WO2017122805A1 - 熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子 - Google Patents

熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子 Download PDF

Info

Publication number
WO2017122805A1
WO2017122805A1 PCT/JP2017/001092 JP2017001092W WO2017122805A1 WO 2017122805 A1 WO2017122805 A1 WO 2017122805A1 JP 2017001092 W JP2017001092 W JP 2017001092W WO 2017122805 A1 WO2017122805 A1 WO 2017122805A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermoelectric conversion
conversion element
composition
metal nanoparticles
carbon nanotubes
Prior art date
Application number
PCT/JP2017/001092
Other languages
English (en)
French (fr)
Inventor
戸嶋 直樹
幸英 白石
比 浅野
啓佑 大島
順太 井上
Original Assignee
日本ゼオン株式会社
学校法人東京理科大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社, 学校法人東京理科大学 filed Critical 日本ゼオン株式会社
Priority to KR1020187020067A priority Critical patent/KR20180122319A/ko
Priority to CN201780006470.0A priority patent/CN109075243B/zh
Priority to JP2017561198A priority patent/JP6898619B2/ja
Priority to EP17738557.2A priority patent/EP3404728A4/en
Priority to US16/069,630 priority patent/US20190013454A1/en
Publication of WO2017122805A1 publication Critical patent/WO2017122805A1/ja
Priority to US17/452,237 priority patent/US20220045256A1/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/851Thermoelectric active materials comprising inorganic compositions
    • H10N10/855Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/857Thermoelectric active materials comprising compositions changing continuously or discontinuously inside the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • C08K3/041Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K9/00Use of pretreated ingredients
    • C08K9/02Ingredients treated with inorganic substances
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N10/00Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
    • H10N10/80Constructional details
    • H10N10/85Thermoelectric active materials
    • H10N10/856Thermoelectric active materials comprising organic compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/32Specific surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/002Physical properties
    • C08K2201/006Additives being defined by their surface area
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives

Definitions

  • the present invention relates to a composition for thermoelectric conversion elements, a method for producing carbon nanotubes carrying metal nanoparticles, a molded article for thermoelectric conversion elements, a method for producing the same, and a thermoelectric conversion element.
  • thermoelectric conversion elements that can directly convert thermal energy into electrical energy have been attracting attention.
  • an inorganic material has been used for the preparation of the thermoelectric conversion material layer responsible for the energy conversion.
  • a technique for preparing a thermoelectric conversion material layer of a thermoelectric conversion element using an organic material containing a resin component has been studied from the viewpoint of excellent workability and flexibility.
  • Patent Document 1 discloses that a thermoelectric conversion material layer is formed using a resin composition including an insulating resin, an inorganic thermoelectric conversion material, and a charge transport material. The use of single-walled carbon nanotubes is disclosed. According to Patent Document 1, a thermoelectric conversion element having excellent thermoelectric conversion characteristics can be produced by using a resin composition including an insulating resin, an inorganic thermoelectric conversion material, and a charge transport material.
  • thermoelectric conversion element that is sufficiently excellent in thermoelectric conversion characteristics even using the above-described conventional technology. That is, the above conventional technique has room for improvement in that a thermoelectric conversion element including a thermoelectric conversion material layer formed using an organic material exhibits more excellent thermoelectric conversion characteristics.
  • thermoelectric conversion element molded body was prepared using a thermoelectric conversion element composition containing carbon nanotubes carrying metal nanoparticles (hereinafter sometimes referred to as “metal-supported CNT”), a resin component, and a solvent.
  • metal-supported CNT carbon nanotubes carrying metal nanoparticles
  • the present invention aims to advantageously solve the above-mentioned problems, and the composition for thermoelectric conversion elements of the present invention comprises carbon nanotubes on which metal nanoparticles are supported, a resin component, and a solvent. It is characterized by.
  • the thermoelectric conversion element molded body obtained using a thermoelectric conversion element composition containing a metal-supported CNT, a resin component, and a solvent is used as the thermoelectric conversion material layer of the thermoelectric conversion element, the thermoelectric conversion element is sufficient.
  • the “nanoparticle” refers to a particle having a particle diameter of nanometer order.
  • the specific surface area of the carbon nanotubes constituting the carbon nanotubes on which the metal nanoparticles are supported is preferably 600 m 2 / g or more. This is because the thermoelectric conversion characteristics of the thermoelectric conversion element can be further improved by using metal-supported CNTs obtained by supporting metal nanoparticles on CNTs having a specific surface area of 600 m 2 / g or more.
  • the said metal nanoparticle contains the nanoparticle of a transition metal.
  • the transition metal is preferably palladium. This is because the thermoelectric conversion characteristics of the thermoelectric conversion element can be further improved by using CNTs carrying palladium nanoparticles.
  • the present invention also provides a method for producing a carbon nanotube carrying metal nanoparticles, which advantageously solves the above problems, and the method for producing a carbon nanotube carrying metal nanoparticles according to the present invention comprises at least a carbon nanotube. And a step of reducing the metal precursor in a mixture containing a metal precursor and a reducing agent with the reducing agent to obtain carbon nanotubes carrying metal nanoparticles.
  • reducing the metal precursor using a reducing agent and depositing metal nanoparticles on the CNT it is possible to efficiently produce a metal-supported CNT capable of sufficiently improving the thermoelectric conversion characteristics of the thermoelectric conversion element. it can.
  • the present invention also provides a method for producing a carbon nanotube carrying metal nanoparticles, which advantageously solves the above problems, and the method for producing a carbon nanotube carrying metal nanoparticles according to the present invention comprises at least a carbon nanotube.
  • the supported CNT can be efficiently manufactured.
  • thermoelectric conversion elements of this invention is formed using one of the compositions for thermoelectric conversion elements mentioned above. It is characterized by that. If a molded body for a thermoelectric conversion element obtained by using any one of the thermoelectric conversion element compositions described above is used as a thermoelectric conversion material layer of the thermoelectric conversion element, the thermoelectric conversion element exhibits sufficiently excellent thermoelectric conversion characteristics. be able to.
  • the molded body for thermoelectric conversion elements of the present invention preferably has a thickness of 0.05 ⁇ m or more and 100 ⁇ m or less. If the thermoelectric conversion element molded body having a thickness within the above-described range is used, the thermoelectric conversion characteristics of the thermoelectric conversion element can be further improved while ensuring the strength of the thermoelectric conversion element molded body. is there.
  • thermoelectric conversion element of this invention is equipped with the thermoelectric conversion material layer containing one of the molded objects for thermoelectric conversion elements mentioned above. It is characterized by. If any one of the above-described molded bodies for thermoelectric conversion elements is used as the thermoelectric conversion material layer, the thermoelectric conversion elements can exhibit sufficiently excellent thermoelectric conversion characteristics.
  • thermoelectric conversion elements which can exhibit the thermoelectric conversion characteristic sufficiently excellent in the thermoelectric conversion element
  • supported which can exhibit the thermoelectric conversion characteristic sufficiently excellent in the thermoelectric conversion element can be provided.
  • the molded object for thermoelectric conversion elements which can exhibit the thermoelectric conversion characteristic sufficiently excellent in the thermoelectric conversion element can be provided.
  • the thermoelectric conversion element which is fully excellent in the thermoelectric conversion characteristic can be provided.
  • the composition for thermoelectric conversion elements of the present invention includes carbon nanotubes on which metal nanoparticles are supported, and the composition is used for forming the molded article for thermoelectric conversion elements of the present invention.
  • the carbon nanotube carrying the metal nanoparticles used in the composition for thermoelectric conversion elements of the present invention can be produced using the method for producing carbon nanotubes carrying the metal nanoparticles of the present invention.
  • the molded object for thermoelectric conversion elements of this invention can be used as a thermoelectric conversion material layer of a thermoelectric conversion element.
  • the molded object for thermoelectric conversion elements of this invention can be manufactured using the manufacturing method of the molded object for thermoelectric conversion elements of this invention.
  • the thermoelectric conversion element of this invention is equipped with the thermoelectric conversion material layer containing the molded object for thermoelectric conversion elements of this invention.
  • composition for thermoelectric conversion elements of the present invention contains carbon nanotubes on which metal nanoparticles are supported, a resin component, and a solvent, and optionally contains other components. And if the thermoelectric conversion element molded body obtained using the composition for thermoelectric conversion elements of the present invention is used as the thermoelectric conversion material layer of the thermoelectric conversion elements, the thermoelectric conversion elements exhibit sufficiently excellent thermoelectric conversion characteristics. be able to.
  • thermoelectric conversion element can exhibit sufficiently excellent thermoelectric conversion characteristics by the composition for thermoelectric conversion element of the present invention.
  • CNTs with a structure like a graphene sheet (six-membered ring network sheet made of carbon) rolled into a single-layer or multi-layer cylindrical shape have a defect structure (six-membered ring network well formed on its surface)
  • the conductivity of CNTs is improved by supporting metal nanoparticles on CNTs having such a defect structure.
  • the thermoelectric conversion characteristics of the thermoelectric conversion element can be greatly enhanced if CNTs carrying metal nanoparticles are used in the thermoelectric conversion material layer.
  • the CNT carrying the metal nanoparticles is a composite material of CNT and metal in which the metal nanoparticles are attached to the surface of the CNT.
  • the CNT constituting the metal-supported CNT may be a single-walled carbon nanotube or a multi-walled carbon nanotube. From the viewpoint of further improving the thermoelectric conversion characteristics of the thermoelectric conversion element, the single-walled carbon nanotube and the double-walled carbon nanotube are used. It is preferable to include at least one of the nanotubes, and it is preferable to include single-walled carbon nanotubes.
  • the average diameter of the CNTs is preferably 0.5 nm or more, and more preferably 1 nm or more. If the average diameter of CNT is 0.5 nm or more, aggregation of CNT can be suppressed and the thermoelectric conversion characteristics of the thermoelectric conversion element can be further enhanced. Moreover, the upper limit of the average diameter of CNT is not particularly limited, but is, for example, 15 nm or less. In addition, the average diameter of CNT can be calculated
  • the average length of CNT is preferably 0.1 ⁇ m or more, preferably 1 cm or less, and more preferably 3 mm or less.
  • the average length of the CNT can be calculated
  • the BET specific surface area of the CNT preferably at 600 meters 2 / g or more, more preferably 800 m 2 / g or more, is preferably from 2600m 2 / g, 1200m 2 / g or less More preferably.
  • the “BET specific surface area” of CNT can be determined by measuring the nitrogen adsorption isotherm at 77K and using the BET method.
  • BELSORP registered trademark
  • -max manufactured by Nippon Bell Co., Ltd.
  • the method for producing CNTs used in the present invention is not particularly limited, but is a method by catalytic hydrogen reduction of carbon dioxide, arc discharge method, chemical vapor deposition method (CVD method), laser evaporation method, vapor phase growth method. Method, gas phase flow method, HiPCO method and the like.
  • the CNT having the preferable properties described above is used, for example, when a raw material compound and a carrier gas are supplied onto a substrate having a catalyst layer for producing carbon nanotubes on the surface, and the CNT is synthesized by a CVD method.
  • oxidant catalyst activating substance
  • the catalyst activity of the catalyst layer is dramatically improved (super growth method; see WO 2006/011655). can do.
  • the carbon nanotube obtained by the super growth method may be referred to as “SGCNT”.
  • the CNT may have a functional group such as a carboxyl group introduced therein.
  • the introduction of the functional group can be performed by a known method such as an oxidation treatment method using hydrogen peroxide, nitric acid or the like, or a contact treatment method with a supercritical fluid, a subcritical fluid, or a high-temperature high-pressure fluid.
  • the average particle diameter of the metal nanoparticles supported on the CNTs described above is preferably 0.5 nm or more, more preferably 1.0 nm or more, preferably 15 nm or less, more preferably 10 nm or less, still more preferably 5.0 nm. It is as follows. Metal nanoparticles having an average particle diameter of 0.5 nm or more can be stably formed on CNTs. On the other hand, when the average particle diameter of the metal nanoparticles is 15 nm or less, the CNT can be easily supported on the defect structure, and the repair effect on the defect structure is enhanced.
  • the average particle diameter of the metal nanoparticles is within the above-mentioned range, it is possible to achieve both the stable formation of the metal nanoparticles and the effect of repairing the defect structure, and further improve the thermoelectric conversion characteristics of the thermoelectric conversion element. .
  • the standard deviation of the particle diameter of the metal nanoparticles is preferably 1.5 nm or less. If the standard deviation of the particle diameter of the metal nanoparticles is not more than the above value, the thermoelectric conversion characteristics of the thermoelectric conversion element can be further enhanced.
  • the average particle diameter of metal nanoparticles and the standard deviation of the particle diameter are obtained by observing with a transmission electron microscope and measuring the particle diameter based on images of 100 randomly selected metal nanoparticles. be able to.
  • the metal nanoparticles supported on the CNTs are preferably transition metal nanoparticles from the viewpoint of improving conductivity and further improving the thermoelectric conversion characteristics of the thermoelectric conversion element.
  • transition metals include chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel (Ni), copper (Cu), ruthenium (Ru), rhodium (Rh), Palladium (Pd), silver (Ag), tungsten (W), rhenium (Re), iridium (Ir), platinum (Pt), gold (Au), and titanium (Ti) are more preferable, and palladium is still more preferable.
  • Palladium nanoparticles can be deposited particularly easily on CNTs by a reduction reaction of palladium ions using a reducing agent, and can contribute to further improvement of thermoelectric conversion characteristics. In addition, these may be used individually by 1 type and may use 2 or more types together. Other elements that can form nanoparticles with these transition metals include magnesium (Mg), calcium (Ca), zinc (Zn), aluminum (Al), gallium (Ga), germanium (Ge), and tin. (Sn) and antimony (Sb).
  • Mg magnesium
  • Ca calcium
  • Zn zinc
  • Al aluminum
  • Ga gallium
  • Ge germanium
  • Sn antimony
  • the amount of metal nanoparticles supported on the metal-supported CNT is not particularly limited, the condition that the metal nanoparticles can be sufficiently arranged on the defect structure to further improve the thermoelectric conversion characteristics of the thermoelectric conversion element, and the CNT support capacity and In consideration of economic efficiency, it is preferably 1 part by mass or more, more preferably 5 parts by mass or more, preferably 100 parts by mass or less, more preferably 30 parts by mass or less per 100 parts by mass of CNTs.
  • the “supported amount of metal nanoparticles” can be measured by dissolving the metal-supported CNT in nitric acid or aqua regia and using an inductively coupled plasma (ICP) emission spectroscopic analyzer.
  • ICP inductively coupled plasma
  • the CNTs carrying the metal nanoparticles are reduced, for example, in a mixture containing CNTs and a metal precursor, to deposit metal nanoparticles on the surface of the CNT, and then optionally purified.
  • a method of reducing the metal precursor and depositing metal nanoparticles on the surface of the CNT (1) A method of reducing a metal precursor in a mixture containing CNT, a metal precursor, a reducing agent, and optionally a reaction solvent, with a reducing agent, and (2) a reaction between CNT and the metal precursor.
  • a metal precursor is a compound that can form metal nanoparticles on the surface of a CNT by a reduction reaction.
  • a metal precursor will not be specifically limited if a desired metal nanoparticle can be produced
  • Specific examples of the metal precursor include Pd (CH 3 COO) 2 (palladium acetate), Pt (NH 3 ) 2 (NO 2 ) 2 , (NH 4 ) 2 [RuCl 6 ], (NH 4 ) 2 [RuCl.
  • H 2 O H 2 PtCl 4 , H 2 PtCl 6 , K 2 PtCl 4 , K 2 PtCl 6 , H 2 [AuCl 4 ], (NH 4 ) 2 [AuCl 4 ], H [Au (NO 3 ) 4 ] H 2 O and the like.
  • Pd (CH 3 COO) 2 is preferable. These may be used alone or in combination of two or more.
  • the reducing agent is not particularly limited as long as it is a compound that can reduce the metal precursor.
  • Specific examples of the reducing agent include N, N-dimethylformamide (DMF), ethanol, hydrazine hydrate, sodium borohydride, diborane and the like.
  • organic solvent-based reducing agents such as DMF and ethanol that can function as a reducing agent and disperse and dissolve CNT and a metal precursor as a reaction solvent are preferable.
  • these reducing agents may be used individually by 1 type, and may use 2 or more types together.
  • an organic solvent-based reducing agent when using an organic solvent-based reducing agent as the reducing agent, CNT and a metal precursor are dispersed and dissolved in the organic solvent-based reducing agent without using a reaction solvent described later, and heat, light, microwave, ultrasonic waves are used. It is possible to cause a reduction reaction by adding energy such as.
  • an organic solvent reducing agent and a reaction solvent in combination.
  • the mixing ratio (mass basis) of the organic solvent-based reducing agent and the reaction solvent is not particularly limited, and can be arbitrarily determined in view of the dispersion state of CNTs.
  • the mixture optionally contains a reaction solvent.
  • the reaction solvent is not particularly limited as long as it can dissolve or disperse CNT, a metal precursor, and a reducing agent.
  • organic solvents for example, among organic solvents described later as “solvents” that can be used in the composition for thermoelectric conversion elements of the present invention, organic solvents excluding those corresponding to the reducing agent can be used. Among these, 1-methyl-2-pyrrolidone (NMP) and dimethyl sulfoxide (DMSO) are preferable. These reaction solvents may be used alone or in combination of two or more.
  • the CNT, the metal precursor, the reducing agent, and optionally the reaction solvent are mixed in a known manner to prepare a mixture.
  • concentration of each component in a mixture can be adjusted suitably.
  • the conditions for reducing the metal precursor in the mixture with a reducing agent are not particularly limited as long as the reducing agent can exhibit its function.
  • the mixture is preferably reacted at 70 ° C. or higher and 120 ° C. or lower for 10 minutes or longer and 2 hours or shorter.
  • the CNT, the metal precursor, and the reaction solvent are mixed by a known method to prepare a mixture.
  • concentration of each component in a mixture can be adjusted suitably.
  • the dispersion treatment that provides a cavitation effect is a dispersion method that uses a shock wave that is generated when a vacuum bubble generated in a solvent bursts when high energy is applied to a liquid.
  • the metal precursor in the mixture can be reduced, and the metal nanoparticles can be favorably deposited on the surface of the CNT.
  • dispersion treatment that provides a cavitation effect
  • dispersion treatment using ultrasonic waves dispersion treatment using a jet mill
  • dispersion treatment using high shear stirring Only one of these distributed processes may be performed, or a plurality of distributed processes may be combined. More specifically, for example, an ultrasonic homogenizer, a jet mill, and a high shear stirring device are preferably used. These devices may be conventionally known devices.
  • the mixture may be irradiated with ultrasonic waves using an ultrasonic homogenizer.
  • the time to irradiate with the quantity of CNT etc. for example, 1 minute or more is preferable, 2 minutes or more are more preferable, 5 hours or less are preferable, and 2 hours or less are more preferable.
  • the output is preferably 10 W or more and 50 W or less, and the temperature is preferably 0 ° C. or more and 50 ° C. or less.
  • the number of treatments may be appropriately set depending on the amount of CNT, etc., for example, preferably 2 times or more, more preferably 5 times or more, preferably 100 times or less, more preferably 50 times or less.
  • the pressure is preferably 20 MPa or more and 250 MPa or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • stirring and shearing may be applied to the coarse dispersion with a high shear stirring device.
  • the operation time time during which the machine is rotating
  • the peripheral speed is preferably 5 m / second or more and 50 m / second or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • Dispersion treatment that provides a crushing effect reduces the metal precursor in the mixture and allows the metal nanoparticles to be favorably deposited on the surface of the CNT, as well as the dispersion treatment that provides the cavitation effect described above, This is more advantageous in that damage to the CNT due to the shock wave when the bubbles disappear can be suppressed.
  • a shear force is applied to the mixture to crush and disperse the aggregates of CNTs, and a back pressure is applied to the mixture, and if necessary, the mixture is cooled,
  • the reduction reaction can proceed favorably while suppressing the generation of bubbles.
  • the back pressure applied to the mixture may be reduced to atmospheric pressure all at once, but is preferably reduced in multiple stages.
  • a dispersion system having a disperser having the following structure may be used. That is, from the inflow side to the outflow side of the mixture, the disperser orifice has an inner diameter d1, a dispersion space having an inner diameter d2, and a terminal portion having an inner diameter d3 (provided that d2>d3> d1). )) In order.
  • the inflowing high-pressure mixture for example, 10 to 400 MPa, preferably 50 to 250 MPa
  • the high-velocity mixture flowing into the dispersion space flows at high speed in the dispersion space, and receives a shearing force at that time.
  • the flow rate of the coarse dispersion decreases and the reduction reaction proceeds well.
  • a fluid having a pressure (back pressure) lower than the pressure of the inflowing coarse dispersion liquid flows out from the terminal portion as a dispersion liquid containing metal-supported CNTs.
  • the back pressure of the mixture can be applied to the mixture by applying a load to the flow of the mixture.
  • a desired back pressure can be applied to the mixture by arranging a multi-stage step down on the downstream side of the disperser. Can be loaded. Then, by reducing the back pressure of the mixture in multiple stages using a multistage pressure reducer, it is possible to suppress the generation of bubbles in the dispersion liquid when the dispersion liquid containing the metal-supported CNT is finally released to atmospheric pressure. .
  • the disperser may include a heat exchanger for cooling the mixture and a coolant supply mechanism. This is because the generation of bubbles in the mixture can be further suppressed by cooling the coarse dispersion liquid that has been heated to a high temperature by applying a shearing force with the disperser. In addition, it can suppress that a bubble generate
  • distribution process from which a crushing effect is acquired can be implemented by controlling a dispersion
  • the metal-supported CNTs are isolated by removing the reducing agent and the reaction solvent from the obtained dispersion and purifying them as necessary. can do.
  • the dispersion may be used as it is or after concentration to prepare a thermoelectric conversion element composition. That is, you may use the reaction solvent used for the reduction reaction as a solvent of the composition for thermoelectric conversion elements as it is.
  • the resin component is not particularly limited as long as it is a material that can withstand the operating temperature of the thermoelectric conversion element while imparting flexibility to the obtained thermoelectric conversion element molded body.
  • resin components include polypropylene, high density polyethylene, low density polyethylene, linear low density polyethylene, crosslinked polyethylene, ultrahigh molecular weight polyethylene, polybutene-1, poly-3-methylpentene, poly-4-methylpentene, poly Polyolefin such as cycloolefin, ethylene-vinyl acetate copolymer, ethylene-ethyl acrylate copolymer, ethylene-propylene copolymer, copolymer of polyethylene and cycloolefin (norbornene, etc.); polyvinyl chloride, polyvinylidene chloride , Chlorinated polyethylene, chlorinated polypropylene, polyvinylidene fluoride, rubber chloride, vinyl chloride-vinyl acetate copolymer, vinyl
  • thermoelectric conversion element obtained from the thermoelectric conversion element composition is improved while increasing the dispersibility of the metal-supported CNTs, and the thermoelectric conversion characteristics of the thermoelectric conversion element are further improved.
  • polyolefins and halogenated polyolefins are preferable, halogenated polyolefins are more preferable, and polyvinyl chloride (PVC) is still more preferable.
  • the resin component is preferably a resin having an insulating property (insulating resin).
  • the conductivity is preferably 1 S ⁇ cm ⁇ 1 or less.
  • the thermal conductivity of the resin component is preferably 0.5 W ⁇ m ⁇ 1 K ⁇ 1 or less, and more preferably 0.3 W ⁇ m ⁇ 1 K ⁇ 1 or less.
  • the resin component is preferably a resin having a binding property (binding resin).
  • the electrical conductivity of the resin component is determined by, for example, “Loresta (registered trademark) -GP (MCP-T600 type)” (Co., Ltd.) after forming a thin film of the resin component and measuring the film thickness.
  • the thermal conductivity ( Marie) of the resin component is the thermal diffusivity ⁇ (mm 2 ⁇ S ⁇ 1 , 25 ° C.), the specific heat Cp (J ⁇ g ⁇ 1 K ⁇ 1 , 25 ° C.) and the density ⁇ (g ⁇ cm ⁇ 3 ) and can be calculated using the following formula.
  • ISA ⁇ ⁇ Cp ⁇ ⁇
  • the thermal diffusivity ⁇ , the specific heat Cp, and the density ⁇ in the formula can be measured by the following apparatus and method.
  • the compounding amount of the resin component of the composition for thermoelectric conversion elements is not particularly limited, but is preferably 1 part by mass or more, more preferably 30 parts by mass or more, and 50 parts by mass per 100 parts by mass of the metal-supported CNT. More preferably, it is more preferably 100 parts by mass or more, most preferably 120 parts by mass or more, preferably 300 parts by mass or less, more preferably 250 parts by mass or less. More preferably, it is 200 parts by mass or less, and particularly preferably 180 parts by mass or less. If the blending amount of the resin component is within the above range, the thermoelectric conversion characteristics of the thermoelectric conversion element can be further enhanced.
  • the solvent that can be used in the composition for thermoelectric conversion elements of the present invention is not particularly limited as long as it can dissolve and / or disperse the metal-supported CNT and the resin component.
  • the solvent is preferably an organic solvent, and specifically, an aromatic solvent such as toluene, xylene, ethylbenzene, anisole, trimethylbenzene, p-fluorophenol, p-chlorophenol, o-chlorophenol, and purple olophenol; Tetrahydrofuran, dioxane, cyclopentyl monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether acetate, ethylene glycol monoethyl ether acetate, propylene glycol monomethyl ether acetate, diethylene glycol monobutyl ether acetate, diethylene glycol monoethyl ether acetate, and 3-methoxyacetate Ethers such as butyl; cyclohexylene
  • solvent may be used individually by 1 type, and may be used in combination of 2 or more type.
  • N-methyl-2-pyrrolidone, N, N-dimethylformamide, and dimethyl sulfoxide are preferred, and N-methyl-2-pyrrolidone is more preferred from the viewpoint of improving the dispersibility of the metal-supported CNT.
  • the compounding quantity of the solvent in the composition for thermoelectric conversion elements can be suitably adjusted according to the kind and quantity, such as metal carrying
  • the composition for thermoelectric conversion elements of the present invention may contain components other than the metal-supported CNT, the resin component, and the solvent described above.
  • examples of such other components include, but are not limited to, polymer transition metal complexes, carbon nanotube dispersants, triphenylphosphine, cellulose, and known inorganic thermoelectric conversion materials used for thermoelectric conversion material layers.
  • the polymer transition metal complex is a component capable of promoting the transport of carriers such as electrons in the thermoelectric conversion element, and examples thereof include a salt of poly (M 1,1,2,2-ethenetetrathiolate).
  • M represents a metal, and examples thereof include nickel, copper, palladium, cobalt, and iron.
  • the salt examples include sodium salts, potassium salts, copper salts, and alkylammonium salts (including those in which a hydrogen atom of an alkyl group is substituted with an arbitrary functional group).
  • the carbon nanotube dispersant examples include surfactants such as sodium dodecylsulfonate, sodium deoxycholate, sodium cholate, sodium dodecylbenzenesulfonate.
  • the inorganic thermoelectric conversion material is not particularly limited, but examples thereof include those described in JP-A-2015-170766. The compounding quantity of these other components can be adjusted suitably.
  • the composition for a thermoelectric conversion element can be produced by mixing the above-described components by a known method. However, a cavitation effect or a crushing effect is obtained from a crude mixture containing a metal-supported CNT, a resin component, and a solvent. It is preferable to manufacture through a step of mixing by a dispersion treatment. If a thermoelectric conversion element composition is prepared using a dispersion process that provides a cavitation effect or a dispersion process that provides a crushing effect, the metal-supported CNTs are dispersed well, and the thermoelectric conversion element has excellent thermoelectric conversion characteristics. It is because it can be fully demonstrated.
  • the same treatment as that described above in the section “Method for producing carbon nanotubes carrying metal nanoparticles” can be used.
  • the metal-supported CNTs can be favorably dispersed.
  • the time for irradiating the ultrasonic waves is, for example, preferably 1 minute or more, more preferably 5 minutes or more, and preferably 5 hours or less, 2 hours.
  • the following is more preferable.
  • the temperature is preferably 0 ° C. or higher and 50 ° C. or lower.
  • the number of treatments is, for example, preferably 2 or more, more preferably 5 or more, preferably 100 or less, and more preferably 50 or less.
  • the pressure is preferably 20 MPa or more and 250 MPa or less, and the temperature is preferably 0 ° C. or more and 50 ° C. or less.
  • the operation time time during which the machine is rotating
  • the peripheral speed is preferably 5 m / second or more and 50 m / second or less
  • the temperature is preferably 15 ° C. or more and 50 ° C. or less.
  • the same treatment as described above in the section “Method for producing carbon nanotubes carrying metal nanoparticles” can be used. According to this dispersion treatment, it is possible to uniformly disperse the metal-supported CNTs in the solvent, as well as to suppress damage to the metal-supported CNTs due to the shock wave when the bubbles disappear, compared to the dispersion treatment that can obtain the cavitation effect described above. This is more advantageous in that
  • the molded body for thermoelectric conversion elements of the present invention can be formed, for example, by removing at least part of the solvent from the composition for thermoelectric conversion elements of the present invention.
  • the molded body for a thermoelectric conversion element thus obtained contains at least CNT carrying metal nanoparticles and a resin component.
  • other components Including the components described above.
  • the suitable abundance ratio of each of these components in the molded body for thermoelectric conversion elements is the same as that in the composition for thermoelectric conversion elements.
  • thermoelectric conversion elements of this invention is formed using the composition for thermoelectric conversion elements of this invention, if the said molded object for thermoelectric conversion elements is used as a thermoelectric conversion material layer, it will be thermoelectric conversion.
  • the element can exhibit sufficiently excellent thermoelectric conversion characteristics.
  • the shape of the thermoelectric conversion element molded body is not particularly limited as long as it can be used as the thermoelectric conversion material layer of the thermoelectric conversion element, but a film shape is preferable. Further, the thickness of the thermoelectric conversion element molded body is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, further preferably 1 ⁇ m or more, and preferably 100 ⁇ m or less, preferably 10 ⁇ m. More preferably, it is more preferably 5 ⁇ m or less.
  • the thickness of the molded body for thermoelectric conversion elements is 0.05 ⁇ m or more, the strength of the molded body for thermoelectric conversion elements can be secured, and if it is 100 ⁇ m or less, the conductivity is improved by improving the orientation in the planar direction of the metal-supported CNTs. This is presumed to be because the thermoelectric conversion characteristics of the thermoelectric conversion element can be further improved.
  • the thickness of the molded body for thermoelectric conversion elements is particularly 5 ⁇ m or less, the thermoelectric conversion characteristics of the thermoelectric conversion elements are greatly improved. This is presumably because the tilt angle of the metal-supported CNT itself is almost 0 ° and the orientation in the plane direction is dramatically improved by setting the thickness of the thermoelectric conversion element molded body to 5 ⁇ m or less.
  • thermoelectric conversion element Metal for producing molded body for thermoelectric conversion element
  • the above-described molded body for thermoelectric conversion elements of the present invention can be manufactured using the method for manufacturing the molded body for thermoelectric conversion elements of the present invention.
  • the method for producing a molded body for a thermoelectric conversion element of the present invention is obtained by subjecting a crude mixture containing carbon nanotubes carrying metal nanoparticles, a resin component, and a solvent to a dispersion treatment that provides a cavitation effect or a crushing effect. It includes a step of mixing to obtain a composition for thermoelectric conversion elements (thermoelectric conversion element composition preparation step) and a step of removing the solvent from the thermoelectric conversion element composition (solvent removal step). .
  • thermoelectric conversion element molded object which can fully exhibit the thermoelectric conversion characteristic excellent in the thermoelectric conversion element can be obtained.
  • composition for thermoelectric conversion element can be prepared using a dispersion treatment that provides a cavitation effect or a crushing effect.
  • thermoelectric conversion element composition to form the thermoelectric conversion element molded body
  • the method for removing the solvent from the thermoelectric conversion element composition to form the thermoelectric conversion element molded body is not particularly limited. For example, after supplying the composition for a thermoelectric conversion element on a substrate by coating or casting, the solvent is removed from the coating film of the composition for a thermoelectric conversion element formed on the substrate, thereby forming a film-like thermoelectric element. A molded body for a conversion element can be produced. And as a base material which apply
  • the method of removing a solvent from the film of the composition for thermoelectric conversion elements is not specifically limited, The method of heating the said film, the method of putting the said film in a pressure-reduced atmosphere under room temperature or heating, etc. are mentioned. These conditions can be set as appropriate.
  • thermoelectric conversion element molded body can be improved.
  • process liquids such as an organic solvent, the aqueous solution of saccharides, the aqueous solution containing an acid or a base.
  • the conductivity of the thermoelectric conversion element molded body can be improved.
  • the treatment liquid one that does not swell or deteriorate the molded body is usually selected.
  • the method for bringing the treatment liquid into contact with the molded body is not particularly limited, and examples thereof include application of the treatment liquid to the molded body and immersion of the molded body in the treatment liquid.
  • the organic solvent used as the treatment liquid include methanol, ethanol, n-propanol, isopropanol, n-butanol, n-pentanol, n-hexanol, ethylene glycol, propylene glycol, diethylene glycol, and glycerin.
  • Aliphatic alcohols such as toluene, xylene, and ethylbenzene; ethers such as diethyl ether, di-n-propyl ether, dioxane, and tetrahydrofuran; And an aqueous solution containing an acid or a base, and preferred examples of the aqueous solution containing an acid or a base include an aqueous solution containing hydrochloric acid or sulfuric acid.
  • thermoelectric conversion element of the present invention includes a thermoelectric conversion material layer including the thermoelectric conversion element molded body of the present invention.
  • the structure of such a thermoelectric conversion element is not particularly limited, and a known one can be adopted.
  • the thermoelectric conversion element can be produced, for example, by attaching two electrodes to a thermoelectric conversion material layer on a substrate. it can.
  • the electrodes are not particularly limited, and for example, those described in JP-A-2014-199837 can be used.
  • the positional relationship between the thermoelectric conversion material layer and the two electrodes is not particularly limited. For example, electrodes may be disposed on both ends of the thermoelectric conversion material layer, or the thermoelectric conversion material layer may be sandwiched between two electrodes.
  • thermoelectric conversion element of this invention can be used for a thermoelectric conversion module provided with a some thermoelectric conversion element.
  • a specific thermoelectric conversion module for example, a thermoelectric conversion module in which a plurality of thermoelectric conversion elements are combined in a plate shape or a cylindrical shape, and at least one of the plurality of thermoelectric conversion elements is the thermoelectric conversion element of the present invention. is there. Since such a thermoelectric conversion module includes the thermoelectric conversion element of the present invention, high-efficiency power generation is possible.
  • Example 1 ⁇ Preparation of carbon nanotube> Prepare CNTs (including SGCNT and single-walled CNTs. Average diameter: 3.5 nm, average length: 0.3 mm, specific surface area: 1000 m 2 / g) by the super-growth method according to the description in WO 2006/011655. did.
  • ⁇ Preparation of CNT carrying metal nanoparticles> The above-mentioned carbon nanotube and palladium acetate as a metal precursor are dispersed or dissolved in a mixed solvent of DMF as a reducing agent and NMP as a reaction solvent (mixing ratio (mass basis) is DMF: NMP 1: 1), A mixture was obtained.
  • the CNT concentration in this mixture was 0.35 mg / mL, and the concentration of palladium acetate was 1.4 mM.
  • the resulting mixture was then held at 100 ° C. for 45 minutes to allow the metal precursor reduction reaction to proceed. After the reaction mixture was suction filtered, the residue obtained on the filter paper was washed with methanol and NMP, and the residue was further dried at 70 ° C. for 300 minutes. After drying, it was confirmed by transmission electron microscope (TEM) that CNTs carrying palladium nanoparticles (metal-supported CNT-1) were obtained.
  • the palladium nanoparticles supported on the CNT had an average particle size of 2.3 nm and a standard deviation of the particle size of 0.7 nm.
  • composition for thermoelectric conversion element 3.37 mg (100 parts by mass) of CNT on which the metal nanoparticles obtained as described above are supported, 4.50 mg (134 parts by mass) of polyvinyl chloride (PVC) as a resin component, and 3.0 mL of NMP as a solvent was put into a 6 mL screw tube, and subjected to a dispersion treatment for 10 minutes with an ultrasonic bath (manufactured by Tytech) and for 10 minutes with an ultrasonic homogenizer (manufactured by Plason) to obtain a composition for a thermoelectric conversion element.
  • PVC polyvinyl chloride
  • thermoelectric conversion element After applying the obtained composition for thermoelectric conversion elements onto a polyimide substrate, the substrate is heated at 60 ° C. for 12 hours and at 130 ° C. for 0.5 hours to dry the composition for thermoelectric conversion elements on the substrate. Thus, a film-like molded body for thermoelectric conversion elements (thickness: 3.3 mm) was obtained. Various measurements were performed. The results are shown in Table 1.
  • Example 2 ⁇ Preparation of CNT carrying metal nanoparticles>
  • the above-mentioned carbon nanotube and palladium acetate as a metal precursor were dispersed / dissolved in NMP as a reaction solvent to obtain a mixture.
  • the CNT concentration in this mixture was 1.21 mg / mL, and the palladium acetate concentration was 2.0 mM.
  • an ultrasonic homogenizer manufactured by Plason Co., Ltd.
  • a dispersion treatment for obtaining a cavitation effect at an output of 20 W for 3 minutes, thereby reducing the reduction reaction of the metal precursor.
  • the residue obtained on the filter paper was washed with methanol and NMP, and the residue was dried at 70 ° C. for 300 minutes. After drying, it was confirmed by TEM that CNTs (metal-supported CNT-2) on which palladium nanoparticles were supported were obtained.
  • the average particle diameter of the palladium nanoparticles supported on the CNTs was 2.1 nm, and the standard deviation of the particle diameter was 0.5 nm. It was confirmed by TEM that palladium nanoparticles were selectively supported on the defective structure of CNT.
  • thermoelectric conversion element composition and a thermoelectric conversion element molded body in the same manner as in Example 1) except that the metal-supported CNT-2 obtained as described above was used instead of the metal-supported CNT-1. (Thickness: 3.1 mm) was manufactured. Various measurements were performed. The results are shown in Table 1.
  • Example 3 Except that the thickness of the thermoelectric conversion element molded body was changed as shown in Table 1, in the same manner as in Example 1, the CNT carrying the metal nanoparticles, the thermoelectric conversion element composition, and the thermoelectric conversion element molded body were obtained. Manufactured. Various measurements were performed. The results are shown in Table 1. In addition, the thickness of the molded object for thermoelectric conversion elements was adjusted by changing the application quantity of the composition for thermoelectric conversion elements on a polyimide substrate.
  • thermoelectric conversion element composition In the preparation of the composition for thermoelectric conversion elements, instead of metal-supported CNT-1, single-walled carbon nanotubes (CNT-3, manufactured by Meijo Nanocarbon Co., Ltd., eDIPS (trade name), in which metal nanoparticles are not supported, Except for using an average diameter of 1.4 nm, an average length of 0.1 mm, and a specific surface area of 500 m 2 / g), a thermoelectric conversion element composition and a thermoelectric conversion element molded body were obtained in the same manner as in Example 1. Manufactured. Various measurements were performed. The results are shown in Table 1.
  • Carbon nanotubes including CNT-4, SGCNT, single-walled CNT. Average diameter: 3.5 nm, average length: 0.3 mm, specific surface area: 1000 m 2 / g), polyvinyl chloride as a resin component, and as a solvent Of NMP was mixed. The obtained mixture and the NMP dispersion of palladium nanoparticles (average particle size: 6.3 nm) were mixed with carbon nanotubes, resin components, palladium nanoparticles, and NMP (mass basis).
  • thermoelectric conversion element molded body excellent in power factor (PF) is obtained, that is, the thermoelectric conversion element molded body is converted into a thermoelectric conversion. It can be seen that by using the material layer, the thermoelectric conversion element can exhibit sufficiently excellent thermoelectric conversion characteristics.
  • the power factor (PF) is small, that is, the thermoelectric conversion characteristics of the thermoelectric conversion element are sufficiently higher than those in Examples 1 to 3. It can be seen that it cannot be secured.
  • Comparative Example 2 in which metal nanoparticles are separately added to a thermoelectric conversion element molded body while using CNTs on which metal nanoparticles are not supported is compared with Example 1 in which the thickness of the molded body is the same.
  • the power factor (PF) is small. For this reason, simply using the metal nanoparticles and CNTs together is not sufficient in improving the thermoelectric conversion characteristics, and by supporting the metal nanoparticles on the CNTs, a desired thermoelectric conversion characteristics improving effect can be obtained. Recognize.
  • thermoelectric conversion elements which can exhibit the thermoelectric conversion characteristic sufficiently excellent in the thermoelectric conversion element
  • supported which can exhibit the thermoelectric conversion characteristic sufficiently excellent in the thermoelectric conversion element can be provided.
  • the molded object for thermoelectric conversion elements which can exhibit the thermoelectric conversion characteristic sufficiently excellent in the thermoelectric conversion element can be provided.
  • the thermoelectric conversion element which is fully excellent in the thermoelectric conversion characteristic can be provided.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本発明は、熱電変換素子に、十分に優れた熱電変換特性を発揮させうる熱電変換素子用組成物を提供することを目的とする。本発明の熱電変換素子用組成物は、金属ナノ粒子が担持されたカーボンナノチューブ、樹脂成分および溶媒を含むことを特徴とする。

Description

熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子
 本発明は、熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子に関するものである。
 従来から、熱エネルギーを電気エネルギーに直接変換できる熱電変換素子が注目されている。ここで熱電変換素子において、上記エネルギー変換を担う熱電変換材料層の調製には、無機系材料が用いられてきた。しかしながら、近年、加工性や可とう性に優れる観点から、樹脂成分を含む有機系材料を用いて熱電変換素子の熱電変換材料層を調製する技術の検討が行われている。
 例えば特許文献1では、絶縁性樹脂と、無機熱電変換材料と、電荷輸送材料とを含む樹脂組成物を用いて熱電変換材料層を形成することが開示され、当該文献は無機熱電変換材料として単層カーボンナノチューブを使用することを開示している。そして特許文献1によれば、絶縁性樹脂と、無機熱電変換材料と、電荷輸送材料とを含む樹脂組成物を用いることで、熱電変換特性に優れる熱電変換素子を作製することができる。
特開2015-170766号公報
 しかしながら、上記従来の技術を用いても熱電変換特性に十分に優れた熱電変換素子を作製することは困難であった。すなわち上記従来の技術には、有機系材料を用いて形成した熱電変換材料層を備える熱電変換素子に、一層優れた熱電変換特性を発揮させるという点において、改善の余地があった。
 本発明者らは、上記目的を達成するために鋭意検討を行い、上記従来技術において樹脂成分と共に用いられるカーボンナノチューブ(以下、「CNT」という場合がある。)に着目した。そして、金属ナノ粒子が担持されたカーボンナノチューブ(以下、「金属担持CNT」という場合がある。)、樹脂成分および溶媒を含む熱電変換素子用組成物を用いて熱電変換素子用成形体を作製し、当該成形体を熱電変換素子の熱電変換材料層として用いることで、熱電変換素子に十分に優れた熱電変換特性を発揮させうることを見出し、本発明を完成させた。
 即ち、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱電変換素子用組成物は、金属ナノ粒子が担持されたカーボンナノチューブ、樹脂成分および溶媒を含むことを特徴とする。このように、金属担持CNT、樹脂成分および溶媒を含む熱電変換素子用組成物を用いて得られる熱電変換素子用成形体を熱電変換素子の熱電変換材料層として使用すれば、熱電変換素子に十分に優れた熱電変換特性を発揮させることができる。
 なお、本発明において「ナノ粒子」とは、ナノメートルオーダーの粒子径を有する粒子を指す。
 ここで、本発明の熱電変換素子用組成物において、前記金属ナノ粒子が担持されたカーボンナノチューブを構成するカーボンナノチューブの比表面積が600m/g以上であることが好ましい。比表面積が600m/g以上であるCNTに金属ナノ粒子を担持してなる金属担持CNTを用いれば、熱電変換素子の熱電変換特性を一層優れたものとすることができるからである。
 そして、本発明の熱電変換素子用組成物において、前記金属ナノ粒子が、遷移金属のナノ粒子を含むことが好ましい。遷移金属のナノ粒子が担持されたCNTを用いれば、熱電変換素子の熱電変換特性を一層優れたものとすることができるからである。
 更に、前記遷移金属がパラジウムであることが好ましい。パラジウムのナノ粒子が担持されたCNTを用いれば、熱電変換素子の熱電変換特性をより一層優れたものとすることができるからである。
 また、この発明は、上記課題を有利に解決する金属ナノ粒子が担持されたカーボンナノチューブを製造する方法であって、本発明の金属ナノ粒子が担持されたカーボンナノチューブの製造方法は、少なくともカーボンナノチューブ、金属前躯体、および還元剤を含む混合物中の前記金属前躯体を前記還元剤により還元して、金属ナノ粒子が担持されたカーボンナノチューブを得る工程を含むことを特徴とする。このように、還元剤を用いて金属前躯体を還元してCNT上に金属ナノ粒子を析出させることで、熱電変換素子の熱電変換特性を十分に高めうる金属担持CNTを効率良く製造することができる。
 また、この発明は、上記課題を有利に解決する金属ナノ粒子が担持されたカーボンナノチューブを製造する方法であって、本発明の金属ナノ粒子が担持されたカーボンナノチューブの製造方法は、少なくともカーボンナノチューブ、金属前躯体、および反応溶媒を含む混合物中の前記金属前躯体をキャビテーション効果または解砕効果が得られる分散処理により還元して、金属ナノ粒子が担持されたカーボンナノチューブを得る工程を含むことを特徴する。このように、キャビテーション効果または解砕効果が得られる分散処理を用いて金属前躯体を還元してCNT上に金属ナノ粒子を析出させることで、熱電変換素子の熱電変換特性を十分に高めうる金属担持CNTを効率良く製造することができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱電変換素子用成形体は、上述した何れかの熱電変換素子用組成物を用いて形成されることを特徴とする。上述した何れかの熱電変換素子用組成物を用いて得られる熱電変換素子用成形体を熱電変換素子の熱電変換材料層として使用すれば、熱電変換素子に十分に優れた熱電変換特性を発揮させることができる。
 ここで、本発明の熱電変換素子用成形体は、厚みが0.05μm以上100μm以下であることが好ましい。厚みが上述の範囲内である熱電変換素子用成形体を用いれば、熱電変換素子用成形体の強度を確保しつつ、熱電変換素子の熱電変換特性を一層優れたものとすることができるからである。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱電変換素子用成形体の製造方法は、金属ナノ粒子が担持されたカーボンナノチューブ、樹脂成分および溶媒を含む粗混合物を、キャビテーション効果または解砕効果が得られる分散処理により混合して熱電変換素子用組成物を得る工程と、前記熱電変換素子用組成物から前記溶媒を除去する工程を含むことを特徴とする。このようにして得られた熱電変換素子用成形体を熱電変換素子の熱電変換材料層として使用すれば、熱電変換素子に十分に優れた熱電変換特性を発揮させることができる。
 また、この発明は、上記課題を有利に解決することを目的とするものであり、本発明の熱電変換素子は、上述した何れかの熱電変換素子用成形体を含む熱電変換材料層を備えることを特徴とする。上述した何れかの熱電変換素子用成形体を熱電変換材料層として使用すれば、熱電変換素子に十分に優れた熱電変換特性を発揮させることができる。
 本発明によれば、熱電変換素子に十分に優れた熱電変換特性を発揮させうる熱電変換素子用組成物を提供することができる。
 本発明によれば、熱電変換素子に十分に優れた熱電変換特性を発揮させうる、金属ナノ粒子が担持されたカーボンナノチューブの製造方法を提供することができる。
 本発明によれば、熱電変換素子に十分に優れた熱電変換特性を発揮させうる熱電変換素子用成形体を提供することができる。
 本発明によれば、熱電変換特性に十分に優れる熱電変換素子を提供することができる。
 以下、本発明の実施形態について詳細に説明する。
 ここで、本発明の熱電変換素子用組成物は、金属ナノ粒子が担持されたカーボンナノチューブを含み、そして当該組成物は、本発明の熱電変換素子用成形体の形成に用いられる。また、本発明の熱電変換素子用組成物に用いられる金属ナノ粒子が担持されたカーボンナノチューブは、本発明の金属ナノ粒子が担持されたカーボンナノチューブの製造方法を用いて製造することができる。そして、本発明の熱電変換素子用成形体は、熱電変換素子の熱電変換材料層として用いることができる。なお、本発明の熱電変換素子用成形体は、本発明の熱電変換素子用成形体の製造方法を用いて製造することができる。更に、本発明の熱電変換素子は、本発明の熱電変換素子用成形体を含む熱電変換材料層を備える。
(熱電変換素子用組成物)
 本発明の熱電変換素子用組成物は、金属ナノ粒子が担持されたカーボンナノチューブ、樹脂成分、および溶媒を含有し、任意に、その他の成分を含む。そして、本発明の熱電変換素子用組成物を用いて得られる熱電変換素子用成形体を熱電変換素子の熱電変換材料層として使用すれば、熱電変換素子に十分に優れた熱電変換特性を発揮させることができる。
 なお、本発明の熱電変換素子用組成物によって、熱電変換素子に十分に優れた熱電変換特性を発揮させることができる理由は定かでないが、以下の理由によるものと推察される。
 ここで、グラフェンシート(炭素によって作られる六員環ネットワークシート)を丸めて単層または多層の円筒状にしたような構造を有するCNTは、その表面に欠陥構造(六員環ネットワークが良好に形成されていない箇所)が存在し、例えば上記特許文献1の技術においては、この欠陥構造の存在によりCNTの導電性が十分に得られない場合があったと推察される。そこで、本発明では、このような欠陥構造を有するCNTに金属ナノ粒子を担持させることで、CNTの導電性を向上させる。その結果、金属ナノ粒子が担持されたCNTを熱電変換材料層に用いれば、熱電変換素子の熱電変換特性を大幅に高めることができると推察される。
<金属ナノ粒子が担持されたカーボンナノチューブ>
 金属ナノ粒子が担持されたCNTは、金属ナノ粒子がCNTの表面に付着した、CNTと金属の複合材料である。
[カーボンナノチューブ]
 金属担持CNTを構成するCNTは、単層カーボンナノチューブであっても、多層カーボンナノチューブであってもよいが、熱電変換素子の熱電変換特性を更に高める観点からは、単層カーボンナノチューブおよび二層カーボンナノチューブの少なくとも一方を含むことが好ましく、単層カーボンナノチューブを含むことが好ましい。
 ここで、CNTの平均直径は、0.5nm以上であることが好ましく、1nm以上であることがより好ましい。CNTの平均直径が0.5nm以上であれば、CNTの凝集を抑制し、熱電変換素子の熱電変換特性を更に高めることができる。また、CNTの平均直径の上限は、特に限定されないが、例えば15nm以下である。
 なお、CNTの平均直径は、透過型電子顕微鏡を用いて無作為に選択したカーボンナノチューブ100本の直径を測定して求めることができる。
 また、CNTの平均長さは、0.1μm以上であることが好ましく、1cm以下であることが好ましく、3mm以下であることがより好ましい。CNTの平均長さが上述の範囲内であれば、熱電変換素子の熱電変換特性を更に高めることができる。
 なお、CNTの平均長さは、透過型電子顕微鏡を用いて無作為に選択したカーボンナノチューブ100本の長さを測定して求めることができる。
 そして、CNTのBET比表面積としては、600m2/g以上であることが好ましく、800m2/g以上であることがより好ましく、2600m2/g以下であることが好ましく、1200m2/g以下であることがより好ましい。CNTのBET比表面積が上述の範囲内であれば、熱電変換素子の熱電変換特性を更に高めることができる。
 なお、CNTの「BET比表面積」は、77Kにおける窒素吸着等温線を測定し、BET法により求めることができる。ここで、BET比表面積の測定には、例えば、「BELSORP(登録商標)-max」(日本ベル(株)製)を用いることができる。
 本発明で用いられるCNTの製造方法としては、特に限定されることなく、二酸化炭素の接触水素還元による方法、アーク放電法、化学的気相成長法(CVD法)、レーザー蒸発法、気相成長法、気相流動法、および、HiPCO法等が挙げられる。中でも、上述した好ましい性状を有するCNTは、例えば、カーボンナノチューブ製造用の触媒層を表面に有する基材上に、原料化合物およびキャリアガスを供給して、CVD法によりCNTを合成する際に、系内に微量の酸化剤(触媒賦活物質)を存在させることで、触媒層の触媒活性を飛躍的に向上させるという方法(スーパーグロース法;国際公開第2006/011655号参照)により、効率的に製造することができる。なお、以下では、スーパーグロース法により得られるカーボンナノチューブを「SGCNT」と称することがある。
 また、CNTは、カルボキシル基等の官能基が導入されたものであってもよい。官能基の導入は、例えば、過酸化水素や硝酸等を用いる酸化処理法や、超臨界流体、亜臨界流体又は高温高圧流体との接触処理法などの既知の方法により行うことができる。
[金属ナノ粒子]
 上述したCNTに担持される金属ナノ粒子の平均粒子径は、好ましくは0.5nm以上、より好ましくは1.0nm以上であり、好ましくは15nm以下、より好ましくは10nm以下、更に好ましくは5.0nm以下である。平均粒子径が0.5nm以上である金属ナノ粒子は、CNT上に安定して形成することができる。一方、金属ナノ粒子の平均粒子径が15nm以下であれば、CNTの欠陥構造上への担持が容易となり、欠陥構造への補修効果が高まる。以上のことから、金属ナノ粒子の平均粒子径が上述の範囲内であれば、金属ナノ粒子の安定形成と欠陥構造の補修効果を両立させ、熱電変換素子の熱電変換特性を更に高めることができる。
 また、金属ナノ粒子の粒子径の標準偏差は、好ましくは1.5nm以下である。金属ナノ粒子の粒子径の標準偏差が上述の値以下であれば、熱電変換素子の熱電変換特性を更に高めることができる。
 なお、金属ナノ粒子の平均粒子径および粒子径の標準偏差は、透過型電子顕微鏡で観察し、無作為に選択された100個の金属ナノ粒子の画像に基づいてその粒径を測定し、求めることができる。
 そして、CNTに担持される金属ナノ粒子は、導電性を高めて熱電変換素子の熱電変換特性を更に向上させる観点から、遷移金属のナノ粒子であることが好ましい。そして同様の観点から、遷移金属としてはクロム(Cr)、マンガン(Mn)、鉄(Fe)、コバルト(Co)、ニッケル(Ni)、銅(Cu)、ルテニウム(Ru)、ロジウム(Rh)、パラジウム(Pd)、銀(Ag)、タングステン(W)、レニウム(Re)、イリジウム(Ir)、白金(Pt)、金(Au)、チタン(Ti)、がより好ましく、パラジウムが更に好ましい。パラジウムのナノ粒子は、還元剤を用いたパラジウムイオンの還元反応によりCNT上に特に容易に析出させることができ、熱電変換特性の更なる向上に寄与しうる。なお、これらは1種類を単独で使用してもよく、2種類以上を併用してもよい。また、これらの遷移金属と共にナノ粒子を構成しうる他の元素としては、マグネシウム(Mg)、カルシウム(Ca)、亜鉛(Zn)、アルミニウム(Al)、ガリウム(Ga)、ゲルマニウム(Ge)、錫(Sn)、アンチモン(Sb)が挙げられる。
 金属担持CNTにおける金属ナノ粒子の担持量は特に限定されないが、金属ナノ粒子を欠陥構造上に十分に配置して熱電変換素子の熱電変換特性を一層高めることができる条件と、CNTの担持能および経済性を考慮すれば、CNT100質量部あたり、好ましくは1質量部以上、より好ましくは5質量部以上であり、好ましくは100質量部以下、より好ましくは30質量部以下である。
 なお、「金属ナノ粒子の担持量」は、金属担持CNTを硝酸又は王水に溶解させ、誘導結合プラズマ(ICP)発光分光分析装置を用いて測定することができる。
[金属ナノ粒子が担持されたカーボンナノチューブの製造方法]
 そして、金属ナノ粒子が担持されたCNTは、例えば、CNTと金属前躯体を含む混合物中において金属前躯体を還元し、CNTの表面に金属ナノ粒子を析出させ、その後、任意に、精製をすることで製造することができる。ここで、上記金属前躯体を還元してCNTの表面に金属ナノ粒子を析出させる方法としては、
(1)CNTと、金属前躯体と、還元剤と、任意に、反応溶媒とを含む混合物中の金属前躯体を還元剤により還元する方法、および
(2)CNTと、金属前躯体と、反応溶媒とを含む混合物中の金属前躯体をキャビテーション効果または解砕効果が得られる物理的エネルギーによる分散処理により還元する方法、
 が挙げられる。上記(1)又は(2)の方法を用いれば、CNTの欠陥構造に選択的にナノ粒子を付着させることができ、導電性に優れる金属ナノ粒子が担持されたCNTを効率よく製造することができる。
[[(1)金属前躯体を還元剤により還元する方法]]
-CNT-
 CNTは、上述の「カーボンナノチューブ」の項で記載したものを使用する。
-金属前躯体-
 金属前駆体は、還元反応によりCNTの表面に金属ナノ粒子を形成し得る化合物である。金属前駆体は、還元反応により所望の金属ナノ粒子を生成しうるものであれば特に限定されない。金属前駆体の具体例としては、Pd(CHCOO)(酢酸パラジウム)、Pt(NH(NO、(NH[RuCl]、(NH[RuCl(HO)]、HPtCl、HPtCl、KPtCl、KPtCl、H[AuCl]、(NH[AuCl]、H[Au(NO]HO等が挙げられる。これらの中でも、Pd(CHCOO)が好ましい。これらは1種類を単独で使用してもよく、2種類以上を併用してもよい。
-還元剤-
 還元剤としては、上記金属前躯体を還元することが出来る化合物であれば特に限定されない。還元剤の具体例としては、N,N-ジメチルホルムアミド(DMF)、エタノール、ヒドラジン・ハイドレート、水素化ホウ素ナトリウム、ジボラン等が挙げられる。これらの中でも、還元剤として機能しつつ反応溶媒としてCNTおよび金属前躯体を分散、溶解させ得る、DMF、エタノール等の有機溶媒系還元剤が好ましい。なお、これらの還元剤は1種類を単独で使用してもよく、2種類以上を併用してもよい。
 また、還元剤として有機溶媒系還元剤を用いる場合、後述する反応溶媒を用いずとも、有機溶媒系還元剤中にCNTおよび金属前躯体を分散、溶解させ、熱、光、マイクロ波、超音波などのエネルギーを加えることで、還元反応を起こすことが可能である。しかしながら、混合物中のCNTおよび金属前躯体の分散状態を良好とする観点からは、有機溶媒系還元剤と反応溶媒を併用することが好ましい。この際の有機溶媒系還元剤と反応溶媒の混合比(質量基準)は、特に限定されることはなく、CNTの分散状態を鑑みながら任意に決定することができる
-反応溶媒-
 混合物は、任意に反応溶媒を含有する。反応溶媒としては、CNT、金属前躯体、および還元剤を溶解または分散させうるものであれば特に限定されない。反応溶媒としては、例えば、本発明の熱電変換素子用組成物に使用し得る「溶媒」として後述する有機溶媒のうち、上記還元剤に該当するものを除いた有機溶媒を使用可能である。これらの中でも、1-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)が好ましい。これらの反応溶媒は、1種類を単独で使用してもよく、2種類以上を併用してもよい。
-混合物-
 上記CNT、上記金属前躯体、上記還元剤、および、任意に、上記反応溶媒を既知の方法で混合して、混合物を調製する。なお混合物中の各成分の濃度は、適宜調整することができる。
-還元剤による還元反応-
 上記混合物中の金属前躯体を還元剤により還元する際の条件は、還元剤がその機能を発揮することが出来れば特に限定されない。例えば、還元剤としてDMFを使用する場合、混合物を70℃以上120℃以下で、10分以上2時間以下反応させることが好ましい。また例えば、還元剤としてエタノールを使用する場合、25℃以上78℃以下で、10分以上2時間以下反応させることが好ましい。
 [[(2)金属前躯体をキャビテーション効果または解砕効果が得られる分散処理により還元する方法]]
-CNT、金属前躯体、反応溶媒-
 CNT、金属前躯体、反応溶媒は、上記(1)の方法と同様のものを用いることができる。
-混合物-
 上記CNT、上記金属前躯体、および上記反応溶媒を既知の方法で混合して、混合物を調製する。なお混合物中の各成分の濃度は、適宜調整することができる。
-キャビテーション効果または解砕効果が得られる分散処理による還元反応-
 キャビテーション効果が得られる分散処理は、液体に高エネルギーを付与した際、溶媒に生じた真空の気泡が破裂することにより生じる衝撃波を利用した分散方法である。この分散方法を用いることにより、混合物中の金属前躯体を還元し、CNTの表面に金属ナノ粒子を良好に析出させることができる。
 ここで、キャビテーション効果が得られる分散処理の具体例としては、超音波による分散処理、ジェットミルによる分散処理および高剪断撹拌による分散処理が挙げられる。これらの分散処理は一つのみを行なってもよく、複数の分散処理を組み合わせて行なってもよい。より具体的には、例えば超音波ホモジナイザー、ジェットミルおよび高剪断撹拌装置が好適に用いられる。これらの装置は従来公知のものを使用すればよい。
 超音波ホモジナイザーを用いる場合には、混合物に対し、超音波ホモジナイザーにより超音波を照射すればよい。照射する時間は、CNTの量等により適宜設定すればよく、例えば、1分以上が好ましく、2分以上がより好ましく、また、5時間以下が好ましく、2時間以下がより好ましい。また、例えば、出力は10W以上50W以下が好ましく、温度は0℃以上50℃以下が好ましい。
 また、ジェットミルを用いる場合、処理回数は、CNTの量等により適宜設定すればよく、例えば、2回以上が好ましく、5回以上がより好ましく、100回以下が好ましく、50回以下がより好ましい。また、例えば、圧力は20MPa以上250MPa以下が好ましく、温度は15℃以上50℃以下が好ましい。
 さらに、高剪断撹拌を用いる場合には、粗分散液に対し、高剪断撹拌装置により撹拌および剪断を加えればよい。旋回速度は速ければ速いほどよい。例えば、運転時間(機械が回転動作をしている時間)は3分以上4時間以下が好ましく、周速は5m/秒以上50m/秒以下が好ましく、温度は15℃以上50℃以下が好ましい。
 なお、上記したキャビテーション効果が得られる分散処理は、50℃以下の温度で行なうことがより好ましい。反応溶媒の揮発による濃度変化が抑制されるからである。
 解砕効果が得られる分散処理は、混合物中の金属前躯体を還元し、CNTの表面に金属ナノ粒子を良好に析出可能であることは勿論、上記したキャビテーション効果が得られる分散処理に比べ、気泡が消滅する際の衝撃波によるCNTの損傷を抑制することができる点で一層有利である。
 この解砕効果が得られる分散処理では、混合物にせん断力を与えてCNTの凝集体を解砕・分散させ、さらに混合物に背圧を負荷し、また必要に応じ、混合物を冷却することで、気泡の発生を抑制しつつ、還元反応を良好に進行させることができる。
 なお、混合物に背圧を負荷する場合、混合物に負荷した背圧は、大気圧まで一気に降圧させてもよいが、多段階で降圧することが好ましい。
 ここに、混合物にせん断力を与えて還元反応をさらに良好に進行させるには、例えば、以下のような構造の分散器を有する分散システムを用いればよい。
 すなわち、分散器は混合物の流入側から流出側に向かって、内径がd1の分散器オリフィスと、内径がd2の分散空間と、内径がd3の終端部と(但し、d2>d3>d1である。)、を順次備える。
 そして、この分散器では、流入する高圧(例えば10~400MPa、好ましくは50~250MPa)の混合物が、分散器オリフィスを通過することで、圧力の低下を伴いつつ、高流速の流体となって分散空間に流入する。その後、分散空間に流入した高流速の混合物は、分散空間内を高速で流動し、その際にせん断力を受ける。その結果、粗分散液の流速が低下すると共に、還元反応が良好に進行する。そして、終端部から、流入した粗分散液の圧力よりも低い圧力(背圧)の流体が、金属担持CNTを含む分散液として流出することになる。
 なお、混合物の背圧は、混合物の流れに負荷をかけることで混合物に負荷することができ、例えば、多段降圧器を分散器の下流側に配設することにより、混合物に所望の背圧を負荷することができる。
 そして、混合物の背圧を多段降圧器により多段階で降圧することで、最終的に金属担持CNTを含む分散液を大気圧に開放した際に、分散液中に気泡が発生するのを抑制できる。
 また、この分散器は、混合物を冷却するための熱交換器や冷却液供給機構を備えていてもよい。というのは、分散器でせん断力を与えられて高温になった粗分散液を冷却することにより、混合物中で気泡が発生するのをさらに抑制できるからである。
 なお、熱交換器等の配設に替えて、混合物を予め冷却しておくことでも、金属担持CNTを含む混合物中で気泡が発生することを抑制できる。
 上記したように、この解砕効果が得られる分散処理では、キャビテーションの発生を抑制できるので、時として懸念されるキャビテーションに起因したCNTの損傷、特に、気泡が消滅する際の衝撃波に起因したCNTの損傷を抑制することができる。加えて、CNTへの気泡の付着や、気泡の発生によるエネルギーロスを抑制して、還元反応を良好に進行させることができる。
 以上のような構成を有する分散システムとしては、例えば、製品名「BERYU SYSTEM PRO」(株式会社美粒製)などがある。そして、解砕効果が得られる分散処理は、このような分散システムを用い、分散条件を適切に制御することで、実施することができる。
[[金属ナノ粒子が担持されたカーボンナノチューブの精製]]
 上述の(1)または(2)の方法による還元反応の後、必要に応じて、得られた分散液から還元剤および反応溶媒の除去、並びに洗浄などの精製を行い、金属担持CNTを単離することができる。なお、上記分散液はそのまま、あるいは濃縮して熱電変換素子用組成物の調製に用いてもよい。すなわち、還元反応に用いた反応溶媒をそのまま熱電変換素子用組成物の溶媒として使用してもよい。
<樹脂成分>
 樹脂成分は、得られる熱電変換素子用成形体に可とう性を付与しつつ、熱電変換素子の動作温度に耐えうる材料であれば特に限定されない。樹脂成分の例としては、ポリプロピレン、高密度ポリエチレン、低密度ポリエチレン、直鎖低密度ポリエチレン、架橋ポリエチレン、超高分子量ポリエチレン、ポリブテン-1、ポリ-3-メチルペンテン、ポリ-4-メチルペンテン、ポリシクロオレフィン、エチレン-酢酸ビニル共重合体、エチレン-エチルアクリレート共重合体、エチレン-プロピレン共重合体、ポリエチレンとシクロオレフィン(ノルボルネン等)との共重合体等のポリオレフィン;ポリ塩化ビニル、ポリ塩化ビニリデン、塩素化ポリエチレン、塩素化ポリプロピレン、ポリフッ化ビニリデン、塩化ゴム、塩化ビニル-酢酸ビニル共重合体、塩化ビニル-エチレン共重合体、塩化ビニル-塩化ビニリデン共重合体、塩化ビニル-塩化ビニリデン-酢酸ビニル三元共重合体、塩化ビニル-アクリル酸エステル共重合体、塩化ビニル-マレイン酸エステル共重合体、塩化ビニル-シクロヘキシルマレイミド共重合体等のハロゲン化ポリオレフィン;石油樹脂;クマロン樹脂;ポリスチレン;ポリ酢酸ビニル;ポリメチルメタクリレート等のアクリル樹脂;ポリアクリロニトリル;AS樹脂、ABS樹脂、ACS樹脂、SBS樹脂、MBS樹脂、耐熱ABS樹脂等のスチレン系樹脂;ポリビニルアルコール;ポリビニルホルマール;ポリビニルブチラール;ポリエチレンテレフタレート、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリシクロヘキサンジメチレンテレフタレート等のポリアルキレンテレフタレート;ポリエチレンナフタレート、ポリブチレンナフタレート等のポリアルキレンナフタレート;液晶ポリエステル(LCP);ポリヒドロキシブチレート、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート、ポリ乳酸、ポリリンゴ酸、ポリグリコール酸、ポリジオキサン、ポリ(2-オキセタノン)等の分解性脂肪族ポリエステル;ポリフェニレンオキサイド;ナイロン6、ナイロン11、ナイロン12、ナイロン6,6、ナイロン6,10、ナイロン6T、ナイロン6I、ナイロン9T、ナイロンM5T、ナイロン6,12、ナイロンMXD6、パラ系アラミド、メタ系アラミド等のナイロン樹脂;ポリカーボネート樹脂;ポリアセタール樹脂;ポリフェニレンサルファイド;ポリウレタン;ポリイミド樹脂;ポリアミドイミド樹脂;ポリエーテルケトン樹脂;ポリエーテルエーテルケトン樹脂;アラビヤゴム;酢酸セルロースなどが挙げられる。これらは1種類を単独で使用してもよく、2種類以上を併用してもよい。
 そしてこれらの樹脂成分の中でも、金属担持CNTの分散性を高めつつ熱電変換素子用組成物から得られる熱電変換素子用成形体の成形性を向上させ、また、熱電変換素子の熱電変換特性を更に高める観点からは、ポリオレフィンおよびハロゲン化ポリオレフィンが好ましく、ハロゲン化ポリオレフィンがより好ましく、ポリ塩化ビニル(PVC)が更に好ましい。
 ここで、樹脂成分は絶縁性を有する樹脂(絶縁性樹脂)であることが好ましく、具体的には、導電率は1S・cm-1以下であることが好ましい。そして、樹脂成分の熱伝導率は、0.5W・m-1-1以下であることが好ましく、0.3W・m-1-1以下であることがより好ましい。また、樹脂成分は、結着性を有する樹脂(結着性樹脂)であることが好ましい。
 なお、樹脂成分の導電率は、当該樹脂成分の薄膜を形成し膜厚を測定した後、薄膜の表面抵抗率を例えば「ロレスタ(登録商標)-GP(MCP-T600型)」((株)三菱化学アナリテック製)などの抵抗率計で測定し、測定した膜厚と表面抵抗率とから求めることができる。また、樹脂成分の熱伝導率(к)は、熱拡散率α(mm・S-1、25℃)、比熱Cp(J・g-1-1、25℃)および密度ρ(g・cm-3)を用い、下記式を用いて算出することができる。
   к=α×Cp×ρ
 ここで、式中熱拡散率α、比熱Cpおよび密度ρは、以下の装置および方法で測定することができる。
 α:ナノフラッシュアナライザー(ネッチジャパン社製、LFA 447/2-4/InSb NanoFlash Xe)
 Cp:示差走査熱量計(ネッチジャパン社製、DSC 204 F1 Phoenix)
 ρ:アルキメデス法
 熱電変換素子用組成物の樹脂成分の配合量は、特に限定されないが、金属担持CNT100質量部当たり、1質量部以上であることが好ましく、30質量部以上であることがより好ましく、50質量部以上であることが更に好ましく、100質量部以上であることが特に好ましく、120質量部以上であることが最も好ましく、300質量部以下であることが好ましく、250質量部以下であることがより好ましく、200質量部以下であることが更に好ましく、180質量部以下であることが特に好ましい。樹脂成分の配合量が上述の範囲内であれば、熱電変換素子の熱電変換特性を更に高めることが可能となる。
<溶媒>
 本発明の熱電変換素子用組成物に使用し得る溶媒は、金属担持CNTおよび樹脂成分を溶解および/または分散しうるものであれば特に限定されない。溶媒としては、有機溶媒が好ましく、具体的には、トルエン、キシレン、エチルベンゼン、アニソール、トリメチルベンゼン、p-フルオロフェノール、p-クロロフェノール、o-クロロフェノール、およびパープルオロフェノール等の芳香族溶媒;テトラヒドロフラン、ジオキサン、シクロペンチルモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノメチルエーテルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノメチルエーテルアセテート、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノエチルエーテルアセテート、および酢酸-3-メトキシブチル等のエーテル類;シクロヘキサノン、メチルイソブチルケトン、メチルエチルケトン、およびジイソブチルケトン等のケトン類;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルホルムアミド、2-ピロリドン、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N,N,N,N-テトラメチル尿素、N-メチル-ε-カプロラクタム、およびヘキサメチルリン酸トリアミド等の含窒素極性有機溶媒;酢酸エチル、酢酸メチル、酢酸-n-プロピル、酢酸イソプロピル、酢酸-n-ブチル、酢酸-n-ペンチル、乳酸メチル、乳酸エチル、乳酸-n-ブチル、γ-ブチロラクトン、およびγ-バレロラクトン等のエステル類;ジメチルスルホキシドが挙げられる。これらの溶媒は一種単独で用いてもよいし、二種以上を組み合わせて用いてもよい。そしてこれらの中でも、金属担持CNTの分散性向上の観点からは、N-メチル-2-ピロリドン、N,N-ジメチルホルムアミド、ジメチルスルホキシドが好ましく、N-メチル-2-ピロリドンがより好ましい。
 なお、熱電変換素子用組成物中の溶媒の配合量は、金属担持CNT、樹脂成分などの種類や量に応じて適宜調整することができる。
<その他の成分>
 本発明の熱電変換素子用組成物は、上述した金属担持CNT、樹脂成分、および溶媒以外の成分を含んでいてもよい。そのような他の成分としては、特に限定されないが、高分子遷移金属錯体、カーボンナノチューブ分散剤、トリフェニルホスフィン、セルロース、熱電変換材料層に使用される既知の無機熱電変換材料などが挙げられる。
 ここで、高分子遷移金属錯体は、熱電変換素子における電子などのキャリアの輸送を促進しうる成分であり、ポリ(M 1,1,2,2-エテンテトラチオラート)の塩が挙げられる。ここで、Mは金属を表し、ニッケル、銅、パラジウム、コバルト、鉄が挙げられる。また塩の種類としては、ナトリウム塩、カリウム塩、銅塩、およびアルキルアンモニウム塩(アルキル基の水素原子が任意の官能基に置換されたものを含む)が挙げられる。なお本発明において、高分子遷移金属錯体に該当するものは、上述した樹脂成分には含まれないものとする。
 カーボンナノチューブ分散剤としては、ドデシルスルホン酸ナトリウム、デオキシコール酸ナトリウム、コール酸ナトリウム、ドデシルベンゼンスルホン酸ナトリウムなどの界面活性剤が挙げられる。
 また、無機熱電変換材料としては、特に限定されないが、特開2015-170766号公報に記載のものが挙げられる。
 これらのその他の成分の配合量は、適宜調整することができる。
<熱電変換素子用組成物の製造方法>
 熱電変換素子用組成物は、上述した成分を既知の方法で混合することにより製造することができるが、金属担持CNT、樹脂成分、および溶媒を含む粗混合物を、キャビテーション効果または解砕効果が得られる分散処理により混合する工程を経て製造することが好ましい。キャビテーション効果が得られる分散処理または解砕効果が得られる分散処理を用いて熱電変換素子用組成物を調製すれば、金属担持CNTが良好に分散され、熱電変換素子に、優れた熱電変換特性を十分に発揮させることができるからである。
 キャビテーション効果が得られる分散処理としては、「金属ナノ粒子が担持されたカーボンナノチューブの製造方法」の項で上述したものと同様の処理を用いることができる。この分散方法を用いることにより、金属担持CNTを良好に分散させることができる。
 ここで、上記粗混合物の混合に超音波ホモジナイザーを用いる場合において、超音波を照射する時間は、例えば、1分以上が好ましく、5分以上がより好ましく、また、5時間以下が好ましく、2時間以下がより好ましい。また、例えば、出力は20W以上であれば、十分にキャビテーション効果を得ることができる。なお、温度は0℃以上50℃以下が好ましい。
 また、上記粗混合物の混合にジェットミルを用いる場合において、処理回数は、例えば、2回以上が好ましく、5回以上がより好ましく、100回以下が好ましく、50回以下がより好ましい。また、例えば、圧力は20MPa以上250MPa以下が好ましく、温度は0℃以上50℃以下が好ましい。
 さらに、上記粗混合物の混合に高剪断撹拌を用いる場合において、旋回速度は速ければ速いほどよい。例えば、運転時間(機械が回転動作をしている時間)は3分以上4時間以下が好ましく、周速は5m/秒以上50m/秒以下が好ましく、温度は15℃以上50℃以下が好ましい。
 なお、上記したキャビテーション効果が得られる分散処理は、50℃以下の温度で行なうことがより好ましい。溶媒の揮発による濃度変化が抑制されるからである。
 解砕効果が得られる分散処理としては、「金属ナノ粒子が担持されたカーボンナノチューブの製造方法」の項で上述したものと同様の処理を用いることができる。この分散処理によれば、金属担持CNTを溶媒中に均一に分散できることは勿論、上記したキャビテーション効果が得られる分散処理に比べ、気泡が消滅する際の衝撃波による金属担持CNTの損傷を抑制することができる点で一層有利である。
 そして、解砕効果が得られる分散処理は、「金属ナノ粒子が担持されたカーボンナノチューブの製造方法」の項で上述した構造の分散器を有する分散システムを用いることが好ましい。
(熱電変換素子用成形体)
 本発明の熱電変換素子用成形体は、本発明の熱電変換素子用組成物から、例えば、溶媒の少なくとも一部を除去することにより形成することができる。このようにして得られる熱電変換素子用成形体は、少なくとも、金属ナノ粒子が担持されたCNTと、樹脂成分とを含み、任意に、「熱電変換素子用組成物」の項で「その他の成分」として上述した成分を含む。なお、熱電変換素子用成形体中のそれら各成分の好適な存在比は、熱電変換素子用組成物中のものと同じである。そして、本発明の熱電変換素子用成形体は、本発明の熱電変換素子用組成物を用いて形成されているので、当該熱電変換素子用成形体を熱電変換材料層として使用すれば、熱電変換素子に十分に優れた熱電変換特性を発揮させることができる。
 なお、熱電変換素子用成形体の形状は、熱電変換素子の熱電変換材料層として使用可能であれば特に限定されないが、フィルム状が好ましい。また熱電変換素子用成形体の厚みは、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、1μm以上であることが更に好ましく、100μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが更に好ましい。熱電変換素子用成形体の厚みが0.05μm以上であれば、熱電変換素子用成形体の強度を確保することができ、100μm以下であれば、金属担持CNTの平面方向の配向性向上により導電性が高まるためと推察されるが、熱電変換素子の熱電変換特性を更に向上させることができる。なお、熱電変換素子用成形体の厚みが特に5μm以下である場合、熱電変換素子の熱電変換特性が大きく向上する。これは、熱電変換素子用成形体の厚みを5μm以下とすることにより、金属担持CNT自身のチルト角がほぼ0°となり、平面方向の配向性が飛躍的に向上するためであると考えられる。
(熱電変換素子用成形体の製造方法)
 上述した本発明の熱電変換素子用成形体は、本発明の熱電変換素子用成形体の製造方法を用いて製造することができる。具体的に、本発明の熱電変換素子用成形体の製造方法は、金属ナノ粒子が担持されたカーボンナノチューブ、樹脂成分および溶媒を含む粗混合物を、キャビテーション効果または解砕効果が得られる分散処理により混合して熱電変換素子用組成物を得る工程(熱電変換素子用組成物調製工程)と、前記熱電変換素子用組成物から前記溶媒を除去する工程(溶媒除去工程)を含むことを特徴とする。本発明の熱電変換素子用成形体の製造方法は、本発明の熱電変換素子用組成物を使用し、更に当該組成物の調製にキャビテーション効果または解砕効果が得られる分散処理を採用しているため、当該製造方法によれば、熱電変換素子に優れた熱電変換特性を十分に発揮させ得る熱電変換素子用成形体を得ることができる。
<熱電変換素子用組成物調製工程>
 「熱電変換素子用組成物」の項で上述した様に、キャビテーション効果または解砕効果が得られる分散処理を用いて熱電変換素子用組成物を調製することができる。
<溶媒除去工程>
 熱電変換素子用組成物から溶媒を除去して熱電変換素子用成形体を形成する方法は、特に限定されない。例えば、熱電変換素子用組成物を基材上に塗布又は流延などにより供給した後、基材上に形成された熱電変換素子用組成物の被膜から溶媒を除去することで、フィルム状の熱電変換素子用成形体を製造することができる。
 そして、熱電変換素子用組成物を塗布する基材としては、既知のものが挙げられ、例えば特開2014-199837号公報に記載のものを用いることができる。
 また、熱電変換素子用組成物の被膜から溶媒を除去する方法は特に限定されず、当該被膜を加熱する方法や、当該被膜を室温下又は加熱下に減圧雰囲気下に置く方法等が挙げられる。これらの条件は、適宜設定することができる。
 なお、上記の方法により形成される熱電変換素子用成形体に、有機溶媒、糖類の水溶液、酸又は塩基を含む水溶液等の処理液と接触させる処理を施してもよい。この処理により、熱電変換素子用成形体の導電率を向上させることができる。上記の処理液としては、通常、成形体を膨潤させたり、劣化させたりしないものが選択される。成形体に処理液を接触させる方法は特に限定されず、例えば、処理液の成形体への塗布や、成形体の処理液中への浸漬等が挙げられる。
 上記の処理液として使用される有機溶媒の好適例としては、メタノール、エタノール、n-プロパノール、イソプロパノール、n-ブタノール、n-ペンタノール、n-ヘキサノール、エチレングリコール、プロピレングリコール、ジエチレングリコール、およびグリセリン等の脂肪族アルコール類;トルエン、キシレン、およびエチルベンゼン等の芳香族溶媒;ジエチルエーテル、ジ-n-プロピルエーテル、ジオキサン、およびテトラヒドロフラン等のエーテル類が挙げられ、糖類の水溶液の好適例としては、グルコースやキシリトールの水溶液が挙げられ、そして、酸又は塩基を含む水溶液の好適例としては、塩酸や硫酸を含む水溶液が挙げられる。
(熱電変換素子)
 本発明の熱電変換素子は、本発明の熱電変換素子用成形体を含む熱電変換材料層を備えることを特徴とする。このような熱電変換素子の構造は特に限定されず既知のものを採用することができるが、熱電変換素子は、例えば基材上の熱電変換材料層に二つの電極を取り付けることで作製することができる。電極は特に限定されず、例えば特開2014-199837号公報に記載のものを用いることができる。また、熱電変換材料層と二つの電極の位置関係は、特に限定されない。例えば、熱電変換材料層の両端に電極が配置されていてもよいし、熱電変換材料層が二つの電極で挟まれていてもよい。
 そして、本発明の熱電変換素子は、複数の熱電変換素子を備える熱電変換モジュールに使用することができる。具体的な熱電変換モジュールとしては、例えば、複数の熱電変換素子を板状または円筒状に組み合わせてなる熱電変換モジュールであって、当該複数の熱電変換素子の少なくとも1つが本発明の熱電変換素子である。このような熱電変換モジュールは、本発明の熱電変換素子を備えているため、高効率の発電が可能である。
 以下、本発明について実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
 なお、実施例および比較例で得られた熱電変換素子用成形体は、以下の方法で評価および分析した。
<導電率およびパワーファクター(PF)>
 熱電特性評価装置(アドバンス理工社製、ZEM-3)を用いて、真空中50~110℃の温度下で、1~5℃程度の温度差をつけた時の、熱電変換素子用成形体のゼーベック係数S(μV・K-1)および導電率σ(S・cm-1)を測定した。そしてパワーファクター(μW・m-1・K-2)を、下記式を用いて算出した。
  PF=S×σ/10000
 パワーファクターは温度変化当たりの発電力を示す指標であり、パワーファクターが大きい程熱電変換特性に優れることを意味する。
(実施例1)
<カーボンナノチューブの調製>
 国際公開第2006/011655号の記載に従い、スーパーグロース法によりCNT(SGCNT、単層CNTを含む。平均直径:3.5nm、平均長さ:0.3mm、比表面積:1000m/g)を調製した。
<金属ナノ粒子が担持されたCNTの調製>
 上述のカーボンナノチューブと金属前躯体としての酢酸パラジウムを、還元剤としてのDMFと反応溶媒としてのNMPの混合溶媒(混合比(質量基準)はDMF:NMP=1:1)に分散又は溶解させ、混合物を得た。なお、この混合物中のCNT濃度は0.35mg/mL、酢酸パラジウムの濃度は1.4mMであった。次いで得られた混合物を100℃で45分間保持し、金属前躯体の還元反応を進行させた。反応後の混合物を吸引ろ過後、ろ紙上に得られた残渣をメタノールとNMPで洗浄し、当該残渣をさらに70℃で300分乾燥させた。乾燥後、透過型電子顕微鏡(TEM)により、パラジウムのナノ粒子が担持されたCNT(金属担持CNT-1)が得られたことを確認した。またCNTに担持したパラジウムのナノ粒子の平均粒子径は2.3nm、粒子径の標準偏差は0.7nmであった。なおTEMにより、CNTの欠陥構造部分と考えられる箇所にパラジウムのナノ粒子が選択的に担持されていることを確認した。
<熱電変換素子用組成物の製造>
 上記のようにして得られた金属ナノ粒子が担持されたCNT3.37mg(100質量部)、樹脂成分としてのポリ塩化ビニル(PVC)4.50mg(134質量部)、そして溶媒としてのNMP3.0mLを、6mLのスクリュー管内に投入し、超音波バス(タイテック社製)で10分間、超音波ホモジナイザー(プラソン社製)で10分間分散処理を施し、熱電変換素子用組成物を得た。
<熱電変換素子用成形体の製造>
 上記得られた熱電変換素子用組成物を、ポリイミド基板上に塗布した後、同基板を60℃で12時間、130℃で0.5時間加熱して基板上の熱電変換素子用組成物を乾燥させて、フィルム状の熱電変換素子用成形体(厚み:3.3mm)を得た。そして、各種測定を行った。結果を表1に示す。
(実施例2)
<金属ナノ粒子が担持されたCNTの調製>
 上述のカーボンナノチューブと金属前躯体としての酢酸パラジウムを、反応溶媒としてのNMPに分散/溶解させ、混合物を得た。なお、この混合物中のCNT濃度は1.21mg/mL、酢酸パラジウム濃度は2.0mMであった。次いで得られた混合物を0℃に冷却しながら、超音波ホモジナイザー(プラソン社製)を用いて、出力20Wで3分間、キャビテーション効果が得られる分散処理を施すことにより、金属前躯体の還元反応を進行させた。反応後の混合物を吸引ろ過後、ろ紙上に得られた残渣をメタノールとNMPで洗浄し、当該残渣を70℃で300分乾燥させた。乾燥後、TEMにより、パラジウムのナノ粒子が担持されたCNT(金属担持CNT-2)が得られたことを確認した。またCNTに担持したパラジウムのナノ粒子の平均粒子径は2.1nm、粒子径の標準偏差は0.5nmであった。なおTEMにより、CNTの欠陥構造の部分にパラジウムのナノ粒子が選択的に担持されていることを確認した。
<熱電変換素子用組成物および熱電変換素子用成形体の製造>
 金属担持CNT-1に替えて、上述のようにして得られた金属担持CNT-2を使用した以外は、実施例1と同様にして、熱電変換素子用組成物および熱電変換素子用成形体(厚み:3.1mm)を製造した。そして、各種測定を行った。結果を表1に示す。
(実施例3)
 表1のように熱電変換素子用成形体の厚みを変更した以外は、実施例1と同様にして、金属ナノ粒子が担持されたCNT、熱電変換素子用組成物および熱電変換素子用成形体を製造した。そして各種測定を行った。結果を表1に示す。なお熱電変換素子用成形体の厚みは、ポリイミド基板上への熱電変換素子用組成物の塗布量を変更することで調整した。
(比較例1)
 熱電変換素子用組成物の調製の際に、金属担持CNT-1に替えて、金属ナノ粒子が担持されていない単層カーボンナノチューブ(CNT-3、名城ナノカーボン社製、eDIPS(商品名)、平均直径:1.4nm、平均長さ:0.1mm、比表面積:500m/g)を使用した以外は、実施例1と同様にして、熱電変換素子用組成物および熱電変換素子用成形体を製造した。そして各種測定を行った。結果を表1に示す。
(比較例2)
 カーボンナノチューブ(CNT-4、SGCNT、単層CNTを含む。平均直径:3.5nm、平均長さ:0.3mm、比表面積:1000m/g)、樹脂成分としてのポリ塩化ビニル、そして溶媒としてのNMPを混合した。得られた混合液と、パラジウムのナノ粒子(平均粒子径:6.3nm)のNMP分散液とを、カーボンナノチューブ、樹脂成分、パラジウムのナノ粒子、およびNMPの混合比(質量基準)が実施例1と同様となるように6mLのスクリュー管内に投入し、超音波バス(タイテック社製)で10分間、超音波ホモジナイザー(プラソン社製)で10分間分散処理を施し、熱電変換素子用組成物を得た。なおTEMにより、パラジウムのナノ粒子はCNTに担持されていないことを確認した。そして実施例1と同様にして熱電変換素子用成形体を製造し、各種測定を行った。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1から、金属ナノ粒子が担持されたCNTを使用した実施例1~3では、パワーファクター(PF)に優れる熱電変換素子用成形体が得られ、即ち当該熱電変換素子用成形体を熱電変換材料層に用いることで、熱電変換素子に十分に優れた熱電変換特性を発揮させうることがわかる。
 また、金属ナノ粒子が担持されていないCNTを使用した比較例1では、パワーファクター(PF)の値が小さく、即ち実施例1~3に比して、熱電変換素子の熱電変換特性を十分に確保することができないことがわかる。
 また、金属ナノ粒子が担持されていないCNTを使用しつつ、別途金属ナノ粒子を熱電変換素子用成形体に配合させた比較例2は、成形体の厚みが同じである実施例1に比してパワーファクター(PF)の値が小さい。このことから、金属ナノ粒子とCNTを単に併用しただけでは、熱電変換特性向上効果が十分でなく、金属ナノ粒子がCNTに担持されることによって、所望の熱電変換特性向上効果が得られることがわかる。
 本発明によれば、熱電変換素子に十分に優れた熱電変換特性を発揮させうる熱電変換素子用組成物を提供することができる。
 本発明によれば、熱電変換素子に十分に優れた熱電変換特性を発揮させうる、金属ナノ粒子が担持されたカーボンナノチューブの製造方法を提供することができる。
 本発明によれば、熱電変換素子に十分に優れた熱電変換特性を発揮させうる熱電変換素子用成形体を提供することができる。
 本発明によれば、熱電変換特性に十分に優れる熱電変換素子を提供することができる。

Claims (10)

  1.  金属ナノ粒子が担持されたカーボンナノチューブ、樹脂成分および溶媒を含む、熱電変換素子用組成物。
  2.  前記金属ナノ粒子が担持されたカーボンナノチューブを構成するカーボンナノチューブの比表面積が600m/g以上である、請求項1に記載の熱電変換素子用組成物。
  3.  前記金属ナノ粒子が、遷移金属のナノ粒子を含む、請求項1または2に記載の熱電変換素子用組成物。
  4.  前記遷移金属がパラジウムである、請求項3に記載の熱電変換素子用組成物。
  5.  少なくともカーボンナノチューブ、金属前躯体、および還元剤を含む混合物中の前記金属前躯体を前記還元剤により還元して、金属ナノ粒子が担持されたカーボンナノチューブを得る工程を含む、
     金属ナノ粒子が担持されたカーボンナノチューブの製造方法。
  6.  少なくともカーボンナノチューブ、金属前躯体、および反応溶媒を含む混合物中の前記金属前躯体をキャビテーション効果または解砕効果が得られる分散処理により還元して、金属ナノ粒子が担持されたカーボンナノチューブを得る工程を含む、
     金属ナノ粒子が担持されたカーボンナノチューブの製造方法。
  7.  請求項1~4の何れかに記載の熱電変換素子用組成物を用いて形成される熱電変換素子用成形体。
  8.  厚みが0.05μm以上100μm以下である、請求項7に記載の熱電変換素子用成形体。
  9.  金属ナノ粒子が担持されたカーボンナノチューブ、樹脂成分および溶媒を含む粗混合物を、キャビテーション効果または解砕効果が得られる分散処理により混合して熱電変換素子用組成物を得る工程と、
     前記熱電変換素子用組成物から前記溶媒を除去する工程を含む、熱電変換素子用成形体の製造方法。
  10.  請求項7または8に記載の熱電変換素子用成形体を含む熱電変換材料層を備える、熱電変換素子。
PCT/JP2017/001092 2016-01-15 2017-01-13 熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子 WO2017122805A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187020067A KR20180122319A (ko) 2016-01-15 2017-01-13 열전 변환 소자용 조성물, 금속 나노 입자가 담지된 카본 나노 튜브의 제조 방법, 열전 변환 소자용 성형체 및 그 제조 방법, 그리고 열전 변환 소자
CN201780006470.0A CN109075243B (zh) 2016-01-15 2017-01-13 热电转换元件用组合物及其制造方法、热电转换元件用成型体及其制造方法及热电转换元件
JP2017561198A JP6898619B2 (ja) 2016-01-15 2017-01-13 熱電変換素子用組成物およびその製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子
EP17738557.2A EP3404728A4 (en) 2016-01-15 2017-01-13 COMPOSITION FOR THERMOELECTRIC CONVERSION ELEMENT, PROCESS FOR PRODUCING CARBON NANOTUBES WHICH CARRY METAL NANOPARTICLES, MOLDED BODY FOR THERMOELECTRIC CONVERSION ELEMENT AND METHOD FOR PRODUCING THE SAME, AND THERMOELECTRIC CONVERSION ELEMENT
US16/069,630 US20190013454A1 (en) 2016-01-15 2017-01-13 Composition for thermoelectric conversion element, method of producing metal nanoparticle-supporting carbon nanotubes, shaped product for thermoelectric conversion element and method of producing same, and thermoelectric conversion element
US17/452,237 US20220045256A1 (en) 2016-01-15 2021-10-26 Method of producing shaped product for thermoelectric conversion element and method of producing thermoelectric conversion element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016006454 2016-01-15
JP2016-006454 2016-01-15

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/069,630 A-371-Of-International US20190013454A1 (en) 2016-01-15 2017-01-13 Composition for thermoelectric conversion element, method of producing metal nanoparticle-supporting carbon nanotubes, shaped product for thermoelectric conversion element and method of producing same, and thermoelectric conversion element
US17/452,237 Division US20220045256A1 (en) 2016-01-15 2021-10-26 Method of producing shaped product for thermoelectric conversion element and method of producing thermoelectric conversion element

Publications (1)

Publication Number Publication Date
WO2017122805A1 true WO2017122805A1 (ja) 2017-07-20

Family

ID=59311128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/001092 WO2017122805A1 (ja) 2016-01-15 2017-01-13 熱電変換素子用組成物、金属ナノ粒子が担持されたカーボンナノチューブの製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子

Country Status (6)

Country Link
US (2) US20190013454A1 (ja)
EP (1) EP3404728A4 (ja)
JP (1) JP6898619B2 (ja)
KR (1) KR20180122319A (ja)
CN (1) CN109075243B (ja)
WO (1) WO2017122805A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342660A1 (en) * 2017-05-04 2018-11-29 Baker Hughes, A Ge Company, Llc Thermoelectric materials and related compositions and methods
WO2019167496A1 (ja) * 2018-03-01 2019-09-06 日立造船株式会社 カーボンナノチューブ複合体の製造方法および多孔質金属材料の製造方法
JP2020138890A (ja) * 2019-02-28 2020-09-03 日本ゼオン株式会社 複合体の製造方法
WO2020255898A1 (ja) * 2019-06-20 2020-12-24 国立大学法人東北大学 熱電材料

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111799361B (zh) * 2020-06-12 2024-04-02 深圳大学 液晶碳纳米管复合热电材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334527A (ja) * 2005-06-02 2006-12-14 Univ Of Tsukuba カーボンナノチューブに担持した金属触媒及びその作製方法
JP2009117340A (ja) * 2007-11-07 2009-05-28 Samsung Electro-Mechanics Co Ltd 導電性ペースト及びこれを用いた印刷回路基板
JP2011236095A (ja) * 2010-05-12 2011-11-24 Satoshi Ohara ナノ複合材料の製造方法およびナノ複合材料
WO2015098089A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 導電膜、燃料電池用ガス拡散層、燃料電池用触媒層、燃料電池用電極、燃料電池用膜電極接合体、及び燃料電池
WO2015115670A1 (ja) * 2014-02-03 2015-08-06 日本ゼオン株式会社 カーボンナノチューブ繊維およびその製造方法
JP2015145438A (ja) * 2014-01-31 2015-08-13 日本ゼオン株式会社 カーボンナノチューブ分散液及び導電性フィルム
JP2015210955A (ja) * 2014-04-25 2015-11-24 日本ゼオン株式会社 導電膜の製造方法、並びに、導電膜、導電性フィルム、太陽電池用電極および太陽電池
JP2015228498A (ja) * 2014-05-30 2015-12-17 三星電子株式会社Samsung Electronics Co.,Ltd. 伸縮性熱電複合体、及びそれを含む熱電素子

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1150997C (zh) * 2002-12-27 2004-05-26 浙江大学 在碳纳米管表面负载纳米单金属粒子的方法
KR100745736B1 (ko) * 2006-02-23 2007-08-02 삼성에스디아이 주식회사 카본나노튜브, 이를 포함한 담지 촉매 및 상기 담지 촉매를이용한 연료전지
KR20090010477A (ko) * 2007-07-23 2009-01-30 삼성전기주식회사 니켈 나노입자의 제조방법
CN101433840B (zh) * 2007-11-12 2011-02-16 中国科学院理化技术研究所 负载钯纳米粒子的碳纳米管微粒及其制备方法和用途
KR101202405B1 (ko) * 2008-05-28 2012-11-23 (주)바이오니아 탄소나노튜브 및 금속으로 이루어진 나노복합체 및 이의제조방법
JP2010245299A (ja) * 2009-04-06 2010-10-28 Three M Innovative Properties Co 複合材熱電材料及びその製造方法
JP2011023282A (ja) * 2009-07-17 2011-02-03 Mitsubishi Rayon Co Ltd 導電体の製造方法
SG178410A1 (en) * 2009-08-20 2012-04-27 Univ Nanyang Tech Integrated electrode architectures for energy generation and storage
JP2012209031A (ja) * 2011-03-29 2012-10-25 Toray Ind Inc 金属化合物−導電剤複合体の製造方法、該方法により得られる金属化合物−導電剤複合体およびそれを用いてなるアルカリ金属二次電池用電極剤およびアルカリ金属二次電池
CN102240545B (zh) * 2011-04-28 2013-03-06 宇辰新能源材料科技无锡有限公司 碳纳米管为载体的纳米Pt粒子催化剂制备方法
JP2013151392A (ja) * 2012-01-25 2013-08-08 Tokyo Institute Of Technology 複合炭素材料及びその製造方法、並びに電極触媒及びその製造方法
JP2014156371A (ja) * 2013-02-15 2014-08-28 Nippon Zeon Co Ltd 金属ナノ粒子担持カーボンナノチューブの製造方法
JP2014240512A (ja) * 2013-06-11 2014-12-25 国立大学法人北陸先端科学技術大学院大学 金属亜鉛ナノ粒子、及びその製造方法
CN104248950A (zh) * 2013-06-27 2014-12-31 中国科学院大连化学物理研究所 一种钯/碳纳米管催化剂及制备和应用
US10189713B2 (en) * 2013-07-31 2019-01-29 Zeon Corporation Method for producing carbon nanotube dispersion liquid, method for producing composite material composition, method for producing composite material, composite material, and composite-material shaped product
JP6256113B2 (ja) * 2014-03-07 2018-01-10 日本ゼオン株式会社 熱電変換材料含有樹脂組成物からなるフィルムの製造方法および熱電変換素子の製造方法
JP2015188808A (ja) * 2014-03-27 2015-11-02 日本ゼオン株式会社 酸化還元触媒、電極材料、電極、太陽電池、燃料電池用膜電極接合体および燃料電池
CN106715582A (zh) * 2014-07-11 2017-05-24 罗地亚经营管理公司 导电聚合物络合物以及含有此类络合物的电子设备
WO2016052358A1 (ja) * 2014-09-30 2016-04-07 富士フイルム株式会社 熱電変換素子、導電膜、及び有機半導体デバイス

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006334527A (ja) * 2005-06-02 2006-12-14 Univ Of Tsukuba カーボンナノチューブに担持した金属触媒及びその作製方法
JP2009117340A (ja) * 2007-11-07 2009-05-28 Samsung Electro-Mechanics Co Ltd 導電性ペースト及びこれを用いた印刷回路基板
JP2011236095A (ja) * 2010-05-12 2011-11-24 Satoshi Ohara ナノ複合材料の製造方法およびナノ複合材料
WO2015098089A1 (ja) * 2013-12-27 2015-07-02 日本ゼオン株式会社 導電膜、燃料電池用ガス拡散層、燃料電池用触媒層、燃料電池用電極、燃料電池用膜電極接合体、及び燃料電池
JP2015145438A (ja) * 2014-01-31 2015-08-13 日本ゼオン株式会社 カーボンナノチューブ分散液及び導電性フィルム
WO2015115670A1 (ja) * 2014-02-03 2015-08-06 日本ゼオン株式会社 カーボンナノチューブ繊維およびその製造方法
JP2015210955A (ja) * 2014-04-25 2015-11-24 日本ゼオン株式会社 導電膜の製造方法、並びに、導電膜、導電性フィルム、太陽電池用電極および太陽電池
JP2015228498A (ja) * 2014-05-30 2015-12-17 三星電子株式会社Samsung Electronics Co.,Ltd. 伸縮性熱電複合体、及びそれを含む熱電素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3404728A4 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180342660A1 (en) * 2017-05-04 2018-11-29 Baker Hughes, A Ge Company, Llc Thermoelectric materials and related compositions and methods
US10468574B2 (en) * 2017-05-04 2019-11-05 Baker Hughes, A Ge Company, Llc Thermoelectric materials and related compositions and methods
AU2018261359B2 (en) * 2017-05-04 2021-08-19 Baker Hughes Holdings, LLC Thermoelectric materials and related compositions and methods
WO2019167496A1 (ja) * 2018-03-01 2019-09-06 日立造船株式会社 カーボンナノチューブ複合体の製造方法および多孔質金属材料の製造方法
JP2020138890A (ja) * 2019-02-28 2020-09-03 日本ゼオン株式会社 複合体の製造方法
JP7264370B2 (ja) 2019-02-28 2023-04-25 日本ゼオン株式会社 複合体の製造方法
WO2020255898A1 (ja) * 2019-06-20 2020-12-24 国立大学法人東北大学 熱電材料

Also Published As

Publication number Publication date
EP3404728A4 (en) 2019-10-09
KR20180122319A (ko) 2018-11-12
US20220045256A1 (en) 2022-02-10
CN109075243B (zh) 2023-05-09
JPWO2017122805A1 (ja) 2018-11-22
US20190013454A1 (en) 2019-01-10
CN109075243A (zh) 2018-12-21
JP6898619B2 (ja) 2021-07-07
EP3404728A1 (en) 2018-11-21

Similar Documents

Publication Publication Date Title
JP6898619B2 (ja) 熱電変換素子用組成物およびその製造方法、熱電変換素子用成形体およびその製造方法、並びに熱電変換素子
Zhang et al. Ag-graphene/PEG composite phase change materials for enhancing solar-thermal energy conversion and storage capacity
Mou et al. Facile preparation of stable reactive silver ink for highly conductive and flexible electrodes
Jin et al. Facile physical route to highly crystalline graphene
Zhang et al. Synthesis of Ag/RGO composite as effective conductive ink filler for flexible inkjet printing electronics
Jiang et al. The preparation of stable metal nanoparticles on carbon nanotubes whose surfaces were modified during production
Kharisov et al. Decoration of carbon nanotubes with metal nanoparticles: Recent trends
Li et al. Synthesis of stable ultra-small Cu nanoparticles for direct writing flexible electronics
US10207929B2 (en) Carbon nanotube film and method for producing same
Wang et al. Graphene nanoribbons as a novel support material for high performance fuel cell electrocatalysts
JP2006335604A (ja) 同軸カーボンナノチューブシートおよびその製造方法
Lu Effect of surface modifications on the decoration of multi-walled carbon nanotubes with ruthenium nanoparticles
JP5139717B2 (ja) 多層カーボンナノチューブ分散液およびその製造方法
JP2013091824A (ja) カーボン複合金属微粒子およびその製造方法
CN107406256B (zh) 碳膜及其制造方法
Liu et al. High-power instant-synthesis technology of carbon nanomaterials and nanocomposites
Tsai et al. Enhancing hydrogen storage on carbon nanotubes via hybrid chemical etching and Pt decoration employing supercritical carbon dioxide fluid
Akbi et al. When Copper Oxide meets graphene oxide: A core-shell structure via an intermittent spray coating route for a highly efficient ammonium perchlorate thermal decomposition
Antonietti et al. Nanocarbon-inorganic hybrids: next generation composites for sustainable energy applications
JP2018131348A (ja) 酸化カーボンナノチューブおよびその分散液
Bautkinová et al. New approach for the development of reduced graphene oxide/polyaniline nanocomposites via sacrificial surfactant-stabilized reduced graphene oxide
Ghadimi et al. Effect of formulation and process on morphology and electrical conductivity of Ag-graphene hybrid inks
Ko et al. Extraordinary mechanical flexibility in composite thin films composed of bimetallic AgPt nanoparticle-decorated multi-walled carbon nanotubes
JP2016171322A (ja) 熱電変換素子用組成物、熱電変換素子用成形体、熱電変換素子、熱電変換モジュール、熱電変換素子用組成物の製造方法、および熱電変換素子用成形体の製造方法
Zhao et al. Direct growth of carbon nanotubes on metal supports by chemical vapor deposition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17738557

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017561198

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187020067

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2017738557

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2017738557

Country of ref document: EP

Effective date: 20180816