WO2017140176A1 - 一种基于金属有机框架的Cu催化剂、制备方法及用途 - Google Patents

一种基于金属有机框架的Cu催化剂、制备方法及用途 Download PDF

Info

Publication number
WO2017140176A1
WO2017140176A1 PCT/CN2016/111427 CN2016111427W WO2017140176A1 WO 2017140176 A1 WO2017140176 A1 WO 2017140176A1 CN 2016111427 W CN2016111427 W CN 2016111427W WO 2017140176 A1 WO2017140176 A1 WO 2017140176A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
metal organic
organic framework
organic
mof
Prior art date
Application number
PCT/CN2016/111427
Other languages
English (en)
French (fr)
Inventor
赵晓丽
吴丰昌
谭一新
Original Assignee
中国环境科学研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国环境科学研究院 filed Critical 中国环境科学研究院
Priority to US15/999,839 priority Critical patent/US10940469B2/en
Publication of WO2017140176A1 publication Critical patent/WO2017140176A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/20Carbonyls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/72Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/26Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24
    • B01J31/28Catalysts comprising hydrides, coordination complexes or organic compounds containing in addition, inorganic metal compounds not provided for in groups B01J31/02 - B01J31/24 of the platinum group metals, iron group metals or copper
    • B01J35/40
    • B01J35/615
    • B01J35/635
    • B01J35/647
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/031Precipitation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/06Washing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/70Treatment of water, waste water, or sewage by reduction
    • C02F1/705Reduction by metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/223At least two oxygen atoms present in one at least bidentate or bridging ligand
    • B01J31/2239Bridging ligands, e.g. OAc in Cr2(OAc)4, Pt4(OAc)8 or dicarboxylate ligands
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/32Hydrocarbons, e.g. oil
    • C02F2101/322Volatile compounds, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • C02F2101/345Phenols
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Definitions

  • the invention relates to a metal organic framework-based Cu catalyst for catalytically degrading organic pollutants in water, and a preparation method of a Cu catalyst based on a metal organic framework.
  • Metal organic frameworks are a type of zeolitic material having a repeating network structure formed by self-assembly of organic ligands and metal ions. As a composite material, MOFs have the advantages of porosity, structural order and large specific surface area. They are used in many fields, such as sensing, drug transport, gas adsorption and Lewis acid catalysis. As a widely used metal-organic framework, Cu-MOF has a good performance in catalyzing the reaction of “Click”.
  • MOFs metal organic frameworks
  • metal nanoparticles As a catalyst, metal nanoparticles have been widely used due to their advantages of good catalytic selectivity, wide application fields, mild reaction conditions and high catalytic efficiency.
  • K.C. Leung et al. Gold and iron oxide hybrid nanocomposite materials, Chemical Society reviews, 2012, 41, 1911-1928.
  • the article points out that such composite nanomaterials can be used in many fields such as drug delivery, biosensing, cell sorting, and catalytic reactions.
  • the recovery When used as a catalyst, the recovery is convenient, fast, and recyclable.
  • such materials have poor stability and self-aggregation due to large surface energy, which affects their application efficiency.
  • Many catalytic reactions use noble metals such as Au, Ag, etc. as catalysts, but precious metals are expensive and scarce, so it is necessary to study non-precious metal materials as catalysts.
  • a novel non-precious metal catalyst based on porous metal organic framework is prepared and used to catalyze the degradation of organic pollutants in water environment, which is of great significance for alleviating water pollution problems.
  • one of the objects of the present invention is to provide a metal organic based catalyst with high catalytic efficiency and simple preparation process.
  • Framework of Cu catalyst
  • Another object of the present invention is to provide a process for the preparation of the above catalyst.
  • Still another object of the present invention is to use the above catalyst for catalytically degrading organic contaminants in water.
  • one aspect of the present invention provides a metal organic framework-based Cu catalyst comprising a composite particle having a catalytically active site composed of copper in different oxidation states and a supporting porous carbon layer.
  • the composite particles preferably contain Cu 2 O, CuO, and Cu.
  • Another technical solution of the present invention provides a method for preparing the above Cu catalyst, which comprises the steps of: 1) preparing a metal organic framework Cu-MOF using a copper source and an organic ligand, and 2) a metal organic framework Cu-MOF Carbonization.
  • the copper source and the organic ligand as a carbon source are weighed and dissolved in a solvent, and reacted under a sealed condition of 100-140 ° C for 8-24 hours, cooled, filtered, washed with an organic solvent, and then centrifuged to obtain a lower layer. Solid precipitation, vacuum drying;
  • Metal-organic framework Cu-MOF carbonization is carbonization under nitrogen protection conditions of 200-800 °C.
  • Still another technical solution of the present invention is to use a metal organic framework-based Cu catalyst for catalytically degrading organic contaminants in water.
  • the metal organic framework-based Cu catalyst provided by the invention and the preparation method thereof have the following advantages: (1) low cost.
  • the main raw material copper source used in the preparation process and the organic ligand as a carbon source, such as Cu(NO 3 ) 2 and gallic acid, are inexpensive, compared with conventional noble metal (such as Pt, Au, Ag, etc.) catalysts.
  • the cost can be several times lower.
  • the catalyst is used in a small amount, the catalytic rate is fast, and the catalytic efficiency is high.
  • a small amount of catalyst can be used in 5min Catalytic reduction and degradation of pollutants, high conversion rate, conversion rate of catalytic reduction of more than 99%, overcoming the shortcomings of the general catalyst time-consuming and laborious.
  • the preparation process is simple and environmentally friendly.
  • the catalyst preparation process does not require complicated processing, and the raw materials do not involve heavy toxic substances.
  • no toxic substances are consumed, other toxic and harmful substances are not introduced, and the environment is friendly.
  • Example 1 is a TEM and SEM spectrum of a Cu catalyst prepared in Example 1;
  • Example 2 is an infrared contrast spectrum of Cu catalyst Cu-GA and gallic acid GA prepared in Example 1;
  • Example 3 is an XRD spectrum of a Cu catalyst prepared in Example 1;
  • Example 4 is an XPS spectrum of a Cu catalyst prepared in Example 1;
  • Example 5 is a N 2 adsorption-desorption test result of the Cu catalyst obtained in Example 1.
  • the invention relates to a Cu catalyst based on a metal organic framework, a preparation method and a use thereof.
  • the metal organic framework-based Cu catalyst according to the present invention has good water stability and can be used for aqueous phase catalysis.
  • Cu 2 O, CuO and Cu are contained in the composite particles, preferably Cu 2 O is the highest, followed by CuO and Cu.
  • the metal organic framework-based Cu catalyst prepared by the present invention is a mesoporous, at least partially crystalline structure.
  • the compound suitable for the copper source in the preparation method of the present invention is an inorganic compound of copper, such as copper nitrate, copper halide, copper sulfate, copper acetate, etc., preferably one of Cu(NO 3 ) 2 , CuCl 2 or CuSO 4 solutions. Or more; more preferably a Cu(NO 3 ) 2 solution.
  • the organic ligand as a carbon source is preferably gallic acid and/or tannic acid, more preferably gallic acid.
  • the solvent for dissolving the copper source and the organic ligand is one or more of ethanol, methanol, DMF, DMSO, and DMAC, preferably DMF.
  • the organic solvent for washing is one or more of ethanol, methanol, DMF, CH 2 Cl 2 and chloroform, preferably DMF and ethanol.
  • the Cu catalyst is prepared by the following method:
  • the copper source and the organic ligand as a carbon source are weighed and dissolved in a solvent, and the reaction time is 12-24 h, more preferably 24 h, under a sealed condition of 130-140 ° C, more preferably 130 ° C, after cooling. Filtration, washing the residue with an organic solvent, and then centrifuging to obtain a lower solid precipitate, vacuum drying at 40-65 ° C, more preferably 50 ° C; vacuum drying time is 5-10h, more preferably 8h;
  • Metal-organic framework Cu-MOF carbonization is carbonization under nitrogen protection conditions of 200-800 ° C, carbonization temperature is 500-800 ° C, more preferably 500 ° C; carbonization time is 2-5 h, more preferably 4- 5h.
  • the metal organic framework-based Cu catalyst of the present invention is used for catalytically degrading organic pollutants in water.
  • the organic contaminant is preferably one or a combination of phenol, aniline, nitrobenzene, and derivatives thereof and/or an organic dye. More preferably, the derivative of phenol is nitrophenol, chlorophenol, aminophenol or methylphenol; the derivative of aniline is nitroaniline, toluidine or benzidine; the derivative of nitrobenzene is nitrotoluene or chlorinated nitrate Base benzene; the organic dye is rhodamine B and/or methylene blue. Most preferably, the nitrophenol is 4-nitrophenol or o-nitrophenol; the nitroaniline is p-nitroaniline.
  • the metal organic framework-based Cu catalyst has a particle diameter of from 50 nm, preferably from 80 nm up to 120 nm.
  • the Cu catalyst advantageously has a specific surface area of from 100 to 180 m 2 g -1 , a pore volume of from 0.2 to 0.75 cm 3 /g, and a pore size distribution of from 2 to 40 nm. It preferably has a specific surface area of 100 to 154.6 m 2 g -1 , a pore volume of 0.5 to 0.75 cm 3 /g, and a pore size distribution of 2 to 30 nm.
  • a metal organic framework-based Cu catalyst comprising a composite particle having a catalytically active site composed of copper in different oxidation states and a supporting porous carbon layer.
  • the steps for preparing the catalyst were as follows: 1) Preparation of Cu-MOF: Weighing 0.9664 g of Cu(NO 3 ) 2 ⁇ 6H 2 O and 0.7526 g of gallic acid, respectively, dissolved in 20 mL of DMF, and the two were mixed and placed in a 100 mL poly In a tetrafluoroethylene stainless steel reaction vessel, the reaction was carried out under a sealed condition of 130 ° C for 24 hours. After the reaction was completed, it was cooled to room temperature, filtered, and the residue was washed successively with DMF and ethanol, and then centrifuged to obtain a solid precipitate of the lower layer, which was vacuum dried at 50 ° C.
  • a metal organic framework-based Cu catalyst comprising a composite particle having a catalytically active site composed of copper in different oxidation states and a supporting porous carbon layer.
  • the procedure for preparing the catalyst is as follows: 1) Preparation of Cu-MOF: 2.601 g of Cu(NO 3 ) 2 ⁇ 6H 2 O and 0.7526 g of gallic acid were weighed and dissolved in 40 mL of DMSO, respectively, and then mixed in 150 mL of poly In a tetrafluoroethylene stainless steel reaction vessel, the reaction was carried out under a closed condition of 150 ° C for 12 h. After the reaction was completed, it was cooled to room temperature, filtered, and the residue was washed successively with dichloromethane and ethanol, and then centrifuged to obtain a solid precipitate of the lower layer, which was vacuum dried at 50 ° C. 5h.
  • a metal organic framework-based Cu catalyst comprising a composite particle having a catalytically active site composed of copper in different oxidation states and a supporting porous carbon layer.
  • the steps for preparing the catalyst were as follows: 1) Preparation of Cu-MOF: Weighing 0.9664 g of Cu(NO 3 ) 2 ⁇ 6H 2 O and 2.7815 g of tannic acid, respectively, dissolved in 80 mL of ethanol, and the two were mixed and placed in 250 mL. In a Teflon stainless steel reaction vessel, the reaction was carried out under a closed condition of 105 ° C for 24 hours. After the reaction was completed, it was cooled to room temperature, filtered, and the residue was washed successively with DMF and ethanol, and then centrifuged to obtain a solid precipitate of the lower layer, which was vacuum dried at 65 ° C for 8 hours. .
  • the catalysts prepared in Examples 1-3 were structurally characterized as follows:
  • TEM electron beam transmission electron microscope
  • SEM field emission scanning electron microscopy
  • Example 2 The Cu catalyst prepared in Example 1-3 was characterized by Fourier transform infrared spectroscopy (FTIR) (Nicolet 170SX type), using KBr tableting method, wherein the comparative diagram of Example 1 is shown in Fig. 2.
  • FTIR Fourier transform infrared spectroscopy
  • the catalyst prepared in Test Examples 1-3 was measured by X-ray diffraction (XRD) (b/max-RB Diffractometer type) using nickel to filter Cu K ⁇ rays, scanning ranged from 5° to 90°, and scanning interval was 0.02°. XRD spectrum.
  • the XPS curve of the obtained Cu catalyst was analyzed by X-ray photoelectron (using Al K ⁇ ray as the light source XPS).
  • the XPS spectra of the Cu, O and C elements of the prepared Cu catalyst further confirmed the presence of Cu, Cu 2 O and CuO.
  • Cu2p3/2 has characteristic peaks at 932.1 and 933.8eV, and the peak appearing at 932.1eV is Cu 2 O/Cu(Cu + /Cu 0 ). Since the peak positions of Cu + and Cu 0 are particularly close, it is difficult to distinguish specifically. This is very similar to other literature reports.
  • the characteristic peak of CuO appears at 933.8eV, which is consistent with the CuO characteristic peak mentioned in other literatures at 933.4 ⁇ 933.9eV.
  • the spectrum of O1s is also shown in the figure. At 530.2, 531.6, 533.6eV is the characteristic peak of O1s, and at 930.2eV, the characteristic peak of O1s in Cu 2 O appears, which is reported in the literature in the range of 530.0 ⁇ 530.7eV. Consistent.
  • the characteristic peak of O1s in CuO appears at 533.6 eV, and the peak appearing in 531.6 eV is oxygen in OH and H 2 O and carboxylic acid adsorbed on the surface of the material.
  • the Raman spectrum of the Cu catalyst prepared in Example 1-3 was obtained using a Raman spectrometer (RM2000, Renishaw, UK) in which the excitation wavelength was 514 or 515 nm, which was generated by excitation of Ar + laser.
  • the test results show that there are two peaks on the Raman spectrum, one peak is about 1588cm -1 , which is called G peak, corresponding to the peak of the graphite structure; the other peak is about 1375cm -1 , called D peak. It is the peak corresponding to the defect.
  • G peak 1588cm -1
  • D peak 1375cm -1
  • the catalytic experiments were carried out directly in a cuvette, and 2 mL of deionized water, 1 mL of 0.2 M NaBH 4 , 0.1 mL of 5 mM 4-NP and 50 uL (2 mg/mL) of the catalyst solution were added. Before the addition of the catalyst, the solution quickly turned yellow after the addition of NaBH 4 solution. With the addition of the catalyst, the yellow color of the solution gradually faded out, and there was no color within 3 min, indicating that 4-NP was reduced by degradation, and the catalytic effect was It can be seen that the complete catalytic reduction of 4-NP requires 160 s, which is faster than the catalytic reduction rate of the generally reported materials.
  • the catalyst was centrifuged, and the obtained catalyst was subjected to the next catalytic experiment. After 5 times of repeated use, the catalytic efficiency of the material was still 99%, and the morphology of the catalyst did not change from the naked eye.
  • the catalyst has a good catalytic effect on the degradation of the above pollutants.
  • nitrobenzenes no matter where the substituents are located, they have good catalytic effects, and the conversion rate of catalytic reduction is over 99%, but the catalytic effect on nitrotoluene and nitrochlorobenzene is better than that of nitroaniline and The effect of nitrophenol is slightly worse. The possible reason is that the degradation mechanism and process of nitrotoluene and nitrochlorobenzene are more complicated than nitroaniline and nitrophenol.

Abstract

提供一种基于金属有机框架的Cu催化剂、制备方法及用途。该基于金属有机框架的Cu催化剂,包括由不同氧化态铜组成的具有催化活性位点的复合颗粒和起支撑作用的多孔碳层。制备该催化剂的方法包括如下步骤:1)制备金属有机框架Cu-MOF,2)将金属有机框架Cu-MOF碳化。该Cu催化剂可用于水相催化,催化降解水中的有机污染物。

Description

一种基于金属有机框架的Cu催化剂、制备方法及用途 技术领域
本发明涉及一种催化降解水中有机污染物的基于金属有机框架的Cu催化剂、以及基于金属有机框架的Cu催化剂的制备方法。
背景技术
金属有机框架(MOFs)是将有机配体和金属离子通过自组装形成的具有重复网络结构的一种类沸石材料。MOFs作为一种复合材料,具有多孔、结构有序和比表面积大等优点,在很多领域都有应用,传感、药物传输、气体吸附以及作为Lewis酸催化等,因此越来越得到关注。Cu-MOF作为应用比较广泛的金属有机框架,在催化“Click”等反应具有较好的表现。
K.Schlichte等人2004年发表的(Improved synthesis,thermal stability and catalytic propertiesof the metal-organic framework compound Cu3(BTC)2,Microporous and Mesoporous Materials,2004,73,81-88.)即制备得到了一种金属有机框架材料Cu3(BTC)2,并对其催化性能进行了研究。另外,还有金属有机框架Cu-MOF(Cu(2-pymo)2、Cu(im)2、Cu(BDC)(pymo:2-羟基嘧啶,im:咪唑,BTC:苯三甲酸,BDC:苯二甲酸)均被报道用于催化“Click”反应。
但是由于金属有机框架(MOFs)在水中的稳定性比较差,使得其应用的广泛性和普遍性受到了一定的限制。
金属纳米颗粒作为催化剂具有催化选择性好、应用领域广、反应条件温和、催化效率高等优点而被广泛应用。K.C.Leung等人2012年发表的(Gold and iron oxide hybrid nanocomposite materials,Chemical Society reviews,2012,41,1911-1928.)讨论了金和铁的氧化物组成的复合纳米颗粒的研究状况。该文章指出这类复合纳米材料可以用于药物传递、生物传感、细胞分选和催化反应等诸多领域,在用作催化剂时回收方便、快捷,能够循环使用。但这类材料由于表面能量大造成稳定性差和自我聚集,影响了其应用效率。很多催化反应采用贵金属如Au、Ag等作为催化剂,但是贵金属价格昂贵而且稀少,所以,我们有必要研究出非贵金属材料作为催化剂。
此外,制备出一种新型的基于多孔的金属有机框架的非贵金属催化剂,并将其用于催化降解水环境中的有机污染物,对于缓解水环境污染问题具有重要意义。
发明内容
为了解决金属有机框架由于水稳定性差不能用于水相催化,金属纳米颗粒催化剂易团聚且不稳定等技术问题,本发明的目的之一是提供一种催化效率高、制备过程简单的基于金属有机框架的Cu催化剂。
本发明的另一个目的是提供上述催化剂的制备方法。
本发明的再一个目的是将上述催化剂用于催化降解水中的有机污染物。
为了实现上述发明目的,本发明的一个技术方案提供了一种基于金属有机框架的Cu催化剂,该催化剂包括由不同氧化态铜组成的具有催化活性位点的复合颗粒和起支撑作用的多孔碳层。
所述复合颗粒中优选含有Cu2O、CuO和Cu。
本发明的另一个技术方案提供了一种制备上述Cu催化剂的方法,该方法包括如下步骤:1)采用铜源和有机配体制备金属有机框架Cu-MOF,2)金属有机框架Cu-MOF的碳化。
其中,1)采用铜源和有机配体制备金属有机框架Cu-MOF的步骤如下:
将铜源和作为碳源的有机配体按摩尔比称重后于溶剂中溶解,在100-140℃的密闭条件下反应8-24h,冷却后过滤,用有机溶剂清洗滤渣后离心,得下层固体沉淀,真空干燥;
2)金属有机框架Cu-MOF碳化是在200-800℃氮气保护条件下进行碳化。
本发明的再一个技术方案将基于金属有机框架的Cu催化剂用于催化降解水中的有机污染物。
与现有技术相比,本发明提供的基于金属有机框架的Cu催化剂及其制备方法具有以下优点:(1)成本低廉。制备过程中用到的主要原料铜源和作为碳源的有机配体,如Cu(NO3)2和没食子酸,价格低廉,与传统的贵金属(如Pt、Au、Ag等)催化剂相比,同等的催化效果,成本可以低几十倍。
(2)催化剂用量少,催化速率快,催化效率高。少量的催化剂能够在5min 内将污染物催化还原降解,转化率高,催化还原的转化率达到99%以上,克服了一般催化剂费时费力的缺点。
(3)水稳定性好,可用于水相催化,可再生和重复利用。现有的Cu催化剂大都不能用于催化以水做溶剂的反应,而本发明提供的催化剂可以用于催化水中污染物的降解,而且,测试结果表明,本发明提供的催化剂重复使用5次后,催化剂的形态无明显变化,降解效率仍能达到99%。
(4)制备过程简单、对环境友好。催化剂制备过程无需复杂的处理过程,原料不涉及到重毒性物质,在催化过程中,不需消耗任何有毒物质,不会引入其他有毒有害的物质,对环境友好。
附图说明
图1为实施例1制得的Cu催化剂的TEM和SEM谱图;
图2为实施例1制得的Cu催化剂Cu-GA与没食子酸GA的红外对比谱图;
图3为实施例1制得的Cu催化剂的XRD谱图;
图4为实施例1制得的Cu催化剂的XPS谱图;
图5为实施例1制得的Cu催化剂的N2吸脱附测试结果。
具体实施方式
本发明涉及一种基于金属有机框架的Cu催化剂、制备方法及用途。根据本发明的基于金属有机框架的Cu催化剂,其水稳定性好,可用于水相催化。
对于本发明Cu催化剂中所述复合颗粒中含有Cu2O、CuO和Cu,优选为Cu2O的含量最高,CuO和Cu其次。
本发明所制备的基于金属有机框架的Cu催化剂为介孔、至少局部有结晶的结构。
对于本发明制备方法中铜源适合的化合物为铜的无机化合物,例如硝酸铜、卤化铜、硫酸铜和醋酸铜等,优选为Cu(NO3)2、CuCl2或CuSO4溶液中的一种或多种;更优选为Cu(NO3)2溶液。
所述作为碳源的有机配体优选为没食子酸和/或单宁酸,更优选为没食子酸。
所述溶解铜源和有机配体用的溶剂为乙醇、甲醇、DMF、DMSO和DMAC中的一种或多种,优选为DMF。
所述清洗用的有机溶剂为乙醇、甲醇、DMF、CH2Cl2和氯仿中的一种或多种,优选为DMF和乙醇。
在优选实施方案中,所述Cu催化剂的通过如下方法制备:
1)采用铜源和有机配体制备金属有机框架Cu-MOF的步骤如下:
将铜源和作为碳源的有机配体按摩尔比称重后于溶剂中溶解,在130-140℃更优选为130℃的密闭条件下反应时间为12-24h,更优选为24h,冷却后过滤,用有机溶剂清洗滤渣后离心,得下层固体沉淀,在40-65℃更优选为50℃下真空干燥;真空干燥时间为5-10h,更优选为8h;
2)金属有机框架Cu-MOF碳化是在200-800℃氮气保护条件下进行碳化,碳化的温度为500-800℃,更优选为500℃;碳化的时间为2-5h,更优选为4-5h。
对于本发明基于金属有机框架的Cu催化剂用于催化降解水中的有机污染物。有机污染物优选为苯酚、苯胺、硝基苯,以及它们的衍生物中的一种或组合和/或有机染料。更优选为苯酚的衍生物为硝基苯酚、氯苯酚、氨基苯酚或甲基苯酚;苯胺的衍生物为硝基苯胺、甲苯胺或联苯胺;硝基苯的衍生物为硝基甲苯或氯硝基苯;有机染料为罗丹明B和/或亚甲基蓝。最优选为硝基苯酚为4-硝基苯酚或邻硝基苯酚;硝基苯胺为对4-硝基苯胺。
通常地,基于金属有机框架的Cu催化剂粒径从50nm、优选从80nm最高至120nm。
通常地,所述Cu催化剂有利地具有100-180m2g-1的比表面积,0.2-0.75cm3/g的孔体积,2-40nm的孔径分布。优选具有100-154.6m2g-1的比表面积,0.5-0.75cm3/g的孔体积,2-30nm的孔径分布。
下面结合具体实施例对本发明做进一步详细的说明。
实施例1
一种基于金属有机框架的Cu催化剂,该催化剂包括由不同氧化态铜组成的具有催化活性位点的复合颗粒和起支撑作用的多孔碳层。
制备该催化剂的步骤如下:1)制备Cu-MOF:称取0.9664g Cu(NO3)2·6H2O和0.7526g没食子酸,分别溶解于20mL DMF中,将二者混合后置于100mL聚四氟乙烯不锈钢反应釜中,在130℃的密闭条件下反 应24h,反应结束后冷却至室温,过滤,依次用DMF和乙醇清洗滤渣后离心,得下层固体沉淀,于50℃下真空干燥。
2)碳化:将制得的Cu-MOF置于管式炉中,在氮气保护下,于500℃碳化4h。
实施例2
一种基于金属有机框架的Cu催化剂,该催化剂包括由不同氧化态铜组成的具有催化活性位点的复合颗粒和起支撑作用的多孔碳层。
制备该催化剂的步骤如下:1)制备Cu-MOF:称取2.601g Cu(NO3)2·6H2O和0.7526g没食子酸,分别溶解于40mL DMSO中,将二者混合后置于150mL聚四氟乙烯不锈钢反应釜中,在150℃的密闭条件下反应12h,反应结束后冷却至室温,过滤,依次用二氯甲烷和乙醇清洗滤渣后离心,得下层固体沉淀,于50℃下真空干燥5h。
2)碳化:将制得的Cu-MOF置于管式炉中,在氮气保护下,于800℃碳化3h。
实施例3
一种基于金属有机框架的Cu催化剂,该催化剂包括由不同氧化态铜组成的具有催化活性位点的复合颗粒和起支撑作用的多孔碳层。
制备该催化剂的步骤如下:1)制备Cu-MOF:称取0.9664g Cu(NO3)2·6H2O和2.7815g单宁酸,分别溶解于80mL乙醇中,将二者混合后置于250mL聚四氟乙烯不锈钢反应釜中,在105℃的密闭条件下反应24h,反应结束后冷却至室温,过滤,依次用DMF和乙醇清洗滤渣后离心,得下层固体沉淀,于65℃下真空干燥8h。
2)碳化:将制得的Cu-MOF置于管式炉中,在氮气保护下,于220℃碳化4h。
结构表征:
对实施例1-3制得的催化剂进行结构表征,具体如下:
1、利用电子透射电子显微镜(TEM)(JEOL JEM-200CX型)加速电压160kV,和场发射扫描电镜(SEM)(Hitachi S-5500型)对催化剂的粒径与形貌进行分析,结果显示,所制备的由不同氧化态铜组成的具有催化活性位点的复合颗粒负载在碳层上,颗粒大小均匀,粒径为80-120nm,具体结果见表1.
表1实施例1-3制得的催化剂的比表面和孔径分布结果
Figure PCTCN2016111427-appb-000001
2、利用傅立叶变换红外光谱仪(FTIR)(Nicolet 170SX型)对实施例1-3制得的Cu催化剂进行表征,使用KBr压片法,其中,实施例1的对比图如附图2所示。
比较实施例1和2中的没食子酸和制得的Cu催化剂的红外光谱图,
没食子酸分子的O-H在3329cm-1处对应的宽峰变窄说明发生了伸缩振动。在1600cm-1和1366cm-1是没食子酸分子的COO-发生了伸缩振动。当没食子酸与Cu反应之后,O-H在3429cm-1处发生了伸缩振动,并且在493cm-1处出现了Cu-O的振动峰,在1029cm-1处的羧酸中的O-H峰消失,表明了没食子酸中的所有羧基和羟基基团均发生了反应,在Cu-GA中C=O向更低频率下发生了弯曲振动,羧酸基团中的COO-在1300和1600cm–1出现特征峰,在1500cm–1和1426cm–1发生了不对称的伸缩。这些结果表明所有的羧基和酚羟基均与Cu发生了反应。
实施例3中制得的Cu催化剂与单宁酸的红外谱图对比后表明,单宁酸分子上的O-H在3200-3420cm–1处对应的宽峰变窄,且在493cm–1出现了Cu-O的振动峰,这些结果表明酚羟基与Cu发生了反应。
3、XRD和XPS测试
利用X-射线衍射(XRD)(b/max-RB Diffractometer型),使用镍过滤Cu Kα射线,扫描范围从5°到90°,扫描的间隔为0.02°测试实施例1-3制得的催化剂的XRD谱图。
利用X-射线光电子(以Al Kα射线为光源XPS)分析了制得的Cu催化剂的XPS曲线。
测试结果表明,本发明实施例1-3制得的Cu催化剂XRD谱图均在2θ=29.5°,34.5°,42.2°,61.5°,67.9°,73.4°处出现了由(110),(111),(200), (220),(310)和(311)构成的Cu2O的特征峰;在10.26°,41.79°,43.27°,50.39°出现了Cu-O的特征峰;Cu的特征峰出现在32.5°(110),36.4°(111),38.6°(200),48.7°(20-2),53.4°(020),58.2°(202),66.1°(31-1),51.3°(200)和72.3°(220)。强且尖锐的峰代表着材料的结晶度高。从Cu的各种形式的峰的大小和数量能够判断各种形式的铜的含量,结果表明,该结构中Cu2O的含量最多,其次是CuO和Cu。其中,实施例1制得的Cu催化剂XRD谱图见附图3。
制得的Cu催化剂的Cu、O和C元素的XPS图谱进一步证明了Cu、Cu2O和CuO的存在。如附图4中所示的实施例1制得的Cu催化剂的XPS谱图。
Cu2p3/2在932.1和933.8eV出现特征峰,在932.1eV出现的峰是Cu2O/Cu(Cu+/Cu0),由于Cu+和Cu0所在峰位置特别接近,所以很难具体区分,这与其他的文献报道很相似。在933.8eV出现的是CuO的特征峰,这与别的文献中提到的CuO特征峰出现在933.4~933.9eV一致。图中也展示了O1s的光谱,在530.2,531.6,533.6eV是O1s的特征峰,在930.2eV出现的是Cu2O中的O1s的特征峰,与文献中报道出现在530.0~530.7eV范围内一致。CuO中的O1s的特征峰出现在533.6eV,而出现在531.6eV中的峰是OH和H2O中的氧及吸附在材料表面的羧酸。
4、拉曼Raman谱图
应用拉曼光谱仪(RM2000,Renishaw,UK)获得实施例1-3制得的Cu催化剂的Raman光谱,其中激发波长为514或515nm,由Ar+激光激发产生。测试结果表明:拉曼光谱谱图上有2个峰,一个峰约在1588cm-1处,称为G峰,对应石墨结构的峰;另一个峰约在1375cm-1处,称为D峰,是对应缺陷的峰。这2个峰是石墨化碳材料的特征峰,可以说明所制备材料被成功石墨化。
实施例4
本发明提供的Cu催化剂的催化性能测试
本实验利用由实施例1制得的Cu催化剂催化还原降解4-硝基苯酚(4-NP)。
为了排除吸附作用的干扰,我们在未加入还原剂NaBH4,直接加入催化材料,经过24h,测定4-NP的浓度,我们发现其变化不大,说明该粒子 的吸附效果不明显,从而证明4-NP的去除是由于粒子的催化还原造成的。
催化实验直接在比色皿中进行,反应时加入2mL去离子水,1mL 0.2M的NaBH4,0.1mL 5mM的4-NP及50uL(2mg/mL)催化剂溶液。在未加催化剂之前,加入NaBH4溶液之后溶液迅速变黄,随着催化剂的加入,溶液的黄色逐渐褪去,并且在3min之内完全没有了颜色,说明4-NP被还原降解,从催化效果可以看出,完全催化还原4-NP需要160s,比一般报道的材料的催化还原速度要快。
反应结束之后,将催化剂进行离心分离,得到的催化剂进行下一次催化实验,经过5次重复利用之后材料的催化效率仍能达到99%,从肉眼效果看,催化剂的形态并没有发生改变。
除此之外,我们还探索了该催化剂对其他的污染物如O-NP、亚甲基蓝、罗丹明B、硝基苯胺等在同样的条件下的催化性能,从催化结果看到,由本发明制得的催化剂对上述污染物的降解均具有较好的催化效果。对于硝基苯类物质,不管取代基位于哪里,均有较好的催化效果,而且催化还原的转化率达到99%以上,但是对于硝基甲苯和硝基氯苯的催化效果比硝基苯胺和硝基酚的效果稍微差些,可能的原因是硝基甲苯和硝基氯苯的降解机理和过程比硝基苯胺和硝基酚更复杂。
上述例子仅作为说明的目的,本发明的范围并不受此限制。对本领域的技术人员来说进行修改是显而易见的,本发明仅受所附权利要求范围的限制。

Claims (10)

  1. 一种基于金属有机框架的Cu催化剂,其中,该催化剂包括由不同氧化态铜组成的具有催化活性位点的复合颗粒和起支撑作用的多孔碳层。
  2. 权利要求1的Cu催化剂,其中,所述的复合颗粒中含有Cu2O、CuO和Cu,其中Cu2O的含量最高。
  3. 权利要求1的Cu催化剂,其中,所述的催化剂为介孔、局部结晶的结构。
  4. 权利要求3的Cu催化剂,其中,所述的催化剂的粒径为80-120nm,比表面积为100-154.6m2g-1,孔体积为0.5-0.75cm3/g,孔径分布为2-30nm。
  5. 制备权利要求1-4中任一项的Cu催化剂的方法,该方法包括如下步骤:1)采用铜源和有机配体制备金属有机框架Cu-MOF,2)金属有机框架Cu-MOF的碳化。
  6. 权利要求5的方法,其中,1)采用铜源和有机配体制备金属有机框架Cu-MOF:
    将铜源和作为碳源的有机配体按摩尔比称重后于溶剂中溶解,在100-140℃的密闭条件下反应8-24h,冷却后过滤,用有机溶剂清洗滤渣后离心,得下层固体沉淀,真空干燥;
    2)将金属有机框架Cu-MOF在200-800℃氮气保护条件下进行碳化。
  7. 权利要求5或6的方法,其中,铜源为Cu(NO3)2、CuCl2或CuSO4溶液中的一种或多种,优选为Cu(NO3)2溶液;作为碳源的有机配体为没食子酸和/或单宁酸,优选为没食子酸;铜源和有机配体的摩尔比为1:0.5-2,优选为1:1。
  8. 权利要求6的方法,其中,溶解铜源和有机配体用的溶剂为乙醇、甲醇、DMF、DMSO和DMAC中的一种或多种,优选为DMF;反应时间为12-24h,优选为24h;反应温度为130-140℃,优选为130℃。
  9. 权利要求6的方法,其中,清洗用的有机溶剂为乙醇、甲醇、DMF、CH2Cl2和氯仿中的一种或多种,优选为DMF和乙醇;真空干燥的温度为40-65℃,优选为50℃;真空干燥时间为5-10h,优选为8h;碳化的温度为500-800℃,优选为500℃;碳化的时间为2-5h,优选为4-5h。
  10. 权利要求1-4中任一项在催化降解水中有机污染物方面的用途,优选为在催化降解硝基苯酚、硝基苯胺、硝基甲苯及它们的衍生物中的一种或组合和/或有机染料方面的用途,进一步优选为在催化降解4-硝基苯酚、4-硝基苯胺、亚甲基蓝、罗丹明B中的一种或多种方面的用途。
PCT/CN2016/111427 2016-02-19 2016-12-22 一种基于金属有机框架的Cu催化剂、制备方法及用途 WO2017140176A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/999,839 US10940469B2 (en) 2016-02-19 2016-12-22 Cu catalyst based on metal organic framework, preparation method and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610095270.4A CN105664944B (zh) 2016-02-19 2016-02-19 一种基于金属有机框架的Cu催化剂、制备方法及用途
CN201610095270.4 2016-02-19

Publications (1)

Publication Number Publication Date
WO2017140176A1 true WO2017140176A1 (zh) 2017-08-24

Family

ID=56305732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111427 WO2017140176A1 (zh) 2016-02-19 2016-12-22 一种基于金属有机框架的Cu催化剂、制备方法及用途

Country Status (3)

Country Link
US (1) US10940469B2 (zh)
CN (1) CN105664944B (zh)
WO (1) WO2017140176A1 (zh)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151251A (zh) * 2020-01-15 2020-05-15 清创人和生态工程技术有限公司 一种Fe-Ni-Co复合类芬顿催化剂及制备方法
CN111330577A (zh) * 2020-04-15 2020-06-26 广州大学 一种碳化有机骨架包覆零价铜的芬顿催化剂及其制备方法与应用
CN111569875A (zh) * 2020-04-15 2020-08-25 江苏大学 一种铜/多孔碳纳米棒材料、制备方法和应用
CN113332996A (zh) * 2020-08-31 2021-09-03 中国科学技术大学 一种超薄碳层稳定的金属纳米颗粒催化剂及其制备方法
CN113697791A (zh) * 2021-07-29 2021-11-26 中南大学 一种富缺陷碳材料及其制备方法和应用
CN113893882A (zh) * 2021-11-10 2022-01-07 武汉纺织大学 一种基于金属有机配体的铜氧化物催化剂及其制备方法和应用
CN114471728A (zh) * 2022-02-16 2022-05-13 天津工业大学 铜系纳米粒子和铁卟啉纳米片复合的纳米酶及制备与应用
CN114477434A (zh) * 2022-01-24 2022-05-13 重庆大学 厌氧反应系统
CN114875674A (zh) * 2022-05-06 2022-08-09 南通大学 一种负载PVP/Cu-MOFs的抗菌羊毛织物的制备方法
CN115140757A (zh) * 2021-11-04 2022-10-04 燕山大学 一种中空多孔结构氧化铜及其制备方法和应用
CN115947337A (zh) * 2023-03-01 2023-04-11 昆明理工大学 一种固废型生物炭的制备方法及其应用
CN116004184A (zh) * 2023-02-07 2023-04-25 西南石油大学 一种纳米金属氧化物/碳复合吸波材料及其制备方法

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105664944B (zh) * 2016-02-19 2018-03-27 中国环境科学研究院 一种基于金属有机框架的Cu催化剂、制备方法及用途
CN106423164A (zh) * 2016-09-30 2017-02-22 上海理工大学 一种CuOX催化剂、其制备方法和在防治环境污染中的应用
CN106540694A (zh) * 2016-11-01 2017-03-29 辽宁石油化工大学 铜基MOF材料制备多孔碳负载的Cu2O/Cu复合材料的方法及其应用
CN106565964B (zh) * 2016-11-04 2019-11-05 石家庄学院 一种微/纳米多层次复合结构金属多酚囊泡材料的制备方法
CN107321386B (zh) * 2017-07-14 2019-09-27 东北大学 一种原位还原金属有机骨架薄膜的连续催化方法
CN107999079B (zh) * 2017-12-29 2020-06-05 济南大学 一种基于Cu(II)-MOF/Ni复合材料的制备方法和应用
CN108440235B (zh) * 2018-03-27 2021-01-29 浙江大学 一种从四碳烃混合气中分离1,3-丁二烯的方法
CN108888763B (zh) * 2018-07-09 2021-07-27 中国科学院理化技术研究所 含铜基颗粒的多孔碳复合材料及其制备方法和应用
CN109097787B (zh) * 2018-08-03 2020-04-28 首都师范大学 一种金属多酚配合物晶体电催化剂的制备方法与应用
CN109251536B (zh) * 2018-08-08 2020-12-08 首都师范大学 有机金属骨架材料封装的铜/氧化亚铜复合材料的制备方法
CN109280936B (zh) * 2018-10-22 2020-05-12 华东师范大学 CuO电极制备方法及电催化合成醇类化合物的应用
CN109759134B (zh) * 2019-01-24 2021-11-23 湖北大学 MOF衍生的Cu@C催化剂及其制备方法与应用
CN109701535B (zh) * 2019-01-28 2021-06-29 中北大学 氧化亚铜-碳点-铜三元复合光催化剂的制备方法
CN110078931B (zh) * 2019-04-12 2020-08-28 浙江大学 一种有机框架材料与用途
CN110227456B (zh) * 2019-06-05 2021-08-06 华南理工大学 MOFs衍生二维多级孔Cu/C复合材料及其制备方法
CN110898836B (zh) * 2019-12-06 2023-05-12 怀化学院 掺铜mof基衍生催化剂及其制备方法与应用
CN110975868A (zh) * 2019-12-16 2020-04-10 生态环境部环境规划院 一种基于有机金属框架的磁性纳米铜催化剂的制备方法及应用
CN112108119B (zh) * 2020-09-21 2023-01-31 广东石油化工学院 一种改性mof吸附材料及其制备方法
CN112604506B (zh) * 2020-10-22 2022-11-25 山东东岳高分子材料有限公司 用于染料催化脱色的聚四氟乙烯膜的制备方法及聚四氟乙烯膜的应用方法
CN112657464B (zh) * 2020-11-26 2022-03-29 中国农业科学院油料作物研究所 一种Cu-BTC MOF碳化多孔材料及其制备方法和应用
CN112522738B (zh) * 2020-12-17 2021-09-03 哈尔滨工业大学 一种MOF衍生的CuAl/N-C催化剂的制备方法和应用
CN112844479B (zh) * 2020-12-31 2022-02-11 中南大学 一种zif-8负载银纳米颗粒催化剂及其制备方法和应用
CN112619608B (zh) * 2021-01-11 2022-04-01 福州大学 一种葡萄糖基多孔碳材料的制备及应用
CN113233539B (zh) * 2021-04-09 2022-08-19 厦门大学 电子束协同催化下高分子有机化合物的降解方法及其在污水处理中的应用
CN115490868B (zh) * 2021-06-17 2023-12-01 上海科技大学 一种hkust-1晶体的制备方法
CN113413921B (zh) * 2021-07-30 2022-11-18 陕西科技大学 一种zif-8型复合光催化剂及其制备方法
CN113564632B (zh) * 2021-08-10 2023-01-24 广东电网有限责任公司 一种燃料电池性能优化异质结材料及其制备方法、电催化二氧化碳还原
WO2023023968A1 (zh) * 2021-08-25 2023-03-02 宁德时代新能源科技股份有限公司 有机-无机杂化多孔材料及其制备方法、隔膜、电化学装置及用电装置
CN114522686B (zh) * 2021-09-07 2023-11-21 盐城工学院 玉米芯负载金属-有机框架制备的Cu/Cu2O/C复合材料及其应用
CN114164446B (zh) * 2021-11-19 2023-12-22 常州大学 一种金属有机框架衍生的Cu掺杂CeO2负载PdCu合金催化剂及其制备方法
CN114345337B (zh) * 2021-12-17 2024-03-22 广东省科学院化工研究所 一种乳酸的制备方法
CN114288869B (zh) * 2021-12-28 2023-01-20 广州大学 一种CuO@Cu-PDA/PEI改性膜的制备方法
CN114632533B (zh) * 2022-03-09 2024-02-13 深圳信息职业技术学院 一种亚纳米金属催化剂及其制备方法、应用方法
CN115090289B (zh) * 2022-07-20 2024-02-02 上海理工大学 一种新型钙钛矿原位生长FeCo-MOFs衍生纳米碳微波催化剂及其制备方法和应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273461A1 (en) * 2012-04-11 2013-10-17 Uchicago Argonne, Llc Synthesis of electrocatalysts using metal-organic framework materials
CN104868109A (zh) * 2015-05-04 2015-08-26 南开大学 一种二氧化锡/多孔碳复合的锂离子电池负极材料
CN105664944A (zh) * 2016-02-19 2016-06-15 中国环境科学研究院 一种基于金属有机框架的Cu催化剂、制备方法及用途

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101269317B (zh) * 2007-03-23 2011-06-08 中国科学院大连化学物理研究所 一种负载型多孔金属有机化合物储氢材料
CN103111262B (zh) * 2013-01-31 2014-11-26 北京大学 一种金属有机骨架多孔材料及其制备方法
DE102013105471A1 (de) * 2013-04-06 2014-10-09 BLüCHER GMBH Aktivkohle mit spezieller Ausrüstung sowie deren Herstellung und Verwendung
CN103601756B (zh) * 2013-11-06 2016-07-13 江苏华富储能新技术股份有限公司 铋金属有机框架材料、制备方法及其铅蓄电池正极添加剂
US9795948B2 (en) * 2015-01-16 2017-10-24 King Abdulaziz University Sunlight active composite photocatalyst for water purification
CN105214726B (zh) * 2015-09-29 2017-10-17 齐鲁工业大学 一种用于催化还原的纳米铜复合材料的制备

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130273461A1 (en) * 2012-04-11 2013-10-17 Uchicago Argonne, Llc Synthesis of electrocatalysts using metal-organic framework materials
CN104868109A (zh) * 2015-05-04 2015-08-26 南开大学 一种二氧化锡/多孔碳复合的锂离子电池负极材料
CN105664944A (zh) * 2016-02-19 2016-06-15 中国环境科学研究院 一种基于金属有机框架的Cu催化剂、制备方法及用途

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NIU, HONGYUN ET AL.: "MOF derived porous carbon supported Cu/Cu20 composite as high performance non-noble catalyst", MICROPOROUS AND MESOPOROUS MATERIALS, vol. 219, 31 July 2015 (2015-07-31), XP029291843 *

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111151251A (zh) * 2020-01-15 2020-05-15 清创人和生态工程技术有限公司 一种Fe-Ni-Co复合类芬顿催化剂及制备方法
CN111330577A (zh) * 2020-04-15 2020-06-26 广州大学 一种碳化有机骨架包覆零价铜的芬顿催化剂及其制备方法与应用
CN111569875A (zh) * 2020-04-15 2020-08-25 江苏大学 一种铜/多孔碳纳米棒材料、制备方法和应用
CN111330577B (zh) * 2020-04-15 2023-03-10 广州大学 一种碳化有机骨架包覆零价铜的芬顿催化剂及其制备方法与应用
CN113332996B (zh) * 2020-08-31 2022-10-28 中国科学技术大学 一种超薄碳层稳定的金属纳米颗粒催化剂及其制备方法
CN113332996A (zh) * 2020-08-31 2021-09-03 中国科学技术大学 一种超薄碳层稳定的金属纳米颗粒催化剂及其制备方法
CN113697791A (zh) * 2021-07-29 2021-11-26 中南大学 一种富缺陷碳材料及其制备方法和应用
CN115140757A (zh) * 2021-11-04 2022-10-04 燕山大学 一种中空多孔结构氧化铜及其制备方法和应用
CN113893882A (zh) * 2021-11-10 2022-01-07 武汉纺织大学 一种基于金属有机配体的铜氧化物催化剂及其制备方法和应用
CN113893882B (zh) * 2021-11-10 2023-08-08 武汉纺织大学 一种基于金属有机配体的铜氧化物催化剂及其制备方法和应用
CN114477434A (zh) * 2022-01-24 2022-05-13 重庆大学 厌氧反应系统
CN114471728A (zh) * 2022-02-16 2022-05-13 天津工业大学 铜系纳米粒子和铁卟啉纳米片复合的纳米酶及制备与应用
CN114471728B (zh) * 2022-02-16 2024-02-09 天津工业大学 铜系纳米粒子和铁卟啉纳米片复合的纳米酶及制备与应用
CN114875674A (zh) * 2022-05-06 2022-08-09 南通大学 一种负载PVP/Cu-MOFs的抗菌羊毛织物的制备方法
CN114875674B (zh) * 2022-05-06 2023-01-24 南通大学 一种负载PVP/Cu-MOFs的抗菌羊毛织物的制备方法
CN116004184A (zh) * 2023-02-07 2023-04-25 西南石油大学 一种纳米金属氧化物/碳复合吸波材料及其制备方法
CN116004184B (zh) * 2023-02-07 2024-04-16 西南石油大学 一种纳米金属氧化物/碳复合吸波材料及其制备方法
CN115947337A (zh) * 2023-03-01 2023-04-11 昆明理工大学 一种固废型生物炭的制备方法及其应用

Also Published As

Publication number Publication date
CN105664944B (zh) 2018-03-27
US10940469B2 (en) 2021-03-09
US20200129971A1 (en) 2020-04-30
CN105664944A (zh) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2017140176A1 (zh) 一种基于金属有机框架的Cu催化剂、制备方法及用途
CN109305918B (zh) 一种卤代苯胺的合成方法
CN111717902B (zh) 一种氮磷硫共掺杂多孔碳负载的金属磷化物纳米复合材料及其制备方法与应用
CN113262810A (zh) 一种单原子催化剂m-sac及其制备方法和用途
CN108126727A (zh) 一种室温降解甲醛催化剂及其制备方法和应用
Gao et al. Bi-doped graphitic carbon nitride nanotubes boost the photocatalytic degradation of Rhodamine B
Lan et al. Facile fabrication of triphenylamine-based conjugated porous polymers and their application in organic degradation under visible light
CN113275002A (zh) 一种C/MoO2多孔光催化剂及其制备方法、应用
Wang et al. Fe Doped MIL-101/Graphene Nanohybrid for Photocatalytic Oxidation of Alcohols Under Visible-Light Irradiation
Li et al. Photocatalytic cascade reactions and dye degradation over CdS–metal–organic framework hybrids
CN113751006B (zh) 碳包覆氧化镍的纳米复合材料及其制备方法和应用
CN113336310B (zh) 一种以含钴的氮掺杂有序介孔碳为催化剂的催化臭氧水处理方法
CN114426490A (zh) 不饱和化合物的催化加氢方法
CN112755780B (zh) 催化一氧化二氮分解的方法
Bui et al. Facile and green cinchonidine-assisted synthesis of ultrafine and well-dispersed palladium nanoparticles supported on activated carbon with high catalytic performance
Su et al. Novel Pt/CdS Schottky Junction Catalysts for Efficient and Stable Photocatalytic NADH Regeneration Through Optimized Carrier Migration and Free Radical Generation
CN116689015A (zh) 一种具有Fe-N7.6活性位点的C/N催化剂及其制备方法与应用
CN117816216A (zh) 一种Fe单原子催化剂Fe SA/CN及其制备方法与应用
CN117258848A (zh) 一种高活性ZnTCPP/NiFeB光催化固氮剂及其制备方法和应用
CN114790017A (zh) 一种处理染料和/或重金属废水的方法及其专用复合材料
Xiao et al. In-Situ Growth of Covalent Organic Framework on Nanosheet G-C3n4 with Single-Atom Platinum for Simultaneous Photocatalytic Oxidation and Reduction of Low Concentration No

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16890400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16890400

Country of ref document: EP

Kind code of ref document: A1