WO2017169176A1 - 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法 - Google Patents

窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法 Download PDF

Info

Publication number
WO2017169176A1
WO2017169176A1 PCT/JP2017/004983 JP2017004983W WO2017169176A1 WO 2017169176 A1 WO2017169176 A1 WO 2017169176A1 JP 2017004983 W JP2017004983 W JP 2017004983W WO 2017169176 A1 WO2017169176 A1 WO 2017169176A1
Authority
WO
WIPO (PCT)
Prior art keywords
drift layer
concentration
substrate
carbon
donor
Prior art date
Application number
PCT/JP2017/004983
Other languages
English (en)
French (fr)
Inventor
好伸 成田
Original Assignee
株式会社サイオクス
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社サイオクス, 住友化学株式会社 filed Critical 株式会社サイオクス
Priority to US16/088,221 priority Critical patent/US10818757B2/en
Priority to CN201780020285.7A priority patent/CN109075212B/zh
Publication of WO2017169176A1 publication Critical patent/WO2017169176A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • H01L29/365Planar doping, e.g. atomic-plane doping, delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/8613Mesa PN junction diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/0237Materials
    • H01L21/02387Group 13/15 materials
    • H01L21/02389Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02367Substrates
    • H01L21/02433Crystal orientation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02436Intermediate layers between substrates and deposited layers
    • H01L21/02439Materials
    • H01L21/02455Group 13/15 materials
    • H01L21/02458Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02576N-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02573Conductivity type
    • H01L21/02579P-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • H01L21/02584Delta-doping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/2003Nitride compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/36Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the concentration or distribution of impurities in the bulk material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/20Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L29/207Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds further characterised by the doping material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/86Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
    • H01L29/861Diodes
    • H01L29/872Schottky diodes

Definitions

  • the present invention relates to a nitride semiconductor substrate, a semiconductor device, and a method for manufacturing a nitride semiconductor substrate.
  • Group III nitride semiconductors such as gallium nitride have a higher saturation free electron velocity and higher breakdown voltage than silicon. For this reason, nitride semiconductors are expected to be applied to power devices that control power and the like, and high-frequency devices such as mobile phone base stations.
  • Specific examples of the device include semiconductor devices such as a Schottky barrier diode (SBD) and a pn junction diode. In these semiconductor devices, a thick drift layer with a low donor concentration is provided in order to improve the breakdown voltage when reverse bias is applied (see, for example, Patent Document 1).
  • carbon can be incorporated due to the Group III organometallic raw material during crystal growth. At least a part of the carbon taken into the nitride semiconductor functions as an acceptor. For this reason, in an n-type nitride semiconductor to which a donor is added, at least a part of carbon captures electrons from the donor and compensates the donor.
  • the donor concentration in the drift layer is set low in order to improve the breakdown voltage. For this reason, for example, in a low concentration region such as 5 ⁇ 10 16 pieces / cm 3 or less, even if the donor concentration in the drift layer is set to a predetermined value, the influence of a part of carbon to compensate a small amount of donor is large. In some cases, a desired free electron concentration cannot be obtained in the drift layer. As a result, the performance of the semiconductor device may be degraded.
  • An object of the present invention is to provide a technique capable of improving the performance of a semiconductor device.
  • a substrate made of an n-type semiconductor A drift layer provided on the substrate and made of gallium nitride containing donor and carbon; Have The concentration of the donor in the drift layer is 5.0 ⁇ 10 16 atoms / cm 3 or less, and the concentration of the carbon that functions as an acceptor in the drift layer is greater than or equal to the entire area of the drift layer. Yes, The difference obtained by subtracting the concentration of the carbon functioning as the acceptor in the drift layer from the concentration of the donor in the drift layer is gradually decreased from the substrate side toward the surface side of the drift layer.
  • a physical semiconductor substrate is provided.
  • a substrate made of an n-type semiconductor A drift layer provided on the substrate and made of gallium nitride containing donor and carbon; Have The concentration of the donor in the drift layer is 5.0 ⁇ 10 16 atoms / cm 3 or less, and the concentration of the carbon that functions as an acceptor in the drift layer is greater than or equal to the entire area of the drift layer. Yes, The difference obtained by subtracting the concentration of the carbon functioning as the acceptor in the drift layer from the concentration of the donor in the drift layer is gradually decreased from the substrate side toward the surface side of the drift layer.
  • An apparatus is provided.
  • a drift layer made of gallium nitride containing a donor and carbon on a substrate made of an n-type semiconductor In the step of forming the drift layer, The concentration of the donor in the drift layer is 5.0 ⁇ 10 16 pieces / cm 3 or less, and the concentration of the carbon that functions as an acceptor in the drift layer over the entire drift layer
  • a nitride semiconductor that gradually reduces a difference obtained by subtracting the concentration of the carbon functioning as the acceptor in the drift layer from the concentration of the donor in the drift layer from the substrate side toward the surface side of the drift layer.
  • the performance of the semiconductor device can be improved.
  • FIG. 1 It is a schematic band diagram near the drift layer. It is sectional drawing which shows the semiconductor device which concerns on one Embodiment of this invention.
  • (A) is a diagram showing a difference obtained by subtracting the concentration N A of the carbon that acts as an acceptor in the drift layer from the donor concentration N D in the drift layer of the modified example 1
  • (b) the drift layer of the second modification it is a diagram illustrating a difference obtained by subtracting the concentration N a of the carbon that acts as an acceptor from the donor concentration N D in the drift layer in the.
  • 11 is a cross-sectional view showing a nitride semiconductor substrate according to Modification 3.
  • FIG. 10 is a cross-sectional view showing a semiconductor device according to Modification 3.
  • FIG. 1 is a cross-sectional view showing a nitride semiconductor substrate according to this embodiment.
  • a nitride semiconductor substrate (nitride semiconductor laminate, nitride semiconductor epitaxial substrate) 10 of this embodiment is a nitride semiconductor layer for manufacturing a semiconductor device 20 as a pn junction diode described later.
  • Is formed as an epitaxially grown wafer and includes, for example, a substrate 100, a base n-type semiconductor layer 120, a drift layer 140, a first p-type semiconductor layer 220, and a second p-type semiconductor layer 240.
  • the “stacking direction” refers to stacking a nitride semiconductor layer such as the base n-type semiconductor layer 120 from the substrate 100 side upward in the figure (a direction away from the main surface of the substrate 100). It refers to the direction.
  • the “stacking direction” can be rephrased as “the direction from the substrate 100 side toward the surface side of the drift layer 140”.
  • the surface (second main surface) of drift layer 140 is the surface of drift layer 140 opposite to the surface (first main surface) on the substrate 100 side.
  • the substrate 100 is configured as, for example, an n-type single crystal gallium nitride (GaN) substrate (a self-standing GaN substrate) including a predetermined donor.
  • the donor in the substrate 100 include silicon (Si) or germanium (Ge).
  • the donor concentration in the substrate 100 is, for example, 5.0 ⁇ 10 17 pieces / cm 3 or more and 5.0 ⁇ 10 18 pieces / cm 3 or less.
  • a donor concentration, the carbon concentration mentioned later, etc. can be measured by secondary ion mass spectrometry (SIMS: Secondary Ion Mass Spectrometry), for example.
  • SIMS Secondary Ion Mass Spectrometry
  • the plane orientation of the main surface of the substrate 100 is, for example, the c plane ((0001) plane).
  • the GaN crystal constituting the substrate 100 may have a predetermined off angle with respect to the main surface of the substrate 100.
  • the off-angle is an angle formed between the normal direction of the main surface of the substrate 100 and the c-axis of the GaN crystal constituting the substrate 100.
  • the off angle of the substrate 100 is, for example, not less than 0.15 ° and not more than 0.8 °. If the off angle of the substrate 100 is less than 0.15 °, the concentration of carbon (C) added when a nitride semiconductor layer such as the drift layer 140 is grown on the substrate 100 may increase.
  • the concentration of carbon added when growing a nitride semiconductor layer such as the drift layer 140 on the substrate 100 is set to a predetermined amount or less. can do.
  • the off angle of the substrate 100 is more than 0.8 °, the morphology of the main surface of the substrate 100 may be deteriorated.
  • the morphology of the main surface of the substrate 100 can be flattened by setting the off angle of the substrate 100 to 0.8 ° or less.
  • the dislocation density in the main surface of the substrate 100 is set to 1 ⁇ 10 7 pieces / cm 2 or less, for example.
  • the dislocation density in the main surface of the substrate 100 is more than 1 ⁇ 10 7 / cm 2 , dislocations that reduce local breakdown voltage increase in a nitride semiconductor layer such as the drift layer 140 formed on the substrate 100.
  • the concentration of impurities added unintentionally when growing a nitride semiconductor layer on the substrate 100 for example, carbon The concentration tends to be high.
  • the dislocation density on the main surface of the substrate 100 is set to 1 ⁇ 10 7 pieces / cm 2 or less, so that the nitride semiconductor such as the drift layer 140 formed on the substrate 100 is formed. An increase in dislocation that lowers the local breakdown voltage in the layer can be suppressed. Further, by setting the threading dislocation density on the main surface of the substrate 100 to 1 ⁇ 10 7 pieces / cm 2 or less, the concentration of impurities added unintentionally during the growth of the nitride semiconductor layer can be reduced. it can.
  • the base n-type semiconductor layer 120 is provided between the substrate 100 and the drift layer 140 as a buffer layer that inherits the crystallinity of the substrate 100 and stably epitaxially grows the drift layer 140.
  • the base n-type semiconductor layer 120 is configured as an n + -type GaN layer containing a donor having a concentration similar to that of the substrate 100.
  • the donor in the base n-type semiconductor layer 120 for example, Si or Ge can be used as in the donor in the substrate 100.
  • the donor concentration in the base n-type semiconductor layer 120 is, for example, 5.0 ⁇ 10 17 pieces / cm 3 or more and 5.0 ⁇ 10 18 pieces / cm 3 or less, similarly to the donor concentration in the substrate 100. .
  • the underlying n-type semiconductor layer 120 contains carbon added (auto-doped) due to the group III organometallic raw material used during the crystal growth.
  • the total concentration of carbon in the base n-type semiconductor layer 120 is, for example, 1.0 ⁇ 10 15 pieces / cm 3 or more and 5.0 ⁇ 10 16 pieces / cm 3 or less.
  • the “total concentration of carbon” means the concentration of all carbons including carbon that does not function as an acceptor as well as carbon that functions as an acceptor, as will be described later.
  • the n-type nitride semiconductor layer such as the base n-type semiconductor layer 120
  • at least a part of carbon functions as an acceptor (compensation dopant) to compensate the donor.
  • the effective free electron concentration in the base n-type semiconductor layer 120 is obtained as a difference obtained by subtracting the carbon concentration that functions as an acceptor from the donor concentration.
  • the donor concentration is high and the carbon concentration functioning as an acceptor is relatively low so as to be negligible.
  • the free electron concentration in the base n-type semiconductor layer 120 can be regarded as substantially equal to the donor concentration. For example, 5.0 ⁇ 10 17 atoms / cm 3 or more and 5.0 ⁇ 10 18 atoms / cm 3. It is as follows.
  • the donor concentration and the total carbon concentration in the base n-type semiconductor layer 120 are substantially constant in the stacking direction.
  • the base n-type semiconductor layer 120 only needs to include a region in which each additive concentration is constant in the stacking direction, and the base n-type semiconductor layer 120 is near each of the substrate 100 side and the drift layer 140 side. A region where the additive concentration is inclined may be included.
  • the thickness of the base n-type semiconductor layer 120 is thinner than the thickness of the drift layer 140 described later, for example, 0.1 ⁇ m or more and 3 ⁇ m or less.
  • the drift layer 140 is provided on the base n-type semiconductor layer 120 and is configured as an n-type GaN layer containing a low concentration donor.
  • Examples of the donor in the drift layer 140 include Si or Ge, similarly to the donor in the base n-type semiconductor layer 120.
  • the donor concentration in the drift layer 140 is lower than the donor concentration of the substrate 100 and the donor concentration of the underlying n-type semiconductor layer 120, for example, 1.0 ⁇ 10 15 pieces / cm 3 or more and 5.0 ⁇ 10 16 pieces / cm. 3 or less. If the donor concentration is less than 1.0 ⁇ 10 15 / cm 3 , the drift layer 140 may have a high resistance. On the other hand, when the donor concentration is 1.0 ⁇ 10 15 atoms / cm 3 or more, it is possible to suppress an excessive increase in the resistance of the drift layer 140. On the other hand, if the donor concentration is more than 5.0 ⁇ 10 16 / cm 3 , the withstand voltage when a reverse bias is applied may be reduced. On the other hand, when the donor concentration is 5.0 ⁇ 10 16 pieces / cm 3 or less, a predetermined breakdown voltage can be secured.
  • the drift layer 140 also contains carbon added due to the group III organometallic raw material used at the time of crystal growth, and at least a part of the carbon in the drift layer 140 functions as an acceptor to compensate the donor. Yes.
  • the donor concentration is high on the order of 10 18 .
  • the carbon concentration relative to the donor concentration is so low that it can be ignored.
  • the donor concentration is as low as 5.0 ⁇ 10 16 ions / cm 3 or less.
  • the carbon concentration with respect to the donor concentration cannot be ignored, and the free electron concentration in the drift layer 140 is easily affected by compensation of a small amount of donor by using a part of carbon as an acceptor. Therefore, in the drift layer 140, a desired free electron concentration distribution cannot be obtained unless the relative relationship between the donor concentration and the concentration of carbon functioning as an acceptor is controlled.
  • the donor concentration in the drift layer 140 is adjusted to be equal to or higher than the concentration of carbon that functions as an acceptor in the drift layer 140 over the entire drift layer 140.
  • the difference obtained by subtracting the concentration of carbon that functions as an acceptor in the drift layer 140 from the concentration of the donor in the drift layer 140 gradually decreases from the substrate 100 side toward the surface side of the drift layer 140 (that is, toward the stacking direction). It has been adjusted. Thereby, a desired free electron concentration distribution can be obtained in the drift layer 140. Details of the relative relationship between the donor concentration and the carbon concentration in the drift layer 140 will be described later.
  • the drift layer 140 is provided thicker than the base n-type semiconductor layer 120 in order to improve the breakdown voltage when a reverse bias is applied.
  • the thickness of the drift layer 140 is, for example, 3 ⁇ m or more and 40 ⁇ m or less. If the thickness of the drift layer 140 is less than 3 ⁇ m, the breakdown voltage when a reverse bias is applied may be reduced. In contrast, by setting the thickness of the drift layer 140 to 3 ⁇ m or more, a predetermined breakdown voltage can be ensured. On the other hand, if the thickness of the drift layer 140 is more than 40 ⁇ m, the on-resistance when a forward bias is applied may increase. On the other hand, by setting the thickness of the drift layer 140 to 40 ⁇ m or less, it is possible to suppress an excessive increase in on-resistance when a forward bias is applied.
  • the first p-type semiconductor layer 220 is provided on the drift layer 140 and configured as a p-type GaN layer including an acceptor.
  • An example of the acceptor in the first p-type semiconductor layer 220 is magnesium (Mg).
  • the acceptor concentration in the first p-type semiconductor layer 220 is, for example, 1.0 ⁇ 10 17 pieces / cm 3 or more and 2.0 ⁇ 10 19 pieces / cm 3 or less.
  • the second p-type semiconductor layer 240 is provided on the first p-type semiconductor layer 220 and is configured as a p + -type GaN layer containing a high concentration of acceptor.
  • the acceptor in the second p-type semiconductor layer 240 for example, Mg may be used as in the first p-type semiconductor layer 220.
  • the acceptor concentration in the second p-type semiconductor layer 240 is higher than the acceptor concentration in the first p-type semiconductor layer 220, for example, 5.0 ⁇ 10 19 pieces / cm 3 or more and 2.0 ⁇ 10 20 pieces / cm. 3 or less.
  • FIG. 2 (a) is a diagram showing a difference obtained by subtracting the concentration N A of the carbon that acts as an acceptor in the drift layer from the donor concentration N D of the drift layer.
  • the horizontal axis indicates the position (depth) from the surface side of the drift layer 140.
  • the donor concentration in the drift layer 140 and N D the total concentration of carbon in the drift layer 140 (the concentration of all carbon in the drift layer 140) and N C, in the drift layer 140 carbon the concentration of carbon which serves as an internal acceptor to N a.
  • the vertical axis the donor concentration in the drift layer 140 N difference by subtracting the concentration N A of the carbon that acts as an acceptor in the drift layer 140 from the D N D -N A (hereinafter, in the drift layer 140 Density difference N D -N A ).
  • the concentration difference N D -N A in the drift layer 140 can be considered as a difference obtained by subtracting the amount of free electrons captured from the donor by carbon as an acceptor from the total amount of free electrons obtained from the donor. Accordingly, the concentration difference N D -N A of the drift layer 140 corresponds to the effective free electron concentration in the drift layer 140.
  • the donor concentration N D in the drift layer 140, over the entire region of the drift layer 140, and the carbon concentration N A or functioning as an acceptor in the drift layer 140 (N D ⁇ N A ). If the donor concentration N D in the drift layer 140 at least a portion of the drift layer 140 is less than the concentration N A of the carbon that acts as an acceptor in the drift layer 140, a region where free electrons is not generated in a portion of the drift layer 140 May occur. In contrast, the donor concentration N D in the drift layer 140, over the entire region of the drift layer 140, by a higher concentration N A of the carbon that acts as an acceptor in the drift layer 140, a donor concentration of 5.
  • the drift layer 140 can function as an n-type layer.
  • density difference N D -N A of the drift layer 140 toward the substrate 100 side to the surface side of the drift layer 140 (i.e. toward the stacking direction ) It is gradually decreasing.
  • the concentration difference N D -N A of the drift layer 140 has decreased monotonically toward the stacking direction.
  • the concentration N A of the carbon that acts as an acceptor is made at least 1/3 or more of the total concentration N C carbon (N C / 3 ⁇ N A ⁇ N C ).
  • the donor concentration N D in the drift layer 140 in consideration of the proportion of carbon which acts as an acceptor as described above, the donor concentration N D in the drift layer 140, over the entire region of the drift layer 140, in at least the drift layer 140 carbon
  • the total concentration N C is 1/3 times or more (N D ⁇ N C / 3). Since the donor concentration N D in the drift layer 140 is less than 1/3 of the total concentration N C carbon, many donors in the drift layer 140 is compensated by the carbon that acts as an acceptor, the drift layer 140 There is a possibility that a predetermined amount of free electrons will not be generated. For this reason, the drift layer 140 is not n-type, and the drift layer 140 may have a high resistance.
  • the donor concentration N D in the drift layer 140 by the above 1/3 of the total concentration N C carbon, the donor amount in the drift layer 140, the amount to be compensated by the carbon as acceptor And a predetermined amount of free electrons can be generated in the drift layer 140.
  • the drift layer 140 can function as an n-type layer, and the resistance of the drift layer 140 can be suppressed from becoming excessively high.
  • the donor concentration N D in the drift layer 140 if a 1/3 or more of the total concentration N C of carbon in the drift layer 140, a donor concentration N D in the drift layer 140 in the drift layer 140 It may be lower than the total carbon concentration N C.
  • the donor concentration N D in the drift layer 140 over the entire region of the drift layer 140, and more preferably in a total concentration N C or more carbons in the drift layer 140.
  • the donor amount in the drift layer 140 can be surely made larger than the amount compensated by carbon as an acceptor.
  • the drift layer 140 can be made to function stably as an n-type.
  • FIG. 3 is a schematic band diagram in the vicinity of the drift layer.
  • the conduction band of the drift layer 140 A predetermined amount of free electrons is generated. Also, by gradually decreasing the density difference N D -N A of the drift layer 140 toward the substrate 100 side to the surface side of the drift layer 140, the drift layer 140 is free electron concentration in the drift layer 140 from the substrate 100 side It gradually increases toward the surface side of. For this reason, the substrate 100 side of the drift layer 140 is a high free electron concentration region in the drift layer 140 having a low free electron concentration, while the surface side of the drift layer 140 is the drift layer 140 having a low free electron concentration. Among them, it is a low free electron concentration region.
  • the conduction band of the drift layer 140 is inclined so as to gradually rise in the stacking direction.
  • the free electron concentration of the drift layer 140 gradually increases as it approaches the base n-type semiconductor layer 120, and the free electron concentration of the base n-type semiconductor layer 120. It is close to. As a result, the conduction band of drift layer 140 and the conduction band of underlying n-type semiconductor layer 120 are gently joined, and the energy barrier between the conduction band of drift layer 140 and underlying n-type semiconductor layer 120 is reduced. . As a result, when a forward bias is applied, electrons can be smoothly moved from the base n-type semiconductor layer 120 toward the drift layer 140, and the on-resistance can be reduced.
  • the free electron concentration of the drift layer 140 gradually decreases as it approaches the first p-type semiconductor layer 220. It is lower than the pore concentration.
  • the depletion layer in the vicinity of the junction interface does not spread so much from the junction interface toward the first p-type semiconductor layer 220 side, but extends from the junction interface toward the drift layer 140 side. Thereby, the inclination (electric field strength) of the conduction band in the vicinity of the junction interface is gentle.
  • the depletion layer expands further from the state of the depletion layer before the reverse bias is applied toward the base n-type semiconductor layer 120 side.
  • the gradient of the conduction band in the vicinity of the junction interface between the drift layer 140 and the first p-type semiconductor layer 220 is the largest.
  • the free electron concentration on the surface side of the drift layer 140 becomes low, and the depletion layer spreads in the drift layer 140. Therefore, even when a reverse bias is applied, conduction near the junction interface is performed.
  • the band inclination is suppressed from becoming excessively steep. As a result, the occurrence of avalanche breakdown in the vicinity of the junction interface between the drift layer 140 and the first p-type semiconductor layer 220 can be suppressed, and the breakdown voltage can be improved.
  • density difference N D -N A of the drift layer 140, (linearly) in a straight line toward the stacking direction has decreased.
  • the inclination of the conduction band can be made smooth and gentle over the entire drift layer 140.
  • the on-resistance when a forward bias is applied can be stably reduced, and the breakdown voltage when a reverse bias is applied can be stably improved.
  • the absolute value of the slope of the D -N a is, for example, 5.0 ⁇ 10 14 atoms / cm 3 ⁇ ⁇ m -1 or more 3.0 ⁇ 10 16 atoms / cm 3 ⁇ ⁇ m -1 or less.
  • the absolute value of the slope of the N D -N A is less than 5.0 ⁇ 10 14 atoms / cm 3 ⁇ ⁇ m -1, when a low N D -N A includes a drift layer 140 and the underlying n-type semiconductor layer 120 There is a possibility that the energy barrier of the conduction band becomes large at the junction interface, and the on-resistance becomes higher when a forward bias is applied.
  • N D -N A is high, the slope of the conduction band in the vicinity of the junction interface between the drift layer 140 first 1p-type semiconductor layer 220 is increased, the possibility that the withstand voltage at the time of applying a reverse bias decreases is there.
  • the absolute value of the slope of N D -N A is less than 5.0 ⁇ 10 14 pieces / cm 3 ⁇ ⁇ m ⁇ 1 , the on-resistance is reduced when the forward bias is applied, and the reverse bias is applied. It is difficult to achieve both improvement in breakdown voltage.
  • the absolute value of the slope of the N D -N A 5.0 ⁇ 10 14 atoms / cm 3 ⁇ ⁇ m -1 or more, the bonding interface between the drift layer 140 and the underlying n-type semiconductor layer 120
  • the inclination of the conduction band in the vicinity of the junction interface between the drift layer 140 and the first p-type semiconductor layer 220 can be reduced while reducing the energy barrier of the conduction band.
  • FIG. 2B is a diagram showing donor and carbon concentrations in the drift layer.
  • the horizontal axis indicates the position (depth) from the surface side of the drift layer 140, as in FIG. 2A.
  • the vertical axis represents the donor and carbon concentrations in the drift layer 140. Note that, as described above, such as the donor concentration N D and total concentration N C of carbon in the drift layer 140, for example, it can be measured by SIMS.
  • the donor concentration N D in the drift layer 140 As shown in FIG. 2 (b), the donor concentration N D in the drift layer 140, for example, have decreased linearly toward the stacking direction. As described above, the maximum and minimum values of the donor concentration N D in the drift layer 140, the 1.0 ⁇ 10 15 atoms / cm 3 or more 5.0 ⁇ 10 16 atoms / cm 3 within the following ranges has entered, donor concentration N D in the drift layer 140, over the entire region of the drift layer 140, has a 1/3 or more concentration N C of carbon in the least drift layer 140.
  • donor concentration N D in the drift layer 140 is at 5.0 ⁇ 10 16 atoms / cm 3 or less, the acceptor in the drift layer 140 donor concentration N D in the drift layer 140 over the entire area of the drift layer 140 If the three conditions that the concentration difference N D -N A in the drift layer 140 is not less than the concentration N A and the concentration difference N D -N A gradually decreases in the stacking direction are satisfied, The total concentration N C of carbon can be arbitrarily distributed with respect to the stacking direction.
  • total concentration N C of carbon in the drift layer 140 may be gradually increased toward the stacking direction. That is, the total concentration N C of carbon in the drift layer 140 may be changed in the opposite direction with respect to the donor concentration N D in the drift layer 140.
  • the number of free electrons in the vicinity of the junction interface increases, and the energy barrier of the conduction band can be reduced at the junction interface between the drift layer 140 and the base n-type semiconductor layer 120.
  • the on-resistance when a forward bias is applied can be reduced.
  • the vicinity of the junction interface between the drift layer 140 and the first p-type semiconductor layer 220 there are few donors and carbon as an acceptor increases. Thereby, free electrons in the vicinity of the junction interface (on the surface side of the drift layer 140) are reduced, and the inclination of the conduction band in the vicinity of the junction interface between the drift layer 140 and the first p-type semiconductor layer 220 can be reduced. As a result, the breakdown voltage when a reverse bias is applied can be improved.
  • the total concentration N C of carbon in the drift layer 140 may be constant toward the stacking direction.
  • the total concentration N C of carbon in the drift layer 140 may be constant toward the stacking direction.
  • by way of growth condition only by changing the flow rate of the donor material can be a density difference N D -N A of the drift layer 140 and a predetermined distribution. That is, it is not necessary to adjust growth conditions other than the flow rate of the donor raw material (for example, a growth rate described later) in order to control the carbon concentration, and control during growth can be simplified.
  • the carbon concentration N C in the drift layer 140 may be gradually decreased in the stacking direction.
  • the amount of donors compensated by carbon as an acceptor decreases.
  • a predetermined amount of free electrons can be ensured on the surface side of the drift layer 140 although it is small.
  • the crystallinity on the surface side of the drift layer 140 is improved by reducing the carbon concentration N C on the junction interface side (the surface side of the drift layer 140) between the drift layer 140 and the first p-type semiconductor layer 220. The loss on the surface side of the drift layer 140 in the semiconductor device 20 to be described later can be reduced.
  • the total concentration N C of carbon in the drift layer 140 is, for example, 5.0 ⁇ 10 16 atoms / cm 3 or less. If the carbon concentration N C in the drift layer 140 is more than 5.0 ⁇ 10 16 atoms / cm 3 , the crystallinity of the drift layer 140 may decrease, and the loss of the semiconductor device 20 described later may increase. On the other hand, when the carbon concentration N C in the drift layer 140 is 5.0 ⁇ 10 16 pieces / cm 3 or less, the crystallinity of the drift layer 140 is improved and the semiconductor device 20 is reduced in loss. Can do. Note that the lower the carbon concentration N C in the drift layer 140, the better. Therefore, the lower limit value of the carbon concentration N C is not particularly limited.
  • the drift layer 140 contains hydrogen (H) in addition to donor and carbon. Hydrogen is taken into the drift layer 140 due to, for example, a group III organometallic material or a donor material used during crystal growth of the drift layer 140.
  • the hydrogen concentration in the drift layer 140 is, for example, 5.0 ⁇ 10 16 atoms / cm 3 or less, preferably 1.0 ⁇ 10 16 atoms / cm 3 or less. If the hydrogen concentration in the drift layer 140 is more than 5.0 ⁇ 10 16 atoms / cm 3 , the crystallinity of the drift layer 140 may decrease, and the loss of the semiconductor device 20 described later may increase.
  • the lower limit value of the hydrogen concentration is not particularly limited.
  • FIG. 4 is a cross-sectional view showing the semiconductor device according to the present embodiment.
  • the semiconductor device 20 is configured as a vertical pn junction diode manufactured using the above-described nitride semiconductor substrate 10, for example, a substrate 100 and a base n-type semiconductor layer. 120, a drift layer 140, a first p-type semiconductor layer 220, a second p-type semiconductor layer 240, an anode 310, an insulating film 400, and a cathode 360.
  • the drift layer 140, the first p-type semiconductor layer 220, and the second p-type semiconductor layer 240 form a mesa structure 180.
  • the mesa structure 180 has, for example, a quadrangular frustum shape or a truncated cone shape, and the cross-sectional area of the mesa structure 180 in plan view gradually decreases in the stacking direction. Accordingly, the mesa structure 180 has a forward tapered side surface.
  • a portion of a region in which the concentration difference N D -N A of the drift layer 140 is gradually decreased toward the stacking direction a portion of the mesa structure 180 Is configured.
  • electric field concentration is likely to occur in the vicinity of the pn junction interface in the vicinity of the side surface of the mesa structure 180.
  • density difference N D -N A of the drift layer 140 is gradually decreased toward the stacking direction.
  • the depletion layer extends from the pn junction interface toward the drift layer 140, and the electric field in the region is relaxed.
  • a reverse bias when a reverse bias is applied, it is possible to suppress the occurrence of avalanche breakdown in a region near the pn junction interface near the side surface of the mesa structure 180 and improve the breakdown voltage of the semiconductor device 20.
  • the first anode (p-type contact electrode) 320 of the anode (p-side electrode) 310 is provided on the upper surface of the mesa structure 180, that is, on the second p-type semiconductor layer 240.
  • the first anode 320 is made of a material that is in ohmic contact with the second p-type semiconductor layer 240.
  • the insulating film 400 is provided so as to cover the surface of the drift layer 140 outside the mesa structure 180, the side surface of the mesa structure 180, and part of the surface of the second p-type semiconductor layer 240 (around the top surface of the mesa structure 180). ing.
  • the insulating film 400 functions to insulate the drift layer 140 and the like from a second anode 340 described later and protect the drift layer 140 and the like.
  • the insulating film 400 has an opening for contacting the first anode 320 and a second anode 340 described later.
  • the insulating film 400 of this embodiment has, for example, a two-layer structure, and includes a first insulating film 420 and a second insulating film 440.
  • the first insulating film 420 is made of, for example, an SOG (Spin On Glass) film formed by a coating method such as a spin coating method.
  • the second insulating film 440 is made of, for example, a silicon oxide (SiO 2 ) film formed by sputtering or the like.
  • a second anode (p-side electrode pad) 340 of the anode 310 is in contact with the first anode 320 in the opening of the insulating film 400 and extends outward from the first anode 320 on the insulating film 400 to have a mesa structure.
  • 180 is provided so as to cover 180.
  • the second anode 340 includes a part of the surface of the drift layer 140 outside the mesa structure 180, a side surface of the mesa structure 180, and an upper surface of the mesa structure 180 when the semiconductor device 20 is viewed from above. It is provided so that it may overlap.
  • the second anode 340 is made of, for example, an alloy (Ti / Al) of titanium (Ti) and aluminum (Al).
  • the cathode 360 is provided on the back side of the substrate 100.
  • the cathode 360 is made of a material that is in ohmic contact with the substrate 100 made of n-type GaN, and is made of, for example, Ti / Al.
  • Nitride semiconductor substrate manufacturing method semiconductor device manufacturing method
  • Step 1 Preparation of substrate
  • a substrate 100 as an n-type single crystal GaN substrate is prepared.
  • Step 2 Formation of underlying n-type semiconductor layer
  • MOVPE metal organic vapor phase epitaxy
  • the substrate 100 is carried into the processing chamber of the MOVPE apparatus.
  • hydrogen gas or a mixed gas of hydrogen gas and nitrogen gas
  • the substrate 100 is heated to a predetermined growth temperature (for example, 1000 ° C. or higher and 1100 ° C. or lower).
  • a predetermined growth temperature for example, 1000 ° C. or higher and 1100 ° C. or lower.
  • TMG trimethylgallium
  • NH 3 ammonia
  • SiH 4 monosilane
  • the base n-type semiconductor layer 120 as an n + -type GaN layer is epitaxially grown on the substrate 100 made of n-type single crystal GaN. Since the crystal growth at this time is homoepitaxial growth in which the same GaN crystal is grown in the stacking direction, the base n-type semiconductor layer 120 with good crystallinity can be formed on the substrate 100.
  • a drift layer 140 as an n ⁇ type GaN layer is epitaxially grown on the underlying n type semiconductor layer 120.
  • the donor concentration N D in the drift layer 140 becomes 5.0 ⁇ 10 16 atoms / cm 3 or less
  • the acceptor in the drift layer 140 donor concentration N D in the drift layer 140 over the entire area of the drift layer 140 functions become more concentration N a of the carbon as a further density difference N D -N a of the drift layer 140, so as to decrease gradually in the stacking direction to adjust the various growth conditions.
  • the donor concentration N D in the drift layer 140 is gradually reduced toward the stacking direction in the range of 5.0 ⁇ 10 16 atoms / cm 3 or less
  • the flow rate of the donor material is gradually decreased as the drift layer 140 is grown.
  • the carbon donor concentration N D in the drift layer 140 over the entire area of the drift layer 140 of total concentration N C 1/3 The flow rate of the donor material and other growth conditions are relatively adjusted so as to be twice or more. Specifically, by adjusting the flow rate (growth rate) of TMG during the growth of the drift layer 140, the V / III ratio (ratio of the flow rate of the group V raw material to the flow rate of the group III organometallic raw material), the growth temperature, etc.
  • the total carbon concentration N C can be adjusted.
  • the donor concentration N D in the drift layer 140 is at 5.0 ⁇ 10 16 atoms / cm 3 or less, the donor concentration N D in the drift layer 140 over the entire area of the drift layer 140 drift and a layer 140 of carbon concentration N a or functioning as an acceptor in further, if three conditions are met that the density difference N D -N a of the drift layer 140 is gradually decreased toward the stacking direction
  • the total concentration N C of carbon in the drift layer 140 can be arbitrarily distributed with respect to the stacking direction.
  • the growth conditions may be adjusted so that the total concentration N C of carbon in the drift layer 140 gradually increases in the stacking direction.
  • the flow rate of TMG (the growth rate of the drift layer 140) is gradually increased.
  • the V / III ratio is gradually reduced as the drift layer 140 is grown.
  • the growth temperature is gradually lowered as the drift layer 140 is grown.
  • Such growth conditions can be gradually increased toward the total concentration N C of carbon in the drift layer 140 in the stacking direction. Incidentally, it is necessary to vary the total concentration N C carbon in a trace amount, it is preferable not to adjust the growth pressure.
  • the growth conditions other than the donor flow rate are maintained so that the total concentration N C of carbon in the drift layer 140 becomes constant in the stacking direction. May be.
  • the growth rate, V / III ratio, growth temperature, and growth pressure of the drift layer 140 are kept constant.
  • Such growth conditions may be a constant total concentration N C of carbon in the drift layer 140 toward the stacking direction.
  • the growth conditions may be adjusted so that the total concentration N C of carbon in the drift layer 140 gradually decreases in the stacking direction.
  • the flow rate of TMG (the growth rate of the drift layer 140) is gradually reduced.
  • the V / III ratio is gradually increased as the drift layer 140 is grown.
  • the growth temperature is gradually increased as the drift layer 140 is grown.
  • Such growth conditions can be gradually reduced toward the total concentration N C of carbon in the drift layer 140 in the stacking direction. Also in this case, since it is necessary to vary the total concentration N C carbon in a trace amount, it is preferable not to adjust the growth pressure.
  • Step 4 Formation of the first p-type semiconductor layer
  • the first p-type semiconductor layer 220 as a p-type GaN layer is epitaxially grown on the drift layer 140.
  • Cp 2 Mg biscyclopentadienyl magnesium
  • Step 5 Formation of second p-type semiconductor layer
  • the second p-type semiconductor layer 240 as the p + -type GaN layer is epitaxially grown on the first p-type semiconductor layer 220 by the same processing procedure as in Step 4.
  • Step 6 Unloading
  • the atmosphere in the processing chamber of the MOVPE apparatus is replaced with N 2 gas to return to atmospheric pressure, and the temperature in the processing chamber is lowered to a temperature at which the substrate can be unloaded.
  • the nitride semiconductor substrate 10 of the present embodiment is manufactured. Thereafter, the nitride semiconductor substrate 10 is supplied as an epi wafer for manufacturing the semiconductor device 20 to a manufacturer of the semiconductor device 20.
  • Step 7 Manufacture of semiconductor device
  • the second p-type semiconductor layer 240, the first p-type semiconductor layer 220, and a part of the drift layer 140 are etched by, for example, RIE (Reactive Ion Etching).
  • RIE Reactive Ion Etching
  • the mesa structure 180 is formed in the second p-type semiconductor layer 240, the first p-type semiconductor layer 220, and the drift layer 140.
  • a Pd / Ni film is formed by sputtering, for example, so as to cover the surfaces of the mesa structure 180 and the drift layer 140, and is patterned into a predetermined shape.
  • the first anode 320 is formed on the upper surface of the mesa structure 180, that is, on the second p-type semiconductor layer 240.
  • an SOG film is formed by, for example, spin coating so as to cover the surfaces of the mesa structure 180 and the drift layer 140, and an SiO 2 film is formed thereon by, for example, sputtering, and patterned into a predetermined shape.
  • the first insulation is provided so as to cover the surface of the drift layer 140 outside the mesa structure 180, the side surface of the mesa structure 180, and a part of the surface of the second p-type semiconductor layer 240 (around the top surface of the mesa structure 180).
  • An insulating film 400 including the film 420 and the second insulating film 440 is formed.
  • a Ti / Al film is formed by sputtering, for example, so as to cover the first anode 320 and the insulating film 400 in the opening of the insulating film 400 and patterned into a predetermined shape.
  • the second anode 340 is formed so as to be in contact with the first anode 320 within the opening of the insulating film 400 and to extend outside the first anode 320 on the insulating film 400 and cover the mesa structure 180.
  • a cathode 360 is formed by forming a Ti / Al film on the back side of the substrate 100 by, for example, sputtering.
  • the semiconductor device 20 of this embodiment is manufactured.
  • N D ⁇ N A concentration of the carbon that acts as an acceptor in the drift layer 140
  • the drift layer A predetermined amount of free electrons can be generated over the entire area 140.
  • the drift layer 140 can function as an n-type layer.
  • the density difference N D -N A of the drift layer 140 such a predetermined distribution, as at least part of the carbon in the drift layer 140 had to compensate the donor, the desired free electron concentration distribution Obtainable.
  • the free electron concentration can be gradually decreased from the substrate 100 side toward the surface side of the drift layer 140.
  • the drift layer 140 gradually decreases toward the surface side of the drift layer 140 from the substrate 100 side, the junction between the drift layer 140 and the 1p-type semiconductor layer 220 Near the interface, the free electron concentration of the drift layer 140 gradually decreases as it approaches the first p-type semiconductor layer 220.
  • the depletion layer in the vicinity of the junction interface between the drift layer 140 and the first p-type semiconductor layer 220 spreads from the junction interface toward the drift layer 140 side, and the inclination of the conduction band (electric field strength) in the vicinity of the junction interface is It has become moderate.
  • the concentration N A of the carbon that serves as an acceptor since it has at least 1/3 or more of the total concentration N C carbon, donor concentration in the drift layer 140 of this embodiment N D is a 1/3 or more of the total concentration N C of carbon in the drift layer 140 over the entire region of the drift layer 140.
  • the donor amount in the drift layer 140 can be made larger than the amount compensated by carbon as an acceptor, and a predetermined amount of free electrons can be generated in the drift layer 140.
  • the drift layer 140 can function as an n-type layer, and the resistance of the drift layer 140 can be suppressed from becoming excessively high.
  • the hydrogen concentration in the drift layer 140 is 5.0 ⁇ 10 16 atoms / cm 3 or less. Thereby, the crystallinity of the drift layer 140 can be improved, and the loss of the semiconductor device 20 can be reduced.
  • FIG. 5 (a) is a diagram showing a difference obtained by subtracting the concentration N A of the carbon that acts as an acceptor in the drift layer from the donor concentration N D in the drift layer of the first modification.
  • Figure 5 As shown in the first modification of (a), density difference N D -N A of the drift layer 140 may be decreased stepwise toward the surface side of the drift layer 140 from the substrate 100 side.
  • the drift layer 140 is composed of a plurality layers, be considered to N D -N A of the upper layer of the adjacent two layers is lower than N D -N A of the lower layer Good. According to the first modification, the same effect as that of the above-described embodiment can be obtained.
  • the growth conditions can be switched in stages as the drift layer 140 is grown, and the growth conditions can be easily controlled.
  • the energy barrier of the conduction band occurs at the step portion of the N D -N A, increases the on-resistance when applying a forward bias fear There is.
  • the inclination of the conduction band at the step portion of the N D -N A becomes steep, the breakdown voltage may be reduced at the time of applying a reverse bias. Therefore, better density difference N D -N A of the drift layer 140 is reduced in a linear shape toward the surface side of the drift layer 140 from the substrate 100 side as in the embodiment described above (FIG.
  • the inclination of the conduction band of the drift layer 140 can be made smooth and gentle, and it is possible to achieve both a reduction in on-resistance when a forward bias is applied and an increase in breakdown voltage when a reverse bias is applied. ,preferable.
  • 5 (b) is a diagram showing a difference obtained by subtracting the concentration N A of the carbon that acts as an acceptor in the drift layer from the donor concentration N D in the drift layer of the second modification.
  • the density difference N D -N A of the drift layer 140 may be decreased nonlinearly toward the surface side of the drift layer 140 from the substrate 100 side.
  • N D slope of -N A gradually increases toward the middle position of the drift layer 140 from the substrate 100 side, the drift layer from the intermediate position side slope of the drift layer 140 of N D -N A It gradually decreases toward the surface side of 140.
  • N D -N A may be a multi-order function, a logarithmic function, an exponential function, or a combination thereof.
  • the same effect as that of the above-described embodiment can be obtained.
  • N D -N A had varied linearly growth conditions according gradually grown drift layer 140, N D -N A so as to correspond to the growth conditions do not change linearly Sometimes. In such a case, it becomes difficult to change N D -N A linearly.
  • the change in N D -N A as in the modified example 2 is nonlinear Even so, the free electron concentration of the drift layer 140 is gradually decreased as it approaches the first p-type semiconductor layer 220, and the free electron concentration of the drift layer 140 is gradually increased as it approaches the base n-type semiconductor layer 120. Can do. Thereby, also in the modification 2, it becomes possible to make compatible the reduction
  • the nitride semiconductor substrate 10 is configured as a wafer for manufacturing a pn junction diode and the semiconductor device 20 is configured as a pn junction diode in the above-described embodiment, the nitride semiconductor substrate is described. Further, the following modification 3 may be applied to the semiconductor device.
  • FIG. 6 is a cross-sectional view showing a nitride semiconductor substrate according to Modification 3.
  • the nitride semiconductor substrate 12 of Modification 3 is configured as a wafer for manufacturing a Schottky barrier diode (SBD).
  • SBD Schottky barrier diode
  • the concentration difference N D ⁇ N A in the drift layer 142 gradually decreases from the substrate 102 side toward the surface side of the drift layer 142.
  • FIG. 7 is a cross-sectional view showing a semiconductor device according to Modification 3. As shown in FIG.
  • the semiconductor device 22 of Modification 3 is configured as an SBD manufactured using the nitride semiconductor substrate 12 described above, and includes, for example, a substrate 102, a base n-type semiconductor layer 122, and a drift layer. 142, an insulating film 402, an anode 312, and a cathode 362.
  • the mesa structure as in the above-described embodiment is not formed.
  • the insulating film 402 is provided on the flat surface of the drift layer 142.
  • the insulating film 402 has an opening for bringing the drift layer 142 and the anode 312 into contact with each other.
  • the anode 312 is configured as a so-called field plate electrode.
  • the anode 312 is in contact with the drift layer 142 in the opening of the insulating film 402 and extends on the insulating film 402 to the outside of the opening of the insulating film 402. Thereby, it is possible to suppress the concentration of the electric field at the end portion of the region where the anode 312 and the drift layer 142 are in contact with each other.
  • the anode 312 is configured to form a Schottky barrier with the drift layer 140, and is made of, for example, Pd, Pd / Ni, or Ni / Au.
  • the cathode 362 is provided on the back side of the substrate 102. According to the modification 3, even if the semiconductor device 22 is SBD, the same effect as the above-described embodiment can be obtained.
  • the SBD such as the semiconductor device 22 of this modification has a lower breakdown voltage than the pn junction diode, but according to this modification, the concentration difference N D ⁇ N A in the drift layer 142 is reduced.
  • the breakdown voltage of the semiconductor device 22 as the SBD can be improved.
  • the substrate 100 is an n-type GaN substrate.
  • the substrate 100 may be configured as a semiconductor substrate other than GaN.
  • the substrate may be configured as an n-type SiC substrate, for example.
  • the substrate is preferably an n-type GaN substrate.
  • the base n-type semiconductor layer 120 is interposed between the substrate 100 and the drift layer 140 has been described, but the base n-type semiconductor layer may not be provided. That is, the drift layer may be provided directly on the substrate.
  • the nitride semiconductor layer such as the drift layer 140 is formed using the MOVPE apparatus.
  • the hydride vapor phase epitaxy (HVPE) apparatus is used to form the drift layer.
  • a nitride semiconductor layer such as 140 may be formed.
  • a hydrocarbon gas is supplied to the substrate 100 as a carbon source, and the total carbon concentration N C in the drift layer 140 is adjusted by adjusting the flow rate of the carbon source.
  • (Appendix 1) a substrate made of an n-type semiconductor; A drift layer provided on the substrate and made of gallium nitride containing donor and carbon; Have The concentration of the donor in the drift layer is 5.0 ⁇ 10 16 atoms / cm 3 or less, and the concentration of the carbon that functions as an acceptor in the drift layer is greater than or equal to the entire area of the drift layer. Yes, The difference obtained by subtracting the concentration of the carbon functioning as the acceptor in the drift layer from the concentration of the donor in the drift layer is gradually decreased from the substrate side toward the surface side of the drift layer. Semiconductor substrate.
  • Appendix 2 The nitride semiconductor substrate according to appendix 1, wherein the concentration of the donor in the drift layer is not less than 1/3 times the total concentration of the carbon in the drift layer throughout the drift layer.
  • the drift layer includes hydrogen;
  • drift layer made of gallium nitride containing a donor and carbon on a substrate made of an n-type semiconductor;
  • concentration of the donor in the drift layer is 5.0 ⁇ 10 16 pieces / cm 3 or less, and the concentration of the carbon that functions as an acceptor in the drift layer over the entire drift layer
  • a nitride semiconductor that gradually reduces a difference obtained by subtracting the concentration of the carbon functioning as the acceptor in the drift layer from the concentration of the donor in the drift layer from the substrate side toward the surface side of the drift layer.
  • the concentration of the donor in the drift layer is 5.0 ⁇ 10 16 pieces / cm 3 or less, and the concentration of the carbon that functions as an acceptor in the drift layer over the entire drift layer
  • a semiconductor device that gradually decreases a difference obtained by subtracting the concentration of the carbon functioning as the acceptor in the drift layer from the concentration of the donor in the drift layer from the substrate side toward the surface side of the drift layer. Production method.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

n型の半導体からなる基板と、基板上に設けられ、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層と、を有し、ドリフト層中のドナーの濃度は、5.0×1016個/cm以下であって、ドリフト層の全域に亘って、ドリフト層中でアクセプタとして機能する炭素の濃度以上であり、ドリフト層中のドナーの濃度からドリフト層中でアクセプタとして機能する炭素の濃度を引いた差は、基板側からドリフト層の表面側に向かって徐々に減少している。

Description

窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
 本発明は、窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法に関する。
 窒化ガリウムなどのIII族窒化物半導体は、シリコンよりも高い飽和自由電子速度や高い絶縁破壊耐圧を有している。このため、窒化物半導体は、電力の制御等を行うパワーデバイスや、携帯電話の基地局用などの高周波デバイスへの応用が期待されている。具体的なデバイスとしては、例えば、ショットキーバリアダイオード(SBD)やpn接合ダイオードなどの半導体装置が挙げられる。これらの半導体装置では、逆バイアス印加時の耐圧を向上させるため、ドナー濃度を低くしたドリフト層が厚く設けられる(例えば特許文献1参照)。
特開2015-185576号公報
 窒化物半導体では、結晶成長時のIII族有機金属原料に起因して、炭素が取り込まれうる。窒化物半導体中に取り込まれた炭素の少なくとも一部は、アクセプタとして機能する。このため、ドナーが添加されたn型の窒化物半導体中では、炭素の少なくとも一部は、ドナーから電子を捕獲し、ドナーを補償する。
 パワーデバイスや高周波デバイスとしての半導体装置では、上記したように、耐圧向上のため、ドリフト層中におけるドナー濃度は低く設定される。このため、例えば、5×1016個/cm以下のような低濃度領域では、ドリフト層中のドナー濃度を所定値としたとしても、炭素の一部が少量のドナーを補償する影響が大きく、ドリフト層中において所望の自由電子濃度が得られない場合があった。その結果、半導体装置の性能が低下する可能性があった。
 本発明の目的は、半導体装置の性能を向上させることができる技術を提供することにある。
 本発明の一態様によれば、
 n型の半導体からなる基板と、
 前記基板上に設けられ、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層と、
を有し、
 前記ドリフト層中の前記ドナーの濃度は、5.0×1016個/cm以下であって、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上であり、
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少している窒化物半導体基板が提供される。
 本発明の他の態様によれば、
 n型の半導体からなる基板と、
 前記基板上に設けられ、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層と、
を有し、
 前記ドリフト層中の前記ドナーの濃度は、5.0×1016個/cm以下であって、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上であり、
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少している半導体装置が提供される。
 本発明のさらに他の態様によれば、
 n型の半導体からなる基板上に、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層を形成する工程を有し、
 前記ドリフト層を形成する工程では、
 前記ドリフト層中の前記ドナーの濃度を、5.0×1016個/cm以下としつつ、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上とし、
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差を、前記基板側から前記ドリフト層の表面側に向かって徐々に減少させる窒化物半導体基板の製造方法が提供される。
 本発明によれば、半導体装置の性能を向上させることができる。
本発明の一実施形態に係る窒化物半導体基板を示す断面図である。 (a)はドリフト層中のドナー濃度Nからドリフト層中でアクセプタとして機能する炭素の濃度Nを引いた差を示す図であり、(b)はドリフト層におけるドナーおよび炭素の各濃度を示す図である。 ドリフト層付近の概略バンド図である。 本発明の一実施形態に係る半導体装置を示す断面図である。 (a)は変形例1のドリフト層中のドナー濃度Nからドリフト層中でアクセプタとして機能する炭素の濃度Nを引いた差を示す図であり、(b)は変形例2のドリフト層中のドナー濃度Nからドリフト層中でアクセプタとして機能する炭素の濃度Nを引いた差を示す図である。 変形例3に係る窒化物半導体基板を示す断面図である。 変形例3に係る半導体装置を示す断面図である。
<本発明の一実施形態>
 以下、本発明の一実施形態について図面を参照しながら説明する。
(1)窒化物半導体基板
 図1は、本実施形態に係る窒化物半導体基板を示す断面図である。
 図1に示すように、本実施形態の窒化物半導体基板(窒化物半導体積層物、窒化物半導体エピタキシャル基板)10は、後述するpn接合ダイオードとしての半導体装置20を製造するために窒化物半導体層をエピタキシャル成長させたウエハとして構成され、例えば、基板100と、下地n型半導体層120と、ドリフト層140と、第1p型半導体層220と、第2p型半導体層240と、を有している。
 なお、以下において、「積層方向」とは、基板100側から図中上方向(基板100の主面から遠ざかる方向)に向かって下地n型半導体層120等の窒化物半導体層を積層していく方向のことをいう。ドリフト層140に関しては、「積層方向」を、「基板100側からドリフト層140の表面側に向かう方向」と言い換えることができる。なお、ドリフト層140の表面(第2主面)とは、ドリフト層140における基板100側の面(第1主面)と反対側の面のことである。
(基板)
 基板100は、例えば、所定のドナーを含むn型の単結晶窒化ガリウム(GaN)基板(自立GaN基板)として構成されている。基板100中のドナーとしては、例えば、シリコン(Si)またはゲルマニウム(Ge)が挙げられる。基板100中のドナー濃度は、例えば、5.0×1017個/cm以上5.0×1018個/cm以下である。なお、ドナー濃度や後述する炭素濃度などは、例えば、二次イオン質量分析法(SIMS:Secondary Ion Mass Spectrometry)によって測定することができる。
 基板100の主面の面方位は、例えば、c面((0001)面)である。なお、基板100を構成するGaN結晶は、基板100の主面に対して所定のオフ角を有していても良い。オフ角とは、基板100の主面の法線方向と、基板100を構成するGaN結晶のc軸とのなす角度のことをいう。具体的には、基板100のオフ角を、例えば、0.15°以上0.8°以下とする。基板100のオフ角が0.15°未満であると、基板100上にドリフト層140等の窒化物半導体層を成長させる際に添加される炭素(C)の濃度が増加する可能性がある。これに対して、基板100のオフ角を0.15°以上とすることにより、基板100上にドリフト層140等の窒化物半導体層を成長させる際に添加される炭素の濃度を所定量以下とすることができる。一方で、基板100のオフ角が0.8°超であると、基板100の主面のモフォロジが悪化する可能性がある。これに対して、基板100のオフ角を0.8°以下とすることにより、基板100の主面のモフォロジを平坦にすることができる。
 また、基板100の主面における転位密度を、例えば、1×10個/cm以下とする。基板100の主面における転位密度が1×10個/cm超であると、基板100上に形成されるドリフト層140等の窒化物半導体層において局所的な耐圧を低下させる転位が増加する可能性がある。また、基板100の主面における転位密度が1×10個/cm超であると、基板100上に窒化物半導体層を成長させる際に意図せずに添加される不純物の濃度(例えば炭素濃度)が高くなる傾向にある。これに対して、本実施形態のように、基板100の主面における転位密度を1×10個/cm以下とすることにより、基板100上に形成されるドリフト層140等の窒化物半導体層において局所的な耐圧を低下させる転位の増加を抑制することができる。また、基板100の主面における貫通転位密度を1×10個/cm以下とすることにより、窒化物半導体層の成長の際に意図せずに添加される不純物の濃度を低下させることができる。
(下地n型半導体層)
 下地n型半導体層120は、基板100の結晶性を引き継いでドリフト層140を安定的にエピタキシャル成長させるバッファ層として、基板100とドリフト層140との間に設けられている。また、下地n型半導体層120は、基板100と同等の濃度のドナーを含むn+型GaN層として構成されている。下地n型半導体層120中のドナーとしては、基板100中のドナーと同様に、例えば、SiまたはGeが挙げられる。また、下地n型半導体層120中のドナー濃度は、基板100中のドナー濃度と同様に、例えば、5.0×1017個/cm以上5.0×1018個/cm以下である。
 なお、下地n型半導体層120は、その結晶成長時に用いるIII族有機金属原料に起因して添加(オートドープ)された炭素を含んでいる。下地n型半導体層120中の炭素の全濃度は、例えば、1.0×1015個/cm以上5.0×1016個/cm以下である。なお、「炭素濃度の全濃度」とは、後述するように、アクセプタとして機能する炭素だけでなく、アクセプタとして機能しない炭素を含む、全ての炭素の濃度のことを意味する。
 下地n型半導体層120などのn型窒化物半導体層では、炭素の少なくとも一部がアクセプタ(補償ドーパント)として機能し、ドナーを補償している。このため、下地n型半導体層120中の実効的な自由電子濃度は、ドナー濃度から、アクセプタとして機能する炭素濃度を引いた差として求められる。しかしながら、下地n型半導体層120では、ドナー濃度が高く、アクセプタとして機能する炭素濃度が相対的に無視できるほど低い。このため、下地n型半導体層120中の自由電子濃度は、ほぼドナー濃度に等しいとみなすことができ、例えば、5.0×1017個/cm以上5.0×1018個/cm以下となっている。
 なお、下地n型半導体層120中のドナー濃度、および炭素の全濃度は、それぞれ、積層方向に向かってほぼ一定である。なお、下地n型半導体層120は、各添加濃度が積層方向に向かって一定である領域を含んでいればよく、下地n型半導体層120は、基板100側付近またはドリフト層140側付近で各添加濃度が傾斜した領域を含んでいてもよい。
 下地n型半導体層120の厚さは、後述するドリフト層140の厚さよりも薄く、例えば、0.1μm以上3μm以下とする。
(ドリフト層)
 ドリフト層140は、下地n型半導体層120上に設けられ、低濃度のドナーを含むn-型GaN層として構成されている。ドリフト層140中のドナーとしては、下地n型半導体層120中のドナーと同様に、例えば、SiまたはGeが挙げられる。
 ドリフト層140中のドナー濃度は、基板100のドナー濃度および下地n型半導体層120のドナー濃度よりも低く、例えば、1.0×1015個/cm以上5.0×1016個/cm以下とする。ドナー濃度が1.0×1015個/cm未満であると、ドリフト層140が高抵抗化する可能性がある。これに対して、ドナー濃度を1.0×1015個/cm以上とすることにより、ドリフト層140の抵抗が過剰に上昇することを抑制することができる。一方で、ドナー濃度が5.0×1016個/cm超であると、逆バイアスを印加したときの耐圧が低下する可能性がある。これに対して、ドナー濃度を5.0×1016個/cm以下とすることにより、所定の耐圧を確保することができる。
 ドリフト層140も、その結晶成長時に用いるIII族有機金属原料に起因して添加された炭素を含んでおり、ドリフト層140中の炭素の少なくとも一部は、アクセプタとして機能し、ドナーを補償している。ここで、上述したように、下地n型半導体層120では、ドナー濃度がおよそ1018オーダーで高い状態となっている。このため、下地n型半導体層120では、ドナー濃度に対する炭素濃度が無視できるほど低い。これに対して、ドリフト層140では、ドナー濃度が5.0×1016個/cm以下のように低い状態となっている。このため、ドリフト層140では、ドナー濃度に対する炭素濃度を無視することが出来ず、ドリフト層140中の自由電子濃度は、炭素の一部がアクセプタとして少量のドナーを補償する影響を受け易い。したがって、ドリフト層140では、ドナー濃度とアクセプタとして機能する炭素の濃度との相対関係を制御しなければ、所望の自由電子濃度分布を得ることが出来ない。
 そこで、本実施形態では、ドリフト層140中のドナー濃度が、ドリフト層140の全域に亘って、ドリフト層140中でアクセプタとして機能する炭素の濃度以上となるように調整され、また、ドリフト層140中のドナー濃度からドリフト層140中でアクセプタとして機能する炭素の濃度を引いた差が、基板100側からドリフト層140の表面側に向かって(すなわち積層方向に向かって)徐々に減少するように調整されている。これにより、ドリフト層140において所望の自由電子濃度分布を得ることができる。ドリフト層140におけるドナー濃度と炭素濃度との相対関係等については、詳細を後述する。
 ドリフト層140は、逆バイアスを印加したときの耐圧を向上させるため、例えば、下地n型半導体層120よりも厚く設けられている。具体的には、ドリフト層140の厚さを、例えば、3μm以上40μm以下とする。ドリフト層140の厚さが3μm未満であると、逆バイアスを印加したときの耐圧が低下する可能性がある。これに対して、ドリフト層140の厚さを3μm以上とすることにより、所定の耐圧を確保することができる。一方で、ドリフト層140の厚さが40μm超であると、順バイアスを印加したときのオン抵抗が上昇する可能性がある。これに対して、ドリフト層140の厚さを40μm以下とすることにより、順バイアスを印加したときのオン抵抗が過剰に上昇することを抑制することができる。
(第1p型半導体層)
 第1p型半導体層220は、ドリフト層140上に設けられ、アクセプタを含むp型GaN層として構成されている。第1p型半導体層220中のアクセプタとしては、例えば、マグネシウム(Mg)が挙げられる。また、第1p型半導体層220中のアクセプタ濃度は、例えば、1.0×1017個/cm以上2.0×1019個/cm以下とする。
(第2p型半導体層)
 第2p型半導体層240は、第1p型半導体層220上に設けられ、高濃度のアクセプタを含むp+型GaN層として構成されている。第2p型半導体層240中のアクセプタとしては、第1p型半導体層220と同様に、例えば、Mgが挙げられる。また、第2p型半導体層240中のアクセプタ濃度は、第1p型半導体層220中のアクセプタ濃度よりも高く、例えば、5.0×1019個/cm以上2.0×1020個/cm以下とする。第2p型半導体層240中のアクセプタ濃度を上述の範囲内とすることにより、第2p型半導体層240と後述するアノードとのコンタクト抵抗を低減させることができる。
(ドリフト層におけるドナー濃度と炭素濃度との相対関係について)
 次に、図2(a)を用い、ドリフト層140におけるドナー濃度と炭素濃度との相対関係について、詳細を説明する。図2(a)は、ドリフト層中のドナー濃度Nからドリフト層中でアクセプタとして機能する炭素の濃度Nを引いた差を示す図である。
 図2(a)において、横軸は、ドリフト層140の表面側からの位置(深さ)を示している。また、ここでは、ドリフト層140中のドナー濃度をNとし、ドリフト層140中の炭素の全濃度(ドリフト層140中の全ての炭素の濃度)をNとし、ドリフト層140中の炭素のうちアクセプタとして機能する炭素の濃度をNとする。また、同図において、縦軸は、ドリフト層140中のドナー濃度Nからドリフト層140中でアクセプタとして機能する炭素の濃度Nを引いた差N-N(以下、ドリフト層140における濃度差N-N)を示している。ドリフト層140における濃度差N-Nは、ドナーから得られる自由電子の総量から、アクセプタとしての炭素がドナーから自由電子を捕獲した量を引いた差として考えることができる。したがって、ドリフト層140における濃度差N-Nは、ドリフト層140中の実効的な自由電子濃度に相当する。
 ここで、本実施形態では、ドリフト層140中のドナー濃度Nは、ドリフト層140の全域に亘って、ドリフト層140中でアクセプタとして機能する炭素の濃度N以上としている(N≧N)。ドリフト層140の少なくとも一部においてドリフト層140中のドナー濃度Nがドリフト層140中でアクセプタとして機能する炭素の濃度N未満であると、ドリフト層140の一部に自由電子が生成しない領域が生じてしまう可能性がある。これに対して、ドリフト層140中のドナー濃度Nを、ドリフト層140の全域に亘って、ドリフト層140中でアクセプタとして機能する炭素の濃度N以上とすることにより、ドナー濃度が5.0×1016個/cm以下のように低濃度領域にある状態でドリフト層140中の炭素の少なくとも一部がドナーを補償していたとしても、ドリフト層140の全域に亘って所定量の自由電子を生成させることができる。その結果、ドリフト層140をn型層として機能させることが可能となる。
 また、図2(a)に示すように、本実施形態では、ドリフト層140における濃度差N-Nが、基板100側からドリフト層140の表面側に向かって(すなわち積層方向に向かって)徐々に減少している。言い換えれば、ドリフト層140における濃度差N-Nが、積層方向に向かって単調に減少している。このようにドリフト層140における濃度差N-Nを所定の分布とすることで、ドリフト層140中の炭素の少なくとも一部がアクセプタとしてドナーを補償していたとしても、所望の自由電子濃度分布を得ることができる。この場合では、例えば、自由電子濃度を基板100側からドリフト層140の表面側に向かって徐々に減少させることが可能となる。
 なお、発明者等の鋭意検討により、窒化物半導体中に添加された炭素の全てがドナーを補償するとは限らず、窒化物半導体中に添加された全ての炭素のうちの少なくとも1/3以上の炭素がアクセプタとして機能し、ドナーを補償することが分かっている。つまり、本実施形態のドリフト層140において、アクセプタとして機能する炭素の濃度Nは、炭素の全濃度Nの少なくとも1/3倍以上となっている(N/3≦N≦N)。
 そこで、本実施形態では、上記のようにアクセプタとして機能する炭素の割合を考慮して、ドリフト層140中のドナー濃度Nは、ドリフト層140の全域に亘って、少なくともドリフト層140中の炭素の全濃度Nの1/3倍以上としている(N≧N/3)。ドリフト層140中のドナー濃度Nが炭素の全濃度Nの1/3倍未満であると、ドリフト層140中のドナーの多くが、アクセプタとして機能する炭素によって補償されるため、ドリフト層140中に所定量の自由電子が生成されない可能性がある。このため、ドリフト層140がn型ではなくなり、ドリフト層140が高抵抗化する可能性がある。これに対して、ドリフト層140中のドナー濃度Nを炭素の全濃度Nの1/3倍以上とすることにより、ドリフト層140中のドナー量を、アクセプタとしての炭素によって補償される量よりも多くすることができ、ドリフト層140中に所定量の自由電子を生成することができる。その結果、ドリフト層140をn型層として機能させ、ドリフト層140の抵抗が過剰に高くなることを抑制することができる。なお、ドリフト層140中のドナー濃度Nがドリフト層140中の炭素の全濃度Nの1/3倍以上となっていれば、ドリフト層140中のドナー濃度Nがドリフト層140中の炭素の全濃度Nよりも低くなっていても良い。
 なお、ドリフト層140中のドナー濃度Nは、ドリフト層140の全域に亘って、ドリフト層140中の炭素の全濃度N以上とすることがより好ましい。これにより、ドリフト層140中のドナー量を、アクセプタとしての炭素によって補償される量よりも確実に多くすることができる。その結果、ドリフト層140をn型として安定的に機能させあることが可能となる。
 ここで、図3を用い、ドリフト層140付近のバンド図について説明する。図3は、ドリフト層付近の概略バンド図である。
 図3において、ドリフト層140中のドナー濃度Nをドリフト層140の全域に亘ってドリフト層140中の炭素の全濃度Nの1/3倍以上とすることにより、ドリフト層140の伝導帯には、所定量の自由電子が生成される。また、ドリフト層140における濃度差N-Nを基板100側からドリフト層140の表面側に向かって徐々に減少させることにより、ドリフト層140中における自由電子濃度が基板100側からドリフト層140の表面側に向かって徐々に増加する。このため、ドリフト層140の基板100側は、低自由電子濃度のドリフト層140のうちで高自由電子濃度領域となり、一方で、ドリフト層140の表面側は、低自由電子濃度のドリフト層140のうちで低自由電子濃度領域となっている。これにより、ドリフト層140の基板100側の高自由電子濃度領域では、伝導帯ECLとフェルミ準位Eとの差は小さくなり、一方で、ドリフト層140の表面側の低自由電子濃度領域では、伝導帯ECHとフェルミ準位Eとの差は大きくなっている。その結果、ドリフト層140の伝導帯は、積層方向に向かって徐々に上昇するように傾斜している。
 ドリフト層140と下地n型半導体層120との接合界面付近では、ドリフト層140の自由電子濃度が、下地n型半導体層120に近づくにつれて徐々に増加し、下地n型半導体層120の自由電子濃度に近くなっている。これにより、ドリフト層140の伝導帯と下地n型半導体層120の伝導帯とは緩やかに接合され、ドリフト層140の伝導帯と下地n型半導体層120との間のエネルギー障壁は小さくなっている。その結果、順バイアスを印加したとき、下地n型半導体層120からドリフト層140に向けて電子を滑らかに移動させることができ、オン抵抗を低減することができる。
 一方、ドリフト層140と第1p型半導体層220との接合界面付近では、ドリフト層140の自由電子濃度が、第1p型半導体層220に近づくにつれて徐々に減少し、第1p型半導体層220の正孔濃度よりも低くなっている。当該接合界面付近における空乏層は、接合界面から第1p型半導体層220側に向けてあまり広がらないが、接合界面からドリフト層140側に向けて広がっている。これにより、当該接合界面付近における伝導帯の傾き(電界強度)は緩やかになっている。逆バイアスを印加したとき、空乏層は、逆バイアス印加前の空乏層の状態から、さらに下地n型半導体層120側に向けて広がる。このとき、ドリフト層140と第1p型半導体層220との接合界面付近における伝導帯の傾きが最も大きくなる。しかしながら、上記したように、ドリフト層140の表面側の自由電子濃度が低くなり、空乏層がドリフト層140内に広がっていることにより、逆バイアスを印加したときにおいても、当該接合界面付近における伝導帯の傾きは、過度に急峻になることが抑制される。これにより、ドリフト層140と第1p型半導体層220との接合界面付近においてアバランシェ降伏が発生することを抑制することができ、耐圧を向上させることができる。
 さらに詳細には、図2(a)に示すように、本実施形態では、ドリフト層140における濃度差N-Nが、積層方向に向かって直線状に(線形に)減少している。これにより、ドリフト層140の全体に亘って伝導帯の傾斜を滑らか且つ緩やかにすることができる。その結果、順バイアスを印加したときのオン抵抗を安定的に低減することができるとともに、逆バイアスを印加したときの耐圧を安定的に向上させることができる。
 本実施形態のように、ドリフト層140における濃度差N-Nが、積層方向に向かって直線状に(線形に)増加している場合、ドリフト層140の表面側からの深さに対するN-Nの傾きの絶対値は、例えば、5.0×1014個/cm・μm-1以上3.0×1016個/cm・μm-1以下とする。N-Nの傾きの絶対値が5.0×1014個/cm・μm-1未満であると、N-Nが低いときには、ドリフト層140と下地n型半導体層120との接合界面で伝導帯のエネルギー障壁が大きくなり、順バイアスを印加したときのオン抵抗が高くなる可能性がある。一方で、N-Nが高いときには、ドリフト層140と第1p型半導体層220との接合界面付近における伝導帯の傾きが大きくなり、逆バイアスを印加したときの耐圧が低下する可能性がある。したがって、N-Nの傾きの絶対値が5.0×1014個/cm・μm-1未満であると、順バイアスを印加したときのオン抵抗の低減と、逆バイアスを印加したときの耐圧の向上とを両立することが困難となる。これに対して、N-Nの傾きの絶対値を5.0×1014個/cm・μm-1以上とすることにより、ドリフト層140と下地n型半導体層120との接合界面で伝導帯のエネルギー障壁を小さくしつつ、ドリフト層140と第1p型半導体層220との接合界面付近における伝導帯の傾きを小さくすることができる。その結果、順バイアスを印加したときのオン抵抗の低減と、逆バイアスを印加したときの耐圧の向上とを両立することが可能となる。一方で、N-Nの傾きの絶対値が3.0×1016個/cm・μm-1超であると、ドリフト層140中のドナー濃度Nの最大値または最小値を上記した所定の範囲内とすることが困難となる。これに対して、N-Nの傾きの絶対値を3.0×1016個/cm・μm-1以下とすることにより、ドリフト層140中のドナー濃度Nの最大値または最小値が上記した所定の範囲内とすることができる。
(ドリフト層中のドナーおよび炭素等の各濃度について)
 次に、図2(b)を用い、具体的なドリフト層140中のドナー濃度Nおよび炭素の全濃度Nなどの分布に関して説明する。図2(b)は、ドリフト層におけるドナーおよび炭素の各濃度を示す図である。図2(b)において、横軸は、図2(a)と同様に、ドリフト層140の表面側からの位置(深さ)を示している。縦軸は、ドリフト層140中のドナーおよび炭素の各濃度を示している。なお、上述のように、ドリフト層140中のドナー濃度Nおよび炭素の全濃度Nなどは、例えば、SIMSによって測定することができる。
(ドナー濃度)
 図2(b)に示すように、ドリフト層140中のドナー濃度Nは、例えば、積層方向に向かって直線状に減少している。なお、上述したように、ドリフト層140中のドナー濃度Nの最大値および最小値は、1.0×1015個/cm以上5.0×1016個/cm以下の範囲内に入っており、ドリフト層140中のドナー濃度Nは、ドリフト層140の全域に亘って、少なくともドリフト層140中の炭素の濃度Nの1/3倍以上となっている。
(炭素濃度)
 一方、ドリフト層140中のドナー濃度Nが5.0×1016個/cm以下であり、ドリフト層140中のドナー濃度Nがドリフト層140の全域に亘ってドリフト層140中でアクセプタとして機能する炭素の濃度N以上であり、さらに、ドリフト層140における濃度差N-Nが積層方向に向かって徐々に減少しているという3つの条件が満たされれば、ドリフト層140中の炭素の全濃度Nは、積層方向に対して任意の分布とすることができる。
 具体的には、例えば、図2(b)の(A)の場合のように、ドリフト層140中の炭素の全濃度Nは、積層方向に向かって徐々に増加させてもよい。つまり、ドリフト層140中の炭素の全濃度Nを、ドリフト層140中のドナー濃度Nに対して反対の方向に変化させてもよい。この場合、ドリフト層140と下地n型半導体層120との接合界面付近では、ドナーが多く、アクセプタとしての炭素が少なくなる。これにより、当該接合界面付近(ドリフト層140の基板100側)における自由電子が多くなり、ドリフト層140と下地n型半導体層120との接合界面で伝導帯のエネルギー障壁を小さくすることができる。その結果、順バイアスを印加したときのオン抵抗を低減することができる。一方、ドリフト層140と第1p型半導体層220との接合界面付近では、ドナーが少なく、アクセプタとしての炭素が多くなる。これにより、当該接合界面付近(ドリフト層140の表面側)における自由電子が少なくなり、ドリフト層140と第1p型半導体層220との接合界面付近における伝導帯の傾きを小さくすることができる。その結果、逆バイアスを印加したときの耐圧を向上させることができる。このように、(A)の場合では、ドナー濃度Nの傾きが小さい場合であっても、ドリフト層140における濃度差N-Nの傾き、すなわち、自由電子濃度の傾きを大きくすることができる。その結果、順バイアスを印加したときのオン抵抗の低減と、逆バイアスを印加したときの耐圧の向上とを両立し易くすることができる。また、ドリフト層140と下地n型半導体層120との接合界面側(ドリフト層140の基板100側)の炭素濃度Nを低下させることにより、当該ドリフト層140の基板100側の結晶性を向上させることができ、後述する半導体装置20における当該ドリフト層140の基板100側での損失を低減させることができる。
 または、例えば、図2(b)の(B)の場合のように、ドリフト層140中の炭素の全濃度Nは、積層方向に向かって一定としてもよい。この場合によれば、ドリフト層140の成長時に、成長条件としてドナー原料の流量を変化させるだけで、ドリフト層140における濃度差N-Nを所定の分布とすることができる。つまり、炭素濃度を制御するためにドナー原料の流量以外の成長条件(例えば後述の成長速度等)を調整する必要がなく、成長時の制御を簡略化することができる。
 または、例えば、図2(b)の(C)の場合のように、ドリフト層140中の炭素濃度Nは、積層方向に向かって徐々に減少させてもよい。この場合、ドリフト層140の表面側では、アクセプタとしての炭素によってドナーが補償される量が減少する。これにより、ドリフト層140の表面側に、少ないながらも所定量の自由電子を確保することができる。その結果、ドリフト層140の表面側の抵抗が過剰に上昇することを抑制することができる。また、ドリフト層140と第1p型半導体層220との接合界面側(ドリフト層140の表面側)の炭素濃度Nを低下させることにより、当該ドリフト層140の表面側の結晶性を向上させることができ、後述する半導体装置20における当該ドリフト層140の表面側での損失を低減させることができる。
 ドリフト層140中の炭素の全濃度Nの具体的な範囲に関しては、ドリフト層140中の炭素の全濃度Nは、例えば、5.0×1016個/cm以下とする。ドリフト層140中の炭素濃度Nが5.0×1016個/cm超であると、ドリフト層140の結晶性が低下し、後述する半導体装置20の損失が増加する可能性がある。これに対して、ドリフト層140中の炭素濃度Nが5.0×1016個/cm以下であることにより、ドリフト層140の結晶性を向上させ、半導体装置20を低損失化させることができる。なお、ドリフト層140中の炭素濃度Nは低ければ低いほど良いため、炭素濃度Nの下限値については特に限定されるものではない。
(水素濃度)
 ドリフト層140は、ドナーおよび炭素のほかに、水素(H)も含んでいる。水素は、例えば、ドリフト層140の結晶成長時に用いられるIII族有機金属原料やドナー原料などに起因して、ドリフト層140中に取り込まれる。ドリフト層140中の水素濃度は、例えば、5.0×1016個/cm以下、好ましくは、1.0×1016個/cm以下とする。ドリフト層140中の水素濃度が5.0×1016個/cm超であると、ドリフト層140の結晶性が低下し、後述する半導体装置20の損失が増加する可能性がある。これに対して、ドリフト層140中の水素濃度を5.0×1016個/cm以下とすることにより、ドリフト層140の結晶性を向上させ、半導体装置20を低損失化させることができる。なお、ドリフト層140中の水素濃度は低ければ低いほど良いため、水素濃度の下限値については特に限定されるものではない。
(2)半導体装置
 次に、図4を用い、本実施形態に係る半導体装置について説明する。図4は、本実施形態に係る半導体装置を示す断面図である。
 図4に示すように、本実施形態に係る半導体装置20は、上述の窒化物半導体基板10を用いて製造された縦型pn接合ダイオードとして構成され、例えば、基板100と、下地n型半導体層120と、ドリフト層140と、第1p型半導体層220と、第2p型半導体層240と、アノード310と、絶縁膜400と、カソード360と、を有している。
 ドリフト層140、第1p型半導体層220、および第2p型半導体層240は、メサ構造180を形成している。メサ構造180は、例えば、四角錐台形または円錐台形となっており、平面視でのメサ構造180の断面積は、積層方向に向かって徐々に小さくなっている。これにより、メサ構造180は、順テーパの側面を有している。このようなメサ構造180を形成することにより、後述する第1アノード320の端部への電界集中を緩和し、半導体装置20の耐圧を向上させることができる。
 また、上記のようにメサ構造180を形成することにより、ドリフト層140における濃度差N-Nが積層方向に向かって徐々に減少している領域の一部が、メサ構造180の一部を構成している。ここで、本実施形態のようなメサ構造180では、メサ構造180の側面近傍のpn接合界面付近において電界集中が生じ易い。しかしながら、本実施形態では、上記したメサ構造180の側面近傍のpn接合界面付近の領域においても、ドリフト層140における濃度差N-Nが積層方向に向かって徐々に減少している。これにより、当該メサ構造180の側面近傍のpn接合界面付近の領域においても、空乏層はpn接合界面からドリフト層140側に向けて広がっており、当該領域での電界が緩和されている。その結果、逆バイアスを印加したときに、メサ構造180の側面近傍のpn接合界面付近の領域でアバランシェ降伏が生じることを抑制し、半導体装置20の耐圧を向上させることが可能となる。
 アノード(p側電極)310のうちの第1アノード(p型コンタクト電極)320は、メサ構造180の上面、すなわち第2p型半導体層240の上に設けられている。第1アノード320は、第2p型半導体層240とオーミック接触する材料により構成され、例えば、パラジウム(Pd)、Pdおよびニッケル(Ni)の合金(Pd/Ni)、またはNiおよび金の合金(Ni/Au)からなっている。
 絶縁膜400は、メサ構造180の外側のドリフト層140の表面、メサ構造180の側面、および第2p型半導体層240の表面の一部(メサ構造180の上面の周囲)を覆うように設けられている。これにより、絶縁膜400は、ドリフト層140等と後述する第2アノード340とを絶縁するとともに、ドリフト層140等を保護するよう機能している。なお、絶縁膜400は、第1アノード320と後述する第2アノード340とを接触させるための開口を有している。
 本実施形態の絶縁膜400は、例えば、二層構造となっており、第1絶縁膜420および第2絶縁膜440を有している。第1絶縁膜420は、例えば、スピンコート法などの塗布法により形成されるSOG(Spin On Glass)膜からなっている。第2絶縁膜440は、例えば、スパッタ等により形成される酸化シリコン(SiO)膜からなっている。
 アノード310のうちの第2アノード(p側電極パッド)340は、絶縁膜400の開口内で第1アノード320に接するとともに、絶縁膜400上において第1アノード320よりも外側に延在しメサ構造180を覆うように設けられている。詳細には、第2アノード340は、半導体装置20を上方から平面視したときに、メサ構造180の外側のドリフト層140の表面の一部、メサ構造180の側面、およびメサ構造180の上面と重なるように設けられている。これにより、第1アノード320の端部や、メサ構造180の側面近傍のpn接合界面付近に電界が集中することを抑制することができる。なお、第2アノード340は、例えば、チタン(Ti)およびアルミニウム(Al)の合金(Ti/Al)からなっている。
 カソード360は、基板100の裏面側に設けられている。カソード360は、n型GaNからなる基板100とオーミック接触する材料により構成され、例えば、Ti/Alからなっている。
(3)窒化物半導体基板の製造方法(半導体装置の製造方法)
 次に、図1、図2および図4を用い、本実施形態に係る窒化物半導体基板の製造方法、および半導体装置の製造方法について説明する。
(ステップ1:基板の用意)
 図1に示すように、n型の単結晶GaN基板としての基板100を用意する。
(ステップ2:下地n型半導体層の形成)
 次に、例えば、有機金属気相成長(MOVPE:Metal Organic Vapor Phase Epitaxy)装置を用い、以下の手順により、下地n型半導体層120等の窒化物半導体層を基板100上に形成する。
 まず、MOVPE装置の処理室内に、基板100を搬入する。そして、MOVPE装置の処理室内に、水素ガス(または、水素ガスおよび窒素ガスの混合ガス)を供給し、基板100を所定の成長温度(例えば1000℃以上1100℃以下)まで昇温させる。基板100の温度が所定の成長温度となったら、例えば、III族有機金属原料としてトリメチルガリウム(TMG)と、V族原料としてアンモニア(NH)ガスとを、基板100に対して供給する。これと同時に、例えば、ドナー原料としてモノシラン(SiH)ガスを基板100に対して供給する。これにより、n型の単結晶GaNからなる基板100上に、n+型GaN層としての下地n型半導体層120がエピタキシャル成長される。なお、このときの結晶成長は、積層方向に対して同じGaN結晶を成長させるホモエピタキシャル成長であるため、結晶性の良い下地n型半導体層120を基板100上に形成することができる。
(ステップ3:ドリフト層の形成)
 次に、下地n型半導体層120上に、n-型GaN層としてのドリフト層140をエピタキシャル成長させる。このとき、ドリフト層140中のドナー濃度Nが5.0×1016個/cm以下となり、ドリフト層140中のドナー濃度Nがドリフト層140の全域に亘ってドリフト層140中でアクセプタとして機能する炭素の濃度N以上となり、さらに、ドリフト層140における濃度差N-Nが、積層方向に向かって徐々に減少するように、各種成長条件を調整する。
 具体的には、図2(b)に示すように、ドリフト層140中のドナー濃度Nが5.0×1016個/cm以下の範囲内で積層方向に向かって徐々に減少するように、ドナー原料の流量を、ドリフト層140を成長させていくにしたがって徐々に減少させる。
 また、III族有機金属原料に起因して取り込まれる炭素の濃度も考慮して、ドリフト層140中のドナー濃度Nがドリフト層140の全域に亘って少なくとも炭素の全濃度Nの1/3倍以上となるように、ドナー原料の流量と他の成長条件とを相対的に調整する。具体的には、ドリフト層140成長時のTMGの流量(成長速度)、V/III比(III族有機金属原料の流量に対するV族原料の流量の比率)、成長温度等を調整することにより、炭素の全濃度Nを調整することができる。
 なお、上述したように、ドリフト層140中のドナー濃度Nが5.0×1016個/cm以下であり、ドリフト層140中のドナー濃度Nがドリフト層140の全域に亘ってドリフト層140中でアクセプタとして機能する炭素の濃度N以上であり、さらに、ドリフト層140における濃度差N-Nが積層方向に向かって徐々に減少しているという3つの条件が満たされれば、ドリフト層140中の炭素の全濃度Nを、積層方向に対して任意の分布とすることができる。
 例えば、図2(b)の(A)に示すように、ドリフト層140中の炭素の全濃度Nが積層方向に向かって徐々に増加するように、成長条件を調整してもよい。この場合、具体的には、ドリフト層140を成長させていくにしたがって、TMGの流量(ドリフト層140の成長速度)を徐々に大きくしていく。または、例えば、ドリフト層140を成長させていくにしたがって、V/III比を徐々に小さくしていく。または、例えば、ドリフト層140を成長させていくにしたがって、成長温度を徐々に低くしていく。このような成長条件により、ドリフト層140中の炭素の全濃度Nを積層方向に向かって徐々に増加させることができる。なお、炭素の全濃度Nを微量に変化させる必要があるため、成長圧力の調整を行わないことが好ましい。
 または、例えば、図2(b)の(B)に示すように、ドリフト層140中の炭素の全濃度Nが積層方向に向かって一定となるように、ドナー流量以外の成長条件を維持してもよい。この場合、具体的には、ドリフト層140を成長させていく際に、ドリフト層140の成長速度、V/III比、成長温度、および成長圧力を一定に維持する。このような成長条件により、ドリフト層140中の炭素の全濃度Nを積層方向に向かって一定とすることができる。
 または、例えば、図2(b)の(C)に示すように、ドリフト層140中の炭素の全濃度Nが積層方向に向かって徐々に減少するように、成長条件を調整してもよい。この場合、具体的には、ドリフト層140を成長させていくにしたがって、TMGの流量(ドリフト層140の成長速度)を徐々に小さくしていく。または、例えば、ドリフト層140を成長させていくにしたがって、V/III比を徐々に大きくしていく。または、例えば、ドリフト層140を成長させていくにしたがって、成長温度を徐々に高くしていく。このような成長条件により、ドリフト層140中の炭素の全濃度Nを積層方向に向かって徐々に減少させることができる。なお、この場合においても、炭素の全濃度Nを微量に変化させる必要があるため、成長圧力の調整を行わないことが好ましい。
(ステップ4:第1p型半導体層の形成)
 次に、ドリフト層140上に、p型GaN層としての第1p型半導体層220をエピタキシャル成長させる。このとき、ドナー原料に代えて、例えば、アクセプタ原料としてビスシクロペンタジエニルマグネシウム(CpMg)を基板100に対して供給する。
(ステップ5:第2p型半導体層の形成)
 次に、第1p型半導体層220上に、ステップ4と同様の処理手順により、p+型GaN層としての第2p型半導体層240をエピタキシャル成長させる。
(ステップ6:搬出)
 第2p型半導体層240の成長が完了したら、III族有機金属原料の供給と、基板100の加熱とを停止する。そして、基板100の温度が500℃以下となったら、V族原料の供給を停止する。その後、MOVPE装置の処理室内の雰囲気をNガスへ置換して大気圧に復帰させるとともに、処理室内を基板搬出可能な温度にまで低下させた後、成長後の基板100を処理室内から搬出する。
 以上のステップ1~6により、本実施形態の窒化物半導体基板10が製造される。その後、当該窒化物半導体基板10は、半導体装置20を製造するためのエピウエハとして、半導体装置20の製造メーカなどに供給される。
(ステップ7:半導体装置の製造)
 次に、図4に示すように、例えばRIE(Reactive Ion Etching)法により、第2p型半導体層240、第1p型半導体層220、およびドリフト層140の一部をエッチングする。これにより、第2p型半導体層240、第1p型半導体層220、およびドリフト層140にメサ構造180を形成する。次に、メサ構造180およびドリフト層140の表面を覆うように、例えばスパッタ法によりPd/Ni膜を形成し、所定の形状にパターニングする。これにより、メサ構造180の上面、すなわち第2p型半導体層240の上に第1アノード320を形成する。次に、メサ構造180およびドリフト層140の表面を覆うように、例えばスピンコート法によりSOG膜を形成し、その上に例えばスパッタ法によりSiO膜を形成し、所定の形状にパターニングする。これにより、メサ構造180の外側のドリフト層140の表面、メサ構造180の側面、および第2p型半導体層240の表面の一部(メサ構造180の上面の周囲)を覆うように、第1絶縁膜420および第2絶縁膜440を有する絶縁膜400を形成する。次に、絶縁膜400の開口内の第1アノード320および絶縁膜400を覆うように、例えばスパッタ法によりTi/Al膜を形成し、所定の形状にパターニングする。これにより、絶縁膜400の開口内で第1アノード320に接するとともに、絶縁膜400上において第1アノード320よりも外側に延在しメサ構造180を覆うように、第2アノード340を形成する。さらに、基板100の裏面側に例えばスパッタ法によりTi/Al膜を形成することで、カソード360を形成する。
 以上のステップ7により、本実施形態の半導体装置20が製造される。
(4)本実施形態により得られる効果
 本実施形態によれば、以下に示す1つまたは複数の効果が得られる。
(a)ドリフト層140のドナー濃度は、5.0×1016個/cm以下としつつ、ドリフト層140の全域に亘って、ドリフト層140中でアクセプタとして機能する炭素の濃度N以上としている(N≧N)。これにより、ドナー濃度が5.0×1016個/cm以下のように低濃度領域にある状態で、ドリフト層140中の炭素の少なくとも一部がドナーを補償していたとしても、ドリフト層140の全域に亘って所定量の自由電子を生成させることができる。その結果、ドリフト層140をn型層として機能させることが可能となる。
(b)ドリフト層140中のドナー濃度Nからドリフト層140中でアクセプタとして機能する炭素の濃度Nを引いた差N-Nは、基板100側からドリフト層140の表面側に向かって徐々に減少している。ドリフト層140における濃度差N-Nをこのような所定の分布とすることにより、ドリフト層140中の炭素の少なくとも一部がドナーを補償していたとしても、所望の自由電子濃度分布を得ることができる。この場合では、例えば、自由電子濃度を基板100側からドリフト層140の表面側に向かって徐々に減少させることが可能となる。
(c)ドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって徐々に減少していることにより、ドリフト層140と第1p型半導体層220との接合界面付近では、ドリフト層140の自由電子濃度が、第1p型半導体層220に近づくにつれて徐々に減少している。これにより、ドリフト層140と第1p型半導体層220との接合界面付近における空乏層は、当該接合界面からドリフト層140側に向けて広がり、当該接合界面付近における伝導帯の傾き(電界強度)は緩やかになっている。これにより、逆バイアスを印加したとき、ドリフト層140と第1p型半導体層220との接合界面付近における伝導帯の傾きが過度に急峻になることを抑制することができる。その結果、ドリフト層140と第1p型半導体層220との接合界面付近においてアバランシェ降伏が発生することを抑制することができ、耐圧を向上させることができる。
(d)ドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって徐々に減少していることにより、ドリフト層140と下地n型半導体層120との接合界面付近では、ドリフト層140の自由電子濃度が、下地n型半導体層120に近づくにつれて徐々に増加している。これにより、ドリフト層140の伝導帯と下地n型半導体層120の伝導帯とは緩やかに接合され、ドリフト層140の伝導帯と下地n型半導体層120との間のエネルギー障壁は小さくなっている。その結果、順バイアスを印加したとき、下地n型半導体層120からドリフト層140に向けて電子を滑らかに移動させることができ、オン抵抗を低減することができる。したがって、本実施形態では、順バイアスを印加したときのオン抵抗の低減と、逆バイアスを印加したときの耐圧の向上とを両立することが可能となる。
(e)ドリフト層140において、アクセプタとして機能する炭素の濃度Nは、炭素の全濃度Nの少なくとも1/3倍以上となっていることから、本実施形態のドリフト層140中のドナー濃度Nは、ドリフト層140の全域に亘ってドリフト層140中の炭素の全濃度Nの1/3倍以上としている。これにより、ドリフト層140中のドナー量を、アクセプタとしての炭素によって補償される量よりも多くすることができ、ドリフト層140中に所定量の自由電子を生成することができる。その結果、ドリフト層140をn型層として機能させ、ドリフト層140の抵抗が過剰に高くなることを抑制することができる。
(f)ドリフト層140中の水素濃度は、5.0×1016個/cm以下とする。これにより、ドリフト層140の結晶性を向上させ、半導体装置20を低損失化させることができる。
<他の実施形態>
 以上、本発明の実施形態を具体的に説明した。しかしながら、本発明は上述の実施形態に限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。
(a)上述の実施形態では、ドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって直線状に減少している場合について説明したが、ドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって徐々に減少していれば、以下のような変形例を適用してもよい。
 図5(a)は変形例1のドリフト層中のドナー濃度Nからドリフト層中でアクセプタとして機能する炭素の濃度Nを引いた差を示す図である。
 図5(a)の変形例1に示すように、ドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって階段状に減少していてもよい。この場合、ドリフト層140は、複数層からなり、隣接する2つの層のうち上側の層のN-Nが下側の層のN-Nよりも低くなっていると考えてもよい。変形例1によれば、上述の実施形態と同様の効果を得ることができる。また、変形例1によれば、ドリフト層140を成長させていくにしたがって、成長条件を段階的に切り替えることができ、成長条件の制御を容易にすることが可能となる。ただし、変形例1では、ドリフト層140の伝導帯も階段状となるため、N-Nの段差部分で伝導帯のエネルギー障壁が生じ、順バイアスを印加したときのオン抵抗が高くなるおそれがある。また、N-Nの段差部分で伝導帯の傾斜が急峻となり、逆バイアスを印加したときの耐圧が低下するおそれがある。したがって、上述の実施形態(図2(a))のようにドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって直線状に減少しているほうが、ドリフト層140の伝導帯の傾斜を滑らか且つ緩やかにすることができ、順バイアスを印加したときのオン抵抗の低減と、逆バイアスを印加したときの耐圧の向上とを両立することができる点で、好ましい。
 図5(b)は変形例2のドリフト層中のドナー濃度Nからドリフト層中でアクセプタとして機能する炭素の濃度Nを引いた差を示す図である。
 図5(b)の変形例2に示すように、ドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって非線形に減少していてもよい。この場合では、例えば、N-Nの傾きが基板100側からドリフト層140の中間位置に向かって徐々に大きくなり、N-Nの傾きがドリフト層140の中間位置側からドリフト層140の表面側に向かって徐々に小さくなっている。なお、N-Nの変化は、多次関数、対数関数、指数関数、またはこれらの組合せであってもよい。変形例2によれば、上述の実施形態と同様の効果を得ることができる。なお、参考までに、上述の実施形態では、ドリフト層140を成長させていくにしたがって成長条件を線形に変化させていたが、成長条件に対応するようにN-Nが線形に変化しないことがある。このような場合には、N-Nを直線状に変化させることが困難となる。しかしながら、ドリフト層140における濃度差N-Nが基板100側からドリフト層140の表面側に向かって徐々に減少していれば、変形例2のようにN-Nの変化が非線形であっても、ドリフト層140の自由電子濃度を第1p型半導体層220に近づくにつれて徐々に減少させるとともに、ドリフト層140の自由電子濃度を下地n型半導体層120に近づくにつれて徐々に増加させることができる。これにより、変形例2においても、上述の実施形態と同様に、順バイアスを印加したときのオン抵抗の低減と、逆バイアスを印加したときの耐圧の向上とを両立することが可能となる。
(b)上述の実施形態では、窒化物半導体基板10がpn接合ダイオードを製造するためのウエハとして構成され、半導体装置20がpn接合ダイオードとして構成されている場合について説明したが、窒化物半導体基板および半導体装置は、以下のような変形例3を適用してもよい。
 図6は、変形例3に係る窒化物半導体基板を示す断面図である。
 図6に示すように、変形例3の窒化物半導体基板12は、ショットキーバリアダイオード(SBD)を製造するためのウエハとして構成され、例えば、基板102と、下地n型半導体層122と、ドリフト層142と、を有し、p型半導体層を有していない。ドリフト層142における濃度差N-Nは、基板102側からドリフト層142の表面側に向かって徐々に減少している。
 図7は、変形例3に係る半導体装置を示す断面図である。
 図7に示すように、変形例3の半導体装置22は、上述の窒化物半導体基板12を用いて製造されたSBDとして構成され、例えば、基板102と、下地n型半導体層122と、ドリフト層142と、絶縁膜402と、アノード312と、カソード362と、を有している。変形例3では、上述の実施形態のようなメサ構造は形成されておらず、例えば、絶縁膜402は、ドリフト層142の平坦な表面上に設けられている。また、絶縁膜402は、ドリフト層142とアノード312とを接触させるための開口を有している。アノード312は、いわゆるフィールドプレート電極として構成されている。すなわち、アノード312は、絶縁膜402の開口内でドリフト層142に接するとともに、絶縁膜402上において絶縁膜402の開口よりも外側に延在している。これにより、アノード312とドリフト層142との接する領域の端部に電界が集中することを抑制することができる。アノード312は、ドリフト層140とショットキー障壁を形成するよう構成され、例えば、Pd、Pd/Ni、またはNi/Auからなっている。また、カソード362は、基板102の裏面側に設けられている。
 変形例3によれば、半導体装置22がSBDであっても、上述の実施形態と同様の効果を得ることができる。また、本変形例の半導体装置22のようなSBDは、pn接合ダイオードよりも耐圧が低いことで知られているが、本変形例によれば、ドリフト層142における濃度差N-Nに上記した勾配を設けることで、SBDとしての半導体装置22の耐圧を向上させることが可能となる。
(c)上述の実施形態では、基板100がn型GaN基板である場合について説明したが、基板は、n型半導体からなっていれば、GaN以外の半導体基板として構成されていてもよい。具体的には、基板は、例えば、n型SiC基板として構成されていてもよい。ただし、基板上の窒化物半導体層の結晶性を向上させるためには、基板はn型GaN基板であることが好ましい。
(d)上述の実施形態では、基板100とドリフト層140との間に下地n型半導体層120が介在する場合について説明したが、下地n型半導体層は設けられていなくてもよい。すなわち、基板上にドリフト層が直接設けられていてもよい。
(e)上述の実施形態では、ドリフト層140上に第1p型半導体層220と第2p型半導体層240とが設けられている場合について説明したが、ドリフト層上のp型半導体層は1層だけであってもよい。
(f)上述の実施形態では、MOVPE装置を用い、ドリフト層140等の窒化物半導体層を形成する場合について説明したが、ハイドライド気相成長(HVPE:Hydride Vapor Phase Epitaxy)装置を用い、ドリフト層140等の窒化物半導体層を形成してもよい。ただし、この場合、ドリフト層140を形成する際に、炭素原料として炭化水素ガスを基板100に対して供給し、炭素原料の流量を調整することで、ドリフト層140中の炭素の全濃度Nを積層方向に対して所定の分布とすることができる。
<本発明の好ましい態様>
 以下、本発明の好ましい態様について付記する。
(付記1)
 n型の半導体からなる基板と、
 前記基板上に設けられ、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層と、
を有し、
 前記ドリフト層中の前記ドナーの濃度は、5.0×1016個/cm以下であって、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上であり、
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少している窒化物半導体基板。
(付記2)
 前記ドリフト層中の前記ドナーの濃度は、前記ドリフト層の全域に亘って、前記ドリフト層中の前記炭素の全濃度の1/3倍以上である付記1に記載の窒化物半導体基板。
(付記3)
 前記ドリフト層は、水素を含み、
 前記ドリフト層中の前記水素の濃度は、5.0×1016個/cm以下である付記1又は2に記載の窒化物半導体基板。
(付記4)
 前記基板は、単結晶の窒化ガリウムからなる付記1~3のいずれかに記載の窒化物半導体基板。
(付記5)
 前記基板の主面における転位密度は、1×10個/cm以下である付記4に記載の窒化物半導体基板。
(付記6)
 前記ドリフト層中の前記ドナーの濃度は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少し、
 前記ドリフト層中の前記炭素の全濃度は、前記基板側から前記ドリフト層の表面側に向かって徐々に増加している付記1~5のいずれかに記載の窒化物半導体基板。
(付記7)
 前記ドリフト層中の前記ドナーの濃度は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少し、
 前記ドリフト層中の前記炭素の全濃度は、前記基板側から前記ドリフト層の表面側に向かって一定となっている付記1~5のいずれかに記載の窒化物半導体基板。
(付記8)
 前記ドリフト層中の前記ドナーの濃度は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少し、
 前記ドリフト層中の前記炭素の全濃度は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少している付記1~5のいずれかに記載の窒化物半導体基板。
(付記9)
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって直線状に徐々に減少している付記1~8のいずれかに記載の窒化物半導体基板。
(付記10)
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって階段状に徐々に減少している付記1~8のいずれかに記載の窒化物半導体基板。
(付記11)
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって非線形に徐々に減少している付記1~8のいずれかに記載の窒化物半導体基板。
(付記12)
 n型の半導体からなる基板と、
 前記基板上に設けられ、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層と、
を有し、
 前記ドリフト層中の前記ドナーの濃度は、5.0×1016個/cm以下であって、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上であり、
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少している半導体装置。
(付記13)
 n型の半導体からなる基板上に、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層を形成する工程を有し、
 前記ドリフト層を形成する工程では、
 前記ドリフト層中の前記ドナーの濃度を、5.0×1016個/cm以下としつつ、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上とし、
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差を、前記基板側から前記ドリフト層の表面側に向かって徐々に減少させる窒化物半導体基板の製造方法。
(付記14)
 n型の半導体からなる基板上に、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層を形成する工程を有し、
 前記ドリフト層を形成する工程では、
 前記ドリフト層中の前記ドナーの濃度を、5.0×1016個/cm以下としつつ、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上とし、
 前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差を、前記基板側から前記ドリフト層の表面側に向かって徐々に減少させる半導体装置の製造方法。
10,12 窒化物半導体基板
20,22 半導体装置
100,102 基板
140,142 ドリフト層

Claims (5)

  1.  n型の半導体からなる基板と、
     前記基板上に設けられ、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層と、
    を有し、
     前記ドリフト層中の前記ドナーの濃度は、5.0×1016個/cm以下であって、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上であり、
     前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少している窒化物半導体基板。
  2.  前記ドリフト層中の前記ドナーの濃度は、前記ドリフト層の全域に亘って、前記ドリフト層中の前記炭素の全濃度の1/3倍以上である請求項1に記載の窒化物半導体基板。
  3.  前記ドリフト層は、水素を含み、
     前記ドリフト層中の前記水素の濃度は、5.0×1016個/cm以下である請求項1又は2に記載の窒化物半導体基板。
  4.  n型の半導体からなる基板と、
     前記基板上に設けられ、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層と、
    を有し、
     前記ドリフト層中の前記ドナーの濃度は、5.0×1016個/cm以下であって、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上であり、
     前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差は、前記基板側から前記ドリフト層の表面側に向かって徐々に減少している半導体装置。
  5.  n型の半導体からなる基板上に、ドナーおよび炭素を含む窒化ガリウムからなるドリフト層を形成する工程を有し、
     前記ドリフト層を形成する工程では、
     前記ドリフト層中の前記ドナーの濃度を、5.0×1016個/cm以下としつつ、前記ドリフト層の全域に亘って、前記ドリフト層中でアクセプタとして機能する前記炭素の濃度以上とし、
     前記ドリフト層中の前記ドナーの濃度から前記ドリフト層中で前記アクセプタとして機能する前記炭素の濃度を引いた差を、前記基板側から前記ドリフト層の表面側に向かって徐々に減少させる窒化物半導体基板の製造方法。
PCT/JP2017/004983 2016-03-31 2017-02-10 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法 WO2017169176A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/088,221 US10818757B2 (en) 2016-03-31 2017-02-10 Nitride semiconductor substrate, semiconductor device, and method for manufacturing nitride semiconductor substrate
CN201780020285.7A CN109075212B (zh) 2016-03-31 2017-02-10 氮化物半导体基板、半导体装置和氮化物半导体基板的制造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016-070543 2016-03-31
JP2016070543A JP6396939B2 (ja) 2016-03-31 2016-03-31 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法

Publications (1)

Publication Number Publication Date
WO2017169176A1 true WO2017169176A1 (ja) 2017-10-05

Family

ID=59962905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/004983 WO2017169176A1 (ja) 2016-03-31 2017-02-10 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法

Country Status (4)

Country Link
US (1) US10818757B2 (ja)
JP (1) JP6396939B2 (ja)
CN (1) CN109075212B (ja)
WO (1) WO2017169176A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428900B1 (ja) * 2017-11-29 2018-11-28 富士電機株式会社 ダイオード素子およびダイオード素子の製造方法
JP2019197808A (ja) * 2018-05-09 2019-11-14 学校法人法政大学 窒化ガリウム積層基板および半導体装置
JP2021182597A (ja) * 2020-05-19 2021-11-25 豊田合成株式会社 p型III族窒化物半導体の製造方法、半導体装置
WO2023189055A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 半導体装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6656991B2 (ja) 2016-03-31 2020-03-04 株式会社サイオクス 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
JP6624110B2 (ja) 2017-02-10 2019-12-25 株式会社豊田中央研究所 化合物単結晶製造装置、及び化合物単結晶の製造方法
US11056592B2 (en) * 2017-06-30 2021-07-06 Intel Corporation Silicon substrate modification to enable formation of thin, relaxed, germanium-based layer
JP6835019B2 (ja) 2018-03-14 2021-02-24 株式会社豊田中央研究所 半導体装置及びその製造方法
JP6791190B2 (ja) * 2018-04-02 2020-11-25 株式会社豊田中央研究所 窒化物半導体装置および窒化物半導体装置の製造方法
JP7204570B2 (ja) * 2019-04-15 2023-01-16 株式会社東芝 半導体装置及びその製造方法
CN111063724A (zh) * 2019-12-10 2020-04-24 西安电子科技大学 基于漂移区多层渐变掺杂的垂直AlN肖特基二极管及制作方法
CN113555418B (zh) * 2021-07-21 2023-03-10 西安电子科技大学 基于P区和I区渐变掺杂的4H-SiC PIN微波二极管及制作方法
CN113675260A (zh) * 2021-07-29 2021-11-19 西安电子科技大学 基于线性缓变掺杂漂移层的GaN肖特基二极管及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149985A (ja) * 2005-11-28 2007-06-14 Sumitomo Electric Ind Ltd 窒化物半導体装置、エピタキシャル基板および窒化ガリウム系エピタキシャル膜を形成する方法
JP2010219490A (ja) * 2009-02-20 2010-09-30 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体膜を成長する方法、窒化ガリウム系半導体電子デバイスを作製する方法、エピタキシャル基板、及び窒化ガリウム系半導体電子デバイス
JP2014051423A (ja) * 2012-09-10 2014-03-20 Hitachi Metals Ltd Iii族窒化物系半導体結晶、iii族窒化物半導体基板、iii族窒化物半導体自立基板、窒化物半導体デバイス、及び整流ダイオード
JP2014056942A (ja) * 2012-09-12 2014-03-27 Toshiba Corp 電力用半導体装置

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224253B2 (ja) 2002-04-24 2009-02-12 パナソニック株式会社 半導体装置及びその製造方法
JP4986472B2 (ja) 2006-02-13 2012-07-25 日本電信電話株式会社 窒化物半導体構造
JP5064824B2 (ja) 2006-02-20 2012-10-31 古河電気工業株式会社 半導体素子
JP5707767B2 (ja) * 2010-07-29 2015-04-30 住友電気工業株式会社 半導体装置
JP6090763B2 (ja) 2011-10-17 2017-03-08 ローム株式会社 半導体装置
JP2013197357A (ja) 2012-03-21 2013-09-30 Hitachi Cable Ltd 窒化物半導体デバイス及びその製造方法
US8952481B2 (en) 2012-11-20 2015-02-10 Cree, Inc. Super surge diodes
JP2014130951A (ja) * 2012-12-28 2014-07-10 Sumitomo Electric Ind Ltd 半導体装置
JP6330407B2 (ja) 2014-03-20 2018-05-30 住友電気工業株式会社 Iii族窒化物半導体素子、iii族窒化物半導体エピタキシャル基板およびiii族窒化物半導体素子の製造方法
PL231548B1 (pl) * 2014-09-11 2019-03-29 Ammono Spolka Akcyjna Sposób wytwarzania monokrystalicznego azotku zawierającego gal
US9871108B2 (en) * 2015-04-23 2018-01-16 Rohm Co., Ltd. Nitride semiconductor device
WO2017138505A1 (ja) * 2016-02-12 2017-08-17 パナソニック株式会社 半導体装置
JP6656991B2 (ja) 2016-03-31 2020-03-04 株式会社サイオクス 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007149985A (ja) * 2005-11-28 2007-06-14 Sumitomo Electric Ind Ltd 窒化物半導体装置、エピタキシャル基板および窒化ガリウム系エピタキシャル膜を形成する方法
JP2010219490A (ja) * 2009-02-20 2010-09-30 Sumitomo Electric Ind Ltd 窒化ガリウム系半導体膜を成長する方法、窒化ガリウム系半導体電子デバイスを作製する方法、エピタキシャル基板、及び窒化ガリウム系半導体電子デバイス
JP2014051423A (ja) * 2012-09-10 2014-03-20 Hitachi Metals Ltd Iii族窒化物系半導体結晶、iii族窒化物半導体基板、iii族窒化物半導体自立基板、窒化物半導体デバイス、及び整流ダイオード
JP2014056942A (ja) * 2012-09-12 2014-03-27 Toshiba Corp 電力用半導体装置

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6428900B1 (ja) * 2017-11-29 2018-11-28 富士電機株式会社 ダイオード素子およびダイオード素子の製造方法
JP2019102552A (ja) * 2017-11-29 2019-06-24 富士電機株式会社 ダイオード素子およびダイオード素子の製造方法
JP2019197808A (ja) * 2018-05-09 2019-11-14 学校法人法政大学 窒化ガリウム積層基板および半導体装置
JP7150269B2 (ja) 2018-05-09 2022-10-11 学校法人法政大学 窒化ガリウム積層基板および半導体装置
JP2021182597A (ja) * 2020-05-19 2021-11-25 豊田合成株式会社 p型III族窒化物半導体の製造方法、半導体装置
JP7265108B2 (ja) 2020-05-19 2023-04-26 豊田合成株式会社 p型III族窒化物半導体の製造方法、半導体装置
WO2023189055A1 (ja) * 2022-03-31 2023-10-05 ローム株式会社 半導体装置

Also Published As

Publication number Publication date
JP6396939B2 (ja) 2018-09-26
CN109075212A (zh) 2018-12-21
US20200127101A1 (en) 2020-04-23
US10818757B2 (en) 2020-10-27
CN109075212B (zh) 2021-11-26
JP2017183583A (ja) 2017-10-05

Similar Documents

Publication Publication Date Title
JP6396939B2 (ja) 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
JP6656991B2 (ja) 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法
US9496349B2 (en) P-doping of group-III-nitride buffer layer structure on a heterosubstrate
US8203150B2 (en) Silicon carbide semiconductor substrate and method of manufacturing the same
CN103066103B (zh) 硅衬底上的iii族氮化物的衬底击穿电压改进方法
US20160079370A1 (en) Semiconductor device, semiconductor wafer, and semiconductor device manufacturing method
KR101809329B1 (ko) 실리콘 위에서 ⅲ-ⅴ 재료를 성장시키기 위한 시드 층 구조
US20150311290A1 (en) Epitaxial wafer and switch element and light-emitting element using same
JP6175009B2 (ja) 高耐圧窒化ガリウム系半導体デバイス及びその製造方法
KR20150091706A (ko) 질화물 반도체 소자 및 그 제조 방법
US11430875B2 (en) Method for manufacturing transistor
JP2019067982A (ja) 炭化珪素半導体装置
US10858757B2 (en) Silicon carbide epitaxial substrate and silicon carbide semiconductor device
EP4154322A1 (en) Depletion mode high electron mobility field effect transistor (hemt) semiconductor device having beryllium doped schottky contact layers
JP5746927B2 (ja) 半導体基板、半導体デバイスおよび半導体基板の製造方法
JP6089122B2 (ja) 窒化物半導体積層体およびその製造方法並びに窒化物半導体装置
CN111009579A (zh) 半导体异质结构及半导体器件
CN104937699A (zh) 外延晶片和使用其的开关元件及发光元件
JP5580012B2 (ja) ショットキーバリアダイオード及びその製造方法
CN114530491A (zh) 半导体外延结构及其制备方法和半导体器件
US10998188B2 (en) Gallium nitride laminated substrate and semiconductor device
TW201445737A (zh) 增強型氮化鎵電晶體及其形成方法
KR101910563B1 (ko) 전자 블록층을 갖는 질화물 반도체 소자 및 전자 블록층 성장 방법
US20230207617A1 (en) Semiconductor structure and method for preparing the same
KR20150091704A (ko) 질화물 반도체 소자 및 그 제조 방법

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17773724

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17773724

Country of ref document: EP

Kind code of ref document: A1