CN106563504B - 基于CuBTC-PVP的双金属催化剂的制备方法及其应用 - Google Patents

基于CuBTC-PVP的双金属催化剂的制备方法及其应用 Download PDF

Info

Publication number
CN106563504B
CN106563504B CN201610961378.7A CN201610961378A CN106563504B CN 106563504 B CN106563504 B CN 106563504B CN 201610961378 A CN201610961378 A CN 201610961378A CN 106563504 B CN106563504 B CN 106563504B
Authority
CN
China
Prior art keywords
pvp
cubtc
bimetallic catalyst
preparation
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610961378.7A
Other languages
English (en)
Other versions
CN106563504A (zh
Inventor
张伟贤
白楠
王伟
凌平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Shoufan Environmental Protection Tecnology Co Ltd
Original Assignee
Nanjing Shoufan Environmental Protection Tecnology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Shoufan Environmental Protection Tecnology Co Ltd filed Critical Nanjing Shoufan Environmental Protection Tecnology Co Ltd
Priority to CN201610961378.7A priority Critical patent/CN106563504B/zh
Publication of CN106563504A publication Critical patent/CN106563504A/zh
Application granted granted Critical
Publication of CN106563504B publication Critical patent/CN106563504B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2213At least two complexing oxygen atoms present in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0202Polynuclearity
    • B01J2531/0208Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0213Complexes without C-metal linkages
    • B01J2531/0219Bimetallic complexes, i.e. comprising one or more units of two metals, with metal-metal bonds but no all-metal (M)n rings, e.g. Cr2(OAc)4
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/02Compositional aspects of complexes used, e.g. polynuclearity
    • B01J2531/0238Complexes comprising multidentate ligands, i.e. more than 2 ionic or coordinative bonds from the central metal to the ligand, the latter having at least two donor atoms, e.g. N, O, S, P
    • B01J2531/0241Rigid ligands, e.g. extended sp2-carbon frameworks or geminal di- or trisubstitution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/10Complexes comprising metals of Group I (IA or IB) as the central metal
    • B01J2531/16Copper
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/80Complexes comprising metals of Group VIII as the central metal
    • B01J2531/82Metals of the platinum group
    • B01J2531/824Palladium
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • C02F1/46109Electrodes
    • C02F2001/46133Electrodes characterised by the material
    • C02F2001/46138Electrodes comprising a substrate and a coating
    • C02F2001/46142Catalytic coating
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/16Nitrogen compounds, e.g. ammonia
    • C02F2101/163Nitrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明基于CuBTC‑PVP的双金属催化剂的制备方法及其应用,涉及一种包含金属或金属氧化物或氢氧化物的催化剂。其目的是为了提供一种以金属有机框架结构为载体的反应活性高、氮气选择性好的双金属催化剂制备方法及其应用。本发明的制备方法,包括以下步骤:(1)将Cu(NO3)2·3H2O、H3BTC及PVP溶于乙醇水溶液中,得到混合溶液,将混合溶液搅拌均匀后加热,制备得到CuBTC‑PVP;(2)将CuBTC‑PVP分散于N,N‑二甲基甲酰胺,然后加入乙酰丙酮钯;充分混合浸渍后,过滤、干燥;将所得材料置于氮气氛围中,300‑400℃焙烧4‑8h,即制得本发明的基于CuBTC‑PVP的双金属催化剂。本发明的材料反应活性高、对氮气选择性高、安全系数高、可重复利用性强,能有效去除水体中的硝酸盐。本发明用于水体脱氮领域。

Description

基于CuBTC-PVP的双金属催化剂的制备方法及其应用
技术领域
本发明涉及一种包含金属或金属氧化物或氢氧化物的催化剂,特别是涉及一种高效去除水体硝酸盐的新型催化剂Pd/CuBTC-PVP的制备方法及其脱氮应用。
背景技术
随着经济的迅速发展、工业化进程的加快,工业废水、生活污水的排放量日益增多;此外,农业中含氮肥料的大量使用,大气中氮氧化物的沉降、固体废弃物的淋溶渗漏等,使得水体中硝酸盐的含量与日俱增。
若河流、湖泊中硝酸盐含量超标,会造成水体富营养化,破坏水体生态平衡;当人饮用了硝酸盐浓度过高的水后,在体内经硝酸盐还原菌作用生成亚硝酸盐,与血红蛋白反应形成高铁血红蛋白,使血液失去输氧能力,引起组织缺氧中毒,严重时会致人死亡。婴儿饮用了高浓度含硝酸盐的水后,会形成“蓝婴儿”。此外,硝酸盐还会引发癌症、肿瘤等疾病。
因此,研发控制水体硝酸盐氮的技术迫在眉睫。常见的处理方法包括物理法、生物法和化学法。物理法主要包括离子交换法、反渗透法等,该类方法只是将硝酸盐进行了富集、转移,并没有从根本上去除硝酸盐;而且需要定期对树脂进行再生,处理成本高。生物法主要是通过微生物的反硝化作用,将硝酸盐还原为氮气;但是,微生物的驯化周期长,工艺复杂,抗冲击负荷能力较差,还会产生生物污泥;而且,如果反硝化不彻底,会产生NO2 -,N2O,NO等副产物。目前使用较多的化学法主要是以Pd基或Pt基双金属催化体系为催化剂,利用氢气为还原剂,进行催化还原。所以,越来越多的学者开始研究用于去除水体硝酸盐的新材料。专利201510420934.5,以生物质炭为载体,以贵金属(Pd或Pt)为活性组分,以非贵金属(Cu、Fe、Mn等)为助剂,制备了能去除地下水中硝酸盐的负载型金属催化剂。
氢气的溶解度低、易爆炸、不易存储、不易运输,限制了该类化学法的发展和应用。利用电化学法催化还原硝酸盐氮为氮气,是一种新型水处理方法。研究表明,电化学法工作电极表面发生的化学反应为:
2H2O+2e-→H2+2OH-
对电极表面发生的化学反应为:
4OH-→2H2O+O2+4e-
专利201610155082.6,将材料的制备和应用相结合,利用电化学法去除水体硝酸盐。该专利以CuBTC(一种由硝酸铜(Cu(NO3)2·3H2O)、1,3,5-苯三甲酸(H3BTC)组装而成的金属有机框架结构)为载体,制备了Pd@Cu-BTC催化剂。为了得到尺寸较小的Pd,制备过程中需要使用氢气还原,该方法危险性较高。
因此,寻求一种制备方法简单、安全系数高、氮气选择性好,并将新材料的研发和实际应用结合为一体的技术势在必行。
发明内容
本发明是为了解决以上技术问题而提供的一种以CuBTC-PVP为载体的双金属催化剂的制备方法及其水体脱氮应用方法,该材料反应活性高、对氮气选择性高、安全系数高、可重复利用性强,能有效去除水体中的硝酸盐。
本发明涉及一种基于CuBTC-PVP的双金属催化剂的制备方法,所述方法包括以下步骤:
(1)将Cu(NO3)2·3H2O、H3BTC及PVP溶于乙醇水溶液中,得到混合溶液,将混合溶液搅拌均匀后置于水热釜中,120℃加热反应12-20h,制备得到CuBTC-PVP;
(2)将CuBTC-PVP分散于N,N-二甲基甲酰胺,然后加入乙酰丙酮钯使Pd的负载量为1%-5%;充分混合浸渍后,过滤、干燥;将所得材料置于氮气氛围中,高温(300-400℃)焙烧4-8h,即制得本发明的基于CuBTC-PVP的双金属催化剂(Pd/CuBTC-PVP)。
优选地,所述步骤(1)中乙醇水溶液中乙醇与水的体积比为1:1。
优选地,所述步骤(1)的混合溶液中Cu(NO3)2·3H2O的质量分数分别为3.64%;H3BTC的质量分数为1.75%;PVP的质量分数为2.5%。
本发明还涉及一种基于CuBTC-PVP的双金属催化剂的应用,其用于水体脱氮;所述应用包括以下步骤:
(1)将上述制得的基于CuBTC-PVP的双金属催化剂(即Pd/CuBTC-PVP)均匀涂覆于泡沫镍表面制成电极片,作为电化学脱氮反应装置的工作电极;
(2)通过电化学脱氮反应装置,将硝酸盐中的氮催化还原为氮气。
优选地,所述电化学脱氮反应装置是由多个脱氮反应器采用多级串联组合的形式组成的。
优选地,所述电化学脱氮反应装置中脱氮反应器的串联级数为2-6。
优选地,所述电化学脱氮反应装置的串联级数由实际水体中所含硝酸盐的浓度决定。
本发明基于CuBTC-PVP的双金属催化剂的制备方法及其应用与现有技术不同之处在于:
(1)相比于“一种去除水体硝酸盐的双金属催化剂Pd@Cu-BTC的制备方法及其应用”的专利(201610155082.6),本发明的Pd/CuBTC-PVP具有规则的八面体形貌,且PVP的添加为后续阶段材料的碳化提供了充足的碳源,使得材料拥有较高的比表面;
(2)本发明制得产品可针对不同水体中所含硝酸盐氮的浓度,改变电化学脱氮反应装置的级数,达到硝酸盐氮分级处理的效果;
(3)本发明产品制成的工作电极是由均匀涂覆Pd/CuBTC-PVP的泡沫镍制成,可重复利用;使用结束后,可直接将工作电极从水体拿出,避免了将粉末材料作为催化剂,分离难、回收难的的弊端;
(4)本发明的基于CuBTC-PVP的双金属催化剂的应用,使用电子和微电解产生的氢气作为还原剂,避免了常规化学方法中使用氢气作为还原剂,氢气不易存储、易爆炸、利用率低的弊端;既绿色环保又安全。
下面结合附图以及实施例对本发明的基于CuBTC-PVP的双金属催化剂的制备方法及其应用作进一步的说明。
附图说明
图1为实施例1中A型催化剂的SEM图;
图2为实施例2中B型催化剂的SEM图;
图3为脱氮反应器的示意图,其中1为直流稳压电源;2为搅拌器;3为铂片电极;4为工作电极(由本发明制得的Pd/CuBTC-PVP制成);5为电化学脱氮反应池。
具体实施方式
通过以下实施例和验证试验对本发明的基于CuBTC-PVP的双金属催化剂的制备方法及其应用作进一步的说明。
实施例1
本实施例的基于CuBTC-PVP的双金属催化剂的制备方法按以下步骤进行:
(1)将Cu(NO3)2·3H2O、H3BTC及PVP溶于乙醇水溶液中,得到混合溶液,将混合溶液搅拌均匀后置于水热釜中,120℃加热反应12h,制备得到CuBTC-PVP;
(2)将CuBTC-PVP分散于N,N-二甲基甲酰胺,然后向其中滴加浓度为10g/L的乙酰丙酮钯溶液,使Pd的负载量为5%;充分混合浸渍后,过滤、干燥;将所得材料置于氮气氛围中,400℃焙烧8h,即制得本发明的基于CuBTC-PVP的双金属催化剂A,图1为本实施例1制得的A型催化剂的SEM图;
其中,步骤(1)中乙醇水溶液中乙醇与水的体积比为1:1;
步骤(1)的混合溶液中Cu(NO3)2·3H2O的质量分数分别为3.64%;H3BTC的质量分数为1.75%;PVP的质量分数为2.5%。
实施例2
本实施例的基于CuBTC-PVP的双金属催化剂的制备方法按以下步骤进行:
(1)将Cu(NO3)2·3H2O、H3BTC及PVP溶于乙醇水溶液中,得到混合溶液,将混合溶液搅拌均匀后置于水热釜中,120℃加热反应18h,制备得到CuBTC-PVP;
(2)将CuBTC-PVP分散于N,N-二甲基甲酰胺,然后向其中滴加浓度为2g/L的乙酰丙酮钯溶液,使Pd的负载量为1%;充分混合浸渍后,过滤、干燥;将所得材料置于氮气氛围中,300℃焙烧5h,即制得本发明的基于CuBTC-PVP的双金属催化剂B,图2为本实施例2制得的B型催化剂的SEM图;
其中,步骤(1)中乙醇水溶液中乙醇与水的体积比为1:1;
步骤(1)的混合溶液中Cu(NO3)2·3H2O的质量分数分别为3.64%;H3BTC的质量分数为1.75%;PVP的质量分数为2.5%。
实施例3
本实施例的基于CuBTC-PVP的双金属催化剂的制备方法按以下步骤进行:
(1)将Cu(NO3)2·3H2O、H3BTC及PVP溶于乙醇水溶液中,得到混合溶液,将混合溶液搅拌均匀后置于水热釜中,120℃加热反应15h,制备得到CuBTC-PVP;
(2)将CuBTC-PVP分散于N,N-二甲基甲酰胺,然后向其中滴加浓度为10g/L的乙酰丙酮钯溶液,使Pd的负载量为5%;充分混合浸渍后,过滤、干燥;将所得材料置于氮气氛围中,350℃焙烧4h,即制得本发明的基于CuBTC-PVP的双金属催化剂C;
其中,步骤(1)中乙醇水溶液中乙醇与水的体积比为1:1;
步骤(1)的混合溶液中Cu(NO3)2·3H2O的质量分数分别为3.64%;H3BTC的质量分数为1.75%;PVP的质量分数为2.5%。
实施例4
本实施例的基于CuBTC-PVP的双金属催化剂的制备方法按以下步骤进行:
(1)将Cu(NO3)2·3H2O、H3BTC及PVP溶于乙醇水溶液中,得到混合溶液,将混合溶液搅拌均匀后置于水热釜中,120℃加热反应20h,制备得到CuBTC-PVP;
(2)将CuBTC-PVP分散于N,N-二甲基甲酰胺,然后向其中滴加浓度为5g/L的乙酰丙酮钯溶液,使Pd的负载量为2.5%;充分混合浸渍后,过滤、干燥;将所得材料置于氮气氛围中,320℃焙烧7h,即制得本发明的基于CuBTC-PVP的双金属催化剂D;
其中,步骤(1)中乙醇水溶液中乙醇与水的体积比为1:1;
步骤(1)的混合溶液中Cu(NO3)2·3H2O的质量分数分别为3.64%;H3BTC的质量分数为1.75%;PVP的质量分数为2.5%。
实施例5
本实施例的基于CuBTC-PVP的双金属催化剂用于水体脱氮,按以下步骤进行:
将实施例1中A型催化剂均匀涂覆于泡沫镍表面制成电极片(1cm×1cm),作为电化学脱氮反应装置的工作电极,铂片电极作为对电极;将初始浓度约为30mg/L的硝酸盐泵入过滤器,调节污水的pH为7,电导率为等量0.1mol/L硫酸钠;随后污水进入单级电化学脱氮反应装置。催化电解24h。
实施例6
本实施例的基于CuBTC-PVP的双金属催化剂用于水体脱氮,按以下步骤进行:
将实施例2中B型催化剂均匀涂覆于泡沫镍表面制成电极片(1cm×1cm),作为电化学脱氮反应装置的工作电极,铂片电极作为对电极;将初始浓度约为50mg/L的硝酸盐泵入过滤器,调节污水的pH为7,电导率为等量0.1mol/L硫酸钠;随后污水进入单级电化学脱氮反应装置。催化电解24h。
实施例7
本实施例的基于CuBTC-PVP的双金属催化剂用于水体脱氮,按以下步骤进行:
将实施例3中C型催化剂均匀涂覆于泡沫镍表面制成电极片(1cm×1cm),作为电化学脱氮反应装置的工作电极,铂片电极作为对电极;将初始浓度约为100mg/L的硝酸盐泵入过滤器,调节污水的pH为7,电导率为等量0.1mol/L硫酸钠;随后污水进入单级电化学脱氮反应装置。催化电解24h。
实施例8
本实施例的基于CuBTC-PVP的双金属催化剂用于水体脱氮,按以下步骤进行:
将实施例4中D型催化剂均匀涂覆于泡沫镍表面制成电极片(1cm×1cm),作为电化学脱氮反应装置的工作电极,铂片电极作为对电极;将初始浓度约为50mg/L的硝酸盐泵入过滤器,调节污水的pH为7,电导率为等量0.1mol/L硫酸钠;随后污水进入单级电化学脱氮反应装置。催化电解24h。
对比试验
按照专利201610155082.6提供的方法,制备Pd@Cu-BTC,并按照催化剂:炭黑:PVDF=80wt%:10wt%:10wt%的比例制成工作电极,涂布于镍网(1cm×1cm)上;将初始浓度约为100mg/L的硝酸盐泵入过滤器,调节污水的pH为7,电导率为等量0.1mol/L硫酸钠;随后污水进入单级电化学脱氮反应装置。催化电解24h。
实施例9
本实施例的基于CuBTC-PVP的双金属催化剂用于水体脱氮,按以下步骤进行:
将实施例1中A型催化剂均匀涂覆于泡沫镍表面制成电极片(4cm×4cm),作为电化学脱氮反应装置的工作电极,铂片电极作为对电极;将硝酸盐初始浓度约为50mg/L的天然水体泵入过滤器,调节污水的pH为7,电导率为等量0.1mol/L硫酸钠;随后污水进入2级串联电化学脱氮反应装置;共催化电解24h。
实施例10
本实施例的基于CuBTC-PVP的双金属催化剂用于水体脱氮,按以下步骤进行:
将实施例1中A型催化剂均匀涂覆于泡沫镍表面制成电极片(4cm×4cm),作为电化学脱氮反应装置的工作电极,铂片电极作为对电极;将硝酸盐初始浓度约为500mg/L的高浓度污水泵入过滤器,调节污水的pH为7,电导率为等量0.1mol/L硫酸钠;随后污水进入6级串联电化学脱氮反应装置;共催化电解24h。
以上实施例中所得结果如表1、表2所示。
表1实施例5-8(即单级电化学脱氮反应装置)中硝酸盐的进水浓度、出水浓度、去除效率及氮气选择性
注:对比试验中工作电极上的材料为专利(201610155082.6)所述材料
由表1知,在水体脱氮应用中,本发明所制备的材料较对比实验去除率高,氮气选择性高。
表2实施例9-10中(即多级串联电化学脱氮反应装置)工艺参数及硝酸盐的去除效果
由表2可知,经2级处理,硝酸盐氮浓度由49.8mg/L降至10mg/L以下;经6级处理,硝酸盐氮浓度由500mg/L降至10mg/L以下;出水水质均达到相关排放标准。
虽然以上描述了本发明的具体实施方式,但是本领域的技术人员应当理解,这些仅是举例说明,本发明的保护范围是由所附权利要求书限定的。本领域的技术人员在不背离本发明的原理和实质的前提下,可以对这些实施方式作出多种变更或修改,但这些变更和修改均落入本发明的保护范围。

Claims (6)

1.一种基于CuBTC-PVP的双金属催化剂的制备方法,其特征在于:所述方法包括以下步骤:
(1)将Cu(NO3)2·3H2O、H3BTC及PVP溶于乙醇水溶液中,得到混合溶液,将混合溶液搅拌均匀后置于水热釜中,120℃加热反应12-20h,制备得到CuBTC-PVP;
(2)将CuBTC-PVP分散于N,N-二甲基甲酰胺,然后加入乙酰丙酮钯使Pd的负载量为1%-5%;充分混合浸渍后,过滤、干燥;将所得材料置于氮气氛围中,300-400℃焙烧4-8h,即制得基于CuBTC-PVP的双金属催化剂。
2.根据权利要求1所述的基于CuBTC-PVP的双金属催化剂的制备方法,其特征在于:所述步骤(1)中乙醇水溶液中乙醇与水的体积比为1:1。
3.根据权利要求1所述的基于CuBTC-PVP的双金属催化剂的制备方法,其特征在于:所述步骤(1)的混合溶液中Cu(NO3)2·3H2O的质量分数为3.64%;H3BTC的质量分数为1.75%;PVP的质量分数为2.5%。
4.一种基于CuBTC-PVP的双金属催化剂的应用,其特征在于:用于水体脱氮;所述应用包括以下步骤:
(1)将权利要求1制得的基于CuBTC-PVP的双金属催化剂均匀涂覆于泡沫镍表面制成电极片,作为电化学脱氮反应装置的工作电极;
(2)通过电化学脱氮反应装置,将硝酸盐中的氮催化还原为氮气。
5.根据权利要求4所述的基于CuBTC-PVP的双金属催化剂的应用,其特征在于:所述电化学脱氮反应装置是由多个脱氮反应器采用多级串联组合的形式组成的。
6.根据权利要求5所述的基于CuBTC-PVP的双金属催化剂的应用,其特征在于:所述电化学脱氮反应装置中脱氮反应器的串联级数为2-6。
CN201610961378.7A 2016-10-28 2016-10-28 基于CuBTC-PVP的双金属催化剂的制备方法及其应用 Expired - Fee Related CN106563504B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610961378.7A CN106563504B (zh) 2016-10-28 2016-10-28 基于CuBTC-PVP的双金属催化剂的制备方法及其应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610961378.7A CN106563504B (zh) 2016-10-28 2016-10-28 基于CuBTC-PVP的双金属催化剂的制备方法及其应用

Publications (2)

Publication Number Publication Date
CN106563504A CN106563504A (zh) 2017-04-19
CN106563504B true CN106563504B (zh) 2019-06-18

Family

ID=58536122

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610961378.7A Expired - Fee Related CN106563504B (zh) 2016-10-28 2016-10-28 基于CuBTC-PVP的双金属催化剂的制备方法及其应用

Country Status (1)

Country Link
CN (1) CN106563504B (zh)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622005B (zh) * 2018-09-26 2020-07-14 同济大学 一种多孔碳负载型含氮双金属催化剂的制备方法及其电化学应用
CN109939740B (zh) * 2019-04-09 2020-05-19 大连理工大学 一种负载金纳米粒子的二维纳米片的制备方法及应用
CN110078931B (zh) * 2019-04-12 2020-08-28 浙江大学 一种有机框架材料与用途
CN110327978B (zh) * 2019-07-01 2022-02-08 华侨大学 一种钇金属有机骨架负载贵金属催化剂的制备方法
CN111617771B (zh) * 2020-05-20 2022-03-11 东南大学 复合金属材料催化剂的制备方法及在制备5-hmf应用
CN115490868B (zh) * 2021-06-17 2023-12-01 上海科技大学 一种hkust-1晶体的制备方法
CN114380370A (zh) * 2022-02-14 2022-04-22 河海大学 一种用于反硝化去除硝酸盐的杂化膜电容去离子装置及其使用方法
CN114717599B (zh) * 2022-04-26 2024-05-17 浙江大学衢州研究院 一种钌负载的镍金属三维碳球电催化剂及其制备方法和应用
CN115025816B (zh) * 2022-06-14 2023-07-14 四川大学 用于去除废水中硝酸盐的Cu基咪唑电催化剂及其制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752169A (zh) * 2014-01-10 2014-04-30 大连理工大学 金属-有机骨架材料Cu-BTC用于选择性催化还原法脱除氮氧化物
CN105665024A (zh) * 2016-03-18 2016-06-15 上海同济科蓝环保设备工程有限公司 一种去除水体硝酸盐的双金属催化剂PdCu-BTC的制备方法及其应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103752169A (zh) * 2014-01-10 2014-04-30 大连理工大学 金属-有机骨架材料Cu-BTC用于选择性催化还原法脱除氮氧化物
CN105665024A (zh) * 2016-03-18 2016-06-15 上海同济科蓝环保设备工程有限公司 一种去除水体硝酸盐的双金属催化剂PdCu-BTC的制备方法及其应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Surface polarization enhancement: high catalytic performance of Cu/CuOx/C nanocomposites derived from Cu-BTC for CO oxidation;Ruirui Zhang等;《J. Mater. Chem. A》;20160427(第4期);第8412-8420页

Also Published As

Publication number Publication date
CN106563504A (zh) 2017-04-19

Similar Documents

Publication Publication Date Title
CN106563504B (zh) 基于CuBTC-PVP的双金属催化剂的制备方法及其应用
Li et al. NiO/g-C3N4 2D/2D heterojunction catalyst as efficient peroxymonosulfate activators toward tetracycline degradation: characterization, performance and mechanism
Zhu et al. A new concept of promoting nitrate reduction in surface waters: simultaneous supplement of denitrifiers, electron donor pool, and electron mediators
CN102039125A (zh) 一种去除水中硝酸盐的双金属负载型催化剂的制备和使用方法
CN107008326A (zh) 一种碳量子点负载铁基材料高效异相类芬顿催化剂的制备方法
CN102580746A (zh) 活性炭负载钴氧化物催化剂及在降解有机污染物上的应用
CN106007001B (zh) 海绵铁与微生物协同去除硫酸盐和Zn(Ⅱ)废水的方法
CN108483582B (zh) 一种亚硝酸盐高效降解材料及其制备方法和应用
CN107597143A (zh) 一种金属纳米颗粒均匀嵌入介孔碳球内部结构的电催化剂的可控制备方法
CN104628200A (zh) 一种利用光电组合技术处理有机废水的方法
CN106006929B (zh) 一种光电催化膜耦合微生物燃料电池全天候处理污水的方法
CN105036487A (zh) 重金属废水深度处理与再生利用的装置和方法
CN104084217A (zh) 一种氨氮废水催化湿式氧化处理的催化剂及其制备方法
CN102218321A (zh) 一种用于甲基橙废水处理的非均相Fenton催化剂的制备方法
CN106396124B (zh) 海绵铁与微生物协同去除硫酸盐和Cu(Ⅱ)废水的方法
CN109622005A (zh) 一种多孔碳负载型含氮双金属催化剂的制备方法及其电化学应用
CN108423772A (zh) 一种基于载零价铁纳米复合树脂为催化剂的阴阳两极协同降解硝酸盐的装置及方法
CN106391095A (zh) 多孔磁性沸石载金属催化剂及其制备方法与应用
CN115010217B (zh) 一种高效电催化去除水中硝酸盐的三维复合电极制备方法和应用
CN114105290B (zh) 一种改性蓝藻生物炭负载纳米零价铁材料的制备方法及其应用
CN106115932B (zh) 海绵铁与微生物协同去除硫酸盐和Cr(Ⅵ)废水的方法
CN106115931B (zh) 海绵铁与微生物协同去除硫酸盐和Cd(Ⅱ)废水的方法
CN100460567C (zh) 金属改性活性炭纤维电极和用该电极去除硝酸盐的方法
CN107159175B (zh) 一种以亚氧化钛为催化剂的催化臭氧化水处理方法
CN108816283B (zh) 一种金属负载型复合光催化剂及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190618

Termination date: 20211028

CF01 Termination of patent right due to non-payment of annual fee