CN110433858B - Ag/PANI/石墨烯复合光催化剂及制备方法与应用 - Google Patents

Ag/PANI/石墨烯复合光催化剂及制备方法与应用 Download PDF

Info

Publication number
CN110433858B
CN110433858B CN201910684608.3A CN201910684608A CN110433858B CN 110433858 B CN110433858 B CN 110433858B CN 201910684608 A CN201910684608 A CN 201910684608A CN 110433858 B CN110433858 B CN 110433858B
Authority
CN
China
Prior art keywords
graphene
pani
ani
under
mixing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910684608.3A
Other languages
English (en)
Other versions
CN110433858A (zh
Inventor
王婷婷
吴丹
刘望喜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN201910684608.3A priority Critical patent/CN110433858B/zh
Publication of CN110433858A publication Critical patent/CN110433858A/zh
Application granted granted Critical
Publication of CN110433858B publication Critical patent/CN110433858B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/06Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
    • B01J31/069Hybrid organic-inorganic polymers, e.g. silica derivatized with organic groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0266Processes for making hydrogen or synthesis gas containing a decomposition step
    • C01B2203/0277Processes for making hydrogen or synthesis gas containing a decomposition step containing a catalytic decomposition step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/10Catalysts for performing the hydrogen forming reactions
    • C01B2203/1041Composition of the catalyst
    • C01B2203/1082Composition of support materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种Ag/PANI/石墨烯复合光催化剂及制备方法与应用,所述制备方法采用光引发法在石墨烯上包覆片层状的聚苯胺并负载纳米银颗粒,所述光引发法包括将苯胺ANI、硝酸银溶液和石墨烯三者的混合物或ANI与硝酸银溶液或石墨烯的混合物在搅拌的条件下置于全光光源下照射。本发明采用光聚合法制备三元复合材料,一步实现了苯胺的原位聚合和银纳米粒子的还原,制备方法简便,可重复性好;本发明提供的Ag/PANI/石墨烯复合光催化剂实现了纳米粒子的较好分散,具有较好的光催化活性;通过对香蕉皮进行两次煅烧,得到I2D/G高达0.8的少层石墨烯材料;与其他碳源相比,香蕉皮的使用,变废为宝,能有效降低生产成本。

Description

Ag/PANI/石墨烯复合光催化剂及制备方法与应用
技术领域
本发明属于环境材料合成技术领域,具体涉及一种Ag/PANI/石墨烯复合光催化剂及制备方法与应用。
背景技术
光催化技术因其在空气净化、污水降解、自清洁杀菌、裂解水产氢以及二氧化碳还原等方面的应用引起了人们广泛关注。等离子体光催化是近年来备受关注的一种新型高效光催化技术,最近已经证明金属(主要是银和金)的表面等离子体共振在光催化方面也显示出重要的应用前景。基于此,Au、Ag、Cu等贵金属纳米粒子的表面等离子体效应能促进光生空穴和电子的分离,进而有效的提高光催化效率。但单一的金属纳米粒子易被氧化和团聚,这极大的阻碍了其在光催化领域的应用,而引入其他材料来提高其稳定性和分散性,可以有效解决上述问题。
聚苯胺(PANI)是一种重要的导电聚合物,具有π-π共轭的电子结构,也被视为有机窄带隙(2.8eV)半导体,可以有效地传导光生电子,提高材料的光生电子-空穴的分离效率,提高材料的光催化活性。石墨烯材料由于其高导热性(5000 W m−1 K−1)、高导电性(2000 Sm−1)、高比表面积(2630 m2 g-1)以及常温下优异的载流子迁移速率(200000 cm2 V−1 s−1),自问世以来就受到了人们的广泛关注,也被广泛运用于光催化材料中。基于这些特性,石墨烯可以用作纳米复合材料中的导电载体、吸附剂、光敏剂、光稳定剂、光催化剂及助催化剂。其中最重要的是,石墨烯及其衍生物可以作为其他不稳定光催化剂的空穴萃取层或钝化层,以提高复合催化剂的稳定性。此外,由废弃生物质材料香蕉皮制备少层石墨烯,废物利用,降低了生产成本。因此,本发明旨在为设计合成高效、廉价的光催化剂AgNPs导电聚合物/石墨烯复合物提供一种可行的方法。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种Ag/PANI/石墨烯复合光催化剂及制备方法与应用。
本发明的目的至少是通过以下技术方案之一实现的。
本发明提供了一种Ag/PANI/石墨烯复合光催化剂,以片层状的聚苯胺包覆石墨烯为基体,基体上负载有纳米银颗粒。
本发明还提供了制备所述Ag/PANI/石墨烯复合光催化剂的方法,采用光引发法在石墨烯上包覆片层状的聚苯胺并负载纳米银颗粒,所述光引发法包括将原料混合物在惰性气体氛围中和搅拌的条件下置于全光光源下照射,所述原料混合物为苯胺ANI、AgNO3 溶液和石墨烯三者的混合物或ANI、AgNO3 溶液和石墨烯三者中任意两者的混合物;当原料混合物为ANI与AgNO3 溶液二者的混合物时,原料混合物在全光光源下照射后,再与石墨烯混合;当原料混合物为AgNO3与石墨烯二者的混合物时,原料混合物在全光光源下照射后,再与ANI溶液混合;当原料混合物为ANI与石墨烯二者的混合物时,原料混合物在全光光源下照射后,再与AgNO3 溶液混合。
优选地,制备方法包括如下具体步骤:将ANI加入到AgNO3溶液中混合,得混合溶液1,在惰性气体氛围中将混合溶液1在磁力搅拌的条件下置于全光光源下照射1-10h,离心,洗涤纯化,真空干燥,得负载有纳米银颗粒的聚苯胺复合物,即Ag/PANI;将Ag/PANI与石墨烯加入去离子水中,超声搅拌,混合均匀后真空干燥,得石墨烯包覆聚苯胺并负载纳米银颗粒的复合光催化材料即Ag/PANI/石墨烯复合光催化剂。
优选地,制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将分散液与AgNO3 溶液混合,得混合溶液2,在惰性气体氛围中将混合溶液2在磁力搅拌的条件下置于全光光源下照射1-10h,再加入ANI,继续磁力搅拌,照射1-10h,离心,洗涤纯化,真空干燥,得石墨烯包覆聚苯胺并负载纳米银颗粒的复合光催化材料即Ag/PANI/石墨烯复合光催化剂。
优选地,制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将分散液与ANI、AgNO3 溶液混合,得混合溶液3,在惰性气体氛围中将混合溶液3在磁力搅拌的条件下置于全光光源下照射1-10h,离心,洗涤纯化,真空干燥,得石墨烯包覆聚苯胺并负载纳米银颗粒的复合光催化材料即Ag/PANI/石墨烯复合光催化剂。
优选地,制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将ANI与AgNO3溶液混合,得混合溶液4,在惰性气体氛围中将混合溶液4在磁力搅拌的条件下置于全光光源下照射1-10h,再加入分散液,继续磁力搅拌,照射1-10h,离心,洗涤纯化,真空干燥,得石墨烯包覆聚苯胺并负载纳米银颗粒的复合光催化材料即Ag/PANI/石墨烯复合光催化剂。
优选地,制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将分散液与ANI混合,得混合溶液5,在惰性气体氛围中将混合溶液5在磁力搅拌的条件下置于全光光源下照射1-10h,加入AgNO3溶液,继续磁力搅拌1-10h,静置,离心,洗涤纯化,真空干燥,得石墨烯包覆聚苯胺并负载纳米银颗粒的复合光催化材料即Ag/PANI/石墨烯复合光催化剂。
优选地,硝酸银与ANI摩尔量比为(1-5):5;硝酸银溶液的摩尔浓度为(0.1-5)mol/L;ANI与石墨烯的质量比为(1-100):1;分散液中石墨烯的质量分数为0.1%-10%;所述洗涤纯化为离心洗涤,离心的速率为4000-10000 rpm,所述离心洗涤为分别用水和乙醇各洗涤1-3次;真空干燥的温度为均为40-80℃,干燥时间均为4-10h。
优选地,所述惰性气体为氮气;所述全光光源为300w-500w的 Xe灯光源;所述石墨烯是以香蕉皮为原料制备的,为生物质少层石墨烯,具体步骤包括:取香蕉皮在鼓风干燥箱中烘干,打碎成香蕉皮粉末,并置于管式炉中在氮气氛围下进行预碳化,得香蕉皮预碳化粉末,将香蕉皮预碳化粉末与碳酸钾混合均匀并研磨,在氮气氛围下进行活化,冷却至室温,与稀盐酸混合,静置,用去离子水洗涤至中性,烘干,得石墨烯;碳酸钾与香蕉皮预碳化粉末的质量比为(1-4):1;香蕉皮预碳化粉末的质量与稀盐酸的体积比为1:(5-50)g/ml;预碳化的温度为300-700℃,预碳化时的升温速度1-5℃/min,在预碳化的温度下保温时间为1-5h;活化时的温度为800-1100℃,活化时的升温速度1-5℃/min,在活化温度下的保温时间为1-5h;稀盐酸浓度为0.1-1mol/L;烘干的温度为40-80℃,烘干时间为6-12h。
本发明还提供了所述的Ag/PANI/石墨烯复合光催化剂在光催化制氢中的应用。
和现有技术相比,本发明具有以下有益效果和优点:
(1)本发明采用光聚合法制备三元复合材料,一步实现了苯胺的原位聚合和银纳米粒子的还原,制备方法简便,可重复性好;
(2)本发明的Ag/PANI/石墨烯复合光催化剂实现了纳米粒子的较好分散,具有较好的光催化活性,且其三元比例均可调控;
(3)本发明通过对废弃生物质材料(香蕉皮)进行两次煅烧,得到I2D/G达0.8的少层石墨烯材料;与其他碳源相比,香蕉皮的使用,变废为宝,能有效降低生产成本。
附图说明
图1为实施例1制备的石墨烯的XRD谱图;
图2为实施例1制备的石墨烯的拉曼谱图;
图3为实施例1制备的Ag/PANI 的红外谱图;
图4为实施例1的1#Ag/PANI/石墨烯复合光催化剂的SEM图;
图5为实施例2的2#Ag/PANI/石墨烯复合光催化剂的SEM图;
图6为实施例3的3#Ag/PANI/石墨烯复合光催化剂的SEM图;
图7是实施例1~3得到的Ag/PANI/石墨烯复合光催化剂的XRD谱图;
图8是实施例1~3得到的Ag/PANI/石墨烯复合光催化剂的光催化产氢速率图。
具体实施方式
下面结合附图和具体实施方式对本发明作进一步描述,本发明并不限于此。
光催化活性评价:在泊菲莱 LABSOLAR-Ⅲ(AG)型在线检测型光催化系统中进行,取10mg复合光催化剂、10ml 三乙醇胺(牺牲剂)以及60ml去离子水加入至反应器中,开启磁力搅拌,开启冷却循环水确保体系温度保持在25℃,缓慢抽真空。抽真空至稳定负压后,打开光源从上至下辐照,光源为300W氙灯(PLS-SXE300CUV, 泊菲莱),开启气相色谱(天美,GC-7900),载气为氩气,柱温温度 40℃,进样口温度130℃,检测器温度150℃,电流 50mA,检测器为热导池检测器,每1 小时在线检测一次。
实施例1
(1)石墨烯的制备
首先取香蕉皮在鼓风干燥箱中烘干,烘至完全干燥状态后打碎成香蕉皮粉末,并置于管式炉中在氮气氛围下进行预碳化,由室温以5℃/min的速率程序升温至500℃,并在500℃下保温1h,再自然冷却至室温。称取5g预碳化后粉末与10g碳酸钾(活化剂)混合均匀并研磨,在氮气氛围下进行第二次煅烧活化,由室温以5℃/min的速率程序升温至1100℃,并在1100℃下保温2h,再自然冷却至室温。将二次煅烧后粉末与0.1mol/L的100ml稀盐酸混合,搅拌5分钟,静置24h后,用去离子水洗涤至中性,在60℃下干燥12h,得到生物质少层石墨烯。
(2)Ag/PANI的制备
将0.92g (0.9ml) ANI和8ml (1mol/L) 的AgNO3 加入反应容器中混合,在反应器中抽真空充氮气,重复3次,用气球保持其氮气氛围;置于全光光源(300w Xe灯)下,照射10h,磁力搅拌;反应完毕后液体离心,水洗、醇洗各三次,真空干燥6h,得到Ag/PANI复合物。
(3)Ag/PANI/石墨烯复合光催化剂的制备
称取10mg石墨烯与Ag/PANI复合物加入50ml去离子水中,搅拌5min,超声分散1h,混合均匀后离心(8000rpm,10min),取下层固体60℃真空干燥6h,得Ag/PANI/石墨烯复合光催化剂即1#Ag/PANI/石墨烯。
(4)光催化活性测定
取10mg (3)中样品1#Ag/PANI/石墨烯于泊菲莱 LABSOLAR-Ⅲ(AG)型在线检测型光催化系统中进行光催化裂解水产氢实验,反应间隔相同时间进行一次测样,每种样品连续进行5次产氢分析,用气相色谱进行定性分析,确定产物的含量。其光催化产氢速率如图8所示。
图1和图2是本实施例得到的少层石墨烯的XRD和拉曼谱图。从XRD图中可以看出,制备的少层石墨烯样品在26 °和43°出现了较为尖锐的特征峰,它们分别对应石墨烯材料的(002)和(101)面。在拉曼谱图中,我们可以看到在1350cm-1,1590 cm-1和2700 cm-1处出现了三个尖锐的峰,分别对应石墨烯的D峰,G峰和2D峰。其中,由于石墨烯的拉曼光谱的2D峰和G峰的强度比随着层数的增加而减小,因此I2D/G常用来作为鉴别石墨烯层数的判定依据。该生物质石墨烯样品的I2D/G经计算为0.80,说明合成的材料确是少层石墨烯。
图3是本实施例制备的Ag/PANI 的红外谱图,可以看出其在1495cm-1(苯式结构)及1520cm-1(醌式结构)出现了聚苯胺的特征峰,证明苯胺成功光聚合为聚苯胺。图4是本实施例1#Ag/PANI/石墨烯的SEM图,可以看出Ag 纳米粒子成功的负载在了少层石墨烯和片层状堆叠的聚苯胺上。
实施例2
(1)石墨烯的制备
同实施例1。
(2)Ag/PANI/石墨烯复合光催化剂的制备
称取10mg(1)所得石墨烯分散于10ml去离子水中,超声10min得分散液A;将分散液A与0.92g (0.9ml) ANI和8ml (1mol/L) 的AgNO3 加入反应容器中混合,在反应器中抽真空充氮气,重复3次,用气球保持其氮气氛围;置于全光光源(300w Xe灯)下,照射10h,磁力搅拌;反应完毕后液体离心,取下层产物,水洗、醇洗各三次,真空干燥6h,得Ag/PANI/石墨烯复合光催化剂即2#Ag/PANI/石墨烯。
(3)光催化活性测定
所得光催化剂模拟太阳光制氢过程与实施例1相同,其光催化产氢速率如图8所示。
图5是本实施例得到的2#Ag/PANI/石墨烯的SEM图,可以看出Ag 纳米粒子出现了棒状、三角片状及多面体多种形貌并存,并有少层石墨烯和聚苯胺掺杂其中。
实施例3
(1)石墨烯的制备
同实施例1。
(2)Ag/PANI/石墨烯复合光催化剂的制备
称取10mg(1)中所得石墨烯分散于10ml去离子水中,超声10min得分散液D;将分散液D与0.92g (0.9ml) ANI加入反应容器中混合,在反应器中抽真空充氮气,重复3次,用气球保持其氮气氛围;置于全光光源(300w Xe灯)下,照射10h,磁力搅拌;光照完毕后加入8ml(1mol/L) 的AgNO3,磁力搅拌反应10h;反应完毕后液体离心,取下层产物,水洗、醇洗各三次,真空干燥6h,得Ag/PANI/石墨烯复合光催化剂即3#Ag/PANI/石墨烯。
(3)光催化活性测定
所得光催化剂模拟太阳光制氢过程与实施例1相同,其光催化产氢速率如图8所示。
图6是本实施例得到的3#Ag/PANI/石墨烯的SEM图,可以看出其整体呈现放射的丝绒花形貌,“花瓣”上附着有少量Ag 纳米粒子,Ag纳米粒子的数量少于实例1、2。
图7所示是实施例1~3得到的Ag/PANI/石墨烯复合光催化剂的XRD谱图。从图中可以看出三个样品都出现了五个尖锐的衍射峰38.11°,44.27°,64.42°,77.47°和81.53°,分别对应银的(111),(200),(220),(311)和(222)面,且没有AgO的衍射峰出现,证明该复合材料中的银以0价银形式存在。
实施例1~3得到的Ag/PANI/石墨烯复合光催化剂的光催化产氢速率如图8 所示,可知三个实例的产氢速率均达到了100 μmol g-1 h-1以上,其中实施例2和3都达到了150μmol g-1 h-1,可见Ag/PANI/石墨烯复合光催化剂具有较好光催化活性。

Claims (7)

1.Ag/PANI/石墨烯复合光催化剂在光催化制氢中的应用,其特征在于,所述Ag/PANI/石墨烯复合光催化剂以片层状的聚苯胺包覆石墨烯为基体,基体上负载有纳米银颗粒;
所述Ag/PANI/石墨烯复合光催化剂的制备方法包括以下步骤:
采用光引发法在石墨烯上包覆片层状的聚苯胺并负载纳米银颗粒,所述光引发法包括将原料混合物在惰性气体氛围中和搅拌的条件下置于全光光源下照射,所述原料混合物为苯胺ANI、AgNO3溶液和石墨烯三者的混合物或ANI、AgNO3溶液和石墨烯中任意两者的混合物;当原料混合物为ANI与AgNO3溶液二者的混合物时,原料混合物在全光光源下照射后,再与石墨烯混合;当原料混合物为AgNO3溶液与石墨烯二者的混合物时,原料混合物在全光光源下照射后,再与ANI混合;当原料混合物为ANI与石墨烯二者的混合物时,原料混合物在全光光源下照射后,再与AgNO3溶液混合;
所述惰性气体为氮气;所述全光光源为300w-500w的Xe灯光源;所述石墨烯是以香蕉皮为原料制备的,为生物质少层石墨烯,具体步骤包括:取香蕉皮在鼓风干燥箱中烘干,打碎成香蕉皮粉末,并置于管式炉中在氮气氛围下进行预碳化,得香蕉皮预碳化粉末,将香蕉皮预碳化粉末与碳酸钾混合均匀并研磨,在氮气氛围下进行活化,冷却至室温,与稀盐酸混合,静置,用去离子水洗涤至中性,烘干,得石墨烯;碳酸钾与香蕉皮预碳化粉末的质量比为(1-4):1;香蕉皮预碳化粉末的质量与稀盐酸的体积比为1:(5-50)g/ml;预碳化的温度为300-700℃,预碳化时的升温速度1-5 ℃/min,在预碳化的温度下保温时间为1-5 h;活化时的温度为800-1100 ℃,活化时的升温速度1-5℃/min,在活化温度下的保温时间为1-5 h;稀盐酸浓度为0.1-1 mol/L;烘干的温度为40-80℃,烘干时间为6-12 h。
2.根据权利要求1所述的应用,其特征在于,所述制备方法包括如下具体步骤:将ANI加入到AgNO3溶液中混合,得混合溶液1,在惰性气体氛围中将混合溶液1在磁力搅拌的条件下置于全光光源下照射1-10h,离心,洗涤纯化,真空干燥,得负载有纳米银颗粒的聚苯胺复合物,即Ag/PANI;将Ag/PANI与石墨烯加入去离子水中,超声搅拌,混合均匀后真空干燥,得到Ag/PANI/石墨烯复合光催化剂。
3.根据权利要求1所述的应用,其特征在于,所述制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将分散液与AgNO3溶液混合,得混合溶液2,在惰性气体氛围中将混合溶液2在磁力搅拌的条件下置于全光光源下照射1-10h,再加入ANI,继续磁力搅拌,照射1-10h,离心,洗涤纯化,真空干燥,得到Ag/PANI/石墨烯复合光催化剂。
4.根据权利要求1所述的应用,其特征在于,所述制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将分散液与ANI、AgNO3溶液混合,得混合溶液3,在惰性气体氛围中将混合溶液3在磁力搅拌的条件下置于全光光源下照射1-10h,离心,洗涤纯化,真空干燥,得到Ag/PANI/石墨烯复合光催化剂。
5.根据权利要求1所述的应用,其特征在于,所述制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将ANI与AgNO3溶液混合,得混合溶液4,在惰性气体氛围中将混合溶液4在磁力搅拌的条件下置于全光光源下照射1-10h,再加入分散液,继续磁力搅拌,照射1-10h,离心,洗涤纯化,真空干燥,得到Ag/PANI/石墨烯复合光催化剂。
6.根据权利要求1所述的应用,其特征在于,所述制备方法包括如下具体步骤:将石墨烯分散于去离子水中,得分散液;将分散液与ANI混合,得混合溶液5,在惰性气体氛围中将混合溶液5在磁力搅拌的条件下置于全光光源下照射1-10h,加入AgNO3溶液,继续磁力搅拌1-10h,静置,离心,洗涤纯化,真空干燥,得到Ag/PANI/石墨烯复合光催化剂。
7.根据权利要求2至6任一项所述的应用,其特征在于,硝酸银与ANI摩尔量比为(1-5):5;硝酸银溶液的摩尔浓度为(0.1-5) mol/L;ANI与石墨烯的质量比为(1-100):1;分散液中石墨烯的质量分数为0.1%-10%;所述洗涤纯化为离心洗涤,离心的速率为4000-10000 rpm,所述离心洗涤为分别用水和乙醇各洗涤1-3次;真空干燥的温度为均为40-80℃,干燥时间均为4-10h。
CN201910684608.3A 2019-07-26 2019-07-26 Ag/PANI/石墨烯复合光催化剂及制备方法与应用 Active CN110433858B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910684608.3A CN110433858B (zh) 2019-07-26 2019-07-26 Ag/PANI/石墨烯复合光催化剂及制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910684608.3A CN110433858B (zh) 2019-07-26 2019-07-26 Ag/PANI/石墨烯复合光催化剂及制备方法与应用

Publications (2)

Publication Number Publication Date
CN110433858A CN110433858A (zh) 2019-11-12
CN110433858B true CN110433858B (zh) 2021-11-23

Family

ID=68431827

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910684608.3A Active CN110433858B (zh) 2019-07-26 2019-07-26 Ag/PANI/石墨烯复合光催化剂及制备方法与应用

Country Status (1)

Country Link
CN (1) CN110433858B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111790380B (zh) * 2020-08-04 2022-10-04 江苏师范大学 一种具有均匀碳包裹银纳米颗粒组装的扇状结构光催剂的制备方法
CN114989425B (zh) * 2022-05-31 2023-12-19 华南师范大学 一种片层状聚苯胺的光化学制备方法及其应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588065A (zh) * 2015-02-09 2015-05-06 中国科学院城市环境研究所 一种稀土复合g-C3N4类石墨烯光催化剂及其制备方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104588065A (zh) * 2015-02-09 2015-05-06 中国科学院城市环境研究所 一种稀土复合g-C3N4类石墨烯光催化剂及其制备方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
"Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes";Saptarshi Dhibar等;《Journal of Alloys and Compounds》;20150820;第653卷;摘要、第487页右栏第2.2节 *
"Novel graphene/polyaniline nanocomposites and its photocatalytic activity toward the degradation of rose Bengal dye";Sadia Ameen等;《Chemical Engineering Journal》;20120828;第210卷;摘要 *
"Synthesis of polyaniline/Ag composite nanospheres throughUV rays irradiation method";Xia Li等;《Materials Letters》;20081121;第63卷;第468页左栏第2.2节 *
Saptarshi Dhibar等."Electrochemical performances of silver nanoparticles decorated polyaniline/graphene nanocomposite in different electrolytes".《Journal of Alloys and Compounds》.2015,第653卷 *

Also Published As

Publication number Publication date
CN110433858A (zh) 2019-11-12

Similar Documents

Publication Publication Date Title
Chen et al. Porous double-shell CdS@ C3N4 octahedron derived by in situ supramolecular self-assembly for enhanced photocatalytic activity
Xiao et al. Copper-mediated metal-organic framework as efficient photocatalyst for the partial oxidation of aromatic alcohols under visible-light irradiation: Synergism of plasmonic effect and schottky junction
Han et al. Constructing Cu ion sites in MOF/COF heterostructure for noble-metal-free photoredox catalysis
Wang et al. Configuration of hetero-framework via integrating MOF and triazine-containing COF for charge-transfer promotion in photocatalytic CO2 reduction
Ding et al. Bi2MoO6/g-C3N4 of 0D/2D heterostructure as efficient photocatalyst for selective oxidation of aromatic alkanes
He et al. NH2-MIL-125 (Ti) encapsulated with in situ-formed carbon nanodots with up-conversion effect for improving photocatalytic NO removal and H2 evolution
Qian et al. Enhanced photocatalytic H2 production on three-dimensional porous CeO2/carbon nanostructure
CN107790159B (zh) 一种高选择性催化氧化醇成醛的光催化剂及其制备与应用
Zhu et al. Defects induced efficient overall water splitting on a carbon-based metal-free photocatalyst
Ji et al. Ionic liquid-assisted bidirectional regulation strategy for carbon quantum dots (CQDs)/Bi4O5I2 nanomaterials and enhanced photocatalytic properties
Lai et al. Photocatalytic toluene degradation over Bi-decorated TiO2: Promoted O2 supply to catalyst’s surface by metallic Bi
CN109453766B (zh) 一种原子级分散的Ag负载TiO2介孔纳米带光催化剂的制备方法
Li et al. High performance Pd nanocrystals supported on SnO 2-decorated graphene for aromatic nitro compound reduction
CN107459029A (zh) 一种氮/金属原子掺杂空心多面体纳米碳壳材料及制备方法
Liu et al. Superb photocatalytic activity of 2D/2D Cl doped g-C3N4 nanodisc/Bi2WO6 nanosheet heterojunction: Exploration of photoinduced carrier migration in S-scheme heterojunction
CN105271217A (zh) 一种氮掺杂的三维石墨烯的制备方法
Zhou et al. Achieving efficient incorporation of electron-withdrawing sites into carbon nitride nanosheets for boosting hydrogen generation
Hu et al. One-pot template-free synthesis of heterophase BiVO 4 microspheres with enhanced photocatalytic activity
CN107983353B (zh) 一种TiO2-Fe2O3复合粉体的制备方法及其应用
CN108786849B (zh) 一种硫化锡/二氧化钛复合材料的制备和应用
CN110433858B (zh) Ag/PANI/石墨烯复合光催化剂及制备方法与应用
Yang et al. Linkage engineering mediated carriers transfer and surface reaction over carbon nitride for enhanced photocatalytic activity
CN110756203A (zh) 一种Ni2P/Mn0.3Cd0.7S光催化分解水复合催化剂及其制备方法与应用
CN105664969B (zh) 一种二氧化钛-铂-四氧化三钴三元复合光催化材料及其制备方法
CN114733543A (zh) 一种硼修饰的氮化碳材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant