboxy ethers typified by carboxymethyl ether, and cyanoethyl ether can be appropriately prepared and used.
  • cellulose chemically modified with a hydrophobic substituent when used as a sheet material, it may be preferable because it can be easily controlled to have a high porosity.
  • cellulose chemically modified with a hydrophobic substituent is also preferable from the viewpoint of obtaining a highly transparent resin sheet when impregnated with a resin.
  • TEMPO a catalyst called TEMPO such as a radical
  • an oxidant such as hypochlorous acid
  • a purification treatment such as water washing
  • an ordinary mixer By performing the treatment, a dispersion of fine cellulose fibers can be obtained very easily.
  • the above-mentioned regenerated cellulose or natural cellulose fine fibers with different raw materials, natural cellulose fine fibers with different degrees of fibrillation, natural cellulose fine fibers whose surfaces are chemically treated, organic polymer fine fibers It may be effective to form a cellulose fine fiber layer by mixing a predetermined amount of two or more of the above.
  • the cellulose fine fibers can be chemically crosslinked between the cellulose fine fibers with a fiber sheet crosslinking agent for strength reinforcement, water resistance, and solvent resistance.
  • the fiber sheet cross-linking agent is 30% by weight or less, more preferably 20% by weight or less of the weight of the cellulose fine fiber.
  • the fiber sheet cross-linking agent is not limited as long as it chemically cross-links between cellulose fine fibers, and uses a resin formed by addition reaction of a polyisocyanate having two or more isocyanate groups and an active hydrogen-containing compound. It is preferable.
  • polyisocyanate having two or more isocyanate groups examples include aromatic polyisocyanate, alicyclic polyisocyanate, and aliphatic polyisocyanate.
  • active hydrogen-containing compound examples include mono- to hexavalent hydroxyl-containing compounds such as polyester polyol and polyether polyol, amino group-containing compounds, thiol group-containing compounds, and carboxyl group-containing compounds. Further, water, carbon dioxide, etc. existing in the air or in the reaction field are also included.
  • the fiber which comprises a cellulose fine fiber and an organic polymer sheet can also be chemically bridge
  • Crosslinking between the cellulose fine fiber layer and the organic polymer sheet is preferable because peeling at the time of resin impregnation can be prevented.
  • the fiber sheet manufacturing method in this embodiment is manufactured by either a papermaking method or a coating method.
  • a papermaking method (1) a cellulose fine fiber production process by refining cellulose fibers, (2) a process for preparing a papermaking slurry of the cellulose fine fibers, (3) the papermaking slurry on a porous substrate A papermaking process for forming wet paper by filtration, and (4) a drying process for drying the wet paper to obtain a dry sheet.
  • a coating slurry prepared by the same steps as in the above (1) and (2) is coated on an organic polymer sheet and dried to form a film.
  • various coating methods such as spray coating, gravure coating and dip coating can be selected.
  • the fiber sheet is preferably subjected to a pretreatment process, a beating process, and a refinement process using the cellulose fibers described above.
  • the pretreatment step of natural cellulose fiber the raw pulp is made easy to be refined in the subsequent steps by autoclave treatment under water impregnation at a temperature of 100 to 150 ° C., enzyme treatment, or a combination thereof. It is effective.
  • an inorganic acid hydroochloric acid, sulfuric acid, phosphoric acid, boric acid, etc.
  • an organic acid acetic acid, citric acid, etc.
  • pretreatments not only reduce the load of the micronization process, but also discharge impurity components such as lignin and hemicellulose present on the surface and gaps of the microfibrils that make up the cellulose fibers to the aqueous phase, resulting in a finer process. Since there is also an effect of increasing the ⁇ -cellulose purity of the formed fiber, it may be very effective in improving the heat resistance of the cellulose fine fiber nonwoven fabric. In the case of regenerated cellulose fiber, washing with water using a surfactant to remove the oil can be performed in the pretreatment step.
  • the solid content of the raw material pulp is 0.5 wt% or more and 4 wt% or less, preferably 0.8 wt% or more and 3 wt% or less, more preferably 1.0 wt% or more and 2.5 wt% or less.
  • a beating device such as a beater or disc refiner (double disc refiner).
  • double disc refiner double disc refiner.
  • a disc refiner if processing is performed with the clearance between the discs set as narrow as possible (for example, 0.1 mm or less), extremely advanced beating (fibrillation) proceeds. Therefore, conditions for miniaturization using a high-pressure homogenizer, which will be described later, can be relaxed and may be effective.
  • the degree of beating processing is determined as follows. In the study by the present inventors, as the beating process was performed, the CSF value (indicating the degree of beating of cellulose. Evaluated by the Canadian standard freeness test method for pulp as defined in JIS P 8121) decreased with time. Once it was close to zero, it was confirmed that if the beating process continued further, it would increase again.
  • the CSF value in the beating treatment is preferably at least zero, more preferably CSF 30 ml or more.
  • the slurry having such a beating degree has an advantage in production efficiency that can increase the uniformity and reduce clogging in the subsequent miniaturization process using a high-pressure homogenizer or the like.
  • the fiber sheet is preferably subjected to a refining treatment using a high-pressure homogenizer, an ultra-high pressure homogenizer, a grinder, etc., following the beating step described above.
  • the solid content concentration in the slurry is 0.5% by weight or more and 4% by weight or less, preferably 0.8% by weight or more and 3% by weight or less, more preferably 1.0% by weight, in accordance with the above-described beating process. More than 2.5 wt%. In the case of a solid content concentration in this range, clogging does not occur and an efficient miniaturization process can be achieved.
  • high-pressure homogenizer examples include NS type high-pressure homogenizer manufactured by Niro Soabi (Italy), SMT's Lanier type (R model) pressure-type homogenizer, and Sanwa Kikai Co., Ltd. high-pressure type homogenizer. Any device other than these devices may be used as long as the device performs miniaturization by a mechanism substantially similar to those of these devices.
  • Ultra-high pressure homogenizers mean high-pressure collision type miniaturization machines such as Mizuho Kogyo Co., Ltd. microfluidizer, Yoshida Kikai Kogyo Co., Ltd. Nanomizer, Sugino Machine Ultimate Co., Ltd.
  • any device other than these devices may be used as long as the device performs miniaturization with a substantially similar mechanism.
  • the grinder-type miniaturization device include the pure fine mill of Kurita Machinery Co., Ltd. and the stone mill type milling die represented by Masuyuki Sangyo Co., Ltd. Any device other than these may be used as long as the device performs miniaturization by this mechanism.
  • the fiber diameter of the cellulose fine fiber is determined by the conditions for the refinement process (selection of equipment and operating pressure and the number of passes) using a high-pressure homogenizer or the like (for example, autoclave process, enzyme process, beating process). Etc.).
  • the aramid fiber is refined through the same pretreatment process, beating process and refinement process as those of the cellulose fine fiber.
  • the pretreatment step water washing using a surfactant is performed to remove the oil agent.
  • the beating treatment step the fiber after washing with water is 0.5 wt% or more and 4 wt% or less, preferably 0.8 wt% or more and 3 wt% or less, more preferably 1.0 wt% or more and 2.5 wt% or less. Disperse in water to a solid concentration, and thoroughly promote fibrillation with a beating device such as a beater or disc refiner (double disc refiner).
  • the solid content concentration in the aqueous dispersion is 0.5 wt% or more and 4 wt% or less, preferably 0.8 wt% or more and 3 wt% or less, more preferably 1.0 wt. % By weight to 2.5% by weight. In the case of a solid content concentration in this range, clogging does not occur and an efficient miniaturization process can be achieved.
  • the high-pressure homogenizer to be used at least the apparatus described in the production of cellulose fine fibers can be used, but it is not limited thereto.
  • the fiber diameter of the aramid fine fibers should be controlled by the conditions of the refinement process (selection of equipment and operating pressure and the number of passes) using a high-pressure homogenizer or the like (for example, the beating process) before the refinement process. Can do.
  • a paper sheet and a drying process, which will be described later, may be performed using a slurry mixed at an arbitrary ratio to produce a fiber sheet composed of two or more types of cellulose fine fibers, or cellulose fine fibers and aramid fine fibers.
  • the fiber sheet composed of two or more kinds of fine fibers is preferably dispersed uniformly in the fiber sheet without aggregation of the fine fibers.
  • a dispersed state in which each fine fiber is unevenly distributed in the slurry the film quality uniformity of the obtained fiber sheet is not good. Therefore, it is necessary to achieve a reasonably uniform dispersion in the slurry.
  • a high-speed disperser for example, TK homomixer of Primix Co., Ltd.
  • a disc refiner including a double disc refiner equipped with a disper type blade
  • a high pressure homogenizer, an ultra high pressure homogenizer, a grinder, etc. can be mentioned.
  • cellulose fine fibers In the production process of cellulose fine fibers, mixing raw materials of aramid fine fibers can be effective because cellulose and aramid can be simultaneously refined and high dispersibility can be achieved at the same time.
  • a papermaking slurry may be prepared by adding various additives (oil-based compound, water-dispersible blocked isocyanate, functionalizing agent, etc.) to the cellulose fine fiber slurry.
  • the papermaking slurry preferably has a cellulose fine fiber concentration of 0.01% by weight or more and 0.5% by weight or less. More preferably, when it is 0.08 wt% or more and 0.35 wt% or less, stable paper making can be carried out.
  • the cellulose fine fiber concentration in the slurry is lower than 0.01% by weight, the drainage time becomes very long, the productivity is remarkably lowered, and the film quality uniformity is remarkably deteriorated.
  • the concentration of the fine cellulose fibers is higher than 0.5% by weight, the viscosity of the dispersion is excessively increased, which makes it difficult to form a uniform film.
  • the papermaking slurry may contain an oily compound emulsified as described in Patent Document 1 (Japanese Patent Laid-Open No. 2012-46843) described above by the present inventors. Good.
  • an oily compound having a boiling point range of 50 ° C. or more and 200 ° C. or less under atmospheric pressure is dispersed in a papermaking slurry at a concentration of 0.15 wt% or more and 10 wt% or less in the form of an emulsion. It is preferable.
  • the concentration of the oily compound in the papermaking slurry is preferably from 0.15% by weight to 10% by weight, more preferably from 0.3% by weight to 5% by weight, and even more preferably from 0.5% by weight to 3% by weight. % Or less.
  • the cellulose fine fiber porous sheet can be obtained even if the concentration of the oily compound exceeds 10% by weight, the amount of the oily compound used as a production process increases, and the necessity and cost of safety measures accompanying this increase. Since the above restrictions occur, it is not preferable. Further, if the concentration of the oily compound is less than 0.15% by weight, it is not preferable because only a sheet having an air resistance higher than a predetermined air resistance range can be obtained.
  • the oily compound is removed during drying. Therefore, in this embodiment, it is preferable that the oily compound contained as an emulsion in the papermaking slurry is in a certain boiling range.
  • the boiling point under atmospheric pressure is preferably 50 ° C. or higher and 200 ° C. or lower. More preferably, if it is 60 ° C. or higher and 190 ° C. or lower, the papermaking slurry can be easily manipulated as an industrial production process, and it can be removed by heating relatively efficiently. If the boiling point of the oily compound under atmospheric pressure is less than 50 ° C., it is necessary to handle it under low temperature control in order to handle the papermaking slurry stably, which is not preferable in terms of efficiency. Furthermore, if the boiling point of the oily compound under atmospheric pressure exceeds 200 ° C., too much energy is required to heat and remove the oily compound in the drying step, which is also not preferable.
  • solubility of the oily compound in water at 25 ° C. is 5% by weight or less, preferably 2% by weight or less, and more preferably 1% by weight or less for efficient formation of the necessary structure of the oily compound. It is desirable from the viewpoint of making a positive contribution.
  • oil compound examples include hydrocarbons having 6 to 14 carbon atoms, chain saturated hydrocarbons, cyclic hydrocarbons, chain or cyclic unsaturated hydrocarbons, aromatic hydrocarbons, carbon number Examples thereof include monohydric and primary alcohols having 5 to 9 carbon atoms.
  • a cellulose fine fiber porous sheet can be particularly preferably produced. This is considered to be suitable for the production of a nonwoven fabric having a high porosity and a fine porous structure because the oil droplet size of the emulsion is extremely small (1 ⁇ m or less under normal emulsification conditions).
  • oil compounds may be blended as a simple substance, or a plurality of mixtures may be blended. Furthermore, in order to control the emulsion characteristics to an appropriate state, a water-soluble compound may be dissolved in the papermaking slurry.
  • the water-soluble compound contains one or more water-soluble compounds selected from the group consisting of sugars, water-soluble polysaccharides, water-soluble polysaccharide derivatives, polyhydric alcohols, alcohol derivatives, and water-soluble polymers. It may be.
  • the water-soluble polysaccharide means a water-soluble polysaccharide, and various compounds exist as natural products. For example, starch, solubilized starch, amylose and the like.
  • the water-soluble polysaccharide derivative includes the above-mentioned water-soluble polysaccharide derivatives such as alkylated products, hydroxyalkylated products, and acetylated products that are water-soluble.
  • polysaccharide before derivatization is insoluble in water, such as cellulose and starch
  • those that have been water-solubilized by derivatization for example, hydroxyalkylation, alkylation, carboxyalkylation, etc.
  • water-soluble polysaccharide derivatives include water-soluble polysaccharide derivatives.
  • water-soluble polysaccharide derivatives derivatized with two or more functional groups include water-soluble compounds that can be used.
  • the amount of the water-soluble compound mixed is preferably 25% by weight or less based on the oily compound. If the amount is more than this, the ability to form an emulsion of an oily compound is lowered, which is not preferable.
  • the water-soluble compound is dissolved in the aqueous phase.
  • the concentration of the water-soluble compound is 0.003% to 0.3% by weight, more preferably 0.005% to 0.08% by weight, and still more preferably 0.006% to 0.07%.
  • the amount is not more than% by weight, and if it is within this range, a porous fiber sheet is easily obtained and at the same time, the state of the papermaking slurry is often stabilized, which is preferable.
  • the papermaking slurry may contain a surfactant in addition to the above water-soluble compound and the total amount of the specific water-soluble polymer within the above concentration range.
  • Surfactants include alkyl sulfate ester salts, polyoxyethylene alkyl sulfate ester salts, anionic surfactants such as alkylbenzene sulfonates and ⁇ -olefin sulfonates, alkyltrimethylammonium chloride, dialkyldimethylammonium chloride, and benzalkcochloride.
  • Cationic surfactants such as nium, amphoteric surfactants such as alkyldimethylaminoacetic acid betaine, alkylamidodimethylaminoacetic acid betaine, and nonionic surfactants such as alkylpolyoxyethylene ether and fatty acid glycerol ester can be mentioned, It is not limited to these.
  • various additives may be added to the papermaking slurry depending on the purpose.
  • water-dispersible block polyisocyanate, water-soluble polymer, thermoplastic resin, thermosetting resin, photo-curing resin, silica particles, alumina particles, titanium oxide particles, inorganic particulate compounds such as calcium carbonate particles, resin Fine particles, various salts, organic solvents that do not inhibit the stability of the papermaking slurry, antifoaming agents, and the like can be added within a range that does not adversely affect the production of the sheet structure (selection of type and selection of composition).
  • Water-dispersible block polyisocyanate is a compound that can become the fiber sheet crosslinking agent by heating. Specifically, (1) having a polyisocyanate compound such as polyisocyanate and polyisocyanate derivative as a basic skeleton, (2) an isocyanate group being blocked by a blocking agent, (3) a functional group having active hydrogen at room temperature (4) The heat treatment at or above the dissociation temperature of the blocking group results in the elimination of the blocking group to regenerate the active isocyanate group, which reacts with the functional group having active hydrogen to form a bond. (5) It is dispersed in water in the form.
  • the above water-dispersible block polyisocyanate is considered to exhibit the following behavior in fiber sheet production.
  • the water-dispersible block polyisocyanate may be either a compound in which a hydrophilic compound is directly bonded to the block polyisocyanate and emulsified (self-emulsifying type) or a compound that is forcibly emulsified with a surfactant or the like (forced emulsification type).
  • the average particle size of the water dispersion may be 1-1000 nm, preferably 10-500 nm, more preferably 10-200 nm. In the case of 1000 nm or more, since it is too large with respect to a cellulose fine fiber fiber diameter, uniform adsorption becomes difficult. Therefore, cellulose fine fibers that are not cross-linked by the fiber sheet cross-linking agent increase, which is not preferable from the viewpoint of enhancing sheet strength.
  • anionic, nonionic, and cationic hydrophilic groups are exposed on the surface of these emulsions, but are more preferably cationic.
  • water-dispersible blocked polyisocyanate (0.0001-0.5 wt%) is effective in dilute cellulose fine fiber slurry (0.01-0.5 wt%) at the stage of making papermaking slurry. This is because it is effective to use electrostatic interaction when adsorbing to cellulose fine fibers.
  • the surface of general cellulose fibers is known to be anionic (Zeta potential of distilled water: -30 to -20 mV) (J. Brandrup (editor) and EHImmergut (editor) “Polymer Handbook 3rd edition” V-153 ⁇ See V-155).
  • the surface of the aqueous dispersion when the surface of the aqueous dispersion is cationic, it can be easily adsorbed in the form of fine cellulose fibers. However, even if it is nonionic, it can be sufficiently adsorbed on the fine cellulose fibers depending on the polymer chain length and rigidity of the hydrophilic group of the emulsion. Furthermore, even when adsorption is more difficult due to electrostatic repulsion such as anionic property, it can be adsorbed on cellulose fine fibers by using generally known cationic adsorption aids and cationic polymers. it can.
  • the water-dispersible block polyisocyanate is not particularly limited as long as it is a polyisocyanate and a polyisocyanate derivative containing at least two isocyanate groups.
  • the polyisocyanate include aromatic polyisocyanate, alicyclic polyisocyanate, and aliphatic polyisocyanate.
  • polyisocyanate derivative for example, in addition to the above polyisocyanate multimer (for example, dimer, trimer, pentamer, heptamer, etc.), an active hydrogen-containing compound and one kind or two or more kinds The compound obtained by making it react is mentioned.
  • the compounds include allophanate-modified products (for example, allophanate-modified products produced from the reaction of polyisocyanates and alcohols), polyol-modified products (for example, polyol-modified products produced from the reaction of polyisocyanates and alcohols (addition of alcohols).
  • biuret-modified products for example, biuret-modified products produced by reaction of polyisocyanate with water or amines
  • urea-modified products eg, urea-modified products produced by reaction of polyisocyanate and diamine
  • oxadiazine trione modified products for example, oxadiazine trione produced by reaction of polyisocyanate and carbon dioxide gas
  • carbodiimide modified products carbodiimide modified product produced by decarboxylation condensation reaction of polyisocyanate, etc.
  • Modified uretdione Uretonimine modified products and the like for example, biuret-modified products produced by reaction of polyisocyanate with water or amines
  • urea-modified products eg, urea-modified products produced by reaction of polyisocyanate and diamine
  • oxadiazine trione modified products for example, oxadiazine trione produced by reaction of polyisocyanate and carbon dioxide gas
  • Examples of the active hydrogen-containing compound include 1 to 6-valent hydroxyl group-containing compounds including polyester polyols and polyether polyols, amino group-containing compounds, thiol group-containing compounds, and carboxyl group-containing compounds. Further, water, carbon dioxide, etc. existing in the air or in the reaction field are also included.
  • the blocking agent is added to the isocyanate group of the polyisocyanate compound and blocked.
  • This blocking group is stable at room temperature, but when heated to a heat treatment temperature (usually about 100 to about 200 ° C.), the blocking agent can be eliminated to regenerate the free isocyanate group.
  • Blocking agents that satisfy these requirements include alcohol compounds, alkylphenol compounds, phenol compounds, active methylene compounds, mercaptan compounds, acid amide compounds, acid imide compounds, imidazole compounds, urea compounds, Examples include oxime compounds and amine compounds, and these blocking agents can be used alone or in combination of two or more.
  • the self-emulsifying block polyisocyanate is obtained by binding an active hydrogen group-containing compound having an anionic, nonionic or cationic group to a block polyisocyanate skeleton.
  • the active hydrogen group-containing compound having an anionic group is not particularly limited, and examples thereof include a compound having one anionic group and having two or more active hydrogen groups.
  • examples of the anionic group include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • the active hydrogen group-containing compound having a nonionic group is not particularly limited.
  • a polyalkylene ether polyol containing a normal alkoxy group as a nonionic group is used.
  • the active hydrogen group-containing compound having a cationic group is not particularly limited, but an aliphatic compound having an active hydrogen-containing group such as a hydroxyl group or a primary amino group and a tertiary amino group, A polyhydroxy compound having a tertiary amino group and containing two or more active hydrogens reactive with an isocyanate group is preferred.
  • the cationic group can be easily dispersed in water in the form of a salt by being neutralized with a compound having an anionic group.
  • the anionic group include a carboxyl group, a sulfonic acid group, and a phosphoric acid group.
  • the introduced tertiary amino group can be quaternized with dimethyl sulfate, diethyl sulfate or the like.
  • Block polyisocyanate Forced emulsification type block polyisocyanate is known as block polyisocyanate.
  • the water-dispersible block polyisocyanate may contain 20% by weight of a solvent other than water in both the self-emulsifying type and the forced emulsifying type.
  • a solvent is not specifically limited, For example, ethylene glycol monomethyl ether, diethylene glycol monomethyl ether, ethylene glycol, diethylene glycol, triethylene glycol etc. can be mentioned. These solvents may be used alone or in combination of two or more.
  • the water-soluble polymer may be any of cationic, anionic, amphoteric or nonionic.
  • the cationic polymer is a polymer having a primary amino group, a secondary amino group, a tertiary amino group, a quaternary ammonium base, pyridinium, imidazolium, and quaternized pyrrolidone.
  • Water-soluble cationic polymers such as starch, cationic polyacrylamide, polyvinylamine, polydiallyldimethylammonium chloride, polyamidoamine epichlorohydrin, polyethyleneimine, chitosan and the like can be mentioned.
  • anionic polymer examples include polymers having an anionic group such as a carboxyl group, a sulfone group, and a phosphoric acid group.
  • an anionic group such as a carboxyl group, a sulfone group, and a phosphoric acid group.
  • carboxymethyl cellulose polyacrylic acid, anionic polyacrylamide, urea phosphorylated starch, succinic acid-modified starch, Examples thereof include sodium polystyrene sulfonate.
  • amphoteric polymers include amphoteric water-soluble polymers in which both anionic monomer units and cationic monomer units are contained in the molecular chain skeleton. Examples thereof include diallylamine hydrochloride / maleic acid copolymer and amphoteric polyacrylamide.
  • nonionic polymers examples include polyethylene glycol, hydroxypropylmethylcellulose, polyvinyl alcohol, and the like.
  • thermoplastic resin examples include styrene resins, acrylic resins, aromatic polycarbonate resins, aliphatic polycarbonate resins, aromatic polyester resins, aliphatic polyester resins, and aliphatic polyolefin resins. And cyclic olefin resins, polyamide resins, polyphenylene ether resins, thermoplastic polyimide resins, polyacetal resins, polysulfone resins, amorphous fluorine resins, and the like.
  • the number average molecular weight of these thermoplastic resins is generally 1000 or more, preferably 5000 or more and 5 million or less, and more preferably 10,000 or more and 1 million or less.
  • thermoplastic resins may be used alone or in combination of two or more.
  • the refractive index of the resin can be adjusted by the content ratio, which is preferable. For example, when polymethyl methacrylate (refractive index: about 1.49) and acrylonitrile styrene (acrylonitrile content: about 21%, refractive index: about 1.57) are contained at 50:50, a resin having a refractive index of about 1.53 can be obtained. .
  • thermosetting resin that can be added to the slurry is not particularly limited.
  • specific examples include epoxy resins, thermosetting modified polyphenylene ether resins, thermosetting polyimide resins, urea resins, Acrylic resin, silicon resin, benzoxazine resin, phenol resin, unsaturated polyester resin, bismaleimide triazine resin, alkyd resin, furan resin, melamine resin, polyurethane resin, aniline resin, and other industrially supplied resins and these Examples thereof include resins obtained by mixing two or more resins.
  • epoxy resins, acrylic resins, unsaturated polyester resins, vinyl ester resins, thermosetting polyimide resins, and the like are suitable for use as optical materials because they have transparency.
  • thermosetting resins or photocurable resins examples include an epoxy resin containing a latent photocationic polymerization initiator. These thermosetting resins or photocurable resins may be contained alone or in combination of two or more.
  • thermosetting resin and the photocurable resin mean a relatively low molecular weight substance that is liquid, semi-solid or solid at room temperature and exhibits fluidity at room temperature or under heating. These can be an insoluble and infusible resin formed by forming a network-like three-dimensional structure while increasing the molecular weight by causing a curing reaction or a crosslinking reaction by the action of a curing agent, a catalyst, heat or light.
  • the resin cured product means a resin obtained by curing the thermosetting resin or the photocurable resin.
  • the curing agent and curing catalyst that can be added to the slurry are not particularly limited as long as they can be used for curing a thermosetting resin or a photocurable resin.
  • Specific examples of the curing agent include polyfunctional amines, polyamides, acid anhydrides, and phenol resins.
  • Specific examples of the curing catalyst include imidazole. These may be used alone or as a mixture of two or more in a slurry. It may be contained.
  • thermoplastic resin, thermosetting resin, and photocurable resin that can be added to the above slurry are often hydrophobic, and even when added to the papermaking slurry, it is difficult to uniformly disperse in the slurry. Therefore, the emulsion form is preferred.
  • An emulsion is fine polymer particles having a particle size of about 0.001 to 10 ⁇ m, and can be obtained by stirring a hydrophobic compound and an emulsifier in water.
  • thermosetting resin and a photocurable resin when a hardening
  • thermoplastic resins thermosetting resins, and photocurable resins that can be added to the slurry
  • well-known general anionic surfactants, nonionic surfactants, cationic surfactants, amphoteric Surfactants, polymer surfactants, reactive surfactants, and the like may be used.
  • the emulsion of thermoplastic resin, thermosetting resin, and photocurable resin that can be added to the slurry should have a large particle size in consideration of yield and dehydration properties. If it is too large, the uniformity of the sheet or optical properties will be better. Therefore, 0.001 to 10 ⁇ m, which is an appropriate size suitable for the purpose, is preferable.
  • the surface charge of the emulsion may be in any of a cationic, nonionic or anionic state, but in consideration of mixing the cellulose fine fiber slurry and the resin compound emulsion, the cationic is dispersion stability, Or it is advantageous in the yield.
  • a cellulose fine fiber slurry is mixed with a compound containing an additive prepared in advance and dispersed to obtain a papermaking slurry.
  • the cellulose fine fiber slurry is stirred.
  • there are methods such as adding various additives individually one by one.
  • the papermaking is performed depending on the order of addition.
  • the dispersion state of the slurry and the zeta potential may change.
  • the order and amount of addition are not particularly limited, and it is preferable to add them by a method that can obtain the desired dispersion state and sheet physical properties of the papermaking slurry.
  • the stirring device for uniformly mixing and dispersing the above additives examples include an agitator, a homomixer, a pipeline mixer, a disperser of a type that rotates a blade having a cutting function such as a blender, a high-pressure homogenizer, and the like.
  • the dispersion average diameter of the slurry is preferably 1 ⁇ m or more and 300 ⁇ m or less.
  • an emulsion additive such as a water-dispersible block polyisocyanate is applied with an excessive shear stress, and the emulsion structure may be broken. Therefore, depending on the slurry composition, use of a high-pressure homogenizer, a grinder-type refiner, a stone mill-type milling device, or the like may not be preferable.
  • This papermaking process basically uses any device that uses a filter or filter cloth (also called a wire in the technical field of papermaking) that dehydrates water from the papermaking slurry and retains the fine cellulose fibers. May be used.
  • a filter or filter cloth also called a wire in the technical field of papermaking
  • the paper machine if a device such as an inclined wire type paper machine, a long net type paper machine, or a circular net type paper machine is used, a sheet-like fiber sheet with few defects can be obtained. Whether the paper machine is a continuous type or a batch type, it may be properly used according to the purpose. In order to improve film quality uniformity, use one or more machines (for example, an inclined wire type paper machine is used for the base layer paper and a round net type paper machine is used for the upper layer paper machine). It is also effective in some cases.
  • an inclined wire type paper machine is used for the base layer paper and a round net type paper machine is used for the upper layer paper machine. It is also effective in some cases.
  • the papermaking multistage for example, performs a papermaking in basis weight of 5 g / m @ 2 in the first stage, where on paper obtained wet performed papermaking 5 g / m 2 in the second stage, a total of 10 g / m 2
  • This is a technique for obtaining a fabric sheet with a basis weight.
  • the upper layer and the lower layer are formed from the same dispersion, it becomes a single-layer fiber sheet, but in the first stage as the lower layer, for example, a fine wet paper with fibrillated fibers
  • the size of the wire or filter cloth is important because soft agglomerates such as cellulose fine fibers dispersed in the papermaking slurry are filtered.
  • Any wire or filter cloth can be used.
  • the water permeation amount of the wire or filter cloth at 25 ° C. under atmospheric pressure is preferably 0.005 ml / (cm 2 ⁇ sec) or more, more preferably 0.01 ml / (cm 2 ⁇ sec) or more. Is preferable from the viewpoint of productivity.
  • the yield ratio is lower than 70% by weight, not only the productivity is remarkably reduced, but also the water-insoluble components such as cellulose fine fibers are clogged in the wire and filter cloth to be used. The peelability of the sheet is remarkably deteriorated.
  • the amount of water permeation through the wire or filter cloth under atmospheric pressure is evaluated as follows.
  • a batch type paper machine for example, an automatic square sheet machine manufactured by Kumagai Riki Kogyo Co., Ltd.
  • a metal mesh of 80 to 120 mesh (having almost no drainage resistance) and a wire or a filter cloth are installed thereon.
  • a sufficient amount (y (ml)) of water is poured into a paper machine having a paper area of x (cm 2 ), and the drainage time is measured under atmospheric pressure.
  • the amount of water permeation when the drainage time is z (sec) is defined as y / (x ⁇ z) (ml / (cm 2 ⁇ s)).
  • wires or filter cloths that can be used in this embodiment include TETEXMONODW07-8435-SK010 (PET) manufactured by SEFAR (Switzerland), NT20 (PET / nylon blend) manufactured by Shikishima Canvas, and plastic wire manufactured by Nippon Filcon. Examples thereof include, but are not limited to, LTT-9FE and multilayered wires described in JP2011-42903A.
  • the solid content ratio of the wet paper can be controlled by the suction pressure (wet suction or dry suction) of the papermaking and pressing conditions, preferably the solid content concentration is 6 wt% or more and 30 wt% or less, more preferably the solid content concentration is 8 wt%. Adjust to the range of 25 wt% or less. If the solid content of the wet paper is lower than 6% by weight, the strength of the wet paper is low, so that it is not self-supporting, and problems in the process are likely to occur. In addition, if the solid content of the wet paper is dehydrated to a concentration exceeding 30% by weight, uniformity such as sheet thickness is lost.
  • the laminated structure can produce a multilayered sheet composed of at least two or more layers by setting the organic polymer sheet on a wire or filter cloth and making paper.
  • a support having a multilayer structure having two or more layers may be used.
  • the organic polymer sheet may be hydrophilized on the sheet surface such as corona discharge treatment or plasma treatment before paper making in order to improve paper making properties and adhesion to the cellulose fine fiber sheet.
  • paper For the purpose of making the fiber sheet porous, paper may be made on a filter cloth, and water in the obtained wet paper may be substituted with an organic solvent in a substitution step with an organic solvent and dried.
  • the details of this method follow the pamphlet of International Publication No. 2006/004012 by the present inventors.
  • an organic solvent having a certain degree of solubility in water is used for drying after substitution with an organic solvent or the like, a high porosity nonwoven fabric can be obtained by one-stage substitution.
  • a solvent include, but are not limited to, methyl ethyl ketone, isopropyl alcohol, tert-butyl alcohol, and isobutyl alcohol.
  • an organic solvent that does not dissolve in water such as cyclohexane or toluene
  • first substitute with an organic solvent that dissolves in water such as acetone, methyl ethyl ketone, isopropyl alcohol, or isobutyl alcohol, and then, for example, cyclohexane or toluene.
  • a two-stage substitution method of substituting with a water-insoluble solvent is also effective.
  • the solvent used in this case may be a mixed solvent with water or a mixed solvent of organic solvents.
  • a sheet having a porosity of 60% to 90% can be obtained by subjecting the sheet after replacement with an organic solvent to a drying step described later.
  • the wet paper obtained in the paper making process described above becomes a fiber sheet by evaporating a part of water in a drying process by heating.
  • a constant length drying type dryer such as a drum dryer or a pin tenter is preferred.
  • the drying temperature may be appropriately selected according to the conditions, but a uniform fiber sheet can be produced if the drying temperature is preferably 45 ° C. or higher and 180 ° C. or lower, more preferably 60 ° C. or higher and 150 ° C. or lower.
  • the drying temperature is less than 45 ° C., the evaporation rate of water is slow in many cases, and it is not preferable because productivity cannot be secured.
  • a drying temperature higher than 180 ° C. is not preferable because the drying speed in the sheet becomes uneven, the sheet is wrinkled, and the energy efficiency is poor.
  • the multistage drying of low temperature drying of 100 degrees C or less and subsequent high temperature drying of 100 degrees C or more is effective in obtaining a highly uniform fiber sheet.
  • the papermaking filter cloth or plastic wire to be used is an endless specification, and the entire process is performed with one wire, or the endless filter or endless felt cloth is used in the next process.
  • Either pick-up and transfer or transfer and transfer, or all or part of the continuous film-forming process may be a roll-to-roll process using a filter cloth.
  • the manufacturing method of the fiber sheet of this embodiment is not limited to this.
  • the fiber sheet obtained by the drying process described above may be provided with a smoothing process in which a smoothing process is performed by a calendar device.
  • a smoothing process in which a smoothing process is performed by a calendar device.
  • the surface of the fiber sheet can be smoothed and thinned.
  • the air permeability and strength can be adjusted accordingly.
  • a fiber sheet having a film thickness of 20 ⁇ m or less lower limit is about 2 ⁇ m
  • a super calendar device having a structure in which these are installed in a multistage manner may be used.
  • a fiber sheet having various physical property balances can be obtained by selecting the materials (material hardness) and linear pressure on both sides of the roll during the calendar process.
  • the heat curing step is preferably a constant length drying type heat treatment machine of a type that heats with a constant width such as a drum dryer or pin tenter from the viewpoint of uniform heat treatment and suppression of sheet shrinkage due to heating.
  • the blocked polyisocyanate is stable at normal temperature, but the heat treatment at a temperature higher than the dissociation temperature of the blocking agent dissociates the blocking group and regenerates the isocyanate group. Bonds can be formed.
  • the heating temperature varies depending on the blocking agent used, the heating is preferably performed in the range of 80 ° C. or higher and 220 ° C. or lower, more preferably 100 ° C. or higher and 180 ° C. or lower.
  • the temperature is lower than the dissociation temperature of the blocking group, the isocyanate group is not regenerated, so that crosslinking does not occur.
  • heating at 220 ° C. or higher is not preferable because the cellulose fine fibers and the fiber sheet cross-linking agent are thermally deteriorated and may be colored.
  • the heating time is preferably 15 seconds to 10 minutes, more preferably 30 seconds to 2 minutes.
  • the heating temperature is sufficiently higher than the dissociation temperature of the blocking group, the heating time can be shortened.
  • the heating temperature is 130 ° C. or higher, if the heating is performed for 2 minutes or more, the moisture in the sheet is extremely reduced, so that the sheet immediately after the heating becomes fragile, and there are cases where handling becomes difficult. .
  • thermosetting resins and photocurable resins examples include thermosetting resins and photocurable resins, resins obtained by thermosetting or photocuring these resins, and thermoplastic resins.
  • thermosetting resin examples include epoxy resins, acrylic resins, oxetane resins, unsaturated polyester resins, alkyd resins, novolac resins, resol resins, urea resins, and melamine resins. Examples thereof include resins and polyimide resins, and these can be used alone or in combination of two or more.
  • Thermosetting resins have excellent refractive index, improved curability, improved adhesion, improved flexibility of cured molded products, and improved handling properties due to lower viscosity of thermosetting resin compositions.
  • a thermosetting resin composition having the above it is preferable to add a thermosetting compound suitable for each purpose.
  • a higher adhesion improvement effect can be expected by using an epoxy resin, oxetane resin, novolac resin, or polyimide resin that can be chemically bonded to the hydroxyl group on the fiber sheet surface. Therefore, it is preferable. In using these, it may be individual or a mixture of two or more.
  • the addition amount of the thermosetting compound is preferably 10 to 1,000 parts by mass, more preferably 50 to 500 parts by mass with respect to 100 parts by mass of the fiber sheet.
  • the addition amount is 10 parts by mass or more, it is effective for exhibiting thermal stability (reduction in the coefficient of linear thermal expansion, elasticity retention at high temperature).
  • thermosetting is performed. It is possible to maintain high permeability and high heat resistance of the conductive resin assembly and the cured molded product.
  • thermosetting resin examples include an epoxy resin containing an aromatic group having thermal stability at high temperatures.
  • examples of the epoxy resin include bifunctional or higher glycidyl ether type epoxy resins.
  • examples of the glycidyl ether type epoxy resin include bisphenol A, bisphenol F, bisphenol AD, bisphenol S, tetrabromobisphenol A, phenol novolac, cresol novolac, hydroquinone, resorcinol, 4,4′-dihydroxy-3,3 ′, 5.
  • the obtained glycidyl ether type epoxy resin is mentioned.
  • the epoxy compound include an epoxy resin having a dicyclopentadiene skeleton, an epoxy resin having a biphenylaralkyl skeleton, and triglycidyl isocyanurate.
  • Aliphatic epoxy resins and alicyclic epoxy resins can also be used as long as they do not cause a significant decrease in Tg.
  • a liquid aromatic diamine curing agent may be added to the thermosetting resin as a curing agent.
  • the liquid state means a liquid at 25 ° C. and 0.1 MPa.
  • the aromatic diamine curing agent means a compound having two amine nitrogen atoms directly bonded to an aromatic ring in the molecule and having a plurality of active hydrogens.
  • active hydrogen refers to a hydrogen atom bonded to an aminic nitrogen atom. Since the liquid aromatic diamine is liquid, the impregnation property to the reinforcing fiber can be secured, and since it is an aromatic diamine, a cured product having a high Tg can be obtained.
  • liquid aromatic diamine curing agent examples include 4,4′-methylenebis (2-ethylaniline), 4,4′-methylenebis (2-isopropylaniline), 4,4′-methylenebis (N-methylaniline), 4,4'-methylenebis (N-ethylaniline), 4,4'-methylenebis (N-sec-butylaniline), N, N'-dimethyl-p-phenylenediamine, N, N'-diethyl-p-phenylene Diamine, N, N'-di-sec-butyl-p-phenylenediamine, 2,4-diethyl-1,3-phenylenediamine, 4,6-diethyl-1,3-phenylenediamine, 2,4-diethyl- Examples thereof include 6-methyl-1,3-phenylenediamine and 4,6-diethyl-2-methyl-1,3-phenylenediamine. These liquid aromatic diamine curing agents may be used alone or in combination.
  • a latent curing agent may be added as a curing agent to the thermosetting resin.
  • a latent curing agent is a compound that is insoluble in an epoxy resin at room temperature, solubilized by heating, and functions as a curing accelerator. It is an imidazole compound that is solid at room temperature, and a solid-dispersed amine adduct system latency.
  • the curing accelerator include a reaction product of an amine compound and an epoxy compound (amine-epoxy adduct system), a reaction product of an amine compound and an isocyanate compound or a urea compound (urea type adduct system), and the like.
  • Examples of the epoxy compound used as one of the raw materials for producing the solid dispersion type amine adduct-based latent curing accelerator include polyphenols such as bisphenol A, bisphenol F, catechol, and resorcinol, glycerin, Polyglycidyl ether obtained by reacting a polyhydric alcohol such as polyethylene glycol with epichlorohydrin; reacting a hydroxycarboxylic acid such as p-hydroxybenzoic acid or ⁇ -hydroxynaphthoic acid with epichlorohydrin Glycidyl ether ester obtained by reaction of polycarboxylic acid such as phthalic acid and terephthalic acid with epichlorohydrin; epiglycidyl ester such as 4,4'-diaminodiphenylmethane and m-aminophenol A glycidylamine compound obtained by reacting with rhohydrin; a polyfunctional epoxy compound such as an phenol A, bisphenol F, catechol, and
  • the amine compound used as another raw material for producing the solid dispersion-type amine adduct-based latent curing accelerator has at least one active hydrogen capable of undergoing addition reaction with an epoxy group in the molecule, and a primary amino group, What is necessary is just to have at least one functional group selected from the secondary amino group and the tertiary amino group in the molecule. Examples of such amine compounds are shown below, but are not limited thereto.
  • aliphatic amines such as diethylenetriamine, triethylenetetramine, n-propylamine, 2-hydroxyethylaminopropylamine, cyclohexylamine, 4,4'-diamino-dicyclohexylmethane; 4,4'-diaminodiphenylmethane , Aromatic amine compounds such as 2-methylaniline; heterocyclic rings containing nitrogen atoms such as 2-ethyl-4-methylimidazole, 2-ethyl-4-methylimidazoline, 2,4-dimethylimidazoline, piperidine, piperazine Compound; and the like.
  • a photoacid generator may be added to the thermosetting resin.
  • the photoacid generator one that generates an acid capable of cationic polymerization upon irradiation with ultraviolet rays is used.
  • examples of such a photoacid generator include anions such as SbF 6 ⁇ , PF 6 ⁇ , BF 4 ⁇ , AsF 6 ⁇ , (C 6 F 5 ) 4 ⁇ , and PF 4 (CF 2 CF 3 ) 2 —.
  • Examples include onium salts (diazonium salts, sulfonium salts, iodonium salts, selenium salts, pyridinium salts, ferrocenium salts, phosphonium salts, and the like) composed of a component and a cationic component. These may be used alone or in combination of two or more. Specifically, aromatic sulfonium salts, aromatic iodonium salts, aromatic phosphonium salts, aromatic sulfoxonium salts, and the like can be used. Among these, from the viewpoint of photocurability and transparency, a photoacid generator containing hexafluorophosphate or hexafluoroantimonate as an anionic component is preferable.
  • the content of the photoacid generator is preferably in the range of 0.5 to 2.0 parts by mass with respect to 100 parts by mass of the epoxy compound. More preferably, it is in the range of 0.5 to 1.5 parts by mass. If the content of the photoacid generator is too small, the curability may be deteriorated or the heat resistance may be lowered. If the content is too large, the curability is improved while transparency is impaired. It becomes.
  • thermosetting resin in addition to the above components, other additives can be appropriately blended in the thermosetting resin as necessary.
  • a photosensitizer such as anthracene, an acid proliferating agent, or the like can be blended as necessary.
  • coupling agents such as a silane type or a titanium type.
  • an antioxidant, an antifoaming agent, etc. can be mix
  • thermosetting resin examples include polyimide resins from the viewpoint of mechanical properties such as electrical insulation reliability and bending resistance, heat resistance, and chemical resistance.
  • Polyimide resin means what becomes a polyimide by imidation, and does not mean only polyamic acid, but also includes a part of polyamic acid imidized.
  • the polyimide precursor constituting the polyimide can be obtained, for example, by reacting tetracarboxylic dianhydride and diamine.
  • tetracarboxylic dianhydride A conventionally well-known tetracarboxylic dianhydride can be used.
  • tetracarboxylic dianhydride aromatic tetracarboxylic acid or aliphatic tetracarboxylic dianhydride can be applied.
  • limiting in the diamine to be used A conventionally well-known diamine can be used.
  • tetracarboxylic dianhydrides examples include biphenyl-3,3 ′, 4,4′-tetracarboxylic dianhydride (hereinafter abbreviated as rBPDA), benzophenone-3,3 ′, 4,4′-tetra.
  • rBPDA 4,4′-tetracarboxylic dianhydride
  • Carboxylic dianhydride (hereinafter abbreviated as rBTDA), oxydiphthalic dianhydride (hereinafter abbreviated as “ODPA”), diphenylsulfone-3,3 ′, 4,4′-tetracarboxylic dianhydride , Ethylene glycol bis (trimellitic acid monoester acid anhydride) (hereinafter abbreviated as rTMEG), p-phenylene bis (trimellitic acid monoester acid anhydride), p-biphenylene bis (trimellitic acid monoester acid) Anhydride), m-phenylenebis (tomellitic acid monoester acid anhydride), o-phenylenebis (trimellitic acid monoester acid anhydride), pentanediol vinyl (Trimellitic acid monoester anhydride) (hereinafter abbreviated as “5-BTA”), decanediol bis (trimellitic acid monoester
  • tetracarboxylic dianhydrides described above may be used alone or in combination of two or more. From the viewpoint of developability of the polyimide precursor, BPDA, ODPA, BTDA, TMEG, 5-BTA, and decanediol bis (trimellitic acid monoester acid anhydride) are more preferable.
  • diamine examples include 1,3-bis (4-aminophenoxy) alkane, 1,4-bis (4-aminophenoxy) alkane, 1,5-bis (4-aminophenoxy) alkane, 1,4-diaminobenzene, 1,3-diaminobenzene, 2,4-diaminotoluene, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 3,3'-dimethyl-4,4'- Diaminobiphenyl, 2,2′-dimethyl-4,4′-diaminobiphenyl, 2,2′-bis (trifluoromethyl) -4,4′-diaminobiphenyl, 3,7-diamino-dimethyldibenzothiophene-5, 5-dioxide, 4,4′-diaminobenzophenone, 3,3′-diamin
  • APB, BAPP, and TMAB are preferable from the viewpoint of lowering the glass transition point (Tg) of the polyimide precursor and improving developability.
  • These diamines can also be used as diamine components used for the synthesis of the polyimide structure part of the polyimide precursor described later.
  • the main chain terminal of the polyimide precursor is not particularly limited as long as it does not affect the performance.
  • a terminal structure derived from an acid dianhydride or a diamine used for producing a polyimide precursor may be used, or a structure in which the terminal is sealed with another acid anhydride or an amine compound may be used.
  • Photocuring resin examples of the photocurable resin that can be impregnated into the fiber sheet include compounds having one or more (meth) acryloyl groups in one molecule.
  • the photo-curing resin has excellent properties for improving the refractive index, improving the curability, improving the adhesion, improving the flexibility of the cured molded product, and improving the handling property by reducing the viscosity of the photosensitive resin composition.
  • a compound having one or more (meth) acryloyl groups in one molecule suitable for each purpose. In using these, it may be individual or a mixture of two or more.
  • the amount of the compound having one or more (meth) acryloyl groups in one molecule is preferably 10 to 1,000 parts by mass, and 50 to 500 parts by mass with respect to 100 parts by mass of the fiber sheet. Is more preferable.
  • the addition amount is 10 parts by mass or more, it is effective for exhibiting thermal stability (reduction of coefficient of linear thermal expansion, elasticity retention at high temperature), and when the addition amount is 1,000 parts by mass or less, it is photosensitive. It is possible to maintain high permeability and high heat resistance of the resin assembly and the cured molded product.
  • Examples of the photocurable resin include a (meth) acrylate compound containing an aromatic group having thermal stability at high temperatures.
  • Examples of (meth) acrylate compounds include phenoxyethyl acrylate, paraphenylphenoxyethyl acrylate (Aronix TO-1463 manufactured by Toagosei Co., Ltd.), paraphenylphenyl acrylate (Aronix TO-2344 manufactured by Toagosei Co., Ltd.), phenylglycidyl ether Acrylate (hereinafter also referred to as “PGEA”), benzyl (meth) acrylate, phenoxydiethylene glycol (meth) acrylate, phenol (meth) acrylate modified with 3 to 15 mol of ethylene oxide, 1 to 15 mol of ethylene oxide Modified cresol (meth) acrylate, modified with nonylphenol (meth) acrylate, 1-15 mol propylene oxide, 1-20 mol ethylene oxide
  • the photocurable resin preferably contains a photopolymerization initiator.
  • Examples of the photopolymerization initiator (C) include the following photopolymerization initiators (1) to (10): (1) Benzophenone derivatives: for example, benzophenone, methyl o-benzoylbenzoate, 4-benzoyl-4′-methyldiphenyl ketone, dibenzyl ketone, fluorenone, (2) Acetophenone derivatives: For example, 2,2′-diethoxyacetophenone, 2-hydroxy-2-methylpropiophenone, 2,2-dimethoxy-1,2-diphenylethane-1-one (IRGACURE651 manufactured by BASF) 1-hydroxycyclohexyl phenyl ketone (IRGACURE 184 manufactured by BASF), 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one (IRGACURE 907 manufactured by BASF), 2-hydroxy-1 - ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) -benzyl] -phenyl ⁇
  • ⁇ -hydroxy ketone compounds for example, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1- [4- (2-hydroxyethoxy) phenyl] -2-hydroxy-2-methyl -1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methylpropionyl) -benzyl] phenyl ⁇ -2-methylpropane, (8) ⁇ -aminoalkylphenone compounds: for example, 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butanone-1 (IRGACURE369 manufactured by BASF), 2-dimethylamino-2- ( 4-methylbenzyl) -1- (4-morpholin-4-yl-phenyl) butan-1-one (IRGACURE 379 manufactured by BASF), (9) Phosphine oxide compounds: For example, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide
  • the photopolymerization initiators (1) to (10) may be used alone or in combination of two or more.
  • the content of the photopolymerization initiator is preferably 0.01% by mass or more, more preferably 0.1% by mass from the viewpoint of obtaining sufficient sensitivity based on the mass of all components other than the solvent in the photosensitive resin composition. On the other hand, from the viewpoint of sufficiently curing the bottom portion of the photosensitive resin layer, it is preferably 15% by mass or less, and more preferably 10% by mass or less.
  • a sensitizer for improving photosensitivity can be added to the photocurable resin.
  • sensitizers include Michler's ketone, 4,4′-bis (diethylamino) benzophenone, 2,5-bis (4′-diethylaminobenzylidene) cyclopentanone, and 2,6-bis (4′-diethylamino).
  • a polymerization inhibitor can be added to the photosensitive resin composition for the purpose of improving the viscosity during storage and the stability of photosensitivity.
  • examples of such polymerization inhibitors include hydroquinone, N-nitrosodiphenylamine, p-tert-butylcatechol, phenothiazine, N-phenylnaphthylamine, ethylenediaminetetraacetic acid, 1,2-cyclohexanediaminetetraacetic acid, glycol etherdiaminetetraacetic acid.
  • 2,6-di-tert-butyl-p-methylphenol 5-nitroso-8-hydroxyquinoline, 1-nitroso-2-naphthol, 2-nitroso-1-naphthol, 2-nitroso-5- (N- Ethyl-N-sulfopropylamino) phenol, N-nitroso-N-phenylhydroxyamine ammonium salt, N-nitroso-N-phenylhydroxylamine ammonium salt, N-nitroso-N- (1-naphthyl) hydroxylamine ammonium salt ,Screw Or the like can be used 4-hydroxy-3,5-di-tert- butyl) phenyl methane.
  • the photosensitive resin composition includes various kinds of photosensitive resin compositions as necessary as long as they do not inhibit various characteristics of the photosensitive resin composition, including an ultraviolet absorber and a coating film smoothness imparting agent. Additives can be blended as appropriate.
  • thermoplastic resin As the resin that can be impregnated into the fiber sheet, a thermosetting resin or a photocurable resin can also be used. Moreover, it is preferable to use a thermoplastic resin from the viewpoint that it can easily cope with various molded shapes.
  • the thermoplastic resin used is not particularly limited.
  • polyolefin polyethylene, polypropylene, etc.
  • polyamide nylon 6, 6, etc.
  • polyester polyphenylene ether
  • polyacetal polycarbonate Polyphenylene sulfide, polyimide, polyether imide, polyether sulfone, polyketone, polyether ether ketone, polystyrene, combinations thereof, and the like can be used.
  • solvent In the resin impregnation of the fiber sheet, the viscosity can be adjusted by adding a solvent as necessary.
  • Suitable solvents include N, N-dimethylformamide, N-methyl-2-pyrrolidone, N-ethyl-2-pyrrolidone, tetrahydrofuran, N, N-dimethylacetamide, dimethyl sulfoxide, hexamethylphosphoramide, pyridine, cyclohexane Pentanone, ⁇ -butyrolactone, ⁇ -acetyl- ⁇ -butyrolactone, tetramethylurea, 1,3-dimethyl-2-imidazolinone, N-cyclohexyl-2-pyrrolidone, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate, methyl ethyl ketone Methyl isobutyl ketone, anisole, ethyl acetate, ethyl lactate
  • N-methyl-2-pyrrolidone, ⁇ -butyrolactone, and propylene glycol monomethyl ether acetate are particularly preferable.
  • These solvents can be appropriately added at the time of resin impregnation into the fiber sheet depending on the coating film thickness and viscosity.
  • the resin composite film of this embodiment further contains an inorganic filler.
  • the inorganic filler can be included in a resin impregnated in the fiber sheet. From the viewpoint of reducing the linear thermal expansion coefficient in the thickness direction of the resin composite film and from the viewpoint of reducing the difference in linear thermal expansion coefficient between the plane (XY direction) and the thickness direction, an inorganic filler may be added.
  • the resin composite film contains an inorganic filler, the thermal stability (linear thermal expansion coefficient and elastic retention at high temperature) of the resin can be improved.
  • those having excellent heat resistance include alumina, magnesia, titania, zirconia, silica (quartz, fumed silica, precipitated silica, silicic anhydride, fused silica, crystalline silica, ultrafine powder Standard silica, etc.), aluminum hydroxide, etc .; those with excellent thermal conductivity, boron nitride, aluminum nitride, alumina oxide, titanium oxide, magnesium oxide, zinc oxide, silicon oxide, etc .; those with excellent conductivity, metal A metal filler and / or a metal-coated filler using a simple substance or an alloy (for example, iron, copper, magnesium, aluminum, gold, silver, platinum, zinc, manganese, stainless steel, etc.); Clay, kaolin, talc, zeolite, wollastonite, smectite and other minerals and titanic acid Lithium, magnesium sulfate, sepiolite, zonolite,
  • silica fine particles such as powdered silica and colloidal silica can be used without any particular limitation.
  • powdered silica fine particles include Aerosil 50 and 200 manufactured by Nippon Aerosil Co., Ltd., Sildex H31, H32, H51, H52, H121, and H122 manufactured by Asahi Glass Co., Ltd., and E220A manufactured by Nippon Silica Industry Co., Ltd. , E220, SYLYSIA470 manufactured by Fuji Silysia Co., Ltd., SG flake manufactured by Nippon Sheet Glass Co., Ltd., and the like.
  • colloidal silica examples include methanol silica sol, IPA-ST, PGM-ST, NBA-ST, XBA-ST, DMAC-ST, ST-UP, ST-OUP, manufactured by Nissan Chemical Industries, Ltd. ST-20, ST-40, ST-C, ST-N, ST-O, ST-50, ST-OL and the like can be mentioned.
  • silica fine particles may be used.
  • the silica fine particles may be surface-treated with a reactive silane coupling agent having a hydrophobic group or those modified with a compound having a (meth) acryloyl group.
  • a reactive silane coupling agent having a hydrophobic group or those modified with a compound having a (meth) acryloyl group.
  • silica powder modified with a compound having a (meth) acryloyl group as commercially available colloidal silica modified with a compound having a (meth) acryloyl group, such as Aerosil RM50, R7200, R711 manufactured by Nippon Aerosil Co., Ltd.
  • a colloidal silica surface-treated with a reactive silane coupling agent having a hydrophobic group such as MIBK-SD, MEK-SD manufactured by Nissan Chemical Industries, Ltd., and MIBK-ST manufactured by Nissan Chemical Industries, Ltd. MEK-ST etc. are mentioned.
  • the shape of the silica fine particles is not particularly limited, and those having a spherical shape, a hollow shape, a porous shape, a rod shape, a plate shape, a fiber shape, or an indefinite shape can be used.
  • a commercially available hollow silica fine particle Sirinax (registered trademark) manufactured by Nittetsu Mining Co., Ltd. can be used.
  • the primary particle diameter of the inorganic filler is preferably in the range of 5 to 2,000 nm.
  • the inorganic filler in the dispersion has good dispersion, and when the diameter is within 2,000 nm, the strength of the cured product is good. More preferably, it is 10 nm to 1,000 nm.
  • the “particle diameter” is measured using a scanning electron microscope (SEM) or the like.
  • SEM scanning electron microscope
  • the inorganic filler is preferably blended at a ratio of 5 to 50% with respect to the area ratio in the scanning electron microscope (SEM) observation in the cross-sectional thickness direction of the resin composite film.
  • the inorganic filler is preferably 10 to 45% in order to achieve both a low linear expansion coefficient and a high strength of the cured product.
  • the area ratio of the inorganic filler to the entire cross section of the resin composite film can be calculated from image analysis of elastic modulus mapping described later.
  • the area ratio of the inorganic filler in the entire cross section of the resin composite film is preferably 5% to 50%, more preferably 10% to 45%.
  • the inorganic filler occupies 5% or more of the entire cross section of the resin composite film the linear thermal expansion coefficient in the thickness direction of the resin composite film is reduced, and the difference between the linear thermal expansion coefficients in the planar direction and the thickness direction is reduced. Therefore, warpage at high temperature is reduced. Since the inorganic filler occupies 45% or less of the entire cross section of the resin composite film, the resin to be impregnated maintains the strength of the composite film, and the bending stress becomes high, so that the handleability is excellent.
  • the resin composite film includes the inorganic filler described above
  • the cellulose fine fiber layer defined by the method described in the examples described later may be included in the resin composite film.
  • a cellulose fine fiber layer contains an inorganic filler, it is preferable that 20% or less of an inorganic filler is contained in a cellulose fine fiber layer, More preferably, it is 10% or less.
  • the inorganic filler When 20% or less of the inorganic filler is contained in the cellulose fine fiber layer, the inorganic filler functions as a reinforcing material in the cellulose fine fiber layer, and when the remaining inorganic filler is relatively unevenly distributed in the overcoat layer or the like, To provide a laminate that can achieve better compatibility between circuit embedding and thermal shock resistance, is superior in impact resistance and flexibility, and is less likely to break when mounted on an in-vehicle electronic component, smartphone, electronic paper, etc. Can do.
  • ⁇ Elastic modulus mapping> The fiber sheet contained in the resin composite film and the characteristics of the resin (and inorganic filler) (fiber diameter, content rate, porosity (void amount), etc.) are atomic force that is a kind of scanning probe microscope (SPM). Using a microscope (AFM), bring the tip of the cantilever tip into contact with the cross section of the resin composite film, measure the elastic modulus with a pressing force of 0.4 N / m as the spring constant, and create the resulting elastic modulus mapping It can be calculated from image analysis of elastic modulus mapping.
  • SPM scanning probe microscope
  • the elastic modulus sets the upper and lower limits of the distance between the probe at the tip of the cantilever of the AFM and the sample, and moves the fixed point up and down to determine the distance between the probe and the sample and the force acting on the cantilever (that is, From the amount of deflection read from the relationship with the amount of deflection of the cantilever and the spring constant of the cantilever, the modulus of elasticity of each point of the sample is obtained according to Hooke's law.
  • the elastic modulus measurement by the atomic force microscope represents the degree of deformation of the cross section of the resin composite film due to the pressing force
  • components having different elastic modulus fiber sheet, resin, inorganic filler, etc.
  • the average fiber diameter and maximum fiber diameter of the fibers constituting the fiber sheet, the thickness of the overcoat resin layer, the area ratio of each component, and the like can be calculated.
  • the area ratio of the fibers constituting the fiber sheet in the entire cross section of the resin composite film is preferably 5% or more and 60% or less, more preferably 5% or more and 55% or less. More preferably, it is 10% or more and 55% or less.
  • Cellulose microfibers occupy 5% or more of the entire cross-section of the resin composite film, making it easier for the cellulose microfibers to form a nanonetwork structure due to hydrogen bonding, and suppressing the thermal expansion that occurs at high temperatures of the resin composite film. Reduces film warpage and improves thermal stability. Since the cellulose fine fibers occupy 60% or less of the entire cross section of the resin composite film, the resin to be impregnated maintains the strength of the composite film, and the bending stress becomes high, so that the handleability is excellent.
  • ⁇ Porosity of fiber sheet in resin composite film From the ratio of the area of the fiber constituting the fiber sheet calculated from the image analysis of the elastic modulus mapping and the resin area included between the fibers constituting the fiber sheet calculated in the same manner, when the resin composite film was formed The porosity of the fiber sheet present inside the resin can be calculated.
  • the porosity of the fiber sheet existing inside the resin is preferably 35% or more and 95% or less, more preferably 35% or more and 80% or less, and most preferably 35% or more and 50% or less.
  • a porosity of 35% or more is preferable because the resin is easily impregnated.
  • a porosity of 95% or less is preferable from the viewpoint of improving the heat resistance of the resin composite film.
  • by reducing the porosity and increasing the fiber sheet content it prevents warping and peeling in electronic devices when used as an electronic material under severe conditions at 150 ° C or higher and in high humidity conditions. This can contribute to the improvement of the thermal shock resistance of the device.
  • the average fiber diameter of the fibers constituting the fiber sheet in the resin composite film calculated from the image analysis of elastic modulus mapping, is 0.01 ⁇ m or more and 2.0 ⁇ m or less.
  • the average fiber diameter of the fibers constituting the fiber sheet is preferably 0.02 ⁇ m to 1.5 ⁇ m, more preferably 0.02 ⁇ m to 1.0 ⁇ m.
  • the average fiber diameter of the fibers constituting the fiber sheet is calculated from the following equation (1) using the total area ⁇ Sf and the total circumference ⁇ Lf of the fiber components in the resin composite film calculated from the image analysis of the elastic modulus mapping.
  • the Average fiber diameter of fibers constituting the fiber sheet 4 ⁇ ⁇ Sf / ⁇ Lf (1)
  • the total area ⁇ Sf can also be a parameter indicating the filling rate of fine fibers per unit area.
  • the total circumference ⁇ Lf can also be a parameter indicating the degree of dispersion of fine fibers. It is preferable that the total area ⁇ Sf is equal to or greater than a certain value and the total circumference ⁇ Lf is equal to or greater than a certain value because the fine fibers are uniformly dispersed at a high density.
  • the maximum fiber diameter of the fibers constituting the fiber sheet is calculated as a particle diameter when the fine cellulose fiber diameter is regarded as a perfect circle from the image analysis of elastic modulus mapping. It is adopted as the maximum fiber diameter of the fibers constituting the.
  • the maximum fiber diameter of the fibers constituting the fiber sheet in the resin composite film calculated from the image analysis of elastic modulus mapping is 15 ⁇ m or less.
  • the maximum fiber diameter of the fibers constituting the fiber sheet is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less. It is preferable that the maximum fiber diameter is 15 ⁇ m or less because the thickness of the fiber sheet can be reduced and uniformity of the hole diameter and the like can be easily ensured when producing a thin resin composite film.
  • a method of calculating the maximum fiber diameter of the fibers constituting the fiber sheet from the image analysis of the elastic modulus mapping will be described in the example section.
  • the void ratio (void amount) in the entire cross section of the resin composite film is preferably 10% or less, more preferably 5% or less, still more preferably 3%, and most preferably 2%. It is as follows. When the porosity (void amount) occupies 10% or less of the entire cross section of the resin composite film, the strength of the resin film increases and the moisture resistance is also excellent.
  • the resin composite film of this embodiment has a resin layer (overcoat resin layer) having a certain thickness on the surface layer.
  • the overcoat resin layer is a resin layer formed on the surface layer of the resin composite film and refers to a portion not including the fiber sheet.
  • the overcoat resin layer may be formed only on one side of the resin composite film or on both sides.
  • the average thickness of the overcoat resin layer is determined from the viewpoints of moisture resistance, water resistance, acid resistance and alkali resistance to the fiber sheet, and the fiber layer is contained inside the overcoat resin layer, and the fiber layer is uniformly filled to obtain a linear thermal expansion coefficient. From the viewpoint of stabilization, it is 0.3 ⁇ m or more and 100 ⁇ m or less on at least one side of the resin composite film, preferably 0.3 ⁇ m or more and 30 ⁇ m or less, more preferably 0.3 ⁇ m or more and 20 ⁇ m or less, and even more preferably 0.3 ⁇ m or more and 10 ⁇ m or less. It is.
  • the thickness of the overcoat resin layer is 0.3 ⁇ m or more on at least one side of the resin composite film, the laminate property of the resin composite film on the inner circuit board as the insulating layer, the adhesion to the inner circuit, and the embedding property Can be secured.
  • the thickness of the overcoat resin layer is 100 ⁇ m or less, the heat resistance and thermal shock strength of the resin composite film can be ensured.
  • the average thickness of the overcoat resin layer is measured according to the method described in the Examples below.
  • the resin composite film which concerns on this embodiment is excellent in the adhesive strength (peel strength) with an electrode by controlling the surface roughness of the resin layer which is a surface layer.
  • the surface roughness of the resin composite film is preferably 0.1 ⁇ m or more and 2.0 ⁇ m, more preferably 0.2 ⁇ m or more and 1.5 ⁇ m or less, and further preferably 0.3 ⁇ m or more, from the viewpoint of adhesion to the electrode. 1.2 ⁇ m or less.
  • the average thickness of the overcoat resin layer of the resin composite film calculated by the elastic modulus mapping is 0.8 ⁇ m or more and 30 ⁇ m or less on at least one side of the resin composite film, and the surface roughness of the resin composite film is
  • the thickness is 0.1 ⁇ m or more and 2.0 ⁇ m or less
  • the resin composite film is excellent in moisture resistance, adhesive strength with an electrode, and heat resistance (low warpage during heating), especially when applied in an in-vehicle electronic device.
  • the reliability of the electronic device can be improved.
  • the means for controlling the surface roughness is not particularly limited as long as it is a method of roughening the resin, and examples thereof include plasma treatment, etching solution composed of acid / alkaline aqueous solution, treatment of desmear solution, and the like.
  • the surface roughness of the resin composite film is measured according to the method described in the following examples.
  • a laser microscope “OPTELICS S130” manufactured by Lasertec Corporation, a laser microscope “VK-X250 / 260” manufactured by Keyence Corporation, a laser microscope “OLS3000” manufactured by Olympus Corporation, and the like are used as an apparatus for measuring the surface roughness.
  • the resin composite film according to the present embodiment can quantify the fine surface roughness by the interface fractal dimension, in addition to defining the range of the surface roughness by the surface roughness value.
  • the interface structure between the insulating layer and the metal surface roughening layer that appears when the resin composite film is cleaved in the normal direction is fractal, the box size is 50 nm to 5 ⁇ m, and the pixel size is 1/100 or less.
  • the fractal dimension of the interface structure calculated by applying the set box count method is preferably 1.05 or more and 1.50 or less, more preferably 1.1 or more and 1.4 or less.
  • the surface of the metal layer itself has macro unevenness, that is, it has surface smoothness that does not affect the function as a wiring, and has a micro and complicated surface property.
  • the metal layer laminate of the present invention obtained by the method is useful for forming a wiring such as a multilayer substrate. Moreover, when forming a resin layer on the metal layer laminated body surface of this invention, it becomes the thing excellent in both adhesiveness.
  • the maximum cross-sectional height (Rt) on the surface of the resin composite film according to the present embodiment is the maximum height and the minimum regarding the unevenness on the surface of the resin composite film when the resin composite film is laminated and laminated on a wiring board having electrodes and the like. The difference in height.
  • the surface of the laminated resin composite film has undulations corresponding to the surface irregularities derived from the electrode wiring of the inner circuit board, and it tends to be difficult to obtain an insulating layer having a smooth surface.
  • the maximum cross-sectional height (Rt) is preferably less than 3 ⁇ m, and more preferably 2.5 ⁇ m or less.
  • the lower limit of the maximum cross-sectional height (Rt) is not particularly limited, but is usually 0.1 ⁇ m or more.
  • the maximum cross-sectional height (Rt) of the insulating layer surface can be measured using a non-contact type surface roughness meter for the exposed surface of the insulating layer after the carrier film is peeled off.
  • the linear thermal expansion coefficient CTE200 in the XY plane at 200 ° C. of the resin composite film is preferably 100 ppm / ° C. or less, more preferably from the viewpoint of preventing warpage or peeling in the electronic device when used as an electronic material. 80 ppm / ° C. or less, more preferably 60 ppm / ° C. or less.
  • the XY plane refers to a plane defined by two components in the length direction and the width direction of the resin composite film.
  • a linear thermal expansion coefficient is measured according to the method as described in the following Example.
  • the difference (absolute value) between the linear thermal expansion coefficient CTE150 in the XY plane at 150 ° C. and the linear thermal expansion coefficient CTE200 in the XY plane at 200 ° C. is
  • the reason for specifying the absolute value is to include the case where the CTE does not necessarily increase as the temperature rises.
  • the difference (absolute value) of the linear thermal expansion coefficient in the XY plane can be controlled within a range of 40 ppm / ° C. or less, and the number average fiber diameter of the fine cellulose fibers is 0.01 ⁇ m or more and 2.0 ⁇ m or less. And while maintaining the voids, the number of cellulose fine fibers per unit weight of the cellulose fine fiber sheet is very large, which increases the number of entanglement points between the fine fibers, and the hydrogen bonding network between the fine fibers. It becomes easy to form. When combined with a resin by this effect, the entanglement of fine fibers and the hydrogen bonding network between the fine fibers are retained in the resin, which contributes to stabilization of the linear thermal expansion coefficient at high temperatures.
  • the average thickness of the overcoat resin layer of the resin composite film calculated from the elastic modulus mapping is 0.3 ⁇ m or more and 30 ⁇ m or less on at least one side of the resin composite film, and the XY plane at 200 ° C.
  • the linear thermal expansion coefficient CTE200 is 100 ppm / ° C. or less, and the absolute value of the numerical difference between the linear thermal expansion coefficient CTE150 of the XY plane at 150 ° C. and the linear thermal expansion coefficient CTE200 of the XY plane at 200 ° C. is 40 or less.
  • the shape of the resin composite film is not particularly limited, and may be a plate shape, a non-uniform thickness (having steps or waves), a curved shape, a hole shape, or the like.
  • the average thickness of the resin composite film is preferably 5 ⁇ m or more and 1500 ⁇ m or less, more preferably 6 ⁇ m or more and 1000 ⁇ m or less, and further preferably 7 ⁇ m or more and 500 ⁇ m or less.
  • the moisture absorption rate of the resin composite film prevents warping and peeling in the electronic device when used as an electronic material, maintains insulation, and is used in a low to high humidity environment when used as a fiber-reinforced plastic.
  • the content is preferably 2% or less, more preferably 1.6% or less, and still more preferably 1.1% or less with respect to the mass of the resin composite film.
  • the dielectric constant of the resin composite film is preferably 4.5 or less, more preferably 4.3 or less, and still more preferably 4.1 or less, from the viewpoint of characteristics when used as an interlayer insulating film.
  • the dielectric loss tangent of the resin composite film is preferably 0.02 or less, more preferably 0.018 or less, and still more preferably 0.016 or less, from the viewpoint of characteristics when used as an interlayer insulating film.
  • the resin composite film of the present embodiment can have a total light transmittance of 80% or more.
  • a fiber sheet having a total light transmittance of 80% or more can be formed.
  • the control method is not particularly limited, and examples thereof include a method using the above-described TEMPO oxidation catalyst and a method of adjusting by the above-described fibrillation treatment or micronization treatment. Designing the total light transmittance to 80% or more is useful as a transparent film, and it is more preferable to design the total light transmittance to 90% or more.
  • the measurement method of the total light transmittance can be measured by a light transmittance test using a haze meter NDH7000SP CU2II (product name) (manufactured by Nippon Denshoku Industries Co., Ltd.) based on ASTM D1003.
  • the glass transition temperature (Tg) of the resin composite film does not exist from the viewpoint of further improving the thermal shock resistance, thermal stability, or durability of the resin composite film containing cellulose fine fibers in the resin.
  • Tg is more preferably 120 ° C. or higher, further preferably 150 ° C. or higher, and most preferably 180 ° C. or higher. If the Tg is less than 80 ° C., the softening of the resin occurs under the environment where it is normally used. Further, the glass transition temperature (Tg) of the resin is made not to exist by changing the type and / or mixing ratio of the thermosetting resin or photocurable resin, the type or content of the curing agent, and the like. Or 80 ° C. or higher.
  • the glass transition temperature (Tg) of the resin herein is determined from the viscoelasticity measurement of the cured resin or the differential scanning calorimetry of the resin, or generally indicated for each monomer used in resin production. It is calculated by the FOX formula from the Tg of the homopolymer (eg, Tg described in “A WILEY-INTERSCIENCE PUBLICATION”) and the blending ratio of the monomers.
  • the specific method for determining the glass transition temperature (Tg) of the resin composite film is the intersection of the original baseline and the inflection point (the point at which the upwardly convex curve changes to the downwardly convex curve). When it is difficult to draw a tangent line, use the midpoint of the transition.
  • the glass transition temperature (Tg) of the resin composite film takes a value close to the glass transition temperature (Tg) of the resin that can be impregnated into the fiber sheet.
  • the resin composite film according to the present embodiment has a storage elastic modulus (E′200) at 200 ° C. of 0.5 GPa or more, preferably 0.7 GPa or more, from the viewpoint of thermal shock resistance and warpage reduction. Preferably it is 1.0 GPa or more.
  • the resin composite film according to the present embodiment has a ratio (E′150 / E) of the storage elastic modulus (E′150) at 150 ° C. to the storage elastic modulus (E′200) at 200 ° C. '200) is 1 or more and 4.5 or less, 1 or more and 3.5 or less, or 1.0 or more and 2.0 or less.
  • the storage elastic modulus (E′200) at 200 ° C. within a range of 1 to 4.5.
  • the number average fiber diameter of the cellulose fine fibers is 0.01 ⁇ m or more and 2.0 ⁇ m or less, the number of cellulose fine fibers per unit weight of the cellulose fine fiber sheet is extremely increased while maintaining the voids.
  • the number of entanglement points between the fine fibers is increased, and a hydrogen bond network is easily formed between the fine fibers.
  • the entanglement of fine fibers and the hydrogen bonding network between the fine fibers are retained in the resin, and this contributes to the stabilization of the storage elastic modulus even at high temperatures.
  • the glass transition temperature (Tg) of the resin composite film is 80 ° C. or higher, or the storage elastic modulus (E′200) at 200 ° C. of the resin composite film is 0.5 GPa or higher.
  • the ratio (E′150 / E′200) of the storage elastic modulus (E′150) at 150 ° C. of the resin composite film to the storage elastic modulus (E′200) at 200 ° C. is 1 or more and 4 .5 or less, the resin composite film has high durability, and even if it is mounted as a thin substrate in a device such as a mobile phone, it can impart a thermal shock resistance to the device, so it is difficult to break.
  • the interlayer insulating film in the device can be prevented from being damaged.
  • the storage elastic modulus of the resin composite film is measured according to the method and conditions described in the examples.
  • the method for producing the resin composite film of the present embodiment is not particularly limited, but after shaping and / or laminating a prepreg obtained by impregnating a fiber sheet with a thermosetting resin composition, the shaped product and / or laminating.
  • Examples of the method for impregnating the resin include a wet method and a hot melt method (dry method).
  • Hot melt methods include epoxy resin compositions and photo-curing resin compositions whose viscosity has been reduced by heating, a method in which a fiber sheet is directly impregnated with a thermoplastic resin, and a film in which an epoxy resin composition is coated on release paper.
  • the resin composite film of this embodiment is high-strength and lightweight, it can be substituted for steel plates and carbon fiber reinforced plastics.
  • Examples include industrial machine parts (eg, electromagnetic equipment casings, roll materials, transfer arms, medical equipment members, etc.), general machine parts, automobile / railway / vehicle parts (eg, outer plates, chassis, aerodynamics).
  • the resin composite film of this embodiment is suitable for reinforcing a laminated board in a printed wiring board.
  • the resin composite film of the present embodiment includes, for example, generators, transformers, rectifiers, circuit breakers, insulation cylinders, insulation levers, arc extinguishing plates, operation rods, insulation spacers, cases, wind tunnels, end bells, wind Uke, switch boxes for standard electrical products, cases, crossbars, insulation shafts, fan blades, mechanical components, transparent substrates, speaker diaphragms, eta diaphragms, TV screens, fluorescent lamp covers, antennas for communication equipment and aerospace, Horn cover, radome, case, mechanism parts, wiring board, aircraft, rocket, satellite electronic equipment parts, railway parts, marine parts, bathtub, septic tank, corrosion resistant equipment, chair, safety cap, pipe, tank truck, cooling tower It can also be used for applications such as floating breakwaters, underground tanks, and containers.
  • the resin composite film of the present embodiment is also used as a friction material for securely fastening the disks inside the transmission of an automobile.
  • the resin composite film of this embodiment is excellent in low linear expansion at high temperatures and moisture resistance, and can be suitably used as an electronic material because it can prevent warping and peeling in an electronic device.
  • the resin composite film of the present embodiment can be suitably used as an interlayer insulating film included in a resin laminated film, a resin laminated board, a multilayer printed wiring board, a semiconductor package substrate, a communication terminal, and the like. Therefore, the resin composite film of this embodiment can be suitably used for driving support systems (navigation, in-vehicle cameras, sensing systems, etc.) in in-vehicle applications.
  • the resin composite film of this embodiment may be a resin laminated film laminated on a support.
  • a plurality of the resin laminate films of the present embodiment may be laminated to form a resin composite film laminate.
  • the resin composite film laminate can be used for a multilayer printed wiring board.
  • Multilayer printed wiring boards can be used for semiconductor package substrates.
  • the semiconductor package substrate can be used for a communication terminal or the like.
  • the resin laminated film of the present embodiment can also be suitably used as an interlayer insulating film included in communication terminals and the like.
  • ⁇ Maximum fiber diameter of cellulose fine fiber> From the surface of the structure consisting of cellulose fine fibers, observation was carried out at 10 points at random at a magnification of 500 times using a scanning electron microscope (SEM). The fiber diameter of the thickest fiber in the obtained 10 SEM images was defined as the maximum fiber diameter in the cellulose fine fiber sheet. About the laminated sheet laminated
  • Sheet weight (g / m 2 ) 10 cm square weight (g) /0.01 m 2
  • ⁇ Sheet thickness> A sample conditioned in an atmosphere of room temperature 20 ° C. and humidity 50% RH was measured with a surface contact type (surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) for 10-point thickness. The average value was taken as the thickness of the sample.
  • Porosity 100 ⁇ ((weight per unit area (g / m 2 ) /1.5) / sheet thickness ( ⁇ m)) ⁇ 100)
  • Air permeability resistance> A sample conditioned in an atmosphere of room temperature 23 ° C. and humidity 50% RH was measured for 10 points of air resistance with an Oken type air resistance tester (manufactured by Asahi Seiko Co., Ltd., model EG01). was the air resistance of the sample.
  • the obtained cross-sectional sample was composed of five layers of adhesive-platinum-film-platinum-adhesive, and the position of the film in the sample was clarified by performing platinum deposition.
  • ⁇ Microscopic infrared imaging> It was confirmed by microinfrared imaging that all the resin composite films contained cellulose fine fibers and / or fine aramid fibers.
  • the measurement was performed on the cross-sectional sample of the resin composite film under the following conditions.
  • AFM measurement> A cross-sectional sample of the resin composite film was fixed on a dedicated sample fixing base, and the elastic modulus of the cross-section was measured under the following AFM measurement conditions.
  • the measurement range was set to 3 ⁇ m ⁇ 3 ⁇ m with the same resolution as above, and the measurement range was set to 1 ⁇ m ⁇ 1 ⁇ m. Measurements were made.
  • the filling rate of the cellulose fine fiber was defined as the area ratio of the cellulose fine fiber in the entire resin composite film in the AFM elastic modulus image of the cross section of the resin composite film.
  • the elastic modulus is different for each material, and elastic modulus mapping was prepared for each material included in the resin composite film by setting a threshold value of the elastic modulus histogram. For example, in the case of a resin composite film consisting only of cellulose fine fibers and epoxy, a contrast image consisting of epoxy (soft phase) and cellulose fine fibers (hard phase) is obtained. The histogram was roughly divided into two peaks, and the midpoint of the two peaks of the histogram was set as a threshold for binarization (cellulose: black, epoxy: white).
  • the cross section of the resin composite film was measured by dividing it into a plurality of visual fields. Subsequently, after producing elastic modulus mapping in each field of view, the images were combined to obtain an image in which the cross section of the resin composite film was contained in one image. From the elastic modulus mapping that shows the entire cross section of the resin composite film, the image editing software “imageJ” is used to calculate the area derived from the cellulose fine fibers and the area of the entire resin composite film. The fiber filling rate was determined.
  • Filling ratio of cellulose fine fiber (%) area derived from cellulose fine fiber / area of entire resin composite film ⁇ 100 Using the above method, the filling rate of cellulose fine fibers in 10 resin composite film cross-sections was determined, and the average value of 8 points excluding the maximum and minimum values was used as the filling rate of cellulose fine fibers in the entire resin composite film. It was.
  • ⁇ Average fiber diameter of cellulose fine fiber> From the elastic modulus mapping showing the entire cross section of the resin composite film, using the image editing software "imageJ", the area derived from cellulose fine fibers ( ⁇ S) and the total length of the interface between cellulose fine fibers and other materials (mainly epoxy) Then, the average fiber diameter of the cellulose fine fibers was calculated according to the following formula.
  • Cellulose fine fiber average fiber diameter (nm) 4 ⁇ ⁇ S / ⁇ L
  • the average fiber diameter of cellulose fine fibers at 10 film cross sections was determined, and the average value of 8 points excluding the maximum and minimum values was defined as the average fiber diameter of cellulose fine fibers of the entire film. .
  • ⁇ Maximum fiber diameter of cellulose fine fiber> With respect to the elastic modulus mapping at 10 locations where all the cross sections of the resin composite film were shown, particle analysis was performed by image editing software “imageJ”, and the particle size was calculated as a cellulose fine fiber diameter regarded as a perfect circle. At this time, the largest particle diameter was adopted as the maximum fiber diameter of the cellulose fine fibers.
  • the average fiber diameter and the maximum fiber diameter of the fine cellulose fibers in the prepreg are obtained by impregnating the prepreg once with an organic solvent, dissolving and removing the resin component, and then using a scanning electron microscope (SEM) to obtain the average number of fiber sheets.
  • SEM scanning electron microscope
  • the filling rate of the inorganic filler in the entire resin composite film was defined as the area ratio of the inorganic filler constituent atoms in the cross section of the resin composite film.
  • Si was measured for silica particles
  • Al was measured for aluminum hydroxide particles.
  • the measurement method is shown by taking silica particles as an example.
  • the cross-sectional sample was subjected to a conduction treatment with carbon paste and osmium coating, and thereafter, using a scanning electron microscope S-4800 (manufactured by Hitachi High-Tech Fielding), an imaging magnification of 500 times, an acceleration voltage of 1.0 kV, a detector: secondary Photographing was performed with an electronic setting, and a cross-sectional SEM image was obtained. Subsequently, elemental mapping of C and Si was obtained using the energy dispersive X-ray detector X-Max SILICON DRIVE X-RAY DETECTOR (manufactured by Horiba, Ltd.) for the same field of view.
  • the area ratio an SEM secondary electron image of the film cross section was first cut out at a portion corresponding to the outer periphery of the film using image editing software “imageJ”, and only the film cross section was displayed. Next, binarization was performed and the silica origin was displayed in black and the other origins were displayed in white. The threshold for black-and-white binarization is selected so that the portion displayed in black corresponds to the EDX Si region, and the black area is calculated as the count number. Moreover, the area of the whole film cross section is calculated as a count number. From these two ratios, the ratio of Si to the entire film cross section was calculated from the following formula.
  • Filling rate of inorganic filler (%) area derived from inorganic filler / total area of film ⁇ 100 Using the above method, the filling rate of the inorganic filler at the 10 film cross sections was determined, and the average value of 8 points excluding the maximum and minimum values was taken as the average filling rate of the inorganic filler throughout the film.
  • the binarization here refers to binarization based on a difference in elastic modulus between an organic substance (resin, fiber, etc.) and an inorganic substance (inorganic filler, etc.).
  • ⁇ Ratio of inorganic filler contained in cellulose fine fiber layer The filling rate of the inorganic filler contained in the cellulose fine fiber layer is determined based on the elastic modulus mapping of the cross section of the resin composite film, using image editing software “imageJ”, and the total area derived from the inorganic filler in the resin composite film and cellulose. The area derived from the inorganic filler contained in the fine fiber layer was calculated, and finally the content of the inorganic filler in the cellulose fine fiber layer was determined from the following formula.
  • a cellulose fine fiber layer selects 10 or more points
  • inorganic filler contained in cellulose fine fiber layer area derived from inorganic filler in cellulose fine fiber layer / total area derived from inorganic filler in resin composite film ⁇ 100 Using the above method, the filling rate of the inorganic filler contained in the cellulose fine fiber layer of 10 resin composite film cross sections was obtained, and the average value of 8 points excluding the maximum value and the minimum value was determined as the cellulose fine fiber. It was set as the filling rate of the inorganic filler contained in the layer.
  • the length from the resin composite film outermost surface to the nonwoven fabric layer surface is defined as the overcoat resin layer.
  • the non-woven fabric layer is defined as a layer made of organic fibers including a cellulose fine fiber layer. From the above AFM elastic modulus mapping, it can be confirmed that it is composed of three layers of epoxy layer (front) / nonwoven fabric layer / epoxy layer (back). The length from the outermost surface of the film to the surface of the nonwoven fabric layer was measured at 10 points on the front and back, and the average value was defined as the thickness of the overcoat resin layer (front) and the thickness of the overcoat resin layer (back).
  • ⁇ Thickness of resin composite film> The thickness of 10 points in the resin composite film was measured, and the average value was taken as the thickness.
  • a surface contact type (a surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) was used as the film thickness meter.
  • the resin composite film of this embodiment preferably has a total light transmittance of 80% or more.
  • the transmittance can be measured by a light permeability test using a haze meter NDH7000SP CU2II (product name) (manufactured by Nippon Denshoku Industries Co., Ltd.) based on ASTM D1003.
  • ⁇ Dielectric properties (dielectric constant and dielectric loss tangent)> A 0.8 mm thick thick resin composite film was cut into a size of 1.5 (width) ⁇ 80 mm (length) and used as a measurement sample. For the measurement, a value of 1 GHz was measured by using a cavity resonance method (8722ES type network analyzer, manufactured by Agilent Technology; cavity resonator, manufactured by Kanto Electronics Application Development).
  • ⁇ Peeling strength of copper foil (peel strength)> Make a notch with a width of 1 cm and a length of 10 cm in a copper-clad laminate, peel off one end and grab it with an autograph AGS-500 manufactured by Shimadzu Corporation, and peel off 35 mm vertically at a speed of 50 mm / min at room temperature. Load (kgf / cm) was measured.
  • ⁇ Cold thermal shock resistance test> For the plated laminate, a low temperature ( ⁇ 55 ° C.) was applied based on MIL-STD-883E condition A ( ⁇ 55 ° C. to 125 ° C.) using a thermal shock device (manufactured by Espec, TSA-71S-A / W). ) And high temperature (125 ° C.) exposure time of 30 minutes each, and this was performed for 200 cycles. Using optical micrographs (transmitted light, magnification: x25 to x100) and cross-sectional SEM (magnification: x5000), the failure status of copper wiring, copper / resin interface, etc. was observed, and sensory evaluation was performed based on the following criteria. I did it.
  • the obtained refined tencel fiber (cut yarn) was dispersed in water to a solid content of 1.5% by weight (400 L), and SDR14 type laboratory refiner (pressure type DISK) manufactured by Aikawa Tekko Co., Ltd. was used as a disc refiner device.
  • SDR14 type laboratory refiner pressure type DISK
  • 400 L of the aqueous dispersion was beaten for 20 minutes with a disc clearance of 1 mm. Subsequently, the beating process was continued under conditions where the clearance was reduced to a level almost close to zero. Sampling was performed over time, and when the CSF value of the Canadian standard freeness test method (hereinafter referred to as CSF method) of pulp defined in JIS P 8121 was evaluated for the sampling slurry, the CSF value decreased with time.
  • CSF method Canadian standard freeness test method
  • the beating treatment was continued under the above conditions for 10 minutes after setting the clearance to near zero, and a beating water dispersion having a CSF value of 100 ml or more was obtained.
  • the obtained beating water dispersion was subjected to refinement treatment 5 times under an operating pressure of 100 MPa using a high-pressure homogenizer (NS015H manufactured by Niro Soabi (Italy)) as it was, and a slurry of cellulose fine fibers (solid content concentration) : 1.5% by weight).
  • ⁇ Slurry production example 3> A slurry of cellulose fine fibers (solid content concentration: 1.5% by weight) was obtained by the same method as in Slurry Production Example 2 except that the raw material was changed to Abaca pulp.
  • the CSF value was 630 ml or more.
  • ⁇ Slurry production example 7> A cellulose fine fiber slurry (solid content concentration: 1.5% by weight) was obtained by the same method as in Slurry Production Example 1 except that the treatment was stopped when the CSF value became zero.
  • Example 1 A sheet was manufactured with reference to Example 4 of JP-A-2006-316253.
  • Polysaccharide production medium supplemented with 2.0% glucose (Polysaccharide-production-medium, Akihichi Shimada, Vivaorigino, 23, 1, 52-53, 1995) was autoclaved and 1000 L was fermented to a content of 3000 L Place in a tank and inoculate the CF-002 strain at 104 CFU / ml, and stir and culture under aeration at 30 ° C. for 2 days to obtain a dispersion containing a large amount of bacterial cellulose (BC). It was.
  • Example of sheet production> ⁇ Sheet Production Example 1> The slurry of Slurry Production Example 1 was diluted to a solid content concentration of 0.2% by weight and stirred with a home mixer for 3 minutes to prepare 312.5 g of papermaking slurry.
  • a plain fabric made of PET / nylon blend (Shikishima Kanbus Co., Ltd., NT20: water permeation amount at 25 ° C. in the atmosphere: 0.03 ml / (cm 2 ⁇ s), 99 by filtering cellulose fine fibers at 25 ° C. under atmospheric pressure.
  • the wet paper made of the concentrated composition in a wet state on the obtained filter cloth is peeled off from the wire and pressed at a pressure of 1 kg / cm 2 for 1 minute, and then the wet paper surface is brought into contact with the drum surface.
  • the wet paper was dried for about 120 seconds so that the wet paper was in contact with the drum surface.
  • the filter cloth was peeled from the cellulose sheet-like structure from the obtained dried two-layer body to obtain a white cellulose fine fiber sheet (25 cm ⁇ 25 cm, 10 g / m 2 ).
  • the cellulose fine fiber sheet was smoothed by a calender device (Yuri Roll Co., Ltd., hydraulic two-roll test embossing machine, upper roll: metal / lower roll: aramid, surface length 300 mm, temperature: room temperature , Pressure: 1.5 ton / 300 mm), a thin-layer cellulose fine fiber sheet S1 was obtained.
  • a calender device Yuri Roll Co., Ltd., hydraulic two-roll test embossing machine, upper roll: metal / lower roll: aramid, surface length 300 mm, temperature: room temperature , Pressure: 1.5 ton / 300 mm
  • cationic block polyisocyanate trade name “Meikanate WEB”, manufactured by Meisei Chemical Industries, Ltd.
  • the dried sheet is sandwiched between two SUS metal frames (25 cm ⁇ 25 cm), fixed with a clip, heat-treated in an oven at 160 ° C. for 2 minutes, and containing fine cellulose fibers cross-linked with block polyisocyanate.
  • White cellulose fine fiber sheet S6 was obtained.
  • the dried sheet is sandwiched between two SUS metal frames (25 cm ⁇ 25 cm), fixed with a clip, heat-treated in an oven at 160 ° C. for 2 minutes, and containing fine cellulose fibers cross-linked with block polyisocyanate.
  • a white cellulose fine fiber sheet S8 was obtained.
  • a wet paper sandwiched between filter cloths was placed on a metal plate, and a weight was placed on the wet paper so that it was dried at a constant length, set in a drying oven, and dried at 100 ° C. for 50 minutes. . After drying, the non-woven fabric was peeled off from the filter cloth to obtain a white cellulose sheet RS1.
  • Table 1 shows the raw materials, production methods, and physical properties of the sheet production examples and the sheet comparison production examples.
  • Examples of varnish production ⁇ Varnish production example 1> A varnish (V1) having a solid content of 70% by weight in which methyl ethyl ketone was used as a solvent and the following compounds were mixed with a kneader was prepared.
  • Varnish V2 was produced in the same manner as in Varnish Production Example 1 except that 98.0 parts by weight of spherical silica SO25R (Admatex, weight average particle size 0.5 ⁇ m) was added.
  • a varnish (V5) having a solid content of 70% by weight, in which methyl ethyl ketone was used as a solvent, and the following compound was mixed was prepared.
  • Phenoxy resin YL7553BH30 Mitsubishi Chemical
  • a varnish (V5) having a solid content of 70% by weight in which methyl ethyl ketone was used as a solvent and the following compound was mixed was prepared.
  • V6 A varnish (V6) having a solid content of 70% by weight, in which methyl ethyl ketone was used as a solvent and the following compound was mixed, was prepared.
  • Varnish V7 was produced in the same manner as in Varnish Production Example 1 except that 121.0 parts by weight of spherical silica SO25R (Admatex, weight average particle size 0.5 ⁇ m) was added.
  • a varnish (V8) having a solid content of 70% by weight in which methyl ethyl ketone was used as a solvent and the following compounds were mixed with a kneader was prepared.
  • Phenolic novolak type epoxy resin N680-75M (Dainippon Ink Chemical) 14.7 parts by weight
  • Dicyandiamide (Dainippon Ink Chemical) 2.1 parts by weight
  • 2-ethyl-4-methylimidazole Shikoku Kasei
  • silica SO25R Admatex, weight average particle size 0.5 ⁇ m 60.6 parts by weight
  • Table 2 shows the compositions and solid content ratios of the varnish production examples and the varnish comparison production examples.
  • the numerical value of each component in Table 2 represents parts by weight.
  • FIG. 1A shows an AFM elastic modulus image of the obtained resin composite film
  • FIG. 1B shows an elastic modulus histogram
  • FIG. 1C shows a binarized image.
  • the shaded area corresponds to the cellulose part.
  • FIG. 2 shows a processed image when the area is calculated, 10 or more cellulose fine fibers closest to the outermost surface of the film are selected, and a region surrounded by a line is defined as a cellulose fine fiber layer.
  • the prepreg is laminated on both surfaces of the inner layer circuit board with a vacuum laminator manufactured by Meiki Seisakusho under the conditions of a temperature of 120 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg or less.
  • a vacuum laminator manufactured by Meiki Seisakusho
  • hot pressing with a SUS end plate was performed under conditions of a temperature of 120 ° C., a pressure of 5 kgf / cm 2 , and atmospheric pressure.
  • the PET film was peeled off and then thermally cured at 180 ° C. for 30 minutes to form insulating layers on both surfaces of the substrate.
  • an aqueous solution of a neutralizing solution (SnCl 2 : 30 g / L, HCl: 300 ml / L) was prepared, heated to 40 ° C. and immersed for 5 minutes to reduce KMnO 4 .
  • Example 2 Various resin composite films F2 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughened laminate), except for changing the cellulose fine fiber sheet to S2. Body, plating treatment laminate).
  • Example 3 Various resin composite films F3 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 1 except that the amount of varnish (V2) applied was 0.9 g. , Roughening treatment laminate, plating treatment laminate).
  • Example 4 Various resin composite films F4 (prepreg, resin composite film, copper-clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S3, the varnish was V3, and the amount of varnish applied was 0.1 g. , Thick film resin composite film, insulating layer laminate, roughening laminate, and plating laminate). The total light transmittance of the resin composite film was measured and found to be 82%.
  • Example 5 Various resin composite films F5 (prepreg, resin composite film, copper-clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S4, the varnish was V4, and the amount of varnish applied was 0.1 g. , Thick film resin composite film, insulating layer laminate, roughening laminate, plating laminate).
  • Example 6> After applying 0.8 g of varnish (V5) to the release surface of a 20 cm square polyethylene terephthalate support film (thickness: 16 ⁇ m) with a film applicator, the cellulose fine fiber laminate sheet (S5) cut to 10 cm square is made of cellulose fine fibers. The surfaces were in contact with each other, and 8.0 g of varnish (V5) was applied again on the cellulose fine fiber sheet with an applicator.
  • various resin composite films F6 prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughening laminate, plating laminate
  • Example 7 Various resin composite films F7 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughened laminate, plating) in the same manner as in Example 6 except that the varnish was changed to V6 Processed laminate).
  • Example 8> Various resin composite films F8 (prepreg, resin composite film, copper-clad laminate) were used in the same manner as in Example 1 except that the varnish was changed to V7, the coating amount of the varnish was 9.0 g, and the cellulose fine fiber sheet was S6. Plate, thick film resin composite film, insulating layer laminate, roughening laminate, and plating laminate).
  • Example 9 Various resin composite films F9 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was changed to S7 and the varnish was changed to V8. , Roughening treatment laminate, plating treatment laminate).
  • Example 10 Various resin composite films F10 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was changed to S8 and the varnish was changed to V1. , Roughening treatment laminate, plating treatment laminate).
  • Example 11 A cellulose fine fiber sheet S6 is placed on the release surface of a 20 cm square polyethylene terephthalate support film (thickness 16 ⁇ m), and a 60 ⁇ m thick polypropylene film is placed thereon, and another polyethylene terephthalate support film (thickness 16 ⁇ m) is placed. The release surface was covered so that it contacted. This was subjected to a heating press at 200 ° C. for 10 minutes with a heating press machine, and the cellulose fine fiber sheet S6 was embedded in the polypropylene film.
  • a polypropylene film with a cellulose fine fiber sheet S6 is placed on the release surface of a 20 cm square polyethylene terephthalate support film (thickness 16 ⁇ m), and the polypropylene having a thickness of 60 ⁇ m is directed toward the outside where the cellulose fine fiber sheet S6 protrudes.
  • the film was placed thereon and covered so that the release surface of another polyethylene terephthalate support film (thickness: 16 ⁇ m) was in contact therewith.
  • the resin composite film F11 was applied to both sides of the inner layer circuit board produced in Example 1 (5) using a vacuum laminator manufactured by Meiki Seisakusho Co., Ltd. at a temperature of 200 ° C. and a pressure of 7 kgf / cm 2.
  • the laminate was laminated under a pressure of 5 mmHg or less, and was continuously hot pressed with a SUS end plate under the conditions of a temperature of 200 ° C., a pressure of 5 kgf / cm 2 , and atmospheric pressure. Subsequently, the PET film was peeled off and only the circuit embedding evaluation was performed.
  • ⁇ Comparative example 1> A resin composite film or the like was produced with reference to Example 4 of JP-A-2006-316253.
  • One sheet obtained by impregnating the varnish RV1 obtained in Varnish Comparative Production Example 1 into the cellulose nonwoven fabric RS1 obtained in Sheet Comparative Production Example 1 (impregnation time: within 5 minutes) was heated in a hot press machine.
  • Resin composite film RF1 was produced by thermosetting (curing time: 1 hour) at 100 ° C. and a pressure of 9.81 MPa.
  • various resin composite films prepreg, copper-clad laminate, evaluation substrate, insulating layer laminate, roughening laminate, and plating laminate
  • Table 3 shows the physical properties and evaluation results of the resin composite films obtained in Examples and Comparative Examples.
  • Embodiment II Cellulose fine fiber sheet The physical properties of the cellulose fine fiber sheet were measured by the following methods.
  • Porosity 100 ⁇ ([weight per unit area (g / m 2 ) / ⁇ sheet thickness ( ⁇ m) ⁇ 1.5 (g / cm 3 ) ⁇ ] ⁇ 100)
  • the beating process was continued under conditions where the clearance was reduced to a level almost close to zero.
  • Sampling was carried out over time, and the CSF value of the Canadian standard freeness test method (hereinafter referred to as CSF method) of pulp defined by JIS P 8121 was evaluated for the sampling slurry. Then, once it was close to zero, if the beating process continued further, a tendency to increase was confirmed.
  • the beating treatment was continued under the above conditions for 10 minutes after setting the clearance to near zero, and a beating water dispersion having a CSF value of 100 ml or more was obtained.
  • the obtained beating water dispersion was subjected to refinement treatment 5 times under an operating pressure of 100 MPa using a high-pressure homogenizer (NS015H manufactured by Niro Soabi (Italy)) as it was, and a slurry of cellulose fine fibers (solid content concentration) : 1.5% by weight).
  • a high-pressure homogenizer (NS015H manufactured by Niro Soabi (Italy)
  • a slurry of cellulose fine fibers solid content concentration
  • a slurry of cellulose fine fibers (solid content concentration: 1.5% by weight) was obtained by the same method as in Slurry Production Example 2 except that the raw material was changed to Abaca pulp.
  • the CSF value was 630 ml or more.
  • the wet paper was dried for about 120 seconds so that the wet paper was in contact with the drum surface in a drum dryer whose surface temperature was set to 130 ° C.
  • the filter cloth was peeled from the cellulose sheet-like structure from the obtained dried two-layer body to obtain a white cellulose fine fiber sheet (25 cm ⁇ 25 cm, 10 g / m 2 ).
  • the cellulose fine fiber sheet was smoothed by a calender device (Yuri Roll Co., Ltd., hydraulic two-roll test embossing machine, upper roll: metal / lower roll: aramid, surface length 300 mm, temperature: room temperature , Pressure: 1.5 ton / 300 mm), a thin cellulose fine fiber sheet S1 was obtained.
  • a calender device Yuri Roll Co., Ltd., hydraulic two-roll test embossing machine, upper roll: metal / lower roll: aramid, surface length 300 mm, temperature: room temperature , Pressure: 1.5 ton / 300 mm
  • a sheet was formed using the same papermaking and drying technique as in Sheet Production Example 1. Then, after passing through the smoothing step, the sheet was sandwiched between two SUS metal frames (25 cm ⁇ 25 cm), fixed with clips, heat treated in an oven at 160 ° C. for 2 minutes, and crosslinked with block polyisocyanate. A milky white cellulose fine fiber sheet S4 containing aramid fine fibers was obtained.
  • Sheet Production Example 5 Using the method of Sheet Production Example 1, a cupra long fiber nonwoven fabric (manufactured by Asahi Kasei Fibers Co., Ltd., trade name: Benlyse SN140, basis weight: 14 g / m 2 , film thickness: 70 ⁇ m, density: on a plain fabric made of PET / nylon blend. Papermaking was performed in a state where 0.2 g / cm 3 and average single yarn fineness: 0.2 dtex) were stacked, and a fiber sheet S5 in which a cellulose fine fiber sheet was laminated on a cupra long fiber nonwoven fabric was produced. In addition, the smoothing process was not performed.
  • the dried sheet is sandwiched between two SUS metal frames (25 cm ⁇ 25 cm), fixed with a clip, heat-treated in an oven at 160 ° C. for 2 minutes, and containing fine cellulose fibers cross-linked with block polyisocyanate.
  • a white cellulose fine fiber sheet S7 was obtained.
  • a wet paper sandwiched between filter cloths was placed on a metal plate, and a weight was placed on the wet paper so that it was dried at a constant length, set in a drying oven, and dried at 100 ° C. for 50 minutes. . After drying, the non-woven fabric was peeled off from the filter cloth to obtain a white cellulose sheet RS1.
  • Varnish Production Example 1 A varnish (V1) having a solid content of 70% by weight in which methyl ethyl ketone was used as a solvent and the following compounds were mixed with a kneader was prepared. ⁇ 78.9 parts by weight of brominated bisphenol A type epoxy resin 1121N-80M (Dainippon Ink Chemical) ⁇ 14.0 parts by weight of phenol novolac type epoxy resin N680-75M (Dainippon Ink Chemical) ⁇ Dicyandiamide (Dainippon Ink Chemical) 2.0 parts by weight, 0.1 parts by weight of 2-ethyl-4-methylimidazole (Shikoku Kasei), 5.0 parts by weight of phenoxy resin YL7553BH30 (Mitsubishi Chemical), spherical silica SO25R (Admatex, weight average particle size 0. 5 ⁇ m) 32.0 parts by weight
  • Varnish V2 was produced in the same manner as in Varnish Production Example 1 except that 98 parts by weight of spherical silica SO25R (Admatex, weight average particle size 0.5 ⁇ m) was added.
  • a varnish (V4) having a solid content of 70% by weight was prepared by mixing methyl ethyl ketone as a solvent and the following compounds in a kneader.
  • Bisphenol A type epoxy resin 828EL Mitsubishi Chemical 21.1 parts by weight Naphthalene type tetrafunctional epoxy resin HP-4710 (Dainippon Ink Chemical) 26.4 parts by weight Triazine-containing phenol novolac resin LA-7054 (Dainippon Ink) Chemistry) 15.8 parts by weight, naphthol-based curing agent SN-485 (Toto Kasei) 15.8 parts by weight, naphthol-based curing agent EXB-9500 (Dainippon Ink Chemical) 15.8 parts by weight, 2-ethyl-4- Methyl imidazole (Shikoku Kasei) 0.1 parts by weight, phenoxy resin YL7553BH30 (Mitsubishi Chemical) 5.0 parts by weight, aluminum hydroxide H-
  • a varnish (V5) having a solid content of 70% by weight in which methyl ethyl ketone was used as a solvent and the following compound was mixed was prepared.
  • 2-ethyl-4-methylimidazole Shikoku Chemicals
  • Phenolic novolak type epoxy resin N680-75M (Dainippon Ink Chemical) 14.7 parts by weight
  • Dicyandiamide (Dainippon Ink Chemical) 2.2 parts by weight
  • 2-ethyl-4-methylimidazole Shikoku Kasei
  • silica SO25R Alkyl-4-methylimidazole
  • the filling rate of the cellulose fine fibers was defined as the area ratio of the cellulose fine fibers in the entire film in the AFM elastic modulus image of the film cross section.
  • the elastic modulus is different for each material, and elastic modulus mapping was created for each material included in the film by setting a threshold value of the elastic modulus histogram.
  • a threshold value of the elastic modulus histogram For example, in the case of a resin composite film consisting only of cellulose fine fibers and epoxy, a contrast image consisting of epoxy (soft phase) and cellulose fine fibers (hard phase) can be obtained.
  • the histogram is roughly composed of two peaks, and the midpoint of the two peaks of the histogram is set as a threshold for binarization (cellulose: black, epoxy: white).
  • the film cross section was divided into a plurality of fields and measured. Subsequently, after creating elastic modulus mapping in each field of view, the images were combined to obtain an image in which the film cross-section fits into one image. From the elastic modulus mapping that shows the entire cross section of the resin composite film, the image editing software “image J” is used to calculate the area derived from the cellulose fine fibers and the area of the entire film. The filling rate was determined.
  • Filling ratio of cellulose fine fiber (%) area derived from cellulose fine fiber / area of entire film ⁇ 100 Using the above method, the filling rate of cellulose fine fibers at 10 cross sections of the film was determined, and the average value of 8 points excluding the maximum value and the minimum value was taken as the filling rate of cellulose fine fibers of the entire film.
  • the average fiber diameter of cellulose fine fibers at 10 film cross sections was determined, and the average value of 8 points excluding the maximum and minimum values was defined as the average fiber diameter of cellulose fine fibers of the entire film. .
  • the average fiber diameter and the maximum fiber diameter of the fine cellulose fibers in the prepreg are obtained by impregnating the prepreg once with an organic solvent, dissolving and removing the resin component, and then using a scanning electron microscope (SEM) to obtain the average number of fiber sheets.
  • SEM scanning electron microscope
  • the filling rate of the inorganic filler in the resin composite film was defined as an area ratio occupied by atoms constituting the inorganic filler in the cross section of the resin composite film.
  • Si was measured for silica particles
  • Al was measured for aluminum hydroxide particles.
  • the measurement method is shown by taking silica particles as an example.
  • the cross-sectional sample was subjected to conduction treatment with C paste and Os coating, and then using a scanning electron microscope “HITACHI S-4800” (manufactured by Hitachi High-Tech Fielding), photographing magnification 500 times, acceleration voltage 1.0 kV, detector : Photographed with setting of secondary electrons, and acquired cross-sectional SEM image. Subsequently, elemental mapping of C and Si was obtained using the energy dispersive X-ray detector X-Max SILICON DRIVE X-RAY DETECTOR (manufactured by Horiba, Ltd.) for the same field of view.
  • the area ratio an SEM secondary electron image of the film cross section was first cut out at a portion corresponding to the outer periphery of the film using image editing software “imageJ”, and only the film cross section was displayed. Next, binarization was performed and the silica origin was displayed in black and the other origins were displayed in white. The threshold for black-and-white binarization is selected so that the portion displayed in black corresponds to the EDX Si region, and the black area is calculated as the count number. Moreover, the area of the whole film cross section is calculated as a count number. From these two ratios, the ratio of Si to the entire film cross section was calculated from the following formula.
  • the binarization here refers to binarization based on the difference in element between an organic substance (resin, fiber, etc.) and an inorganic substance (inorganic filler, etc.).
  • the ratio of the inorganic filler contained in the cellulose fine fiber layer is determined based on the elastic modulus mapping of the cross section of the resin composite film by using the image editing software “imageJ” and the total area derived from the inorganic filler in the resin composite film and the cellulose fine film.
  • the area derived from the inorganic filler contained in the fiber layer was calculated, and finally the proportion of the inorganic filler contained in the cellulose fine fiber layer was determined from the following formula.
  • the cellulose fine fiber layer selects the edge part of the cellulose fine fiber sheet close
  • Ratio of inorganic filler contained in cellulose fine fiber layer (%) (area derived from inorganic filler contained in cellulose fine fiber / total area derived from inorganic filler in resin composite film) ⁇ 100 Using the above method, the proportion of the inorganic filler contained in the cellulose fine fiber layer in the cross section of 10 resin composite films was obtained, and the average value of 8 points excluding the maximum value and the minimum value was determined in the cellulose fine fiber layer. It was set as the ratio of the inorganic filler contained.
  • the length from the resin composite film outermost surface to the nonwoven fabric layer surface is defined as the overcoat resin layer.
  • the non-woven fabric layer is defined as a layer made of organic fibers including a cellulose fine fiber layer. From the above AFM elastic modulus mapping, it can be confirmed that it is composed of three layers of epoxy layer (front) / nonwoven fabric layer / epoxy layer (back). The length from the outermost surface of the film to the surface of the nonwoven fabric layer is measured at 10 points on the front and back sides, and the average value is defined as the thickness of the overcoat resin layer (front) and the thickness of the overcoat resin layer (back).
  • Storage elastic modulus change rate E′150 / E′200 It is represented by In general, since the storage elastic modulus becomes smaller as the temperature becomes higher (E′150> E′200), the storage elastic modulus change rate becomes 1 or more. It can be said that the closer this value is to 1, the smaller the storage elastic modulus change at high temperature and the higher the heat resistance.
  • CTE150 (L150 ⁇ L149) / L100 ⁇ (10 6 )
  • CTE200 (L200 ⁇ L199) / L200 ⁇ (10 6 )
  • Tg Glass transition temperature
  • the Tg of the resin composite film was measured using a viscoelasticity measuring apparatus EXSTAR TMA6100 (SII Nano Technology Co., Ltd.) In a tensile mode, the chuck was 20 mm, the frequency was 1 Hz, under a nitrogen atmosphere, from room temperature to 200 ° C., 5 ° C. / The temperature was raised at a rate of 5 ° C./min from 200 ° C. to 25 ° C., and the temperature was raised again at a rate of 5 ° C./min from 25 ° C. to 200 ° C. The intersection of tangents at the inflection point (the point at which the upwardly convex curve changes to the downwardly convex curve) was defined as Tg.
  • the thickness of 10 points in the prepreg was measured, and the average value was defined as the film thickness of the prepreg.
  • a surface contact type (a surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) was used as the film thickness meter.
  • the thickness of 10 points in the obtained resin composite film was measured, and the average value was taken as the film thickness.
  • a surface contact type (a surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) was used as the film thickness meter.
  • Thermal shock resistance test For the plated laminate, a low temperature ( ⁇ 55 ° C.) was applied based on MIL-STD-883E condition A ( ⁇ 55 ° C. to 125 ° C.) using a thermal shock device (manufactured by Espec, TSA-71S-A / W). ) And high temperature (125 ° C.) exposure time of 30 minutes each, and this was performed for 200 cycles. Using optical micrographs (transmitted light, magnification: x25 to x100) and cross-sectional SEM (magnification: x5000), the failure status of copper wiring, copper / resin interface, etc. was observed, and sensory evaluation was performed based on the following criteria. I did it.
  • a location where the wiring is peeled off, swollen, or cracked is defined as a failure location, and the smaller the failure location, the better the adhesion.
  • One or less failure points by observation of notation conditions
  • Two or more failure points by observation of notation conditions
  • Six or more failure points by observation of notation conditions
  • More than 11 failure points by observation of notation conditions
  • Example 1 (Preparation of prepreg) After coating 0.3 g of varnish V1 with a film applicator on the release surface of a 20 cm square polyethylene terephthalate support film (thickness 16 ⁇ m), the cellulose fine fiber sheet (S1) cut to 10 cm square is placed, and further the varnish V1 was again applied on the cellulose fine fiber sheet with an applicator. The obtained film was heated at 100 ° C. for 4 minutes to remove the solvent and obtain a semi-cured prepreg.
  • FIG. 1A shows an AFM elastic modulus image of the obtained resin composite film
  • FIG. 1B shows an elastic modulus histogram
  • FIG. 1C shows a binarized image.
  • corresponds with the fiber part which comprises a cellulose fine fiber sheet.
  • FIG. 2 shows a processed image when the area of the cellulose fine fiber sheet is calculated by selecting 10 or more end portions of the cellulose fine fiber sheet close to the outermost surface of the film and defining the region surrounded by the line as a cellulose fine fiber layer.
  • the prepreg is laminated on both surfaces of the inner layer circuit board with a vacuum laminator manufactured by Meiki Seisakusho Co., Ltd. under conditions of a temperature of 120 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg or less, and continuously at a temperature of 120 ° C. and a pressure of 5 kgf. / Cm 2 , and hot pressing with a SUS end plate under atmospheric pressure conditions.
  • the PET film was peeled off and then thermally cured at 180 ° C. for 30 minutes to form insulating layers on both surfaces of the substrate.
  • an aqueous solution of a neutralizing solution (SnCl 2 : 30 g / L, HCl: 300 ml / L) was prepared, heated to 40 ° C. and immersed for 5 minutes to reduce KMnO 4 .
  • Example 2 Various resin composite films F2 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughened laminate), except for changing the cellulose fine fiber sheet to S2. Body, plating treatment laminate).
  • Example 3 Various resin composite films F3 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 1 except that the amount of varnish (V2) applied was 0.9 g. , Roughening treatment laminate, plating treatment laminate).
  • Example 4 Various resin composite films F4 (prepreg, resin composite film, copper-clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S3, the varnish was V3, and the amount of varnish applied was 0.1 g. , Thick film resin composite film, insulating layer laminate, roughening laminate, and plating laminate). The total light transmittance of the resin composite film was measured and found to be 82%.
  • Example 5 Various resin composite films F5 (prepreg, resin composite film, copper-clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S4, the varnish was V4, and the amount of varnish applied was 0.1 g. , Thick film resin composite film, insulating layer laminate, roughening laminate, plating laminate).
  • Example 6 After applying 0.8 g of varnish (V5) to the release surface of a 20 cm square polyethylene terephthalate support film (thickness: 16 ⁇ m) with a film applicator, the cellulose fine fiber laminate sheet (S5) cut to 10 cm square is made of cellulose fine fibers. The surfaces were in contact with each other, and 8.0 g of varnish (V5) was applied again on the cellulose fine fiber sheet with an applicator.
  • various resin composite films F6 prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughening laminate, plating laminate
  • Example 7 Paper making was performed by the method of Sheet Production Example 1 using Slurry Production Example 3 to prepare wet paper. Subsequently, it was substituted with isopropanol five times to produce a cellulose fine fiber isopropanol dispersion, and finally isopropanol was removed by filtration under reduced pressure. The obtained cellulose fine fiber sheet was added to varnish V1 and mixed with a vacuum kneader. 1 g of the obtained mixture was applied to the release surface of a 20 cm square polyethylene terephthalate support film (thickness: 16 ⁇ m) with an applicator. The obtained film was heated at 100 ° C. for 10 minutes under vacuum to remove the solvent and obtain a semi-cured prepreg. Other than that, the same method as in Example 1, and various resin composite films F7 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughening laminate, plating laminate) was made.
  • Example 8 Various resin composite films F8 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film) were prepared in the same manner as in Example 2 except that the cellulose fine fiber sheet was changed to S6 and the varnish was changed to V6.
  • Example 9 Various resin composite films F9 (prepreg, resin composite film, copper clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was changed to S7 and the varnish was changed to V1. , Roughening treatment laminate, plating treatment laminate).
  • Example 1 A resin composite film or the like was produced with reference to Example 4 of JP-A-2006-316253.
  • the resin composite film RF1 was produced by thermosetting (curing time: 1 hour) at a temperature of 100 ° C. and a pressure of 9.81 MPa.
  • the copper-clad laminate, thick film resin composite film production, insulating layer formation, roughening treatment, and plating treatment were carried out in the same manner as in Example 1.
  • Embodiment III ⁇ Measurement and evaluation method >> ⁇ Measurement and evaluation method of physical properties of cellulose fiber sheet and prepreg> (1)
  • Number average fiber diameter of cellulose fine fibers In the fiber sheet, 10 points are randomly observed from the surface of the cellulose fine fibers, and observation with a scanning electron microscope (SEM) is 1,000 to depending on the fiber diameter of the fine fibers. The measurement was performed at a magnification equivalent to 100,000 times. With respect to the obtained SEM image, a line was drawn in the horizontal direction and the vertical direction with respect to the screen, and the fiber diameter of the fiber intersecting the line was measured from the enlarged image, and the number of intersecting fibers and the fiber diameter of each fiber were counted. . In this way, the number average fiber was calculated using two series of measurement results for one image. Further, the number average fibers were calculated in the same manner for the other two extracted SEM images, and the results for a total of 10 images were averaged.
  • Porosity 100 ⁇ ([weight per unit area (g / m 2 ) / ⁇ sheet thickness ( ⁇ m) ⁇ 1.5 (g / cm 3 ) ⁇ ] ⁇ 100)
  • Air permeability resistance A sample conditioned at an ambient temperature of 23 ° C. and a humidity of 50% RH was measured with an air resistance resistance of 10 using the Oken type air resistance tester (Asahi Seiko Co., Ltd., model EG01). Point measurement was performed, and the average value was taken as the air resistance of the sample.
  • Thickness of prepreg The thickness of 10 points in the prepreg was measured, and the average value was defined as the thickness of the prepreg.
  • a surface contact type (a surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) was used as the film thickness meter.
  • the number average fiber diameter was calculated in the same manner for the other two extracted SEM images, and the results for a total of 10 images were averaged to obtain the average fiber diameter of the target sample.
  • SEM observation was performed at 500 magnifications at 10 locations on the surface of the structure. The largest fiber diameter in the obtained 10 SEM images was taken as the maximum fiber diameter.
  • SEM observation was performed from the cellulose fine fiber sheet side.
  • the filling rate of the cellulose fine fiber sheet was defined as the area ratio of the cellulose fine fiber sheet occupied by the entire resin composite film in the AFM elastic modulus image of the cross section of the resin composite film.
  • the elastic modulus is different for each material, and elastic modulus mapping was prepared for each material included in the resin composite film by setting a threshold value of the elastic modulus histogram. For example, in the case of a resin composite film consisting only of cellulose fine fibers and epoxy, a contrast image consisting of epoxy (soft phase) and cellulose fine fibers (hard phase) is obtained.
  • the histogram was roughly divided into two peaks, and the midpoint of the two peaks of the histogram was set as a threshold for binarization (cellulose: black, epoxy: white).
  • the thickness of the resin composite film was thicker than the AFM measurement range of 15 ⁇ m
  • the cross section of the resin composite film was measured by dividing it into a plurality of visual fields.
  • the images were combined to obtain an image in which the cross section of the resin composite film was contained in one image. From the elastic modulus mapping that shows the entire cross section of the resin composite film, the image editing software “imageJ” is used to calculate the area derived from the cellulose fine fiber sheet and the area of the entire film.
  • the filling factor of the sheet was determined.
  • Filling ratio of cellulose fine fiber sheet (%) area derived from cellulose fine fiber sheet / area of entire film ⁇ 100 Using the above method, the filling rate of the cellulose fine fiber sheet at the cross section of the film at 10 locations was determined, and the average value of 8 points excluding the maximum value and the minimum value was defined as the filling rate of the cellulose fine fiber sheet of the entire film. .
  • Average fiber diameter (nm) of fibers constituting the cellulose fine fiber sheet 4 ⁇ ⁇ S f / ⁇ L f Using the above method, the average fiber diameter of the fibers constituting the cellulose fine fiber sheet of the cross section of 10 resin composite films was determined, and the average value of 8 points excluding the maximum value and the minimum value was calculated for the entire film. It was set as the average fiber diameter of the fiber which comprises a cellulose fine fiber sheet.
  • the filling rate of the inorganic filler in the resin composite film was defined as an area ratio occupied by atoms constituting the inorganic filler in the cross section of the resin composite film.
  • Si was measured for silica particles
  • Al was measured for aluminum hydroxide particles.
  • the measurement method is shown by taking silica particles as an example.
  • the cross-sectional sample was subjected to conduction treatment with C paste and Os coating, and thereafter, using a scanning electron microscope S-4800 (manufactured by Hitachi High-Tech Fielding), photographing magnification 500 times, acceleration voltage 1.0 kV, detector: secondary Photographing was performed with an electronic setting, and a cross-sectional SEM image was obtained.
  • elemental mapping of C and Si was obtained using the energy dispersive X-ray detector X-Max SILICON DRIVE X-RAY DETECTOR (manufactured by Horiba, Ltd.) for the same field of view.
  • the area ratio an SEM secondary electron image of the film cross section was first cut out at a portion corresponding to the outer periphery of the film using image editing software “imageJ”, and only the film cross section was displayed.
  • binarization was performed and the silica origin was displayed in black and the other origins were displayed in white.
  • the threshold for black-and-white binarization is selected so that the portion displayed in black corresponds to the EDX Si region, and the black area is calculated as the count number.
  • the area of the whole film cross section is calculated as a count number. From these two ratios, the ratio of Si to the entire film cross section was calculated from the following formula.
  • Filling rate of inorganic filler (%) (area derived from inorganic filler / area of entire film) ⁇ 100 Using the above method, the filling rate of the inorganic filler was obtained for 10 film cross sections, and the average value of 8 points excluding the maximum value and the minimum value was determined as the average filling rate of the inorganic filler in the resin composite film. did.
  • the binarization here refers to binarization based on the difference in element between organic substances (resins, fibers, etc.) and inorganic substances (inorganic fillers, etc.).
  • Ratio of inorganic filler contained in cellulose fine fiber layer The ratio of inorganic filler contained in the cellulose fine fiber layer is determined using the image editing software “imageJ” from the elastic modulus mapping of the cross section of the resin composite film. Calculate the total area derived from the inorganic filler in the resin composite film and the area derived from the inorganic filler contained in the cellulose fine fiber layer, and finally the ratio of the inorganic filler contained in the cellulose fine fiber layer from the following formula Asked.
  • the cellulose fine fiber layer selects the edge part of the cellulose fine fiber sheet close
  • Ratio of inorganic filler contained in cellulose fine fiber layer (%) (area derived from inorganic filler contained in cellulose fine fiber / total area derived from inorganic filler in resin composite film) ⁇ 100 Using the above method, the proportion of the inorganic filler contained in the cellulose fine fiber layer in the cross section of 10 resin composite films was obtained, and the average value of 8 points excluding the maximum value and the minimum value was determined in the cellulose fine fiber layer. It was set as the ratio of the inorganic filler contained.
  • the length from the resin composite film outermost surface to the nonwoven fabric layer surface is defined as the overcoat resin layer.
  • the non-woven fabric layer is defined as a layer made of organic fibers including a cellulose fine fiber layer. From the above AFM elastic modulus mapping, it can be confirmed that it is composed of three layers of epoxy layer (front) / nonwoven fabric layer / epoxy layer (back). The length from the outermost surface of the film to the surface of the nonwoven fabric layer is measured at 10 points on the front and back sides, and the average value is defined as the thickness of the overcoat resin layer (front) and the thickness of the overcoat resin layer (back).
  • Thickness of resin composite film The thickness of 10 points in the resin composite film was measured, and the average value was taken as the film thickness.
  • a surface contact type (a surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) was used as the film thickness meter.
  • the transmittance can be measured by a light transmittance test using a haze meter NDH7000SP CU2II (product name) (manufactured by Nippon Denshoku Industries Co., Ltd.) based on ASTM D1003.
  • Dielectric properties (dielectric constant and dielectric loss tangent)
  • a 0.8 mm thick thick resin composite film was cut into a size of 1.5 (width) ⁇ 80 mm (length) and used as a measurement sample.
  • a value of 1 GHz was measured by a cavity resonance method (8722ES type network analyzer, manufactured by Agilent Technology; cavity resonator, manufactured by Kanto Electronics Application Development).
  • the cross section was observed with a scanning electron microscope S-4800 (manufactured by Hitachi High-Tech Fielding Co., Ltd.) and obtained as image data having a size of 1 pixel of 5 to 20 ⁇ m.
  • the interface portion (line segment) of the metal / insulating layer cross-sectional photograph was extracted by image processing.
  • the fractal dimension (box count dimension) was calculated using the box count method, and the size of the region was set to 3 ⁇ m ⁇ 3 ⁇ m so that the complexity of the structure in the fine region could be evaluated.
  • Rt is less than 2.5 ⁇ m is “ ⁇ ”
  • the case where it is 2.5 ⁇ m or more and less than 3 ⁇ m is “ ⁇ ”
  • the beating process was continued under conditions where the clearance was reduced to a level almost close to zero.
  • Sampling was carried out over time, and the CSF value of the Canadian standard freeness test method (hereinafter referred to as CSF method) of pulp defined by JIS P 8121 was evaluated for the sampling slurry. Then, once it was close to zero, if the beating process continued further, a tendency to increase was confirmed.
  • the beating treatment was continued under the above conditions for 10 minutes after setting the clearance to near zero, and a beating water dispersion having a CSF value of 100 ml or more was obtained.
  • the obtained beating water dispersion was subjected to refinement treatment 5 times under an operating pressure of 100 MPa using a high-pressure homogenizer (NS015H manufactured by Niro Soabi (Italy)) as it was, and a slurry of cellulose fine fibers (solid content concentration) : 1.5% by weight).
  • a high-pressure homogenizer (NS015H manufactured by Niro Soabi (Italy)
  • a slurry of cellulose fine fibers solid content concentration
  • a slurry of cellulose fine fibers (solid content concentration: 1.5% by weight) was obtained by the same method as in Slurry Production Example 2 except that the raw material was changed to Abaca pulp.
  • the CSF value was 630 ml or more.
  • the wet paper was dried for about 120 seconds so that the wet paper was in contact with the drum surface.
  • the filter cloth was peeled from the cellulose sheet-like structure from the obtained dried two-layer body to obtain a white cellulose fine fiber sheet (25 cm ⁇ 25 cm, 10 g / m 2 ).
  • the cellulose fine fiber sheet was calendered (Yuri Roll Co., Ltd., hydraulic two-roll test embossing machine, upper roll: metal / lower roll: aramid, surface length 300 mm, temperature: room temperature, pressure: 1.5 ton. / 300 mm) was applied to obtain a thin cellulose fine fiber sheet S1.
  • Sheet Production Example 5 Using the method of Sheet Production Example 1, a cupra long fiber nonwoven fabric (manufactured by Asahi Kasei Fibers Co., Ltd., trade name: Benlyse SN140, basis weight: 14 g / m 2 , film thickness: 70 ⁇ m, density: on a plain fabric made of PET / nylon blend. Papermaking was performed in a state where 0.2 g / cm 3 and average single yarn fineness: 0.2 dtex) were stacked, and a fiber sheet S5 in which a cellulose fine fiber sheet was laminated on a cupra long fiber nonwoven fabric was produced. In addition, the smoothing process was not performed.
  • the dried sheet is sandwiched between two SUS metal frames (25 cm ⁇ 25 cm), fixed with a clip, heat-treated in an oven at 160 ° C. for 2 minutes, and containing fine cellulose fibers cross-linked with block polyisocyanate.
  • a white cellulose fine fiber sheet S7 was obtained.
  • Example 1 A sheet was manufactured with reference to Example 4 of JP-A-2006-316253.
  • the slurry having a cellulose concentration of 1.0% by weight produced in Slurry Comparative Production Example 1 was further diluted with water to a cellulose concentration of 0.40% by weight, and again subjected to a dispersion treatment for 5 minutes using a home mixer.
  • the dispersion was used as a papermaking dispersion.
  • the obtained wet paper was further covered with the same filter cloth, dehydrated with a metal roller, and adjusted so that the cellulose concentration was 12 to 13% by weight.
  • a wet paper sandwiched between filter cloths was placed on a metal plate, and a weight was placed on the wet paper so that it was dried at a constant length, set in a drying oven, and dried at 100 ° C. for 50 minutes. . After drying, the non-woven fabric was peeled off from the filter cloth to obtain a white cellulose sheet RS1.
  • varnish production example 1 A varnish (V1) having a solid content of 70% by weight in which methyl ethyl ketone was used as a solvent and the following compounds were mixed with a kneader was prepared.
  • Varnish V2 was produced in the same manner as in Varnish Production Example 1 except that 98 parts by weight of spherical silica SO25R (Admatex, weight average particle size 0.5 ⁇ m) was added.
  • a varnish (V4) having a solid content of 70% by weight was prepared by mixing methyl ethyl ketone as a solvent and the following compounds in a kneader.
  • Biphenyl type epoxy resin NC-3000H Nippon Kayaku
  • Bisphenol A type epoxy resin 1051 Dainippon Ink Chemical
  • Aminotriazine novolac resin LA-3018 Dainippon Ink
  • 2-ethyl-4-methylimidazole Shikoku Chemicals
  • Phenoxy resin YL7553BH30 Mitsubishi Chemical
  • Aluminum hydroxide H-43S Showa Denko, average particle size 0.7 ⁇ m
  • 61 .0 part by weight 2.5 parts by weight of crosslinked fine particle rubber XER-91 (JSR)
  • a varnish (V5) having a solid content of 70% by weight was prepared by using methyl ethyl ketone as a solvent and mixing the following compounds with a kneader.
  • Phenolic novolak type epoxy resin N680-75M (Dainippon Ink Chemical) 14.7 parts by weight
  • Dicyandiamide (Dainippon Ink Chemical) 2.2 parts by weight
  • 2-ethyl-4-methylimidazole Shikoku Kasei
  • silica SO25R Alkyl-4-methylimidazole
  • Varnish production was performed with reference to Example 4 of JP-A-2006-316253.
  • the following compound was heated to 120 ° C., and a varnish (RV1) having a solid content of 100 wt% mixed with a kneader was prepared.
  • RV1 varnish having a solid content of 100 wt% mixed with a kneader was prepared.
  • ⁇ 100 parts by weight of bisphenol A type epoxy resin (Asahi Kasei Epoxy, AER-250) ⁇ 18 parts by weight of m-xylylenediamine
  • Table 8 shows the compositions and solid content ratios of Varnish Production Examples 1 to 6 and Varnish Comparative Production Example 1. In addition, the numerical value of each component in Table 8 represents parts by weight.
  • Example 1 ⁇ Production of resin composite film> [Example 1] (Prepreg production) After coating 0.3 g of varnish V1 with a film applicator on the release surface of a 20 cm square polyethylene terephthalate support film (thickness 16 ⁇ m), the cellulose fine fiber sheet (S1) cut to 10 cm square is placed, and further the varnish V1 was again applied on the cellulose fine fiber sheet with an applicator. The obtained film was heated at 100 ° C. for 4 minutes to remove the solvent and obtain a semi-cured prepreg.
  • FIG. 1A shows an AFM elastic modulus image of the obtained resin composite film
  • FIG. 1B shows an elastic modulus histogram
  • FIG. 1C shows a binarized image.
  • the shaded area corresponds to the cellulose part.
  • FIG. 2 shows a processed image when 10 or more cellulose fine fibers closest to the outermost surface of the film are selected, and an area surrounded by a line is defined as a cellulose fine fiber layer.
  • a glass cloth base epoxy resin double-sided copper-clad laminate (copper foil thickness 35 ⁇ m, substrate thickness 0.8 mm, “R5715ES” manufactured by Matsushita Electric Works Co., Ltd.) and IPC MULTI-PURPOSE TEST BOARD NO.
  • a microetching agent (“CZ8100” manufactured by MEC Co., Ltd.
  • the prepreg is laminated on both surfaces of the inner layer circuit board with a vacuum laminator manufactured by Meiki Seisakusho under the conditions of a temperature of 120 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg or less. / Cm 2 , and hot pressing with a SUS end plate under atmospheric pressure conditions.
  • the PET film was peeled off and then thermally cured at 180 ° C. for 30 minutes to form insulating layers on both surfaces of the substrate.
  • an aqueous solution of a neutralizing solution (SnCl 2 : 30 g / L, HCl: 300 ml / L) was prepared, heated to 40 ° C. and immersed for 5 minutes to reduce KMnO 4 .
  • Example 2 Various resin composite films F2 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughened laminate), except for changing the cellulose fine fiber sheet to S2. Body, plating treatment laminate).
  • Example 3 Various resin composite films F3 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 1 except that the amount of varnish (V2) applied was 0.9 g. , Roughening treatment laminate, plating treatment laminate).
  • Example 4 Various resin composite films F4 (prepreg, resin composite film, copper-clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S3, the varnish was V3, and the amount of varnish applied was 0.1 g. , Thick film resin composite film, insulating layer laminate, roughening laminate, and plating laminate). The total light transmittance of the resin composite film was measured and found to be 82%.
  • Example 5 Various resin composite films F5 (prepreg, resin composite film, copper-clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S4, the varnish was V4, and the amount of varnish applied was 0.1 g. , Thick film resin composite film, insulating layer laminate, roughening laminate, plating laminate).
  • Example 6 After applying 0.8 g of varnish (V5) to the release surface of a 20 cm square polyethylene terephthalate support film (thickness: 16 ⁇ m) with a film applicator, the cellulose fine fiber laminate sheet (S5) cut to 10 cm square is made of cellulose fine fibers. The surfaces were in contact with each other, and 8.0 g of varnish (V5) was applied again on the cellulose fine fiber sheet with an applicator.
  • various resin composite films F6 prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate, roughening laminate, plating laminate
  • Example 7 Various resin composite films F7 (prepreg, resin composite film, copper clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 2 except that the cellulose fine fiber sheet was changed to S6 and the varnish was changed to V6. , Roughening treatment laminate, plating treatment laminate).
  • Example 8 Various resin composite films F8 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film, insulating layer laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet is S7 and the varnish is V1. , Roughening treatment laminate, plating treatment laminate).
  • Example 1 A resin composite film or the like was produced with reference to Example 4 of JP-A-2006-316253.
  • Resin composite film RF-1 was produced by thermosetting (curing time: 1 hour) at a temperature of 100 ° C. and a pressure of 9.81 MPa in the apparatus.
  • the copper-clad laminate, thick film resin composite film production, insulating layer formation, roughening treatment, and plating treatment were carried out in the same manner as in Example 1.
  • Table 9 shows the physical properties and evaluation results of the resin composite films obtained in Examples 1 to 8 and Comparative Example 1.
  • Porosity 100 ⁇ ([weight per unit area (g / m 2 ) / ⁇ sheet thickness ( ⁇ m) ⁇ 1.5 (g / cm 3 ) ⁇ ] ⁇ 100)
  • Air permeability resistance A sample conditioned at an ambient temperature of 23 ° C. and a humidity of 50% RH was measured with an air resistance resistance of 10 using the Oken type air resistance tester (Asahi Seiko Co., Ltd., model EG01). Point measurement was performed, and the average value was taken as the air resistance of the sample.
  • Thickness of prepreg The thickness of 10 points in the prepreg was measured, and the average value was defined as the thickness of the prepreg.
  • a surface contact type (a surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) was used as the film thickness meter.
  • the number average fiber diameter was calculated in the same manner for the other two extracted SEM images, and the results for a total of 10 images were averaged to obtain the average fiber diameter of the target sample.
  • SEM observation was performed at 500 magnifications at 10 locations on the surface of the structure. The largest fiber diameter in the obtained 10 SEM images was taken as the maximum fiber diameter.
  • SEM observation was performed from the cellulose fine fiber sheet side.
  • the filling rate of the cellulose fine fiber sheet was defined as the area ratio of the cellulose fine fiber sheet occupied by the entire resin composite film in the AFM elastic modulus image of the cross section of the resin composite film.
  • the elastic modulus is different for each material, and elastic modulus mapping was prepared for each material included in the resin composite film by setting a threshold value of the elastic modulus histogram. For example, in the case of a resin composite film consisting only of cellulose fine fibers and epoxy, a contrast image consisting of epoxy (soft phase) and cellulose fine fibers (hard phase) is obtained.
  • the histogram was roughly divided into two peaks, and the midpoint of the two peaks of the histogram was set as a threshold for binarization (cellulose: black, epoxy: white).
  • the thickness of the resin composite film was thicker than the AFM measurement range of 15 ⁇ m
  • the cross section of the resin composite film was measured by dividing it into a plurality of visual fields.
  • the images were combined to obtain an image in which the cross section of the resin composite film was contained in one image. From the elastic modulus mapping that shows the entire cross section of the resin composite film, the image editing software “imageJ” is used to calculate the area derived from the cellulose fine fiber sheet and the area of the entire film.
  • the filling factor of the sheet was determined.
  • Filling ratio of cellulose fine fiber sheet (%) area derived from cellulose fine fiber sheet / area of entire film ⁇ 100 Using the above method, the filling rate of the cellulose fine fiber sheet at the cross section of the film at 10 locations was determined, and the average value of 8 points excluding the maximum value and the minimum value was defined as the filling rate of the cellulose fine fiber sheet of the entire film. .
  • Average fiber diameter (nm) of fibers constituting the cellulose fine fiber sheet 4 ⁇ ⁇ S f / ⁇ L f Using the above method, the average fiber diameter of the fibers constituting the cellulose fine fiber sheet of the cross section of 10 resin composite films was determined, and the average value of 8 points excluding the maximum value and the minimum value was calculated for the entire film. It was set as the average fiber diameter of the fiber which comprises a cellulose fine fiber sheet.
  • the filling rate of the inorganic filler in the resin composite film was defined as an area ratio occupied by atoms constituting the inorganic filler in the cross section of the resin composite film.
  • Si was measured for silica particles
  • Al was measured for aluminum hydroxide particles.
  • the measurement method is shown by taking silica particles as an example.
  • the cross-sectional sample was subjected to conduction treatment with C paste and Os coating, and thereafter, using a scanning electron microscope S-4800 (manufactured by Hitachi High-Tech Fielding), photographing magnification 500 times, acceleration voltage 1.0 kV, detector: secondary Photographing was performed with an electronic setting, and a cross-sectional SEM image was obtained.
  • elemental mapping of C and Si was obtained using the energy dispersive X-ray detector X-Max SILICON DRIVE X-RAY DETECTOR (manufactured by Horiba, Ltd.) for the same field of view.
  • the area ratio an SEM secondary electron image of the film cross section was first cut out at a portion corresponding to the outer periphery of the film using image editing software “imageJ”, and only the film cross section was displayed.
  • binarization was performed and the silica origin was displayed in black and the other origins were displayed in white.
  • the threshold for black-and-white binarization is selected so that the portion displayed in black corresponds to the EDX Si region, and the black area is calculated as the count number.
  • the area of the whole film cross section is calculated as a count number. From these two ratios, the ratio of Si to the entire film cross section was calculated from the following formula.
  • Filling rate of inorganic filler (%) (area derived from inorganic filler / area of entire film) ⁇ 100 Using the above method, the filling rate of the inorganic filler was obtained for 10 film cross sections, and the average value of 8 points excluding the maximum value and the minimum value was determined as the average filling rate of the inorganic filler in the resin composite film. did.
  • the binarization here refers to binarization based on the difference in element between organic substances (resins, fibers, etc.) and inorganic substances (inorganic fillers, etc.).
  • Ratio of inorganic filler contained in cellulose fine fiber layer The ratio of inorganic filler contained in the cellulose fine fiber layer is determined using the image editing software “imageJ” from the elastic modulus mapping of the cross section of the resin composite film. Calculate the total area derived from the inorganic filler in the resin composite film and the area derived from the inorganic filler contained in the cellulose fine fiber layer, and finally the ratio of the inorganic filler contained in the cellulose fine fiber layer from the following formula Asked.
  • the cellulose fine fiber layer selects the edge part of the cellulose fine fiber sheet close
  • Ratio of inorganic filler contained in cellulose fine fiber layer (%) (area derived from inorganic filler contained in cellulose fine fiber / total area derived from inorganic filler in resin composite film) ⁇ 100 Using the above method, the proportion of the inorganic filler contained in the cellulose fine fiber layer in the cross section of 10 resin composite films was obtained, and the average value of 8 points excluding the maximum value and the minimum value was determined in the cellulose fine fiber layer. It was set as the ratio of the inorganic filler contained.
  • Overcoat resin layer thickness The length from the resin composite film outermost surface to the nonwoven fabric layer surface is defined as the overcoat resin layer.
  • the non-woven fabric layer is defined as a layer made of organic fibers including a cellulose fine fiber layer. From the above AFM elastic modulus mapping, it can be confirmed that it is composed of three layers of epoxy layer (front) / nonwoven fabric layer / epoxy layer (back). The length from the outermost surface of the film to the surface of the nonwoven fabric layer is measured at 10 points on the front and back sides, and the average value is defined as the thickness of the overcoat resin layer (front) and the thickness of the overcoat resin layer (back).
  • CTE150 and CTE200 are linear expansion coefficients at 1 ° C. of 149 ° C. to 150 ° C. and 199 ° C. to 200 ° C., respectively, and are expressed by the following equations.
  • CTE150 (L150 ⁇ L149) / L100 ⁇ (10 6 )
  • CTE200 (L200 ⁇ L199) / L200 ⁇ (10 6 )
  • L149, L150, L199, and L200 mean the length between chuck
  • Thickness of resin composite film The thickness of 10 points in the resin composite film was measured, and the average value was taken as the film thickness.
  • a surface contact type (a surface contact type film thickness meter (Code No. 547-401) manufactured by Mitutoyo Co., Ltd.) was used as the film thickness meter.
  • the transmittance can be measured by a light transmission test using a haze meter NDH7000SP CU2II (product name) (manufactured by Nippon Denshoku Industries Co., Ltd.) based on ASTM D1003.
  • Dielectric characteristics (dielectric constant and dielectric loss tangent) A 0.8 mm thick thick resin composite film was cut into a size of 1.5 (width) ⁇ 80 mm (length) and used as a measurement sample. A value of 1 GHz was measured by a cavity resonance method (8722ES type network analyzer, manufactured by Agilent Technology; cavity resonator, manufactured by Kanto Electronics Application Development).
  • Insulation reliability A wiring pattern in which through-holes with a spacing of 0.2 mm are arranged on the copper foils on both sides of a copper-clad laminate is created, and between adjacent through-holes in an atmosphere at a temperature of 120 ° C. and a humidity of 85% RH A voltage of 10 V was applied to the electrode, and the change in resistance value was measured. When the resistance was less than 1 M ⁇ within 500 hours after the start of the test, the insulation failure was evaluated, and the ratio of samples that did not become insulation failure was evaluated (the number of samples was 10).
  • Warpage amount (%) deflection h (mm) / length L (mm) ⁇ 100
  • the concept of deflection (h) and length (L) of the thick film resin composite film is shown in FIG. A warpage rate of less than 1% was evaluated as ⁇ , less than 2% as ⁇ , and 2% or more as ⁇ .
  • the beating process was continued under conditions where the clearance was reduced to a level almost close to zero.
  • Sampling was carried out over time, and the CSF value of the Canadian standard freeness test method (hereinafter referred to as CSF method) of pulp defined by JIS P 8121 was evaluated for the sampling slurry. Then, once it was close to zero, if the beating process continued further, a tendency to increase was confirmed.
  • the beating treatment was continued under the above conditions for 10 minutes after setting the clearance to near zero, and a beating water dispersion having a CSF value of 100 ml or more was obtained.
  • the obtained beating water dispersion was subjected to refinement treatment 5 times under an operating pressure of 100 MPa using a high-pressure homogenizer (NS015H manufactured by Niro Soabi (Italy)) as it was, and a slurry of cellulose fine fibers (solid content concentration) : 1.5% by weight).
  • a high-pressure homogenizer (NS015H manufactured by Niro Soabi (Italy)
  • a slurry of cellulose fine fibers solid content concentration
  • a slurry of cellulose fine fibers (solid content concentration: 1.5% by weight) was obtained by the same method as in Slurry Production Example 2 except that the raw material was changed to Abaca pulp.
  • the CSF value was 630 ml or more.
  • NT20 water permeation amount in air at 25 ° C: 0.03 ml / (cm 2 ⁇ s), 99% by filtration of cellulose fine fiber at 25 ° C under atmospheric pressure
  • the above-mentioned adjustment was performed using a cellulose sheet having a basis weight of 10 g / m 2 as a guide to a batch type paper machine (manufactured by Kumagai Riki Kogyo Co., Ltd., automatic square sheet machine 25 cm ⁇ 25 cm, 80 mesh) set with the ability to filter above. Papermaking slurry was added, and then papermaking (dehydration) was performed at a reduced pressure with respect to atmospheric pressure of 4 KPa.
  • the wet paper made of the concentrated composition in a wet state on the obtained filter cloth was peeled off from the wire and pressed at a pressure of 1 kg / cm 2 for 1 minute. Dry for about 120 seconds so that the wet paper is in contact with the drum surface, and the wet paper is in contact with the drum surface in a drum dryer whose surface temperature is set to 130 ° C in two layers of wet paper / filter cloth. I let you.
  • the filter cloth was peeled from the cellulose sheet-like structure from the obtained dried two-layer body to obtain a white cellulose fine fiber sheet (25 cm ⁇ 25 cm, 10 g / m 2 ).
  • the cellulose fine fiber sheet was calendered (Yuri Roll Co., Ltd., hydraulic two-roll test embossing machine, upper roll: metal / lower roll: aramid, surface length 300 mm, temperature: room temperature, pressure: 1.5 ton. / 300 mm) was applied to obtain a thin cellulose fine fiber sheet S1.
  • a sheet was formed using the same papermaking and drying technique as in Sheet Production Example 1. Then, after passing through the smoothing step, the sheet was sandwiched between two SUS metal frames (25 cm ⁇ 25 cm), fixed with clips, heat treated in an oven at 160 ° C. for 2 minutes, and crosslinked with block polyisocyanate. A milky white cellulose fine fiber sheet S4 containing aramid fine fibers was obtained.
  • Sheet Production Example 5 Using the method of Sheet Production Example 1, a cupra long fiber nonwoven fabric (manufactured by Asahi Kasei Fibers Co., Ltd., trade name: Benlyse SN140, basis weight: 14 g / m 2 , film thickness: 70 ⁇ m, density: on a plain fabric made of PET / nylon blend. Papermaking was performed in a state where 0.2 g / cm 3 and average single yarn fineness: 0.2 dtex) were stacked, and a fiber sheet S5 in which a cellulose fine fiber sheet was laminated on a cupra long fiber nonwoven fabric was produced. In addition, the smoothing process was not performed.
  • the dried sheet is sandwiched between two SUS metal frames (25 cm ⁇ 25 cm), fixed with a clip, heat-treated in an oven at 160 ° C. for 2 minutes, and containing fine cellulose fibers cross-linked with block polyisocyanate.
  • a white cellulose fine fiber sheet S7 was obtained.
  • Example 1 A sheet was manufactured with reference to Example 4 of JP-A-2006-316253.
  • the slurry having a cellulose concentration of 1.0% by weight produced in Slurry Comparative Production Example 1 was further diluted with water to a cellulose concentration of 0.40% by weight, and again subjected to a dispersion treatment for 5 minutes using a home mixer.
  • the dispersion was used as a papermaking dispersion.
  • the obtained wet paper was further covered with the same filter cloth, dehydrated with a metal roller, and adjusted so that the cellulose concentration was 12 to 13% by weight.
  • a wet paper sandwiched between filter cloths was placed on a metal plate, and a weight was placed on the wet paper so that it was dried at a constant length, set in a drying oven, and dried at 100 ° C. for 50 minutes. . After drying, the non-woven fabric was peeled off from the filter cloth to obtain a white cellulose sheet RS1.
  • varnish production example 1 A varnish (V1) having a solid content of 70% by weight in which methyl ethyl ketone was used as a solvent and the following compounds were mixed with a kneader was prepared.
  • Varnish V2 was produced in the same manner as in Varnish Production Example 1 except that 98 parts by weight of spherical silica SO25R (Admatex, weight average particle size 0.5 ⁇ m) was added.
  • a varnish (V4) having a solid content of 70% by weight was prepared by mixing methyl ethyl ketone as a solvent and the following compounds in a kneader.
  • a varnish (V5) having a solid content of 70% by weight was prepared by using methyl ethyl ketone as a solvent and mixing the following compounds with a kneader.
  • Phenolic novolak type epoxy resin N680-75M (Dainippon Ink Chemical) 14.7 parts by weight
  • Dicyandiamide (Dainippon Ink Chemical) 2.2 parts by weight
  • 2-ethyl-4-methylimidazole Shikoku Kasei
  • silica SO25R Alkyl-4-methylimidazole
  • Varnish production was performed with reference to Example 4 of JP-A-2006-316253.
  • the following compound was heated to 120 ° C., and a varnish (RV1) having a solid content of 100 wt% mixed with a kneader was prepared.
  • RV1 varnish having a solid content of 100 wt% mixed with a kneader was prepared.
  • ⁇ 100 parts by weight of bisphenol A type epoxy resin (Asahi Kasei Epoxy, AER-250) ⁇ 18 parts by weight of m-xylylenediamine
  • Table 11 shows the compositions and solid content ratios of Varnish Production Examples 1 to 6 and Varnish Comparative Production Example 1.
  • the numerical value of each component in Table 11 represents a weight part.
  • Example 1 ⁇ Production of resin composite film> [Example 1] (Prepreg production) After coating 0.3 g of varnish V1 with a film applicator on the release surface of a 20 cm square polyethylene terephthalate support film (thickness 16 ⁇ m), the cellulose fine fiber sheet (S1) cut to 10 cm square is placed, and further the varnish V1 was again applied on the cellulose fine fiber sheet with an applicator. The obtained film was heated at 100 ° C. for 4 minutes to remove the solvent and obtain a semi-cured prepreg.
  • FIG. 1A shows an AFM elastic modulus image of the obtained resin composite film
  • FIG. 1B shows an elastic modulus histogram
  • FIG. 1C shows a binarized image.
  • corresponds with the fiber part which comprises a cellulose fine fiber sheet.
  • FIG. 2 shows a processed image when the area is calculated, 10 or more edge portions of the cellulose fine fiber sheet close to the outermost surface of the film are selected, and the region surrounded by the line is defined as the cellulose fine fiber layer.
  • Example 2 Various resin composite films F2 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film) were prepared in the same manner as in Example 1 except that the cellulose fine fiber sheet was changed to S2.
  • Example 3 Various resin composite films F3 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film) were prepared in the same manner as in Example 1 except that the varnish was V2 and the coating amount was 0.9 g.
  • Example 4 Various resin composite films F4 (prepreg, resin composite film, copper-clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S3, the varnish was V3, and the varnish coating amount was 0.1 g. , Thick film resin composite film). The total light transmittance of the resin composite film was measured and found to be 82%.
  • Example 5 Various resin composite films F5 (prepreg, resin composite film, copper clad laminate) in the same manner as in Example 1 except that the cellulose fine fiber sheet was S4, the varnish was V4, and the amount of varnish applied was 0.1 g. , Thick film resin composite film).
  • Example 6 After applying 0.8 g of varnish (V5) to the release surface of a 20 cm square polyethylene terephthalate support film (thickness: 16 ⁇ m) with a film applicator, the cellulose fine fiber laminate sheet (S5) cut to 10 cm square is made of cellulose fine fibers. The surfaces were in contact with each other, and 8.0 g of varnish (V5) was applied again on the cellulose fine fiber sheet with an applicator. Other than that was the same method as Example 1, and produced various resin composite films F6 (prepreg, resin composite film, copper clad laminate, thick film resin composite film).
  • Example 7 Various resin composite films F7 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film) were prepared in the same manner as in Example 2 except that the cellulose fine fiber sheet was changed to S6 and the varnish was changed to V6.
  • Example 8 Various resin composite films F8 (prepreg, resin composite film, copper-clad laminate, thick film resin composite film) were prepared in the same manner as in Example 1 except that the cellulose fine fiber sheet was changed to S7 and the varnish was changed to V1.
  • Example 1 A resin composite film or the like was produced with reference to Example 4 of JP-A-2006-316253.
  • Resin composite film RF1 was produced by thermosetting (curing time: 1 hour) at 100 ° C. and a pressure of 9.81 MPa.
  • copper clad laminated board and thick film resin composite film preparation were implemented by the same method as Example 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Laminated Bodies (AREA)
  • Reinforced Plastic Materials (AREA)
  • Diaphragms For Electromechanical Transducers (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Abstract

セルロース微細繊維シートと樹脂を含む樹脂複合フィルムが、以下の: (1)断面厚み方向のAFM測定により得られる弾性率マッピングにおいて、画像解析から算出される前記セルロース微細繊維シートを構成する繊維の平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である;及び (2)弾性率マッピングにより観測される前記樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上100μm以下である; を満足する。

Description

セルロース微細繊維層を含む樹脂複合フィルム
 本発明は、セルロース微細繊維シートと樹脂を含む樹脂複合フィルム、並びにこれを用いた樹脂積層フィルム、樹脂複合フィルム積層板、多層プリント配線板、半導体パッケージ基板、及び通信端末等に関する。
 近年、軽量で高強度な素材として繊維強化プラスチック(FRP:Fiber Reinforced Plastics)が各種産業分野で注目されている。ガラス繊維、炭素繊維、アラミド繊維などの強化繊維と、マトリックス樹脂からなる繊維強化複合材料は、競合する金属などに比べて軽量でありながら、強度、弾性率などの力学特性に優れるため、航空機部材、宇宙機部材、自動車部材、船舶部材、土木建築材、スポーツ用品などの多くの分野に用いられている。特に高性能が要求される用途においては、強化繊維としては比強度、比弾性率に優れた炭素繊維が多く用いられている。また、マトリックス樹脂としては不飽和ポリエステル樹脂、ビニルエステル樹脂、エポキシ樹脂、フェノール樹脂、シアネートエステル樹脂、ビスマレイミド樹脂などの熱硬化性樹脂が用いられることが多く、中でも炭素繊維との接着性に優れたエポキシ樹脂が多く用いられている。最近では、比較的大形の繊維強化プラスチック成形体を安価に製造するために、真空吸引による減圧環境下で繊維強化プラスチックの成形を行う真空含浸成形法(VaRTM:Vacuum assist Resin Transfer Molding)が採用されつつある(例えば、以下の特許文献1を参照のこと)。
 これらの技術は樹脂の耐熱性や強度の向上に適したものであるが、例えば昨今の電子機器分野における高機能化等の流れに伴った、電子材料の小型薄型化を達成するには、そもそも繊維自体の繊維径を小さく制御することができないため、これらの技術の応用には困難を伴う。さらに電子部材には、薄型化による基板自体の剛性低下に対応するため、低熱膨張性や低反り性に優れること、はんだリフローにより金属張積層板やプリント配線板に部品を接続する際に寸法変形や反りが小さいこと、といった特性が要求されている。
 さらに、これらの電子部品は、自動車への搭載が加速されており、極寒極暑や高湿度環境下での使用に耐える、より高特性の配線基板が求められている。特許文献2には、軽量で、割れが生じ難く、CAF(Conductive Anodic Filaments)の発生及びビア形成工程におけるスミア発生を抑制し、更に低フィラー充填率で低線膨張である配線基板を提供できることが効果として記載されている。そこで、特許文献2に記載の従来の電子部品の水準を超える、特に車載用途に対応した、電極を樹脂複合フィルムに埋め込む際の、より防湿性に優れた埋め込み性を確保し、また、埋め込んだ際の平坦性を維持し、冷熱衝撃耐性を向上することが求められている。
特開昭60-83826号公報 特開2012-119470号公報
 上記の事情に鑑みて、本発明は、電極の埋め込み性、電極の埋め込み時の平坦性、及び冷熱衝撃耐性に優れる樹脂複合フィルムを提供することを目的とする。
 本発明者らは、セルロース微細繊維シートと樹脂を含む樹脂複合フィルムのAFM測定により得られる、セルロース微細繊維シートを構成する繊維の繊維径、オーバーコート樹脂層の厚み、及び線熱膨張係数を制御することにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、以下のとおりのものである:
[1]
 セルロース微細繊維シートと樹脂を含む樹脂複合フィルムであって、以下の:
 (1)断面厚み方向のAFM測定により得られる弾性率マッピングにおいて、画像解析から算出される前記セルロース微細繊維シートを構成する繊維の平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である;及び
 (2)弾性率マッピングにより観測される前記樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上100μm以下である;
を満足する、樹脂複合フィルム。
[2]
 前記オーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上10μm以下である、[1]に記載の樹脂複合フィルム。
[3]
 以下の:
 (2)前記弾性率マッピングにより算出される前記樹脂複合フィルムの前記オーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.8μm以上30μm以下である;及び
 (3)該樹脂複合フィルムの表面ラフネスが0.1μm以上2.0μm以下である;
をさらに満足する、[1]に記載の前記樹脂複合フィルム。
[4]
 前記表面ラフネスが0.3μm以上1.2μm以下である、[3]に記載の樹脂複合フィルム。
[5]
 以下の:
 (2)前記弾性率マッピングから算出される前記樹脂複合フィルムの前記オーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上30μm以下である;
 (3)200℃におけるX-Y平面の線熱膨張係数CTE200が100ppm/℃以下である;及び
 (4)150℃におけるX-Y平面の線熱膨張係数CTE150と200℃におけるX-Y平面の線熱膨張係数CTE200との数値差の絶対値が40以下である、
をさらに満足する、[1]に記載の樹脂複合フィルム。
[6]
 前記CTE200が60ppm/℃以下である、[5]に記載の樹脂複合フィルム。
[7]
 前記弾性率マッピングの画像解析において、前記セルロース微細繊維シートを構成する繊維の前記樹脂複合フィルムの断面全体に占める面積割合が5%以上60%以下である、[1]~[6]のいずれか1項に記載の樹脂複合フィルム。
[8]
 無機充填材を含む、[1]~[7]のいずれか1項に記載の樹脂複合フィルム。
[9]
 断面厚み方向のSEM観察において、前記無機充填材の前記樹脂複合フィルムの断面全体に占める面積割合が5%以上50%以下である、[8]に記載の樹脂複合フィルム。
[10]
 前記弾性率マッピングの画像解析において、前記無機充填材の前記樹脂複合フィルムの断面全体に占める面積割合が5%以上50%以下である、[8]又は[9]に記載の樹脂複合フィルム。
[11]
 前記弾性率マッピングの画像解析において、前記無機充填材の20%以下がセルロース微細繊維層に含まれる、[8]~[10]のいずれか1項に記載の樹脂複合フィルム。
[12]
 全光線透過率が80%以上である、[1]~[11]のいずれか1項に記載の樹脂複合フィルム。
[13]
 前記セルロース微細繊維シートが、セルロース以外の有機ポリマーから成る微細繊維を70質量%未満で含む、[1]~[12]のいずれか1項に記載の樹脂複合フィルム。
[14]
 前記セルロース以外の有機ポリマーから成る微細繊維が、アラミド微細繊維及び/又はポリアクリロニトリル微細繊維である、[13]に記載の樹脂複合フィルム。
[15]
 さらに、前記弾性率マッピングの画像解析から算出される平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である、[14]に記載の樹脂複合フィルム。
[16]
 厚みが5μm以上1500μm以下である、[1]~[15]のいずれか1項に記載の樹脂複合フィルム。
[17]
 吸湿率が2%以下である、[1]~[16]のいずれか1項に記載の樹脂複合フィルム。
[18]
 誘電率が4.5以下である、[1]~[17]のいずれか1項に記載の樹脂複合フィルム。
[19]
 前記樹脂複合フィルムに含まれる前記樹脂が熱硬化性又は光硬化性である、[1]~[18]のいずれか1項に記載の樹脂複合フィルム。
[20]
 [1]~[19]のいずれか1項に記載の樹脂複合フィルムが、支持体上に積層されている樹脂積層フィルム。
[21]
 [1]~[19]のいずれか1項に記載の樹脂複合フィルムが複数積層されている、樹脂複合フィルム積層板。
[22]
 [21]に記載の樹脂複合フィルム積層板を含む、多層プリント配線板。
[23]
 [22]に記載の多層プリント配線板を含む、半導体パッケージ基板。
[24]
 [23]に記載の半導体パッケージ基板を含む通信端末。
[25]
 セルロース微細繊維シートと樹脂を含む樹脂複合フィルムが複数積層されている樹脂複合フィルム積層板であって、以下の:
 (1)該樹脂複合フィルム積層板の断面厚み方向のAFM測定により得られる弾性率マッピングにおいて、画像解析から算出される該セルロース微細繊維シートを構成する繊維の平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である;
 (2)該弾性率マッピングにより算出される該樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、該樹脂複合フィルムの少なくとも片面で0.8μm以上30μm以下である;及び
 (3)該樹脂複合フィルム積層板の表面ラフネスが0.1μm以上2.0μm以下である;
を満足する前記樹脂複合フィルム積層板。
[26]
 前記表面ラフネスが0.2μm以上1.2μm以下である、[25]に記載の樹脂複合フィルム積層板。
[27]
 [26]に記載の樹脂複合フィルム積層板を含む、多層プリント配線板。
[28]
 [27]に記載の多層プリント配線板を含む、半導体パッケージ基板。
[29]
 [28]に記載の半導体パッケージ基板を含む通信端末。
[30]
 マトリックス樹脂中にセルロース微細繊維を含む樹脂複合フィルムであって、以下の:
 (1)樹脂複合フィルムの断面厚み方向の原子間力顕微鏡(AFM)測定により得られる弾性率マッピングにおいて、画像解析から算出される該セルロース微細繊維の平均繊維径が0.01μm~2.0μmであり、かつ最大繊維径が15μm以下である;
 (2)該樹脂複合フィルムのガラス転移温度(Tg)が、80℃以上であるか、又は存在しない;
 (3)該樹脂複合フィルムの200℃での貯蔵弾性率(E’200)が、0.5GPa以上である;及び
 (4)該200℃での貯蔵弾性率(E’200)に対する該樹脂複合フィルムの150℃での貯蔵弾性率(E’150)の比(E’150/E’200)が、1以上4.5以下である;
を満たす、前記樹脂複合フィルム。
[31]
 前記200℃での貯蔵弾性率(E’200)が0.7GPa以上である、[30]に記載の樹脂複合フィルム。
[32]
 前記弾性率マッピングにおいて前記画像解析から算出されるときに、前記樹脂複合フィルムの断面全体に対する前記セルロース微細繊維の面積割合が、5%~60%である、[30]または[31]に記載の樹脂複合フィルム。
[33]
 さらに、以下の:
 (5)200℃におけるX-Y平面の線熱膨張係数CTE200が100ppm/℃以下である;及び
 (6)150℃におけるX-Y平面の線熱膨張係数CTE150と200℃におけるX-Y平面の線熱膨張係数CTE200との数値差の絶対値が40以下である;
を満たす、[30]~[32]のいずれか1項に記載の樹脂複合フィルム。
[34]
 前記弾性率マッピングにより算出される前記樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm~30μmである、[30]~[33]のいずれか1項に記載の樹脂複合フィルム。
[35]
 無機充填材をさらに含む、[34]に記載の樹脂複合フィルム。
[36]
 前記樹脂複合フィルムの断面厚み方向の走査型電子顕微鏡(SEM)観察において、前記樹脂複合フィルムの断面全体に対する前記無機充填材の面積割合が、5%~50%である、[35]に記載の樹脂複合フィルム。
[37]
 前記弾性率マッピングの画像解析において、前記無機充填材の20%以下がセルロース微細繊維層に含まれる、[35]又は[36]に記載の樹脂複合フィルム。
[38]
 透過率が80%以上である、[30]~[37]のいずれか1項に記載の樹脂複合フィルム。
[39]
 セルロース以外の有機ポリマーから成る微細繊維を70重量%未満でさらに含む、[30]~[38]のいずれか1項に記載の樹脂複合フィルム。
[40]
 前記有機ポリマーから成る微細繊維は、アラミド微細繊維及び/又はポリアクリロニトリル微細繊維である、[39]に記載の樹脂複合フィルム。
[41]
 前記マトリックス樹脂が熱硬化性又は光硬化性である、[30]~[40]のいずれか1項に記載の樹脂複合フィルム。
[42]
 厚みが5μm~1500μmである、[30]~[41]のいずれか1項に記載の樹脂複合フィルム。
[43]
 前記厚みが5μm~200μmである、[42]に記載の樹脂複合フィルム。
[44]
 吸湿率が2%以下である、[30]~[43]のいずれか1項に記載の樹脂複合フィルム。
[45]
 誘電率が4.5以下である、[30]~[44]のいずれか1項に記載の樹脂複合フィルム。
[46]
 [30]~[45]のいずれか1項に記載の樹脂複合フィルムが、支持体上に積層されている、樹脂積層フィルム。
[47]
 [30]~[45]のいずれか1項に記載の樹脂複合フィルムが、複数積層されている、積層板。
[48]
 [47]に記載の積層板を含む、多層プリント配線板。
[49]
 [48]に記載の多層プリント配線板に半導体が搭載されている、半導体パッケージ基板。
[50]
 [49]に記載の半導体パッケージ基板を含む、通信端末。
[51]
 [30]~[45]のいずれか1項に記載の樹脂複合フィルムを含む、スピーカー振動板。
 本発明の樹脂複合フィルムは、電極を樹脂複合フィルムに埋め込む際の領域と埋め込み性を確保し、また、埋め込んだ際の平坦性を維持しつつ、かつ冷熱衝撃耐性を向上することができる樹脂複合フィルムを提供することができる。
図1(a)は、実施形態I~IVの実施例1で得られた樹脂複合フィルムのAFM弾性率マッピング画像であり、図1(b)は、図1(a)のAFM弾性率マッピング画像の弾性率ヒストグラムであり、かつ図1(c)は、図1(a)のAFM弾性率マッピング画像の2値化像である。 図2は、図1(a)のAFM弾性率マッピング画像についてセルロース微細繊維層を画定するための処理を行った後の画像である。 図3は、厚膜樹脂複合フィルムのたわみ(h)及び長さ(L)を説明するための概念図である。
 以下、本発明を実施するための形態(以下「本実施形態」という)について詳細に説明する。なお、本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 《樹脂複合フィルム》
 本実施形態の樹脂複合フィルムは、セルロース微細繊維シートと樹脂を含む樹脂複合フィルムであって、以下の:
 (1)断面厚み方向のAFM測定により得られる弾性率マッピングにおいて、画像解析から算出される前記セルロース微細繊維シートを構成する繊維の平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である;及び
 (2)弾性率マッピングにより観測される前記樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上100μm以下である;
を満足する。
 本実施形態の樹脂複合フィルムは、セルロース微細繊維シート及び樹脂を含むことにより低線熱膨張性に優れ、また、樹脂複合フィルムの少なくとも片面において0.3μm以上100μm以下の樹脂層(本願明細書において「オーバーコート樹脂層」ともいう)を備えることにより、電極を樹脂複合フィルムに埋め込む際の領域と埋め込み性を確保でき、埋め込んだ際の平坦性を維持でき、かつ冷熱衝撃耐性を向上することができる樹脂複合フィルムを提供することができる。
 〈セルロース微細繊維シート〉
 本実施形態に用いるセルロース微細繊維シート(以下、単に「繊維シート」ともいう)は、セルロース微細繊維から構成される。所望により、繊維シートは、セルロース以外の有機ポリマーからなる微細繊維を含んでよい。
 セルロースとしては、天然セルロース及び再生セルロースが挙げられる。
 天然セルロースとしては、広葉樹又は針葉樹から得られる木材パルプ、精製リンターあるいは各種植物種(竹、麻系繊維、バガス、ケナフ、リンター等)からの精製パルプ等、針葉樹パルプや広葉樹パルプ等のいわゆる木材パルプと非木材パルプなども使用できる。非木材パルプとしては、コットンリンターパルプを含むコットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、ワラ由来パルプなども使用できる。コットン由来パルプ、麻由来パルプ、バガス由来パルプ、ケナフ由来パルプ、竹由来パルプ、ワラ由来パルプは各々、コットンリントやコットンリンター、麻系のアバカ(例えば、エクアドル産又はフィリピン産のものが多い)、ザイサルや、バガス、ケナフ、竹、ワラ等の原料を蒸解処理による脱リグニン等の精製工程や漂白工程を経て得られる精製パルプを意味する。この他、海藻由来のセルロースやホヤセルロースの精製物も使用できる。さらに、セルロース生産菌(バクテリア)の作るバクテリアセルロース(BC)のようなネバードライで微細繊維の集合体が挙げられる。
 また、再生セルロースとは、天然セルロースを溶解又は結晶膨潤(マーセル化)処理し再生して得られる物質であって、粒子線回折によって格子面間隔0.73nm、0.44nm及び0.40nmに相当する回折角を頂点とする結晶回折パターン(セルロースII型結晶)を与えるような分子配列を有するβ-1,4結合グルカン(グルコース重合体)を言う。また、再生セルロースとは、X線回折パターンにおいて、2θの範囲を0°~30°とするX線回折パターンが、10°≦2θ<19°に1つのピークと、19°≦2θ≦30°に2つのピークとを有し、例えばレーヨン、キュプラ、テンセル等の再生セルロース繊維のこともまた意味する。これらの中でも微細化のし易さの観点から、繊維軸方向への分子配向性の高いキュプラ又はテンセルを原料として微細化した繊維を用いることが好ましい。さらに、再生セルロース繊維のカット糸やセルロース誘導体繊維のカット糸も使用できる。
 セルロース微細繊維の数平均繊維径は、0.01μm以上2.0μm以下であることが好ましく、より好ましくは0.02μm以上1.5μm以下、さらに好ましくは0.02μm以上1.0μm以下である。セルロース微細繊維の数平均繊維径が0.01μm以上であると、繊維シートが適度な大きさの孔径を有するため、樹脂が含浸され易く、樹脂複合フィルムの熱安定性が増すため、好ましい。
 また、セルロース微細繊維の数平均繊維径は2.0μm以下であると、セルロース微細繊維シートの単位重量あたりのセルロース微細繊維の本数が非常に多くなり、微細繊維間での交絡点数が増加し、微細繊維間での水素結合ネットワークが形成され易くなる。この効果によって樹脂と複合化した際に、樹脂中でも微細繊維の交絡・微細繊維間の水素結合ネットワークが保持され、熱安定化に寄与するため、好ましい。さらに、数平均繊維径が2.0μm以下であると、繊維シート表面の凹凸が抑制され、孔径分布が小さくなる。すなわち、大きな孔径の孔が散在を抑制できるため、薄くて均一性に優れたシートを提供できる。
 そして、セルロース微細繊維の最大繊維径は15μm以下であることが好ましく、より好ましくは10μm以下、さらに好ましくは5μm以下、最も好ましくは3μm以下である。最大繊維径が15μm以下であると、繊維シートの厚みを薄くすることができ、薄膜性の樹脂複合フィルムを製造する際に孔径等の均一性が確保し易くなるため好ましい。
 セルロース微細繊維の数平均繊維径を上記範囲にすることにより、均一な厚み分布をもつ繊維シートを提供することができる。
 さらに、セルロース微細繊維シートの数平均繊維径を0.10μm以下に制御することで、樹脂複合フィルムとしたときの全光線透過率を80%以上に設計することもできる。当該制御の方法は特段制限されないが、後述するTEMPO酸化触媒を用いる方法、又は上述したフィブリル化処理又は微細化処理によって調整する方法が挙げられる。全光線透過率を80%以上に設計すると透明フィルムとして有用であり、全光線透過率を90%以上に設計することがより好ましい。全光線透過率の測定法は、ASTM D1003に基づき、ヘイズメーターNDH7000SP CU2II(製品名)(日本電色工業株式会社製)を使用した光透過性試験によって測定できる。
 ここで、数平均繊維径について説明する。まず、セルロース微細繊維からなる構造体の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて1,000~100,000倍相当の倍率で行う。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数える。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維径を算出する。さらに抽出した他の2つのSEM画像についても同じように数平均繊維径を算出し、合計10画像分の結果を平均化し、対象とする試料の平均繊維径を得る。不織布などに積層させた積層構造体については、セルロース微細繊維シート側からSEM観察を行う。
 セルロース微細繊維の数平均繊維径及び最大繊維径は、下記実施例に記載の方法に準じて測定される。
 最大繊維太さが15μm以下であるとは、先に述べた数平均繊維径の測定時に繊維シート表面の任意の10箇所について、1,000~100,000倍相当の倍率にて電子顕微鏡(SEM)観察を行い、得られる画像中に含まれるいずれの交絡繊維についても繊維径が15μm以下であることを意味する。但し、画像において数本の繊維が多束化して15μm以上の繊維径となっていることが明確に確認できる繊維(束)は、15μm以上の繊維径をもつ繊維とはしないものとする。
 但し、画像において数本の繊維が多束化して15μm以上の繊維径となっていることが明確に確認できる場合には15μm以上の繊維径をもつ繊維とはしないものとする。
 また、最大繊維径が2μmより大きく15μm以下のセルロース繊維をセルロース微細繊維と混抄するか、または、微細化後に最大繊維径が2μmより大きく15μm以下のセルロース繊維が残存していてもよい。最大繊維径が2μmより大きく15μm以下のセルロース繊維の含有率は0%超30%以下であることが好ましく、20%以下であることがより好ましい。含有率が0%超30%以下であれば、セルロース微細繊維の表面積及び交絡点が相対的に多くなり、セルロース微細繊維間の水素結合ネットワークを形成するため、線熱膨張係数に有効である。
 最大繊維径を小さくする方法に制限はないが、後述するフィブリル化処理又は微細化処理の処理時間や回数を増やす手段を取ることができる。
 最大繊維径の含有率は、次の(1)~(5)により算出される面積比率とする。
(1) CNF 目付10g/m、20cm繊維シートを、3t/30cm、速度2m/分でカレンダー処理(型式:H2TEM300、由利ロール株式会社社製)を行う。
(2) 光学顕微鏡観察:繊維シート中の任意の9点について、100倍での光学顕微鏡観察を行う。
(3) 太い繊維量評価:9点の100倍光学顕微鏡観察結果に対し、それぞれ9点の画像へ実寸法として2mm角の枠線を描く。
(4) 枠線内に確認される繊維径3μm以上15μm以下のセルロース繊維の面積を、画像解析ソフト(imageJ)を使用して算出する。
(5) 当該面積/4mmを計算する。
 繊維シートにおけるセルロース微細繊維の含有量は、特に限定されないが、30重量%以上であることが好ましい。より好ましくは40重量%、さらに好ましくは50重量%以上である。セルロース微細繊維を30重量%以上含むことで、セルロース微細繊維の交絡点数が通常の繊維シートのそれと比して多くなることで樹脂と複合化した際の熱的安定性(線熱膨張係数)を高めることができる。
 繊維シートは、上述したようにセルロース微細繊維をシート状に加工して得ることができ、加工性や機能性の観点から、シート状に加工した後の厚みが2μm以上1000μm以下であることが好ましい。ここで、厚みの測定は、面接触型の膜厚計、例えばMitutoyo製の膜厚計(Model ID-C112XB)等を用い、繊維シートから10.0cm×10.0cmの正方形片を切り取り種々な位置について5点の測定値の平均値を厚みT(μm)とする。また、厚みの測定で切り取った10.0cm×10.0cmの正方形片の厚みT(μm)と、その重さW(g)から、以下の式:
   W=100×W
を用いて膜の目付W(g/m)を算出することができる。
 繊維シートの厚みは、より好ましくは2μm以上1000μm以下、さらに好ましくは5μm以上500μm以下、最も好ましくは5μm以上100μm以下である。膜厚が上記の範囲であると、樹脂複合フィルムを作製した際に厚みを最小化することができ、軽量化やコンパクト化の点で有効である。
 繊維シートの目付は、1g/m以上200g/m以下、より好ましくは3g/m以上150g/m以下、さらに好ましくは4g/m以上100g/m以下である。目付が1g/m以上であると、各種デバイスへの組み立て工程におけるハンドリングの観点から好ましい。目付が200g/m以下であると、膜厚制御の観点から好ましい。
 また、セルロース微細繊維の目付は、好ましくは1g/m以上50g/m以下、より好ましくは3g/m以上40g/m以下、さらに好ましくは4g/m以上30g/m以下である。目付が1g/m以上であると、各種デバイスへの組み立て工程におけるハンドリングの観点から好ましい。目付が50g/m以下であると、膜厚制御の観点から好ましい。
 繊維シートの空隙率は、好ましくは35%以上95%以下、より好ましくは40%以上90%以下である。上限として、さらに好ましくは80%、最も好ましくは50%以下である。空隙率が35%以上であると、樹脂が含浸し易くなるため好ましい。空隙率が95%以下であると、シートの取扱い性の観点、繊維シートと樹脂との複合フィルムの耐熱性向上の観点から好ましい。
 繊維シートの透気抵抗度は、好ましくは1sec/100ml以上400,000sec/100ml以下、より好ましくは100,000sec/100ml以下、さらに好ましくは20,000sec/100ml以下である。ここで、透気抵抗度はJIS P 8117に記載のガーレー試験機法に基づき測定される数値を意味する。透気抵抗度は、より好ましくは2sec/100ml以上、さらに好ましくは5sec/100ml以上の範囲内である。透気抵抗度が1sec/100ml以上の繊維シートでは、微細な繊維で構成され、より欠点の少ない均一な繊維シートを製造でき、かつ繊維シートを樹脂複合フィルムとして用いた際の強度の観点から好ましい。また、透気抵抗度が400,000sec/100ml以下であれば、空隙率が維持されるため、繊維シートを樹脂複合フィルムとして使用する際の樹脂含浸性が良好で、熱的安定性に優れるため好ましい。
(セルロース以外の有機ポリマーからなる微細繊維)
 繊維シートは、セルロース微細繊維の他に、セルロース以外の有機ポリマーからなる微細繊維を更に含んでもよい。繊維シートがセルロース以外の有機ポリマーを含むことで、セルロース微細繊維スラリーを用いて抄紙法、又は塗工法によりシート形成をする際、乾燥時に繊維シートの収縮を抑制し、繊維シート中の空孔や孔径を保持することが可能となる。それ故、繊維シートと樹脂とを複合する際に樹脂が含浸し易くなり、複合化し易くなる。繊維シートにおけるセルロース以外の有機ポリマーからなる微細繊維の含有量は、好ましくは70重量%未満、より好ましくは60重量%未満、さらに好ましくは50重量%未満である。有機ポリマーとしては微細繊維を製造し得る有機ポリマーであればよく、例えば芳香族系又は脂肪族系のポリエステル、ナイロン、ポリアクリロニトリル、セルロースアセテート、ポリウレタン、ポリエチレン、ポリプロピレン、ポリケトン、芳香族系ポリアミド、ポリイミド、絹、羊毛等のセルロース以外の天然有機ポリマーを挙げることができる。有機ポリマーからなる微細繊維は、有機繊維を叩解、高圧ホモジナイザー等による微細化処理により高度にフィブリル化又は微細化させた微細繊維、各種ポリマーを原料としてエレクトロスピニング法によって得られる微細繊維、各種ポリマーを原料としてメルトブロウン法によって得られる微細繊維等を挙げることができるが、これらに限定されない。これらの中でも、特にポリアクリロニトリル微細繊維や全芳香族ポリアミドであるアラミド繊維を高圧ホモジナイザーにより微細化したアラミド微細繊維は、高耐熱性、高い化学的安定性を有するため好ましい。これら有機ポリマーの最大繊維径は、15μm以下であることが好ましい。最大繊維径が15μm以下であると、繊維シートの厚みを薄くすることができ、薄膜性の樹脂複合フィルムを製造する際に孔径等の均一性が確保し易くなるため好ましい。
 アラミド微細繊維は、アラミド短繊維を原料としてもよい。本実施形態において、アラミドとしては、アミド結合の60%以上が芳香環に直接結合した線状高分子化合物を使用してもよい。このようなアラミドとしては、例えば、ポリメタフェニレンイソフタルアミドおよびその共重合体、ポリパラフェニレンテレフタルアミドおよびその共重合体、コポリパラフェニレン・3,4’-ジフェニルエーテルテレフタルアミドなどが挙げられる。
 アラミド短繊維としては、アラミドを原料とする繊維を所定の長さに切断したものがあげられ、そのような繊維としては、例えば、帝人テクノプロダクツ(株)の「テイジンコーネックス(登録商標)」、「テクノーラ(登録商標)」、デュポン社の「ノーメックス(登録商標)」、「ケブラー(登録商標)」、テイジンアラミド社の「トワロン(登録商標)」等の商品名で入手することができるものが挙げられるが、これらに限定されるものではない。アラミド短繊維の長さは、一般に1mm以上50mm未満、好ましくは2~10mmの範囲内から選ぶことができる。
 本実施形態のセルロース微細繊維シートは、有機高分子からなるシート(以下、有機高分子シートと略す。)に積層された積層構造体(積層シートともいう)であっても良い。セルロース微細繊維シートが有機高分子シートに積層されていると、引張強度等が強化されて丈夫になるため、シートとしての取扱い性が改善される。
 積層構造体において、有機高分子シートの構造は特に規定されるものではない。抄紙法によりセルロース微細繊維を濾過して製造するという観点、及び樹脂を含浸する観点からは、有機高分子シートは多孔質シートであることがより好ましい。多孔質シートとしては、例えば、有機高分子繊維からなる織物、編物、網状物、長繊維不織布、短繊維不織布、あるいは樹脂の相分離や延伸等で製造される高分子微多孔膜又はフィルム等が挙げられる。
 有機高分子シートは、抄紙性の向上およびセルロース微細繊維シートとの接着性改善のために親水性であることが好ましく、親水化するためにコロナ放電処理やプラズマ処理等のシート表面の表面改質がされていてもよい。
 有機高分子シートを構成する有機高分子の組成としては特に規定されるものではないが、例えば、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリアセタール、ポリフッ化ビニリデン等のフッ素樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、ABS樹脂、ポリフェニレンエーテル(PPE)樹脂、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー、セルロース(木材パルプや綿等の天然セルロース繊維、ビスコースレーヨンや銅アンモニアレーヨン及びテンセル等の再生セルロース)、セルロース誘導体、酢酸セルロース、ニトロセルロース、スチレン-ブタジエン又はスチレン-イソプレンブロック共重合体、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン樹脂、ポリイミドシリコーン樹脂、熱硬化型ポリフェニレンエーテル樹脂、変性PPE樹脂、天然ゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、クロロプレンゴム、エチレン-プロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム及びハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴム等が挙げられ、これらは単独又は二種以上の組合せで用いることができる。
 天然セルロース微細繊維として、表面の化学処理を加えたセルロース系の微細繊維、及びTEMPO酸化触媒によって6位の水酸基が酸化され、カルボキシル基(酸型、塩型を含む)となったセルロース系の微細繊維を使用することもできる。前者の場合は、目的に応じて種々の表面化学処理を施すことにより、例えば、セルロース微細繊維の表面に存在する一部又は大部分の水酸基が酢酸エステル、硝酸エステル、硫酸エステルを含むエステル化されたもの、メチルエーテルを代表とするアルキルエーテル、カルボキシメチルエーテルを代表とするカルボキシエーテル、シアノエチルエーテルを含むエーテル化されたものを、適宜調製して使用することができる。特に疎水的な置換基で化学修飾したセルロースをシート原料として用いると、高空隙率に制御し易くなるため好ましい場合がある。また、疎水的な置換基で化学修飾したセルロースは、樹脂含浸時に透明性の高い樹脂シートを得られる観点からも好ましい。
 また、TEMPO酸化触媒によって6位の水酸基が酸化されたセルロース微細繊維の調製においては、必ずしも高圧ホモジナイザーのような高エネルギーを要する微細化装置を使用することは必要なく、セルロース微細の分散体を得ることができる。例えば、文献(A.Isogai et al.,Biomacromolecules,7,1687-1691(2006))に記載されるように、天然セルロースの水分散体に2,2,6,6-テトラメチルピペリジノオキシラジカルのようなTEMPOと呼ばれる触媒とハロゲン化アルキルを共存させ、これに次亜塩素酸のような酸化剤を添加し、一定時間反応を進行させることにより、水洗等の精製処理後に、通常のミキサー処理を施すことにより極めて容易にセルロース微細繊維の分散体を得ることができる。
 尚、本実施形態では、上記の原料の異なる再生セルロース又は天然セルロース系の微細繊維やフィブリル化度の異なる天然セルロースの微細繊維、表面を化学処理された天然セルロースの微細繊維、有機ポリマーの微細繊維などを2種類以上、所定量混合させてセルロース微細繊維層を形成させることも有効である場合がある。
 (繊維シート架橋剤)
 本実施形態において、セルロース微細繊維は、強度補強、耐水性、及び耐溶剤性のために、繊維シート架橋剤によってセルロース微細繊維間を化学的に架橋することもできる。繊維シート架橋剤は、セルロース微細繊維重量の30重量%以下、より好ましくは20重量%以下である。繊維シート架橋剤は、セルロース微細繊維間を化学的に架橋するものであれば限定されず、イソシアネート基を2つ以上有するポリイソシアネートと活性水素含有化合物とが付加反応して生成した樹脂を使用することが好ましい。イソシアネート基を2つ以上有するポリイソシアネートとしては、芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が挙げられる。活性水素含有化合物としては、ポリエステルポリオール、ポリエーテルポリオールなどの1~6価の水酸基含有化合物、アミノ基含有化合物、チオール基含有化合物、カルボキシル基含有化合物等が挙げられる。また、空気中あるいは反応場に存在する水や二酸化炭素等も含まれる。
 繊維シート架橋剤を30重量%以下含むことで、繊維シートの強度が増加し、樹脂含浸性や、デバイスを組み立てる際の取り扱い性が極めて良好な樹脂複合フィルムとなる。また、積層構造体においては、セルロース微細繊維と有機高分子シートを構成する繊維間を、繊維シート架橋剤によって化学的に架橋することもできる。セルロース微細繊維層と有機高分子シートが架橋することで、樹脂含浸時の剥離を防ぐことができるため好ましい。
 (繊維シートの製造方法)
 以下、本実施形態における繊維シートの製造方法の例について説明するが、特にこの方法に限定されるものではない。
 本実施形態における繊維シートの製造方法は、抄紙法または塗布法のいずれかで製造する。抄紙法の場合には、(1)セルロース繊維の微細化によるセルロース微細繊維製造工程、(2)該セルロース微細繊維の抄紙スラリーの調製工程、(3)該抄紙スラリーを多孔質基材上でのろ過により湿紙を形成する抄紙工程、(4)該湿紙を乾燥し乾燥シートを得る乾燥工程からなる。
 また、該乾燥シートに対して(A)シートの均質化、厚み低減をするために、該乾燥シートを熱プレスする平滑化工程、(B)熱処理により繊維シート架橋剤による化学的な結合形成等を促進させる熱処理工程のどちらか一つまたは両方を実施してもよい。また、塗布法の場合には、上記(1)および(2)と同様の工程により調整した塗布用スラリーを有機高分子シート上に塗布、乾燥させて成膜する。さらに、(A)平滑化工程および(B)熱処理工程を経ても良い。塗布法の場合の塗布方法はスプレー塗工、グラビア塗工、ディップ塗工等種々な塗布方法を選定することができる。
 繊維シートは、前記記載のセルロース繊維を用いて、前処理工程、叩解処理工程及び微細化工程を経ることが好ましい。天然セルロース繊維の前処理工程においては、100~150℃の温度での水中含浸下でのオートクレーブ処理、酵素処理等、又はこれらの組み合わせによって、原料パルプが以降の工程で微細化し易い状態にしておくことは有効である。該前処理工程の際に、1重量%以下の濃度の無機酸(塩酸、硫酸、リン酸、ホウ酸など)ないしは有機酸(酢酸、クエン酸など)を添加してオートクレーブ処理を行うことも場合によっては有効である。これらの前処理は、微細化処理の負荷を軽減するだけでなく、セルロース繊維を構成するミクロフィブリルの表面や間隙に存在するリグニンやヘミセルロース等の不純物成分を水相へ排出し、その結果、微細化された繊維のα-セルロース純度を高める効果もあるため、セルロース微細繊維不織布の耐熱性の向上に大変有効であることもある。また、再生セルロース繊維の場合には油剤を除去するために界面活性剤を使用する水洗を前処理工程で実施できる。
 叩解処理工程においては原料パルプを0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下の固形分濃度となるように水に分散させ、ビーターやディスクリファイナー(ダブルディスクリファイナー)のような叩解装置でフィブリル化を徹底的に促進させる。ディスクリファイナーを用いる場合には、ディスク間のクリアランスを極力狭く(例えば、0.1mm以下)設定して処理を行うと、極めて高度な叩解(フィブリル化)が進行する。したがって、後述する高圧ホモジナイザー等による微細化処理の条件を緩和でき、有効な場合がある。
 叩解処理の程度は以下のように定められる。本願発明者らによる検討において、叩解処理を行うにつれCSF値(セルロースの叩解の程度を示す。JIS P 8121で定義されるパルプのカナダ標準ろ水度試験方法で評価)が経時的に減少していき、一旦、ゼロ近くとなった後、さらに叩解処理を続けると再び増大していく傾向が確認された。セルロース微細繊維の製造において、該叩解処理でのCSF値は少なくともゼロが好ましく、より好ましくはCSF30ml以上である。このような叩解度のスラリーは均一性が増大し、その後の高圧ホモジナイザー等による微細化処理での詰まりを軽減できる製造効率上の利点がある。
 繊維シートは、上述した叩解工程に引き続き、高圧ホモジナイザー、超高圧ホモジナイザー、グラインダー等による微細化処理を施すことが好ましい。この時、スラリー中の固形分濃度は、上述した叩解処理に準じ、0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下である。この範囲の固形分濃度の場合、詰まりが発生せず、しかも効率的な微細化処理が達成できる。
 使用する高圧ホモジナイザーとしては、例えば、ニロ・ソアビ社(伊)のNS型高圧ホモジナイザー、(株)エスエムテーのラニエタイプ(Rモデル)圧力式ホモジナイザー、三和機械(株)の高圧式ホモゲナイザー等を挙げることができ、これらの装置とほぼ同様の機構で微細化を実施する装置であれば、これら以外の装置であっても構わない。超高圧ホモジナイザーとしては、みづほ工業(株)のマイクロフルイダイザー、吉田機械興業(株)ナノマイザー、(株)スギノマシーンのアルティマイザー等の高圧衝突型の微細化処理機を意味し、これらの装置とほぼ同様の機構で微細化を実施する装置であれば、これら以外の装置であっても構わない。グラインダー型微細化装置としては、(株)栗田機械製作所のピュアファインミル、増幸産業(株)のスーパーマスコロイダーに代表される石臼式摩砕型を挙げることができるが、これらの装置とほぼ同様の機構で微細化を実施する装置であれば、これら以外の装置であっても構わない。
 セルロース微細繊維の繊維径は、高圧ホモジナイザー等による微細化処理の条件(装置の選定や操作圧力及びパス回数)又は該微細化処理前の前処理の条件(例えば、オートクレーブ処理、酵素処理、叩解処理等)によって制御することができる。
 アラミド繊維を用いる場合、アラミド繊維の微細化もセルロース微細繊維と同様の前処理工程、叩解処理工程及び微細化工程を経ることが好ましい。前処理工程では油剤を除去するために界面活性剤を使用した水洗を実施する。叩解処理工程においては、水洗後繊維を0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下の固形分濃度となるように水に分散させ、ビーターやディスクリファイナー(ダブルディスクリファイナー)のような叩解装置でフィブリル化を徹底的に促進させる。ディスクリファイナーを用いる場合には、ディスク間のクリアランスを極力狭く(例えば、0.1mm以下)設定して、処理を行うと、極めて高度な叩解(フィブリル化)が進行するので、高圧ホモジナイザー等による微細化処理の条件を緩和でき、有効な場合がある。叩解処理の程度は前記セルロース微細繊維製造で用いたCSF値を利用できる。
 アラミド微細繊維の製造には、上述した叩解工程に引き続き、高圧ホモジナイザー、超高圧ホモジナイザー、グラインダー等による微細化処理を施すことが好ましい。この際の水分散体中の固形分濃度は、上述した叩解処理に準じ、0.5重量%以上4重量%以下、好ましくは0.8重量%以上3重量%以下、より好ましくは1.0重量%以上2.5重量%以下である。この範囲の固形分濃度の場合、詰まりが発生せず、しかも効率的な微細化処理が達成できる。使用する高圧ホモジナイザーは、セルロース微細繊維製造で記載した装置は少なくとも使用可能であるが、それらに限定さるものではない。
 アラミド微細繊維の繊維径は、高圧ホモジナイザー等による微細化処理の条件(装置の選定や操作圧力及びパス回数)又は該微細化処理前の前処理の条件(例えば、叩解処理等)によって制御することができる。
 本実施形態では、上記の原料の異なるセルロース微細繊維やフィブリル化度の異なるセルロース微細繊維、表面を化学処理されたセルロース微細繊維、あるいは、アラミド微細繊維などの有機ポリマー微細繊維などを2種類以上、任意の割合で混合したスラリーを用いて後述する抄紙・乾燥処理を行い、2種類以上のセルロース微細繊維、あるいはセルロース微細繊維およびアラミド微細繊維で構成される繊維シートを製造することもできる。
 2種類以上の微細繊維で構成される繊維シートは、それぞれの微細繊維が凝集しておらず繊維シート中で均一に分散していることが好ましい。スラリー中でそれぞれの微細繊維が偏在するような分散状態では、得られる繊維シートの膜質均一性は良好とならない。したがって、スラリー中で適度に均一な分散が達成されている必要がある。2成分以上の微細繊維が含まれるスラリーの分散方法として、ディスパータイプの羽根を装着した高速分散機(例えばプライミクス(株)のT.K.ホモミキサー)やディスクリファイナー(ダブルディスクリファイナーを含む)、高圧ホモジナイザーや超高圧ホモジナイザー、グラインダー等を挙げることができる。
 なお、セルロース微細繊維の製造工程において、アラミド微細繊維の原料を混合することで、セルロースおよびアラミドを同時に微細化できるとともに高分散性が同時に達成できるため、有効である場合もある。
 上記のセルロース微細繊維のスラリーに各種添加剤(油性化合物、水分散性ブロックイソシアネート、機能化剤等)を添加し、抄紙スラリーを調製してもよい。抄紙スラリーはセルロース微細繊維濃度が0.01重量%以上0.5重量%以下であることが好ましい。より好ましくは0.08重量%以上0.35重量%以下であると好適に安定な抄紙を実施することができる。該スラリー中のセルロース微細繊維濃度が0.01重量%よりも低いと濾水時間が非常に長くなり生産性が著しく低くなると同時に、膜質均一性も著しく悪くなるため好ましくない。また、セルロース微細繊維濃度が0.5重量%よりも高いと、分散液の粘度が上がり過ぎてしまうため、均一に製膜することが困難になり好ましくない。
 多孔質の繊維シートを製造する上で、上記抄紙スラリー中には本発明者らによる前記した特許文献1(特開2012-46843号公報)に記載のエマルジョン化した油性化合物が含まれていてもよい。
 具体的には、大気圧下での沸点範囲が50℃以上200℃以下である油性化合物が、エマルジョンの形態で抄紙スラリー中に0.15重量%以上10重量%以下の濃度で分散していることが好ましい。油性化合物の抄紙スラリー中の濃度は0.15重量%以上10重量%以下であることが好ましく、より好ましくは0.3重量%以上5重量%以下、さらに好ましくは0.5重量%以上3重量%以下である。油性化合物の濃度が10重量%を超えてもセルロース微細繊維多孔質シートを得ることはできるが、製造プロセスとして使用する油性化合物の量が多くなり、それに伴う、安全上の対策の必要性やコスト上の制約が発生するため好ましくない。また、油性化合物の濃度が0.15重量%よりも小さくなると所定の透気抵抗度範囲よりも高い透気抵抗度のシートしか得られなくなるため、やはり好ましくない。
 乾燥時に上記油性化合物が除去されることが望ましい。したがって、本実施形態において、抄紙スラリー中にエマルジョンとして含まれる油性化合物は、一定の沸点範囲にあることが好ましい。具体的には、大気圧下での沸点が50℃以上200℃以下であることが好ましい。さらに好ましくは、60℃以上190℃以下であれば、工業的生産プロセスとして抄紙スラリーを操作し易く、また、比較的効率的に加熱除去することが可能となる。油性化合物の大気圧下での沸点が50℃未満であると抄紙スラリーを安定に扱うために低温制御下で扱うことが必要となり、効率上好ましくない。さらに、油性化合物の大気圧下での沸点が200℃を超えると、乾燥工程で油性化合物を加熱除去するのに多大なエネルギーが必要となるため、やはり好ましくない。
 さらに、上記油性化合物の25℃での水への溶解度は5重量%以下、好ましくは2重量%以下、さらに好ましくは1重量%以下であることが油性化合物の必要な構造の形成への効率的な寄与という観点で望ましい。
 油性化合物として、例えば、炭素数6~炭素数14の範囲の炭化水素、鎖状飽和炭化水素類、環状炭化水素類、鎖状または環状の不飽和炭化水素類、芳香族炭化水素類、炭素数5~炭素数9の範囲での一価かつ一級のアルコールが挙げられる。特に、1-ペンタノール、1-ヘキサノール、1-ヘプタノールの中から選ばれる少なくとも一つの化合物を用いると特に好適にセルロース微細繊維多孔質シートを製造することができる。これは、エマルジョンの油滴サイズが極めて微小(通常の乳化条件で、1μm以下)となるため、高空隙率かつ微細な多孔質構造を有する不織布の製造に適していると考えられる。
 これらの油性化合物は単体として配合してもよいし、複数の混合物を配合してもよい。さらには、エマルジョン特性を適当な状態に制御するために、抄紙スラリー中に水溶性化合物を溶解させてもよい。
 水溶性化合物として、具体的には、糖、水溶性多糖、水溶性多糖誘導体、多価アルコール、アルコール誘導体、及び水溶性高分子からなる群から選択される1種以上の水溶性化合物を含有していてもよい。ここで、水溶性多糖は、水溶性の多糖を意味し、天然物としても多種の化合物が存在する。例えば、でんぷんや可溶化でんぷん、アミロース等である。また、水溶性多糖誘導体は、上述した水溶性多糖の誘導体、例えば、アルキル化物、ヒドロキシアルキル化物、アセチル化物であって水溶性のものが含まれる。あるいは、誘導体化する前の多糖がセルロース、スターチ等の様に水に不溶性であっても、誘導体化、例えば、ヒドロキシアルキル化やアルキル化、カルボキシアルキル化等によって、水溶性化されたものも該水溶性多糖誘導体に含まれる。2種類以上の官能基で誘導体化された水溶性多糖誘導体も含まれる。ただし、使用できる水溶性化合物は上記に記載された化合物に限定されるものではない。
 上記の水溶性化合物の混合量は、油性化合物に対し25重量%以下であることが好ましい。これ以上の添加量とすると油性化合物のエマルジョンの形成能が低下するため、好ましくない。また、抄紙スラリー中において、水溶性化合物が水相中に溶解していることが好ましい。水溶性化合物の濃度は、0.003重量%以上0.3重量%以下、より好ましくは、0.005重量%以上0.08重量%以下、さらに好ましくは、0.006重量%以上0.07重量%以下の量であり、この範囲であると、多孔質繊維シートが得られ易いと同時に、抄紙スラリーの状態が安定化することが多いので好ましい。
 エマルジョンを安定化させる目的で、抄紙スラリー中に上記の水溶性化合物以外に界面活性剤が、上記特定の水溶性高分子との合計量が上記濃度範囲で含まれていても構わない。
 界面活性剤としては、アルキル硫酸エステル塩、ポリオキシエチレンアルキル硫酸エステル塩、アルキルベンゼンスルホン酸塩、α‐オレフィンスルホン酸塩等のアニオン界面活性剤、塩化アルキルトリメチルアンモニウム、塩化ジアルキルジメチルアンモニウム、塩化ベンザルコニウム等のカチオン界面活性剤、アルキルジメチルアミノ酢酸ベタイン、アルキルアミドジメチルアミノ酢酸ベタイン等の両性界面活性剤、アルキルポリオキシエチレンエーテルや脂肪酸グリセロールエステル等のノニオン性界面活性剤を挙げることができるが、これらに限定されるものではない。
 この他、抄紙スラリー中には、目的に応じて種々の添加物が添加されていても構わない。例えば、水分散性ブロックポリイソシアネート、水溶性ポリマー、熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂、シリカ粒子、アルミナ粒子、酸化チタン粒子、炭酸カルシウム粒子のような無機系粒子状化合物、樹脂微粒子、各種塩類、抄紙スラリーの安定性を阻害しない程度の有機溶剤、消泡剤等、シート構造体の製造に悪影響を及ぼさない範囲(種類の選択や組成の選択)で添加することができる。
 水分散性ブロックポリイソシアネートとは加熱により上記繊維シート架橋剤になることが可能な化合物である。具体的には、(1)ポリイソシアネート及びポリイソシアネート誘導体等のポリイソシアネート化合物を基本骨格とする、(2)ブロック剤によってイソシアネート基がブロックされている、(3)常温では活性水素を有する官能基とは反応しない、(4)ブロック基が解離温度以上の熱処理により、ブロック基が脱離し活性なイソシアネート基が再生され、活性水素を有する官能基と反応し結合を形成する、(5)エマルジョンの形態で水中に分散していることを特徴とする。
 上記の水分散性ブロックポリイソシアネートは繊維シート製造において以下のような挙動を示すと考えられる。
(1)抄紙スラリー中でセルロース微細繊維に吸着
(2)該水分散性ブロックポリイソシアネートを含む湿紙が形成
(3)湿紙の乾燥に伴い、該水分散性ブロックポリイソシアネートの乾燥とセルロース微細繊維上でのブロックポリイソシアネートの塗膜形成
(4)熱キュアによるブロック基の解離および架橋反応の進行
 上記水分散性ブロックポリイソシアネートは、親水性化合物をブロックポリイソシアネートに直接結合させ乳化させた化合物(自己乳化型)、界面活性剤等で強制乳化させた化合物(強制乳化型)のどちらでも良い。
 水分散体の平均粒子径は1-1000nmであれば良く、好ましくは10-500nm、より好ましくは10-200nmである。1000nm以上の場合はセルロース微細繊維繊維径に対し大きすぎるため、均一な吸着が困難となる。そのため、繊維シート架橋剤による架橋がなされないセルロース微細繊維が増えるためシート強度増強の観点で好ましくない。
 これらのエマルジョン表面にはアニオン性、ノニオン性、カチオン性のいずれかの親水基が露出しているが、より好ましくはカチオン性である。その理由は、抄紙スラリーを製造する段階で、希薄なセルロース微細繊維スラリー(0.01~0.5重量%)中で水分散性ブロックポリイソシアネート(0.0001~0.5重量%)を効果的にセルロース微細繊維に吸着させる上で、静電相互作用を利用することが有効であるためである。一般的なセルロース繊維表面はアニオン性(蒸留水中ゼータ電位-30~-20mV)であることが知られている(J.Brandrup (editor) and E.H.Immergut (editor) “Polymer Handbook 3rd edition” V-153~V-155を参照)。したがって、水分散体表面がカチオン性であることにより、容易にセルロース微細繊維状に吸着させられる。ただし、ノニオン性であってもエマルジョンの親水基のポリマー鎖長や剛直性等によっては十分にセルロース微細繊維に吸着させることは可能である。さらに、アニオン性のような静電反発により吸着がより困難な場合であっても、一般的に周知なカチオン性吸着助剤やカチオン性ポリマーを用いることで、セルロース微細繊維上に吸着させることができる。
 上記水分散性ブロックポリイソシアネートは少なくとも2個以上のイソシアネート基を含有するポリイソシアネートおよびポリイソシアネート誘導体であれば特に制限されない。ポリイソシアネートとしては芳香族ポリイソシアネート、脂環族ポリイソシアネート、脂肪族ポリイソシアネート等が挙げられる。
 ポリイソシアネート誘導体としては、例えば、上記のポリイソシアネートの多量体(例えば、2量体、3量体、5量体、7量体等)の他に、活性水素含有化合物と1種類又は2種類以上反応させて得られた化合物が挙げられる。その化合物はアロファネート変性体(例えば、ポリイソシアネートと、アルコール類との反応より生成するアロファネート変性体等)、ポリオール変性体(例えば、ポリイソシアネートとアルコール類との反応より生成するポリオール変性体(アルコール付加体)等)、ビウレット変性体(例えば、ポリイソシアネートと、水やアミン類との反応により生成するビウレット変性体等)、ウレア変性体(例えば、ポリイソシアネートとジアミンとの反応により生成するウレア変性体等)、オキサジアジントリオン変性体(例えば、ポリイソシアネートと炭酸ガスとの反応により生成するオキサジアジントリオン等)、カルボジイミド変性体(ポリイソシアネートの脱炭酸縮合反応により生成するカルボジイミド変性体等)、ウレトジオン変性体、ウレトンイミン変性体等が挙げられる。
 活性水素含有化合物として、例えば、ポリエステルポリオール、ポリエーテルポリオールを含む1~6価の水酸基含有化合物、アミノ基含有化合物、チオール基含有化合物、カルボキシル基含有化合物等が挙げられる。また、空気中あるいは反応場に存在する水や二酸化炭素等も含まれる。
 ブロック剤は、ポリイソシアネート化合物のイソシアネート基に付加してブロックするものである。このブロック基は室温では安定であるが、熱処理温度(通常約100~約200℃)に加熱した際、ブロック剤が脱離し遊離イソシアネート基を再生しうるものである。このような要件を満たすブロック剤としては、アルコール系化合物、アルキルフェノール系化合物、フェノール系化合物、活性メチレン系化合物、メルカプタン系化合物、酸アミド系化合物、酸イミド系化合物、イミダゾール系化合物、尿素系化合物、オキシム系化合物、アミン系化合物が挙げられ、これらのブロック剤はそれぞれ単独で又は2種以上組み合わせて使用できる。
 自己乳化型ブロックポリイソシアネートはブロックポリイソシアネート骨格にアニオン性又はノニオン性又はカチオン性基を有する活性水素基含有化合物を結合したものである。
 アニオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、例えば、1つのアニオン性基を有し、かつ、2つ以上の活性水素基を有する化合物が挙げられる。アニオン性基としては、カルボキシル基、スルホン酸基、リン酸基等が挙げられる。
 ノニオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、例えば、ノニオン性基として通常のアルコキシ基を含有しているポリアルキレンエーテルポリオール等が使用される。
 カチオン性基を有する活性水素基含有化合物としては、特に制限されるものではないが、ヒドロキシル基又は1級アミノ基のような活性水素含有基と3級アミノ基を有する脂肪族化合物、なかでも、3級アミノ基を有し、かつイソシアネート基と反応性のある活性水素を2個以上含有するポリヒドロキシ化合物が好ましい。
 カチオン性基はアニオン性基を有する化合物で中和されることで、塩の形で水中に分散せ易くすることもできる。アニオン性基とは、例えば、カルボキシル基、スルホン酸基、燐酸基等が挙げられる。また、導入された三級アミノ基は、硫酸ジメチル、硫酸ジエチル等で四級化することもできる。
 強制乳化型ブロックポリイソシアネートは、ブロックポリイソシアネートが周知一般のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、高分子系界面活性剤、反応性界面活性剤等により乳化分散された化合物である。
 尚、水分散性ブロックポリイソシアネートは、自己乳化型及び強制乳化型ともに水以外の溶剤を20重量%含んでいても良い。溶剤は特に限定されないが、例えば、エチレングリコールモノメチルエーテル、ジエチレングリコールモノメチルエーテル、エチレングリコール、ジエチレングリコール、トリエチレングリコール等を挙げることができる。これら溶剤は、1種を単独で用いても2種以上を併用してもよい。
 水溶性ポリマーは、カチオン性、アニオン性、両性又はノニオン性のいずれであってよい。
 カチオン性ポリマーとしては、第1級アミノ基、第2級アミノ基、第3級アミノ基、第4級アンモニウム塩基、ピリジニウム、イミダゾリウム、及び四級化ピロリドンを有するポリマーであり、例えば、カチオン化澱粉、カチオン性ポリアクリルアミド、ポリビニルアミン、ポリジアリルジメチルアンモニウムクロリド、ポリアミドアミンエピクロロヒドリン、ポリエチレンイミン、キトサン等の水溶性のカチオン性ポリマー等が挙げられる。
 アニオン性ポリマーとしては、カルボキシル基、スルホン基、リン酸基等のアニオン性基を有するポリマーであり、例えば、カルボキシメチルセルロース、ポリアクリル酸、アニオン性ポリアクリルアミド、尿素リン酸化デンプン、コハク酸変性デンプン、ポリスチレンスルホン酸ナトリウム等が挙げられる。
 両性ポリマーとしては、アニオン性のモノマー単位とカチオン性のモノマー単位が両方、分子鎖骨格中に含まれる両性水溶性高分子を挙げることができる。例えば、ジアリルアミン塩酸塩・マレイン酸共重合体、両性ポリアクリルアミド等が挙げられる。
 ノニオン性ポリマーとしては、例えば、ポリエチレングリコール、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール等が挙げられる。
 スラリー中に添加可能な熱可塑性樹脂としては、例えば、スチレン系樹脂、アクリル系樹脂、芳香族ポリカーボネート系樹脂、脂肪族ポリカーボネート樹脂、芳香族ポリエステル系樹脂、脂肪族ポリエステル系樹脂、脂肪族ポリオレフィン系樹脂、環状オレフィン系樹脂、ポリアミド系樹脂、ポリフェニレンエーテル系樹脂、熱可塑性ポリイミド系樹脂、ポリアセタール系樹脂、ポリスルホン系樹脂、非晶性フッ素系樹脂等が挙げられる。これらの熱可塑性樹脂の数平均分子量は一般に1000以上、好ましくは5000以上500万以下、さらに好ましくは1万以上100万以下である。これらの熱可塑性樹脂は、単独で又は2種以上を含有してもよい。2種以上の熱可塑性樹脂含有する場合、その含有比によって樹脂の屈折率を調整することが可能であるので好ましい。例えば、ポリメタクリル酸メチル(屈折率約1.49)とアクリロニトリルスチレン(アクリロニトリル含量約21%、屈折率約1.57)を50:50で含有すると、屈折率約1.53の樹脂が得られる。
 スラリー中に添加可能な熱硬化性樹脂としては、例えば、特に制限されるものではないが、具体例を示すと、エポキシ樹脂、熱硬化型変性ポリフェニレンエーテル樹脂、熱硬化型ポリイミド樹脂、ユリア樹脂、アクリル樹脂、ケイ素樹脂、ベンゾオキサジン樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ビスマレイミドトリアジン樹脂、アルキド樹脂、フラン樹脂、メラミン樹脂、ポリウレタン樹脂、アニリン樹脂等、その他工業的に供されている樹脂及びこれら樹脂2以上を混合して得られる樹脂が挙げられる。なかでも、エポキシ樹脂、アクリル樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、熱硬化型ポリイミド樹脂等は透明性を有するため、光学材料として使用する場合に好適である。
 スラリー中に添加可能な光硬化性樹脂としては、例えば、潜在性光カチオン重合開始剤を含むエポキシ樹脂等が挙げられる。これらの熱硬化性樹脂又は光硬化性樹脂は、単独で含有してもよく、2種以上を含有してもよい。
 なお、熱硬化性樹脂、光硬化性樹脂とは、常温では液状、半固形状又は固形状等であって常温下又は加熱下で流動性を示す比較的低分子量の物質を意味する。これらは硬化剤、触媒、熱又は光の作用によって硬化反応や架橋反応を起こして分子量を増大させながら網目状の三次元構造を形成してなる不溶不融性の樹脂となり得る。また、樹脂硬化物とは、上記熱硬化性樹脂又は光硬化性樹脂が硬化してなる樹脂を意味する。
 スラリー中に添加可能な硬化剤、硬化触媒は、熱硬化性樹脂や光硬化性樹脂の硬化に用いられるものであれば特に限定されない。硬化剤の具体例としては、多官能アミン、ポリアミド、酸無水物、フェノール樹脂が挙げられ、硬化触媒の具体例としてはイミダゾール等が挙げられ、これらは単独で又は2種以上の混合物としてスラリーに含有されていてもよい。
 以上のスラリー中に添加可能な熱可塑性樹脂、熱硬化性樹脂および光硬化性樹脂は疎水性である場合が多く、抄紙スラリーに添加してもスラリー中に均一に分散させることが困難である。したがって、エマルジョンの形態が好ましい。エマルジョンとは粒子径が0.001~10μm程度の微細な高分子粒子であり、疎水性化合物と乳化剤を水中で撹拌することで得られる。また、熱硬化性樹脂および光硬化性樹脂についてはエマルジョン内に硬化剤、硬化触媒を含むことにより、該エマルジョンを含むセルロース微細繊維シートに対し熱および光照射によりシート内で硬化することができる。
 スラリー中に添加可能な熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のエマルジョンに用いられる乳化剤としては、周知一般のアニオン性界面活性剤、ノニオン性界面活性剤、カチオン性界面活性剤、両性界面活性剤、高分子系界面活性剤、反応性界面活性剤等で構わない。
 スラリー中に添加可能な熱可塑性樹脂、熱硬化性樹脂、光硬化性樹脂のエマルジョンは歩留りや脱水性を考慮すると、粒子径は大きいほうがよく、また、大きすぎるとシートの均一性、又は光学物性が低下するおそれがあるため、目的に合った適度な大きさである0.001~10μmが好ましい。エマルジョンの表面電荷はカチオン性、ノニオン性、アニオン性のいずれの状態でも構わないが、セルロース微細繊維スラリーと樹脂化合物のエマルジョンとを混合することを考慮すると、カチオン性であることが分散安定性、又は歩留りなどにおいて有利である。ただし、ノニオン性であってもエマルジョンの親水基のポリマー鎖長や剛直性等によっては十分にセルロース微細繊維に吸着させることは可能である。さらに、アニオン性のような静電反発により吸着がより困難な場合であっても、一般的に周知なカチオン性吸着助剤やカチオン性ポリマーを用いることで、セルロース微細繊維上に吸着させることができる。
 抄紙または塗布用スラリーの調製方法として、例えば、(1)セルロース微細繊維スラリーに予め調製した添加物を含む化合物を混合し、分散させて抄紙スラリーとする、(2)セルロース微細繊維スラリーを撹拌させながら、各種添加物を個別に一つずつ添加する等の方法がある。尚、複数種の添加物を添加する場合であって、添加物同士が凝集するような系において(例えば、カチオン性ポリマーとアニオン性ポリマーがイオンコンプレックスを形成する系)、添加する順番により、抄紙スラリーの分散状態やゼータ電位が変わる可能性がある。しかしながら、その添加する順番や量は特に限定するものではなく、所望の抄紙スラリーの分散状態やシート物性が得られる方法で添加することが好ましい。
 以上の添加剤を均一に混合分散するための撹拌装置として、アジテーター、ホモミキサー、パイプラインミキサー、ブレンダーのようなカッティング機能をもつ羽根を高速回転させるタイプの分散機や高圧ホモジナイザー等が挙げられるが、これらに限定されるものではない。撹拌において、スラリーの分散平均径が1μm以上300μm以下になるのが好ましい。但し、過度な撹拌を行うことで、例えば水分散性ブロックポリイソシアネート等のエマルジョン系添加剤では過剰な剪断応力がかかり、そのエマルジョン構造が壊れる恐れがある。したがって、スラリー組成によっては高圧ホモジナイザーやグラインダー型微細化装置、石臼式摩砕型装置等の使用は好ましくない場合がある。
 次に、抄紙スラリーの多孔質基材上でのろ過により湿紙を形成する抄紙工程について説明する。
 この抄紙工程は、基本的に、抄紙スラリーから水を脱水し、セルロース微細繊維が留まるようなフィルターや濾布(製紙の技術領域ではワイヤーとも呼ばれる)を使用する操作であればどのような装置を用いて行ってもよい。
 抄紙機としては、傾斜ワイヤー式抄紙機、長網式抄紙機、円網式抄紙機のような装置を用いると好適に欠陥の少ないシート状の繊維シートを得ることができる。抄紙機は連続式であってもバッチ式であっても目的に応じて使い分ければよい。膜質均一性を高めるために、一機又は二機以上(例えば、下地層抄紙は傾斜ワイヤー型抄紙機、上地層抄紙では丸網式抄紙機を用いる等)の抄紙機を用いて多段式の抄紙を施すのも場合によっては有効である。多段式の抄紙とは、例えば、1段目で5g/m2の目付で抄紙を行い、そこで得られた湿紙上で2段目の5g/mの抄紙を行って、合計10g/mの目付の繊維シートを得るという技術である。多段抄紙の場合は、上層と下層を同じ分散体から製膜する場合には単層の繊維シートとなるが、下層として第1段で例えば、フィブリル化繊維を用いて目の細かな湿紙の層を形成させ、その上から第2段で前述した分散体による抄紙を行い、下層である湿紙を後述するフィルターとして機能させることもできる。
 抄紙工程では抄紙スラリー中に分散しているセルロース微細繊維等の軟凝集体を濾過するため、ワイヤー又は濾布の目のサイズが重要となる。本実施形態においては、抄紙スラリー中に含まれるセルロース微細繊維等を含む水不溶性成分の歩留まり割合が70重量%以上、好ましくは95重量%以上、さらに好ましくは99重量%以上で抄紙することのできるようなワイヤー又は濾布であればいかなるものでも使用できる。
 ただし、歩留まり割合が70重量%以上であっても、濾水性が高くないと抄紙に時間がかかることで著しく生産効率が悪くなる。したがって、大気圧下25℃でのワイヤー又は濾布の水透過量が、好ましくは0.005ml/(cm・sec)以上、より好ましくは0.01ml/(cm・sec)以上であることが生産性の観点から好適である。一方、歩留まり割合が70重量%よりも低くなると、生産性が著しく低減するばかりか、用いるワイヤーや濾布内にセルロース微細繊維等の水不溶性成分が目詰まりするため、製膜後のセルロース微細繊維シートの剥離性が著しく悪くなる。
 大気圧下でのワイヤー又は濾布の水透過量は次のように評価する。バッチ式抄紙機(例えば、熊谷理機工業社製の自動角型シートマシーン)において、80~120メッシュの金属メッシュ(濾水抵抗がほとんど無いもの)およびその上にワイヤー又は濾布を設置する。つづいて、抄紙面積がx(cm)の抄紙機内に十分な量(y(ml)とする)の水を注入し、大気圧下で濾水時間を測定する。濾水時間がz(sec)であった場合の水透過量を、y/(x・z)(ml/(cm・s))と定義する。
 本実施形態に使用できるワイヤー又は濾布の例として、SEFAR社(スイス)製のTETEXMONODLW07-8435-SK010(PET製)、敷島カンバス社製NT20(PET/ナイロン混紡)、日本フィルコン社製のプラスチックワイヤーLTT-9FE、さらには特開2011-42903に記載の多層化ワイヤー等を挙げることができるが、これらに限定されるものではない。
 抄紙工程による脱水では、高固形分化が進行した湿紙が得られる。この湿紙に対して、さらにプレス処理することにより水等の分散媒体をより高効率に除去でき、得られる湿膜中の固形分率を高めることができる。湿紙の固形分率は抄紙のサクション圧(ウェットサクションやドライサクション)やプレス条件によって制御でき、好ましくは固形分濃度が6重量%以上30重量%以下、より好ましくは固形分濃度が8重量%以上25重量%以下の範囲に調整する。湿紙の固形分率が6重量%よりも低いと湿紙の強度が低いため自立性がなく、工程上問題が生じ易くなる。また、湿紙の固形分率が30重量%を超える濃度まで脱水するとシートの厚み等の均一性が失われる。
 積層構造体は、前記有機高分子シートをワイヤー又は濾布の上にセットし抄紙することで少なくとも2層以上の多層構造体からなる多層化シートを製造できる。3層以上の多層化シートを製造するには、2層以上の多層構造を有する支持体を使用すればよい。また、支持体上で2層以上の繊維シートの多段抄紙を行って3層以上の多層シートとしてもよい。この時、抄紙機のワイヤー又は濾布は有機高分子シートとの組み合わせで、歩留まり割合や水透過量に係わる要件を満足できる素材を選択すれば足りる。なお、有機高分子シートは抄紙性の向上およびセルロース微細繊維シートとの接着性改善のために、抄紙前にコロナ放電処理やプラズマ処理等のシート表面を親水化してもよい。
 繊維シートの多孔質化を目的として、濾布上で抄紙を行い、得られた湿紙中の水を有機溶媒への置換工程において有機溶媒に置換させ、乾燥させるという方法を用いてもよい。この方法の詳細については、本発明者らによる国際公開2006/004012号パンフレットに従う。具体的には、有機溶媒等で置換後乾燥する際に、水にある程度の溶解性を有する有機溶媒を用いると1段階の置換で高空隙率の不織布を得ることができる。このような溶媒としては、メチルエチルケトン、イソプロピルアルコール、tert-ブチルアルコール、イソブチルアルコールを挙げることができるが、これらに特に限定されない。疎水性の高い溶媒を使用するほど、より高い空隙率の不織布を作製し易くなる。シクロヘキサンやトルエンなどの水に溶解しない有機溶媒で置換する場合には、例えばアセトン、メチルエチルケトン、イソプロピルアルコール、イソブチルアルコールのような水に溶解する有機溶媒でまず置換を行い、次にシクロヘキサンやトルエンのような水不溶性の溶媒に置換する、という2段置換法も有効である。この際に使用する溶媒は、水との混合溶媒、又は有機溶媒どうしの混合溶媒であっても構わない。有機溶媒置換後のシートを後述する乾燥工程を経ることで、空隙率が60%~90%のシートが得られる。
 続いて乾燥工程について説明する。上述した抄紙工程で得た湿紙は、加熱による乾燥工程で水の一部を蒸発させることによって繊維シートとなる。均一な加熱処理と加熱によるシートの収縮の抑制の観点から、ドラムドライヤーやピンテンターのような定長乾燥型の乾燥機が好ましい。乾燥温度は、条件に応じて適宜選択すればよいが、好ましくは45℃以上180℃以下、より好ましくは60℃以上150℃以下の範囲とすれば、均一な繊維シートを製造することができる。乾燥温度が45℃未満では、多くの場合に水の蒸発速度が遅いため、生産性が確保できないため好ましくない。一方、180℃より高い乾燥温度ではシート内での乾燥速度にムラが生じ、シートにシワが発生するほか、エネルギー効率も悪いため好ましくない。なお、100℃以下の低温乾燥とそれに続く100℃以上の高温乾燥という多段乾燥は均一性の高い繊維シートを得るうえで有効である。
 以上の製膜プロセスにおいて、使用する抄紙用の濾布又はプラスチックワイヤーは、エンドレス仕様のものを用いて全工程を一つのワイヤーで行うか、あるいは途中で次工程のエンドレスフィルター又はエンドレスのフェルト布にピックアップして渡すか又は転写させて渡すか、あるいは連続製膜の全工程又は一部の工程を、濾布を使用するロールtoロールの工程にするかのいずれであっても良い。もっとも、本実施形態の繊維シートの製法はこれに限定されない。
 続いて平滑化工程について説明する。上述した乾燥工程で得られた繊維シートはカレンダー装置によって平滑化処理を施す平滑化工程を設けてもよい。平滑化工程を経ることにより、繊維シートの表面平滑化、薄膜化が可能となる。また、それに伴い通気度や強度の調整も可能となる。例えば、10g/m2以下の目付の設定下で20μm以下(下限は2μm程度)の膜厚の繊維シートを容易に製造できる。カレンダー装置としては単一プレスロールによる通常のカレンダー装置の他に、これらが多段式に設置された構造をもつスーパーカレンダー装置を用いてもよい。これらの装置、及びカレンダー処理時におけるロール両側それぞれの材質(材質硬度)や線圧を目的に応じて選定することで、多種の物性バランスをもつ繊維シートを得ることができる。
 続いて熱キュア工程について説明する。上述した乾燥工程あるいは平滑化工程で得られたシートを加熱処理することにより、シート内に含まれるブロックポリイソシアネートとセルロース微細繊維との化学的な結合が形成する。また、それと同時に積層構造体における有機高分子シートとセルロース微細繊維との架橋化やその他添加剤の繊維シートへの固定化も進行する。
 熱キュア工程は、均一な加熱処理と加熱によるシートの収縮の抑制の観点からドラムドライヤーやピンテンターのような幅を定長した状態で加熱するタイプの定長乾燥型の熱処理機が好ましい。
 上述したように、ブロックポリイソシアネートは常温において安定であるが、ブロック剤の解離温度以上に熱処理することでブロック基が解離してイソシアネート基が再生し、活性水素を有する官能基との化学的な結合が形成できる。加熱温度は用いられるブロック剤により異なるが、好ましくは80℃以上220℃以下、より好ましくは100℃以上180℃以下の範囲で、ブロック基の解離温度以上に加熱する。ブロック基の解離温度以下の場合は、イソシアネート基が再生しないため架橋化が起きない。一方、220℃以上で加熱を行うとセルロース微細繊維や繊維シート架橋剤の熱劣化がおき、着色する場合があり好ましくない。
 加熱時間は、好ましくは15秒以上10分以下であり、より好ましくは30秒以上2分以下である。加熱温度がブロック基の解離温度より十分に高い場合は、加熱時間をより短くすることができる。また、加熱温度が130℃以上の場合、2分以上の加熱を行うとシート内の水分が極端に減少するため、加熱直後のシートは脆くなり、取扱い性が難しくなるケースがあることから好ましくない。
 なお、本熱キュア工程は前述した平滑化処理と同時に行ってもよい。
 〈樹脂〉
 繊維シートに含浸できる樹脂としては、熱硬化性樹脂や光硬化性樹脂、またこれらの樹脂を熱硬化又は光硬化した樹脂、さらには熱可塑性樹脂が挙げられる。
 (熱硬化性樹脂)
 繊維シートに含浸できる熱硬化性樹脂としては、例えば、エポキシ系樹脂、アクリル系樹脂、オキセタン系樹脂、不飽和ポリエステル系樹脂、アルキド系樹脂、ノボラック系樹脂、レゾール系樹脂、ウレア系樹脂、メラミン系樹脂、ポリイミド系樹脂などが挙げられ、これらを単独で使用することもでき、2種以上を併用することもできる。
 熱硬化性樹脂には、屈折率の向上、硬化性の向上、密着性の向上、硬化成形物の柔軟性の向上及び、熱硬化性樹脂組成物の低粘度化によるハンドリング性向上に優れた特性を有する熱硬化性樹脂組成物を提供する目的で、それぞれの目的に適した熱硬化性化合物を添加することが好ましい。特に、密着性向上の観点では、繊維シート表面の水酸基と化学的に結合できるエポキシ系樹脂、オキセタン系樹脂、ノボラック系樹脂、ポリイミド系樹脂を使用することで、より高い密着性向上効果が期待できるため、好ましい。これらの使用にあたっては、単独でも2種以上の混合物でも構わない。熱硬化性化合物の添加量は、繊維シート100質量部に対して、10~1,000質量部とするのが好ましく、50~500質量部とするのがより好ましい。添加量が10質量部以上で、熱安定性(線熱膨張係数の低減、高温時の弾性保持)を発揮するのに有効であり、添加量が1,000質量部以下であれば、熱硬化性樹脂組物及び硬化成形物の高透過性、及び高耐熱性を維持することが可能である。
 熱硬化性樹脂としては、例えば、高温時に熱安定性を有する芳香族基を含有するエポキシ樹脂が挙げられる。エポキシ樹脂の例としては、2官能以上のグリシジルエーテル型エポキシ樹脂が挙げられる。グリシジルエーテル型エポキシ樹脂としては、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールAD、ビスフェノールS、テトラブロモビスフェノールA、フェノールノボラック、クレゾールノボラック、ヒドロキノン、レゾルシノール、4,4’-ジヒドロキシ-3,3’,5,5’-テトラメチルビフェニル、1,6-ジヒドロキシナフタレン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、トリス(p-ヒドロキシフェニル)メタン、テトラキス(p-ヒドロキシフェニル)エタンとエピクロルヒドリンの反応により得られるグリシジルエーテル型エポキシ樹脂が挙げられる。エポキシ化合物としては、ジシクロペンタジエン骨格を有するエポキシ樹脂、ビフェニルアラルキル骨格を有するエポキシ樹脂、トリグリシジルイソシアヌレートもまた挙げられる。Tgの著しい低下を引き起こさない範囲で、脂肪族エポキシ樹脂、脂環式エポキシ樹脂を使用することもできる。
 熱硬化性樹脂には、硬化剤として、液状芳香族ジアミン硬化剤を添加してもよい。ここで、液状とは25℃、0.1MPaの状態で液体であることを指す。また、芳香族ジアミン硬化剤とは、分子内に芳香環に直結した2個のアミン性窒素原子を有し、かつ複数の活性水素を有する化合物を意味する。また、ここで「活性水素」とはアミン性窒素原子に結合した水素原子をいう。液状芳香族ジアミンは、液状であるため強化繊維への含浸性を確保でき、芳香族ジアミンであるため高Tgの硬化物が得られる。液状芳香族ジアミン硬化剤としては、例えば、4,4’-メチレンビス(2-エチルアニリン)、4,4’-メチレンビス(2-イソプロピルアニリン)、4,4’-メチレンビス(N-メチルアニリン)、4,4’-メチレンビス(N-エチルアニリン)、4,4’-メチレンビス(N-sec-ブチルアニリン)、N,N’-ジメチル-p-フェニレンジアミン、N,N’-ジエチル-p-フェニレンジアミン、N,N’-ジ-sec-ブチル-p-フェニレンジアミン、2,4-ジエチル-1,3-フェニレンジアミン、4,6-ジエチル-1,3-フェニレンジアミン、2,4-ジエチル-6-メチル-1,3-フェニレンジアミン、4,6-ジエチル-2-メチル-1,3-フェニレンジアミンなどが挙げられる。これらの液状芳香族ジアミン硬化剤は、単体で用いてもよいし、複数を混合して用いてもよい。
 熱硬化性樹脂には、硬化剤として、潜在性硬化剤を添加してもよい。潜在性硬化剤とは、室温ではエポキシ樹脂に不溶の固体で、加熱することにより可溶化し硬化促進剤として機能する化合物であり、常温で固体のイミダゾール化合物や、固体分散型アミンアダクト系潜在性硬化促進剤、例えば、アミン化合物とエポキシ化合物との反応生成物(アミン-エポキシアダクト系)、アミン化合物とイソシアネート化合物または尿素化合物との反応生成物(尿素型アダクト系)等が挙げられる。
 常温で固体のイミダゾール化合物としては、例えば、2-ヘプタデシルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-ウンデシルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、2-フェニル-4-ベンジル-5-ヒドロキシメチルイミダゾール、2,4-ジアミノ-6-(2-メチルイミダゾリル-(1))-エチル-S-トリアジン、2,4-ジアミノ-6-(2′-メチルイミダゾリル-(1)′)-エチル-S-トリアジン・イソシアヌール酸付加物、2-メチルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、1-シアノエチル-2-メチルイミダゾール-トリメリテイト、1-シアノエチル-2-フェニルイミダゾール-トリメリテイト、N-(2-メチルイミダゾリル-1-エチル)-尿素、N,N′-(2-メチルイミダゾリル-(1)-エチル)-アジボイルジアミド等が挙げられるが、これらに限定されるものではない。
 固体分散型アミンアダクト系潜在性硬化促進剤(アミン-エポキシアダクト系)の製造原料の一つとして用いられるエポキシ化合物としては、例えば、ビスフェノールA、ビスフェノールF、カテコール、レゾルシノールなど多価フェノール、グリセリンやポリエチレングリコールのような多価アルコールとエピクロロヒドリンとを反応させて得られるポリグリシジルエーテル;p-ヒドロキシ安息香酸、β-ヒドロキシナフトエ酸のようなヒドロキシカルボン酸とエピクロロヒドリンとを反応させて得られるグリシジルエーテルエステル;フタル酸、テレフタル酸のようなポリカルボン酸とエピクロロヒドリンとを反応させて得られるポリグリシジルエステル;4,4′-ジアミノジフェニルメタンやm-アミノフェノールなどとエピクロロヒドリンとを反応させて得られるグリシジルアミン化合物;更にはエポキシ化フェノールノボラック樹脂、エポキシ化クレゾールノボラック樹脂、エポキシ化ポリオレフィンなどの多官能性エポキシ化合物やブチルグリシジルエーテル、フェニルグリシジルエーテル、グリシジルメタクリレートなどの単官能性エポキシ化合物;等が挙げられるがこれらに限定されるものではない。
 上記固体分散型アミンアダクト系潜在性硬化促進剤のもう一つの製造原料として用いられるアミン化合物は、エポキシ基と付加反応しうる活性水素を分子内に1個以上有し、かつ1級アミノ基、2級アミノ基および3級アミノ基の中から選ばれた官能基を少なくとも分子内に1個以上有するものであればよい。このような、アミン化合物の例を以下に示すが、これらに限定されるものではない。すなわち、例えば、ジエチレントリアミン、トリエチレンテトラミン、n-プロピルアミン、2-ヒドロキシエチルアミノプロピルアミン、シクロヘキシルアミン、4,4′-ジアミノ-ジシクロヘキシルメタンのような脂肪族アミン類;4,4′-ジアミノジフェニルメタン、2-メチルアニリンなどの芳香族アミン化合物;2-エチル-4-メチルイミダゾール、2-エチル-4-メチルイミダゾリン、2,4-ジメチルイミダゾリン、ピペリジン、ピペラジンなどの窒素原子が含有された複素環化合物;等が挙げられる。
 熱硬化性樹脂には、光酸発生剤を添加してもよい。光酸発生剤としては、紫外線照射によりカチオン重合可能な酸を発生するものが用いられる。このような光酸発生剤としては、例えば、SbF 、PF 、BF 、AsF 、(C 、PF(CFCF 等のアニオン成分と、カチオン成分とからなるオニウム塩(ジアゾニウム塩、スルホニウム塩、ヨードニウム塩、セレニウム塩、ピリジニウム塩、フェロセニウム塩、ホスホニウム塩等)が挙げられる。これらは単独であるいは2種以上併せて用いられる。具体的には、芳香族スルホニウム塩、芳香族ヨードニウム塩、芳香族ホスホニウム塩、芳香族スルホキソニウム塩等を用いることができる。その中でも、光硬化性と透明性の観点より、ヘキサフルオロリン酸塩、あるいはヘキサフルオロアンチモネートをアニオン成分とする光酸発生剤が好ましい。
 光酸発生剤の含有量は、エポキシ化合物100質量部に対し、0.5~2.0質量部の範囲であることが好ましい。より好ましくは0.5~1.5質量部の範囲である。光酸発生剤の含有量が少なすぎると、硬化性が悪化したり、耐熱性が低下したりする恐れがあり、含有量が多すぎると、硬化性は向上する一方で透明性が損なわれることとなる。
 熱硬化性樹脂には、上記各成分に加えて、必要に応じて他の添加剤を適宜配合することができる。例えば、硬化性を高める目的で、アントラセン等の光増感剤や酸増殖剤等を必要に応じて配合することができる。また、ガラス等の基材上に硬化物を作製する用途においては基材との接着性を高めるために、シラン系あるいはチタン系等のカップリング剤を添加してもよい。さらには、酸化防止剤、消泡剤等も適宜配合することができる。これらは単独でもしくは2種以上併せて用いられる。そして、これら他の添加剤は、硬化性樹脂組成物全体の5重量%以下の範囲内で用いることが、本発明の作用効果を阻害しない観点から、好ましい。
 また、熱硬化性樹脂としては、例えば、電気絶縁信頼性、折り曲げ耐性等の機械的物性、耐熱性、及び耐薬品性の観点からポリイミド系樹脂が挙げられる。ポリイミド系樹脂とは、イミド化によりポリイミドとなるものを意味し、ポリアミド酸のみを意味するものではなく、ポリアミド酸の一部がイミド化したものも含む。
 ポリイミドを構成するポリイミド前駆体は、例えば、テトラカルボン酸二無水物とジアミンとを反応させることによって得ることができる。使用するテトラカルボン酸二無水物に制限はなく、従来公知のテトラカルボン酸二無水物を用いることができる。テトラカルボン酸二無水物としては、芳香族テトラカルボン酸や脂肪族テトラカルボン酸二無水物などを適用することができる。また、使用するジアミンに制限はなく、従来公知のジアミンを用いることができる。
 テトラカルボン酸二無水物としては、ビフェニル‐3,3',4,4'-テトラカルボン酸二無水物(以下、rBPDA」と略称する)、ベンゾフェノン‐3,3',4,4'-テトラカルボン酸二無水物(以下、rBTDA」と略称する)、オキシジフタル酸二無水物(以下、「ODPA」と略称す)、ジフェニルスルホン-3,3',4,4'-テトラカルボン酸二無水物、エチレングリコールビス(トリメリット酸モノエステル酸無水物)(以下、rTMEG」と略称する)、p-フェニレンビス(トリメリット酸モノエステル酸無水物)、p-ビフェニレンビス(トリメリット酸モノエステル酸無水物)、m-フェニレンビス(トメリット酸モノエステル酸無水物)、o-フェニレンビス(トリメリット酸モノエステル酸無水物)、ペンタンジオールビス(トリメリット酸モノエステル酸無水物)(以下、「5-BTA」と略称する)、デカンジオールビス(トリメリット酸モノエステル酸無水物)、無水ピロメリット酸、ビス(3,4-ジカルボキシフェニル)エーテルニ無水物、4,4'-(2,2-ヘキサフルオロイソプロピリデン)ジフタル酸二無水物、メタ-ターフェニル-3,3',4,4'-テトラカルボン酸二無水物、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物、ビシクロ[2,2,2]オクト-7-エン-2,3,5,6-テトラカルボン酸二無水物、シクロブタン-1,2,3,4-テトラカルボン酸二無水物、1-カルボキシメチル-2,3,5-シクロペンタトリカルボン酸-2,6:3,5-二無水物、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボン酸無水物、及び、5-(2,5-ジオキソテトラヒドロフリル)-3-メチル-3-シクロヘキセン-1,2-ジカルボン酸無水物、などが挙げられる。上述したテトラカルボン酸二無水物は単独で用いてもよく、2種以上を混合して用いてもよい。なお、ポリイミド前駆体の現像性の観点から、BPDA、ODPA、BTDA、TMEG、5-BTA、及び、デカンジオールビス(トリメリット酸モノエステル酸無水物)がより好ましい。
 ジアミンとしては、1,3-ビス(4-アミノフェノキシ)アルカン、1,4-ビス(4-アミノフェノキシ)アルカン、1,5-ビス(4-アミノフェノキシ)アルカン、1,4-ジアミノベンゼン、1,3-ジアミノベンゼン、2,4-ジアミノトルエン、4,4'-ジアミノジフェニルメタン、4,4'-ジアミノジフェニルエーテル、3,4'-ジアミノジフェニルエーテル、3,3'-ジメチル-4,4'-ジアミノビフェニル、2,2'-ジメチル-4,4'-ジアミノビフェニル、2,2'-ビス(トリフルオロメチル)-4,4'-ジアミノビフェニル、3,7-ジアミノ-ジメチルジベンゾチオフェン-5,5-ジオキシド、4,4'-ジアミノベンゾフェノン、3,3'-ジアミノベンゾフェノン、4,4'-ビス(4-アミノフェニル)スルフィド、4,4'-ジアミノベンズアニリド、1,3-ビス(4-アミノフェノキシ)-2,2-ジメチルプロパン、1,2-ビス[2-(4-アミノフェノキシ)工トキシ]エタン、9,9-ビス(4-アミノフェニル)フルオレン、5-アミノ-1-(4-アミノメチル)-1,3,3-トリメチルインダン、1,4-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(4-アミノフェノキシ)ベンゼン、1,3-ビス(3-アミノフェノキシ)ベンゼン(以下、rAPB」と略称する)、4,4'-ビス(4-アミノフェノキシ)ビフェニル、4、4'-ビス(3-アミノフェノキシ)ビフェニル、2,2-ビス(4一アミノフェノキシフェニル)プロパン(以下、rBAPP」と略称する)、トリメチレン-ビス(4-アミノベンゾエート)(以下、rTMAB」と略称する)、4-アミノフェニル-4-アミノベンゾエート、2-メチル-4-アミノフェニル-4-アミノベンゾエート、ビス[4-(4-アミノフェノキシ)フェニル]スルホン、ビス[4-(3-アミノフェノキシ)フェニル]スルホン、2,2-ビス[4-(4-アミノフェノキシ)フェニル]ヘキサフルオロプロパン、1-アミノ-3-アミノメチル-3,5,5-トリメチルシクロヘキサン、3,3'-ジカルボキシ-4,4'-ジアミノジフェニルメタン、3,5-ジアミノ安息香酸、3,3'-ジヒドロキシ-4,4'-ジアミノビフェニル、及び、1,3-ビス(4-アミノフェノキシベンゼン)などが挙げられる。この中で、ポリイミド前駆体のガラス転移点(Tg)を低くし、現像性を向上させる観点から、APB、BAPP、及び、TMABが好ましい。これらのジアミンは、後述するポリイミド前駆体のポリイミド構造部の合成に用いるジアミン成分としても用いることができる。
 ポリイミド前駆体の主鎖末端は、性能に影響を与えない構造であれば、特に制限はない。ポリイミド前駆体を製造する際に用いる酸二無水物、又は、ジアミンに由来する末端の構造でもよく、その他の酸無水物、又は、アミン化合物などにより末端を封止した構造でもよい。
 (光硬化性樹脂)
 繊維シートに含浸できる光硬化性樹脂としては、1分子内に1つ又は2つ以上の(メタ)アクリロイル基を有する化合物が挙げられる。
 光硬化性樹脂には、屈折率の向上、硬化性の向上、密着性の向上、硬化成形物の柔軟性の向上及び、感光性樹脂組成物の低粘度化によるハンドリング性向上に優れた特性を有する感光性樹脂組成物を提供する目的で、それぞれの目的に適した1分子内に1つ又は2つ以上の(メタ)アクリロイル基を有する化合物を添加することが好ましい。これらの使用にあたっては、単独でも2種以上の混合物でも構わない。1分子内に1つ又は2つ以上の(メタ)アクリロイル基を有する化合物の添加量は繊維シート100質量部に対して、10~1,000質量部とするのが好ましく、50~500質量部とするのがより好ましい。添加量が10質量部以上で、熱安定性(線熱膨張係数の低減、高温時の弾性保持)を発揮するのに有効であり、添加量が1,000質量部以下であれば、感光性樹脂組物及び硬化成形物の高透過性、及び高耐熱性を維持することが可能である。
 光硬化性樹脂としては、例えば、高温時に熱安定性を有する芳香族基を含有した(メタ)アクリレート化合物が挙げられる。(メタ)アクリレート化合物の例としては、フェノキシエチルアクリレート、パラフェニルフェノキシエチルアクリレート(東亞合成株式会社製アロニックスTO-1463)、パラフェニルフェニルアクリレート(東亞合成株式会社製アロニックスTO-2344)、フェニルグリシジルエーテルアクリレート(以下、「PGEA」ともいう。)、ベンジル(メタ)アクリレート、フェノキシジエチレングリコール(メタ)アクリレート、3~15モルのエチレンオキサイドで変性させたフェノール(メタ)アクリレート、1~15モルのエチレンオキサイドで変性させたクレゾール(メタ)アクリレート、1~20モルのエチレンオキサイドで変性させたノニルフェノール(メタ)アクリレート、1~15モルのプロピレンオキサイドで変性させたノニルフェノール(メタ)アクリレート、1~30モルのエチレンオキサイドで変性させたビスフェノールAジ(メタ)アクリレート、1~30モルのプロピレンオキサイドで変性させたビスフェノールAジ(メタ)アクリレート、1~30モルのエチレンオキサイドで変性させたビスフェノールFジ(メタ)アクリレート、及び1~30モルのプロピレンオキサイドで変性させたビスフェノールFジ(メタ)アクリレートなどが好ましく挙げられる。(メタ)アクリレート化合物は、単独で使用してもよく、2種以上混合して使用してもよい。
 感光性パターン形成を付与する目的で、光硬化性樹脂は、光重合開始剤を含むことが好ましい。
 光重合開始剤(C)としては、下記(1)~(10)の光重合開始剤が挙げられる:
(1)ベンゾフェノン誘導体:例えば、ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-ベンゾイル-4’-メチルジフェニルケトン、ジベンジルケトン、フルオレノン、
(2)アセトフェノン誘導体:例えば、2,2’-ジエトキシアセトフェノン、2-ヒドロキシ-2-メチルプロピオフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(BASF社製 IRGACURE651)、1-ヒドロキシシクロヘキシルフェニルケトン(BASF社製 IRGACURE184)、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オン(BASF社製 IRGACURE907)、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]-フェニル}-2-メチルプロパン-1-オン(BASF社製 IRGACURE127)、フェニルグリオキシル酸メチル、
(3)チオキサントン誘導体:例えば、チオキサントン、2-メチルチオキサントン、2-イソプロピルチオキサントン、ジエチルチオキサントン、
(4)ベンジル誘導体:例えば、ベンジル、ベンジルジメチルケタール、ベンジル-β-メトキシエチルアセタール、
(5)ベンゾイン誘導体:例えば、ベンゾイン、ベンゾインメチルエーテル、2-ヒドロキシ-2-メチル-1フェニルプロパン-1-オン(BASF社製、DAROCURE1173)、
(6)オキシム系化合物:例えば、1-フェニル-1,2-ブタンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-メトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-1,2-プロパンジオン-2-(O-ベンゾイル)オキシム、1,3-ジフェニルプロパントリオン-2-(O-エトキシカルボニル)オキシム、1-フェニル-3-エトキシプロパントリオン-2-(O-ベンゾイル)オキシム、1,2-オクタンジオン,1-[4-(フェニルチオ)-2-(O-ベンゾイルオキシム)](BASF社製 IRGACURE OXE01)、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(O-アセチルオキシム)(BASF社製 IRGACURE OXE02)、
(7)α-ヒドロキシケトン系化合物:例えば、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒドロキシ-1-{4-[4-(2-ヒドロキシ-2-メチルプロピオニル)-ベンジル]フェニル}-2-メチルプロパン、
(8)α-アミノアルキルフェノン系化合物:例えば、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1(BASF社製 IRGACURE369)、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリン-4-イル-フェニル)ブタン-1-オン(BASF社製 IRGACURE379)、
(9)フォスフィンオキサイド系化合物:例えば、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド(BASF社製 IRGACURE819)、ビス(2,6-ジメトキシベンゾイル)-2,4,4-トリメチル-ペンチルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド(BASF社製、LUCIRIN TPO)、
(10)チタノセン化合物:例えば、ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)フェニル)チタニウム(BASF社製 IRGACURE784)。
 上記(1)~(10)の光重合開始剤は、それぞれ単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
 光重合開始剤の含有量は、感光性樹脂組成物中の溶剤以外の全成分の質量基準で、十分な感度を得る観点から、0.01質量%以上が好ましく、より好ましくは0.1質量%であり、一方で、感光性樹脂層の底の部分を十分に硬化させる観点から、15質量%以下が好ましく、より好ましくは10質量%以下である。
 光硬化性樹脂には、所望により、光感度向上のための増感剤を添加することができる。このような増感剤としては、例えば、ミヒラーズケトン、4,4’-ビス(ジエチルアミノ)ベンゾフェノン、2,5-ビス(4’-ジエチルアミノベンジリデン)シクロペンタノン、2,6-ビス(4’-ジエチルアミノベンジリデン)シクロヘキサノン、2,6-ビス(4’-ジメチルアミノベンジリデン)-4-メチルシクロヘキサノン、2,6-ビス(4’-ジエチルアミノベンジリデン)-4-メチルシクロヘキサノン、4,4’-ビス(ジメチルアミノ)カルコン、4,4’-ビス(ジエチルアミノ)カルコン、2-(4’-ジメチルアミノシンナミリデン)インダノン、2-(4’-ジメチルアミノベンジリデン)インダノン、2-(p-4’-ジメチルアミノビフェニル)ベンゾチアゾール、1,3-ビス(4-ジメチルアミノベンジリデン)アセトン、1,3-ビス(4-ジエチルアミノベンジリデン)アセトン、3,3’-カルボニル-ビス(7-ジエチルアミノクマリン)、3-アセチル-7-ジメチルアミノクマリン、3-エトキシカルボニル-7-ジメチルアミノクマリン、3-ベンジロキシカルボニル-7-ジメチルアミノクマリン、3-メトキシカルボニル-7-ジエチルアミノクマリン、3-エトキシカルボニル-7-ジエチルアミノクマリン、N-フェニル-N-エチルエタノールアミン、N-フェニルジエタノールアミン、N-p-トリルジエタノールアミン、N-フェニルエタノールアミン、N,N-ビス(2-ヒドロキシエチル)アニリン、4-モルホリノベンゾフェノン、4-ジメチルアミノ安息香酸イソアミル、4-ジエチルアミノ安息香酸イソアミル、ベンズトリアゾール、2-メルカプトベンズイミダゾール、1-フェニル-5-メルカプト-1,2,3,4-テトラゾール、1-シクロヘキシル-5-メルカプト-1,2,3,4-テトラゾール、1-(tert-ブチル)-5-メルカプト-1,2,3,4-テトラゾール、2-メルカプトベンゾチアゾール、2-(p-ジメチルアミノスチリル)ベンズオキサゾール、2-(p-ジメチルアミノスチリル)ベンズチアゾール、2-(p-ジメチルアミノスチリル)ナフト(1,2-p)チアゾール、2-(p-ジメチルアミノベンゾイル)スチレンなどが挙げられる。また、使用にあたっては、単独でも2種以上の混合物でも構わない。
 感光性樹脂組成物には、所望により、保存時の粘度や光感度の安定性を向上させる目的で、重合禁止剤を添加することができる。このような重合禁止剤としては、例えば、ヒドロキノン、N-ニトロソジフェニルアミン、p-tert-ブチルカテコール、フェノチアジン、N-フェニルナフチルアミン、エチレンジアミン四酢酸、1,2-シクロヘキサンジアミン四酢酸、グリコールエーテルジアミン四酢酸、2,6-ジ-tert-ブチル-p-メチルフェノール、5-ニトロソ-8-ヒドロキシキノリン、1-ニトロソ-2-ナフトール、2-ニトロソ-1-ナフトール、2-ニトロソ-5-(N-エチル-N-スルフォプロピルアミノ)フェノール、N-ニトロソ-N-フェニルヒドロキシアミンアンモニウム塩、N-ニトロソ-N-フェニルヒドロキシルアミンアンモニウム塩、N-ニトロソ-N-(1-ナフチル)ヒドロキシルアミンアンモニウム塩、ビス(4-ヒドロキシ-3,5-ジtert-ブチル)フェニルメタンなどを用いることができる。
 以上の他にも、感光性樹脂組成物には、紫外線吸収剤や塗膜平滑性付与剤などをはじめ、感光性樹脂組成物の諸特性を阻害するものでない限り、必要に応じて、種々の添加剤を適宜配合することができる。
 (熱可塑性樹脂)
 繊維シートに含浸できる樹脂は、熱硬化性樹脂や光硬化性樹脂も使用可能であるが、シート状基材に射出成形等により樹脂を短時間で含浸させて量産品等の成形に供するという面、かつ種々の成形形状により容易に対応できるという面から、熱可塑性樹脂を使用することが好ましい。使用される熱可塑性樹脂としては特に限定されないが、例えば、汎用プラスチックのようなポリオレフィン(ポリエチレン、ポリプロピレン等)、ABS、ポリアミド(ナイロン6やナイロン6,6等)、ポリエステル、ポリフェニレンエーテル、ポリアセタール、ポリカーボネート、ポリフェニレンサルファイド、ポリイミド、ポリエーテルイミド、ポリエーテルスルフォン、ポリケトン、ポリエーテルエーテルケトン、ポリスチレン、それらの組み合わせ等を用いることができる。
 (溶媒)
 繊維シートへの樹脂含浸には、必要に応じて溶媒を添加して粘度を調整することができる。好適な溶媒としては、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、N-エチル-2-ピロリドン、テトラヒドロフラン、N,N-ジメチルアセトアミド、ジメチルスルホキシド、ヘキサメチルホスホルアミド、ピリジン、シクロペンタノン、γ-ブチロラクトン、α-アセチル-γ-ブチロラクトン、テトラメチル尿素、1,3-ジメチル-2-イミダゾリノン、N-シクロヘキシル-2-ピロリドン、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、メチルエチルケトン、メチルイソブチルケトン、アニソール、酢酸エチル、乳酸エチル、乳酸ブチルなどが挙げられ、これらは単独又は二種以上の組合せで用いることができる。これらの中でも、N-メチル-2-ピロリドンやγ-ブチロラクトン、プロピレングリコールモノメチルエーテルアセテートが、特に好ましい。これらの溶媒は、塗工膜厚、粘度に応じて、繊維シートへの樹脂含浸の際に適宜加えることができる。
 〈無機充填材〉
 本実施形態の樹脂複合フィルムは、無機充填材を更に含むことが好ましい。無機充填材は、繊維シートに含浸させる樹脂中に含むことができる。樹脂複合フィルムの厚み方向の線熱膨張係数を低下させる観点、平面(XY方向)と厚み方向の線熱膨張係数差を低減する観点から、無機充填材を添加してもよい。樹脂複合フィルムが無機充填材を含有することにより、樹脂の熱的安定性(線熱膨張係数や高温時の弾性保持)を向上することができる。
 無機充填材としては、例えば、耐熱性に優れるものとしては、アルミナ、マグネシア、チタニア、ジルコニア、シリカ(石英、ヒュームドシリカ、沈降性シリカ、無水ケイ酸、溶融シリカ、結晶性シリカ、超微粉無定型シリカ等)、水酸化アルミニウム等;熱伝導性に優れるものとしては、窒化ホウ素、窒化アルミ、酸化アルミナ、酸化チタン、酸化マグネシウム、酸化亜鉛、酸化ケイ素等;導電性に優れるものとしては、金属単体又は合金(例えば、鉄、銅、マグネシウム、アルミニウム、金、銀、白金、亜鉛、マンガン、ステンレスなど)を用いた金属フィラー及び/又は金属被覆フィラー等;バリア性に優れるものとしては、マイカ、クレイ、カオリン、タルク、ゼオライト、ウォラストナイト、スメクタイト等の鉱物等やチタン酸カリウム、硫酸マグネシウム、セピオライト、ゾノライト、ホウ酸アルミニウム、酸カルシウム、酸化チタン、硫酸バリウム、酸化亜鉛、水酸化マグネシウム;屈折率が高いものとしては、チタン酸バリウム、酸化ジルコニア、酸化チタン等;光触媒性を示すものとしては、チタン、セリウム、亜鉛、銅、アルミニウム、錫、インジウム、リン、炭素、イオウ、テリウム、ニッケル、鉄、コバルト、銀、モリブデン、ストロンチウム、クロム、バリウム、鉛等の光触媒金属、前記金属の複合物、それらの酸化物等;耐摩耗性に優れるものとしては、シリカ、アルミナ、ジルコニア、マグネシウム等の金属、及びそれらの複合物及び酸化物等;導電性に優れるものとしては、銀、銅などの金属、酸化錫、酸化インジウム等;絶縁性に優れるものとしては、シリカ等;紫外線遮蔽に優れるものとしては、酸化チタン、酸化亜鉛等である。これらの無機充填材は、用途によって適時選択すればよく、単独で使用しても、複数種組み合わせて使用してもよい。また、上記無機充填材は、例に挙げた特製以外にも様々な特性を有することから、適時用途に合わせて選択すればよい。
 例えば無機充填材としてシリカを用いる場合、特に限定はなく粉末状のシリカやコロイダルシリカなど公知のシリカ微粒子を使用することができる。市販の粉末状のシリカ微粒子としては、例えば、日本アエロジル(株)製アエロジル50、200、旭硝子(株)製シルデックスH31、H32、H51、H52、H121、H122、日本シリカ工業(株)製E220A、E220、富士シリシア(株)製SYLYSIA470、日本板硝子(株)製SGフレ-ク等を挙げることができる。また、市販のコロイダルシリカとしては、例えば、日産化学工業(株)製メタノ-ルシリカゾル、IPA-ST、PGM-ST、NBA-ST、XBA-ST、DMAC-ST、ST-UP、ST-OUP、ST-20、ST-40、ST-C、ST-N、ST-O、ST-50、ST-OL等を挙げることができる。
 表面修飾をしたシリカ微粒子を用いてもよく、例えば、前記シリカ微粒子を、疎水性基を有する反応性シランカップリング剤で表面処理したものや、(メタ)アクリロイル基を有する化合物で修飾したものがあげられる。(メタ)アクリロイル基を有する化合物で修飾した市販の粉末状のシリカとしては、日本アエロジル(株)製アエロジルRM50、R7200、R711等、(メタ)アクリロイル基を有する化合物で修飾した市販のコロイダルシリカとしては、日産化学工業(株)製MIBK-SD、MEK-SD、等、疎水性基を有する反応性シランカップリング剤で表面処理したコロイダルシリカとしては、日産化学工業(株)製MIBK-ST、MEK-ST等が挙げられる。
 前記シリカ微粒子の形状は特に限定はなく、球状、中空状、多孔質状、棒状、板状、繊維状、または不定形状のものを用いることができる。例えば、市販の中空状シリカ微粒子としては、日鉄鉱業(株)製シリナックス(登録商標)等を用いることができる。
 無機充填材の一次粒子径は、5~2,000nmの範囲が好ましい。5nm以上であると、分散体中の無機充填材が分散良好となり、2,000nm以内の径であれば、硬化物の強度が良好となる。より好ましくは10nm~1,000nmである。尚、ここでいう「粒径」とは、走査型電子顕微鏡(SEM)などを用いて測定される。また、オーバーコート層を30μm以下に薄く制御する場合においては、膜厚制御の観点から、無機充填材の一次粒子径が2,000nm以下であることが好ましい。
 無機充填材は、樹脂複合フィルムの断面厚み方向の走査型電子顕微鏡(SEM)観察に占める面積割合に対して、5~50%の割合で配合されることが好ましい。例えば耐熱材料の場合、低線膨張率と硬化物の高強度を両立させるためには、前記無機充填材は10~45%であることが好ましい。
 また、後述する弾性率マッピングの画像解析から、樹脂複合フィルムの断面全体に占める無機充填材の面積割合を算出することができる。
 弾性率マッピングの画像解析において、樹脂複合フィルムの断面全体に占める無機充填材の面積割合は、好ましくは5%以上50%以下であり、より好ましくは10%以上45%以下である。無機充填材が樹脂複合フィルムの断面全体の5%以上を占めることで、樹脂複合フィルムの厚み方向の線熱膨張係数が低減され、平面方向と厚み方向の線熱膨張係数の差が低減されるため、高温時の反りが低減される。無機充填材が樹脂複合フィルムの断面全体の45%以下を占めることで、含浸される樹脂が複合フィルムの強度を保ち、曲げ応力も高くなるため取扱い性に優れる。
 樹脂複合フィルムが、上述した無機充填材を含む場合、樹脂複合フィルムのうち、後述の実施例に記載の方法で定義されるセルロース微細繊維層に、無機充填材を含んでもよい。セルロース微細繊維層が無機充填材を含む場合、無機充填材の20%以下がセルロース微細繊維層に含まれることが好ましく、より好ましくは10%以下である。無機充填材の20%以下がセルロース微細繊維層に含まれると、無機充填材はセルロース微細繊維層における補強材として機能し、残りの無機充填材がオーバーコート層等に相対的に多く偏在すると、回路埋め込み性と冷熱衝撃耐性とをより良好に両立でき、耐衝撃性及び柔軟性により優れ、限定されないが車載用電子部品、スマートフォン、電子ペーパー等に搭載したときにより壊れ難い積層体を提供することができる。
 〈弾性率マッピング〉
 樹脂複合フィルムに含まれる繊維シート、樹脂(及び無機充填材)の特徴(繊維径や含有率、空隙率(ボイド量)など)は、走査型プローブ顕微鏡(SPM)の1種である原子間力顕微鏡(AFM)を用い、カンチレバー先端の探針を、樹脂複合フィルムの断面に接触させて、ばね定数として0.4N/mの押し付け力により弾性率を測定し、得られた弾性率マッピングを作成し、弾性率マッピングの画像解析から算出することができる。
 弾性率は、AFMのカンチレバー先端の探針と試料との間の距離の上限及び下限を設定し、定点を上下動させて、探針と試料の間の距離と、カンチレバーに働く力(すなわち、カンチレバーのたわみ量)との関係から読み取った振れの量及びカンチレバーのバネ定数から、フックの法則により試料の各点の弾性率が求められる。
 原子間力顕微鏡による弾性率測定は、押し付け力による樹脂複合フィルム断面の変形度合いを表すため、弾性率の異なる成分(繊維シート、樹脂、及び無機充填材など)を観察することができる。得られる弾性率マッピングを画像解析することで、繊維シートを構成する繊維の平均繊維径及び最大繊維径、オーバーコート樹脂層の厚み、並びに各成分の面積割合などを算出することができる。
 〈繊維シートを構成する繊維の面積割合〉
 弾性率マッピングの画像解析において、樹脂複合フィルムの断面全体に占める、繊維シートを構成する繊維の面積割合は、好ましくは5%以上60%以下であり、より好ましくは5%以上55%以下であり、更に好ましくは10%以上55%以下である。セルロース微細繊維が樹脂複合フィルムの断面全体の5%以上を占めることで、セルロース微細繊維が水素結合によるナノネットワーク構造を取り易くなり、樹脂複合フィルムの高温時に発生する熱膨張を抑止し、樹脂複合フィルムの反り等を低減し、熱安定性を向上させる。セルロース微細繊維が樹脂複合フィルムの断面全体の60%以下を占めることで、含浸される樹脂が複合フィルムの強度を保ち、曲げ応力も高くなるため取扱い性に優れる。
 〈樹脂複合フィルム内の繊維シートの空隙率〉
 弾性率マッピングの画像解析から算出される繊維シートを構成する繊維の面積と、同様に算出される繊維シートを構成する繊維間に含まれる樹脂面積との比から、樹脂複合フィルムを形成した際の樹脂内部に存在する繊維シートの空隙率を算出することができる。
 樹脂内部に存在する繊維シートの空隙率は、好ましくは35%以上95%以下、より好ましくは35%以上80%以下、最も好ましくは35%以上50%以下である。空隙率が35%以上であると、樹脂が含浸し易くなるため好ましい。空隙率が95%以下であると、樹脂複合フィルムの耐熱性向上の観点から好ましい。
 また、空隙率を低下させ、繊維シート含率を上げることで、150℃以上での過酷な条件下、高湿条件下において、電子材料として用いた際に電子デバイス内での反りや剥離の防止、デバイスでの冷熱衝撃耐性の向上に貢献することができる。
 〈繊維シートを構成する繊維の平均繊維径〉
 弾性率マッピングの画像解析から算出される、樹脂複合フィルム中の繊維シートを構成する繊維の平均繊維径は、0.01μm以上2.0μm以下である。繊維シートを構成する繊維の平均繊維径は、好ましくは0.02μm以上1.5μm以下、より好ましくは0.02μm以上1.0μm以下である。
 繊維シートを構成する繊維の平均繊維径は、弾性率マッピングの画像解析から算出される樹脂複合フィルム中の繊維成分の総面積ΣSfと総周長ΣLfを用いて、下記式(1)から算出される。
 繊維シートを構成する繊維の平均繊維径=4×ΣSf/ΣLf   (1)
 ここで、総面積ΣSfは、単位面積当たりの微細繊維の充填率を示すパラメータにもなりうる。総周長ΣLfは、微細繊維の分散度を示すパラメータにもなりうる。総面積ΣSfが一定以上、かつ、総周長ΣLfが一定以上であれば、微細繊維が高密度で均一に分散している状態を表すことになるため、好ましい。
 〈繊維シートを構成する繊維の最大繊維径〉
 また、繊維シートを構成する繊維の最大繊維径は、弾性率マッピングの画像解析からセルロース微細繊維径を真円とみなした時の粒径として算出され、この時、最も大きい粒径を、繊維シートを構成する繊維の最大繊維径として採用する。
 弾性率マッピングの画像解析から算出される、樹脂複合フィルム中の繊維シートを構成する繊維の最大繊維径は、15μm以下である。繊維シートを構成する繊維の最大繊維径は、好ましくは10μm以下、より好ましくは5μm以下、さらに好ましくは3μm以下である。最大繊維径が15μm以下であると、繊維シートの厚みを薄くすることができ、薄膜性の樹脂複合フィルムを製造する際に孔径等の均一性が確保し易くなるため好ましい。弾性率マッピングの画像解析から繊維シートを構成する繊維の最大繊維径を算出する方法については、実施例の欄において説明する。
 〈ボイド〉
 弾性率マッピングの画像解析において、樹脂複合フィルムの断面全体に占める空隙率(ボイド量)は、好ましくは10%以下であり、より好ましくは5%以下、更に好ましくは3%、最も好ましくは2%以下である。空隙率(ボイド量)が樹脂複合フィルムの断面全体の10%以下を占めることで、樹脂フィルムの強度が高くなり、防湿性にも優れる。
 〈オーバーコート樹脂層〉
 本実施形態の樹脂複合フィルムは、表層に一定厚みの樹脂層(オーバーコート樹脂層)を有する。オーバーコート樹脂層は、樹脂複合フィルムの表層に形成される樹脂の層であって、繊維シートを含まない部分を指す。オーバーコート樹脂層は、樹脂複合フィルムの片側のみに形成されても、両側に形成されてもよい。
 オーバーコート樹脂層の平均厚みは、繊維シートに対する防湿性や耐水性、耐酸・耐アルカリ性の観点、及びオーバーコート樹脂層の内部に繊維層を封じ込め、繊維層を均一に充填させ線熱膨張係数を安定させる観点から、樹脂複合フィルムの少なくとも片面で0.3μm以上100μm以下であり、好ましくは0.3μm以上30μm以下、より好ましくは0.3μm以上20μm以下、更により好ましくは0.3μm以上10μm以下である。オーバーコート樹脂層の厚みが、樹脂複合フィルムの少なくとも片面において0.3μm以上であることにより、樹脂複合フィルムの絶縁層としての内層回路基板へのラミネート性、及び内層回路との密着性、埋め込み性を確保することができる。オーバーコート樹脂層の厚みが、100μm以下であることにより、樹脂複合フィルムの耐熱性、及び対熱衝撃強度を確保することができる。オーバーコート樹脂層の平均厚みは、下記実施例に記載の方法に準じて測定される。
 <表面ラフネス>
 本実施形態に係る樹脂複合フィルムは、表層である樹脂層の表面ラフネスを制御することで、電極との接着強度(ピール強度)に優れる。樹脂複合フィルムの表面ラフネスは、電極との接着性の観点から、好ましくは0.1μm以上2.0μmであり、より好ましくは0.2μm以上1.5μm以下であり、さらに好ましくは0.3μm以上1.2μm以下である。
 なお、表面ラフネスを設ける際は、オーバーコート樹脂層厚みよりも小さいことが好ましい。
 特に、該弾性率マッピングにより算出される該樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、該樹脂複合フィルムの少なくとも片面で0.8μm以上30μm以下であって、該樹脂複合フィルムの表面ラフネスが0.1μm以上2.0μm以下であれば、樹脂複合フィルムは防湿性、電極との接着強度、及び耐熱性(加熱時の低反り性)に優れ、特に車載用電子デバイス内に適用されたときに電子デバイスの信頼性を向上させることができる。
 表面ラフネスを制御する手段は、樹脂を粗化する方法であれば特に制限されないが、例えばプラズマ処理や、酸・アルカリ水溶液等からなるエッチング液、デスミア液の処理等などが挙げられる。
 樹脂複合フィルムの表面ラフネスは、下記実施例に記載の方法に準じて測定される。
 なお、表面粗度を測定する装置としては、レーザーテック株式会社製レーザー顕微鏡「OPTELICS S130」、キーエンス社製レーザー顕微鏡「VK-X250/260」、オリンパス株式会社製レーザー顕微鏡「OLS3000」などが用いられる。
 <界面フラクタル次元>
 本実施形態に係る樹脂複合フィルムは、表面の微小な粗形状を表面ラフネス値で範囲を規定できる他に、界面フラクタル次元によって表面の微小な粗形状を定量化することもできる。樹脂複合フィルムをその法線方向に割断した際に現れる絶縁層と金属表面粗化層の界面構造がフラクタル状であり、ボックスサイズを50nm~5μm、且つ、ピクセル・サイズをその1/100以下に設定したボックスカウント法を適用して算出した該界面構造のフラクタル次元が、好ましくは1.05以上1.50以下であり、より好ましくは1.1以上1.4以下である。この条件を満たすことで、金属層自体のマクロな表面凹凸、即ち、配線としての機能に影響を与えない表面平滑性を有し、且つ、ミクロで複雑な表面性状を有するため、本発明の製造方法で得られた本発明の金属層積層体は多層基板などの配線の形成に有用である。また、本発明の金属層積層体表面に樹脂層を形成する場合、両者の密着性に優れたものとなる。
 <樹脂複合フィルムの表面最大断面高さ(Rt)>
 本実施形態に係る樹脂複合フィルム表面の最大断面高さ(Rt)とは、電極等を有した配線基板上に樹脂複合フィルムをラミネートし積層した際、樹脂複合フィルム表面の凹凸に関して最大高さと最小高さの差のことをいう。積層された樹脂複合フィルム表面は内層回路基板の電極配線由来の表面凹凸に対応した起伏を有するようになり、表面の平滑な絶縁層が得られ難い傾向にある。
 樹脂複合フィルム表面の微細な配線パターン形成性の観点から、最大断面高さ(Rt)が3μm未満であることが好ましく、2.5μm以下であることがより好ましい。該最大断面高さ(Rt)の下限は特に制限されないが、通常、0.1μm以上である。絶縁層表面の最大断面高さ(Rt)は、キャリアフィルムを剥離した後の絶縁層の露出表面について、非接触型表面粗さ計を用いて測定することができる。
 〈線熱膨張係数CTE200〉
 樹脂複合フィルムの200℃におけるX-Y平面の線熱膨張係数CTE200は、電子材料として用いた際に電子デバイス内での反りや剥離を防止する観点から、好ましくは100ppm/℃以下、より好ましくは80ppm/℃以下、さらに好ましくは60ppm/℃以下である。ここで、X-Y平面とは樹脂複合フィルムの長さ方向および幅方向の二成分により規定される平面をいう。線熱膨張係数は、下記実施例に記載の方法に準じて測定される。
 150℃におけるX-Y平面の線熱膨張係数CTE150と200℃におけるX-Y平面の線熱膨張係数CTE200との差(絶対値)である|CTE150-CTE200|は、電子材料として用いた際に電子デバイス内での反りや剥離を防止する観点から、好ましくは40ppm/℃以下、より好ましくは30ppm/℃以下、さらに好ましくは20ppm/℃以下である。なお、絶対値で規定する理由は、温度上昇に伴い必ずしもCTEが増加しないケースを含めて記載するものである。
 X-Y平面の線熱膨張係数の差(絶対値)|CTE150-CTE200|が40ppm/℃以下の範囲で制御でき、セルロース微細繊維の数平均繊維径が0.01μm以上2.0μm以下であると、空隙を維持しつつ、セルロース微細繊維シートの単位重量あたりのセルロース微細繊維の本数が非常に多くなることで、微細繊維間での交絡点数が増加し、微細繊維間での水素結合ネットワークが形成され易くなる。この効果によって樹脂と複合化した際に、樹脂中でも微細繊維の交絡・微細繊維間の水素結合ネットワークが保持され、高温時の線熱膨張係数の安定化に寄与するため、好ましい。
 特に、前記弾性率マッピングから算出される該樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、該樹脂複合フィルムの少なくとも片面で0.3μm以上30μm以下であって、200℃におけるX-Y平面の線熱膨張率CTE200が100ppm/℃以下、及び、150℃におけるX-Y平面の線熱膨張率CTE150と200℃におけるX-Y平面の線熱膨張率CTE200との数値差の絶対値が40以下であれば、これまでにない高温環境下での使用であっても、高集積化・高密度化回路において安定的に使用できる樹脂複合フィルムを提供するものであって、より具体的には、150℃以上での過酷な条件下において、電子材料として用いた際に電子デバイス内での反りや剥離を防止することができる樹脂複合フィルムを提供できる。
 〈厚み〉
 樹脂複合フィルムの形状は、特に限定されず、板状、(段差や波を有する)厚さの不均一な形状、曲面を有する形状、孔を有する形状などであってよい。
 樹脂複合フィルムの平均厚みは、好ましくは5μm以上1500μm以下であり、より好ましくは6μm以上1000μm以下であり、更に好ましくは7μm以上500μm以下である。
 〈吸湿率〉
 樹脂複合フィルムの吸湿率は、電子材料として用いた際に電子デバイス内での反りや剥離を防止し、絶縁性を保持する観点、及び繊維強化プラスチックとして用いた際の低湿度~高湿度環境での寸法保持性の観点から、樹脂複合フィルムの質量に対して、好ましくは2%以下であり、より好ましくは1.6%以下であり、さらに好ましくは1.1%以下である。
 〈誘電率及び誘電正接〉
 樹脂複合フィルムの誘電率は、層間絶縁膜として用いる際の特性の観点から、好ましくは4.5以下であり、より好ましくは4.3以下であり、さらに好ましくは4.1以下である。樹脂複合フィルムの誘電正接は、層間絶縁膜として用いる際の特性の観点から、好ましくは0.02以下であり、より好ましくは0.018以下であり、さらに好ましくは0.016以下である。
 〈全光透過率〉
 本実施形態の樹脂複合フィルムは、全光透過率が80%以上とすることもできる。数平均繊維径を0.10μm以下に制御することで、全光透過率80%以上の繊維シートを形成できる。当該制御の方法は特段制限されないが、前述のTEMPO酸化触媒を用いる方法や、上述したフィブリル化処理又は微細化処理によって調整する方法が挙げられる。全光線透過率を80%以上に設計すると透明フィルムとして有用であり、全光線透過率を90%以上に設計することがより好ましい。全光線透過率の測定法は、ASTM D1003に基づき、ヘイズメーターNDH7000SP CU2II(製品名)(日本電色工業株式会社製)を使用した光透過性試験によって測定できる。
 〈樹脂複合フィルムのガラス転移温度(Tg)〉
 本実施形態では、樹脂複合フィルムのガラス転移温度(Tg)は、樹脂中にセルロース微細繊維を含む樹脂複合フィルムの冷熱衝撃耐性、熱安定性又は耐久性をさらに向上させるという観点から、存在しないか、又は80℃以上であることが好ましい。Tgは、より好ましくは120℃以上、更に好ましくは150℃以上、最も好ましくは180℃以上である。Tgが80℃未満であると、通常使用される環境下で樹脂の軟化が発生してしまうため、樹脂強度自体が低くなり好ましくない。
 また、樹脂のガラス転移温度(Tg)は、上記の熱硬化性樹脂又は光硬化性樹脂の種類及び/又は混合比、硬化剤の種類又は含有量等を変更することによって、存在しないようにするか、又は80℃以上であるように制御することができる。
 本明細書での樹脂のガラス転移温度(Tg)は、樹脂硬化物の粘弾性測定若しくは樹脂の示差走査熱量測定から決定されるか、又は樹脂製造に用いられる各単量体について一般に示されているホモポリマーのTg(例えば、「ポリマーハンドブック」(A WILEY-INTERSCIENCE PUBLICATION)に記載されているTg)と、単量体の配合割合とから、FOXの式により算出される。
 具体的な樹脂複合フィルムのガラス転移温度(Tg)の求めかたは、元のベースラインと変曲点(上に凸の曲線が下に凸の曲線に変わる点)での接線の交点とする。接線が取り難いときには、変移の中点とする。
 なお、樹脂複合フィルムのガラス転移温度(Tg)は、繊維シートに含浸できる樹脂のガラス転移温度(Tg)と近い値を取る。
 〈貯蔵弾性率〉
 本実施形態に係る樹脂複合フィルムは、冷熱衝撃耐性、及び反り低減の観点から、200℃での貯蔵弾性率(E’200)が、0.5GPa以上であり、好ましくは0.7GPa以上、より好ましくは1.0GPa以上である。
 本実施形態に係る樹脂複合フィルムは、冷熱衝撃耐性の観点から、200℃での貯蔵弾性率(E’200)に対する150℃での貯蔵弾性率(E’150)の比(E’150/E’200)が、1以上4.5以下、1以上3.5以下、又は1.0以上2.0以下である。本実施形態では、1~4.5の範囲内のE’150/E’200によって、比較的低温と比較的高温の貯蔵条件下で貯蔵弾性率の熱変化が抑制されている樹脂複合フィルムが特定される。
 200℃での貯蔵弾性率(E’200)に対する150℃での貯蔵弾性率(E’150)の比(E’150/E’200)が、1以上4.5以下の範囲で制御できる要因としては、セルロース微細繊維の数平均繊維径が0.01μm以上2.0μm以下であると、空隙を維持しつつ、セルロース微細繊維シートの単位重量あたりのセルロース微細繊維の本数が非常に多くなることで、微細繊維間での交絡点数が増加し、微細繊維間での水素結合ネットワークが形成されやすくなる。この効果によって樹脂と複合化した際に、樹脂中でも微細繊維の交絡・微細繊維間の水素結合ネットワークが保持され、高温でも貯蔵弾性率安定化に寄与するため、好ましい。
 特に、該樹脂複合フィルムのガラス転移温度(Tg)が、80℃以上であるか又は存在せず、該樹脂複合フィルムの200℃での貯蔵弾性率(E’200)が、0.5GPa以上であって、該200℃での貯蔵弾性率(E’200)に対する該樹脂複合フィルムの150℃での貯蔵弾性率(E’150)の比(E’150/E’200)が、1以上4.5以下であれば、樹脂複合フィルムは、高耐久性を有し、携帯電話等のデバイス内に薄型基板として搭載されたとしても、デバイスに冷熱衝撃耐性を付与することができるので、割れ難く、デバイス内の層間絶縁フィルムの破損を防止することができる。
 樹脂複合フィルムの貯蔵弾性率は、実施例に記載の方法及び条件に従って測定される。
 《樹脂複合フィルムの製造方法》
 本実施形態の樹脂複合フィルムの製造方法は、特に限定されるものではないが、繊維シートに熱硬化樹脂組成物を含浸させたプリプレグを賦形及び/又は積層後、賦形物及び/又は積層物に圧力を付与しながら樹脂を加熱硬化させるプリプレグ積層成形法、繊維シートに直接液状の熱硬化樹脂組成物を含浸させた後、硬化させるレジントランスファーモールディング法、繊維シートを液状の熱硬化樹脂組成物の満たされた含浸槽に連続的に通して熱硬化樹脂組成物を含浸させた後、スクイーズダイ、加熱金型を通して引張機によって連続的に引き抜きつつ、成形、硬化させるプルトルージョン法などにより製造することができる。
 樹脂を含浸させる方法としては、ウェット法とホットメルト法(ドライ法)等を挙げることができる。
 ウェット法は、メチルエチルケトン等の溶媒にエポキシ樹脂組成物や光硬化性樹脂組成物、熱可塑性樹脂を溶解させた溶液に繊維シートを浸漬した後、繊維シートを引き上げ、オーブン等を用いて溶媒を蒸発させ、樹脂を含浸させる方法である。
 ホットメルト法は、加熱により低粘度化したエポキシ樹脂組成物や光硬化性樹脂組成物、熱可塑性樹脂を直接繊維シートに含浸させる方法、離型紙等の上にエポキシ樹脂組成物をコーティングしたフィルムを作製しておき、次いで強化繊維の両側または片側から前記フィルムを重ね、加熱加圧することにより強化繊維に樹脂を含浸させる方法である。このとき、真空脱泡工程を入れて、空気を脱気することが好ましい。また、プリプレグ中に残留する溶媒がないため、ホットメルト法を用いることが好ましい。
 《樹脂複合フィルムの用途》
 本実施形態の樹脂複合フィルムは、高強度かつ軽量であることから、鋼板の代替、炭素繊維強化プラスチックの代替ができる。その例としては、例えば、産業用機械部品(例えば電磁機器筐体、ロール材、搬送用アーム、医療機器部材など)、一般機械部品、自動車・鉄道・車両等部品(例えば外板、シャシー、空力部材、座席など)、船舶部材(例えば船体、座席など)、航空関連部品(例えば、胴体、主翼、尾翼、動翼、フェアリング、カウル、ドア、座席、内装材など)、宇宙機、人工衛星部材(モーターケース、主翼、構体、アンテナなど)、電子・電気部品(例えばパーソナルコンピュータ筐体、携帯電話筐体、OA機器、AV機器、電話機、ファクシミリ、家電製品、玩具用品など)、建築・土木材料(例えば、鉄筋代替材料、トラス構造体、つり橋用ケーブルなど)、生活用品、スポーツ・レジャー用品(例えば、ゴルフクラブシャフト、釣り竿、テニスやバトミントンのラケットなど)、風力発電用筐体部材等、また容器・包装部材、例えば、燃料電池に使用されるような水素ガスなどを充填する高圧力容器用の材料となり得る。
 本実施形態の樹脂複合フィルムは、プリント配線板における積層板補強用に好適である。その他、本実施形態の樹脂複合フィルムは、例えば発電機、変圧器、整流器、遮断器、制御器における絶縁筒、絶縁レバー、消弧板、操作ロッド、絶縁スペーサ、ケース、風胴、エンドベル、風ウケ、標準電気品におけるスイッチボックス、ケース、クロスバー、絶縁軸、ファンブレード、機構部品、透明基板、スピーカー振動板、イータダイヤフラム、テレビのスクリーン、蛍光灯カバー、通信機器・航空宇宙用におけるアンテナ、ホーンカバー、レードーム、ケース、機構部品、配線基板、航空機、ロケット、人工衛星用電子機器部品、鉄道用部品、船舶用部品、浴槽、浄化槽、耐食機器、いす、安全帽、パイプ、タンクローリ、冷却塔、浮消波堤、地下埋没タンク、コンテナ等の用途にも適用できる。
 本実施形態の樹脂複合フィルムは、自動車のトランスミッションの内部において、ディスク同士を確実に締結させるための摩擦材としても用いられる。本実施形態の樹脂複合フィルムは、高温域での低線膨張性、及び防湿性に優れ、電子デバイス内での反りや剥離が防止できることから、特に電子材料として好適に使用し得る。より具体的には、本実施形態の樹脂複合フィルムは、樹脂積層フィルム、樹脂積層板、多層プリント配線板、半導体パッケージ基板、通信端末などに含まれる、層間絶縁膜として好適に使用し得る。そのため、本実施形態の樹脂複合フィルムは、車載用途において、運転支援システム(ナビゲーション、車載カメラ、センシングシステム等)に好適に使用し得る。
 本実施形態の樹脂複合フィルムは、支持体上に積層された樹脂積層フィルムであってもよい。本実施形態の樹脂積層フィルムを複数枚積層して、樹脂複合フィルム積層板を形成してもよい。樹脂複合フィルム積層板は、多層プリント配線板に使用することができる。多層プリント配線板は、半導体パッケージ基板に使用することができ。半導体パッケージ基板は、通信端末などに使用することができる。本実施形態の樹脂積層フィルムは、通信端末などに含まれる層間絶縁膜としても好適に使用し得る。
 以下に実施例、比較例によって本発明をさらに詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。
[実施形態I]
 《セルロース繊維シートの物性測定及び評価方法》
 〈セルロース微細繊維の数平均繊維径〉
 繊維シートにおいて、セルロース微細繊維の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて1,000~100,000倍相当の倍率で行った。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数えた。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維径を算出した。さらに抽出した他の2つのSEM画像についても同じように数平均繊維径を算出し、合計10画像分の結果を平均化した。
 〈セルロース微細繊維の最大繊維径〉
 セルロース微細繊維からなる構造体の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を倍率500倍で行った。得られたSEM画像10枚内で最も太い繊維の繊維径をセルロース微細繊維シートにおける最大繊維径とした。他の不織布などに積層させた積層シートについては、セルロース微細繊維シート側からSEM観察を行った。
 〈シート目付〉
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを10.0cm×10.0cmの正方形片に裁断・秤量し、下記式より算出した。
 シート目付(g/m)=10cm角重量(g)/0.01m
 〈シート厚み〉
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))で10点厚みを測定し、その平均値を該サンプルの厚みとした。
 〈空隙率〉
 セルロース微細繊維の密度を1.5g/cmと仮定し、下記式より算出した。
 空隙率(%)=100-((目付(g/m)/1.5)/シート厚み(μm))×100)
 〈透気抵抗度〉
 室温23℃、湿度50%RHの雰囲気下で調湿したサンプルを王研式透気抵抗試験機(旭精工(株)製、型式EG01)で透気抵抗度を10点測定し、その平均値を該サンプルの透気抵抗度とした。
 《プリプレグ、樹脂複合フィルム、の物性測定及び評価方法》
 〈測定用断面サンプルの作製〉
 まず、樹脂複合フィルムの両面に白金を真空蒸着した(被膜厚み:10nm)。つづいて、試料フィルムをエポキシ樹脂(2液式エポキシ接着剤)で包埋し、ウルトラミクロトームで断面出しを行った。切削にはダイアモンドナイフを使用し、常温で切削を行った。シリカが含まれるフィルムについては、ミクロトームでシリカを切削できないため、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いてサンプル加工し、フィルムの断面出しを行った。得られた断面サンプルは接着剤-白金-フィルム-白金-接着剤の5層で構成され、白金蒸着を行うことでサンプル中のフィルムの位置を明確にした。
〈顕微赤外イメージング〉
 全ての樹脂複合フィルムにセルロース微細繊維および/または微細アラミド繊維が含まれていることを顕微赤外イメージングで確認した。なお、測定は上記樹脂複合フィルムの断面サンプルについて、以下の条件により行った。
・装置     :赤外イメージング顕微鏡NicoletTM iNTM10MX(Thermo ScientificTM)
・分解能    :8cm-1
・積算回数   :1回
・ステップサイズ:x=2.5μm、y=2.5μm
・測定範囲:4000-600cm-1
 〈X線構造解析〉
 実施例1の複合フィルムに対し、X線構造解析をした結果、X線回折パターンにおいて、2θの範囲を0°~30°とするX線回折パターンが、10°≦2θ<19°に1つのピークと、19°≦2θ≦30°に2つのピークが確認された。これより、微細繊維が天然セルロースか、再生セルロースであることを特定した。
 〈原子間力顕微鏡(AFM)測定〉
 樹脂複合フィルムの断面サンプルを専用のサンプル固定台に固定し、下記のようなAFM測定条件で断面の弾性率を測定した。
 装置    :Bruker社製 Dimension Icon
 測定モード :Peak Force Tapping Mode
 プローブ  :ダイヤモンド単結晶プローブ
ばね定数k=48N/m、先端曲率半径R=12nm
 解像度   :512×512ピクセル
 測定範囲  :15μm×15μm
 サンプリング周波数:0.3-0.7Hz
 最大押し込み荷重:50nN
 また、解像度512×512ピクセル、測定範囲15μm×15μmでセルロース微細繊維の分布が確認できなかった場合には、上記と同等の解像度で測定範囲を3μm×3μm、さらには測定範囲を1μm×1μmとして測定を行った。
 〈セルロース微細繊維の充填率〉
 セルロース微細繊維の充填率は、樹脂複合フィルム断面のAFM弾性率像においてセルロース微細繊維が樹脂複合フィルム全体で占める面積比として定義した。弾性率は素材ごとに異なり、弾性率のヒストグラムの閾値を設定することで、樹脂複合フィルムに含まれる素材ごとに弾性率マッピングを作製した。たとえば、セルロース微細繊維とエポキシのみからなる樹脂複合フィルムの場合、エポキシ(ソフト相)とセルロース微細繊維(ハード相)からなるコントラスト像が得られる。ヒストグラムは大きく分けて2つのピークからなり、ヒストグラムの2つのピークの中点を2値化における閾値に設定した(セルロース:黒色、エポキシ:白色)。また、樹脂複合フィルムの厚みがAFM測定範囲15μmよりも厚い場合、まず樹脂複合フィルムの断面を複数視野に分けて測定した。つづいて、各視野で弾性率マッピングを作製した後、画像を結合し、樹脂複合フィルム断面が1画像に収まった像を得た。樹脂複合フィルムの断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維由来の面積および樹脂複合フィルム全体の面積を算出し、最終的に以下の式よりセルロース微細繊維の充填率を求めた。
 セルロース微細繊維の充填率(%)=セルロース微細繊維由来の面積/樹脂複合フィルム全体の面積×100
 以上の方法を用いて10か所の樹脂複合フィルム断面のセルロース微細繊維の充填率を求め、そのうち最大値および最小値を除いた8点の平均値を樹脂複合フィルム全体のセルロース微細繊維の充填率とした。
 〈セルロース微細繊維の平均繊維径〉
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維由来の面積(ΣS)およびセルロース微細繊維と他素材(主にエポキシ)との界面の総長さ(ΣL)を求め、その後、下記式に従い、セルロース微細繊維の平均繊維径を算出した。
 セルロース微細繊維の平均繊維径(nm)=4×ΣS/ΣL
 以上の方法を用いて10か所のフィルム断面のセルロース微細繊維の平均繊維径を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体のセルロース微細繊維の平均繊維径とした。
 〈セルロース微細繊維の最大繊維径〉
 上記樹脂複合フィルム断面がすべて写った10か所の弾性率マッピングについて、画像編集ソフト「imageJ」の粒子解析を行い、セルロース微細繊維径を真円と見做した時の粒径として算出した。この時、最も大きい粒径をセルロース微細繊維の最大繊維径として採用した。
 プリプレグにおけるセルロース微細繊維の平均繊維径、及び最大繊維径は、プリプレグを一度、有機溶剤に含浸し、樹脂成分を溶解除去した後、走査型電子顕微鏡(SEM)を用いて、繊維シートの数平均繊維径、最大繊維径を上記と同様にして測定した。
 〈樹脂複合フィルム内の繊維シートの空隙率〉
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維由来の面積(ΣS)と、同様に算出される繊維シートを構成する繊維間(オーバーコート樹脂層を除く)に含まれる樹脂由来の面積(ΣSp)を算出し、その後、下記式に従い、樹脂複合フィルム内の繊維シートの空隙率を算出した。
 樹脂複合フィルム内の繊維シートの空隙率(%)=ΣS/(ΣS+ΣSp)×100
 〈樹脂複合フィルム全体の無機充填材の充填率〉
 樹脂複合フィルム全体の無機充填材の充填率は、上記樹脂複合フィルム断面において無機充填材構成原子が占める面積比として定義した。例えば、シリカ粒子であればSi、水酸化アルミニウム粒子であればAlを測定した。ここではシリカ粒子を例に測定方法を示す。断面サンプルをカーボンペーストおよびオスミウムコーティングにより導通処理を行った後、走査型電子顕微鏡S-4800(日立ハイテクフィールディング社製)を用いて、撮影倍率500倍、加速電圧1.0kV、検出器:二次電子の設定で撮影を行い、断面SEM像を取得した。つづいて、同視野についてエネルギー分散型X線検出器X-Max SILICON DRIFT X-RAY DETECTOR(株式会社堀場製作所製)を用いてCおよびSiの元素マッピングを取得した。面積比は、まずフィルム断面のSEMの二次電子像を画像編集ソフト「imageJ」を用いて、フィルムの外周に相当する部分で切り取り、フィルム断面のみを表示させた。次に2値化を行い、シリカ由来を黒く、その他由来を白く表示した。白黒二値化の閾値は黒く表示される部分がEDXのSiの領域と対応するように選び、黒の面積をカウント数として算出する。また、フィルム断面全体の面積をカウント数として算出する。これらの二つの比により以下の式よりSiがフィルム断面全体に占める割合を算出した。
 無機充填材の充填率(%)=無機充填材由来の面積/フィルム全体の面積×100
以上の方法を用いて10か所のフィルム断面の無機充填材の充填率を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体の無機充填材の平均充填率とした。ここでの二値化は、有機物(樹脂や繊維等)と無機物(無機充填材等)の弾性率差による二値化のことをいう。
 〈セルロース微細繊維層に含まれる無機充填材の割合〉
 セルロース微細繊維層に含まれる無機充填材の充填率は、上記樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、樹脂複合フィルム中の無機充填材由来の全面積およびセルロース微細繊維層に含まれる無機充填材由来の面積を算出し、最終的に以下の式よりセルロース微細繊維層の無機充填材の含有率を求めた。なお、セルロース微細繊維層は樹脂複合フィルム最表面から最も近いセルロース微細繊維から順に10点以上を選び、線で結んだ時に囲まれる領域をセルロース微細繊維層と定義する。
 セルロース微細繊維層に含まれる無機充填材の含有率(%)=セルロース微細繊維層中の無機充填材由来の面積/樹脂複合フィルム中の無機充填材由来の全面積×100
 以上の方法を用いて10か所の樹脂複合フィルム断面のセルロース微細繊維層に含まれる無機充填材の充填率を求め、そのうち最大値および最小値を除いた8点の平均値を、セルロース微細繊維層に含まれる無機充填材の充填率とした。
 〈オーバーコート樹脂層の平均厚み〉
 樹脂複合フィルム最表面より不織布層表面までの長さをオーバーコート樹脂層と定義する。不織布層とはセルロース微細繊維層を含む有機繊維からなる層と定義する。上記のAFM弾性率マッピングよりエポキシ層(表)/不織布層/エポキシ層(裏)の3層で構成されることが確認できる。フィルム最表面より不織布層表面までの長さを表および裏でそれぞれ10点ずつ測定し、その平均値をオーバーコート樹脂層の厚み(表)、オーバーコート樹脂層の厚み(裏)とした。
 〈オーバーコート樹脂層の厚み均一性〉
 上記(7)で測定した10点のオーバーコート樹脂層の厚みの標準偏差および平均値より、変動係数を求めた。変動係数が20%未満の場合「○」、20%以上50%未満の場合「△」、50%以上の場合「×」とした。
 変動係数(%)=オーバーコート樹脂層の厚みの標準偏差/オーバーコート樹脂層の平均厚み×100
 〈樹脂複合フィルムの厚み〉
 樹脂複合フィルム内10点の厚みを測定し、その平均値を厚みとした。膜厚計として面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))を使用した。
 〈吸湿率〉
 樹脂複合フィルムを50mm角に切断し、120℃で2時間乾燥させた後、初期質量(W0)を測定し、その後、湿度:85%/温度:85℃/192時間の条件で吸湿処理した後の質量(W1)を測定した。そして、下記の式より吸湿率を求めた。
 吸湿率(%)=(W1-W0)/W0×100
 〈透過率〉
 本実施形態の樹脂複合フィルムは、全光線透過率が80%以上であることが好ましい。透過率は、ASTM D1003に基づき、ヘイズメーターNDH7000SP CU2II(製品名)(日本電色工業株式会社製)を使用した光透過性試験によって測定できる。
 〈誘電特性(比誘電率及び誘電正接)〉
 厚み0.8mmの厚膜樹脂複合フィルムを、1.5(幅)×80mm(長さ)のサイズに切り出し、測定サンプルとした。測定は、空洞共振法(8722ES型ネットワークアナライザー、アジレントテクノロジー製;空洞共振器、関東電子応用開発製)を用いて、1GHzの値を測定した。
 〈銅箔の引き剥がし強さ(ピール強度)〉
 銅張積層板に幅1cm、長さ10cmの切れ込みを入れ、その一端を剥がして島津製作所製のオートグラフAGS-500で掴み、室温にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(kgf/cm)を測定した。
 〈回路埋め込み性評価〉
 絶縁層積層体のライン/スペース比=600/660μmの櫛歯パターンの櫛歯パターン上の絶縁層を表面から光学顕微鏡で観察し、ボイドなくしっかりと埋め込まれているものを「○」とし、ボイド発生や樹脂の浮きがあるものを「×」とした。
 〈冷熱衝撃耐性試験〉
 めっき処理積層体に対し、冷熱衝撃装置(Espec社製、TSA-71S-A/W)を用い、MIL-STD-883Eの条件A(-55℃~125℃)に基づき、低温(-55℃)および高温(125℃)における暴露時間を各30分とし、これを200サイクル行なった。光学顕微鏡写真(透過光、倍率:×25~×100)及び断面SEM(倍率:×5000)を用いて、銅配線、銅・樹脂界面などの故障状況を観察し、官能評価を以下の基準で行なった。故障箇所が少ないほど密着性に優れると評価した。
 ◎:表記条件の観察により確認される故障箇所が1個以下
 ○:表記条件の観察により確認される故障箇所が2個以上5個以下
 △:表記条件の観察により確認される故障箇所が6個以上10個以下
 ×:表記条件の観察により確認される故障箇所が11個以上
 《スラリーの製造例》
 〈スラリー製造例1〉
 双日(株)より入手した再生セルロース繊維であるテンセルカット糸(3mm長)を洗浄用ネットに入れて界面活性剤を加え、洗濯機で何度も水洗することにより、繊維表面の油剤を除去した。
 得られた精製テンセル繊維(カット糸)を固形分1.5重量%となるように水中に分散させて(400L)、ディスクレファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで400Lの該水分散体を20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で叩解処理を続けた。経時的にサンプリングを行い、サンプリングスラリーに対して、JIS P 8121で定義されるパルプのカナダ標準ろ水度試験方法(以下、CSF法)のCSF値を評価したところ、CSF値は経時的に減少していき、一旦、ゼロ近くとなった後、さらに叩解処理を続けると、増大していく傾向が確認された。クリアランスをゼロ近くとしてから10分間、上記条件で叩解処理を続け、CSF値で100ml以上の叩解水分散体を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS015H)を用いて操作圧力100MPa下で5回の微細化処理を実施し、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
 〈スラリー製造例2〉
 原料として天然セルロースであるリンターパルプを用いた。リンターパルプが4重量%となるように水に浸液させてオートクレーブ内で130℃、4時間の熱処理を行い、得られた膨潤パルプを何度も水洗し、水を含浸した状態の膨潤パルプを得た。その後、製造例1と同様の方法でディスクリファイナーおよび高圧ホモジナイザー処理を行い、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は100ml以上であった。
 〈スラリー製造例3〉
 原料をアバカパルプに変えた以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は630ml以上であった。
 〈スラリー製造例4〉
 原料を帝人(株)のアラミド繊維(1mm長)に変えた以外はスラリー製造例1と同じ方法で微細アラミド繊維のスラリー(固形分濃度:1.5重量%)を得た。
 〈スラリー製造例5〉
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
 〈スラリー製造例6〉
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例4と同じ方法で微細アラミド繊維のスラリー(固形分濃度:1.5重量%)を得た。
 〈スラリー製造例7〉
 CSF値がゼロとなった時点で処理を止めた以外はスラリー製造例1と同じ方法でセルロース微細繊維スラリー(固形分濃度:1.5重量%)を得た。
 〈スラリー比較製造例1〉
 特開2006-316253の実施例4を参考にシート製造を行った。2.0%のグルコースを添加した多糖生産培地(Polysaccharide-production-medium,Akihiko Shimada、Vivaorigino,23,1、52-53、1995)を高圧蒸気殺菌処理した後、その1000Lを内容量3000Lの発酵槽に入れ、CF-002株を104CFU/mlになるように接種し、通気下、30℃で2日間、通気下での撹拌培養を行い、バクテリアセルロース(BC)を大量に含む分散体を得た。その後、スクリーンメッシュで濾別水洗、圧搾後、1%NaOH溶液に浸漬し、除菌後、再度中和、水洗、圧搾を行った。さらに水洗と圧搾の工程を3度繰り返し、精製された綿状のBC/水分散体(セルロース含有率:11.6重量%)を得た。得られた分散体をセルロース濃度が1.0重量%となるように水で希釈し、家庭用ミキサーで10分間予備分散した後に、高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS3015H)を用いて、操作圧力80MPa下で4回の分散処理を実施した。
 《シートの製造例》
 〈シート製造例1〉
 前記スラリー製造例1のスラリーを固形分濃度0.2重量%まで希釈し、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。PET/ナイロン混紡製の平織物(敷島カンバス社製、NT20:大気下25℃での水透過量:0.03ml/(cm・s)、セルロース微細繊維を大気圧下25℃における濾過で99%以上濾別する能力あり)をセットしたバッチ式抄紙機(熊谷理機工業社製、自動角型シートマシーン 25cm×25cm、80メッシュ)に目付10g/mのセルロースシートを目安に、上記調整した抄紙スラリーを投入し、その後大気圧に対する減圧度を4KPaとして抄紙(脱水)を実施した。
 得られた濾布上に乗った湿潤状態の濃縮組成物からなる湿紙を、ワイヤー上から剥がし、1kg/cmの圧力で1分間プレスした後、湿紙面をドラム面に接触させるようにして、湿紙/濾布の2層の状態で表面温度が130℃に設定されたドラムドライヤーに湿紙がドラム面に接触するようにして約120秒間乾燥させた。得られた乾燥した2層体からセルロースのシート状構造物から濾布を剥離させて、白色のセルロース微細繊維シート(25cm×25cm、10g/m)を得た。つづいて、セルロース微細繊維シートをカレンダー装置によって平滑化処理を施し(由利ロール(株)製、油圧式2本ロールテストエンボス機、上ロール:金属/下ロール:アラミド、面長300mm、温度:室温、圧力:1.5ton/300mm)、薄層のセルロース微細繊維シートS1を得た。
 〈シート製造例2〉
 前記スラリー製造例2のセルロース微細繊維スラリー50重量部、前記スラリー製造例4の微細アラミド繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、微細アラミド繊維を含む乳白色のセルロース微細繊維シートS2を得た。
 〈シート製造例3〉
 スラリー製造例3のスラリー(312.5g)に、1-ヘキサノール及びヒドロキシプロピルメチルセルロース(商品名「60SH-4000」、信越化学工業製)をそれぞれ1.2重量%(3.9g)、0.012重量%(0.039g)添加し、家庭用ミキサーで4分間乳化、分散化させた。それ以外は、該抄紙スラリー用いて実施例1と同様の方法で抄紙・乾燥・平滑化を行い、セルロース微細繊維シートS3を得た。
 〈シート製造例4〉
 前記スラリー製造例2のセルロース微細繊維スラリー70重量部、前記スラリー製造例4の微細アラミド繊維スラリー30重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。抄紙スラリー312.5gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を1.9g滴下した後3分間撹拌を行い、抄紙スラリー(合計314.4g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維および微細アラミド繊維固形分重量に対して、3重量%であった。シート製造例1と同様の抄紙・乾燥・平滑化手法を用いてシート化した。そして、平滑化工程を経た後、シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋された微細アラミド繊維を含む乳白色のセルロース微細繊維シートS4を得た。
 〈シート製造例5〉
 シート製造例1の手法を用い、PET/ナイロン混紡製の平織物の上にキュプラ長繊維不織布(旭化成せんい株式会社製、商品名:ベンリーゼ SN140 目付:14g/m、膜厚:70μm、密度:0.2g/cm、平均単糸繊度:0.2dtex)を重ねた状態で抄紙を行い、キュプラ長繊維不織布上にセルロース微細繊維シートが積層された繊維シートS5を作製した。なお、平滑化工程は行わなかった。
 〈シート製造例6〉
 シート製造例1の抄紙スラリー468.8gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を2.85g滴下した後3分間撹拌を行い、抄紙スラリー(合計471.65g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維固形分重量に対して、3.0重量%であった。シート製造例4と同様の抄紙・乾燥・平滑化手法を用いてシート化した。その後、該乾燥シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋されたセルロース微細繊維を含む白色のセルロース微細繊維シートS6を得た。
 〈シート製造例7〉
 前記スラリー製造例5のセルロース微細繊維スラリー50重量部、前記スラリー製造例6の微細アラミド繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、微細アラミド繊維を含む乳白色のセルロース微細繊維シートS7を得た。
 〈シート製造例8〉
 前記スラリー製造例7のセルロース微細繊維スラリー468.8gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を2.85g滴下した後3分間撹拌を行い、抄紙スラリー(合計471.65g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維固形分重量に対して、3.0重量%であった。シート製造例4と同様の抄紙・乾燥・平滑化手法を用いてシート化した。その後、該乾燥シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋されたセルロース微細繊維を含む白色のセルロース微細繊維シートS8を得た。
 〈シート比較製造例1〉
 スラリー比較製造例1で得られたセルロース濃度1.0重量%の分散液を、さらに水でセルロース濃度0.40重量%となるように希釈し、再度家庭用ミキサーで5分間分散処理を行い、得られた分散液を抄紙用分散液として使用した。得られた湿紙上をさらに同じ濾布で覆い、金属製ローラーにて脱水し、セルロース濃度が12~13重量%となるように調節した。得られた湿紙はPET織物を剥がさないまま、まずアセトン中に浸漬し時々全体を軽くすすぎながら約10分間置換処理を行った後に、トルエン/アセトン=50/50(g/g)の混合溶液に浸漬し、時々全体を軽くすすぎながら約10分間、置換処理を行った。その直後に濾布で挟んだ湿紙を金属板上に乗せ、その上に錘を乗せて定長で乾燥されるようにして、乾燥オーブン内にセットして、100℃で50分間乾燥させた。乾燥後、不織布を濾布から剥がすことにより、白色のセルロースシートRS1を得た。
 シート製造例及びシート比較製造例の原料、製造方法及び物性を表1に示す。
 《ワニスの製造例》
 〈ワニス製造例1〉
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V1)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)78.9重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.0重量部
・ジシアンジアミド(大日本インキ化学)2.0重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
・球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)32.0重量部
 〈ワニス製造例2〉
 球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)98.0重量部を入れる以外はワニス製造例1と同じ方法でワニスV2を製造した。
 〈ワニス製造例3〉
 メチルエチルケトンを溶媒とし、下記化合物を混合した固形分70重量%のワニス(V5)を調整した。
・ナフタレン型エポキシ樹脂HP-9500(大日本インキ化学)54.3重量部
・液状脂環式酸無水物MH-700(新日本理化)40.6重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
 〈ワニス製造例4〉
 メチルエチルケトンを溶媒とし、下記化合物を混合した固形分70重量%のワニス(V4)を調整した。
・ビフェニル型エポキシ樹脂NC-3000H(日本化薬)39.2重量部
・ビスフェノールA型エポキシ樹脂1051(大日本インキ化学)39.2重量部
・アミノトリアジンノボラック樹脂LA-3018(大日本インキ)16.5重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
・水酸化アルミニウムH-43S(昭和電工、平均粒径0.7μm)61.0重量部
・架橋微粒子ゴムXER-91(JSR)2.5重量部
 〈ワニス製造例5〉
 メチルエチルケトンを溶媒とし、下記化合物を混合した固形分70重量%のワニス(V5)を調整した。
・脂環式エポキシ樹脂2021P(ダイセル)20.0重量部
・ジシクロペンタジエン型エポキシ樹脂HP-7200H 30.0重量部
・活性エステル型硬化剤HPC8000-65T(大日本インキ化学)50.0重量部
・4-ジメチルアミノピリジン(東京化成工業)0.1重量部
 〈ワニス製造例6〉
 メチルエチルケトンを溶媒とし、下記化合物を混合した固形分70重量%のワニス(V6)を調整した。
・ポリスチレン(和光純薬)100.0重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
・球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)32.0重量部
・架橋微粒子ゴムXER-91(JSR)2.5重量部
 〈ワニス製造例7〉
 球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)121.0重量部を入れる以外はワニス製造例1と同じ方法でワニスV7を製造した。
 〈ワニス製造例8〉
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V8)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)83.1重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.7重量部
・ジシアンジアミド(大日本インキ化学)2.1重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・シリカSO25R(アドマテックス、重量平均粒径0.5μm)60.6重量部
 〈ワニス比較製造例1〉
 特開2006-316253の実施例4を参考にワニス製造を行った。下記化合物を120℃まで加熱し、混練機で混合した固形分100wt%のワニス(RV1)を調整した。
・ビスフェノールA型エポキシ樹脂(旭化成エポキシ、AER-250)85.0重量部
・m-キシリレンジアミン15.0重量部
 ワニス製造例及びワニス比較製造例の組成、及び固形分率を表2に示す。なお、表2中の各成分の数値は、重量部を表す。
 《樹脂複合フィルムの製造例》
 〈実施例1〉
 (1)プリプレグの作製
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニスV1をフィルムアプリケーターで0.3g塗布した後、10cm角に裁断した上記セルロース微細繊維シート(S1)を置き、さらに該ワニスV1をセルロース微細繊維シート上にアプリケーターで再度0.3g塗布した。得られたフィルムを100℃、4分加熱して溶媒を除去するとともに半硬化物のプリプレグを得た。
 (2)樹脂複合フィルムの作製
 該プリプレグに別のポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離形面が接するように被せた後、真空熱プレス機で硬化を行った(加熱温度220℃、圧力6.0MPa、時間160分)。得られた硬化フィルムより支持フィルムを外し、樹脂複合フィルムを得た。
 得られた樹脂複合フィルムのAFM弾性率像を図1(a)に、弾性率ヒストグラムを図1(b)に、2値化像を図1(c)にそれぞれ示す。なお、図1(c)において斜線部がセルロース部と対応する。
 さらに、得られた図1(a)の樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、無機充填材由来の面積およびセルロース微細繊維層に含まれるシリカフィラーの由来の面積を算出し、フィルム最表面から最も近いセルロース微細繊維を10点以上選び、線で結んだ時に囲まれる領域をセルロース微細繊維層として定義したときの処理画像を図2に示す。
 (3)銅張積層板の作製
 最終的な硬化物の厚みが0.7~0.9mmの範囲に入るように上記プリプレグを所定枚数枚重ね、電解銅箔F2-WS(古河サーキットフォイル、厚さ18μm、処理面のRz=2.3μm)を上下に配置し、圧力2.5MPa、温度240℃で60分間プレスを行って、銅張積層板を得た。
 (4)厚膜樹脂複合フィルムの作製
 該銅張積層板を銅エッチング液に浸漬することにより、銅箔を取り除いた、厚さ0.8mmの評価用の厚膜樹脂複合フィルムを作製した。
 (5)内層回路基板の作製
 ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ35μm、基板の厚さ0.8mm、松下電工(株)製「R5715ES」)に、IPC MULTI-PURPOSE TEST BOARD NO. IPC C-25のパターン(ライン/スペース比=600/660μmの櫛歯パターン(残銅率48%))を形成した。次いで、基板の両面をマイクロエッチング剤(メック(株)製「CZ8100」)で粗化処理し、内層回路基板を作製した。
 (6)絶縁層積層体の作製
 前記内層回路基板の両面に前記プリプレグを(株)名機製作所製真空ラミネーターにより、温度120℃、圧力7kgf/cm、気圧5mmHg以下の条件でラミネートし、さらに連続的に温度120℃、圧力5kgf/cm、大気圧の条件でSUS鏡板による熱プレスを行った。次いでPETフィルムを剥がした後、180℃、30分熱硬化させ、基板両面に絶縁層を形成した。
 (7)粗化処理積層体の作製
 絶縁層を形成した回路基板の樹脂硬化物層を化学粗化するために、膨潤液として、ジエチレングリコールモノブチルエーテル:200ml/L、NaOH:5g/Lの水溶液を作製し、80℃に加温して5分間浸漬処理した。次に、粗化液として、KMnO:60g/L、NaOH:40g/Lの水溶液を作製し、80℃に加温して15分間浸漬処理した。引き続き、中和液(SnCl:30g/L、HCl:300ml/L)の水溶液を作製し、40℃に加温して5分間浸漬処理し、KMnOを還元した。
 (8)めっき処理積層体の作製
 粗化処理を行った絶縁層表面にセミアディティブ工法で回路を形成するために、内層回路基板を、PdCl2を含む無電解メッキ用溶液に40℃で5分間浸漬し、次に無電解銅メッキ液に25℃で20分間浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成(L/S=40μm/40μm、長さ5cmのストレートなスリット状配線)の後に、硫酸銅電解メッキおよびアニール処理を200℃にて60分間行い、30μmの厚さで導体層を形成した。
 〈実施例2〉
 セルロース微細繊維シートをS2にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF2(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例3〉
 ワニス(V2)の塗布量を0.9gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF3(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例4〉
 セルロース微細繊維シートをS3に、ワニスをV3に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF4(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。樹脂複合フィルムの全光線透過率を測定したところ、82%であった。
 〈実施例5〉
 セルロース微細繊維シートをS4に、ワニスをV4に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF5(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例6〉
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニス(V5)をフィルムアプリケーターで0.8g塗布した後、10cm角に裁断した上記セルロース微細繊維積層シート(S5)をセルロース微細繊維面が接するように置き、さらにワニス(V5)をセルロース微細繊維シート上にアプリケーターで再度8.0g塗布した。それ以外は実施例1と同じ方法で、各種樹脂複合フィルムF6(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例7〉
 ワニスをV6に変更した以外は実施例6と同じ方法で各種樹脂複合フィルムF7(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例8〉
 ワニスをV7に変更し、ワニスの塗布量を9.0gにし、セルロース微細繊維シートをS6にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF8(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例9〉
 セルロース微細繊維シートをS7に、ワニスをV8にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF9(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例10〉
 セルロース微細繊維シートをS8に、ワニスをV1にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF10(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 〈実施例11〉
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にセルロース微細繊維シートS6を置き、その上に60μm厚のポリプロピレンフィルムを乗せ、さらに別のポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離形面が接するように被せた。これを加熱プレス機にて、200℃、10分間の加熱プレスを行い、セルロース微細繊維シートS6をポリプロピレンフィルムに埋め込んだ。
 続いて、もう一度、20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にセルロース微細繊維シートS6付ポリプロピレンフィルムを置き、セルロース微細繊維シートS6が外側に出ている方へ60μm厚のポリプロピレンフィルムを乗せ、さらに別のポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離形面が接するように被せた。これを加熱プレス機にて、200℃、10分間の加熱プレスを行い、セルロース微細繊維シートS6が両側にポリプロピレンフィルムで挟まれた樹脂複合フィルムF11を作製した。
 樹脂複合フィルムF11については、実施例1(5)で作製した内層回路基板に対し、両面に前記樹脂複合フィルムF11を(株)名機製作所製真空ラミネーターにより、温度200℃、圧力7kgf/cm、気圧5mmHg以下の条件でラミネートし、さらに連続的に温度200℃、圧力5kgf/cm、大気圧の条件でSUS鏡板による熱プレスを行った。次いでPETフィルムを剥がし、回路埋め込み性評価のみを行った。
 〈比較例1〉
 特開2006-316253の実施例4を参考に樹脂複合フィルム等の製造を行った。ワニス比較製造例1にて得られたワニスRV1を、シート比較製造例1にて得られたセルロース不織布RS1に含浸(含浸時間:5分以内)させたもの1枚を、熱プレス機内にて温度100℃、圧力9.81MPa下にて熱硬化(硬化時間:1時間)させることによって、樹脂複合フィルムRF1を作製した。また、実施例1に従い、各種樹脂複合フィルム(プリプレグ、銅張積層板、評価基板、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
 実施例及び比較例で得られた樹脂複合フィルムの物性及び評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
[実施形態II]
セルロース微細繊維シート
 セルロース微細繊維シートの物性は以下の方法で測定した。
[セルロース微細繊維の数平均繊維径]
 繊維シートにおいて、セルロース微細繊維の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて1,000~100,000倍相当の倍率で行った。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数えた。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維径を算出した。さらに抽出した他の2つのSEM画像についても同じように数平均繊維径を算出し、合計10画像分の結果を平均化した。
[セルロース微細繊維の最大繊維径]
 セルロース微細繊維から成る構造体の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を倍率500倍で行った。得られたSEM画像10枚内で最も太い繊維の繊維径をセルロース微細繊維シートにおける最大繊維径とした。他の不織布などに積層させた積層シートについては、セルロース微細繊維シート側からSEM観察を行った。
[シート目付]
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを10.0cm×10.0cmの正方形片に裁断・秤量し、下記式より算出した。
 シート目付(g/m)= 10cm角重量(g)/0.01m
[シート厚み]
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))で10点厚みを測定し、その平均値を該サンプルの厚みとした。
[空隙率]
 セルロース微細繊維の密度を1.5g/cmと仮定し、下記式より算出した。
   空隙率(%)=100-([目付(g/m)/{シート厚み(μm)×1.5(g/cm)}]×100)
[透気抵抗度]
 室温23℃、湿度50%RHの雰囲気下で調湿したサンプルを王研式透気抵抗試験機(旭精工(株)製、型式EG01)で透気抵抗度を10点測定し、その平均値を該サンプルの透気抵抗度とした。
[スラリー製造例1]
 双日(株)より入手した再生セルロース繊維であるテンセルカット糸(3mm長)を洗浄用ネットに入れて界面活性剤を加え、洗濯機で何度も水洗することにより、繊維表面の油剤を除去した。
 得られた精製テンセル繊維(カット糸)を固形分1.5重量%となるように水中に分散させて(400L)、ディスクレファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで400Lの該水分散体を20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で叩解処理を続けた。経時的にサンプリングを行い、サンプリングスラリーに対して、JIS P 8121で定義されるパルプのカナダ標準ろ水度試験方法(以下、CSF法)のCSF値を評価したところ、CSF値は経時的に減少していき、一旦、ゼロ近くとなった後、さらに叩解処理を続けると、増大していく傾向が確認された。クリアランスをゼロ近くとしてから10分間、上記条件で叩解処理を続け、CSF値で100ml以上の叩解水分散体を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS015H)を用いて操作圧力100MPa下で5回の微細化処理を実施し、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例2]
 原料として天然セルロースであるリンターパルプを用いた。リンターパルプが4重量%となるように水に浸液させてオートクレーブ内で130℃、4時間の熱処理を行い、得られた膨潤パルプを何度も水洗し、水を含浸した状態の膨潤パルプを得た。その後、製造例1と同様の方法でディスクリファイナーおよび高圧ホモジナイザー処理を行い、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は100ml以上であった。
[スラリー製造例3]
 原料をアバカパルプに変えた以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は630ml以上であった。
[スラリー製造例4]
 原料を帝人(株)のアラミド繊維(1mm長)に変えた以外はスラリー製造例1と同じ方法でアラミド微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例5]
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例6]
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例4と同じ方法でアラミド微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例7]
 CSF値がゼロとなった時点で処理を止めた以外はスラリー製造例1と同じ方法でセルロース微細繊維スラリー(固形分濃度:1.5重量%)を得た。
[スラリー比較製造例1]
 特開2006-316253の実施例4を参考にシート製造を行った。2.0%のグルコースを添加した多糖生産培地(Polysaccharide-production-medium,Akihiko Shimada、Vivaorigino,23,1、52-53、1995)を高圧蒸気殺菌処理した後、その1000Lを内容量3000Lの発酵槽に入れ、CF-002株を104CFU/mlになるように接種し、通気下、30℃で2日間、通気下での撹拌培養を行い、バクテリアセルロース(BC)を大量に含む分散体を得た。その後、スクリーンメッシュで濾別水洗、圧搾後、1%NaOH溶液に浸漬し、除菌後、再度中和、水洗、圧搾を行った。さらに水洗と圧搾の工程を3度繰り返し、精製された綿状のBC/水分散体(セルロース含有率:11.6重量%)を得た。次にセルロース濃度が1.0重量%となるように水で希釈し、家庭用ミキサーで10分間予備分散した後に、高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS3015H)を用いて、操作圧力80MPa下で4回の分散処理を実施した。
[シート製造例1]
 前記スラリー製造例1のスラリーを固形分濃度0.2重量%まで希釈し、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。PET/ナイロン混紡製の平織物(敷島カンバス社製、NT20:大気下25℃での水透過量:0.03ml/(cm・s)、セルロース微細繊維を大気圧下25℃における濾過で99%以上濾別する能力あり)をセットしたバッチ式抄紙機(熊谷理機工業社製、自動角型シートマシーン 25cm×25cm、80メッシュ)に目付10g/mのセルロースシートを目安に、上記調整した抄紙スラリーを投入し、その後大気圧に対する減圧度を4KPaとして抄紙(脱水)を実施した。
 得られた濾布上に乗った湿潤状態の濃縮組成物から成る湿紙を、ワイヤー上から剥がし、1kg/cmの圧力で1分間プレスした後、湿紙面をドラム面に接触させるようにして、湿紙/濾布の2層の状態で表面温度が130℃に設定されたドラムドライヤーに湿紙がドラム面に接触するようにして約120秒間乾燥させた。得られた乾燥した2層体からセルロースのシート状構造物から濾布を剥離させて、白色のセルロース微細繊維シート(25cm×25cm、10g/m)を得た。つづいて、セルロース微細繊維シートをカレンダー装置によって平滑化処理を施し(由利ロール(株)製、油圧式2本ロールテストエンボス機、上ロール:金属 / 下ロール:アラミド、面長300mm、温度:室温、圧力:1.5ton/300mm)、薄層のセルロース微細繊維シートS1を得た。
[シート製造例2]
 前記スラリー製造例2のセルロース微細繊維スラリー50重量部、前記スラリー製造例4のアラミド微細繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、アラミド微細繊維を含む乳白色のセルロース微細繊維シートS2を得た。
[シート製造例3]
 スラリー製造例3のスラリー(312.5g)に、1-ヘキサノール及びヒドロキシプロピルメチルセルロース(商品名「60SH-4000」、信越化学工業製)をそれぞれ1.2重量%(3.9g)、0.012重量%(0.039g)添加し、家庭用ミキサーで4分間乳化、分散化させた。それ以外は実施例1と同様の方法で抄紙・乾燥・平滑化を行い、セルロース微細繊維シートS3を得た。
[シート製造例4]
 前記スラリー製造例2のセルロース微細繊維スラリー70重量部、前記スラリー製造例4のアラミド微細繊維スラリー30重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。抄紙スラリー312.5gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を1.9g滴下した後3分間撹拌を行い、抄紙スラリー(合計314.4g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維およびアラミド微細繊維固形分重量に対して、3重量%であった。シート製造例1と同様の抄紙・乾燥手法を用いてシート化した。その後、平滑化工程を経た後、シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋されたアラミド微細繊維を含む乳白色のセルロース微細繊維シートS4を得た。
[シート製造例5]
 シート製造例1の手法を用い、PET/ナイロン混紡製の平織物の上にキュプラ長繊維不織布(旭化成せんい株式会社製、商品名:ベンリーゼSN140 目付:14g/m、膜厚:70μm、密度:0.2g/cm、平均単糸繊度:0.2dtex)を重ねた状態で抄紙を行い、キュプラ長繊維不織布上にセルロース微細繊維シートが積層された繊維シートS5を作製した。なお、平滑化工程は行わなかった。
[シート製造例6]
 前記スラリー製造例5のセルロース微細繊維スラリー50重量部、前記スラリー製造例6のアラミド微細繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、アラミド微細繊維を含む乳白色のセルロース微細繊維シートS6を得た。
[シート製造例7]
 前記スラリー製造例7のセルロース微細繊維スラリー468.8gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を2.85g滴下した後3分間撹拌を行い、抄紙スラリー(合計471.65g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維固形分重量に対して、3.0重量%であった。シート製造例4と同様の抄紙・乾燥・平滑化手法を用いてシート化した。その後、該乾燥シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋されたセルロース微細繊維を含む白色のセルロース微細繊維シートS7を得た。
[シート比較製造例1]
 スラリー比較製造例1で得られたセルロース濃度1.0重量%の分散液をさらに水でセルロース濃度0.40重量%となるように希釈し、再度家庭用ミキサーで5分間分散処理を行い、得られた分散液を抄紙用分散液として使用した。得られた湿紙上をさらに同じ濾布で覆い、金属製ローラーにて脱水し、セルロース濃度が12~13重量%となるように調節した。得られた湿紙をPET織物を剥がさないまま、まずアセトン中に浸漬し時々全体を軽くすすぎながら約10分間置換処理を行った後に、トルエン/アセトン=50/50(g/g)の混合溶液に浸漬し、時々全体を軽くすすぎながら約10分間、置換処理を行った。その直後に濾布で挟んだ湿紙を金属板上に乗せ、その上に錘を乗せて定長で乾燥されるようにして、乾燥オーブン内にセットして、100℃で50分間乾燥させた。乾燥後、不織布を濾布から剥がすことにより、白色のセルロースシートRS1を得た。
[シート製造例1~7及びシート比較製造例1の詳細]
 シート製造例1~7及びシート比較製造例1の原料、製造方法及び物性を下記表4に示す。
ワニス
[ワニス製造例1]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V1)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)78.9重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.0重量部
・ジシアンジアミド(大日本インキ化学)2.0重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
・球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)32.0重量部
[ワニス製造例2]
 球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)98重量部を入れる以外はワニス製造例1と同じ方法でワニスV2を製造した。
[ワニス製造例3]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V3)を調整した。
・ビフェニルアラルキル型エポキシ樹脂NC-3000(大日本インキ化学)31.5重量部
・クレゾールノボラック型エポキシ樹脂N-690(大日本インキ化学)31.5重量部
・ビフェニルアラルキル型フェノールMEH-7851H(明和化成)30.0重量部
・ジシアンジアミド(大日本インキ化学)1.9重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
[ワニス製造例4]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V4)を調整した。
・ビスフェノールA型エポキシ樹脂828EL(三菱化学)21.1重量部
・ナフタレン型4官能エポキシ樹脂HP-4710(大日本インキ化学)26.4重量部
・トリアジン含有フェノールノボラック樹脂LA-7054(大日本インキ化学)15.8重量部
・ナフトール系硬化剤SN-485(東都化成)15.8重量部
・ナフトール系硬化剤EXB―9500(大日本インキ化学)15.8重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
・水酸化アルミニウムH-43S(昭和電工、平均粒径0.7μm)61.0重量部
・架橋微粒子ゴムXER-91(JSR)2.5重量部
[ワニス製造例5]
 メチルエチルケトンを溶媒とし、下記化合物を混合した固形分70重量%のワニス(V5)を調整した。
・ナフタレン型エポキシ樹脂HP-9500(大日本インキ化学)57.1重量部
・液状脂環式酸無水物MH-700(新日本理化)42.8重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
[ワニス製造例6]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V6)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)83.1重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.7重量部
・ジシアンジアミド(大日本インキ化学)2.2重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・シリカSO25R(アドマテックス、重量平均粒径0.5μm)60.6重量部
[ワニス比較製造例1]
 下記化合物を120℃まで加熱し、混練機で混合した固形分100wt%のワニス(RV1)を調整した。
・ビスフェノールA型エポキシ樹脂(旭化成エポキシ(株)製AER-250)85重量部
・硬化剤(m-キシリレンジアミン)15重量部
[ワニス製造例1~6及びワニス比較製造例1の詳細]
 ワニス製造例1~6及びワニス比較製造例1の組成及び固形分率を下記表5に示す。なお、表5中の各成分の数値は、重量部を表す。
<樹脂複合フィルム>
 樹脂複合フィルムの物性は以下の方法で測定した。
[測定用断面サンプルの作製]
 まず、樹脂複合フィルム両面に白金を真空蒸着した(被膜厚み:10nm)。続いて、試料フィルムをエポキシ樹脂(2液式エポキシ接着剤)で包埋し、ウルトラミクロトームで断面出しを行った。切削にはダイアモンドナイフを使用し、常温で切削を行った。シリカが含まれるフィルムについては、ミクロトームでシリカを切削できないため、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いてサンプル加工し、フィルムの断面出しを行った。得られた断面サンプルは接着剤-白金-フィルム-白金-接着剤の5層で構成され、白金蒸着を行うことでサンプル中のフィルムの位置を明確にした。
[顕微赤外イメージング]
 全ての樹脂複合フィルムにセルロース微細繊維および/またはアラミド微細繊維が含まれていることを顕微赤外イメージングで確認した。なお、測定は上記樹脂複合フィルムの断面サンプルについて、以下の条件により行った。
・装置     :赤外イメージング顕微鏡NicoletTM iNTM10MX(Thermo ScientificTM
・分解能    :8cm-1
・積算回数   :1回
・ステップサイズ:x=2.5μm、y=2.5μm
・測定範囲   :4000-600cm-1
[X線構造解析]
 実施例1の複合フィルムに対し、X線構造解析をした結果、X線回折パターンにおいて、2θの範囲を0°~30°とするX線回折パターンが、10°≦2θ<19°に1つのピークと、19°≦2θ≦30°に2つのピークが確認された。これより、微細繊維が天然セルロースか、再生セルロースであることを特定した。
[フィルム断面のAFM弾性率測定及び弾性率マッピング]
 上記の樹脂複合フィルムの断面サンプルを専用のサンプル固定台に固定し、下記のようなAFM測定条件で断面の弾性率を測定した。
 装置    :Bruker社製 Dimension Icon
 測定モード :Peak Force Tapping Mode
 プローブ  :ダイヤモンド単結晶プローブ
        ばね定数k=48N/m、先端曲率半径R=12nm
 解像度   :512×512ピクセル
 測定範囲  :15μm×15μm
 サンプリング周波数: 0.3-0.7Hz
 最大押し込み荷重:50nN
 また、解像度512×512ピクセル、測定範囲15μm×15μmでセルロース微細繊維の分布が確認できなかった場合には、上記と同等の解像度で測定範囲を3μm×3μm、さらには測定範囲を1μm×1μmとして測定を行った。
 なお、後述される実施例1の弾性率マッピングに従って、実施例2~9及び比較例1についても弾性率マッピングを行なった。
[セルロース微細繊維の充填率]
 セルロース微細繊維の充填率は、フィルム断面のAFM弾性率像においてセルロース微細繊維がフィルム全体で占める面積比として定義した。弾性率は素材ごとに異なり、弾性率のヒストグラムの閾値を設定することで、フィルムに含まれる素材ごとに弾性率マッピングを作製した。たとえば、セルロース微細繊維とエポキシのみから成る樹脂複合フィルムの場合、エポキシ(ソフト相)とセルロース微細繊維(ハード相)から成るコントラスト像が得られる。ヒストグラムは大きく分けて2つのピークから成り、ヒストグラムの2つのピークの中点を2値化における閾値に設定した(セルロース:黒色、エポキシ:白色)。また、フィルム厚みがAFM測定範囲15μmよりも厚い場合、まずフィルム断面を複数視野に分けて測定した。つづいて、各視野で弾性率マッピングを作製した後、画像を結合し、フィルム断面が1画像に収まった像を得た。樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「image J」を用いて、セルロース微細繊維由来の面積およびフィルム全体の面積を算出し、最終的に以下の式よりセルロース微細繊維の充填率を求めた。
 セルロース微細繊維の充填率(%)=セルロース微細繊維由来の面積/フィルム全体の面積×100
 以上の方法を用いて10か所のフィルム断面のセルロース微細繊維の充填率を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体のセルロース微細繊維の充填率とした。
[セルロース微細繊維の平均繊維径]
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「image J」を用いて、セルロース微細繊維由来の面積(ΣS)およびセルロース微細繊維と他素材(主にエポキシ)との界面の総長さ(ΣL)を求め、その後、下記式に従い、セルロース微細繊維の平均繊維径を算出した。
 セルロース微細繊維の平均繊維径(nm)=4×ΣS/ΣL
 以上の方法を用いて10か所のフィルム断面のセルロース微細繊維の平均繊維径を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体のセルロース微細繊維の平均繊維径とした。
[セルロース微細繊維の最大繊維径]
 上記樹脂複合フィルム断面がすべて写った10か所の弾性率マッピングについて、画像編集ソフト「imageJ」の粒子解析を行い、セルロース微細繊維径を真円と見做した時の粒径として算出した。この時、最も大きい粒径をセルロース微細繊維の最大繊維径として採用した。
 プリプレグにおけるセルロース微細繊維の平均繊維径、及び最大繊維径は、プリプレグを一度、有機溶剤に含浸し、樹脂成分を溶解除去した後、走査型電子顕微鏡(SEM)を用いて、繊維シートの数平均繊維径、最大繊維径を上記と同様にして測定した。
[樹脂複合フィルム内のセルロース微細繊維層の空隙率]
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維由来の面積(ΣS)と、同様に算出されるセルロース微細繊維層を構成する繊維間(オーバーコート樹脂層を除く)に含まれる樹脂由来の面積(ΣSp)を算出し、その後、下記式に従い、樹脂複合フィルム内のセルロース微細繊維層の空隙率を算出した。
 樹脂複合フィルム内のセルロース微細繊維層の空隙率(%)=ΣS/(ΣS+ΣSp)×100
[樹脂複合フィルム中の無機充填材の充填率]
 樹脂複合フィルム中の無機充填材の充填率は、上記樹脂複合フィルム断面において無機充填材を構成する原子が占める面積比として定義した。例えば、シリカ粒子であればSi、水酸化アルミニウム粒子であればAlを測定した。ここではシリカ粒子を例に測定方法を示す。断面サンプルをCペーストおよびOsコーティングにより導通処理を行った後、走査型電子顕微鏡「HITACHI S-4800」(日立ハイテクフィールディング社製)を用いて、撮影倍率500倍、加速電圧1.0kV、検出器:二次電子の設定で撮影を行い、断面SEM像を取得した。つづいて、同視野についてエネルギー分散型X線検出器X-Max SILICON DRIFT X-RAY DETECTOR(株式会社堀場製作所製)を用いてCおよびSiの元素マッピングを取得した。面積比は、まずフィルム断面のSEMの二次電子像を画像編集ソフト「imageJ」を用いて、フィルムの外周に相当する部分で切り取り、フィルム断面のみを表示させた。次に2値化を行い、シリカ由来を黒く、その他由来を白く表示した。白黒二値化の閾値は黒く表示される部分がEDXのSiの領域と対応するように選び、黒の面積をカウント数として算出する。また、フィルム断面全体の面積をカウント数として算出する。これらの二つの比により以下の式よりSiがフィルム断面全体に占める割合を算出した。
 無機充填材の充填率(%)=無機充填材由来の面積/フィルム全体の面積×100
以上の方法を用いて10か所のフィルム断面について無機充填材の充填率を求め、そのうち最大値および最小値を除いた8点の平均値を樹脂複合フィルム中の無機充填材の平均充填率とした。
 ここでの二値化とは、有機物(樹脂、繊維等)と無機物(無機充填材等)の元素の違いによる二値化のことをいう。
[セルロース微細繊維層に含まれる無機充填材の割合]
 セルロース微細繊維層に含まれる無機充填材の割合は、上記樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、樹脂複合フィルム中の無機充填材由来の全面積およびセルロース微細繊維層に含まれる無機充填材由来の面積を算出し、最終的に以下の式よりセルロース微細繊維層に含まれる無機充填材の割合を求めた。なお、セルロース微細繊維層はフィルム最表面から近いセルロース微細繊維シートの端部を順に10点以上選び、線で結んだ時に囲まれる領域をセルロース微細繊維層と定義する。

 セルロース微細繊維層に含まれる無機充填材の割合(%)=(セルロース微細繊維に含まれる無機充填材由来の面積/樹脂複合フィルム中の無機充填材由来の全面積)×100

 以上の方法を用いて10か所の樹脂複合フィルム断面のセルロース微細繊維層に含まれる無機充填材の割合を求め、そのうち最大値および最小値を除いた8点の平均値をセルロース微細繊維層に含まれる無機充填材の割合とした。
[オーバーコート樹脂層の厚み]
 樹脂複合フィルム最表面より不織布層表面までの長さをオーバーコート樹脂層と定義する。不織布層とはセルロース微細繊維層を含む有機繊維から成る層と定義する。上記のAFM弾性率マッピングよりエポキシ層(表)/不織布層/エポキシ層(裏)の3層で構成されることが確認できる。フィルム最表面より不織布層表面までの長さを表および裏でそれぞれ10点ずつ測定し、その平均値をオーバーコート樹脂層の厚み(表)、オーバーコート樹脂層の厚み(裏)とする。
[貯蔵弾性率(E’)]
 得られた複合樹脂フィルムを4mm幅×30mm長に切断し、測定サンプルとした。これを粘弾性測定装置EXSTAR TMA6100(エスアイアイナノテクノロジー(株)を用いて、引っ張りモードでチャック間20mm、周波数:1Hz、窒素雰囲気下、室温から200℃まで5℃/min.で昇温、200℃から25℃まで5℃/min.で降温、再び25℃から200℃まで5℃/min.で昇温した。この際の2度目の昇温時の150℃および200℃での貯蔵弾性率(E’150,E’200)を求めた。
[貯蔵弾性率変化]
 150℃から200℃への貯蔵弾性変化率は下式:
 貯蔵弾性率変化率=E’150/E’200
により表される。
 一般に貯蔵弾性率は高温になるほど小さくなるため(E’150>E’200)、貯蔵弾性率変化率は1以上となる。この値が1に近いほど、高温での貯蔵弾性率変化が小さく、耐熱性が高いといえる。
[線熱膨張率(CTE)]
 複合樹脂フィルムを3mm幅×25mm長に切断し、測定サンプルとした。SII製TMA6100型装置を用いて、引っ張りモードでチャック間10mm、荷重5g、窒素雰囲気下、室温から200℃まで5℃/min.で昇温、200℃から25℃まで5℃/min.で降温、再び25℃から200℃まで5℃/min.で昇温した。この際、2度目の昇温時の150℃および200℃での線熱膨張率(CTE150, CTE200)を求めた。CTE150, CTE200はそれぞれ149℃~150℃および199℃~200℃の1℃での線膨張係数とし、下式のように表される。
  CTE150=(L150-L149)/L100×(10
  CTE200=(L200-L199)/L200×(10
L149、L150、L199、L200:149℃、150℃、199℃、200℃でのチャック間長
[CTE差]
 150℃から200℃の間のCTE差の絶対値は下式にように表される
 CTE差=|CTE200-CTE150|
[ガラス転移温度(Tg)]
 粘弾性測定装置EXSTAR TMA6100(エスアイアイナノテクノロジー(株)を用いて、樹脂複合フィルムのTgを測定した。引っ張りモードでチャック間20mm、周波数:1Hz、窒素雰囲気下、室温から200℃まで5℃/min.で昇温、200℃から25℃まで5℃/min.で降温、再び25℃から200℃まで5℃/min.で昇温した。この際の2度目の昇温時のベースラインと変曲点(上に凸の曲線が下に凸の曲線に変わる点)での接線の交点をTgとした。
[プリプレグの厚み]
 プリプレグ内10点の厚みを測定し、その平均値をプリプレグの膜厚とした。膜厚計として面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))を使用した。
[樹脂複合フィルムの厚み]
 得られた樹脂複合フィルム内10点の厚みを測定し平均値を膜厚とした。膜厚計として面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))を使用した。
[吸湿率]
 樹脂複合フィルムを50mm角に切断し、120℃で2時間乾燥させた後、初期質量(W0)を測定し、その後、湿度: 85%/温度: 85℃/192 時間の条件で吸湿処理した後の質量(W1)を測定した。そして、下記の式より吸湿率を求めた。
吸湿率(%)=(W1-W0)/W0 × 100
[誘電特性(比誘電率及び誘電正接)]
 厚み0.8mmの厚膜樹脂複合フィルム1.5mm(幅)×80mm(長さ)のサイズに切り出し、測定サンプルとした。空洞共振法(8722ES型ネットワークアナライザー、アジレントテクノロジー製;空洞共振器、関東電子応用開発製)によって、1GHzの値を測定した。
[冷熱衝撃耐試験]
 めっき処理積層体に対し、冷熱衝撃装置(Espec社製、TSA-71S-A/W)を用い、MIL-STD-883Eの条件A(-55℃~125℃)に基づき、低温(-55℃)および高温(125℃)における暴露時間を各30分とし、これを200サイクル行なった。光学顕微鏡写真(透過光、倍率:×25~×100)及び断面SEM(倍率:×5000)を用いて、銅配線、銅・樹脂界面などの故障状況を観察し、官能評価を以下の基準で行なった。配線の剥がれ若しくは膨れ、又は割れとなっている箇所を故障箇所として定義し、故障箇所が少ないほど密着性に優れると評価する。
 ◎:表記条件の観察のよる故障箇所は1個以下
 ○:表記条件の観察のよる故障箇所は2個以上5個以下
 △:表記条件の観察のよる故障箇所は6個以上10個以下
 ×:表記条件の観察のよる故障箇所は11個以上
[実施例1]
(プリプレグの作製)
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニスV1をフィルムアプリケーターで0.3g塗布した後、10cm角に裁断した上記セルロース微細繊維シート(S1)を置き、さらに該ワニスV1をセルロース微細繊維シート上にアプリケーターで再度0.3g塗布した。得られたフィルムを100℃、4分加熱して溶媒を除去するとともに半硬化物のプリプレグを得た。
(樹脂複合フィルムの作製)
 該プリプレグに別のポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離形面が接するように被せた後、真空熱プレス機で硬化を行った(加熱温度220℃、圧力6.0MPa、時間160分)。得られた硬化フィルムより支持フィルムを外し、樹脂複合フィルムを得た。得られた樹脂複合フィルム(F1)の各種物性を表6に示す。
 得られた樹脂複合フィルムのAFM弾性率像を図1(a)に、弾性率ヒストグラムを図1(b)に、2値化像を図1(c)にそれぞれ示す。なお、図1(c)において斜線部がセルロース微細繊維シートを構成する繊維部と対応する。
 さらに、得られた図1(a)の樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、無機充填材由来の面積およびセルロース微細繊維層に含まれるシリカ充填材の由来の面積を算出し、フィルム最表面から近いセルロース微細繊維シートの端部を10点以上選び、線で結んだ時に囲まれる領域をセルロース微細繊維層として定義したときの処理画像を図2に示す。
(銅張積層板の作製)
 最終的な硬化物の厚みが0.7mm~0.9mmの範囲に入るように上記プリプレグを所定枚数枚重ね、電解銅箔F2-WS(古河サーキットフォイル、厚さ18μm、処理面のRz=2.3μm)を上下に配置し、圧力2.5MPa、温度240℃で60分間プレスを行って、銅張積層板を得た。
[厚膜樹脂複合フィルムの作製]
 該銅張積層板を銅エッチング液に浸漬することにより、銅箔を完全に取り除いた評価用の厚膜樹脂複合フィルムを作製した。
(内層回路基板作製)
 ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ35μm、基板の厚さ0.8mm、松下電工(株)製「R5715ES」)に、IPC MULTI-PURPOSE TEST BOARD NO. IPC C-25のパターン(ライン/スペース比=600/660μmの櫛歯パターン(残銅率48%))を形成した。次いで、基板の両面をマイクロエッチング剤(メック(株)製「CZ8100」)で粗化処理し、内層回路基板を作製した。
(絶縁層形成)
 前記内層回路基板の両面に前記プリプレグを(株)名機製作所製真空ラミネーターにより、温度120℃、圧力7kgf/cm、気圧5mmHg以下の条件でラミネートし、さらに連続的に温度120℃、圧力5kgf/cm、大気圧の条件でSUS鏡板による熱プレスを行った。次いでPETフィルムを剥がした後、180℃、30分熱硬化させ、基板両面に絶縁層を形成した。
(粗化処理積層体の作製)
 絶縁層を形成した回路基板の樹脂硬化物層を化学粗化するために、膨潤液として、ジエチレングリコールモノブチルエーテル:200ml/L、NaOH:5g/Lの水溶液を作製し、80℃に加温して5分間浸漬処理した。次に、粗化液として、KMnO:60g/L、NaOH:40g/Lの水溶液を作製し、80℃に加温して15分間浸漬処理した。引き続き、中和液(SnCl:30g/L、HCl:300ml/L)の水溶液を作製し、40℃に加温して5分間浸漬処理し、KMnOを還元した。
(めっき処理積層体の作製)
 粗化処理を行った絶縁層表面にセミアディティブ工法で回路を形成するために、内層回路基板を、PdClを含む無電解メッキ用溶液に40℃で5分間浸漬し、次に無電解銅メッキ液に25℃で20分間浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成(L/S=40μm/40μm、長さ5cmのストレートなスリット状配線)の後に、硫酸銅電解メッキおよびアニール処理を200℃にて60分間行い、30μmの厚さで導体層を形成した。
[実施例2]
 セルロース微細繊維シートをS2にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF2(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例3]
 ワニス(V2)の塗布量を0.9gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF3(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例4]
 セルロース微細繊維シートをS3に、ワニスをV3に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF4(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。樹脂複合フィルムの全光線透過率を測定したところ、82%であった。
[実施例5]
 セルロース微細繊維シートをS4に、ワニスをV4に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF5(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例6]
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニス(V5)をフィルムアプリケーターで0.8g塗布した後、10cm角に裁断した上記セルロース微細繊維積層シート(S5)をセルロース微細繊維面が接するように置き、さらにワニス(V5)をセルロース微細繊維シート上にアプリケーターで再度8.0g塗布した。それ以外は実施例1と同じ方法で、各種樹脂複合フィルムF6(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例7]
 スラリー製造例3を用いてシート製造例1の方法で抄紙し、湿紙を作製した。つづいて、イソプロパノールで5回置換し、セルロース微細繊維イソプロパノール分散体を作製し、最終的に減圧濾過によりイソプロパノールを除去した。得られたセルロース微細繊維シートをワニスV1に加え、真空混練機で混合した。得られた混合物を20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にアプリケーターで1g塗布した。得られたフィルムを真空下で100℃、10分加熱して溶媒を除去するとともに半硬化物のプリプレグを得た。それ以外は実施例1と同じ方法で、各種樹脂複合フィルムF7(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例8]
 セルロース微細繊維シートをS6に、ワニスをV6にした以外は実施例2と同じ方法で、各種樹脂複合フィルムF8(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。
[実施例9]
 セルロース微細繊維シートをS7に、ワニスをV1にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF9(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[比較例1]
 特開2006-316253の実施例4を参考に樹脂複合フィルム等の製造を行った。ワニス比較製造例1にて得られたワニスRV1を、シート比較製造例1にて得られたセルロース不織布RS-1に含浸(含浸時間:5分以内)させたもの1枚を、熱プレス機内にて温度100℃、圧力9.81MPa下にて熱硬化(硬化時間:1時間)させることによって、樹脂複合フィルムRF1を作製した。また、銅張積層板、厚膜樹脂複合フィルム作製、絶縁層形成、粗化処理、めっき処理は実施例1と同じ方法で実施した。
 実施例1~9及び比較例1の材料及び評価結果を下記表6に示す。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
[実施形態III]
 《測定及び評価方法》
 〈セルロース繊維シート及びプリプレグの物性測定及び評価方法〉
 (1)セルロース微細繊維の数平均繊維径
 繊維シートにおいて、セルロース微細繊維の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて1,000~100,000倍相当の倍率で行った。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数えた。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維を算出した。さらに抽出した他の2つのSEM画像についても同じように数平均繊維を算出し、合計10画像分の結果を平均化した。
 (2)セルロース微細繊維シートを構成する繊維の最大繊維径
 繊維シートの表面を、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を倍率500倍で行った。得られたSEM画像10枚内で最も太い繊維の繊維径を繊維シートにおける最大繊維径とした。他の不織布などに積層させた積層構造体については、繊維シート側からSEM観察を行った。
 (3)シート目付
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを10.0cm×10.0cmの正方形片に裁断・秤量し、下記式より算出した。
   シート目付(g/m)=10cm角のサンプルの重量(g)/0.01m
 (4)シート厚み
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))で10点厚みを測定し、その平均値を該サンプルの厚みとした。
 (5)空隙率
 セルロース微細繊維の密度を1.5g/cmと仮定し、下記式より算出した。
   空隙率(%)=100-([目付(g/m)/{シート厚み(μm)×1.5(g/cm)}]×100)
 (6)透気抵抗度
 室温23℃、湿度50%RHの雰囲気下で調湿したサンプルを王研式透気抵抗試験機(旭精工(株)製、型式EG01)で透気抵抗度を10点測定し、その平均値を該サンプルの透気抵抗度とした。
 (7)プリプレグの厚み
 プリプレグ内10点の厚みを測定し、その平均値をプリプレグの膜厚とした。膜厚計として面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))を使用した。
 (8)プリプレグにおけるセルロース微細繊維の数平均繊維径及び最大繊維径
 プリプレグをメチルエチルケトンに含浸し、樹脂成分を溶解させ、セルロース微細繊維は分散させた。つづいて、分散液の減圧濾過(減圧度-0.09MPa(絶対真空度10kPa))を行った。濾過器としてはアドバンテック社製KG-90を用い、ガラスフィルターの上に同アドバンテック社製の1.0μm孔径のPTFE製メンブランフィルター(有効濾過面積は48cm)を用いた。PTFE製メンブランフィルターの上のセルロース繊維の堆積物を120℃のオーブンで乾燥させることでセルロース繊維からなるフィルムが得られた。このフィルムにおける数平均繊維径および最大繊維径の算出は、以下のSEMによる観察方法を用いた。
 まず、セルロース微細繊維からなる構造体の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて1,000~100,000倍相当の倍率で行った。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数えた。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維径を算出した。さらに抽出した他の2つのSEM画像についても同じように数平均繊維径を算出し、合計10画像分の結果を平均化し、対象とする試料の平均繊維径とした。
 構造体の表面の10箇所について、倍率500倍でSEM観察を行った。得られたSEM画像10枚内で最も太い繊維径を最大繊維径とした。
 不織布などに積層させた積層構造体については、セルロース微細繊維シート側からSEM観察を行った。
 〈樹脂複合フィルムの物性測定及び評価方法〉
 (1)測定用断面サンプルの作成
 まず、樹脂複合フィルム両面に白金を真空蒸着した(被膜厚み:10nm)。つづいて、試料フィルムをエポキシ樹脂(2液式エポキシ接着剤)で包埋し、ウルトラミクロトームで断面出しを行った。切削にはダイアモンドナイフを使用し、常温で切削を行った。シリカが含まれるフィルムについては、ミクロトームでシリカを切削できないため、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いてサンプル加工し、フィルムの断面出しを行った。得られた断面サンプルは接着剤-白金-フィルム-白金-接着剤の5層で構成され、白金蒸着を行うことでサンプル中のフィルムの位置を明確にした。
 (2)顕微赤外イメージング
 全ての樹脂複合フィルムにセルロース微細繊維および/または微細アラミド繊維が含まれていることを顕微赤外イメージングで確認した。なお、測定は上記樹脂複合フィルムの断面サンプルについて、以下の条件により行った。
・装置     :赤外イメージング顕微鏡NicoletTM iNTM10MX(Thermo ScientificTM
・分解能    :8cm-1
・積算回数   :1回
・ステップサイズ:x=2.5μm、y=2.5μm
・測定範囲:4000-600cm-1
 (3)X線構造解析
 実施例1の複合フィルムに対し、X線構造解析をした結果、X線回折パターンにおいて、2θの範囲を0°~30°とするX線回折パターンが、10°≦2θ<19°に1つのピークと、19°≦2θ≦30°に2つのピークが確認された。これより、微細繊維が天然セルロースか、再生セルロースであることを特定した。
 (4)フィルム断面のAFMによる弾性率測定
 上記樹脂複合フィルムの断面サンプルを専用のサンプル固定台に固定し、下記のようなAFM測定条件で断面の弾性率を測定した。
 装置    :Bruker社製 Dimension Icon
 測定モード :Peak Force Tapping Mode
 プローブ  :ダイヤモンド単結晶プローブ
        ばね定数k=48N/m、先端曲率半径R=12nm
 解像度   :512×512ピクセル
 測定範囲  :15μm×15μm
サンプリング周波数:0.3-0.7Hz
最大押し込み荷重:50nN
 また、解像度512×512ピクセル、測定範囲15μm×15μmでセルロース微細繊維の分布が確認できなかった場合には、上記と同等の解像度で測定範囲を3μm×3μm、さらには測定範囲を1μm×1μmとして測定を行った。
 (5)セルロース微細繊維シートの充填率
 セルロース微細繊維シートの充填率は、樹脂複合フィルム断面のAFM弾性率像においてセルロース微細繊維シートが樹脂複合フィルム全体で占める面積比として定義した。弾性率は素材ごとに異なり、弾性率のヒストグラムの閾値を設定することで、樹脂複合フィルムに含まれる素材ごとに弾性率マッピングを作製した。たとえば、セルロース微細繊維とエポキシのみからなる樹脂複合フィルムの場合、エポキシ(ソフト相)とセルロース微細繊維(ハード相)からなるコントラスト像が得られる。ヒストグラムは大きく分けて2つのピークからなり、ヒストグラムの2つのピークの中点を2値化における閾値に設定した(セルロース:黒色、エポキシ:白色)。
 樹脂複合フィルムの厚みがAFM測定範囲15μmよりも厚い場合、まず樹脂複合フィルムの断面を複数視野に分けて測定した。つづいて、各視野で弾性率マッピングを作製した後、画像を結合し、樹脂複合フィルムの断面が1画像に収まった像を得た。樹脂複合フィルムの断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維シート由来の面積およびフィルム全体の面積を算出し、最終的に以下の式よりセルロース微細繊維シートの充填率を求めた。
   セルロース微細繊維シートの充填率(%)=セルロース微細繊維シート由来の面積/フィルム全体の面積×100
 以上の方法を用いて10か所のフィルム断面のセルロース微細繊維シートの充填率を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体のセルロース微細繊維シートの充填率とした。
 (6)セルロース微細繊維シートを構成する繊維の平均繊維径
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維シート由来の面積(ΣS)およびセルロース微細繊維シートと他素材(エポキシなど)との界面の総長さ(ΣL)を求め、その後、下記式に従い、セルロース微細繊維シートを構成する繊維の平均繊維径を算出した。
 セルロース微細繊維シートを構成する繊維の平均繊維径(nm)=4×ΣS/ΣL
 以上の方法を用いて10か所の樹脂複合フィルムの断面の、セルロース微細繊維シートを構成する繊維の平均繊維径を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体のセルロース微細繊維シートを構成する繊維の平均繊維径とした。
 (7)セルロース微細繊維シートを構成する繊維の最大繊維径
 上記の樹脂複合フィルム断面がすべて写った10か所の弾性率マッピングについて、画像編集ソフト「imageJ」の粒子解析を行い、セルロース微細繊維シートを構成する繊維の繊維径を、真円と見做した時の粒径として算出した。この時、最も大きい粒径をセルロース微細繊維シートを構成する繊維の最大繊維径として採用した。
 (8)樹脂複合フィルム内のセルロース微細繊維層の空隙率
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維由来の面積(ΣS)と、同様に算出されるセルロース微細繊維層を構成する繊維間(オーバーコート樹脂層を除く)に含まれる樹脂由来の面積(ΣSp)を算出し、その後、下記式に従い、樹脂複合フィルム内のセルロース微細繊維層の空隙率を算出した。
 樹脂複合フィルム内のセルロース微細繊維層の空隙率(%)=ΣS/(ΣS+ΣSp)×100
 (9)樹脂複合フィルム中の無機充填材の充填率
 樹脂複合フィルム中の無機充填材の充填率は、上記樹脂複合フィルム断面において無機充填材を構成する原子が占める面積比として定義した。例えば、シリカ粒子であればSi、水酸化アルミニウム粒子であればAlを測定した。ここではシリカ粒子を例に測定方法を示す。断面サンプルをCペーストおよびOsコーティングにより導通処理を行った後、走査型電子顕微鏡S-4800(日立ハイテクフィールディング社製)を用いて、撮影倍率500倍、加速電圧1.0kV、検出器:二次電子の設定で撮影を行い、断面SEM像を取得した。つづいて、同視野についてエネルギー分散型X線検出器X-Max SILICON DRIFT X-RAY DETECTOR(株式会社堀場製作所製)を用いてCおよびSiの元素マッピングを取得した。面積比は、まずフィルム断面のSEMの二次電子像を画像編集ソフト「imageJ」を用いて、フィルムの外周に相当する部分で切り取り、フィルム断面のみを表示させた。次に2値化を行い、シリカ由来を黒く、その他由来を白く表示した。白黒二値化の閾値は黒く表示される部分がEDXのSiの領域と対応するように選び、黒の面積をカウント数として算出する。また、フィルム断面全体の面積をカウント数として算出する。これらの二つの比により以下の式よりSiがフィルム断面全体に占める割合を算出した。
 無機充填材の充填率(%)=(無機充填材由来の面積/フィルム全体の面積)×100
 以上の方法を用いて10か所のフィルム断面について無機充填材の充填率を求め、そのうち最大値および最小値を除いた8点の平均値を樹脂複合フィルム中の無機充填材の平均充填率とした。
 ここでの二値化は有機物(樹脂や繊維等)と無機物(無機充填材等)の元素の違いによる二値化のことをいう。
 (10)セルロース微細繊維層に含まれる無機充填材の割合
 セルロース微細繊維層に含まれる無機充填材の割合は、上記の樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、樹脂複合フィルム中の無機充填材由来の全面積およびセルロース微細繊維層に含まれる無機充填材由来の面積を算出し、最終的に以下の式よりセルロース微細繊維層に含まれる無機充填材の割合を求めた。なお、セルロース微細繊維層はフィルム最表面から近いセルロース微細繊維シートの端部を順に10点以上選び、線で結んだ時に囲まれる領域をセルロース微細繊維層と定義する。
 セルロース微細繊維層に含まれる無機充填材の割合(%)=(セルロース微細繊維に含まれる無機充填材由来の面積/樹脂複合フィルム中の無機充填材由来の全面積)×100
 以上の方法を用いて10か所の樹脂複合フィルム断面のセルロース微細繊維層に含まれる無機充填材の割合を求め、そのうち最大値および最小値を除いた8点の平均値をセルロース微細繊維層に含まれる無機充填材の割合とした。
 (11)オーバーコート樹脂層の平均厚み
 樹脂複合フィルム最表面より不織布層表面までの長さをオーバーコート樹脂層と定義する。不織布層とはセルロース微細繊維層を含む有機繊維からなる層と定義する。上記のAFM弾性率マッピングよりエポキシ層(表)/不織布層/エポキシ層(裏)の3層で構成されることが確認できる。フィルム最表面より不織布層表面までの長さを表および裏でそれぞれ10点ずつ測定し、その平均値をオーバーコート樹脂層の厚み(表)、オーバーコート樹脂層の厚み(裏)とする。
 (12)樹脂複合フィルムの厚み
 樹脂複合フィルム内10点の厚みを測定し、平均値を膜厚とした。膜厚計として面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))を使用した。
 (13)吸湿率
 樹脂複合フィルムを50mm角に切断し、120℃で2時間乾燥させた後、初期質量(W0)を測定し、その後、湿度: 85%/温度: 85℃/192 時間の条件で吸湿処理した後の質量(W1)を測定した。そして、下記の式より吸湿率を求めた。
   吸湿率(%)=(W1-W0)/W0×100
 (14)透過率
 透過率は、ASTM D1003に基づき、ヘイズメーターNDH7000SP CU2II(製品名)(日本電色工業株式会社製)を使用した光透過性試験によって測定できる。
 (15)誘電特性(比誘電率及び誘電正接)
 厚み0.8mmの厚膜樹脂複合フィルムを1.5(幅)×80mm(長さ)のサイズに切り出し、測定サンプルとした。空洞共振法(8722ES型ネットワークアナライザー、アジレントテクノロジー製;空洞共振器、関東電子応用開発製)によって、1GHzの値を測定した。
 (16)フラクタル次元
 絶縁層積層体について、内層回路基板の櫛歯パターンの金属表面粗化層と絶縁層との界面のフラクタル次元を測定した。絶縁層積層板の断面構造写真を取るために、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いてサンプル加工し、金属・絶縁層界面の断面出しを行なった。その断面を走査型電子顕微鏡S-4800(日立ハイテクフィールディング社製)にて観察し、1ピクセルの大きさが5~20μmの画像データとして得た。画像処理によって、金属・絶縁層断面写真の界面部分(線分)を抽出した。そして、フラクタル次元(ボックスカウント次元)はボックスカウント法を用いて算出し、微細領域での構造の複雑さを評価できるよう、領域のサイズを3μm×3μmとした。
 (17)絶縁層積層体の表面最大断面高さ(Rt)
 絶縁層積層体の絶縁層の露出表面について最大断面高さ(Rt)を測定した。絶縁層表面の最大断面高さ(Rt)は、非接触型表面粗さ計(ビーコインスツルメンツ社製「WYKO NT9300」)を用いて、VSIコンタクトモード、10倍レンズにより測定範囲を0.82mmx1.1mmとして得られる数値により求めた。なお、測定は、ライン/スペース比=600/660μmの櫛歯パターン(残銅率48%)の回路配線が設けられた領域について、回路配線の有る部分と回路配線の無い部分をまたがるようにして、3箇所の平均値を求めることにより実施した。Rtが2.5μm未満の場合を「○」、2.5μm以上3μm未満の場合を「△」、3μm以上の場合を「×」とした。
 (18)粗化処理積層体の表面粗度(Ra)
 粗化処理積層体の表面粗度ラフネス(Ra)をオリンパス株式会社製レーザー顕微鏡「OLS3000」を用い、以下の条件によって算術平均粗さ(Ra)を測定した。
 ・半導体レーザー:波長408nm
 ・測定ピッチ:0.1μm
 ・測定範囲:0.012mm(平面)
 (19)めっき処理積層体のスリット状配線ピール強度
 めっき処理積層体のストレートなスリット状配線(L/S=40μm/40μm、長さ5cm)の一端を剥がして、(株)島津製作所製のオートグラフAGS-500で掴み、室温中にて、50mm/分の速度で垂直方向に35mmを引き剥がした時の荷重(kgf/cm)を測定した。
 (20)めっき処理積層体の煮沸耐熱性
 ストレートなスリット状配線(L/S=40μm/40μm、長さ5cm)されためっき処理積層体を、2時間煮沸処理した後260℃の半田浴に30秒浸漬して評価を行った。評価はその試験基板の外観を目視判定により行った。
○;良好、×;ふくれ、はがれ又はミーズリング発生。
<スラリーの製造例>
[スラリー製造例1]
 双日(株)より入手した再生セルロース繊維であるテンセルカット糸(3mm長)を洗浄用ネットに入れて界面活性剤を加え、洗濯機で何度も水洗することにより、繊維表面の油剤を除去した。得られた精製テンセル繊維を固形分1.5重量%となるように水中に分散させて(400L)、ディスクレファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで400Lの該水分散体を20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で叩解処理を続けた。経時的にサンプリングを行い、サンプリングスラリーに対して、JIS P 8121で定義されるパルプのカナダ標準ろ水度試験方法(以下、CSF法)のCSF値を評価したところ、CSF値は経時的に減少していき、一旦、ゼロ近くとなった後、さらに叩解処理を続けると、増大していく傾向が確認された。クリアランスをゼロ近くとしてから10分間、上記条件で叩解処理を続け、CSF値で100ml以上の叩解水分散体を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS015H)を用いて操作圧力100MPa下で5回の微細化処理を実施し、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例2]
 原料として天然セルロースであるリンターパルプを用いた。リンターパルプが4重量%となるように水に浸液させてオートクレーブ内で130℃、4時間の熱処理を行い、得られた膨潤パルプを何度も水洗し、水を含浸した状態の膨潤パルプを得た。その後、製造例1と同様の方法でディスクリファイナーおよび高圧ホモジナイザー処理を行い、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は100ml以上であった。
[スラリー製造例3]
 原料をアバカパルプに変えた以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は630ml以上であった。
[スラリー製造例4]
 原料を帝人(株)のアラミド繊維(1mm長)に変えた以外はスラリー製造例1と同じ方法で微細アラミド繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例5]
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例6]
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例4と同じ方法で微細アラミド繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例7]
 CSF値がゼロとなった時点で処理を止めた以外はスラリー製造例1と同じ方法でセルロース微細繊維スラリー(固形分濃度:1.5重量%)を得た。
[スラリー比較製造例1]
 特開2006-316253の実施例4を参考にスラリー製造を行った。2.0%のグルコースを添加した多糖生産培地(Polysaccharide-production-medium,Akihiko Shimada、Vivaorigino,23,1、52-53、1995)を高圧蒸気殺菌処理した後、その1000Lを内容量3000Lの発酵槽に入れ、CF-002株を104CFU/mlになるように接種し、通気下、30℃で2日間、通気下での撹拌培養を行い、バクテリアセルロース(BC)を大量に含む分散体を得た。その後、スクリーンメッシュで濾別水洗、圧搾後、1%NaOH溶液に浸漬し、除菌後、再度中和、水洗、圧搾を行った。さらに水洗と圧搾の工程を3度繰り返し、精製された綿状のBC/水分散体(セルロース含有率:11.6重量%を得た。セルロース濃度が1.0重量%となるように水で希釈し、家庭用ミキサーで10分間予備分散した後に、高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS3015H)を用いて、操作圧力80MPa下で4回の分散処理を実施した。
<シートの製造例>
[シート製造例1]
 前記スラリー製造例1のスラリーを固形分濃度0.2重量%まで希釈し、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。PET/ナイロン混紡製の平織物(敷島カンバス社製、NT20・・・大気下25℃での水透過量:0.03ml/(cm・s)、セルロース微細繊維を大気圧下25℃における濾過で99%以上濾別する能力あり)をセットしたバッチ式抄紙機(熊谷理機工業社製、自動角型シートマシーン 25cm×25cm、80メッシュ)に目付10g/mのセルロースシートを目安に、上記調整した抄紙スラリーを投入し、その後大気圧に対する減圧度を4KPaとして抄紙(脱水)を実施した。
 得られた濾布上に乗った湿潤状態の濃縮組成物からなる湿紙を、ワイヤー上から剥がし、1kg/cmの圧力で1分間プレスした後、湿紙面をドラム面に接触させるようにして、湿紙/濾布の2層の状態で表面温度が130℃に設定されたドラムドライヤーに湿紙がドラム面に接触するようにして約120秒間乾燥させた。得られた乾燥した2層体からセルロースのシート状構造物から濾布を剥離させて、白色のセルロース微細繊維シート(25cm×25cm、10g/m)を得た。つづいて、セルロース微細繊維シートをカレンダー装置(由利ロール(株)製、油圧式2本ロールテストエンボス機、上ロール:金属 / 下ロール:アラミド、面長300mm、温度:室温、圧力:1.5ton/300mm)によって平滑化処理を施し、薄層のセルロース微細繊維シートS1を得た。
[シート製造例2]
 前記スラリー製造例2のセルロース微細繊維スラリー50重量部、前記スラリー製造例4の微細アラミド繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、微細アラミド繊維を含む乳白色のセルロース微細繊維シートS2を得た。
[シート製造例3]
 前記スラリー製造例3のスラリー(312.5g)に、1-ヘキサノール及びヒドロキシプロピルメチルセルロース(商品名「60SH-4000」、信越化学工業製)をそれぞれ1.2重量%(3.9g)、0.012重量%(0.039g)添加し、家庭用ミキサーで4分間乳化、分散化させた。それ以外は、該抄紙スラリー用いて実施例1と同様の方法で抄紙・乾燥・平滑化を行い、セルロース微細繊維シートS3を得た。
[シート製造例4]
 前記スラリー製造例2のセルロース微細繊維スラリー70重量部、前記スラリー製造例4の微細アラミド繊維スラリー30重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。抄紙スラリー312.5gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を1.9g滴下した後3分間撹拌を行い、抄紙スラリー(合計314.4g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維および微細アラミド繊維固形分重量に対して、3重量%であった。シート製造例1と同様の抄紙・乾燥・平滑化手法を用いてシート化した。その後、平滑化したシートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋された微細アラミド繊維を含む乳白色のセルロース微細繊維シートS4を得た。
[シート製造例5]
 シート製造例1の手法を用い、PET/ナイロン混紡製の平織物の上にキュプラ長繊維不織布(旭化成せんい株式会社製、商品名:ベンリーゼSN140 目付:14g/m、膜厚:70μm、密度:0.2g/cm、平均単糸繊度:0.2dtex)を重ねた状態で抄紙を行い、キュプラ長繊維不織布上にセルロース微細繊維シートが積層された繊維シートS5を作製した。なお、平滑化工程は行わなかった。
[シート製造例6]
 前記スラリー製造例5のセルロース微細繊維スラリー50重量部、前記スラリー製造例6の微細アラミド繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、微細アラミド繊維を含む乳白色のセルロース微細繊維シートS6を得た。
[シート製造例7]
 前記スラリー製造例7のセルロース微細繊維スラリー468.8gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を2.85g滴下した後3分間撹拌を行い、抄紙スラリー(合計471.65g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維固形分重量に対して、3.0重量%であった。シート製造例4と同様の抄紙・乾燥・平滑化手法を用いてシート化した。その後、該乾燥シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋されたセルロース微細繊維を含む白色のセルロース微細繊維シートS7を得た。
[シート比較製造例1]
 特開2006-316253の実施例4を参考にシート製造を行った。スラリー比較製造例1で製造したセルロース濃度1.0重量%のスラリーをさらに水でセルロース濃度0.40重量%となるように希釈し、再度家庭用ミキサーで5分間分散処理を行い、得られた分散液を抄紙用分散液として使用した。得られた湿紙上をさらに同じ濾布で覆い、金属製ローラーにて脱水し、セルロース濃度が12~13重量%となるように調節した。得られた湿紙はPET織物を剥がさないまま、まずアセトン中に浸漬し時々全体を軽くすすぎながら約10分間置換処理を行った後に、トルエン/アセトン=50/50(g/g)の混合溶液に浸漬し、時々全体を軽くすすぎながら約10分間、置換処理を行った。その直後に濾布で挟んだ湿紙を金属板上に乗せ、その上に錘を乗せて定長で乾燥されるようにして、乾燥オーブン内にセットして、100℃で50分間乾燥させた。乾燥後、不織布を濾布から剥がすことにより、白色のセルロースシートRS1を得た。
 シート製造例1~7及びシート比較製造例1の原料、製造方法及び物性を下記表7に示す。
<ワニスの製造例>
[ワニス製造例1]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V1)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)78.9重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.0重量部
・ジシアンジアミド(大日本インキ化学)2.0重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
・球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)32重量部
[ワニス製造例2]
 球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)98重量部を入れる以外はワニス製造例1と同じ方法でワニスV2を製造した。
[ワニス製造例3]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V3)を調整した。
・クレゾールノボラック型エポキシN-660(大日本インキ化学)48.7重量部
・トリアジン含有フェノールノボラック型エポキシLA-7054(大日本インキ化学)46.3重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
[ワニス製造例4]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V4)を調整した。
・ビフェニル型エポキシ樹脂NC-3000H(日本化薬)39.2部
・ビスフェノールA型エポキシ樹脂1051(大日本インキ化学)39.2部
・アミノトリアジンノボラック樹脂LA-3018(大日本インキ)16.5部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0部
・水酸化アルミニウムH-43S(昭和電工、平均粒径0.7μm)61.0重量部
・架橋微粒子ゴムXER-91(JSR)2.5重量部
[ワニス製造例5]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V5)を調整した。
・脂環式エポキシ樹脂2021P(ダイセル)20.0部
・ジシクロペンタジエン型エポキシ樹脂HP-7200H 30.0部
・活性エステル型硬化剤HPC8000-65T(大日本インキ化学)49.9部
・4-ジメチルアミノピリジン(東京化成工業)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0部
・架橋微粒子ゴムXER-91(JSR)2.5重量部
[ワニス製造例6]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V6)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)83.1重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.7重量部
・ジシアンジアミド(大日本インキ化学)2.2重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・シリカSO25R(アドマテックス、重量平均粒径0.5μm)60.6重量部
[ワニス比較製造例1]
 特開2006-316253の実施例4を参考にワニス製造を行った。下記化合物を120℃まで加熱し、混練機で混合した固形分100wt%のワニス(RV1)を調整した。
・ビスフェノールA型エポキシ樹脂(旭化成エポキシ、AER-250)100重量部
・m-キシリレンジアミン18重量部
 ワニス製造例1~6及びワニス比較製造例1の組成及び固形分率を下記表8に示す。なお、表8中の各成分の数値は、重量部を表す。
<樹脂複合フィルムの作製>
[実施例1]
(プリプレグ作製)
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニスV1をフィルムアプリケーターで0.3g塗布した後、10cm角に裁断した上記セルロース微細繊維シート(S1)を置き、さらに該ワニスV1をセルロース微細繊維シート上にアプリケーターで再度0.3g塗布した。得られたフィルムを100℃、4分加熱して溶媒を除去するとともに半硬化物のプリプレグを得た。
(樹脂複合フィルム作製)
 該プリプレグに別のポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離形面が接するように被せた後、真空熱プレス機で硬化を行った(加熱温度220℃、圧力6.0MPa、時間160分)。得られた硬化フィルムより支持フィルムを外し、樹脂複合フィルムを得た。得られた樹脂複合フィルム(F1)の各種物性を表9に示す。
 得られた樹脂複合フィルムのAFM弾性率像を図1(a)に、弾性率ヒストグラムを図1(b)に、2値化像を図1(c)にそれぞれ示す。なお、図1(c)において斜線部がセルロース部と対応する。
 さらに、得られた図1(a)の樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、無機フィラー由来の面積およびセルロース微細繊維層に含まれるシリカフィラーの由来の面積を算出し、フィルム最表面から最も近いセルロース微細繊維を10点以上選び、線で結んだ時に囲まれる領域をセルロース微細繊維層として定義したときの処理画像を図2に示す。
(銅張積層板の作製)
 最終的な硬化物の厚みが0.7mm~0.9mmの範囲に入るように上記プリプレグを所定枚数枚重ね、電解銅箔F2-WS(古河サーキットフォイル、厚さ18μm、処理面のRz=2.3μm)を上下に配置し、圧力2.5MPa、温度240℃で60分間プレスを行って、銅張積層板を得た。
(厚膜樹脂複合フィルムの作製)
 銅張積層板を銅エッチング液に浸漬することにより、銅箔を完全に取り除いた評価用の厚膜樹脂複合フィルムを作製した。
(内層回路基板の作製)
 ガラス布基材エポキシ樹脂両面銅張積層板(銅箔の厚さ35μm、基板の厚さ0.8mm、松下電工(株)製「R5715ES」)に、IPC MULTI-PURPOSE TEST BOARD NO. IPC C-25のパターン(ライン/スペース比=600/660μmの櫛歯パターン(残銅率48%))を形成した。次いで、基板の両面をマイクロエッチング剤(メック(株)製「CZ8100」)で粗化処理し、内層回路基板を作製した。
(絶縁層積層体の作製)
 前記内層回路基板の両面に前記プリプレグを(株)名機製作所製真空ラミネーターにより、温度120℃、圧力7kgf/cm、気圧5mmHg以下の条件でラミネートし、さらに連続的に温度120℃、圧力5kgf/cm、大気圧の条件でSUS鏡板による熱プレスを行った。次いでPETフィルムを剥がした後、180℃、30分熱硬化させ、基板両面に絶縁層を形成した。
(粗化処理積層体作製)
 絶縁層を形成した回路基板(前記絶縁層積層体)の樹脂硬化物層を化学粗化するために、膨潤液として、ジエチレングリコールモノブチルエーテル:200ml/L、NaOH:5g/Lの水溶液を調製し、80℃に加温して5分間浸漬処理した。次に、粗化液として、KMnO:60g/L、NaOH:40g/Lの水溶液を調製し、80℃に加温して15分間浸漬処理した。引き続き、中和液(SnCl:30g/L、HCl:300ml/L)の水溶液を調製し、40℃に加温して5分間浸漬処理し、KMnOを還元した。
(めっき処理積層体作製)
 粗化処理を行った絶縁層表面にセミアディティブ工法で回路を形成するために、内層回路基板を、PdClを含む無電解メッキ用溶液に40℃で5分間浸漬し、次に無電解銅メッキ液に25℃で20分間浸漬した。150℃にて30分間加熱してアニール処理を行った後に、エッチングレジストを形成し、エッチングによるパターン形成(L/S=40μm/40μm、長さ5cmのストレートなスリット状配線)の後に、硫酸銅電解メッキおよびアニール処理を200℃にて60分間行い、30μmの厚さで導体層を形成した。
[実施例2]
 セルロース微細繊維シートをS2にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF2(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例3]
 ワニス(V2)の塗布量を0.9gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF3(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例4]
 セルロース微細繊維シートをS3に、ワニスをV3に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF4(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。樹脂複合フィルムの全光線透過率を測定したところ、82%であった。
[実施例5]
 セルロース微細繊維シートをS4に、ワニスをV4に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF5(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例6]
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニス(V5)をフィルムアプリケーターで0.8g塗布した後、10cm角に裁断した上記セルロース微細繊維積層シート(S5)をセルロース微細繊維面が接するように置き、さらにワニス(V5)をセルロース微細繊維シート上にアプリケーターで再度8.0g塗布した。それ以外は実施例1と同じ方法で、各種樹脂複合フィルムF6(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例7]
 セルロース微細繊維シートをS6に、ワニスをV6にした以外は実施例2と同じ方法で、各種樹脂複合フィルムF7(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[実施例8]
 セルロース微細繊維シートをS7に、ワニスをV1にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF8(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム、絶縁層積層体、粗化処理積層体、めっき処理積層体)を作製した。
[比較例1]
 特開2006-316253の実施例4を参考に樹脂複合フィルム等の製造を行った。ワニス比較製造例1にて得られたワニスRV-1を、シート比較製造例1にて得られたセルロース不織布RS-1に含浸(含浸時間:5分以内)させたもの1枚を、熱プレス機内にて温度100℃、圧力9.81MPa下にて熱硬化(硬化時間:1時間)させることによって、樹脂複合フィルムRF-1を作製した。また、銅張積層板、厚膜樹脂複合フィルム作製、絶縁層形成、粗化処理、めっき処理は実施例1と同じ方法で実施した。
 実施例1~8及び比較例1で得られた樹脂複合フィルムの物性及び評価結果を下記表9に示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
[実施形態IV]
 《測定及び評価方法》
 〈セルロース微細繊維シート及びプリプレグの物性測定及び評価方法〉
 (1)セルロース微細繊維の数平均繊維径
 繊維シートにおいて、セルロース微細繊維の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて1,000~100,000倍相当の倍率で行った。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数えた。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維を算出した。さらに抽出した他の2つのSEM画像についても同じように数平均繊維を算出し、合計10画像分の結果を平均化した。
 (2)セルロース微細繊維シートを構成する繊維の最大繊維径
 セルロース微細繊維シートの表面を、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を倍率500倍で行った。得られたSEM画像10枚内で最も太い繊維の繊維径を繊維シートにおける最大繊維径とした。他の不織布などに積層させた積層構造体については、繊維シート側からSEM観察を行った。
 (3)シート目付
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを10.0cm×10.0cmの正方形片に裁断・秤量し、下記式より算出した。
   シート目付(g/m)=10cm角のサンプルの重量(g)/0.01m
 (4)シート厚み
 室温20℃、湿度50%RHの雰囲気下で調湿したサンプルを面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))で10点厚みを測定し、その平均値を該サンプルの厚みとした。
 (5)空隙率
 セルロース微細繊維の密度を1.5g/cmと仮定し、下記式より算出した。
   空隙率(%)=100-([目付(g/m)/{シート厚み(μm)×1.5(g/cm)}]×100)
 (6)透気抵抗度
 室温23℃、湿度50%RHの雰囲気下で調湿したサンプルを王研式透気抵抗試験機(旭精工(株)製、型式EG01)で透気抵抗度を10点測定し、その平均値を該サンプルの透気抵抗度とした。
 (7)プリプレグの厚み
 プリプレグ内10点の厚みを測定し、その平均値をプリプレグの膜厚とした。膜厚計として面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))を使用した。
 (8)プリプレグにおけるセルロース微細繊維の数平均繊維径及び最大繊維径
 プリプレグをメチルエチルケトンに含浸し、樹脂成分を溶解させ、セルロース微細繊維は分散させた。つづいて、分散液の減圧濾過(減圧度-0.09MPa(絶対真空度10kPa))を行った。濾過器としてはアドバンテック社製KG-90を用い、ガラスフィルターの上に同アドバンテック社製の1.0μm孔径のPTFE製メンブランフィルター(有効濾過面積は48cm)を用いた。PTFE製メンブランフィルターの上のセルロース繊維の堆積物を120℃のオーブンで乾燥させることでセルロース繊維からなるフィルムが得られた。このフィルムにおける数平均繊維径および最大繊維径の算出は、以下のSEMによる観察方法を用いた。
 まず、セルロース微細繊維からなる構造体の表面より、無作為に10箇所、走査型電子顕微鏡(SEM)による観察を微細繊維の繊維径に応じて1,000~100,000倍相当の倍率で行った。得られたSEM画像に対し、画面に対し水平方向と垂直方向にラインを引き、ラインに交差する繊維の繊維径を拡大画像から実測し、交差する繊維の個数と各繊維の繊維径を数えた。こうして一つの画像につき縦横2系列の測定結果を用いて数平均繊維径を算出した。さらに抽出した他の2つのSEM画像についても同じように数平均繊維径を算出し、合計10画像分の結果を平均化し、対象とする試料の平均繊維径とした。
 構造体の表面の10箇所について、倍率500倍でSEM観察を行った。得られたSEM画像10枚内で最も太い繊維径を最大繊維径とした。
 不織布などに積層させた積層構造体については、セルロース微細繊維シート側からSEM観察を行った。
 〈樹脂複合フィルムの物性測定及び評価方法〉
 (1)測定用断面サンプルの作成
 まず、樹脂複合フィルム両面に白金を真空蒸着した(被膜厚み:10nm)。つづいて、試料フィルムをエポキシ樹脂(2液式エポキシ接着剤)で包埋し、ウルトラミクロトームで断面出しを行った。切削にはダイアモンドナイフを使用し、常温で切削を行った。シリカが含まれるフィルムについては、ミクロトームでシリカを切削できないため、Dual-Beam FIB装置(FEI製、Dual Beam Nova200 Nanolab、加速電圧30kV)を用いてサンプル加工し、フィルムの断面出しを行った。得られた断面サンプルは接着剤-白金-フィルム-白金-接着剤の5層で構成され、白金蒸着を行うことでサンプル中のフィルムの位置を明確にした。
 (2)顕微赤外イメージング
 全ての樹脂複合フィルムにセルロース微細繊維および/またはアラミド微細繊維が含まれていることを顕微赤外イメージングで確認した。なお、測定は上記樹脂複合フィルムの断面サンプルについて、以下の条件により行った。
・装置     :赤外イメージング顕微鏡NicoletTM iNTM10MX(Thermo ScientificTM
・分解能    :8cm-1
・積算回数   :1回
・ステップサイズ:x=2.5μm、y=2.5μm
・測定範囲:4000-600cm-1
 (3)X線構造解析
 実施例1の複合フィルムに対し、X線構造解析をした結果、X線回折パターンにおいて、2θの範囲を0°~30°とするX線回折パターンが、10°≦2θ<19°に1つのピークと、19°≦2θ≦30°に2つのピークが確認された。これより、微細繊維が天然セルロースか、再生セルロースであることを特定した。
 (4)フィルム断面のAFMによる弾性率測定
 上記樹脂複合フィルムの断面サンプルを専用のサンプル固定台に固定し、下記のようなAFM測定条件で断面の弾性率を測定した。
 装置    :Bruker社製 Dimension Icon
 測定モード :Peak Force Tapping Mode
 プローブ  :ダイヤモンド単結晶プローブ
        ばね定数k=48N/m、先端曲率半径R=12nm
 解像度   :512×512ピクセル
 測定範囲  :15μm×15μm
 サンプリング周波数:0.3-0.7Hz
 最大押し込み荷重:50nN
 また、解像度512×512ピクセル、測定範囲15μm×15μmでセルロース微細繊維の分布が確認できなかった場合には、上記と同等の解像度で測定範囲を3μm×3μm、さらには測定範囲を1μm×1μmとして測定を行った。
 (5)セルロース微細繊維シートの充填率
 セルロース微細繊維シートの充填率は、樹脂複合フィルム断面のAFM弾性率像においてセルロース微細繊維シートが樹脂複合フィルム全体で占める面積比として定義した。弾性率は素材ごとに異なり、弾性率のヒストグラムの閾値を設定することで、樹脂複合フィルムに含まれる素材ごとに弾性率マッピングを作製した。たとえば、セルロース微細繊維とエポキシのみからなる樹脂複合フィルムの場合、エポキシ(ソフト相)とセルロース微細繊維(ハード相)からなるコントラスト像が得られる。ヒストグラムは大きく分けて2つのピークからなり、ヒストグラムの2つのピークの中点を2値化における閾値に設定した(セルロース:黒色、エポキシ:白色)。
 樹脂複合フィルムの厚みがAFM測定範囲15μmよりも厚い場合、まず樹脂複合フィルムの断面を複数視野に分けて測定した。つづいて、各視野で弾性率マッピングを作製した後、画像を結合し、樹脂複合フィルムの断面が1画像に収まった像を得た。樹脂複合フィルムの断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維シート由来の面積およびフィルム全体の面積を算出し、最終的に以下の式よりセルロース微細繊維シートの充填率を求めた。
   セルロース微細繊維シートの充填率(%)=セルロース微細繊維シート由来の面積/フィルム全体の面積×100
 以上の方法を用いて10か所のフィルム断面のセルロース微細繊維シートの充填率を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体のセルロース微細繊維シートの充填率とした。
 (6)セルロース微細繊維シートを構成する繊維の平均繊維径
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維シート由来の面積(ΣS)およびセルロース微細繊維シートと他素材(エポキシなど)との界面の総長さ(ΣL)を求め、その後、下記式に従い、セルロース微細繊維シートを構成する繊維の平均繊維径を算出した。
 セルロース微細繊維シートを構成する繊維の平均繊維径(nm)=4×ΣS/ΣL
 以上の方法を用いて10か所の樹脂複合フィルムの断面の、セルロース微細繊維シートを構成する繊維の平均繊維径を求め、そのうち最大値および最小値を除いた8点の平均値をフィルム全体のセルロース微細繊維シートを構成する繊維の平均繊維径とした。
 (7)セルロース微細繊維シートを構成する繊維の最大繊維径
 上記の樹脂複合フィルム断面がすべて写った10か所の弾性率マッピングについて、画像編集ソフト「imageJ」の粒子解析を行い、セルロース微細繊維シートを構成する繊維の繊維径を、真円と見做した時の粒径として算出した。この時、最も大きい粒径をセルロース微細繊維シートを構成する繊維の最大繊維径として採用した。
 (8)樹脂複合フィルム内のセルロース微細繊維層の空隙率
 上記樹脂複合フィルム断面がすべて写った弾性率マッピングより、画像編集ソフト「imageJ」を用いて、セルロース微細繊維由来の面積(ΣS)と、同様に算出されるセルロース微細繊維層を構成する繊維間(オーバーコート樹脂層を除く)に含まれる樹脂由来の面積(ΣSp)を算出し、その後、下記式に従い、樹脂複合フィルム内のセルロース微細繊維層の空隙率を算出した。
 樹脂複合フィルム内のセルロース微細繊維層の空隙率(%)=ΣS/(ΣS+ΣSp)
×100
 (9)樹脂複合フィルム中の無機充填材の充填率
 樹脂複合フィルム中の無機充填材の充填率は、上記樹脂複合フィルム断面において無機充填材を構成する原子が占める面積比として定義した。例えば、シリカ粒子であればSi、水酸化アルミニウム粒子であればAlを測定した。ここではシリカ粒子を例に測定方法を示す。断面サンプルをCペーストおよびOsコーティングにより導通処理を行った後、走査型電子顕微鏡S-4800(日立ハイテクフィールディング社製)を用いて、撮影倍率500倍、加速電圧1.0kV、検出器:二次電子の設定で撮影を行い、断面SEM像を取得した。つづいて、同視野についてエネルギー分散型X線検出器X-Max SILICON DRIFT X-RAY DETECTOR(株式会社堀場製作所製)を用いてCおよびSiの元素マッピングを取得した。面積比は、まずフィルム断面のSEMの二次電子像を画像編集ソフト「imageJ」を用いて、フィルムの外周に相当する部分で切り取り、フィルム断面のみを表示させた。次に2値化を行い、シリカ由来を黒く、その他由来を白く表示した。白黒二値化の閾値は黒く表示される部分がEDXのSiの領域と対応するように選び、黒の面積をカウント数として算出する。また、フィルム断面全体の面積をカウント数として算出する。これらの二つの比により以下の式よりSiがフィルム断面全体に占める割合を算出した。
 無機充填材の充填率(%)=(無機充填材由来の面積/フィルム全体の面積)×100
 以上の方法を用いて10か所のフィルム断面について無機充填材の充填率を求め、そのうち最大値および最小値を除いた8点の平均値を樹脂複合フィルム中の無機充填材の平均充填率とした。
 ここでの二値化は有機物(樹脂や繊維等)と無機物(無機充填材等)の元素の違いによる二値化のことをいう。
 (10)セルロース微細繊維層に含まれる無機充填材の割合
 セルロース微細繊維層に含まれる無機充填材の割合は、上記の樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、樹脂複合フィルム中の無機充填材由来の全面積およびセルロース微細繊維層に含まれる無機充填材由来の面積を算出し、最終的に以下の式よりセルロース微細繊維層に含まれる無機充填材の割合を求めた。なお、セルロース微細繊維層はフィルム最表面から近いセルロース微細繊維シートの端部を順に10点以上選び、線で結んだ時に囲まれる領域をセルロース微細繊維層と定義する。
 セルロース微細繊維層に含まれる無機充填材の割合(%)=(セルロース微細繊維に含まれる無機充填材由来の面積/樹脂複合フィルム中の無機充填材由来の全面積)×100
 以上の方法を用いて10か所の樹脂複合フィルム断面のセルロース微細繊維層に含まれる無機充填材の割合を求め、そのうち最大値および最小値を除いた8点の平均値をセルロース微細繊維層に含まれる無機充填材の割合とした。
 (11)オーバーコート樹脂層の厚み
 樹脂複合フィルム最表面より不織布層表面までの長さをオーバーコート樹脂層と定義する。不織布層とはセルロース微細繊維層を含む有機繊維からなる層と定義する。上記のAFM弾性率マッピングよりエポキシ層(表)/不織布層/エポキシ層(裏)の3層で構成されることが確認できる。フィルム最表面より不織布層表面までの長さを表および裏でそれぞれ10点ずつ測定し、その平均値をオーバーコート樹脂層の厚み(表)、オーバーコート樹脂層の厚み(裏)とする。
 (12)線熱膨張率(CTE)
 複合樹脂フィルムを3mm幅×25mm長に切断し、測定サンプルとした。SII製TMA6100型装置を用いて、引っ張りモードでチャック間10mm、荷重5g、窒素雰囲気下、室温から200℃まで5℃/min.で昇温、200℃から25℃まで5℃/min.で降温、再び25℃から200℃まで5℃/min.で昇温した。この際、2度目の昇温時の150℃および200℃での線熱膨張率(CTE150およびCTE200)を求めた。CTE150およびCTE200はそれぞれ、149℃~150℃および199℃~200℃の1℃での線膨張係数とし、下式のように表される。
   CTE150=(L150-L149)/L100×(10
   CTE200=(L200-L199)/L200×(10
 なお、L149、L150、L199、及びL200はそれぞれ、149℃、150℃、199℃、及び200℃でのチャック間長を意味する。
 (13)CTE差
 150℃から200℃の間のCTE差の絶対値は下式にように表される
   CTE差の絶対値=|CTE200-CTE150|
 (14)樹脂複合フィルムの厚み
 樹脂複合フィルム内10点の厚みを測定し、平均値を膜厚とした。膜厚計として面接触型のタイプ(Mitutoyo(株)製面接触型膜厚計(Code No.547-401))を使用した。
 (15)吸湿率
 樹脂複合フィルムを50mm角に切断し、120℃で2時間乾燥させた後、初期質量(W0)を測定し、その後、湿度: 85%/温度: 85℃/192 時間の条件で吸湿処理した後の質量(W1)を測定した。そして、下記の式より吸湿率を求めた。
   吸湿率(%)=(W1-W0)/W0×100
 (16)透過率
 透過率は、ASTM D1003に基づき、ヘイズメーターNDH7000SP CU2II(製品名)(日本電色工業株式会社製)を使用した光透過性試験によって測定できる。
 (17)誘電特性(比誘電率及び誘電正接)
 厚み0.8mmの厚膜樹脂複合フィルムを1.5(幅)×80mm(長さ)のサイズに切り出し、測定サンプルとした。空洞共振法(8722ES型ネットワークアナライザー、アジレントテクノロジー製;空洞共振器、関東電子応用開発製)によって、1GHzの値を測定した。
 (18)絶縁信頼性
 銅張積層板の両面の銅箔上に、0.2mm間隔のスルーホールを配する配線パターンを作成し、温度120℃湿度85%RHの雰囲気下で隣接するスルーホール間に10Vの電圧をかけ、抵抗値の変化を測定した。試験開始後500時間以内に抵抗が1MΩ未満になった場合を絶縁不良とし、絶縁不良とならなかったサンプルの割合を評価した(サンプル数は10個とした。)。
 (19)そり
 厚み0.8mmの厚膜樹脂複合フィルムを40mm×40mmに裁断した。サンプルを室温から260℃まで加熱し、その後50℃まで冷却した時のそり量を下式に従って測定した。
   そり量(%)=たわみh(mm)/長さL(mm)×100
 厚膜樹脂複合フィルムのたわみ(h)及び長さ(L)の概念を図3に示す。そり率が1%未満を○、2%未満を△、2%以上を×とした。
<スラリーの製造例>
[スラリー製造例1]
 双日(株)より入手した再生セルロース繊維であるテンセルカット糸(3mm長)を洗浄用ネットに入れて界面活性剤を加え、洗濯機で何度も水洗することにより、繊維表面の油剤を除去した。得られた精製テンセル繊維(カット糸)を固形分1.5重量%となるように水中に分散させて(400L)、ディスクレファイナー装置として相川鉄工(株)製SDR14型ラボリファイナー(加圧型DISK式)を用い、ディスク間のクリアランスを1mmで400Lの該水分散体を20分間叩解処理した。それに引き続き、クリアランスをほとんどゼロに近いレベルにまで低減させた条件下で叩解処理を続けた。経時的にサンプリングを行い、サンプリングスラリーに対して、JIS P 8121で定義されるパルプのカナダ標準ろ水度試験方法(以下、CSF法)のCSF値を評価したところ、CSF値は経時的に減少していき、一旦、ゼロ近くとなった後、さらに叩解処理を続けると、増大していく傾向が確認された。クリアランスをゼロ近くとしてから10分間、上記条件で叩解処理を続け、CSF値で100ml以上の叩解水分散体を得た。得られた叩解水分散体を、そのまま高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS015H)を用いて操作圧力100MPa下で5回の微細化処理を実施し、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例2]
 原料として天然セルロースであるリンターパルプを用いた。リンターパルプが4重量%となるように水に浸液させてオートクレーブ内で130℃、4時間の熱処理を行った。得られた膨潤パルプを何度も水洗し、水を含浸した状態の膨潤パルプを得た。その後、スラリー製造例1と同様の方法でディスクリファイナーおよび高圧ホモジナイザー処理を行い、セルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は100ml以上であった。
[スラリー製造例3]
 原料をアバカパルプに変えた以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。CSF値は630ml以上であった。
[スラリー製造例4]
 原料を帝人(株)のアラミド繊維(1mm長)に変えた以外はスラリー製造例1と同じ方法でアラミド微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例5]
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例2と同じ方法でセルロース微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例6]
 操作圧力100MPa下での微細化処理を30回実施した以外はスラリー製造例4と同じ方法でアラミド微細繊維のスラリー(固形分濃度:1.5重量%)を得た。
[スラリー製造例7]
 CSF値がゼロとなった時点で処理を止めた以外はスラリー製造例1と同じ方法でセルロース微細繊維スラリー(固形分濃度:1.5重量%)を得た。
[スラリー比較製造例1]
 特開2006-316253の実施例4を参考にスラリー製造を行った。2.0%のグルコースを添加した多糖生産培地(Polysaccharide-production-medium,Akihiko Shimada、Vivaorigino,23,1、52-53、1995)を高圧蒸気殺菌処理した後、その1000Lを内容量3000Lの発酵槽に入れ、CF-002株を104CFU/mlになるように接種し、通気下、30℃で2日間、通気下での撹拌培養を行い、バクテリアセルロース(BC)を大量に含む分散体を得た。その後、スクリーンメッシュで濾別水洗、圧搾後、1%NaOH溶液に浸漬し、除菌後、再度中和、水洗、圧搾を行った。さらに水洗と圧搾の工程を3度繰り返し、精製された綿状のBC/水分散体(セルロース含有率:11.6重量%)を得た。次にセルロース濃度が1.0重量%となるように水で希釈し、家庭用ミキサーで10分間予備分散した後に、高圧ホモジナイザー(ニロ・ソアビ社(伊)製NS3015H)を用いて、操作圧力80MPa下で4回の分散処理を実施した。
<シートの製造例>
[シート製造例1]
 前記スラリー製造例1のスラリーを固形分濃度0.2重量%まで希釈し、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。PET/ナイロン混紡製の平織物{敷島カンバス社製NT20、大気下25℃での水透過量:0.03ml/(cm・s)、セルロース微細繊維を大気圧下25℃における濾過で99%以上濾別する能力あり}をセットしたバッチ式抄紙機(熊谷理機工業社製、自動角型シートマシーン 25cm×25cm、80メッシュ)に目付10g/mのセルロースシートを目安に、上記調整した抄紙スラリーを投入し、その後大気圧に対する減圧度を4KPaとして抄紙(脱水)を実施した。
 得られた濾布上に乗った湿潤状態の濃縮組成物からなる湿紙を、ワイヤー上から剥がし、1kg/cmの圧力で1分間プレスした。湿紙面をドラム面に接触させるようにして、湿紙/濾布の2層の状態で表面温度が130℃に設定されたドラムドライヤーに湿紙がドラム面に接触するようにして約120秒間乾燥させた。得られた乾燥した2層体からセルロースのシート状構造物から濾布を剥離させて、白色のセルロース微細繊維シート(25cm×25cm、10g/m)を得た。つづいて、セルロース微細繊維シートをカレンダー装置(由利ロール(株)製、油圧式2本ロールテストエンボス機、上ロール:金属/下ロール:アラミド、面長300mm、温度:室温、圧力:1.5ton/300mm)によって平滑化処理を施し、薄層のセルロース微細繊維シートS1を得た。
[シート製造例2]
 前記スラリー製造例2のセルロース微細繊維スラリー50重量部、前記スラリー製造例4のアラミド微細繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、アラミド微細繊維を含む乳白色のセルロース微細繊維シートS2を得た。
[シート製造例3]
 前記スラリー製造例3のスラリー(312.5g)に、1-ヘキサノール及びヒドロキシプロピルメチルセルロース(商品名「60SH-4000」、信越化学工業製)をそれぞれ1.2重量%(3.9g)、0.012重量%(0.039g)添加し、家庭用ミキサーで4分間乳化、分散化させた。それ以外は、実施例1と同様の方法で抄紙・乾燥・平滑化を行い、セルロース微細繊維シートS3を得た。
[シート製造例4]
 前記スラリー製造例2のセルロース微細繊維スラリー70重量部、前記スラリー製造例4のアラミド微細繊維スラリー30重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。抄紙スラリー312.5gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を1.9g滴下した後3分間撹拌を行い、抄紙スラリー(合計314.4g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維およびアラミド微細繊維固形分重量に対して、3重量%であった。シート製造例1と同様の抄紙・乾燥手法を用いてシート化した。その後、平滑化工程を経た後、シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋されたアラミド微細繊維を含む乳白色のセルロース微細繊維シートS4を得た。
[シート製造例5]
 シート製造例1の手法を用い、PET/ナイロン混紡製の平織物の上にキュプラ長繊維不織布(旭化成せんい株式会社製、商品名:ベンリーゼSN140 目付:14g/m、膜厚:70μm、密度:0.2g/cm、平均単糸繊度:0.2dtex)を重ねた状態で抄紙を行い、キュプラ長繊維不織布上にセルロース微細繊維シートが積層された繊維シートS5を作製した。なお、平滑化工程は行わなかった。
[シート製造例6]
 前記スラリー製造例5のセルロース微細繊維スラリー50重量部、前記スラリー製造例6のアラミド微細繊維スラリー50重量部を混合し、固形分濃度0.2重量%まで希釈した。つづいて、家庭用ミキサーで3分撹拌することで312.5gの抄紙スラリーを作製した。つづく抄紙・乾燥・平滑化工程はシート製造例1と同様の手法を用い、アラミド微細繊維を含む乳白色のセルロース微細繊維シートS6を得た。
[シート製造例7]
 前記スラリー製造例7のセルロース微細繊維スラリー468.8gをスリーワンモーターで撹拌させながら、カチオン性ブロックポリイソシアネート(商品名「メイカネートWEB」、明成化学工業株式会社製、固形分濃度1.0重量%まで希釈)を2.85g滴下した後3分間撹拌を行い、抄紙スラリー(合計471.65g)を得た。添加したカチオン性ブロックポリイソシアネート重量比率はセルロース微細繊維固形分重量に対して、3.0重量%であった。シート製造例4と同様の抄紙・乾燥・平滑化手法を用いてシート化した。その後、該乾燥シートを2枚のSUS製金枠(25cm×25cm)で挟み、クリップで固定し、オーブンで160℃、2分間の熱処理を行い、ブロックポリイソシアネートで架橋されたセルロース微細繊維を含む白色のセルロース微細繊維シートS7を得た。
[シート比較製造例1]
 特開2006-316253の実施例4を参考にシート製造を行った。スラリー比較製造例1で製造したセルロース濃度1.0重量%のスラリーをさらに水でセルロース濃度0.40重量%となるように希釈し、再度家庭用ミキサーで5分間分散処理を行い、得られた分散液を抄紙用分散液として使用した。得られた湿紙上をさらに同じ濾布で覆い、金属製ローラーにて脱水し、セルロース濃度が12~13重量%となるように調節した。得られた湿紙はPET織物を剥がさないまま、まずアセトン中に浸漬し時々全体を軽くすすぎながら約10分間置換処理を行った後に、トルエン/アセトン=50/50(g/g)の混合溶液に浸漬し、時々全体を軽くすすぎながら約10分間、置換処理を行った。その直後に濾布で挟んだ湿紙を金属板上に乗せ、その上に錘を乗せて定長で乾燥されるようにして、乾燥オーブン内にセットして、100℃で50分間乾燥させた。乾燥後、不織布を濾布から剥がすことにより、白色のセルロースシートRS1を得た。
 シート製造例1~7及びシート比較製造例1の原料、製造方法及び物性を下記表10に示す。
<ワニスの製造例>
[ワニス製造例1]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V1)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)78.9重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.0重量部
・ジシアンジアミド(大日本インキ化学)2.0重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
・球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)32重量部
[ワニス製造例2]
 球状シリカSO25R(アドマテックス、重量平均粒径0.5μm)98重量部を入れる以外はワニス製造例1と同じ方法でワニスV2を製造した。
[ワニス製造例3]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V3)を調整した。
・クレゾールノボラック型エポキシN-660(大日本インキ化学)48.7重量部
・トリアジン含有フェノールノボラック型エポキシLA-7054(大日本インキ化学)46.3重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0重量部
[ワニス製造例4]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V4)を調整した。
・ビフェニルアラルキル型エポキシ樹脂NC-3000(大日本インキ化学)31.5部
・クレゾールノボラック型エポキシ樹脂N-690(大日本インキ化学)31.5部
・ビフェニルアラルキル型フェノールMEH-7851H(明和化成)30.0部
・ジシアンジアミド(大日本インキ化学)1.9部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・フェノキシ樹脂YL7553BH30(三菱化学)5.0部
・水酸化アルミニウムH-43S(昭和電工、平均粒径0.7μm)61.0重量部
・架橋微粒子ゴムXER-91(JSR)2.5重量部
[ワニス製造例5]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V5)を調整した。
・ビスフェノールA型エポキシ樹脂828EL(三菱化学)22.3部
・ナフタレン型4官能エポキシ樹脂HP-4710(大日本インキ化学)27.9部
・トリアジン含有フェノールノボラック樹脂LA-7054(大日本インキ化学)16.6部
・ナフトール系硬化剤SN-485(東都化成)16.6部
・ナフトール系硬化剤EXB―9500(大日本インキ化学)16.6部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
[ワニス製造例6]
 メチルエチルケトンを溶媒とし、下記化合物を混練機で混合した固形分70重量%のワニス(V6)を調整した。
・臭素化ビスフェノールA型エポキシ樹脂1121N-80M(大日本インキ化学)83.1重量部
・フェノールノボラック型エポキシ樹脂N680-75M(大日本インキ化学)14.7重量部
・ジシアンジアミド(大日本インキ化学)2.2重量部
・2-エチル-4-メチルイミダゾール(四国化成)0.1重量部
・シリカSO25R(アドマテックス、重量平均粒径0.5μm)60.6重量部
[ワニス比較製造例1]
 特開2006-316253の実施例4を参考にワニス製造を行った。下記化合物を120℃まで加熱し、混練機で混合した固形分100wt%のワニス(RV1)を調整した。
・ビスフェノールA型エポキシ樹脂(旭化成エポキシ、AER-250)100重量部
・m-キシリレンジアミン18重量部
 ワニス製造例1~6及びワニス比較製造例1の組成及び固形分率を下記表11に示す。なお、表11中の各成分の数値は、重量部を表す。
<樹脂複合フィルムの作製>
[実施例1]
(プリプレグ作製)
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニスV1をフィルムアプリケーターで0.3g塗布した後、10cm角に裁断した上記セルロース微細繊維シート(S1)を置き、さらに該ワニスV1をセルロース微細繊維シート上にアプリケーターで再度0.3g塗布した。得られたフィルムを100℃、4分加熱して溶媒を除去するとともに半硬化物のプリプレグを得た。
(樹脂複合フィルム作製)
 該プリプレグに別のポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離形面が接するように被せた後、真空熱プレス機で硬化を行った(加熱温度220℃、圧力6.0MPa、時間160分)。得られた硬化フィルムより支持フィルムを外し、樹脂複合フィルムを得た。得られた樹脂複合フィルム(F1)の各種物性を表12に示す。
 得られた樹脂複合フィルムのAFM弾性率像を図1(a)に、弾性率ヒストグラムを図1(b)に、2値化像を図1(c)にそれぞれ示す。なお、図1(c)において斜線部がセルロース微細繊維シートを構成する繊維部と対応する。
 さらに、得られた図1(a)の樹脂複合フィルム断面の弾性率マッピングより、画像編集ソフト「imageJ」を用いて、無機充填材由来の面積およびセルロース微細繊維層に含まれるシリカフィラーの由来の面積を算出し、フィルム最表面から近いセルロース微細繊維シートの端部を10点以上選び、線で結んだ時に囲まれる領域をセルロース微細繊維層として定義したときの処理画像を図2に示す。
(銅張積層板作製)
 最終的な硬化物の厚みが0.7mm~0.9mmの範囲に入るように上記プリプレグを所定枚数枚重ね、電解銅箔F2-WS(古河サーキットフォイル、厚さ18μm、処理面のRz=2.3μm)を上下に配置し、圧力2.5MPa、温度240℃で60分間プレスを行って、銅張積層板を得た。
(厚膜樹脂複合フィルム作製)
 該銅張積層板を銅エッチング液に浸漬することにより、銅箔を取り除いた評価用の厚膜樹脂複合フィルムを作製した。
[実施例2]
 セルロース微細繊維シートをS2にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF2(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。
[実施例3]
 ワニスをV2とし、塗布量を0.9gとした以外は実施例1と同じ方法で、各種樹脂複合フィルムF3(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。
[実施例4]
 セルロース微細繊維シートをS3に、ワニスをV3に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF4(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。樹脂複合フィルムの全光線透過率を測定したところ、82%であった。
[実施例5]
 セルロース微細繊維シートをS4に、ワニスをV4に、さらにワニスの塗布量を0.1gにした以外は実施例1と同じ方法で、各種樹脂複合フィルムF5(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。
[実施例6]
 20cm角ポリエチレンテレフタレートの支持フィルム(厚さ16μm)の離型面にワニス(V5)をフィルムアプリケーターで0.8g塗布した後、10cm角に裁断した上記セルロース微細繊維積層シート(S5)をセルロース微細繊維面が接するように置き、さらにワニス(V5)をセルロース微細繊維シート上にアプリケーターで再度8.0g塗布した。それ以外は実施例1と同じ方法で、各種樹脂複合フィルムF6(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。
[実施例7]
 セルロース微細繊維シートをS6に、ワニスをV6にした以外は実施例2と同じ方法で、各種樹脂複合フィルムF7(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。
[実施例8]
 セルロース微細繊維シートをS7に、ワニスをV1にした以外は実施例1と同じ方法で、各種樹脂複合フィルムF8(プリプレグ、樹脂複合フィルム、銅張積層板、厚膜樹脂複合フィルム)を作製した。
[比較例1]
 特開2006-316253の実施例4を参考に樹脂複合フィルム等の製造を行った。ワニス比較製造例1にて得られたワニスRV1を、シート比較製造例1にて得られたセルロース不織布RS1に含浸(含浸時間:5分以内)させたもの1枚を、熱プレス機内にて温度100℃、圧力9.81MPa下にて熱硬化(硬化時間:1時間)させることによって、樹脂複合フィルムRF1を作製した。また、銅張積層板、厚膜樹脂複合フィルム作製は実施例1と同じ方法で実施した。
 実施例1~8及び比較例1で得られた樹脂複合フィルムの物性及び評価結果を下記表12に示す。
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012

Claims (51)

  1.  セルロース微細繊維シートと樹脂を含む樹脂複合フィルムであって、以下の:
     (1)断面厚み方向のAFM測定により得られる弾性率マッピングにおいて、画像解析から算出される前記セルロース微細繊維シートを構成する繊維の平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である;及び
     (2)弾性率マッピングにより観測される前記樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上100μm以下である;
    を満足する、樹脂複合フィルム。
  2.  前記オーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上10μm以下である、請求項1に記載の樹脂複合フィルム。
  3.  以下の:
     (2)前記弾性率マッピングにより算出される前記樹脂複合フィルムの前記オーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.8μm以上30μm以下である;及び
     (3)該樹脂複合フィルムの表面ラフネスが0.1μm以上2.0μm以下である;
    をさらに満足する、請求項1に記載の前記樹脂複合フィルム。
  4.  前記表面ラフネスが0.3μm以上1.2μm以下である、請求項3に記載の樹脂複合フィルム。
  5.  以下の:
     (2)前記弾性率マッピングから算出される前記樹脂複合フィルムの前記オーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm以上30μm以下である;
     (3)200℃におけるX-Y平面の線熱膨張係数CTE200が100ppm/℃以下である;及び
     (4)150℃におけるX-Y平面の線熱膨張係数CTE150と200℃におけるX-Y平面の線熱膨張係数CTE200との数値差の絶対値が40以下である、
    をさらに満足する、請求項1に記載の樹脂複合フィルム。
  6.  前記CTE200が60ppm/℃以下である、請求項5に記載の樹脂複合フィルム。
  7.  前記弾性率マッピングの画像解析において、前記セルロース微細繊維シートを構成する繊維の前記樹脂複合フィルムの断面全体に占める面積割合が5%以上60%以下である、請求項1~6のいずれか1項に記載の樹脂複合フィルム。
  8.  無機充填材を含む、請求項1~7のいずれか1項に記載の樹脂複合フィルム。
  9.  断面厚み方向のSEM観察において、前記無機充填材の前記樹脂複合フィルムの断面全体に占める面積割合が5%以上50%以下である、請求項8に記載の樹脂複合フィルム。
  10.  前記弾性率マッピングの画像解析において、前記無機充填材の前記樹脂複合フィルムの断面全体に占める面積割合が5%以上50%以下である、請求項8又は9に記載の樹脂複合フィルム。
  11.  前記弾性率マッピングの画像解析において、前記無機充填材の20%以下がセルロース微細繊維層に含まれる、請求項8~10のいずれか1項に記載の樹脂複合フィルム。
  12.  全光線透過率が80%以上である、請求項1~11のいずれか1項に記載の樹脂複合フィルム。
  13.  前記セルロース微細繊維シートが、セルロース以外の有機ポリマーから成る微細繊維を70質量%未満で含む、請求項1~12のいずれか1項に記載の樹脂複合フィルム。
  14.  前記セルロース以外の有機ポリマーから成る微細繊維が、アラミド微細繊維及び/又はポリアクリロニトリル微細繊維である、請求項13に記載の樹脂複合フィルム。
  15.  さらに、前記弾性率マッピングの画像解析から算出される平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である、請求項14に記載の樹脂複合フィルム。
  16.  厚みが5μm以上1500μm以下である、請求項1~15のいずれか1項に記載の樹脂複合フィルム。
  17.  吸湿率が2%以下である、請求項1~16のいずれか1項に記載の樹脂複合フィルム。
  18.  誘電率が4.5以下である、請求項1~17のいずれか1項に記載の樹脂複合フィルム。
  19.  前記樹脂複合フィルムに含まれる前記樹脂が熱硬化性又は光硬化性である、請求項1~18のいずれか1項に記載の樹脂複合フィルム。
  20.  請求項1~19のいずれか1項に記載の樹脂複合フィルムが、支持体上に積層されている樹脂積層フィルム。
  21.  請求項1~19のいずれか1項に記載の樹脂複合フィルムが複数積層されている、樹脂複合フィルム積層板。
  22.  請求項21に記載の樹脂複合フィルム積層板を含む、多層プリント配線板。
  23.  請求項22に記載の多層プリント配線板を含む、半導体パッケージ基板。
  24.  請求項23に記載の半導体パッケージ基板を含む通信端末。
  25.  セルロース微細繊維シートと樹脂を含む樹脂複合フィルムが複数積層されている樹脂複合フィルム積層板であって、以下の:
     (1)該樹脂複合フィルム積層板の断面厚み方向のAFM測定により得られる弾性率マッピングにおいて、画像解析から算出される該セルロース微細繊維シートを構成する繊維の平均繊維径が0.01μm以上2.0μm以下であり、かつ最大繊維径が15μm以下である;
     (2)該弾性率マッピングにより算出される該樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、該樹脂複合フィルムの少なくとも片面で0.8μm以上30μm以下である;及び
     (3)該樹脂複合フィルム積層板の表面ラフネスが0.1μm以上2.0μm以下である;
    を満足する前記樹脂複合フィルム積層板。
  26.  前記表面ラフネスが0.2μm以上1.2μm以下である、請求項25に記載の樹脂複合フィルム積層板。
  27.  請求項26に記載の樹脂複合フィルム積層板を含む、多層プリント配線板。
  28.  請求項27に記載の多層プリント配線板を含む、半導体パッケージ基板。
  29.  請求項28に記載の半導体パッケージ基板を含む通信端末。
  30.  マトリックス樹脂中にセルロース微細繊維を含む樹脂複合フィルムであって、以下の:
     (1)樹脂複合フィルムの断面厚み方向の原子間力顕微鏡(AFM)測定により得られる弾性率マッピングにおいて、画像解析から算出される該セルロース微細繊維の平均繊維径が0.01μm~2.0μmであり、かつ最大繊維径が15μm以下である;
     (2)該樹脂複合フィルムのガラス転移温度(Tg)が、80℃以上であるか、又は存在しない;
     (3)該樹脂複合フィルムの200℃での貯蔵弾性率(E’200)が、0.5GPa以上である;及び
     (4)該200℃での貯蔵弾性率(E’200)に対する該樹脂複合フィルムの150℃での貯蔵弾性率(E’150)の比(E’150/E’200)が、1以上4.5以下である;
    を満たす、前記樹脂複合フィルム。
  31.  前記200℃での貯蔵弾性率(E’200)が0.7GPa以上である、請求項30に記載の樹脂複合フィルム。
  32.  前記弾性率マッピングにおいて前記画像解析から算出されるときに、前記樹脂複合フィルムの断面全体に対する前記セルロース微細繊維の面積割合が、5%~60%である、請求項30または31に記載の樹脂複合フィルム。
  33.  さらに、以下の:
     (5)200℃におけるX-Y平面の線熱膨張係数CTE200が100ppm/℃以下である;及び
     (6)150℃におけるX-Y平面の線熱膨張係数CTE150と200℃におけるX-Y平面の線熱膨張係数CTE200との数値差の絶対値が40以下である;
    を満たす、請求項30~32のいずれか1項に記載の樹脂複合フィルム。
  34.  前記弾性率マッピングにより算出される前記樹脂複合フィルムのオーバーコート樹脂層の平均厚みが、前記樹脂複合フィルムの少なくとも片面で0.3μm~30μmである、請求項30~33のいずれか1項に記載の樹脂複合フィルム。
  35.  無機充填材をさらに含む、請求項34に記載の樹脂複合フィルム。
  36.  前記樹脂複合フィルムの断面厚み方向の走査型電子顕微鏡(SEM)観察において、前記樹脂複合フィルムの断面全体に対する前記無機充填材の面積割合が、5%~50%である、請求項35に記載の樹脂複合フィルム。
  37.  前記弾性率マッピングの画像解析において、前記無機充填材の20%以下がセルロース微細繊維層に含まれる、請求項35又は36に記載の樹脂複合フィルム。
  38.  透過率が80%以上である、請求項30~37のいずれか1項に記載の樹脂複合フィルム。
  39.  セルロース以外の有機ポリマーから成る微細繊維を70重量%未満でさらに含む、請求項30~38のいずれか1項に記載の樹脂複合フィルム。
  40.  前記有機ポリマーから成る微細繊維は、アラミド微細繊維及び/又はポリアクリロニトリル微細繊維である、請求項39に記載の樹脂複合フィルム。
  41.  前記マトリックス樹脂が熱硬化性又は光硬化性である、請求項30~40のいずれか1項に記載の樹脂複合フィルム。
  42.  厚みが5μm~1500μmである、請求項30~41のいずれか1項に記載の樹脂複合フィルム。
  43.  前記厚みが5μm~200μmである、請求項42に記載の樹脂複合フィルム。
  44.  吸湿率が2%以下である、請求項30~43のいずれか1項に記載の樹脂複合フィルム。
  45.  誘電率が4.5以下である、請求項30~44のいずれか1項に記載の樹脂複合フィルム。
  46.  請求項30~45のいずれか1項に記載の樹脂複合フィルムが、支持体上に積層されている、樹脂積層フィルム。
  47.  請求項30~45のいずれか1項に記載の樹脂複合フィルムが、複数積層されている、積層板。
  48.  請求項47に記載の積層板を含む、多層プリント配線板。
  49.  請求項48に記載の多層プリント配線板に半導体が搭載されている、半導体パッケージ基板。
  50.  請求項49に記載の半導体パッケージ基板を含む、通信端末。
  51.  請求項30~45のいずれか1項に記載の樹脂複合フィルムを含む、スピーカー振動板。
PCT/JP2017/013086 2016-03-30 2017-03-29 セルロース微細繊維層を含む樹脂複合フィルム WO2017170781A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2018509388A JP6626190B2 (ja) 2016-03-30 2017-03-29 セルロース微細繊維層を含む樹脂複合フィルム
US16/089,508 US10703070B2 (en) 2016-03-30 2017-03-29 Resin composite film including cellulose microfiber layer
CN201780022099.7A CN108884251B (zh) 2016-03-30 2017-03-29 包含纤维素微细纤维层的树脂复合薄膜
EP17775315.9A EP3438166B1 (en) 2016-03-30 2017-03-29 Resin composite film including cellulose microfiber layer
KR1020187028033A KR102245529B1 (ko) 2016-03-30 2017-03-29 셀룰로오스 미세 섬유층을 포함하는 수지 복합 필름

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2016-069806 2016-03-30
JP2016-069808 2016-03-30
JP2016069808 2016-03-30
JP2016-069810 2016-03-30
JP2016069810 2016-03-30
JP2016069807 2016-03-30
JP2016069806 2016-03-30
JP2016-069807 2016-03-30

Publications (1)

Publication Number Publication Date
WO2017170781A1 true WO2017170781A1 (ja) 2017-10-05

Family

ID=59965767

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/013086 WO2017170781A1 (ja) 2016-03-30 2017-03-29 セルロース微細繊維層を含む樹脂複合フィルム

Country Status (7)

Country Link
US (1) US10703070B2 (ja)
EP (1) EP3438166B1 (ja)
JP (2) JP6626190B2 (ja)
KR (1) KR102245529B1 (ja)
CN (1) CN108884251B (ja)
TW (1) TWI643731B (ja)
WO (1) WO2017170781A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190142023A (ko) * 2018-06-15 2019-12-26 (주)동성화인텍 친환경 복합재 파이프의 제조방법 및 그 파이프
WO2020145354A1 (ja) * 2019-01-09 2020-07-16 旭化成株式会社 多孔質微細セルロース繊維複合化シート
TWI700552B (zh) * 2018-06-01 2020-08-01 日商互應化學工業股份有限公司 感光性樹脂組成物、乾膜及印刷線路板
JP2020143405A (ja) * 2019-03-07 2020-09-10 旭化成株式会社 微細セルロース繊維を含む、分散体、構造体及び架橋構造体の製造方法
JP2020183085A (ja) * 2019-05-09 2020-11-12 ナミックス株式会社 積層体
JP2020196834A (ja) * 2019-06-04 2020-12-10 太陽ホールディングス株式会社 有機無機複合粒子を含む樹脂組成物、ドライフィルム、硬化物、電子部品
TWI715282B (zh) * 2019-11-07 2021-01-01 國立宜蘭大學 以電紡技術固定化酵素製備時間溫度感應器的製作方法
WO2021166847A1 (ja) * 2020-02-18 2021-08-26 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、樹脂シート、樹脂付き金属箔、金属張積層板及びプリント配線板

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106658307B (zh) * 2016-12-26 2020-01-07 歌尔股份有限公司 一种振膜、其制作方法及包含该振膜的扬声器
JP6933188B2 (ja) * 2018-05-14 2021-09-08 味の素株式会社 封止用樹脂組成物層、支持体付き樹脂シート、封止用樹脂硬化層、半導体パッケージ及び半導体装置
WO2019236866A1 (en) * 2018-06-07 2019-12-12 Powdermet, Inc. Non-linear surfactant
CN108877517B (zh) * 2018-06-26 2020-11-06 深圳市华星光电技术有限公司 一种柔性可拉伸基板及其制备方法
US11467182B1 (en) * 2018-08-06 2022-10-11 Vladimir Zhizhimontov Scanning probe microscope with use of composite materials
KR102302203B1 (ko) * 2018-11-29 2021-09-15 도레이첨단소재 주식회사 점착제 조성물, 점착필름 및 디스플레이 디바이스
CN110012394B (zh) * 2019-03-26 2021-04-27 瑞声科技(新加坡)有限公司 振膜基材及其制备方法、振膜及扬声器
CN110012655A (zh) * 2019-04-28 2019-07-12 昆山雅森电子材料科技有限公司 具有emi功能的薄型化覆盖膜
CN110106534B (zh) * 2019-05-15 2021-03-26 南京理工大学 一种制备具有木材镜面结构超疏水镍表面的方法
CN110446143B (zh) * 2019-07-05 2021-03-09 歌尔股份有限公司 发声装置的振膜以及发声装置
CN110423369A (zh) * 2019-09-12 2019-11-08 中国热带农业科学院农产品加工研究所 薄膜及其制备方法以及可降解地膜
CN110669343A (zh) * 2019-10-24 2020-01-10 广州赫尔普化工有限公司 一种耐磨导热硅橡胶复合材料及其制备方法
CN112717731B (zh) * 2019-10-29 2023-01-06 海南椰国食品有限公司 一种离子导电膜及其制备方法
CN111479209B (zh) * 2020-03-16 2021-06-25 东莞市古川胶带有限公司 一种扬声器振膜复合材料
JP7283639B2 (ja) * 2020-08-12 2023-05-30 住友ベークライト株式会社 離型フィルムおよび成型品の製造方法
CN112497374A (zh) * 2020-11-28 2021-03-16 无锡市森泰木制品有限公司 一种环保抗菌实木地板的制备方法
CN112563518B (zh) * 2020-12-11 2021-08-31 鸿基创能科技(广州)有限公司 制备高稳定性燃料电池催化剂涂布浆料的方法
CA3145718A1 (en) * 2021-01-15 2022-07-15 Innotech Alberta Inc. Cellulose particle mold release layer
CN113005634B (zh) * 2021-02-24 2022-07-19 苏州鱼得水电气科技有限公司 一种吸湿抑菌的水刺无纺布及其制备方法
CN113265123A (zh) * 2021-04-26 2021-08-17 苏州赛荣建筑装饰工程有限公司 一种可降解的保温塑料地膜及其制备方法
CN113308005A (zh) * 2021-05-28 2021-08-27 惠州市纵胜电子材料有限公司 一种高强度抗静电3d片材及其制备方法
US11596066B1 (en) 2022-03-22 2023-02-28 Thintronics. Inc. Materials for printed circuit boards

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127593A (ja) * 1988-11-07 1990-05-16 Sanyo Kokusaku Pulp Co Ltd 積層板原紙の製造方法
JPH02276624A (ja) * 1989-04-19 1990-11-13 Sumitomo Bakelite Co Ltd 熱硬化性樹脂積層板
WO2006082803A1 (ja) * 2005-02-01 2006-08-10 Kyoto University 繊維強化複合材料及びその製造方法
JP2006316253A (ja) * 2005-03-31 2006-11-24 Asahi Kasei Chemicals Corp セルロース含有樹脂複合体
JP2012025833A (ja) * 2010-07-22 2012-02-09 Daicel Corp 繊維強化透明樹脂組成物及びその製造方法並びに透明シート
WO2016047764A1 (ja) * 2014-09-26 2016-03-31 旭化成せんい株式会社 セルロース微細繊維層を含む薄膜シート

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6083826A (ja) 1983-10-14 1985-05-13 Mitsubishi Electric Corp Frpレド−ムの製造方法
WO2008044552A1 (fr) * 2006-10-06 2008-04-17 Sumitomo Bakelite Company, Ltd. composition de résine, feuille isolante avec base, préimprégné, plaque de circuit imprimé à couches multiples et dispositif semi-conducteur
JP5712422B2 (ja) * 2010-04-01 2015-05-07 三菱化学株式会社 微細セルロース繊維分散液の製造方法
JP2012119470A (ja) 2010-11-30 2012-06-21 Mitsubishi Chemicals Corp 配線基板
JP6488537B2 (ja) * 2013-07-11 2019-03-27 王子ホールディングス株式会社 微細繊維含有複合シート及びその製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02127593A (ja) * 1988-11-07 1990-05-16 Sanyo Kokusaku Pulp Co Ltd 積層板原紙の製造方法
JPH02276624A (ja) * 1989-04-19 1990-11-13 Sumitomo Bakelite Co Ltd 熱硬化性樹脂積層板
WO2006082803A1 (ja) * 2005-02-01 2006-08-10 Kyoto University 繊維強化複合材料及びその製造方法
JP2006316253A (ja) * 2005-03-31 2006-11-24 Asahi Kasei Chemicals Corp セルロース含有樹脂複合体
JP2012025833A (ja) * 2010-07-22 2012-02-09 Daicel Corp 繊維強化透明樹脂組成物及びその製造方法並びに透明シート
WO2016047764A1 (ja) * 2014-09-26 2016-03-31 旭化成せんい株式会社 セルロース微細繊維層を含む薄膜シート

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3438166A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI700552B (zh) * 2018-06-01 2020-08-01 日商互應化學工業股份有限公司 感光性樹脂組成物、乾膜及印刷線路板
KR102123098B1 (ko) 2018-06-15 2020-06-15 (주)동성화인텍 친환경 복합재 파이프의 제조방법 및 그 파이프
KR20190142023A (ko) * 2018-06-15 2019-12-26 (주)동성화인텍 친환경 복합재 파이프의 제조방법 및 그 파이프
JPWO2020145354A1 (ja) * 2019-01-09 2021-09-27 旭化成株式会社 多孔質微細セルロース繊維複合化シート
WO2020145354A1 (ja) * 2019-01-09 2020-07-16 旭化成株式会社 多孔質微細セルロース繊維複合化シート
JP2020143405A (ja) * 2019-03-07 2020-09-10 旭化成株式会社 微細セルロース繊維を含む、分散体、構造体及び架橋構造体の製造方法
JP7327952B2 (ja) 2019-03-07 2023-08-16 旭化成株式会社 微細セルロース繊維を含む、分散体、構造体及び架橋構造体の製造方法
WO2020226162A1 (ja) * 2019-05-09 2020-11-12 ナミックス株式会社 積層体
JP2020183085A (ja) * 2019-05-09 2020-11-12 ナミックス株式会社 積層体
JP7328671B2 (ja) 2019-05-09 2023-08-17 ナミックス株式会社 積層体
JP2020196834A (ja) * 2019-06-04 2020-12-10 太陽ホールディングス株式会社 有機無機複合粒子を含む樹脂組成物、ドライフィルム、硬化物、電子部品
JP7321781B2 (ja) 2019-06-04 2023-08-07 太陽ホールディングス株式会社 有機無機複合粒子を含む樹脂組成物、ドライフィルム、硬化物、電子部品
TWI715282B (zh) * 2019-11-07 2021-01-01 國立宜蘭大學 以電紡技術固定化酵素製備時間溫度感應器的製作方法
WO2021166847A1 (ja) * 2020-02-18 2021-08-26 パナソニックIpマネジメント株式会社 熱硬化性樹脂組成物、樹脂シート、樹脂付き金属箔、金属張積層板及びプリント配線板

Also Published As

Publication number Publication date
US20190118508A1 (en) 2019-04-25
KR20180121935A (ko) 2018-11-09
CN108884251B (zh) 2021-04-27
TWI643731B (zh) 2018-12-11
KR102245529B1 (ko) 2021-04-30
EP3438166A4 (en) 2019-05-01
TW201739601A (zh) 2017-11-16
CN108884251A (zh) 2018-11-23
JPWO2017170781A1 (ja) 2018-11-29
EP3438166A1 (en) 2019-02-06
JP6626190B2 (ja) 2019-12-25
JP2020045496A (ja) 2020-03-26
EP3438166B1 (en) 2021-12-15
US10703070B2 (en) 2020-07-07

Similar Documents

Publication Publication Date Title
JP6626190B2 (ja) セルロース微細繊維層を含む樹脂複合フィルム
JP6359676B2 (ja) セルロース微細繊維層を含む薄膜シート
JP6639203B2 (ja) セルロース繊維層を含むシート
CN104736588B (zh) 树脂组合物、预浸料、层压板、以及印刷电路板
JP2022009445A (ja) 樹脂組成物、プリプレグ、金属箔張積層板、及びプリント配線板
JPWO2017191771A1 (ja) 樹脂組成物、プリプレグ、樹脂シート、積層樹脂シート、積層板、金属箔張積層板、及びプリント配線板
CN107709456B (zh) 树脂组合物、预浸料、树脂片、覆金属箔层叠板及印刷电路板
JP6452083B2 (ja) 樹脂組成物、プリプレグ、積層板、金属箔張積層板、プリント配線板、及び多層プリント配線板
JP6910590B2 (ja) プリント配線板用樹脂組成物、プリプレグ、金属箔張積層板、積層樹脂シート、樹脂シート、及びプリント配線板
JP2018132655A (ja) 感光性複合材シート、樹脂繊維複合フィルム及び放熱・伝熱回路基板
CN107849361B (zh) 树脂组合物、预浸料、树脂片、覆金属箔层叠板和印刷电路板
KR20180027422A (ko) 수지 조성물, 그 수지 조성물을 사용한 프리프레그 또는 레진 시트 그리고 그것들을 사용한 적층판 및 프린트 배선판
TWI698483B (zh) 樹脂組成物、預浸體、樹脂片、覆金屬箔疊層板及印刷電路板
JP2020069764A (ja) 樹脂を含む多層構造体
TW202104330A (zh) 樹脂組成物、預浸體、附設支持體之樹脂片、覆金屬箔疊層板、及印刷配線板
JP2019206153A (ja) 樹脂を含む多層構造体
JP6823807B2 (ja) 樹脂組成物、プリプレグ、金属箔張積層板、樹脂シート、及びプリント配線板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018509388

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187028033

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017775315

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017775315

Country of ref document: EP

Effective date: 20181030

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17775315

Country of ref document: EP

Kind code of ref document: A1