CN110078931B - 一种有机框架材料与用途 - Google Patents

一种有机框架材料与用途 Download PDF

Info

Publication number
CN110078931B
CN110078931B CN201910294655.7A CN201910294655A CN110078931B CN 110078931 B CN110078931 B CN 110078931B CN 201910294655 A CN201910294655 A CN 201910294655A CN 110078931 B CN110078931 B CN 110078931B
Authority
CN
China
Prior art keywords
organic framework
framework material
organic
acid
hours
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910294655.7A
Other languages
English (en)
Other versions
CN110078931A (zh
Inventor
吴传德
陈凯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201910294655.7A priority Critical patent/CN110078931B/zh
Publication of CN110078931A publication Critical patent/CN110078931A/zh
Application granted granted Critical
Publication of CN110078931B publication Critical patent/CN110078931B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D307/00Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
    • C07D307/02Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
    • C07D307/34Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
    • C07D307/38Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
    • C07D307/40Radicals substituted by oxygen atoms
    • C07D307/42Singly bound oxygen atoms
    • C07D307/44Furfuryl alcohol
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G83/00Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
    • C08G83/008Supramolecular polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • B01J2531/025Ligands with a porphyrin ring system or analogues thereof, e.g. phthalocyanines, corroles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种有机框架材料及制备与用途。有机框架材料的制备是以金属‑有机框架材料为前驱体,在惰性气体气氛下进行低温热解,使金属‑有机框架材料中的有机羧酸配体,在金属离子的催化作用下,发生脱羧交叉偶联反应,形成多孔有机框架材料,并应用于非均相催化反应。有机框架材料用于催化苯甲酸与1,4‑二氧六环交叉脱氢偶联反应以及催化糠醛加氢反应时,催化活性高,稳定性好,催化剂可以简单回收重复利用,反应物的转化率高,后处理简单,远优于金属‑有机框架材料前驱体。

Description

一种有机框架材料与用途
技术领域
本发明涉及催化苯甲酸与1,4-二氧六环交叉脱氢偶联反应合成苯甲酸酯以及催化糠醛加氢反应的技术领域,尤其涉及一种有机框架材料及制备方法与用途。
背景技术
金属-有机框架材料(Metal-Organic Frameworks;简称MOFs)是指一类由金属离子或金属离子簇与多齿有机配体通过配位键连结形成的一类具有周期性网络结构的多孔晶态材料。MOFs具有结构可设计性和功能可调控性,在气体存储与分离、化学传感、药物传输、非均相催化等领域有潜在的应用前景。与传统工业催化剂相比,MOFs用作催化剂时,具有比表面积高、催化活性位点分布均匀、催化活性高和纳米孔道能选择吸附反应物的优点,但是由于配位键相对不稳定,降低了MOFs的稳定性,限制了MOFs的工业催化应用。
为了解决MOFs的稳定性问题,目前公开提供的技术有:(1)通过MOFs材料的后修饰,将其表面疏水化;(2)通过高温碳化,将MOFs材料转变成负载金属或金属氧化物的多孔碳材料。如,公开号为CN104341441A的中国专利报道了一种利用热解聚二甲氧基硅烷产生疏水性物质,覆盖在MOFs的表面,提高材料的疏水性,防止金属节点直接与水分子接触,提高了MOFs在水相中的稳定性;但是疏水保护层容易阻碍有机反应物分子进入MOFs孔道,而在催化反应过程中,剧烈搅拌也容易导致MOFs表面疏水保护层被破坏。《ChemSusChem》期刊(2017年第10期第3019页)报道了以MOF PCN-224为前驱体,通过高温热解制备了高比表面积的多孔碳材料,在酸、碱溶液中均表现出了良好的稳定性,但是所得碳材料不再具有原MOF的功能与性质。因此,亟需发展一种方法能够在提高MOFs材料稳定性的同时,还能够同时保持其原有的框架结构、功能与性质,使所得材料能满足工业催化的要求。
发明内容
为了解决现有金属-有机框架材料在催化应用时存在的稳定性问题,本发明提供了一种有机框架材料与用途。本发明通过低温脱羧交叉偶联反应,将不稳定的金属-有机框架材料转变为稳定的有机框架材料,在提高催化材料稳定性的同时,保持了原来金属-有机框架材料的多孔框架结构以及催化性质,拓宽了所得材料的适用条件范围,具有广泛的工业应用前景。
本发明的目的是通过以下技术方案来实现的:一种有机框架材料,它通过以下方法制备:将多孔金属-有机框架材料置于管式炉中,在氮气气氛或惰性气体气氛下,以5~15℃/min的升温速率加热至温度为300~600℃,保温2~6小时,然后冷却至室温;用氯仿洗涤产物,再将产物加入酸溶液并搅拌12~24小时,最后将产物用纯净水洗涤,重复多次,直至洗涤上清液为中性并不含金属离子,烘干后即得到所述的有机框架材料。
进一步地,所述多孔金属-有机框架材料是由金属离子和多羧酸有机配体通过配位键连接形成的多孔材料。
进一步地,所述金属离子选自铜、锌、锰、铁、钴、镍、镉、铬、铝、锆、钛、钇、钆离子。
进一步地,所述多羧酸有机配体为含有两个、三个、四个、五个、六个或八个羧基的有机配体。
进一步地,所述惰性气体优选氩气。
进一步地,所述酸溶液选自浓度均为0.1~6M的氯化铁/盐酸、氢氟酸、盐酸、硝酸、硫酸。
一种上述有机框架材料的用途,该用途为将该有机框架材料用于催化苯甲酸和1,4-二氧六环的交叉脱氢偶联反应。
进一步地,该用途具体为:将0.5-5mg有机框架材料、122mg苯甲酸和292mg二叔丁基过氧化物加入2ml 1,4-二氧六环中,120℃反应6小时。
一种上述有机框架材料的用途,该用途为将该有机框架材料用于催化糠醛加氢反应。
进一步地,该用途具体为:将0.5-5mg有机框架材料与96mg糠醛加入2ml异丙醇中,0.1~3MPa的氢气气氛、130℃温度下反应3小时。
本发明与现有的技术相比,具有以下技术效果:
1、本发明的有机框架材料制备过程简单,条件温和,稳定性好;
2、本发明的有机框架材料在保留了原MOFs框架结构的同时,保持与提高了其催化活性;
3、本发明的有机框架材料可以通过简单离心回收重复利用,多次循环使用而基本保持其催化性质;
4、本发明的有机框架材料催化苯甲酸与1,4-二氧六环交叉脱氢偶联反应以及催化糠醛加氢反应,稳定性好,反应条件温和,产率高,后处理简单。
具体实施方式
本发明公开了一种有机框架材料及制备方法与用途,该材料以多孔金属-有机框架材料为前驱体,通过低温脱羧交叉偶联反应制备多孔有机框架材料。该材料用作催化苯甲酸与1,4-二氧六环交叉脱氢偶联反应以及催化糠醛加氢反应时,催化活性高,稳定性好,反应条件温和,催化剂可以通过简单离心回收重复使用,后处理过程简单。
本发明的有机框架材料制备方法如下:将多孔金属-有机框架材料置于管式炉中,在惰性气体气氛下,升温速率为5~15℃/min,加热温度为300~600℃,保温时间为2~6小时。冷却至室温以后,用氯仿洗涤产物,除去吸附在固体表面的低聚物。加入稀酸溶液搅拌12~24小时,除去产物中混合的金属和金属氧化物纳米颗粒,加入纯净水洗涤,除去催化剂吸附的稀酸。重复多次,直至洗涤上清液为中性并不含金属离子,放置于80℃烘箱中,干燥24小时,即得到所述的有机框架材料。该材料通过热重-质谱联用、红外光谱,紫外可见光谱、拉曼光谱、基质辅助激光解吸电离飞行时间质谱、X-射线光电子能谱、扫描电镜、透射电镜以及气体吸附进行了测试与表征。
多孔金属-有机框架材料是由金属离子和多羧酸有机配体通过配位键连接形成的多孔材料。金属离子选自铜、锌、锰、铁、钴、镍、镉、铬、铝、锆、钛、钇、钆离子。多羧酸有机配体为含有两个、三个、四个、五个、六个或八个羧基的有机配体。所述惰性气体优选氩气。酸溶液选自浓度均为0.1~6M的氯化铁/盐酸、氢氟酸、盐酸、硝酸、硫酸。
该有机框架材料用于催化苯甲酸和1,4-二氧六环交叉脱氢偶联反应,具体操作为:将0.5-5mg有机框架材料、122mg苯甲酸和292mg二叔丁基过氧化物加入2ml 1,4-二氧六环中,120℃反应6小时。反应混合物经冷却、离心和稀释以后,通过HPLC计算产物产率。
该有机框架材料用于催化糠醛加氢反应,具体操作为:将0.5-5mg有机框架材料与96mg糠醛加入2ml异丙醇中,0.1~3MPa的氢气气氛、130℃温度下反应3小时。反应混合物经冷却、离心和稀释以后,通过GC-MS计算产物产率。
以下实施例将有助于理解本发明,但本发明的保护范围并不限于此内容:
实施例1
将0.006mmol 5,10,15,20-四(3,5-二(4-羧基苯基)苯基)卟啉,0.075mmol醋酸铜,溶于16mL DMF和3mL稀HNO3(4M)水溶液中,得到深棕色溶液。将混合溶液放置到80℃烘箱内,静置反应一周,得到深棕色块状晶体,即为多孔金属-有机框架材料,命名为CZJ-6。过滤,分别用DMF,EtOH和Et2O洗涤多次,在室温下晾干,产率为80%。
实施例2
将多孔金属-有机框架材料CZJ-6(100mg)置于管式炉中,在惰性氮气气氛下,升温速率为5℃/min,加热温度为400℃,保温时间为4小时,冷却至室温,得到深棕色固体材料,命名为CZJ-6-400。用氯仿洗涤吸附在固体材料表面的低聚物,多次洗涤,直至洗涤液为无色。加入5mL 1M FeCl3/HCl混合溶液搅拌12小时,除去产物中残留的铜单质和氧化亚铜纳米颗粒,加入纯净水洗涤,除去吸附在材料中的无机残留物。重复多次,直至洗涤上清液为中性并检测不到有金属离子,放置在80℃烘箱中干燥24小时,即得有机框架材料,命名为CZJ-6-400B。所得材料分别通过扫描电镜,透射电镜,基质辅助激光解吸电离飞行时间质谱,红外光谱,紫外可见光谱,拉曼光谱,X-射线光电子能谱图和CO2气体吸附实验以及水接触角实验进行了测试与表征。实验结果表明,CZJ-6在低温热解过程中发生了脱羧交叉偶联聚合反应,形成了多孔有机框架材料。所得材料疏水性强,稳定性高,继承了MOF CZJ-6的框架结构、多孔性以及催化性质。
实施例3
将4.8mmol均苯三甲酸与8.6mmol三水合硝酸铜(II)溶于50mL DMF、乙醇和水的混合溶液(体积比=1:1:1),在室温下搅拌15分钟。将反应液转移至100mL的烧杯中并用保鲜膜密封,放入80℃烘箱中静置20小时,得到蓝色八面体状晶体。将烧杯取出后,趁热倾析弃去上清液,分别用DMF、二氯甲烷洗涤,室温下晾干,得到多孔金属-有机框架材料,命名为HKUST-1,产率为68%。
实施例4
将多孔金属-有机框架材料HKUST-1(100mg)置于管式炉中,在惰性氮气气氛下,升温速率为5℃/min,加热温度为300℃,加热时间为2小时,冷却至室温,用氯仿多次洗涤材料表面的低聚物,放置在80℃烘箱干燥24小时,得到深褐色固体材料,即为负载铜单质和氧化亚铜纳米颗粒的有机框架材料,命名为HKUST-1-300。
实施例5
将0.7mmol 1,3,5-苯三丙烯酸与2.1mmol三水合硝酸铜(II)溶于40mL DMF和10mL0.1M稀盐酸的混合溶液中。将反应液转移至100mL烧杯中并用保鲜膜密封,放入80烘箱静置24小时,得到蓝色块状晶体。冷却至室温后,过滤,分别用DMF、二氯甲烷洗涤,室温下晾干,得到多孔金属-有机框架材料,命名为Cu-BTAC,产率为70%。
实施例6
将多孔金属-有机框架材料Cu-BTAC(100mg)置于管式炉中,在惰性氮气气氛下,升温速率为5℃/min,加热温度为350℃,加热时间为2小时,冷却至室温,用氯仿多次洗涤材料表面的低聚物,放置在80℃烘箱干燥24小时,得到深褐色固体材料,即为负载铜单质和氧化亚铜纳米颗粒的有机框架材料,命名为Cu-BTAC-350。
实施例7
催化剂活性评价在带有磁力搅拌的催化反应装置中进行。在玻璃密闭反应器中依次加入122mg苯甲酸,2mL 1,4-二氧六环,2.2mg有机框架材料CZJ-6-400B,292mg二叔丁基过氧化物。在120℃恒温反应6小时,反应混合物经冷却、离心和稀释以后,通过HPLC分析产物产率为92%。
实施例8
催化剂活性评价在带有磁力搅拌的催化反应装置中进行。在玻璃密闭反应器中依次加入122mg苯甲酸,2mL 1,4-二氧六环,2.2mg有机框架材料CZJ-6-400B,292mg二叔丁基过氧化物。在120℃恒温反应6小时,离心分离固体催化剂,依次用甲醇、乙酸乙酯和乙醚多次洗涤催化剂,自然晾干,连续循环使用3次后,反应混合物经冷却、离心和稀释以后,通过HPLC分析产物产率为87%。
实施例9
催化剂活性评价在带有磁力搅拌的高压反应装置中进行。在具有聚四氟乙烯内衬的高压反应釜中依次加入5.3mg Cu-BTAC-350,96mg糠醛,2mL异丙醇及磁子,旋紧六角螺母密封高压反应釜。用氢气除去反应釜中的空气,向反应釜充入氢气至压力为1.0Mpa,在130℃恒温反应3小时,然后冷却至室温,减压、取样与离心,取上清液经GC-MS分析反应物糠醛的转化率为94%,产物糠醇的选择性92%。
本发明所述的有机框架材料,是以多孔金属-有机框架材料为前驱体,在惰性气体气氛下进行低温脱羧交叉偶联反应,将不稳定的配位键转变为稳定的共价键,使所得材料在强酸、强碱条件下稳定,可应用于催化苯甲酸与1,4-二氧六环交叉脱氢偶联反应合成苯甲酸酯。不同于其他提高MOFs材料稳定性的技术,不但本发明所得有机框架材料的稳定性远远高于原MOFs材料的稳定性,而且所得材料还同时继承了原MOFs的框架结构以及催化性质,在提高催化剂稳定性的同时还提高了催化效率。上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (7)

1.一种有机框架材料,其特征在于,它通过以下方法制备:将多孔金属-有机框架材料置于管式炉中,在惰性气体气氛下,以5~15℃/min的升温速率加热至温度为300~400℃,保温2~6小时,然后冷却至室温;用氯仿洗涤产物,再将产物加入酸溶液并搅拌12~24小时,最后将产物用纯净水洗涤,重复多次,直至洗涤上清液为中性并不含金属离子,烘干后即得到所述的有机框架材料;
所述多孔金属-有机框架材料是由金属离子和多羧酸有机配体通过配位键连接形成的多孔材料;
所述金属离子选自铜、锌、锰、铁、钴、镍、镉、铬、铝、锆、钛、钇、钆离子;
所述多羧酸有机配体为含有两个、三个、四个、五个、六个或八个羧基的有机配体。
2.根据权利要求1所述有机框架材料,其特征在于,所述惰性气体为氩气。
3.根据权利要求1所述有机框架材料,其特征在于,所述酸溶液选自浓度均为0.1~6M的氢氟酸、盐酸、硝酸、硫酸。
4.一种权利要求1所述有机框架材料的用途,其特征在于,该用途为将该有机框架材料用于催化苯甲酸和1,4-二氧六环的交叉脱氢偶联反应。
5.根据权利要求4所述的用途,其特征在于,该用途具体为:将0.5-5mg有机框架材料、122mg苯甲酸和292mg二叔丁基过氧化物加入2ml 1,4-二氧六环中,120℃反应6小时。
6.一种权利要求1所述有机框架材料的用途,其特征在于,该用途为将该有机框架材料用于催化糠醛加氢反应。
7.根据权利要求6所述的用途,其特征在于,该用途具体为:将0.5-5mg有机框架材料与96mg糠醛加入2ml异丙醇中,0.1~3MPa的氢气气氛、130℃温度下反应3小时。
CN201910294655.7A 2019-04-12 2019-04-12 一种有机框架材料与用途 Active CN110078931B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910294655.7A CN110078931B (zh) 2019-04-12 2019-04-12 一种有机框架材料与用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910294655.7A CN110078931B (zh) 2019-04-12 2019-04-12 一种有机框架材料与用途

Publications (2)

Publication Number Publication Date
CN110078931A CN110078931A (zh) 2019-08-02
CN110078931B true CN110078931B (zh) 2020-08-28

Family

ID=67414980

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910294655.7A Active CN110078931B (zh) 2019-04-12 2019-04-12 一种有机框架材料与用途

Country Status (1)

Country Link
CN (1) CN110078931B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115069252B (zh) * 2022-07-14 2023-08-15 齐鲁工业大学 一种三维纳米花状镍碳催化材料及其制备方法和应用
CN116478421B (zh) * 2023-05-17 2023-12-22 深圳市好空气科技有限公司 基于联萘酚骨架的手性金属框架材料及其制备方法和应用

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005039623A1 (de) * 2005-08-22 2007-03-01 Basf Ag Verfahren zur Herstellung von metallorganischen Gerüstmaterialien Hauptgruppen Metallionen enthaltend
CN101604580B (zh) * 2009-04-03 2011-10-05 中国科学院上海硅酸盐研究所 单源化合物一步分解法制备多孔碳电极材料的方法
US10326145B2 (en) * 2012-04-11 2019-06-18 Uchicago Argonne, Llc Synthesis of electrocatalysts using metal-organic framework materials
CN103665015A (zh) * 2012-09-19 2014-03-26 中国科学院大连化学物理研究所 一种混合配体多孔铝金属有机框架材料及其制备方法
CN104707659B (zh) * 2015-02-27 2017-02-22 中山大学惠州研究院 一种磁性金属有机骨架固载金属组分材料及其制备方法和催化氧化应用
CN104857988A (zh) * 2015-05-07 2015-08-26 盐城工学院 一种杂多酸改性Zr-MOF催化剂及其制备方法与应用
CN105664944B (zh) * 2016-02-19 2018-03-27 中国环境科学研究院 一种基于金属有机框架的Cu催化剂、制备方法及用途
CN106563504B (zh) * 2016-10-28 2019-06-18 南京首帆环保科技有限公司 基于CuBTC-PVP的双金属催化剂的制备方法及其应用
CN108461306B (zh) * 2018-03-28 2019-07-12 浙江大学 一种多层级n掺杂碳纳米棒复合材料及其制备方法
CN109012164B (zh) * 2018-09-04 2020-10-23 广州华园科技有限公司 一种可常温分解甲醛的纳米纤维膜材料及其制备方法和应用

Also Published As

Publication number Publication date
CN110078931A (zh) 2019-08-02

Similar Documents

Publication Publication Date Title
Ma et al. Assembling ultrafine TiO2 nanoparticles on UiO-66 octahedrons to promote selective photocatalytic conversion of CO2 to CH4 at a low concentration
Zhao et al. NH2-MIL-125 (Ti)/TiO2 composites as superior visible-light photocatalysts for selective oxidation of cyclohexane
Yang et al. Construction of heterostructured MIL-125/Ag/g-C3N4 nanocomposite as an efficient bifunctional visible light photocatalyst for the organic oxidation and reduction reactions
Xu et al. PANI/FeUiO-66 nanohybrids with enhanced visible-light promoted photocatalytic activity for the selectively aerobic oxidation of aromatic alcohols
Zhao et al. CdS/NH 2-UiO-66 hybrid membrane reactors for the efficient photocatalytic conversion of CO 2
Yang et al. Boosting photocatalytic oxidative coupling of amines by a Ru-complex-sensitized metal-organic framework
Liu et al. Supercritical CO 2 produces the visible-light-responsive TiO 2/COF heterojunction with enhanced electron-hole separation for high-performance hydrogen evolution
CN108554432A (zh) 一种磷氮共掺杂石墨烯负载钯基催化剂及制备方法与应用
Ling et al. A visible-light-photocatalytic water-splitting strategy for sustainable hydrogenation/deuteration of aryl chlorides
CN110078931B (zh) 一种有机框架材料与用途
CN110152654B (zh) 有序介孔碳-TiO2复合材料负载钯催化剂及其制备方法、应用
CN111151285B (zh) 一种氮掺杂多孔碳负载ZnS纳米复合材料及其制备方法和应用
Liu et al. Au nanoparticles-anchored defective metal–organic frameworks for photocatalytic transformation of amines to imines under visible light
Hou et al. Metal-free azo-bridged porphyrin porous organic polymers for visible-light-driven CO 2 reduction to CO with high selectivity
CN115155616B (zh) 一种纳米纤维素基多孔固体酸催化剂及其制备方法与应用
Peng et al. Photo-driven selective CO 2 reduction by H 2 O into ethanol over Pd/Mn–TiO 2: suitable synergistic effect between Pd and Mn sites
Mao et al. Zeolitic imidazolate framework (ZIF-8)-derived acid-base bifunctional single-atom catalysts with Zn-Nx coordination for microalgal lipids conversion
Xue et al. Chemical conversion of imine-into quinoline-linked covalent organic frameworks for photocatalytic oxidation
CN112295604A (zh) 金属有机框架纳米片、其制备方法及在高效光催化还原二氧化碳中的应用
CN111171331B (zh) 一种卟啉-蒽基共价有机框架材料及其制备方法和应用
Yang et al. In Situ Anchoring of Small-Sized Silver Nanoparticles on Porphyrinic Triazine-Based Frameworks for the Conversion of CO2 into α-Alkylidene Cyclic Carbonates with Outstanding Catalytic Activities under Ambient Conditions
CN110433858B (zh) Ag/PANI/石墨烯复合光催化剂及制备方法与应用
Ren et al. M x Co3O4/g-C3N4 Derived from Bimetallic MOFs/g-C3N4 Composites for Styrene Epoxidation by Synergistic Photothermal Catalysis
Labulo et al. Graphene/pyrrolic-structured nitrogen-doped CNT nanocomposite supports for Pd-catalysed Heck coupling and chemoselective hydrogenation of nitroarenes
Wei et al. Enhanced CO2-to-methane photoconversion over carbon nitride via interfacial charge kinetics steering

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant