WO2017130818A1 - 電極複合体の製造方法、リチウムイオン電池の製造方法 - Google Patents

電極複合体の製造方法、リチウムイオン電池の製造方法 Download PDF

Info

Publication number
WO2017130818A1
WO2017130818A1 PCT/JP2017/001573 JP2017001573W WO2017130818A1 WO 2017130818 A1 WO2017130818 A1 WO 2017130818A1 JP 2017001573 W JP2017001573 W JP 2017001573W WO 2017130818 A1 WO2017130818 A1 WO 2017130818A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
molded body
lithium
composite
lithium ion
Prior art date
Application number
PCT/JP2017/001573
Other languages
English (en)
French (fr)
Inventor
永野 大介
Original Assignee
セイコーエプソン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by セイコーエプソン株式会社 filed Critical セイコーエプソン株式会社
Priority to CN201780008187.1A priority Critical patent/CN108496266B/zh
Priority to US16/070,451 priority patent/US10547049B2/en
Publication of WO2017130818A1 publication Critical patent/WO2017130818A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/364Composites as mixtures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to a method for manufacturing an electrode composite and a method for manufacturing a lithium ion battery.
  • Patent Document 1 discloses a step of forming a first solid electrolyte in a plurality of voids of a porous active material molded body containing a lithium composite oxide. And then impregnating the active material molded body on which the first solid electrolyte is formed with an amorphous second solid electrolyte precursor solution that conducts lithium ions, and applying heat treatment to the plurality of voids in the second space.
  • a method of manufacturing an electrode assembly including a step of forming a solid electrolyte is disclosed.
  • the electrode assembly manufactured in this way is used, a plurality of voids of the active material molded body are filled with the first solid electrolyte and the second solid electrolyte, and sufficient output can be obtained and the capacity can be increased. A lithium-ion battery can be obtained.
  • the step of forming the first solid electrolyte in the plurality of voids of the porous active material molded body is also similar to the case of forming the second solid electrolyte.
  • the precursor solution of the first solid electrolyte is soaked. That is, using the two kinds of precursor solutions, the active material molded body is impregnated and then heat-treated to sequentially form the first solid electrolyte and the second solid electrolyte in the plurality of voids.
  • the active material molded body is impregnated with the precursor solution and then subjected to heat treatment (firing), when the heat treatment (firing) is repeated, a thermal history remains in the electrode composite.
  • heat treatment is performed for a long time at a high temperature, lithium is detached from the active material molded body or the solid electrolyte to cause a composition change, which may affect the ionic conductivity in the electrode composite.
  • the present invention has been made to solve at least a part of the problems described above, and can be realized as the following forms or application examples.
  • a method for manufacturing an electrode assembly according to this application example includes a first step of forming a molded body containing an active material, and immersing the molded body in a melt of a solid electrolyte under a first atmosphere. Then, the second step of impregnating the melt in the void inside the molded body, and the second atmosphere having a temperature lower than that in the first atmosphere in the molded body impregnated with the melt. And a third step of combining the molded body and the solid electrolyte by moving down and cooling.
  • the obtained electrode composite is compared with the conventional method in which a porous molded body is impregnated with a precursor solution of a solid electrolyte, dried, and subjected to heat treatment to form a solid electrolyte in a plurality of voids of the molded body.
  • the heat history time can be shortened. That is, an electrode composite having excellent ionic conductivity can be produced.
  • an end portion of the molded body is immersed in the melt, and the melt is inserted into a void inside the molded body by a capillary phenomenon. Is preferably impregnated.
  • the melt of the solid electrolyte since the melt of the solid electrolyte is impregnated into the molded body by capillary action, the melt can be impregnated and filled regardless of the porosity in the molded body, and waste of the melt can be saved. it can.
  • the molded body in the third step, is removed from the first atmosphere so that the temperature of the molded body decreases by 10 ° C. or more per minute. It is preferable to cool by moving to the second atmosphere.
  • the solid electrolyte impregnated with the melt of the solid electrolyte can be rapidly cooled to easily form the solid electrolyte in the voids of the molded body.
  • the molded body impregnated with the melt of the solid electrolyte can be efficiently cooled by introducing the cooling gas into the second atmosphere. That is, the solid electrolyte can be efficiently formed in the voids of the molded body.
  • the compact includes a lithium composite metal compound as the active material, and the solid electrolyte is a compound including Li, C, and B, and is used for cooling.
  • the gas includes CO 2 .
  • the cooling gas contains CO 2 , decomposition of lithium (Li) and carbon (C) contained in the melt of the solid electrolyte is suppressed, and carbon (C ) And the lithium ion conductivity can be suppressed from decreasing. That is, lithium ion conductivity in the solid electrolyte can be ensured.
  • the solid electrolyte combined in the third step includes an amorphous phase.
  • the solid electrolyte contains an amorphous phase
  • lithium ions are more smoothly conducted between the active material and the solid electrolyte than when the solid electrolyte is crystalline. That is, an electrode composite having high ionic conductivity can be produced.
  • the porosity of the molded body is preferably 30% or more and 70% or less.
  • the electric capacity and physical strength of the electrode composite can be ensured.
  • the lithium ion battery manufacturing method according to this application example is a fourth step of forming a lithium-resistant reduction layer on the electrode composite manufactured by using the electrode composite manufacturing method described in the above application example. And a fifth step of forming a lithium metal layer on the lithium-resistant reduction layer, and a sixth step of forming a current collector in contact with at least one of the electrode composite and the lithium metal layer. It is characterized by having.
  • a lithium ion battery having a large capacity and excellent charge / discharge characteristics can be manufactured.
  • the sixth step includes a pasting step of attaching a metal foil as the current collector to the molded body before the second step. It is characterized by.
  • the metal foil as the current collector is pasted before impregnating the melt with the solid electrolyte into the molded body, the active material contained in the molded body and the metal foil can be reliably bonded. it can.
  • the sixth step is performed after the third step on a surface opposite to a surface on which the lithium-resistant reduction layer is formed of the electrode assembly. It may include a surface treatment step of performing a surface treatment to expose the active material.
  • the solid material is formed in the plurality of voids of the molded body and then the surface treatment is performed to expose the active material, the exposed active material and the current collector can be reliably bonded.
  • the flowchart which shows the manufacturing method of the lithium ion battery of 1st Embodiment. 1 is a schematic cross-sectional view showing a method for manufacturing a lithium ion battery according to a first embodiment.
  • 1 is a schematic cross-sectional view showing a method for manufacturing a lithium ion battery according to a first embodiment.
  • 1 is a schematic cross-sectional view showing a method for manufacturing a lithium ion battery according to a first embodiment.
  • FIG. 1 Schematic which shows the immersion apparatus of a molded object.
  • 1 is a schematic cross-sectional view showing a method for manufacturing a lithium ion battery according to a first embodiment.
  • 1 is a schematic cross-sectional view showing a method for manufacturing a lithium ion battery according to a first embodiment.
  • 1 is a schematic cross-sectional view showing a method for manufacturing a lithium ion battery according to a first embodiment.
  • 1 is a schematic cross-sectional view showing a method for manufacturing a lithium ion battery according to a first embodiment.
  • the flowchart which shows the manufacturing method of the lithium ion battery of 2nd Embodiment.
  • the schematic sectional drawing which shows the manufacturing method of the lithium ion battery of 2nd Embodiment.
  • the schematic sectional drawing which shows the manufacturing method of the lithium ion battery of 2nd Embodiment.
  • FIG. 1 is a schematic perspective view showing a coin-type battery
  • FIG. 2 is a schematic cross-sectional view showing the structure of the coin-type battery.
  • a coin-type battery 100 has a disc shape whose thickness is smaller than an outer diameter, and includes a case 101 made of stainless steel or the like that functions as a positive electrode terminal (+), and an insulator 103. And a cover 102 made of stainless steel or the like that functions as a negative electrode terminal ( ⁇ ).
  • водород batteries 110 are accommodated inside the case 101 of the coin-type battery 100.
  • the eight lithium ion batteries 110 are electrically connected in parallel between the case 101 and the lid 102.
  • a total of eight lithium ion batteries 110a with the positive electrode side facing downward and lithium ion batteries 110b with the negative electrode side facing downward are accommodated alternately.
  • a negative electrode connecting portion 105 is inserted between the lithium ion battery 110a and the lithium ion battery 110b accommodated thereabove.
  • the positive electrode connection part 104 is inserted between the lithium ion battery 110b and the lithium ion battery 110a accommodated thereabove.
  • the positive electrode connection unit 104, the lithium ion battery 110a, the negative electrode connection unit 105, the lithium ion battery 110b, and the positive electrode connection unit 104 are stacked in this order, and a total of eight lithium ion batteries 110 are electrically connected in parallel. ing.
  • the lower end of the positive electrode connecting portion 104 is connected to a case 101 that functions as a positive electrode terminal (+).
  • the upper end of the negative electrode connecting portion 105 is connected to the lid portion 102 that functions as a negative electrode terminal ( ⁇ ).
  • the lid portion 102 is also cylindrical, and is housed in the case 101 via the insulator 103 so as to enclose and seal the eight lithium ion batteries 110, the positive electrode connecting portion 104, and the negative electrode connecting portion 105. ing.
  • the planar shape of the lithium ion battery 110 is circular, and the size is, for example, ⁇ 3 mm to ⁇ 30 mm.
  • the thickness of the lithium ion battery 110 is, for example, 100 ⁇ m to 150 ⁇ m (micrometer).
  • the configuration of the coin-type battery 100 is not limited to this, and the number of lithium ion batteries 110 accommodated in the case 101 and the connection method can be arbitrarily set.
  • the case 101 may be changed to accommodate the lithium ion battery 110 so that the case 101 functions as a negative electrode terminal ( ⁇ ) and the lid 102 functions as a positive electrode terminal (+).
  • FIG. 3 is a schematic sectional view showing the structure of the lithium ion battery.
  • the lithium ion battery 110 of the present embodiment includes an electrode assembly 111, a lithium-resistant reduction layer 115 and a lithium metal layer 116 laminated on the electrode assembly 111. Further, a current collector 117 that is in contact with the electrode assembly 111 and a current collector 118 that is in contact with the lithium metal layer 116 are provided.
  • the electrode composite 111 functions as a positive electrode and an electrolyte, and the lithium metal layer 116 functions as a negative electrode.
  • the electrode composite 111 is a composite of a positive electrode active material 112, a first solid electrolyte 113, and a second solid electrolyte 114.
  • a positive electrode active material 112 a positive electrode active material 112
  • a first solid electrolyte 113 a first solid electrolyte 113
  • a second solid electrolyte 114 a second solid electrolyte 114.
  • the positive electrode active material 112 in the electrode composite 111 is a lithium composite metal compound containing two or more kinds of metals including lithium.
  • LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , Li 2 Mn 2 O 3 examples thereof include lithium composite oxides such as LiFePO 4 , Li 2 FeP 2 O 7 , LiMnPO 4 , LiFeBO 3 , Li 3 V 2 (PO 4 ) 3 , Li 2 CuO 2 , Li 2 FeSiO 4 , and Li 2 MnSiO 4 .
  • a lithium composite fluoride such as LiFeF 3 may be used.
  • lithium composite metal compounds are substituted with other transition metals, typical metals, alkali metals, alkali rare earths, lanthanoids, chalcogenides, halogens and the like are also included. Further, a solid solution of these lithium composite metal compounds may be used as the positive electrode active material 112.
  • the positive electrode active material 112 is in the form of particles within a predetermined particle size range, and a plurality of particles gather to form a porous molded body 112P, and there are voids inside the molded body 112P. is doing.
  • the first solid electrolyte 113 and the second solid electrolyte 114 are in contact with the surface of the positive electrode active material 112 forming the void.
  • an oxide, sulfide, halide, or nitride is used for the first solid electrolyte 113 in the electrode assembly 111.
  • the first solid electrolyte 113 SiO 2 -P 2 O 5 -Li 2 O, SiO 2 -P 2 O 5 -LiCl, Li 2 O-LiCl-B 2 O 3, Li 3.4 V 0.6 Si 0.4 O 4 , Li 14 ZnGe 4 O 16 , Li 3.6 V 0.4 Ge 0.6 O 4 , Li 1.3 Ti 1.7 Al 0.3 (PO 4 ) 3 , Li 2.88 PO 3.73 N 0.14 , LiNbO 3 , Li 0.35 La 0.55 TiO 3 , Li 7 La 3 Zr 2 O 12 , Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 , Li 2 S—SiS 2 , Li 2 S—SiS 2 —LiI, Li 2 S—SiS 2 —P 2 S 5 , LiPON,
  • the first solid electrolyte 113 may be crystalline or amorphous.
  • a solid solution in which some atoms of these compositions are substituted with another transition metal, a typical metal, an alkali metal, an alkali rare earth, a lanthanoid, a chalcogenide, a halogen, or the like may be used as the first solid electrolyte 113.
  • the ionic conductivity of the first solid electrolyte 113 is preferably 1.0 ⁇ 10 ⁇ 5 S / cm or more. If the ionic conductivity is low, only the positive electrode active material 112 in the vicinity of the lithium metal layer (negative electrode) 116 contributes to the battery reaction, and ions of the first solid electrolyte 113 can be used effectively, and the capacity of the lithium ion battery 110 does not increase. When the ionic conductivity increases, ions contained in the positive electrode active material 112 located away from the lithium metal layer (negative electrode) 116 also pass through the first solid electrolyte 113, the second solid electrolyte 114, and the lithium-resistant reduction layer 115 to form lithium.
  • the metal layer (negative electrode) 116 can contribute to the battery reaction. That is, by including the first solid electrolyte 113 having high ion conductivity, the utilization factor of the positive electrode active material 112 in the electrode assembly 111 can be improved, and the capacity of the lithium ion battery 110 can be increased.
  • the ionic conductivity of the solid electrolyte is the bulk conductivity, which is the conductivity of the inorganic electrolyte itself, and the grain boundary ionic conductivity, which is the conductivity between the particles of the crystal when the inorganic electrolyte is crystalline.
  • the total ionic conductivity which is the sum.
  • the ionic conductivity of the solid electrolyte is measured by, for example, the AC impedance method.
  • the measurement is performed using, for example, a sample in which electrodes are formed on both surfaces of a solid electrolyte formed into a predetermined shape (for example, a tablet shape). More specifically, the solid electrolyte powder is press-molded into a tablet mold at 624 MPa. The press-molded body is sintered at 700 ° C. for 8 hours in an air atmosphere. A metal (for example, platinum) having a predetermined shape (for example, a circle having a diameter of 0.5 cm and a thickness of 100 nm) is formed on the sintered body by sputtering.
  • the measurement is performed using, for example, an impedance analyzer (SI1260 manufactured by Solartron).
  • the second solid electrolyte 114 in the electrode composite 111 is preferably a material that conducts lithium ions and is amorphous (glassy or amorphous) at room temperature.
  • a lithium composite oxide containing Li and B, Li 3 BO 3 , Li 3 BO 3 —Li 4 SiO 4 , Li 3 BO 3 —Li 3 PO 4 , Li 3 BO 3 —Li 2 SO 4 , Li 2 CO 3 —Li 3 BO 3 may be mentioned.
  • Li 3 BO 3 has an ionic conductivity of approximately 6.0 ⁇ 10 ⁇ 8 S / cm and a melting point of approximately 800 ° C.
  • Li 3 BO 3 —Li 4 SiO 4 has an ionic conductivity of approximately 4.0 ⁇ 10 ⁇ 6 S / cm and a melting point of approximately 720 ° C.
  • Li 3 BO 3 —Li 3 PO 4 has an ionic conductivity of approximately 1.0 ⁇ 10 ⁇ 7 S / cm and a melting point of approximately 850 ° C.
  • Li 3 BO 3 —Li 2 SO 4 has an ionic conductivity of approximately 1.0 ⁇ 10 ⁇ 6 S / cm and a melting point of approximately 700 ° C.
  • LCBO Li 2 CO 3 —Li 3 BO 3
  • the thickness of the electrode assembly 111 is designed according to the capacity of the lithium ion battery 110.
  • the thickness of the electrode assembly 111 is, for example, 80 ⁇ m to 300 ⁇ m, and preferably 100 ⁇ m or more.
  • a region not including the positive electrode active material 112 and the first solid electrolyte 113 is provided between the electrode composite 111 and the lithium metal layer 116.
  • This region is the lithium resistant reduction layer 115.
  • the lithium reduction layer 115 is basically made of the same material as the second solid electrolyte 114.
  • the current collectors 117 and 118 are electrodes for taking out the current generated by the battery reaction.
  • the current collector 117 is disposed so as to be in contact with the molded body 112 ⁇ / b> P made of the positive electrode active material 112 in the electrode complex 111.
  • the current collector 118 is disposed in contact with the lithium metal layer 116.
  • the current collectors 117 and 118 copper (Cu), magnesium (Mg), titanium (Ti), iron (Fe), cobalt (Co), nickel (Ni), zinc (Zn), aluminum (Al), germanium (Ge), indium (In), gold (Au), platinum (Pt), silver (Ag) and one kind of single metal selected from the group consisting of palladium (Pd), or two or more kinds selected from this group It is formed using a metal-containing alloy, a conductive metal oxide such as ITO, ATO, or FTO, or a metal nitride such as TiN, ZrN, or TaN.
  • the shape of the current collectors 117 and 118 is, for example, a plate shape, a foil shape, or a net shape. The surfaces of the current collectors 117 and 118 may be smooth or uneven.
  • the molded body 112P made of the positive electrode active material 112 is porous and has a plurality of voids (pores) inside. These voids communicate with each other inside the molded body 112P.
  • the porosity of the molded body 112P is preferably 10% or more and 70% or less, and more preferably 30% or more and 70% or less.
  • the capacity of the lithium ion battery 110 can be further increased by increasing the contact area between the molded body 112P and the first solid electrolyte 113 and the second solid electrolyte 114 by controlling the porosity.
  • Porosity r v can be calculated by the following equation (1).
  • Vg represents the apparent volume of the molded body 112P.
  • the apparent volume is calculated from the external dimensions of the molded body 112P, and includes voids.
  • m represents the mass of the molded body 112P, and ⁇ represents the density of the positive electrode active material 112 constituting the molded body 112P. Details will be described later, porosity r v of the molding 112P can be controlled in the step of forming the molded body 112P.
  • the resistivity of the molded body 112P is preferably 700 ⁇ / cm or less.
  • the resistivity is obtained, for example, by direct current polarization measurement.
  • a copper foil is attached to the surface of the molded body 112P, and this copper foil is used as an electrode.
  • the first solid electrolyte 113 and the second solid electrolyte 114 are filled in the voids of the molded body 112P and are in contact with the positive electrode active material 112.
  • the filling rate of the first solid electrolyte 113 and the second solid electrolyte 114 in the voids of the molded body 112P is preferably high, but is, for example, 60% or more and 99.9% or less.
  • a plurality of voids communicate with each other in a mesh shape.
  • LiCoO 2 that is an example of the positive electrode active material 112 is known to have anisotropy in the electronic conductivity of the crystal. Therefore, when the gap extends in a specific direction, depending on the relationship between the direction in which the gap extends and the crystal orientation, it may be difficult to conduct electrons.
  • the voids of the molded body 112P are communicated in a mesh shape, and the positive electrode active material 112 is also isotropically connected. Therefore, an electrochemically smooth continuous surface of the positive electrode active material 112 can be formed, and better electron conduction can be obtained as compared with the case where the voids are anisotropically formed.
  • the molded body 112P has a large number of voids inside, the surface area is large. Therefore, the contact area between the molded body 112P and the first solid electrolyte 113 or the second solid electrolyte 114 is increased, and the interface impedance can be reduced.
  • the contact area between the compact 112P and the second solid electrolyte 114 is larger than the contact area between the current collector 117 and the compact 112P. Since the charge transfer is easier at the interface between the current collector 117 and the molded body 112P than at the interface between the molded body 1112P and the second solid electrolyte 114, the molded body 112P can have the same contact area. And the second solid electrolyte 114 become a bottleneck for charge transfer. In this embodiment, since the contact area between the molded body 112P and the second solid electrolyte 114 is larger, this bottleneck can be easily eliminated.
  • FIG. 4 is a flowchart showing a method for manufacturing a lithium ion battery
  • FIGS. 5 to 7 and FIGS. 10 to 13 are schematic cross-sectional views showing a method for manufacturing a lithium ion battery
  • FIG. 8 is a schematic showing a jig for immersing a molded body.
  • FIG. 9 is a schematic view showing a molded body dipping device.
  • the manufacturing method of the lithium ion battery 110 of this embodiment includes a molded body forming step (step S1), a current collector pasting step (step S2), and a solid electrolyte impregnation step (step S3).
  • a composite process (step S4), a lithium-resistant reduction layer forming process (step S5), a negative electrode layer forming process (step S6), and a current collector pasting process (step S7) are provided.
  • a porous molded body 112P made of the positive electrode active material 112 is formed.
  • a particulate (powder) positive electrode active material lithium composite metal compound
  • LCO particulate LiCoO 2
  • the average particle diameter (D50) of the positive electrode active material is, for example, preferably from 300 nm to 20 ⁇ m, and more preferably from 5 ⁇ m to 15 ⁇ m.
  • the average particle size is determined by, for example, dispersing the particles of the positive electrode active material material in n-octanol so as to have a concentration of 0.1% by mass to 10% by mass, and then measuring a light scattering particle size distribution analyzer (for example, Nikkiso Co., Ltd.). Measurement is carried out using Nanotrac UPA-EX250 manufactured by the manufacturer. If the average particle size is too small, the voids become small, and it becomes difficult to fill the solid electrolyte in the subsequent steps. On the other hand, if the average particle size is too large, the specific surface area of the molded body 112P becomes small, and the output of the lithium ion battery 110 becomes low.
  • the particles of the positive electrode active material are put into a mold, and are compressed by, for example, pressing at a pressure of 0.1 MPa to 5.0 MPa. Further, this compact is heat treated and sintered to obtain a compact 112P shown in FIG.
  • This heat treatment is performed under a temperature condition that is 850 ° C. or higher in consideration of Li transpiration and is lower than the lower of the melting point and the decomposition point of the lithium composite metal compound used as the positive electrode active material. . Since the melting point of LCO as the lithium composite metal compound is 1000 ° C. or higher, this heat treatment is preferably performed at 900 ° C. or higher and 1000 ° C. or lower, more preferably 925 ° C. or higher and 975 ° C. or lower. Further, this heat treatment is preferably performed for 5 minutes to 36 hours, more preferably 4 hours to 14 hours.
  • a polymer compound that functions as a binder may be added to the positive electrode active material.
  • a polymer compound include polyvinylidene fluoride (PVdF), polyvinyl alcohol (PVA), and polypropylene carbonate (PPC). These polymer compounds are burned or oxidized in the heat treatment in this step, and the amount thereof is reduced or burned out.
  • a pore former may be added to the positive electrode active material.
  • the pore former refers to a substance (for example, a polymer compound or carbon powder) that serves as a void mold. By adding the pore former, the porosity of the molded body 112P can be controlled.
  • the pore former is burned or oxidized in the heat treatment in this step, and the amount thereof is reduced.
  • the average particle diameter of the pore former is preferably 0.5 ⁇ m to 10 ⁇ m.
  • the pore former may include particles formed of a material having deliquescence. The water generated in the surroundings by deliquescent of these particles functions as a binder for joining the particulate lithium composite metal compound. Therefore, the shape of the compressed body can be maintained from the compression molding of the particulate positive electrode active material to the heat treatment.
  • the first solid electrolyte 113 is formed so as to be in contact with the surface of the positive electrode active material 112 in the void inside the molded body 112P.
  • a precursor of the first solid electrolyte 113 is prepared.
  • the precursor for example, any of the following (A) to (C) is used.
  • a composition comprising a metal atom in a proportion according to the composition of the first solid electrolyte 113 and having a salt that becomes the first solid electrolyte 113 by oxidation.
  • B A composition having a metal alkoxide containing metal atoms in a proportion according to the composition of the first solid electrolyte 113.
  • (C) A dispersion in which fine particles of the first solid electrolyte 113 or fine particle sol containing metal atoms in a proportion according to the composition of the first solid electrolyte 113 are dispersed in a solvent or (A) or (B).
  • the metal complex is contained in the salt contained in (A).
  • (B) is a precursor when the first solid electrolyte 113 is formed using a so-called sol-gel method.
  • Li 6.75 La 3 Zr 1.75 Nb 0.25 O 12 (hereinafter simply referred to as LLZrNbO) was used as the first solid electrolyte 113 showing higher ionic conductivity than the second solid electrolyte 114.
  • Crystal particles of LLZrNbO are dispersed in a solvent and used as the precursor solution 113S.
  • the average particle diameter of LLZrNbO is, for example, 300 nm to 20 ⁇ m.
  • the melting point of LLZrNbO is about 1000 ° C. to 1100 ° C.
  • the precursor solution 113 ⁇ / b> S is impregnated (soaked) in the voids of the molded body 112 ⁇ / b> P.
  • the precursor solution 113S is dropped on the molded body 112P disposed on the base material 10.
  • the molded body 112P may be immersed in the precursor solution 113S.
  • the precursor solution 113S may be applied to the molded body 112P.
  • the precursor solution 113S may be brought into contact with the end portion of the molded body 112P, and the precursor solution 113S may be impregnated in the voids of the molded body 112P using a capillary phenomenon.
  • the atmosphere surrounding the molded body 112P or the precursor may be pressurized to promote the impregnation of the precursor solution 113S.
  • the base material 10 is, for example, a transparent quartz substrate that is not easily deformed even if it is fired at a high temperature thereafter.
  • the molded body 112P impregnated with the precursor solution 113S is fired, and the first solid electrolyte 113 is deposited in the voids of the molded body 112P.
  • the removal of the solvent is performed by using at least one generally known method such as heating, decompression, and air blowing. Firing is performed in an air atmosphere at a lower temperature than the heat treatment for obtaining the molded body 112P.
  • the firing temperature is, for example, a temperature range of 500 ° C. or higher and 900 ° C. or lower.
  • the firing temperature is too high, an electrochemically inactive by-product may be generated due to a solid-phase reaction at the interface between the molded body 112P and the first solid electrolyte 113. Such by-products adversely affect the characteristics of the lithium ion battery 110. If the firing temperature is too low, the crystallinity of the first solid electrolyte 113 is poor and sufficient ion conductivity may not be obtained.
  • the first solid electrolyte 113 is formed by a method in which the precursor solution 113S having fluidity is immersed in the voids of the molded body 112P, but it is difficult to allow the precursor solution 113S to be immersed in all the voids.
  • the solvent evaporates from the precursor solution 113S and the first solid electrolyte 113 is deposited in the voids by firing, but the voids still remain in the composite 111P of the molded body 112P and the first solid electrolyte 113 (FIG. 7). Then, the process proceeds to step S2.
  • step S1 is an example of the 1st process in the manufacturing method of the electrode composite_body
  • Step S2 is an example of the sixth step in the method of manufacturing a lithium ion battery of the present invention.
  • step S3 is an example of the 2nd process in the manufacturing method of the electrode composite_body
  • the immersion jig 20 has a ladder shape, and a pair of support columns 21 arranged in parallel and a plurality of supports spanned between the pair of support columns 21 at intervals. Part 22. If the ladder-like immersion jig 20 is placed horizontally and the disc-shaped composite body 111P is inserted between the adjacent support portions 22, the end of the composite body 111P protrudes below the immersion jig 20 and is supported. can do. A maximum of eight composites 111P can be set in the immersion jig 20 of the present embodiment.
  • the immersion jig 20 is configured to be able to set the same number of composites 111P as the lithium ion battery 110 housed in the coin-type battery 100.
  • the number of composites 111P that can be set on the immersion jig 20 is not limited to eight.
  • the immersion apparatus 500 of this embodiment has a chamber 501 that can move the immersion jig 20 suspended in the vertical direction.
  • the interior of the chamber 501 is partitioned by a partition portion 509 into an immersion chamber 503 in which the melting furnace 502 is disposed at the bottom and a cooling chamber 504 in the vertical direction.
  • the melt 114M melted when the second solid electrolyte 114 is charged and heated is stored.
  • the cooling chamber 504 is provided with a suspension arm 507 for suspending the immersion jig 20 so as to be detachable.
  • the suspension arm 507 moves up and down by a drive unit 508 provided on the upper portion of the chamber 501.
  • Examples of the configuration in which the suspension arm 507 is moved up and down include a configuration in which a wire is attached to the upper end of the suspension arm 507 and the wire is wound or unwound by a drive system such as a motor provided in the drive unit 508. It is done.
  • the partition 509 that partitions the immersion chamber 503 and the cooling chamber 504 is provided with an opening 509 a that opens above the melting furnace 502.
  • the immersion jig 20 attached to the suspension arm 507 can be moved up and down between the immersion chamber 503 and the cooling chamber 504 through the opening 509 a.
  • An introduction pipe 505 for introducing a cooling gas into the cooling chamber 504 is provided on the side of the cooling chamber 504 near the partition portion 509.
  • a discharge pipe 506 for discharging the introduced gas is provided in the upper part of the cooling chamber 504.
  • the introduction pipe 505 and the discharge pipe 506 are provided with valves for controlling the introduction and discharge of gas, respectively.
  • the cooling gas may be a dehumidified gas, and for example, an inert gas such as dry air or nitrogen can be used.
  • an inert gas such as dry air or nitrogen
  • FIG. 10 represents the operation
  • the suspension arm 507 is lowered by the drive unit 508 shown in FIG. 9, and the complex 111P set in the immersion jig 20 is moved from the cooling chamber 504 to the immersion chamber 503 as shown in FIG. Then, the suspension arm 507 is stopped when the end of the composite 111P is immersed in the melt 114M of the second solid electrolyte 114 stored in the melting furnace 502. Then, the state where the end of the composite 111P is immersed in the melt 114M is maintained for a predetermined time. Since the composite body 111P is porous, the melt 114M is sucked into the composite body 111P by capillary action and filled in the voids inside the composite body 111P. When the predetermined time has elapsed, the suspension arm 507 is raised by the drive unit 508, and the composite 111P set on the immersion jig 20 is pulled up from the immersion chamber 503 to the cooling chamber 504.
  • the predetermined time during which the end of the composite 111P is immersed in the melt 114M depends on the volume and the porosity of the composite 111P. Therefore, the immersion time and the filling rate of the second solid electrolyte 114 with respect to the space after cooling are examined in advance, and are set in consideration of variations in the volume and the porosity of the plurality of composites 111P.
  • a cooling gas is introduced into the cooling chamber 504, and the composite 111P is cooled by pulling up the composite 111P from the immersion chamber 503 to the cooling chamber 504. That is, the inside of the immersion chamber 503 is an example of the first atmosphere in the present invention, and the inside of the cooling chamber 504 is an example of the second atmosphere in the present invention.
  • LCBO having a relatively low melting point is used as the second solid electrolyte 114. Since the melting point of LCBO is 685 ° C., the temperature of the melt 114M in the melting furnace 502 is 685 ° C. or higher, and is maintained at about 700 ° C., for example. Accordingly, the temperature of the atmosphere in the immersion chamber 503 is, for example, about 300 ° C. to 600 ° C. On the other hand, the temperature of the atmosphere in the cooling chamber 504 is adjusted to be, for example, about 100 ° C. to 200 ° C. by introducing a cooling gas from the introduction pipe 505. Therefore, the temperature difference between the atmosphere in the immersion chamber 503 and the cooling chamber 504 is about 500 ° C. at the maximum.
  • LCBO is used as the second solid electrolyte 114
  • a gas containing CO 2 carbon dioxide
  • the cooling gas contains CO 2
  • the release of carbon from lithium carbonate (Li 2 CO 3 ) contained in the melt 114M is suppressed, and the ionic conductivity of the second solid electrolyte 114 formed after cooling is reduced. Is suppressed from decreasing.
  • the composite 111P when pulling up the composite 111P filled with the melt 114M from the immersion chamber 503 to the cooling chamber 504, the composite 111P is adjusted so that the temperature of the composite 111P decreases by 10 ° C. or more per minute. Pull up. For example, if the temperature difference between the atmosphere in the immersion chamber 503 and the cooling chamber 504 is 500 ° C., the composite 111P is pulled up from the immersion chamber 503 to the cooling chamber 504 and cooled within 50 minutes. For example, if the temperature difference between the immersion chamber 503 and the cooling chamber 504 is 300 ° C., the composite 111P is pulled up from the immersion chamber 503 to the cooling chamber 504 and cooled within 30 minutes.
  • step S4 the melt 114M filled in the gap of the composite 111P is rapidly cooled at a predetermined speed, the melt 114M is solidified, and the gap of the composite 111P is filled with the second solid electrolyte 114. That is, the composite 111P and the second solid electrolyte 114 are combined (compositing step (step S4)).
  • step S4 an example of the third step in the method for manufacturing an electrode assembly of the present invention, and steps S1 to S4 show the method for manufacturing the electrode assembly.
  • a lithium-resistant reduction layer 115 is formed on the surface of the electrode assembly 111 opposite to the surface on which the current collector 117 is formed.
  • LCBO which is the same material as the second solid electrolyte 114, is formed by sputtering to have a film thickness of about 1 ⁇ m to 10 ⁇ m to form the lithium-resistant reduction layer 115.
  • Step S5 is an example of a fourth step in the method for manufacturing a lithium ion battery of the present invention.
  • the lithium metal layer 116 is formed so as to be in contact with the lithium-resistant reduction layer 115.
  • the lithium metal layer 116 is formed by depositing Li so as to have a film thickness of approximately 1 ⁇ m to 5 ⁇ m by an evaporation method. Then, the process proceeds to step S7.
  • Step S6 is an example of the fifth step in the method of manufacturing a lithium ion battery of the present invention.
  • the current collector 118 is formed in contact with the lithium metal layer 116 as shown in FIG.
  • the current collector 118 is formed by attaching and pressing a Cu foil having a thickness of approximately 1 ⁇ m to 20 ⁇ m on the lithium metal layer 116.
  • Step S7 is an example of a sixth step in the method of manufacturing a lithium ion battery of the present invention.
  • a feature of the method of manufacturing the electrode assembly 111 of the present embodiment is that the positive electrode active material 112 is formed by pressure-molding LCO crystal particles having a melting point of 1000 ° C. or higher and sintered at a temperature of 850 ° C. or higher and 1000 ° C. or lower.
  • the molded body 112P is used.
  • LLZrNbO having a melting point of approximately 1100 ° C. higher than that of LCO is used as the first solid electrolyte 113, and a precursor solution 113S containing crystal particles of LLZrNbO is formed in the voids of the molded body 112P.
  • the second solid electrolyte 114 having a melting point lower than that of the positive electrode active material 112
  • LCBO having a melting point of 685 ° C.
  • a composite 111P of the molded body 112P and the first solid electrolyte 113 is impregnated with a melt 114M of LCBO.
  • the second solid electrolyte 114 is filled in the voids of the composite body 111P.
  • the positive electrode active material 112 is combined with the first solid electrolyte 113 and the second solid electrolyte 114 at a heat treatment temperature lower than the melting point of the positive electrode active material 112 to ensure high ionic conductivity and electric capacity. It is in the realization.
  • the melting point / softening point of the second solid electrolyte 114 is preferably 400 ° C. or higher and 900 ° C. or lower from the viewpoint of making the composite at a lower heat treatment temperature.
  • the following effects can be obtained.
  • the composite body 111P as a porous molded body is impregnated with the melt 114M0 of the second solid electrolyte 114 in the solid electrolyte impregnation process in step S3, and then cooled in the composite process in step S4 to be composite body 111P.
  • the second solid electrolyte 114 are combined. Therefore, compared with the method of impregnating the porous composite 111P with the precursor solution of the second solid electrolyte 114, drying, and applying heat treatment to form the second solid electrolyte 114 in the plurality of voids of the composite 111P, The heat history time in the obtained electrode assembly 111 can be shortened.
  • the electrode assembly 111 having excellent ion conductivity can be efficiently manufactured.
  • step S3 the composite body 111P is impregnated with the melt 114M of the second solid electrolyte 114 by capillary action, so that the melt 114M is impregnated and filled regardless of the porosity in the composite body 111P. can do. Moreover, since it is not necessary to finely adjust the amount of the melt 114M according to the porosity, waste of the melt 114M can be eliminated.
  • step S4 the composite 111P is pulled up from the immersion chamber 503 to the cooling chamber 504 so that the temperature of the composite 111P impregnated with the melt 114M is decreased by 10 ° C. or more per minute.
  • the composite 111P can be rapidly cooled. That is, the melt 114M filled in the gap of the composite 111P is less likely to crystallize compared to the case where the composite 111P impregnated with the melt 114M is slowly cooled, and thus the second phase including the description in the amorphous phase.
  • a solid electrolyte 114 can be formed. That is, as compared with the case where the second solid electrolyte 114 is crystalline, lithium ion conduction is more smoothly performed between the positive electrode active material 112 and the electrode complex 111 exhibiting high ion conductivity is formed. Can do.
  • the second solid electrolyte 114 is a compound (LCBO) containing Li, C, and B. Since the cooling gas contains CO 2 , lithium carbonate (Li 2 CO 3) contained in the melt 114M. ) From carbon (C) can be suppressed, and the ionic conductivity of the second solid electrolyte 114 formed after cooling can be suppressed from decreasing. That is, high ionic conductivity can be ensured in the electrode assembly 111.
  • the porosity of the molded body 112P made of the positive electrode active material 112 is 10% or more and 70% or less, and preferably 30% or more and 70% or less, the ratio in the voids of the molded body 112P that contributes to the battery reaction.
  • the surface area can be increased.
  • the strength of the electrode assembly 111 can be ensured while realizing a large specific surface area.
  • the electrode assembly 111 in which high ionic conductivity and electric capacity are ensured is used. Therefore, the lithium ion battery 110 having a large capacity and excellent charge / discharge characteristics can be manufactured. In addition, by storing a plurality of lithium ion batteries 110, it is possible to provide a thin (small) coin-type battery 100 having a large capacity and excellent charge / discharge characteristics.
  • the electrolyte 111P is impregnated with the melt 114M of the second solid electrolyte 114. Since the current collector 117 is attached to the composite body 111P before the process, the Au foil as the current collector 117 and the positive electrode active material 112 are reliably brought into contact with each other, and the current collector 117 and the electrode composite body 111 are The interface impedance can be reduced. That is, the output loss in the lithium ion battery 110 can be reduced.
  • FIG. 14 is a flowchart showing a method for manufacturing a lithium ion battery according to the second embodiment
  • FIGS. 15 to 17 are schematic cross-sectional views showing a method for manufacturing a lithium ion battery according to the second embodiment.
  • the manufacturing method of the lithium ion battery to which the manufacturing method of the electrode assembly of the second embodiment is applied includes a molded body forming step (step S11), a solid electrolyte impregnation step (step S12), a composite Process (step S13), surface treatment process (step S14), lithium-resistant reduction layer forming process (step S15), negative electrode layer forming process (step S16), and current collector pasting process (step S17) I have.
  • the manufacturing method of the lithium ion battery according to the second embodiment is different from the first embodiment in that the method of forming the current collector 117 is different and a surface treatment step (step S14) is added.
  • step S11, step S12, and step S13 in the method for manufacturing the electrode assembly of the present embodiment are basically the same as the corresponding steps S1, S3, and S4 in the first embodiment.
  • step S15 and step S16 in the manufacturing method of the lithium ion battery of the present embodiment are basically the same as the corresponding steps S5 and S6 in the first embodiment. Accordingly, the same components as those of the lithium ion battery 110 of the first embodiment are denoted by the same reference numerals, and detailed description thereof is omitted. Further, the description of the same steps as those in the first embodiment will be simplified, and different steps will be described in detail.
  • step S11 the composite body 111P in which the porous molded body 112P made of the positive electrode active material 112 and the first solid electrolyte 113 are combined is formed in the same manner as in step S1 of the first embodiment. Form. Then, the process proceeds to step S12.
  • step S12 the current collector 117 is not attached to the composite 111P as in step S2 in the first embodiment, and step S3 in the first embodiment is performed.
  • the composite 111P is impregnated with the melt 114M of the second solid electrolyte 114.
  • step S4 of the first embodiment the composite 111P impregnated with the melt 114M is pulled up from the immersion chamber 503 to the cooling chamber 504 and cooled, and the composite 111P and the second solid electrolyte 114 are combined. An electrode composite 111 is obtained. Then, the process proceeds to step S14.
  • step S14 In the surface treatment process of step S14, as shown in FIG. 15, one of the two surfaces 111a and 111b of the electrode assembly 111 facing each other is subjected to a surface treatment to expose the positive electrode active material 112.
  • a chemical-mechanical polishing process CMP process
  • CMP process is performed on one surface 111a. Accordingly, one surface 111a is flatter than the other surface 111b, and the positive electrode active material 112 is reliably exposed. Then, the process proceeds to step S15.
  • the surface treatment method for exposing the positive electrode active material 112 on the one surface 111a is not limited to the CMP treatment.
  • water-soluble LCBO is used as the second solid electrolyte 114, by applying water or a solution containing water to the electrode complex 111, the second surface layer of the electrode complex 111 is applied.
  • the positive electrode active material 112 may be exposed by dissolving the solid electrolyte 114.
  • the other surface 111b opposite to the one surface 111a that has been surface-treated in the previous step S14 is applied.
  • the lithium reduction layer 115 and the lithium metal layer 116 are sequentially formed and stacked by a sputtering method, for example. Then, the process proceeds to step S17.
  • the current collector 117 is formed on one surface 111a of the electrode assembly 111, and the current collector 118 is formed in contact with the lithium metal layer 116. .
  • an Au foil as the current collector 117 is attached to one surface 111 a of the electrode composite 111, and a Cu foil as the current collector 118 is attached to the lithium metal layer 116.
  • the following effects can be obtained in addition to the effects (1) to (8) of the first embodiment.
  • the electrode assembly 111 obtained in steps S11 to S13 is subjected to a surface treatment in step S14, the positive electrode active material 112 can be reliably exposed on one surface 111a of the electrode assembly 111. it can. Therefore, in step S17, if the current collector 117 is formed on one surface 111a of the electrode assembly 111, the positive electrode active material 112 and the current collector 117 of the electrode assembly 111 are compared with the first embodiment. More reliable bonding can be realized by increasing the contact area.
  • the present invention is not limited to the above-described embodiment, and can be appropriately changed without departing from the gist or concept of the invention that can be read from the claims and the entire specification.
  • a manufacturing method and a manufacturing method of a lithium ion battery to which the manufacturing method of the electrode assembly is applied are also included in the technical scope of the present invention.
  • Various modifications other than the above embodiment are conceivable. Hereinafter, a modification will be described.
  • the molded body impregnated with the melt 114M of the second solid electrolyte 114 is limited to the composite body 111P in which the porous molded body 112P made of the positive electrode active material 112 and the first solid electrolyte 113 are combined. Not. It may be a molded body 112P made of the positive electrode active material 112 in which the first solid electrolyte 113 is not compounded. That is, the electrode assembly 111 may be a composite of the molded body 112P and the second solid electrolyte 114.
  • the electrode composite 111 is not limited to the one containing the positive electrode active material 112.
  • an electrode composite that functions as a negative electrode and an electrolyte by using a carbon-based material such as acetylene black, ketjen black, and carbon nanotubes having electronic conductivity as an active material and combining with a solid electrolyte containing Li. be able to.
  • SYMBOLS 100 Coin type battery, 110, 110D ... Lithium ion battery, 111 ... Electrode composite, 111P ... Composite as a molded object, 112 ... Positive electrode active material as an active material, 112P ... Molded object consisting of a positive electrode active material, 113 DESCRIPTION OF SYMBOLS 1st solid electrolyte, 114 ... 2nd solid electrolyte, 114M ... Melt of 2nd solid electrolyte, 115 ... Lithium-resistant reduction layer, 116 ... Lithium metal layer, 117,118 ... Current collector.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

熱処理に係る熱履歴時間を短縮して電極複合体を効率よく製造可能な電極複合体の製造方法、リチウムイオン電池の製造方法を提供すること。 本実施形態の電極複合体111の製造方法は、活物質を含む成形体としての複合体111Pを形成する第1の工程と、第1の雰囲気下で、固体電解質の融液114Mに複合体111Pを浸漬して、複合体111Pの内部の空隙に融液114Mを含浸させる第2の工程と、融液114Mを含浸させた複合体111Pを、第1の雰囲気下よりも温度が低い第2の雰囲気下に移動させて冷却し、複合体111Pと固体電解質とを複合化させる第3の工程と、を備えた。

Description

電極複合体の製造方法、リチウムイオン電池の製造方法
 本発明は、電極複合体の製造方法、リチウムイオン電池の製造方法に関する。
 リチウムイオン電池の電極として用いられる電極複合体の製造方法として、例えば、特許文献1には、リチウム複合酸化物を含む多孔質な活物質成形体の複数の空隙に第1固体電解質を形成する工程と、第1固体電解質が形成された活物質成形体に、リチウムイオンを伝導する非晶質の第2固体電解質の前駆体溶液を含浸させ、熱処理を施すことによって、上記複数の空隙に第2固体電解質を形成する工程と、を含む電極複合体の製造方法が開示されている。
 このようにして製造された電極複合体を用いれば、活物質成形体の複数の空隙を第1固体電解質と第2固体電解質とにより充填して、十分な出力が得られ、大容量化が可能なリチウムイオン電池を得ることができるとしている。
特開2015-144061号公報
 上記特許文献1の電極複合体の製造方法によれば、多孔質な活物質成形体の複数の空隙に第1固体電解質を形成する工程もまた、第2固体電解質を形成する場合と同様に、第1固体電解質の前駆体溶液を浸み込ませるとしている。つまり、2種の前駆体溶液を用いて、それぞれ活物質成形体に含浸させてから熱処理を施して、複数の空隙に第1固体電解質と第2固体電解質とを順に形成している。
 したがって、前駆体溶液を活物質成形体に含浸させるにあたり、個々の活物質成形体における空隙率を考慮して、それぞれの前駆体溶液の量を調整する必要がある。換言すれば、個々の活物質成形体の空隙率を予め求める手間が掛かるという課題がある。また、個々の活物質成形体の空隙率にばらつきがあると、用意した前駆体溶液が無駄になるおそれがある。
 さらに、前駆体溶液を活物質成形体に含浸させた後に熱処理(焼成)するため、熱処理(焼成)を繰り返すと、電極複合体に熱履歴が残る。高温で長時間熱処理を行うと活物質成形体あるいは固体電解質からリチウムが離脱して組成変化が生じ、電極複合体におけるイオン伝導性に影響が出るおそれがある。
 本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実現することが可能である。
 [適用例]本適用例に係る電極複合体の製造方法は、活物質を含む成形体を形成する第1の工程と、第1の雰囲気下で、固体電解質の融液に前記成形体を浸漬して、前記成形体の内部の空隙に前記融液を含浸させる第2の工程と、前記融液を含浸させた前記成形体を、前記第1の雰囲気下よりも温度が低い第2の雰囲気下に移動させて冷却し、前記成形体と前記固体電解質とを複合化させる第3の工程と、を備えたことを特徴とする。
 本適用例によれば、第2の工程で固体電解質の融液を多孔質な成形体に含浸させてから、第3の工程で冷却して成形体と固体電解質とを複合化している。したがって、多孔質な成形体に固体電解質の前駆体溶液を含浸させて乾燥させ、熱処理を施して成形体の複数の空隙に固体電解質を形成する従来の方法に比べて、得られた電極複合体における熱履歴の時間を短くすることができる。つまり、優れたイオン伝導度を有する電極複合体を製造することができる。
 上記適用例に記載の電極複合体の製造方法において、前記第2の工程では、前記融液に前記成形体の端部を浸漬して、毛細管現象により前記成形体の内部の空隙に前記融液を含浸させることが好ましい。
 この方法によれば、固体電解質の融液を毛細管現象により成形体に含浸させるので、成形体における空隙率に関わらず融液を含浸させて充填することができ、融液の無駄を省くことができる。
 上記適用例に記載の電極複合体の製造方法において、前記第3の工程では、前記成形体の温度が1分間に10℃以上低下するように、前記成形体を前記第1の雰囲気下から前記第2の雰囲気下に移動させて冷却することが好ましい。
 この方法によれば、固体電解質の融液が含浸した成形体を急冷して、成形体の空隙に固体電解質を容易に形成できる。
 上記適用例に記載の電極複合体の製造方法において、前記第2の雰囲気下には、冷却用のガスを導入することが好ましい。
 この方法によれば、第2の雰囲気下に冷却用のガスを導入することで、固体電解質の融液が含浸した成形体を効率的に冷却することができる。つまり、成形体の空隙に固体電解質を効率的に形成できる。
 上記適用例に記載の電極複合体の製造方法において、前記成形体は、前記活物質としてのリチウム複合金属化合物を含み、前記固体電解質は、Li、C、Bを含む化合物であって、冷却用の前記ガスがCO2を含むことを特徴とする。
 この方法によれば、冷却用のガスがCO2を含むことによって、固体電解質の融液に含まれるリチウム(Li)と炭素(C)の分解が抑制され、形成された固体電解質から炭素(C)が離脱してリチウムイオン伝導度が低下することを抑制することができる。つまり、固体電解質におけるリチウムイオン伝導度を確保することができる。
 上記適用例に記載の電極複合体の製造方法において、前記第3の工程で複合化された前記固体電解質は、非晶質相を含むことが好ましい。
 この方法によれば、固体電解質が非晶質相を含むことにより、固体電解質が結晶質である場合に比べて、活物質との間でリチウムイオンの伝導がより円滑に行われる。つまり、高いイオン伝導度を有する電極複合体を製造することができる。
 上記適用例に記載の電極複合体の製造方法において、前記成形体の空隙率が30%以上70%以下であることが好ましい。
 この方法によれば、電極複合体における電気容量と、物理的な強度とを確保することができる。
 [適用例]本適用例に係るリチウムイオン電池の製造方法は、上記適用例に記載の電極複合体の製造方法を用いて製造された電極複合体に耐リチウム還元層を形成する第4の工程と、前記耐リチウム還元層にリチウム金属層を形成する第5の工程と、前記電極複合体及び前記リチウム金属層のうち少なくとも一方と接するように集電体を形成する第6の工程と、を備えたことを特徴とする。
 本適用例によれば、大容量で優れた充放電特性を有するリチウムイオン電池を製造することができる。
 上記適用例に記載のリチウムイオン電池の製造方法において、前記第6の工程は、前記第2の工程の前に、前記成形体に前記集電体としての金属箔を貼り付ける貼付工程を含むことを特徴とする。
 この方法によれば、成形体に固体電解質の融液を含浸させる前に、集電体としての金属箔を貼り付けるので、成形体に含まれる活物質と金属箔とを確実に接合させることができる。
 上記適用例に記載のリチウムイオン電池の製造方法において、前記第6の工程は、前記第3の工程の後に、前記電極複合体の前記耐リチウム還元層が形成される面と反対側の面に表面処理を施して前記活物質を露出させる表面処理工程を含むとしてもよい。
 この方法によれば、成形体の複数の空隙に固体電解質を形成してから表面処理を施して活物質を露出させるので、露出した活物質と集電体とを確実に接合させることができる。
コイン型電池を示す概略斜視図。 コイン型電池の構造を示す概略断面図。 リチウムイオン電池の構造を示す概略断面図。 第1実施形態のリチウムイオン電池の製造方法を示すフローチャート。 第1実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第1実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第1実施形態のリチウムイオン電池の製造方法を示す概略断面図。 成形体の浸漬用治具を示す概略斜視図。 成形体の浸漬装置を示す概略図。 第1実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第1実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第1実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第1実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第2実施形態のリチウムイオン電池の製造方法を示すフローチャート。 第2実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第2実施形態のリチウムイオン電池の製造方法を示す概略断面図。 第2実施形態のリチウムイオン電池の製造方法を示す概略断面図。
 以下、本発明を具体化した実施形態について図面に従って説明する。なお、使用する図面は、説明する部分が認識可能な状態となるように、適宜拡大または縮小して表示している。
 (第1実施形態)
 まず、本実施形態の電極複合体が適用されたリチウムイオン電池として、コイン型電池を例に挙げ、図1及び図2を参照して説明する。図1はコイン型電池を示す概略斜視図、図2はコイン型電池の構造を示す概略断面図である。
 図1に示すように、本実施形態のコイン型電池100は、厚みが外径よりも小さい円盤状であって、正極端子(+)として機能するステンレスなどからなるケース101と、絶縁体103を介してケース101に収容され、負極端子(-)として機能する同じくステンレスなどからなる蓋部102とを含んで構成されている。
 図2に示すように、コイン型電池100のケース101の内部には、リチウムイオン電池110が8個収納されている。8個のリチウムイオン電池110は、ケース101と蓋部102との間において、電気的に並列に接続されている。
 具体的には、円筒状のケース101内に、正極側を下方に向けたリチウムイオン電池110aと、負極側を下方に向けたリチウムイオン電池110bとが交互に合計8個収容されている。リチウムイオン電池110aと、その上方に収容されたリチウムイオン電池110bとの間に負極連結部105が挿入されている。また、リチウムイオン電池110bと、その上方に収容されたリチウムイオン電池110aとの間に正極連結部104が挿入されている。換言すれば、正極連結部104、リチウムイオン電池110a、負極連結部105、リチウムイオン電池110b、正極連結部104の順に積層されて、合計8個のリチウムイオン電池110が電気的に並列に接続されている。
 正極連結部104の下方の端部が正極端子(+)として機能するケース101に接続されている。負極連結部105の上方の端部が負極端子(-)として機能する蓋部102に接続されている。蓋部102もまた円筒状であって、8個のリチウムイオン電池110と、正極連結部104と、負極連結部105とを内包して密閉するように絶縁体103を介してケース101に収められている。
 リチウムイオン電池110の平面形状は、円形であって、その大きさは、例えばφ3mm~φ30mmである。リチウムイオン電池110の厚みは、例えば100μm~150μm(マイクロメートル)である。
 コイン型電池100の構成は、これに限定されるものではなく、ケース101に収容されるリチウムイオン電池110の数や、接続の方法は、任意に設定できる。例えば、リチウムイオン電池110の収納方法を変えてケース101を負極端子(-)とし、蓋部102を正極端子(+)として機能するように構成してもよい。
 <リチウムイオン電池>
 次に、本実施形態におけるリチウムイオン電池110の構造について、図3を参照して説明する。図3はリチウムイオン電池の構造を示す概略断面図である。
 図3に示すように、本実施形態のリチウムイオン電池110は、電極複合体111と、電極複合体111に積層された耐リチウム還元層115及びリチウム金属層116とを有している。また、電極複合体111に接する集電体117と、リチウム金属層116に接する集電体118とを有している。電極複合体111が正極及び電解質として機能し、リチウム金属層116が負極として機能するものである。
 電極複合体111は、正極活物質112と、第1固体電解質113と、第2固体電解質114とが複合化されたものである。以降、リチウムイオン電池110の各構成について、具体的に説明する。
 電極複合体111における正極活物質112は、リチウムを含む2種以上の金属が含まれるリチウム複合金属化合物であって、例えば、LiCoO2、LiNiO2、LiMn24、Li2Mn23、LiFePO4、Li2FeP27、LiMnPO4、LiFeBO3、Li32(PO43、Li2CuO2、Li2FeSiO4、Li2MnSiO4などのリチウム複合酸化物が挙げられる。また、リチウム複合酸化物以外にも、LiFeF3などのリチウム複合フッ化物を用いてもよい。さらに、これらのリチウム複合金属化合物の一部の原子が他の遷移金属、典型金属、アルカリ金属、アルカリ希土類、ランタノイド、カルコゲナイド、ハロゲンなどで置換されたものも含まれる。また、これらのリチウム複合金属化合物の固溶体を正極活物質112として用いてもよい。
 本実施形態では、正極活物質112は所定の粒径範囲内の粒子状であって、複数の粒子が寄り集まって多孔質な成形体112Pをなしており、成形体112Pの内部に空隙を有している。当該空隙をなす正極活物質112の表面に第1固体電解質113と、第2固体電解質114とが接した状態となっている。
 電極複合体111における第1固体電解質113は、例えば、酸化物、硫化物、ハロゲン化物、または窒化物が用いられる。具体的には、第1固体電解質113として、SiO2-P25-Li2O、SiO2-P25-LiCl、Li2O-LiCl-B23、Li3.40.6Si0.44、Li14ZnGe416、Li3.60.4Ge0.64、Li1.3Ti1.7Al0.3(PO43、Li2.88PO3.730.14、LiNbO3、Li0.35La0.55TiO3、Li7La3Zr212、Li6.75La3Zr1.75Nb0.2512、Li2S-SiS2、Li2S-SiS2-LiI、Li2S-SiS2-P25、LiPON、Li3N、LiI、LiI-CaI2、LiI-CaO、LiAlCl4、LiAlF4、LiI-Al23、LiFAl23、LiBr-Al23、Li2O-TiO2、La23-Li2O-TiO2、Li3N、Li3NI2、Li3N-LiI-LiOH、Li3N-LiCl、Li6NBr3、LiSO4、Li4SiO4、Li3PO4-Li4SiO4、Li4GeO4-Li3VO4、Li4SiO4-Li3VO4、Li4GeO4-Zn2GeO2、Li4SiO4-LiMoO4、Li3PO4-Li4SiO4、LiSiO4-Li4ZrO4、LiBH4、Li7-xPS6-xClx、Li10GeP212のうち少なくとも1つが用いられる。第1固体電解質113は、結晶質であっても非晶質(アモルファス)であってもよい。また、これらの組成物の一部原子が他の遷移金属、典型金属、アルカリ金属、アルカリ希土類、ランタノイド、カルコゲナイド、ハロゲンなどで置換された固溶体が、第1固体電解質113として用いられてもよい。
 リチウムイオン電池110の容量を大きくする観点から、第1固体電解質113のイオン伝導率は、1.0×10-5S/cm以上であることが好ましい。イオン伝導率が低いとリチウム金属層(負極)116近傍の正極活物質112しか電池反応に寄与せず第1固体電解質113のイオンを有効利用できず、リチウムイオン電池110の容量も大きくならない。イオン伝導率が高くなると、リチウム金属層(負極)116から離れた位置の正極活物質112に含まれるイオンも、第1固体電解質113、第2固体電解質114及び耐リチウム還元層115を通ってリチウム金属層(負極)116に達し、電池反応に寄与することができる。すなわち、イオン伝導率が高い第1固体電解質113を含むことによって電極複合体111における正極活物質112の利用率を向上させ、リチウムイオン電池110の容量を大きくすることができる。
 ここで、固体電解質のイオン伝導率とは、無機電解質自身の伝導率であるバルク伝導率と、無機電解質が結晶質である場合における結晶の粒子間の伝導率である粒界イオン伝導率との総和である総イオン伝導率のことをいう。
 固体電解質のイオン伝導率は、例えば、交流インピーダンス法により測定される。測定は、例えば、所定の形状(例えば錠剤型)に成形した固体電解質の両面に電極を形成した試料を用いて行われる。より具体的には、固体電解質粉末を624MPaで錠剤型にプレス成型する。プレス成形体を大気雰囲気下700℃で8時間焼結する。焼結体に所定の形状(例えば直径0.5cmの円で、厚さ100nm)の金属(例えばプラチナ)をスパッタリングにより形成する。測定は、例えば、インピーダンスアナライザー(ソーラトロン社製SI1260)を用いて行われる。
 電極複合体111における第2固体電解質114は、リチウムイオンを伝導し、室温で非晶質(ガラス質、アモルファス)である材料が好ましく、例えば、Li、Bを含むリチウム複合酸化物である、Li3BO3、Li3BO3-Li4SiO4、Li3BO3-Li3PO4、Li3BO3-Li2SO4、Li2CO3-Li3BO3が挙げられる。
 Li3BO3のイオン伝導率は、およそ6.0×10-8S/cmであり、融点はおよそ800℃である。Li3BO3-Li4SiO4のイオン伝導率は、およそ4.0×10-6S/cmであり、融点はおよそ720℃である。Li3BO3-Li3PO4のイオン伝導率は、およそ1.0×10-7S/cmであり、融点はおよそ850℃である。Li3BO3-Li2SO4のイオン伝導率は、およそ1.0×10-6S/cmであり、融点はおよそ700℃である。Li2CO3-Li3BO3系であるLi2.20.80.23(以降、簡略化してLCBOと称す)のイオン伝導率は、およそ8.0×10-7S/cmであり、融点は685℃である。
 電極複合体111の厚さは、リチウムイオン電池110の容量に応じて設計される。電極複合体111の厚さは、例えば、80μm~300μmであり、100μm以上であることが好ましい。
 電極複合体111とリチウム金属層116との間に、正極活物質112及び第1固体電解質113を含まない領域が設けられている。当該領域が耐リチウム還元層115である。耐リチウム還元層115は、基本的に第2固体電解質114と同じ材料が用いられる。このように正極活物質112を含まない耐リチウム還元層115を設けることにより、負極として機能するリチウム金属層116と集電体117とが正極活物質112からなる成形体112Pを介して短絡することを防ぐことができる。
 集電体117,118は、電池反応により生成された電流を取り出すための電極である。集電体117は、電極複合体111のうちとりわけ正極活物質112からなる成形体112Pに接するように配置されている。集電体118は、リチウム金属層116に接するように配置されている。
 集電体117,118としては、銅(Cu)、マグネシウム(Mg)、チタン(Ti)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、亜鉛(Zn)、アルミニウム(Al)、ゲルマニウム(Ge)、インジウム(In)、金(Au)、白金(Pt)、銀(Ag)およびパラジウム(Pd)からなる群から選ばれる1種の単体金属、またはこの群から選ばれる2種以上の金属を含む合金やITO、ATO、FTOなど導電性金属酸化物、TiN、ZrN、TaNなどの金属窒化物などを用いて形成される。集電体117,118の形状は、例えば、板状、箔状、または網状である。集電体117,118の表面は、平滑であってもよく、凹凸が形成されていてもよい。
 上述したように、正極活物質112からなる成形体112Pは、多孔質であり、内部に複数の空隙(細孔)を有する。これらの空隙は、成形体112Pの内部で連通している。
 成形体112Pの空隙率は、10%以上70%以下であることが好ましく、30%以上70%以下であることがより好ましい。空隙率を制御して成形体112Pと第1固体電解質113及び第2固体電解質114との接触面積を大きくすることにより、リチウムイオン電池110の容量をより高くすることができる。
 空隙率rvは、次式(1)により求めることができる。
Figure JPOXMLDOC01-appb-M000001
  ここで、Vgは成形体112Pの見かけ上の体積を示す。見かけ上の体積は成形体112Pの外形寸法から計算されるものであり、空隙を含んでいる。mは成形体112Pの質量を、ρは成形体112Pを構成する正極活物質112の密度を、それぞれ示している。詳しくは後述するが、成形体112Pの空隙率rvは、成形体112Pを形成する工程において制御することができる。
 リチウムイオン電池110の出力を大きくする観点から、成形体112Pの抵抗率は、700Ω/cm以下であることが好ましい。抵抗率は、例えば、直流分極測定により得られる。直流分極測定においては、例えば、成形体112Pの表面に銅箔を貼り付け、この銅箔を電極として用いる。
 成形体112Pの空隙内には、第1固体電解質113及び第2固体電解質114が充填されて正極活物質112と接している。成形体112Pの空隙に対する、第1固体電解質113及び第2固体電解質114の充填率は高い方が好ましいが、例えば60%以上99.9%以下である。
 成形体112Pにおいて、複数の空隙が内部で網目状に連通している。例えば、正極活物質112の一例であるLiCoO2は、結晶の電子伝導性に異方性があることが知られている。そのため、空隙が特定方向に延びている場合には、空隙が延びている方向と結晶方位との関係によっては、電子伝導し難い状態になってしまうことがある。本実施形態では、成形体112Pの空隙が網目状に連通しており、正極活物質112も等方的につながっている。したがって、電気化学的に滑らかな正極活物質112の連続表面を形成することができ、空隙が異方的に形成されている場合と比較して良好な電子伝導を得ることができる。
 また、成形体112Pは内部に多数の空隙を有していることから、表面積が大きくなっている。そのため、成形体112Pと第1固体電解質113や第2固体電解質114との接触面積が大きくなり、界面インピーダンスを低減させることができる。なお、電極複合体111においては、集電体117と成形体112Pとの接触面積よりも、成形体112Pと第2固体電解質114との接触面積の方が大きい。集電体117と成形体112Pとの界面のほうが、成形体1112Pと第2固体電解質114との界面よりも電荷移動が容易であるため、これらの接触面積が同程度であると、成形体112Pと第2固体電解質114との界面が電荷移動のボトルネックとなってしまう。本実施形態では、成形体112Pと第2固体電解質114との接触面積の方が大きいので、このボトルネックを解消し易い。
 <リチウムイオン電池の製造方法>
 次に、本実施形態の電極複合体の製造方法が適用されたリチウムイオン電池110の製造方法について、図4~図13を参照して説明する。図4はリチウムイオン電池の製造方法を示すフローチャート、図5~図7及び図10~図13はリチウムイオン電池の製造方法を示す概略断面図、図8は成形体の浸漬用治具を示す概略斜視図、図9は成形体の浸漬装置を示す概略図である。
 図4に示すように、本実施形態のリチウムイオン電池110の製造方法は、成形体形成工程(ステップS1)と、集電体貼付工程(ステップS2)と、固体電解質含浸工程(ステップS3)と、複合化工程(ステップS4)と、耐リチウム還元層形成工程(ステップS5)と、負極層形成工程(ステップS6)と、集電体貼付工程(ステップS7)とを備えている。
 ステップS1の成形体形成工程では、正極活物質112からなる多孔質の成形体112Pを形成する。具体的には、まず、粒子状(粉体)の正極活物質材料(リチウム複合金属化合物)を準備する。本実施形態では、正極活物質材料として粒子状のLiCoO2(以降、簡略化してLCOと称す)を用いた。正極活物質材料の平均粒径(D50)は、例えば、300nm以上20μm以下であることが好ましく、5μm以上15μm以下であることがより好ましい。平均粒径は、例えば、正極活物質材料の粒子をn-オクタノールに0.1質量%~10質量%の濃度となるように分散させた後、光散乱式粒度分布測定装置(例えば、日機装社製ナノトラックUPA-EX250)を用いて測定する。平均粒径が小さすぎると空隙が小さくなり、この後の工程において、固体電解質を充填し難くなる。一方で平均粒径が大きすぎると成形体112Pの比表面積が小さくなり、リチウムイオン電池110の出力が低くなってしまう。
 次に、正極活物質材料の粒子を型に入れ、例えば0.1MPa~5.0MPaの圧力で加圧して圧縮成形する。さらに、この圧縮体を熱処理して焼結し、図5に示す成形体112Pを得る。この熱処理は、Liの蒸散を考慮して、850℃以上であって、かつ、正極活物質材料として用いるリチウム複合金属化合物の融点および分解点のいずれか低い方の温度未満の温度条件で行われる。リチウム複合金属化合物としてのLCOの融点が1000℃以上であることから、この熱処理は、900℃以上1000℃以下で行うことが好ましく、925℃以上975℃以下で行うことがさらに好ましい。さらに、この熱処理は、5分以上36時間以下で行うことが好ましく、4時間以上14時間以下で行うことがより好ましい。
 なお、正極活物質材料には、バインダーとして機能する高分子化合物を添加してもよい。このような高分子化合物としては、例えば、ポリフッ化ビニリデン(PVdF)やポリビニルアルコール(PVA)、ポリプロピレンカーボネート(PPC)が挙げられる。これらの高分子化合物は、本工程の熱処理において燃焼または酸化され、量が減少または焼失する。
 さらに、正極活物質材料には、造孔材を添加してもよい。造孔材とは、空隙の鋳型となる物質(例えば高分子化合物や炭素粉末)をいう。造孔材を添加することにより、成形体112Pの空隙率を制御することができる。造孔材は、本工程の熱処理において燃焼または酸化され、量が減少する。造孔材の平均粒径は、0.5μm~10μmであることが好ましい。造孔材は、潮解性を有する物質で形成された粒子を含んでもよい。この粒子が潮解することにより周囲に生じる水が、粒子状のリチウム複合金属化合物をつなぎ合わせるバインダーとして機能する。したがって、粒子状の正極活物質材料を圧縮成形してから熱処理するまでの間、圧縮体の形状を維持することができる。
 次に、成形体112Pの内部の空隙における正極活物質112の表面に接するように第1固体電解質113を形成する。具体的には、まず、第1固体電解質113の前駆体を準備する。前駆体としては、例えば、以下の(A)~(C)のいずれかが用いられる。
 (A)金属原子を第1固体電解質113の組成に従った割合で含み、酸化により第1固体電解質113となる塩を有する組成物。
 (B)金属原子を第1固体電解質113の組成に従った割合で含む金属アルコキシドを有する組成物。
 (C)第1固体電解質113の微粒子、または金属原子を第1固体電解質113の組成に従った割合で含む微粒子ゾルを溶媒、または(A)もしくは(B)に分散させた分散液。
 なお、(A)に含まれる塩には、金属錯体が含まれる。また、(B)は、いわゆるゾルゲル法を用いて第1固体電解質113を形成する場合の前駆体である。
 本実施形態では、第2固体電解質114よりも高いイオン伝導度を示す第1固体電解質113としてLi6.75La3Zr1.75Nb0.2512(以降、簡略化してLLZrNbOと称す)を用いた。LLZrNbOの結晶粒子を溶媒中に分散させて前駆体溶液113Sとして用いる。LLZrNbOの平均粒径は、例えば300nm~20μmである。なお、LLZrNbOの融点はおよそ1000℃~1100℃である。
 次に、図6に示すように、前駆体溶液113Sを、成形体112Pの空隙に含浸させる(浸み込ませる)。具体的には、例えば、基材10上に配置された成形体112Pの上に前駆体溶液113Sを滴下する。あるいは、前駆体溶液113Sの中に成形体112Pを浸してもよい。別の例では、前駆体溶液113Sを成形体112Pに塗布してもよい。さらに別の例では、成形体112Pの端部に前駆体溶液113Sを接触させ、毛細管現象を利用して前駆体溶液113Sを成形体112Pの空隙に含浸させてもよい。このとき、成形体112Pを取り巻く雰囲気または前駆体を加圧して、前駆体溶液113Sの含浸を促進してもよい。基材10は、この後に高温下で焼成を行っても、変形などが生じ難い、例えば透明な石英基板である。
 次に、前駆体溶液113Sを含浸させた成形体112Pを焼成し、成形体112Pの空隙に第1固体電解質113を析出させる。焼成の前に、溶媒を除去してもよい。溶媒の除去は、加熱、減圧、送風など通常知られた方法を少なくとも1つ用いて行う。焼成は、大気雰囲気下、成形体112Pを得るための熱処理よりも低い温度で行う。焼成温度は、例えば500℃以上900℃以下の温度範囲である。焼成温度が高すぎると、成形体112Pと第1固体電解質113との界面における固相反応により、電気化学的に不活性な副生物が生成されてしまう場合がある。このような副生物はリチウムイオン電池110の特性に悪影響を与える。また、焼成温度が低すぎると、第1固体電解質113の結晶性が悪く、十分なイオン伝導性が得られない場合がある。
 流動性のある前駆体溶液113Sを成形体112Pの空隙に浸み込ませる方法により第1固体電解質113を形成するが、すべての空隙に前駆体溶液113Sを浸み込ませることは難しい。また、焼成によって前駆体溶液113Sから溶媒が蒸発して空隙に第1固体電解質113が析出するが、成形体112Pと第1固体電解質113との複合体111Pにはなお空隙が残っている(図7参照)。そして、ステップS2へ進む。
 なお、ステップS1が本発明の電極複合体の製造方法における第1の工程の一例である。
 ステップS2の集電体貼付工程では、図7に示すように、成形体112Pと第1固体電解質113との複合体111Pに集電体117を形成する。本実施形態では、集電体117として厚みがおよそ1μm~20μmのAu箔を複合体111Pの一方の面に貼り付けて押圧した。そして、ステップS3へ進む。なお、ステップS2が本発明のリチウムイオン電池の製造方法における第6の工程の一例である。
 ステップS3の固体電解質含浸工程では、集電体117が貼り合わされた複合体111Pを第2固体電解質114の融液に浸漬して、複合体111Pの空隙に毛細管現象を利用して当該融液を含浸させて充填する。なお、ステップS3が本発明の電極複合体の製造方法における第2の工程の一例である。
 まずは、複合体111Pを第2固体電解質114の融液に浸漬するための浸漬用治具について、図8を参照して説明する。図8に示すように浸漬用治具20は、梯子状であって、平行に配置された一対の支持柱21と、一対の支持柱21の間に間隔をおいて架け渡された複数の支持部22とを有している。梯子状の浸漬用治具20を水平にして隣り合う支持部22の間に円盤状の複合体111Pを挿入すれば、複合体111Pの端部を浸漬用治具20の下方にはみ出させて支持することができる。本実施形態の浸漬用治具20には、最大で8個の複合体111Pをセットすることが可能となっている。つまり、浸漬用治具20は、コイン型電池100に収容されるリチウムイオン電池110と同数の複合体111Pをセットすることが可能な構成となっている。なお、浸漬用治具20にセット可能な複合体111Pの数は、8個に限定されるものではない。
 次に、浸漬用治具20を用いた浸漬装置について、図9を参照して説明する。図9に示すように、本実施形態の浸漬装置500は、内部に吊設された浸漬用治具20を上下方向に移動可能なチャンバー501を有している。チャンバー501の内部は、仕切り部509により、上下方向において、溶融炉502が底部に配置された浸漬室503と、冷却室504とに仕切られている。
 溶融炉502には、第2固体電解質114が投入され加熱されることによって溶融した融液114Mが貯留される。
 冷却室504には、浸漬用治具20を着脱可能に吊設する吊設アーム507が設けられている。また、吊設アーム507は、チャンバー501の上部に設けられた駆動部508によって上下動する。吊設アーム507を上下動させる構成としては、例えば、吊設アーム507の上端にワイヤーを取り付け、駆動部508に備えたモーターなどの駆動系によりワイヤーを巻き取ったり、巻き出したりする構成が挙げられる。
 浸漬室503と冷却室504とを仕切る仕切り部509には、溶融炉502の上方において開口する開口部509aが設けられている。駆動部508によって、吊設アーム507に取り付けられた浸漬用治具20を開口部509aを通過させて、浸漬室503と冷却室504との間で上下動させることができる。
 冷却室504の仕切り部509に近い側部には、冷却室504内に冷却用のガスを導入するための導入管505が設けられている。また、冷却室504の上部には、導入されたガスを排出するための排出管506が設けられている。導入管505と排出管506とには、ガスの導入・排出を制御するためのバルブがそれぞれ設けられている。
 冷却用のガスは、除湿された気体であればよく、例えば、ドライエアー、窒素などの不活性ガスなどを用いることができる。また、溶融される第2固体電解質114の材料に応じて、加熱反応により不必要な副生成物が生じ難い気体を選択することが好ましい。
 次に、浸漬装置500を用いた固体電解質含浸工程について、図9及び図10を参照して説明する。なお、図10は、1個(1枚)の複合体111Pの浸漬と冷却の動作を表すものである。
 図9に示す駆動部508により吊設アーム507を下降させ、図10に示すように、浸漬用治具20にセットされた複合体111Pを冷却室504から浸漬室503に移動させる。そして、複合体111Pの端部が溶融炉502に貯留された第2固体電解質114の融液114Mに浸かったところで吊設アーム507を停止させる。そして、複合体111Pの端部が融液114Mに浸かった状態を所定の時間維持する。複合体111Pは多孔質であることから、融液114Mは毛細管現象により複合体111Pに吸い上げられ、複合体111Pの内部の空隙に充填される。上記所定の時間経過したところで駆動部508により吊設アーム507を上昇させ、浸漬用治具20にセットされた複合体111Pを浸漬室503から冷却室504へ引き上げる。
 なお、複合体111Pの端部を融液114Mに浸漬させる上記所定の時間は、複合体111Pの体積と空隙率とによる。したがって、浸漬時間と冷却後の空隙に対する第2固体電解質114の充填率とを予め調べ、複数の複合体111Pの体積や空隙率のばらつきを考慮して設定する。
 前述したように、冷却室504には、冷却用のガスが導入されており、複合体111Pを浸漬室503から冷却室504に引き上げることにより、複合体111Pが冷却される。つまり、浸漬室503の内部が本発明における第1の雰囲気の一例であり、冷却室504の内部が本発明における第2の雰囲気の一例である。
 本実施形態では、第2固体電解質114として融点が比較的に低いLCBOを用いている。溶融炉502における融液114Mの温度は、LCBOの融点が685℃であることから、685℃以上であって、例えば700℃程度に維持されている。したがって、浸漬室503の雰囲気の温度は例えば300℃~600℃程度となる。一方で、冷却室504の雰囲気の温度は、冷却用のガスを導入管505から導入することで、例えば100℃~200℃程度となるように調整される。ゆえに、浸漬室503と冷却室504とにおける雰囲気の温度差は、最大で500℃程度となる。
 また、第2固体電解質114としてLCBOを用いていることから、冷却用のガスとしてCO2(二酸化炭素)を含むガスが冷却室504に導入される。冷却用のガスがCO2を含むことによって、融液114Mに含まれる炭酸リチウム(Li2CO3)から炭素が離脱することが抑制され、冷却後に形成された第2固体電解質114のイオン伝導度が低下することが抑制される。
 本実施形態では、融液114Mが空隙に充填された複合体111Pを浸漬室503から冷却室504に引き上げるにあたり、複合体111Pの温度が1分間に10℃以上低下するように、複合体111Pを引き上げる。例えば、浸漬室503と冷却室504とにおける雰囲気の温度差が500℃であれば、50分以内に複合体111Pを浸漬室503から冷却室504に引き上げて冷却する。例えば、浸漬室503と冷却室504とにおける雰囲気の温度差が300℃であれば、30分以内に複合体111Pを浸漬室503から冷却室504に引き上げて冷却する。つまり、複合体111Pの空隙に充填された融液114Mを所定の速度で急冷して、融液114Mを固化して複合体111Pの空隙に第2固体電解質114を充填する。すなわち、複合体111Pと、第2固体電解質114とを複合化する(複合化工程(ステップS4))。これにより、図11に示すように、正極活物質112からなる成形体112Pと、第1固体電解質113と、第2固体電解質114とが複合化された電極複合体111が形成される。そして、ステップS5へ進む。なお、ステップS4が本発明の電極複合体の製造方法における第3の工程の一例であり、ステップS1~ステップS4までが電極複合体の製造方法を示すものである。
 ステップS5の耐リチウム還元層形成工程では、図12に示すように、電極複合体111の集電体117が形成された面と反対側の面に、耐リチウム還元層115を形成する。本実施形態では、第2固体電解質114と同じ材料であるLCBOをスパッター法により膜厚がおよそ1μm~10μmとなるように成膜して耐リチウム還元層115を形成した。そして、ステップS6へ進む。なお、ステップS5が本発明のリチウムイオン電池の製造方法における第4の工程の一例である。
 ステップS6の負極層形成工程では、図13に示すように、耐リチウム還元層115に接するようにリチウム金属層116を形成する。本実施形態では、Liを蒸着法により膜厚がおよそ1μm~5μmとなるように成膜してリチウム金属層116を形成した。そして、ステップS7へ進む。なお、ステップS6が本発明のリチウムイオン電池の製造方法における第5の工程の一例である。
 ステップS7の集電体貼付工程では、図3に示すようにリチウム金属層116に接するように集電体118を形成する。本実施形態では、リチウム金属層116に厚みがおよそ1μm~20μmのCu箔を貼り付けて押圧することにより集電体118とした。なお、ステップS7が本発明のリチウムイオン電池の製造方法における第6の工程の一例である。
 本実施形態の電極複合体111の製造方法における特徴は、正極活物質112として融点が1000℃以上であるLCOの結晶粒子を加圧成形し、850℃以上1000℃以下の温度で焼結して成形体112Pとしている点にある。また、高いイオン伝導度を実現する観点から、第1固体電解質113として融点がLCOよりも高いおよそ1100℃であるLLZrNbOを用い、LLZrNbOの結晶粒子を含む前駆体溶液113Sを成形体112Pの空隙に含浸させ、500℃以上900℃以下の温度で熱処理して、空隙に第1固体電解質113を析出させている点にある。さらに、正極活物質112よりも融点が低い第2固体電解質114として融点が685℃のLCBOを用い、成形体112Pと第1固体電解質113との複合体111PにLCBOの融液114Mを含浸させ、冷却することにより、複合体111Pの空隙に第2固体電解質114を充填する点にある。つまり、正極活物質112の融点よりも低い熱処理の温度で、正極活物質112と第1固体電解質113及び第2固体電解質114との複合化を図り、高いイオン伝導度と電気容量の確保とを実現している点にある。
 なお、より低い熱処理の温度で複合化を図る観点から、第2固体電解質114の融点・軟化点は、400℃以上900℃以下であることが好ましい。
 上記第1実施形態の電極複合体111の製造方法によれば、以下の効果が得られる。
 (1)ステップS3の固体電解質含浸工程で第2固体電解質114の融液114M0を多孔質な成形体としての複合体111Pに含浸させてから、ステップS4の複合化工程で冷却して複合体111Pと第2固体電解質114とを複合化している。したがって、多孔質な複合体111Pに第2固体電解質114の前駆体溶液を含浸させて乾燥させ、熱処理を施して複合体111Pの複数の空隙に第2固体電解質114を形成する方法に比べて、得られた電極複合体111における熱履歴の時間を短くすることができる。つまり、優れたイオン伝導性を有する電極複合体111を効率よく製造することができる。また、熱履歴の時間を短くすることにより、電極複合体111の製造の過程においてLiが蒸散して電気容量が低下するなど、電極複合体111の電気的な特性が悪化することを抑制することができる。
 (2)ステップS3の固体電解質含浸工程では、第2固体電解質114の融液114Mを毛細管現象により複合体111Pに含浸させるので、複合体111Pにおける空隙率に関わらず融液114Mを含浸させて充填することができる。また、該空隙率に応じて融液114Mの量を細かく調整する必要がないので、融液114Mの無駄を省くことができる。
 (3)ステップS4の複合化工程では、融液114Mが含浸した複合体111Pの温度が、1分間に10℃以上低下するように、複合体111Pを浸漬室503から冷却室504に引き上げるので、複合体111Pを急冷することができる。つまり、融液114Mが含浸した複合体111Pをゆっくりと冷却する場合に比べて、複合体111Pの空隙に充填された融液114Mが結晶化し難くなるため、非晶質相に記載を含む第2固体電解質114を形成することができる。すなわち、第2固体電解質114が結晶質である場合に比べて、正極活物質112との間でリチウムイオンの伝導がより円滑に行われ、高いイオン伝導度を示す電極複合体111を形成することができる。
 (4)浸漬装置500において冷却室504には冷却用のガスが導入されることから、融液114Mが含浸した複合体111Pを効率的に冷却することができる。
 (5)第2固体電解質114は、Li、C、Bを含む化合物(LCBO)であって、冷却用のガスがCO2を含むことから、融液114Mに含まれる炭酸リチウム(Li2CO3)から炭素(C)が離脱することが抑制され、冷却後に形成された第2固体電解質114のイオン伝導度が低下することを抑制することができる。すなわち、電極複合体111において高いイオン伝導度を確保することができる。
 (6)正極活物質112からなる成形体112Pの空隙率が10%以上70%以下であり、好ましくは30%以上70%以下であることから、電池反応に寄与する成形体112Pの空隙における比表面積を大きくすることができる。また、大きな比表面積を実現しつつ電極複合体111の強度を確保することができる。
 (7)上記第1実施形態の電極複合体111の製造方法が適用されたリチウムイオン電池110の製造方法によれば、高いイオン伝導率と電気容量とが確保された電極複合体111が用いられるので、大容量で優れた充放電特性を有するリチウムイオン電池110を製造することができる。また、複数のリチウムイオン電池110を収納することにより、大容量で優れた充放電特性を有すると共に、薄型(小型)なコイン型電池100を提供することができる。
 (8)上記第1実施形態の電極複合体111の製造方法が適用されたリチウムイオン電池110の製造方法によれば、複合体111Pに第2固体電解質114の融液114Mを含浸させる固体電解質含浸工程よりも前に、複合体111Pに集電体117を貼り付けるので、集電体117としてのAu箔と正極活物質112とを確実に接触させ、集電体117と電極複合体111との界面インピーダンスを低下させることができる。つまり、リチウムイオン電池110における出力損失を低減できる。
 (第2実施形態)
 次に、第2実施形態の電極複合体の製造方法及びこれを適用したリチウムイオン電池の製造方法について、図14~図17を参照して説明する。図14は第2実施形態のリチウムイオン電池の製造方法を示すフローチャート、図15~図17は第2実施形態のリチウムイオン電池の製造方法を示す概略断面図である。
 図14に示すように、第2実施形態の電極複合体の製造方法を適用したリチウムイオン電池の製造方法は、成形体形成工程(ステップS11)と、固体電解質含浸工程(ステップS12)と、複合化工程(ステップS13)と、表面処理工程(ステップS14)と、耐リチウム還元層形成工程(ステップS15)と、負極層形成工程(ステップS16)と、集電体貼付工程(ステップS17)とを備えている。
 第2実施形態のリチウムイオン電池の製造方法は、第1実施形態に対して、集電体117の形成の仕方を異ならせると共に、表面処理工程(ステップS14)を追加したものである。
 本実施形態の電極複合体の製造方法におけるステップS11、ステップS12、ステップS13は、第1実施形態において対応するステップS1、ステップS3、ステップS4と基本的に同じである。また、本実施形態のリチウムイオン電池の製造方法におけるステップS15、ステップS16は、第1実施形態において対応するステップS5、ステップS6と基本的に同じである。したがって、第1実施形態のリチウムイオン電池110と同じ構成には同じ符号を付して詳細な説明は省略する。また、第1実施形態と同じ工程については説明を簡略化し、異なる工程について詳しく説明する。
 ステップS11の成形体形成工程では、正極活物質112からなる多孔質の成形体112Pと第1固体電解質113とが複合化された複合体111Pを、上記第1実施形態のステップS1と同様にして形成する。そして、ステップS12へ進む。
 ステップS12の固体電荷質含浸工程~ステップS13の複合化工程では、上記第1実施形態のステップS2のように複合体111Pに集電体117を貼り付けずに、上記第1実施形態のステップS3と同様にして複合体111Pに第2固体電解質114の融液114Mを含浸する。そして、上記第1実施形態のステップS4と同様に、融液114Mが含浸した複合体111Pを浸漬室503から冷却室504に引き上げて冷却し、複合体111Pと第2固体電解質114とが複合した電極複合体111を得る。そして、ステップS14へ進む。
 ステップS14の表面処理工程では、図15に示すように、電極複合体111の向かい合う2つの面111a,111bのうち、一方の面111aに表面処理を施して、正極活物質112を露出させる。本実施形態では、表面処理として、一方の面111aに化学的機械的研磨処理(Chemical-Mechanical-Polishing;CMP処理)を施した。したがって、一方の面111aは他方の面111bに比べて平坦であると共に、正極活物質112が確実に露出する。そして、ステップS15へ進む。
 なお、一方の面111aにおいて正極活物質112を露出させる表面処理方法は、CMP処理に限定されない。例えば、本実施形態では、第2固体電解質114として水溶性のLCBOを用いていることから、水または水を含む溶液を電極複合体111に塗布することにより、電極複合体111の表層の第2固体電解質114を溶解させて、正極活物質112を露出させてもよい。
 ステップS15の耐リチウム還元層形成工程~ステップS16の負極層形成工程では、図16に示すように、先のステップS14で表面処理が施された一方の面111aと反対側の他方の面111bに、例えば、スパッター法により、耐リチウム還元層115と、リチウム金属層116とを順に成膜して積層する。そして、ステップS17へ進む。
 ステップS17の集電体形成工程では、図17に示すように、電極複合体111の一方の面111aに集電体117を形成し、リチウム金属層116に接するように集電体118を形成する。具体的には、電極複合体111の一方の面111aに集電体117としてのAu箔を貼り付け、リチウム金属層116に集電体118としてのCu箔を貼り付ける。これにより、集電体117と集電体118との間に、電極複合体111、耐リチウム還元層115、リチウム金属層116が介装された本実施形態のリチウムイオン電池110Dが得られる。
 上記第2実施形態のリチウムイオン電池の製造方法によれば、上記第1実施形態の効果(1)~(8)に加えて、以下の効果が得られる。
 (9)ステップS11~ステップS13によって得られた電極複合体111に対して、ステップS14において表面処理を施すので、電極複合体111の一方の面111aに正極活物質112を確実に露出させることができる。したがって、ステップS17において、電極複合体111の一方の面111aに集電体117を形成すれば、上記第1実施形態に比べて、電極複合体111の正極活物質112と集電体117とが接触する面積を増やして、より確実な接合を実現することができる。
 本発明は、上記した実施形態に限られるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う電極複合体の製造方法、該電極複合体の製造方法を適用するリチウムイオン電池の製造方法もまた本発明の技術的範囲に含まれるものである。上記実施形態以外にも様々な変形例が考えられる。以下、変形例を挙げて説明する。
 (変形例1)第2固体電解質114の融液114Mを含浸させる成形体は、正極活物質112からなる多孔質の成形体112Pと、第1固体電解質113とを複合化した複合体111Pに限定されない。第1固体電解質113を複合化していない、正極活物質112からなる成形体112Pであってもよい。つまり、電極複合体111は、成形体112Pと第2固体電解質114とを複合化したものでもよい。
 (変形例2)電極複合体111は、正極活物質112を含むものに限定されない。活物質として電子伝導性を有する例えばアセチレンブラック、ケッチェンブラック、カーボンナノチューブなどの炭素系材料を用い、Liを含む固体電解質と複合化させることで、負極及び電解質として機能する電極複合体を提供することができる。
 100…コイン型電池、110,110D…リチウムイオン電池、111…電極複合体、111P…成形体としての複合体、112…活物質としての正極活物質、112P…正極活物質からなる成形体、113…第1固体電解質、114…第2固体電解質、114M…第2固体電解質の融液、115…耐リチウム還元層、116…リチウム金属層、117,118…集電体。

Claims (10)

  1.  活物質を含む成形体を形成する第1の工程と、
     第1の雰囲気下で、固体電解質の融液に前記成形体を浸漬して、前記成形体の内部の空隙に前記融液を含浸させる第2の工程と、
     前記融液を含浸させた前記成形体を、前記第1の雰囲気下よりも温度が低い第2の雰囲気下に移動させて冷却し、前記成形体と前記固体電解質とを複合化させる第3の工程と、を備えたことを特徴とする電極複合体の製造方法。
  2.  前記第2の工程では、前記融液に前記成形体の端部を浸漬して、毛細管現象により前記成形体の内部の空隙に前記融液を含浸させることを特徴とする請求項1に記載の電極複合体の製造方法。
  3.  前記第3の工程では、前記成形体の温度が1分間に10℃以上低下するように、前記成形体を前記第1の雰囲気下から前記第2の雰囲気下に移動させて冷却することを特徴とする請求項1に記載の電極複合体の製造方法。
  4.  前記第2の雰囲気下には、冷却用のガスを導入することを特徴とする請求項1に記載の電極複合体の製造方法。
  5.  前記成形体は、前記活物質としてのリチウム複合金属化合物を含み、
     前記固体電解質は、Li、C、Bを含む化合物であって、
     冷却用の前記ガスがCO2を含むことを特徴とする請求項4に記載の電極複合体の製造方法。
  6.  前記第3の工程で複合化された前記固体電解質は、非晶質相を含むことを特徴とする請求項1に記載の電極複合体の製造方法。
  7.  前記成形体の空隙率が30%以上70%以下であることを特徴とする請求項1に記載の電極複合体の製造方法。
  8.  請求項1に記載の電極複合体の製造方法を用いて製造された電極複合体に耐リチウム還元層を形成する第4の工程と、
     前記耐リチウム還元層にリチウム金属層を形成する第5の工程と、
     前記電極複合体及び前記リチウム金属層のうち少なくとも一方と接するように集電体を形成する第6の工程と、を備えたことを特徴とするリチウムイオン電池の製造方法。
  9.  前記第6の工程は、前記第2の工程の前に、前記成形体に前記集電体としての金属箔を貼り付ける貼付工程を含むことを特徴とする請求項8に記載のリチウムイオン電池の製造方法。
  10.  前記第6の工程は、前記第3の工程の後に、前記電極複合体の前記耐リチウム還元層が形成される面と反対側の面に表面処理を施して前記活物質を露出させる表面処理工程を含むことを特徴とする請求項8に記載のリチウムイオン電池の製造方法。
PCT/JP2017/001573 2016-01-28 2017-01-18 電極複合体の製造方法、リチウムイオン電池の製造方法 WO2017130818A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201780008187.1A CN108496266B (zh) 2016-01-28 2017-01-18 电极复合体的制造方法、锂离子电池的制造方法
US16/070,451 US10547049B2 (en) 2016-01-28 2017-01-18 Method for producing electrode assembly and method for producing lithium-ion battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016014064A JP2017135005A (ja) 2016-01-28 2016-01-28 電極複合体の製造方法、リチウムイオン電池の製造方法
JP2016-014064 2016-01-28

Publications (1)

Publication Number Publication Date
WO2017130818A1 true WO2017130818A1 (ja) 2017-08-03

Family

ID=59397758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001573 WO2017130818A1 (ja) 2016-01-28 2017-01-18 電極複合体の製造方法、リチウムイオン電池の製造方法

Country Status (4)

Country Link
US (1) US10547049B2 (ja)
JP (1) JP2017135005A (ja)
CN (1) CN108496266B (ja)
WO (1) WO2017130818A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373590A (zh) * 2017-10-19 2020-07-03 三菱瓦斯化学株式会社 全固态电池的制造方法
US20220199973A1 (en) * 2020-12-23 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Positive electrode layer and all-solid-state battery

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200039713A (ko) * 2017-08-07 2020-04-16 더 리젠츠 오브 더 유니버시티 오브 미시건 고체 상태 배터리용 혼합 이온 및 전자 도체
US11557750B2 (en) 2017-08-17 2023-01-17 Lg Energy Solution, Ltd. Electrode for solid-state battery and manufacturing method therefor
JP7211470B2 (ja) * 2017-12-22 2023-01-24 セイコーエプソン株式会社 電極複合体、電池、電子機器
JP7021533B2 (ja) * 2017-12-22 2022-02-17 セイコーエプソン株式会社 電解質前駆体溶液の製造方法および電極複合体の製造方法
CN111490227B (zh) * 2019-01-29 2021-12-10 中南大学 一种多孔复合极片及其制备和在全固态锂电池中的应用
KR20210050322A (ko) 2019-10-28 2021-05-07 삼성전자주식회사 이차전지 및 이차전지의 제조방법
WO2022264554A1 (ja) * 2021-06-18 2022-12-22 パナソニックIpマネジメント株式会社 複合活物質、電極材料、電池、および複合活物質の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243984A (ja) * 2000-02-28 2001-09-07 Kyocera Corp 固体電解質電池およびその製造方法
JP2013012416A (ja) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd 非水電解質電池、及び非水電解質電池の製造方法
JP2014154237A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 電極複合体の製造方法、電極複合体およびリチウム電池
JP2015144061A (ja) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9007998D0 (en) * 1990-04-09 1990-06-06 Aabh Patent Holdings Electrochemical cell
JP3335366B2 (ja) * 1991-06-20 2002-10-15 三菱化学株式会社 二次電池用電極
US5476732A (en) * 1993-04-02 1995-12-19 Programme 3 Patent Holdings Electrochemical cell
ZA9410365B (en) * 1994-01-05 1995-07-05 Programme 3 Patent Holdings Electrochemical cell
AU686091B2 (en) * 1994-06-08 1998-01-29 Programme 3 Patent Holdings Electrochemical cell
GB9604133D0 (en) * 1996-02-27 1996-05-01 Programme 3 Patent Holdings Electrochemical cell
US5972533A (en) * 1996-02-29 1999-10-26 Electro Chemical Holdings Societe Anonyme Electrochemical cell comprising a molten salt electrolyte containing sodium iodide
JP2000508829A (ja) * 1997-02-06 2000-07-11 アー・アー・ベー・アツシユ・パテント・ホールデイングス・ソシエテ・アノニム 電気化学電池
JP3655443B2 (ja) * 1997-09-03 2005-06-02 松下電器産業株式会社 リチウム電池
JP3615491B2 (ja) * 2001-03-05 2005-02-02 松下電器産業株式会社 非水電解質二次電池およびその製造法
JP5485716B2 (ja) 2009-01-15 2014-05-07 出光興産株式会社 リチウムイオン伝導性固体電解質の製造方法
CN102187500B (zh) * 2009-11-25 2014-06-04 丰田自动车株式会社 电极层压体的制造方法及电极层压体
JP2014154236A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 電極複合体の製造方法
JP2014154239A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 活物質成形体の製造方法、活物質成形体、リチウム電池の製造方法、およびリチウム電池
CN103474620B (zh) * 2013-09-16 2016-04-20 向勇 固态锂离子电极、电池及其制备方法
US8980459B1 (en) * 2014-01-02 2015-03-17 Dynantis Corporation Secondary metal chalcogenide batteries
JP6299251B2 (ja) 2014-02-10 2018-03-28 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池
JP2016025020A (ja) * 2014-07-23 2016-02-08 セイコーエプソン株式会社 電極複合体、リチウム電池および電極複合体の製造方法
JP2016058250A (ja) * 2014-09-10 2016-04-21 セイコーエプソン株式会社 リチウム電池用電極体及びリチウム電池
JP2016072077A (ja) * 2014-09-30 2016-05-09 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法およびリチウム電池
JP2016219130A (ja) * 2015-05-15 2016-12-22 セイコーエプソン株式会社 固体電解質電池、電極複合体、複合固体電解質および固体電解質電池の製造方法
JP2017004672A (ja) * 2015-06-08 2017-01-05 セイコーエプソン株式会社 電極複合体、電極複合体の製造方法およびリチウム電池
US10522873B2 (en) * 2015-12-15 2019-12-31 Sila Nanotechnologies Inc. Solid state electrolytes for safe metal and metal-ion batteries

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001243984A (ja) * 2000-02-28 2001-09-07 Kyocera Corp 固体電解質電池およびその製造方法
JP2013012416A (ja) * 2011-06-29 2013-01-17 Sumitomo Electric Ind Ltd 非水電解質電池、及び非水電解質電池の製造方法
JP2014154237A (ja) * 2013-02-05 2014-08-25 Seiko Epson Corp 電極複合体の製造方法、電極複合体およびリチウム電池
JP2015144061A (ja) * 2014-01-31 2015-08-06 セイコーエプソン株式会社 電極複合体の製造方法、電極複合体および電池

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373590A (zh) * 2017-10-19 2020-07-03 三菱瓦斯化学株式会社 全固态电池的制造方法
CN111373590B (zh) * 2017-10-19 2024-03-26 三菱瓦斯化学株式会社 全固态电池的制造方法
US11961971B2 (en) * 2017-10-19 2024-04-16 Mitsubishi Gas Chemical Company, Inc. Production method for all-solid-state battery
US20220199973A1 (en) * 2020-12-23 2022-06-23 Panasonic Intellectual Property Management Co., Ltd. Positive electrode layer and all-solid-state battery
US11967703B2 (en) * 2020-12-23 2024-04-23 Panasonic Intellectual Property Management Co., Ltd. Positive electrode layer and all-solid-state battery

Also Published As

Publication number Publication date
US20190036107A1 (en) 2019-01-31
CN108496266A (zh) 2018-09-04
JP2017135005A (ja) 2017-08-03
US10547049B2 (en) 2020-01-28
CN108496266B (zh) 2021-03-12

Similar Documents

Publication Publication Date Title
WO2017130818A1 (ja) 電極複合体の製造方法、リチウムイオン電池の製造方法
US10135091B2 (en) Solid electrolyte battery, electrode assembly, composite solid electrolyte, and method for producing solid electrolyte battery
JP6464556B2 (ja) 電極複合体の製造方法、電極複合体および電池
US10862162B2 (en) Electrode composite body, method of manufacturing electrode composite body, and lithium battery
CN112289977B (zh) 电极复合体的制造方法
JP6201327B2 (ja) リチウム電池用電極複合体の製造方法、リチウム電池用電極複合体およびリチウム電池
US9350013B2 (en) Method for producing electrode assembly
JP2020002009A (ja) 固体電池、セパレータ、電極および製造方法
JP6596947B2 (ja) 電極複合体および電池
US11394053B2 (en) Composition for forming lithium reduction resistant layer, method for forming lithium reduction resistant layer, and lithium secondary battery
JP6299251B2 (ja) 電極複合体の製造方法、電極複合体および電池
US20160028103A1 (en) Electrode assembly, lithium battery, and method for producing electrode assembly
JP2017157529A (ja) 電極複合体、電極複合体の製造方法、正極活物質層およびリチウム電池
US20140216632A1 (en) Method for producing active material molded body, active material molded body, method for producing lithium battery, and lithium battery
JP2016184496A (ja) 電極複合体および電池
JP2016143477A (ja) 電極複合体、電極複合体の製造方法および電池
JP2017004783A (ja) 電極複合体の製造方法、電極複合体およびリチウム電池
JP2017142885A (ja) 電極複合体の製造方法、リチウムイオン電池の製造方法、電極複合体、リチウムイオン電池
JP2017168282A (ja) 電極複合体、電池、電極複合体の製造方法及び電池の製造方法
JP2018163736A (ja) 複合体の製造方法、電池の製造方法
JP6828789B2 (ja) 電極複合体の製造方法
JP6828788B2 (ja) 電極複合体の製造方法
JP2017157288A (ja) 電極複合体の製造方法、および電池の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17744048

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17744048

Country of ref document: EP

Kind code of ref document: A1