JP7150269B2 - 窒化ガリウム積層基板および半導体装置 - Google Patents
窒化ガリウム積層基板および半導体装置 Download PDFInfo
- Publication number
- JP7150269B2 JP7150269B2 JP2018090879A JP2018090879A JP7150269B2 JP 7150269 B2 JP7150269 B2 JP 7150269B2 JP 2018090879 A JP2018090879 A JP 2018090879A JP 2018090879 A JP2018090879 A JP 2018090879A JP 7150269 B2 JP7150269 B2 JP 7150269B2
- Authority
- JP
- Japan
- Prior art keywords
- gallium nitride
- type
- layer
- punch
- breakdown
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 title claims description 240
- 229910002601 GaN Inorganic materials 0.000 title claims description 227
- 239000000758 substrate Substances 0.000 title claims description 79
- 239000004065 semiconductor Substances 0.000 title claims description 54
- 230000015556 catabolic process Effects 0.000 claims description 136
- 239000012535 impurity Substances 0.000 claims description 82
- 230000007547 defect Effects 0.000 claims description 12
- 239000013078 crystal Substances 0.000 description 25
- 238000000034 method Methods 0.000 description 22
- 230000000052 comparative effect Effects 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 150000004767 nitrides Chemical class 0.000 description 4
- 238000007740 vapor deposition Methods 0.000 description 4
- 238000000927 vapour-phase epitaxy Methods 0.000 description 4
- 229910004298 SiO 2 Inorganic materials 0.000 description 3
- 238000001312 dry etching Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 238000002488 metal-organic chemical vapour deposition Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 229910052681 coesite Inorganic materials 0.000 description 2
- 229910052906 cristobalite Inorganic materials 0.000 description 2
- 238000002248 hydride vapour-phase epitaxy Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000012495 reaction gas Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 229910052682 stishovite Inorganic materials 0.000 description 2
- 229910052905 tridymite Inorganic materials 0.000 description 2
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000002109 crystal growth method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004943 liquid phase epitaxy Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000001020 plasma etching Methods 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02365—Forming inorganic semiconducting materials on a substrate
- H01L21/02518—Deposited layers
- H01L21/02521—Materials
- H01L21/02538—Group 13/15 materials
- H01L21/0254—Nitrides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/86—Types of semiconductor device ; Multistep manufacturing processes therefor controllable only by variation of the electric current supplied, or only the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched
- H01L29/861—Diodes
- H01L29/8613—Mesa PN junction diodes
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/38—Nitrides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/40—AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
- C30B29/403—AIII-nitrides
- C30B29/406—Gallium nitride
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/12—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/20—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only AIIIBV compounds
- H01L29/2003—Nitride compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/402—Field plates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66083—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by variation of the electric current supplied or the electric potential applied, to one or more of the electrodes carrying the current to be rectified, amplified, oscillated or switched, e.g. two-terminal devices
- H01L29/6609—Diodes
- H01L29/66136—PN junction diodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/0206—Substrates, e.g. growth, shape, material, removal or bonding
- H01S5/0213—Sapphire, quartz or diamond based substrates
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01S—DEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/3202—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures grown on specifically orientated substrates, or using orientation dependent growth
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B25/00—Single-crystal growth by chemical reaction of reactive gases, e.g. chemical vapour-deposition growth
- C30B25/02—Epitaxial-layer growth
- C30B25/18—Epitaxial-layer growth characterised by the substrate
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Computer Hardware Design (AREA)
- Ceramic Engineering (AREA)
- Inorganic Chemistry (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Crystallography & Structural Chemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Electrodes Of Semiconductors (AREA)
- Recrystallisation Techniques (AREA)
Description
n型不純物を含むn型窒化ガリウム層と、
前記n型窒化ガリウム層上に設けられ、p型不純物を含み、前記n型窒化ガリウム層との界面にpn接合を形成し、前記pn接合に逆方向バイアス電圧が印加された時にアバランシェ現象による降伏より先にパンチスルー現象による降伏が発生するようなp型不純物濃度および厚さを有するp型窒化ガリウム層と、
前記p型窒化ガリウム層上に設けられ、p型不純物を前記p型窒化ガリウム層よりも高い濃度で含むp型窒化ガリウムから形成され、価電子帯と伝導帯との間に少なくとも1つ以上の中間準位を有し、前記p型窒化ガリウム層での前記パンチスルー現象による降伏に起因する過電流を抑制するように構成される中間準位層と、を備える
窒化ガリウム積層基板が提供される。
n型不純物を含むn型窒化ガリウム層と、
前記n型窒化ガリウム層上に設けられ、p型不純物を含み、前記n型窒化ガリウム層との界面にpn接合を形成し、前記pn接合に逆方向バイアス電圧が印加された時にアバランシェ現象による降伏より先にパンチスルー現象による降伏が発生するようなp型不純物濃度および厚さを有するp型窒化ガリウム層と、
前記p型窒化ガリウム層上に設けられ、p型不純物を前記p型窒化ガリウム層よりも高い濃度で含むp型窒化ガリウムから形成され、価電子帯と伝導帯との間に少なくとも1つ以上の中間準位を有し、前記p型窒化ガリウム層での前記パンチスルー現象による降伏に起因する過電流を抑制するように構成される中間準位層と、を備える、
半導体装置が提供される。
以下、本発明の一実施形態にかかる窒化ガリウム積層基板および半導体装置について説明する。図1は、本発明の一実施形態にかかる窒化ガリウム積層基板の断面概略図である。図2は、本発明の一実施形態にかかる半導体装置の断面概略図である。
本実施形態によれば、以下に示す1つ又は複数の効果を奏する。
これに対して、比較形態である従来のGaN積層基板は、パンチスルー降伏電圧がアバランシェ降伏電圧に対して過度に大きくなるように設計されることが一般的である。例えば、パンチスルー降伏電圧がアバランシェ降伏電圧の10倍以上となる。従来のGaN積層基板から形成される半導体装置では、逆バイアスが印加されたときにアバランシェ現象が発生し始めてもパンチスルー現象が誘発されないため、結果的にアバランシェ降伏が生じて絶縁破壊が生じてしまう。
上述の実施形態では、縦型の半導体装置を一例として説明したが、本発明はこれに限定されない。GaN積層基板は、中間準位層の表面にソース電極とドレイン電極とを離間させて形成することで、横型の半導体装置を構成することもできる。
本実施例では、MOVPE法を用いて、図1に示す構造を有するGaN積層基板10を作製した。具体的には、上述した成長条件により、n型のGaN基板11上に、n型不純物としてSiをドープしたn型GaN層12、p型不純物としてMgをドープしたp型GaN層13、Mgをp型GaN層よりも高い濃度でドープした中間準位層14を順に成長させた。本実施例では、n型GaN層12は、厚さが30μm、n型不純物の濃度が1.05×1016~2.0×1015cm-3の範囲となるように成長させた。p型GaN層13は、厚さが500nm、p型不純物の濃度が2.0×1017cm-3となるように成長させた。中間準位層14は、厚さが30nm、p型不純物の濃度が2.0×1020cm-3となるように成長させた。そして、各層を成長させた後、N2雰囲気で850℃、30分間、アニールすることによりp型不純物(Mg)を活性化させ、実施例1のGaN積層基板を作製した。
具体的には、GaN積層基板に対して、EB蒸着法でNiを蒸着し、リフトオフ法でメサエッチング用パターンを形成し、このパターンをマスクとしてGaNのエッチングを行なった。エッチングはInductive Coupled Plasma-Reactive Ion Etching(ICP-RIE)法にて行った。反応ガスはCF4とArの混合ガスを用いた。
続いて、EB蒸着法でPd/Niを蒸着し、p形オーミック電極(アノード電極)をリフトオフ法で形成した。
続いて、全面に表面保護膜であるSOGとSiO2を形成した。SOGは塗布後、ホットプレートにて120℃、5分、350℃、30分のアニールを行い形成した。SiO2はスパッタリング法を用いて形成した。
続いて、SOGとSiO2の加工用マスクパターンを形成し、ドライエッチング法でSOGとSiO2の加工を行った。加工用のマスクパターンは、感光性ポリイミドを用いた。形成条件は、塗布後120℃、5分間のベークを行い、露光現像後、150℃、5分間、200℃、30分間のベークを行った。ドライエッチングはICP-RIE法を用いた。エッチング条件は前述の通りである。ドライエッチング後、マスクであるポリイミドを同じくICP-RIE法を用いて除去した。反応ガスはO2を用いた。
続いて、EB蒸着法でTi/Alを蒸着し、リフトオフ法でフィールドプレート電極(FP電極)を形成した。
最後に、裏面にEB蒸着法でTi/Alを蒸着し、n形オーミック電極(カソード)を形成し、実施例1の半導体装置を作製した。
比較例1では、実施例1と同様にGaN基板上にn型GaN層を成長させた後、n型GaN層上に、p型不純物の濃度が2.0×1017cm-3であるp型GaN層、p型GaN層よりもp型不純物の濃度が高く、1.0×1019cm-3であるp+型GaN層を順に成長させた以外は、実施例1と同様にGaN積層基板および半導体装置を作製した。実施例1と同様に耐久性について評価したところ、図5に示すような結果が得られた。図5に示すように、比較例1の半導体装置では、電圧を高くしたときに、絶縁破壊が生じてしまうことが確認された。比較例1では、p型GaN層上に中間準位を持たないp+型GaN層を設けたため、電圧を上昇させたときに生じる過電流によってGaN結晶が損傷し、絶縁破壊が生じたものと推測される。なお、比較例1の半導体装置では、アバランシェ降伏電圧VAが4.8kVであることが確認された。パンチスルー降伏電圧VPは、実測できないが、比較例1の構造から50kV以上であり、VPがVAの10倍を超えていることが確認された。
以下、本発明の好ましい態様について付記する。
本発明の一態様によれば、
n型不純物を含むn型窒化ガリウム層と、
前記n型窒化ガリウム層上に設けられ、p型不純物を含み、前記n型窒化ガリウム層との界面にpn接合を形成し、前記pn接合に逆方向バイアス電圧が印加された時にアバランシェ現象による降伏より先にパンチスルー現象による降伏が発生するようなp型不純物濃度および厚さを有するp型窒化ガリウム層と、
前記p型窒化ガリウム層上に設けられ、p型不純物を前記p型窒化ガリウム層よりも高い濃度で含むp型窒化ガリウムから形成され、価電子帯と伝導帯との間に少なくとも1つ以上の中間準位を有し、前記p型窒化ガリウム層での前記パンチスルー現象による降伏に起因する過電流を抑制するように構成される中間準位層と、を備える、
窒化ガリウム積層基板が提供される。
付記1の窒化ガリウム積層基板において、好ましくは、
前記中間準位層のp型不純物濃度が5×1019cm-3以上である。
付記1又は2の窒化ガリウム積層基板において、好ましくは、
前記中間準位層の厚さが5nm以上50nm以下である。
付記1~3の窒化ガリウム積層基板において、好ましくは、
前記アバランシェ現象による降伏が生じるときのアバランシェ降伏電圧をVA、前記パンチスルー現象による降伏が生じるときのパンチスルー降伏電圧をVPとしたとき、
温度が所定の閾値よりも低い場合、VA≦VPであって、前記アバランシェ現象の発生により前記パンチスルー現象が誘発され、もしくは前記アバランシェ現象と同時に前記パンチスルー現象が発生し、
温度が前記所定の閾値以上の場合、VA>VPであって、前記アバランシェ現象よりも先に前記パンチスルー現象が発生することにより、
前記アバランシェ現象による降伏より先に前記パンチスルー現象による降伏が発生するように構成される。
付記4の窒化ガリウム積層基板において、好ましくは、
前記パンチスルー降伏電圧が前記アバランシェ降伏電圧の2倍以下である。
付記4又は5の窒化ガリウム積層基板において、好ましくは、
前記所定の閾値が110℃以上130℃以下である。
付記1~6の窒化ガリウム積層基板において、好ましくは、
前記p型窒化ガリウム層のp型不純物濃度が1×1017cm-3以上1×1018cm-3以下である。
付記1~7の窒化ガリウム積層基板において、好ましくは、
前記p型窒化ガリウム層は、厚さ方向の前記中間準位層側に向かってp型不純物濃度が高くなるように構成されている。
付記1~8の窒化ガリウム積層基板において、好ましくは、
前記p型窒化ガリウム層の厚さが700nm以下である。
付記1~9の窒化ガリウム積層基板において、好ましくは、
前記中間準位は、前記p型不純物によって前記窒化ガリウムに導入された欠陥により形成されている。
付記1~10の窒化ガリウム積層基板において、好ましくは、
前記中間準位層は、前記中間準位を形成する欠陥が面内で均一となるように構成されている。
本発明の他の態様によれば、
n型不純物を含むn型窒化ガリウム層と、
前記n型窒化ガリウム層上に設けられ、p型不純物を含み、前記n型窒化ガリウム層との界面にpn接合を形成し、前記pn接合に逆方向バイアス電圧が印加された時にアバランシェ現象による降伏より先にパンチスルー現象による降伏が発生するようなp型不純物濃度および厚さを有するp型窒化ガリウム層と、
前記p型窒化ガリウム層上に設けられ、p型不純物を前記p型窒化ガリウム層よりも高い濃度で含むp型窒化ガリウムから形成され、価電子帯と伝導帯との間に少なくとも1つ以上の中間準位を有し、前記p型窒化ガリウム層での前記パンチスルー現象による降伏に起因する過電流を抑制するように構成される中間準位層と、を備える、
半導体装置が提供される。
本発明のさらに他の態様によれば、
pn接合を有する窒化ガリウム積層基板から形成され、
前記pn接合への逆方向バイアス電圧の印加により、電流値が1μA以上の電流が生じる場合を降伏としたとき、前記降伏が生じるような逆方向バイアス電圧を繰り返し印加しても絶縁破壊が生じないような耐久性を有する、半導体装置が提供される。
11 窒化ガリウム基板
12 n型窒化ガリウム層
13 p型窒化ガリウム層
14 中間準位層
20 半導体装置
21 第1の電極
22 第2の電極
23 フィールドプレート電極
24 絶縁膜
25 スピンオングラス層
Claims (13)
- n型不純物を含むn型窒化ガリウム層と、
前記n型窒化ガリウム層上に設けられ、p型不純物を含み、前記n型窒化ガリウム層との界面にpn接合を形成し、前記pn接合に逆方向バイアス電圧が印加された時にアバランシェ現象による降伏より先にパンチスルー現象による降伏が発生するようなp型不純物濃度および厚さを有するp型窒化ガリウム層と、
前記p型窒化ガリウム層上に設けられ、p型不純物を前記p型窒化ガリウム層よりも高い濃度で含むp型窒化ガリウムから形成され、価電子帯と伝導帯との間に少なくとも1つ以上の中間準位を有し、前記p型窒化ガリウム層での前記パンチスルー現象による降伏に起因する過電流を抑制するように構成される中間準位層と、を備える、窒化ガリウム積層基板。 - 前記中間準位層のp型不純物濃度が5.0×1019cm-3以上である、
請求項1に記載の窒化ガリウム積層基板。 - 前記中間準位層の厚さが5nm以上50nm以下である、
請求項1または2に記載の窒化ガリウム積層基板。 - 前記アバランシェ現象による降伏が生じるときのアバランシェ降伏電圧をVA、前記パンチスルー現象による降伏が生じるときのパンチスルー降伏電圧をVPとしたとき、
温度が所定の閾値よりも低い場合、VA≦VPであって、前記アバランシェ現象の発生により前記パンチスルー現象が誘発され、もしくは前記アバランシェ現象と同時に前記パンチスルー現象が発生し、
温度が前記所定の閾値以上の場合、VA>VPであって、前記アバランシェ現象よりも先に前記パンチスルー現象が発生することにより、
前記アバランシェ現象による降伏より先に前記パンチスルー現象による降伏が発生するように構成される、
請求項1~3のいずれか1項に記載の窒化ガリウム積層基板。 - 前記パンチスルー降伏電圧が前記アバランシェ降伏電圧の2倍以下である、
請求項4に記載の窒化ガリウム積層基板。 - 前記所定の閾値が110℃以上130℃以下である、
請求項4又は5に記載の窒化ガリウム積層基板。 - 前記p型窒化ガリウム層のp型不純物濃度が1.0×1017cm-3以上1.0×1018cm-3以下である、
請求項1~6のいずれか1項に記載の窒化ガリウム積層基板。 - 前記p型窒化ガリウム層は、厚さ方向の前記中間準位層側に向かってp型不純物濃度が高くなるように構成されている、
請求項1~7のいずれか1項に記載の窒化ガリウム積層基板。 - 前記p型窒化ガリウム層の厚さが700nm以下である、
請求項1~8のいずれか1項に記載の窒化ガリウム積層基板。 - 前記中間準位は、前記p型不純物によって前記p型窒化ガリウムに導入された欠陥により形成されている、
請求項1~9のいずれか1項に記載の窒化ガリウム積層基板。 - 前記中間準位層は、前記中間準位を形成する欠陥が面内で均一となるように構成されている、
請求項1~10のいずれか1項に記載の窒化ガリウム積層基板。 - n型不純物を含むn型窒化ガリウム層と、
前記n型窒化ガリウム層上に設けられ、p型不純物を含み、前記n型窒化ガリウム層との界面にpn接合を形成し、前記pn接合に逆方向バイアス電圧が印加された時にアバランシェ現象による降伏より先にパンチスルー現象による降伏が発生するようなp型不純物濃度および厚さを有するp型窒化ガリウム層と、
前記p型窒化ガリウム層上に設けられ、p型不純物を前記p型窒化ガリウム層よりも高い濃度で含むp型窒化ガリウムから形成され、価電子帯と伝導帯との間に少なくとも1つ以上の中間準位を有し、前記p型窒化ガリウム層での前記パンチスルー現象による降伏に起因する過電流を抑制するように構成される中間準位層と、を備える、半導体装置。 - pn接合を有する窒化ガリウム積層基板から形成され、
前記窒化ガリウム積層基板は、
n型不純物を含むn型窒化ガリウム層と、
前記n型窒化ガリウム層上に設けられ、p型不純物を含み、前記n型窒化ガリウム層との界面にpn接合を形成し、前記pn接合に逆方向バイアス電圧が印加された時にアバランシェ現象による降伏より先にパンチスルー現象による降伏が発生するようなp型不純物濃度および厚さを有するp型窒化ガリウム層と、
前記p型窒化ガリウム層上に設けられ、p型不純物を前記p型窒化ガリウム層よりも高い濃度で含むp型窒化ガリウムから形成され、価電子帯と伝導帯との間に少なくとも1つ以上の中間準位を有し、前記p型窒化ガリウム層での前記パンチスルー現象による降伏に起因する過電流を抑制するように構成される中間準位層と、を備え、
前記pn接合への逆方向バイアス電圧の印加により、電流値が1μA以上の電流が生じる場合を降伏としたとき、前記降伏が生じるような逆方向バイアス電圧を15回繰り返し印加しても絶縁破壊が生じないような耐久性を有する、半導体装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018090879A JP7150269B2 (ja) | 2018-05-09 | 2018-05-09 | 窒化ガリウム積層基板および半導体装置 |
US16/403,859 US10998188B2 (en) | 2018-05-09 | 2019-05-06 | Gallium nitride laminated substrate and semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018090879A JP7150269B2 (ja) | 2018-05-09 | 2018-05-09 | 窒化ガリウム積層基板および半導体装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019197808A JP2019197808A (ja) | 2019-11-14 |
JP7150269B2 true JP7150269B2 (ja) | 2022-10-11 |
Family
ID=68463336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018090879A Active JP7150269B2 (ja) | 2018-05-09 | 2018-05-09 | 窒化ガリウム積層基板および半導体装置 |
Country Status (2)
Country | Link |
---|---|
US (1) | US10998188B2 (ja) |
JP (1) | JP7150269B2 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000340807A (ja) | 1999-05-27 | 2000-12-08 | Hitachi Ltd | サージアブソーバ |
US20170271148A1 (en) | 2016-03-15 | 2017-09-21 | Fuji Electric Co., Ltd. | Semiconductor device and manufacturing method of the semiconductor device |
WO2017169176A1 (ja) | 2016-03-31 | 2017-10-05 | 株式会社サイオクス | 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3955396B2 (ja) | 1998-09-17 | 2007-08-08 | 株式会社ルネサステクノロジ | 半導体サージ吸収素子 |
US9368582B2 (en) * | 2013-11-04 | 2016-06-14 | Avogy, Inc. | High power gallium nitride electronics using miscut substrates |
US9917149B1 (en) * | 2016-05-27 | 2018-03-13 | National Technology & Engineering Solutions Of Sandia, Llc | Diode and method of making the same |
JP6626021B2 (ja) * | 2017-02-15 | 2019-12-25 | トヨタ自動車株式会社 | 窒化物半導体装置 |
-
2018
- 2018-05-09 JP JP2018090879A patent/JP7150269B2/ja active Active
-
2019
- 2019-05-06 US US16/403,859 patent/US10998188B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000340807A (ja) | 1999-05-27 | 2000-12-08 | Hitachi Ltd | サージアブソーバ |
US20170271148A1 (en) | 2016-03-15 | 2017-09-21 | Fuji Electric Co., Ltd. | Semiconductor device and manufacturing method of the semiconductor device |
JP2017168557A (ja) | 2016-03-15 | 2017-09-21 | 富士電機株式会社 | 半導体装置および半導体装置の製造方法 |
WO2017169176A1 (ja) | 2016-03-31 | 2017-10-05 | 株式会社サイオクス | 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法 |
JP2017183583A (ja) | 2016-03-31 | 2017-10-05 | 株式会社サイオクス | 窒化物半導体基板、半導体装置、および窒化物半導体基板の製造方法 |
CN109075212A (zh) | 2016-03-31 | 2018-12-21 | 赛奥科思有限公司 | 氮化物半导体基板、半导体装置和氮化物半导体基板的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
US10998188B2 (en) | 2021-05-04 |
JP2019197808A (ja) | 2019-11-14 |
US20190348276A1 (en) | 2019-11-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4597514B2 (ja) | 劣化を最少に抑えたSiCバイポーラ半導体デバイス | |
JP5095253B2 (ja) | 半導体エピタキシャル基板、化合物半導体装置、およびそれらの製造方法 | |
US10818757B2 (en) | Nitride semiconductor substrate, semiconductor device, and method for manufacturing nitride semiconductor substrate | |
JP6904774B2 (ja) | 炭化珪素エピタキシャルウェハ、炭化珪素絶縁ゲート型バイポーラトランジスタ及びこれらの製造方法 | |
US20070096239A1 (en) | Semiconductor devices and methods of manufacture | |
JP6279164B1 (ja) | 半導体装置 | |
JP6896063B2 (ja) | イオン注入を用いた高抵抗窒化物バッファ層の半導体材料成長 | |
US10770554B2 (en) | Nitride semiconductor substrate, semiconductor device, and method for manufacturing nitride semiconductor substrate | |
US11430875B2 (en) | Method for manufacturing transistor | |
JP5465295B2 (ja) | 化合物半導体装置、およびその製造方法 | |
CN110021661A (zh) | 半导体器件及其制作方法 | |
KR20150091706A (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
KR20150091705A (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
JP7150269B2 (ja) | 窒化ガリウム積層基板および半導体装置 | |
US10763333B2 (en) | Nitride semiconductor device and method of manufacturing nitride semiconductor device | |
JP6519920B2 (ja) | 半導体基板の製造方法、及び半導体装置の製造方法 | |
CN113424326B (zh) | 一种半导体结构及其制备方法 | |
US9520286B2 (en) | Semiconductor substrate, semiconductor device and method of manufacturing the semiconductor device | |
US20230104038A1 (en) | Epitaxial structure for high-electron-mobility transistor and method for manufacturing the same | |
JP2009054659A (ja) | 窒化ガリウム半導体装置の製造方法 | |
WO2023014351A1 (en) | Impurity reduction techniques in gallium nitride regrowth | |
KR20150091703A (ko) | 질화물 반도체 소자 및 그 제조 방법 | |
JP5465294B2 (ja) | 半導体エピタキシャル基板、およびその製造方法 | |
JP5204794B2 (ja) | 半導体装置とその製造方法 | |
JP2010182993A (ja) | 半導体装置とその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210323 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220225 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220422 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220906 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220916 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7150269 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |