WO2017115832A1 - カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法 - Google Patents

カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法 Download PDF

Info

Publication number
WO2017115832A1
WO2017115832A1 PCT/JP2016/089031 JP2016089031W WO2017115832A1 WO 2017115832 A1 WO2017115832 A1 WO 2017115832A1 JP 2016089031 W JP2016089031 W JP 2016089031W WO 2017115832 A1 WO2017115832 A1 WO 2017115832A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
carbon nanotube
array sheet
base material
layer
Prior art date
Application number
PCT/JP2016/089031
Other languages
English (en)
French (fr)
Inventor
井上 鉄也
拓行 円山
陽子 川上
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Priority to KR1020187018235A priority Critical patent/KR102570247B1/ko
Priority to JP2017559230A priority patent/JP6802808B2/ja
Priority to CN201680074146.8A priority patent/CN108473312B/zh
Priority to EP16881806.0A priority patent/EP3398907A4/en
Priority to US16/066,153 priority patent/US10836633B2/en
Publication of WO2017115832A1 publication Critical patent/WO2017115832A1/ja
Priority to US17/064,277 priority patent/US11414321B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/159Carbon nanotubes single-walled
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J127/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers
    • C09J127/02Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment
    • C09J127/12Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Adhesives based on derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/08Materials not undergoing a change of physical state when used
    • C09K5/14Solid materials, e.g. powdery or granular
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • H01L23/3672Foil-like cooling fins or heat sinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3736Metallic materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3738Semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/2039Modifications to facilitate cooling, ventilating, or heating characterised by the heat transfer by conduction from the heat generating element to a dissipating body
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/04Nanotubes with a specific amount of walls
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/06Multi-walled nanotubes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/22Electronic properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/24Thermal properties
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/34Length
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2202/00Structure or properties of carbon nanotubes
    • C01B2202/20Nanotubes characterized by their properties
    • C01B2202/36Diameter

Definitions

  • the present invention relates to a carbon nanotube composite material and a method for producing the carbon nanotube composite material.
  • a heat conductive material (Thermal Interface Material: hereinafter referred to as TIM) is arranged between the electronic component and the heat sink to reduce the gap between the electronic component and the heat sink, thereby reducing the heat generated from the electronic component. It is known to conduct efficiently to a heat sink.
  • a TIM a polymer sheet made of a polymer material, silicone grease, and the like are known.
  • the polymer sheet cannot sufficiently follow the fine irregularities (surface roughness) on the surface of the electronic component and the heat sink, and the fine irregularities cause a gap between the electronic component and the heat sink. There is a limit to improving the thermal conductivity.
  • Silicone grease can follow fine irregularities on the surface of the electronic component and the heat sink, but may be pumped out (flowed out between the electronic component and the heat sink) due to repeated temperature changes. It is difficult to ensure the heat conduction performance of the TIM over a long period of time.
  • CNT Carbon nanotubes
  • thermal interface pad including a substrate and CNTs arranged in an array on both surfaces of the substrate has been proposed (see, for example, Patent Document 1).
  • Such a thermal interface pad is manufactured by growing CNTs on both sides of a substrate by chemical vapor deposition.
  • the CNTs since the CNTs are arranged on both sides of the substrate, the CNTs can follow the fine irregularities on the surfaces of the electronic component and the heat sink.
  • the thermal interface pad described in Patent Document 1 is manufactured by growing CNTs on both surfaces of a substrate by chemical vapor deposition, it is not possible to sufficiently secure the adhesive strength between the substrate and the CNTs. Therefore, when the thermal interface pad is used as a TIM, the CNT may fall off the substrate. In this case, it is difficult to ensure the thermal conductivity performance of the thermal interface pad, and the dropped CNT may cause a short circuit of an electronic component or the like.
  • an object of the first aspect of the present invention is to provide a carbon nanotube composite material and a method for producing the carbon nanotube composite material that can prevent the carbon nanotubes from dropping while being able to follow fine irregularities on the surface of the object. There is to do.
  • the present invention [1] includes a carbon nanotube composite material comprising a fixing sheet having a front surface and a back surface, and a carbon nanotube array sheet embedded or bonded to both the front surface and the back surface of the fixing sheet. .
  • the carbon nanotube composite material includes the carbon nanotube array sheet
  • the plurality of CNTs of the carbon nanotube array sheet are attached to the surface of the object. It is possible to follow fine irregularities.
  • the carbon nanotube array sheet is embedded or bonded to both the front surface and the back surface of the fixed sheet, it is possible to suppress the CNTs included in the carbon nanotube array sheet from falling off the fixed sheet.
  • the present invention [2] includes the carbon nanotube composite material according to the above [1], wherein the carbon nanotube array sheet has an average bulk density of 50 mg / cm 3 or more.
  • the average bulk density of the carbon nanotube array sheet is equal to or higher than the lower limit, it is possible to improve the thermal conductivity of the carbon nanotube array sheet, and consequently the thermal conductivity of the carbon nanotube composite material. Can be improved.
  • the carbon nanotube array sheet peeled off from the growth substrate is embedded or bonded to the fixed sheet, the carbon nanotube array sheet is peeled off from the growth substrate and then subjected to a densification process. be able to. Therefore, the average bulk density of the carbon nanotube array sheet can be set to the above lower limit or more.
  • the fixing sheet includes a base material and resin layers disposed on both the front surface and the back surface of the base material, and the end of the carbon nanotube array sheet on the base material side is The carbon nanotube composite material according to the above [1] or [2], which is embedded in the corresponding resin layer and is in contact with the base material.
  • the CNTs that the carbon nanotube array sheet has are fixed sheets. It is possible to reliably improve the thermal conductivity of the carbon nanotube composite material while being able to reliably prevent falling off.
  • the base material includes the carbon nanotube composite material according to the above [3], which has electrical conductivity.
  • the base material includes the carbon nanotube composite material according to the above [3], which is formed of an inorganic sintered body.
  • the fixed sheet includes a conductive layer having electrical conductivity, and an end portion on the conductive layer side of the carbon nanotube array sheet is bonded to an interface of the conductive layer.
  • the carbon nanotube composite material according to [1] or [2] is included.
  • the end of the carbon nanotube array sheet on the conductive layer side is joined to the conductive layer having electrical conductivity, the CNTs included in the carbon nanotube array sheet fall off from the fixed sheet.
  • the thermal conductivity of the carbon nanotube composite material can be reliably improved, and electrical conductivity can be imparted to the carbon nanotube composite material.
  • the carbon nanotube array sheet on the front surface side and the carbon nanotube array sheet on the back surface side are embedded in the fixing sheet and are in contact with each other in the fixing sheet. 2] is included.
  • the carbon nanotube array sheet on the front side and the carbon nanotube array sheet on the back side are embedded in the fixed sheet and are in contact with each other in the fixed sheet.
  • the present invention [8] includes a step of preparing a fixing sheet comprising a base material and resin layers disposed on both the front and back surfaces of the base material, and a step of growing vertically aligned carbon nanotubes on a growth substrate. Separating the vertically aligned carbon nanotubes from the growth substrate to form a carbon nanotube array sheet; and disposing the carbon nanotube array sheet on both the front and back resin layers; and Heating the fixed sheet on which the carbon nanotube array sheet is arranged, and embedding the end portion on the base material side in the carbon nanotube array sheet in the corresponding resin layer and bringing it into contact with the base material. And a method for producing a carbon nanotube composite.
  • the carbon nanotube array sheet peeled off from the growth substrate is disposed on the resin layers disposed on both surfaces of the base material, and then heated, whereby the substrate-side end of the carbon nanotube array sheet is heated.
  • the part is embedded in the corresponding resin layer and brought into contact with the substrate.
  • a resin composition is applied to both the front surface and the back surface of the base material, and a resin composition layer is formed on both the front surface and the back surface of the base material.
  • a step of growing aligned carbon nanotubes a step of peeling the vertically aligned carbon nanotubes from the growth substrate to form a carbon nanotube array sheet, and a resin composition on both the front side and the back side of the carbon nanotube array sheet. Embedding in a physical layer, and contacting the base material side end of the carbon nanotube array sheet with the base material, and heating and curing the resin composition layer to form a resin layer. And a method for producing a carbon nanotube composite.
  • the carbon nanotube array sheet peeled from the growth substrate is embedded in the resin composition layer disposed on both sides of the base material, and the end on the base material side of the carbon nanotube array sheet is used as the base material. After the contact, the resin composition layer is cured to form a resin layer.
  • the present invention [10] includes a step of preparing a fixed sheet having a conductive layer having electrical conductivity, a step of growing vertically aligned carbon nanotubes on a growth substrate, and peeling the vertically aligned carbon nanotubes from the growth substrate.
  • the carbon nanotube array sheet peeled from the growth substrate is disposed on both sides of the fixed sheet, and then heated, so that the end of the carbon nanotube array sheet on the conductive layer side becomes the interface of the conductive layer. To be joined.
  • a carbon nanotube composite material including a carbon nanotube array sheet bonded to the interface of the conductive layer can be efficiently manufactured with a simple method.
  • the present invention [11] includes a step of growing vertically aligned carbon nanotubes on a growth substrate, a step of peeling the vertically aligned carbon nanotubes from the growth substrate to form a carbon nanotube array sheet, and the carbon nanotube array sheet.
  • a step of disposing the metal-containing particle-containing layer on both the front and back surfaces; heating the particle-containing layer to melt the metal particles to form a fixed sheet; and the surface-side carbon nanotube array sheet And a step of embedding the carbon nanotube array sheet on the back side in the fixing sheet and bringing them into contact with each other in the fixing sheet.
  • the carbon nanotube array sheet peeled off from the growth substrate is disposed on both sides of the particle-containing layer and then heated, so that the surface side carbon nanotube array sheet and the back side carbon nanotube array sheet are heated. Are embedded in a fixed sheet and brought into contact with each other in the fixed sheet.
  • the present invention [12] includes a step of preparing a fixing sheet formed of a resin material, a step of growing vertically aligned carbon nanotubes on a growth substrate, and peeling the vertically aligned carbon nanotubes from the growth substrate.
  • a step of forming an array sheet a step of disposing the carbon nanotube array sheet on both the front and back surfaces of the fixed sheet, and heating the fixed sheet on which the carbon nanotube array sheet is disposed,
  • a method of manufacturing a carbon nanotube composite material comprising: embedding a carbon nanotube array sheet and the carbon nanotube array sheet on the back surface side in the fixing sheet and bringing them into contact with each other in the fixing sheet.
  • the carbon nanotube array sheet peeled off from the growth substrate is disposed on both sides of the fixed sheet formed of the resin material, and then heated, so that the carbon nanotube array sheet on the front side and the back side These carbon nanotube array sheets are embedded in a fixed sheet and brought into contact with each other in the fixed sheet.
  • This invention contains a carbon nanotube composite material provided with a base material, the vertically aligned carbon nanotube arrange
  • the adhesive layer adheres the base material and the vertically aligned carbon nanotubes, it is possible to suppress the CNTs included in the vertically aligned carbon nanotubes from dropping from the base material.
  • the adhesive layer includes the carbon nanotube composite material according to the above [13], which is formed of a thermosetting resin.
  • the adhesive layer is formed of a thermosetting resin
  • the thermosetting resin composition is formed.
  • the vertically aligned carbon nanotubes can be bonded to the substrate by embedding the vertically aligned carbon nanotubes in the resin composition layer and heating and curing the resin composition layer.
  • the vertically aligned carbon nanotubes are embedded in the A-stage or B-stage resin composition layer, it is not necessary to perform heat treatment when the vertically aligned carbon nanotubes are embedded in the resin composition layer. Therefore, compared with the case where the vertically aligned carbon nanotubes are embedded in the thermoplastic resin layer dissolved by heat treatment, the disorder of the alignment of the vertically aligned carbon nanotubes can be suppressed, and the contact between the vertically aligned carbon nanotubes and the substrate is stabilized. Can be secured.
  • the adhesive layer includes the carbon nanotube composite material according to the above [13], which is formed of a fluorine-based polymer.
  • the adhesive layer is formed of a fluorine-based polymer, the base material and the vertically aligned carbon nanotube can be stably bonded, and the heat resistance, oil resistance, and chemical resistance of the adhesive layer can be obtained. It is possible to improve the performance.
  • the second base material disposed on the opposite side of the base material with respect to the vertically aligned carbon nanotubes, and the second adhesion for bonding the second base material and the vertically aligned carbon nanotubes.
  • a carbon nanotube composite material according to any one of [13] to [15] above.
  • the vertically aligned carbon nanotubes are bonded to the base material (hereinafter referred to as the first base material) by the adhesive layer (hereinafter referred to as the first adhesive layer), and the second adhesion is performed. Since it adhere
  • the second adhesive layer includes the carbon nanotube composite material according to the above [16], which is formed of a thermosetting resin.
  • the 2nd contact bonding layer is formed from the thermosetting resin, it consists of a thermosetting resin composition on the 2nd base material, and the 2nd resin composition of A stage or B stage After the physical layer is formed, the vertically aligned carbon nanotubes are embedded in the second resin composition layer so as to come into contact with the second base material, and the second resin composition layer is heated and cured, thereby It can adhere to the second substrate.
  • the second adhesive layer includes the carbon nanotube composite material according to the above [16], which is formed of a fluorine-based polymer.
  • the second adhesive layer is formed of a fluorine-based polymer
  • the second base material and the vertically aligned carbon nanotube can be stably bonded, and the heat resistance of the second adhesive layer
  • oil resistance and chemical resistance can be improved.
  • This invention is further equipped with the fixing member which fixes the said 1st base material and the said 2nd base material so that the space
  • the carbon nanotube composite material according to any one of [18] to [18] is included.
  • the fixing member fixes the first base material and the second base material, it is possible to prevent the carbon nanotube composite material from being deformed when an external force is applied to the carbon nanotube composite material. it can.
  • the fixing member maintains the distance between the first base material and the second base material, the state in which the vertically aligned carbon nanotubes are embedded in each of the first adhesive layer and the second adhesive layer is stabilized. Can be maintained.
  • the present invention includes a vibration-proof material provided with the carbon nanotube composite material according to any one of [13] to [19] above.
  • the plurality of carbon nanotubes included in the vertically aligned carbon nanotubes expand and contract in the alignment direction by vibration energy.
  • the stretching energy (kinetic energy) of the carbon nanotubes is converted into thermal energy by friction with the air. This reduces external vibration.
  • the vibration-proof material provided with the carbon nanotube composite material can efficiently reduce vibration.
  • the present invention [21] comprises a step of forming a first resin composition layer of an A stage or a B stage comprising a thermosetting resin composition on a first substrate, and the vertically aligned carbon nanotubes in the first resin.
  • a method for producing a nanotube composite is included.
  • the first resin composition layer is heated and cured. While suppressing the disorder of alignment, the contact between the vertically aligned carbon nanotube and the first substrate can be stably secured.
  • the present invention [22] includes a step of forming a first adhesive layer formed of a fluoropolymer on a first substrate, and heating the first adhesive layer to attach vertically aligned carbon nanotubes to the first adhesive. And a method of manufacturing the carbon nanotube composite material.
  • the first base material and the vertically aligned carbon nanotubes can be stably bonded, The heat resistance, oil resistance and chemical resistance of the first adhesive layer can be improved.
  • the present invention [23] comprises a step of forming a second resin composition layer of an A stage or a B stage comprising a thermosetting resin composition on a second substrate, and the above-mentioned vertically aligned carbon nanotubes A step of embedding the vertically aligned carbon nanotubes in the second resin composition layer so that the second substrate is located on the opposite side of the first substrate; and heating and curing the second resin composition layer.
  • the vertically aligned carbon nanotubes are embedded in the second stage resin composition layer of the A stage or B stage and then the second resin composition layer is heated and cured, it is possible to suppress the disorder of the orientation of the vertically aligned carbon nanotubes. However, it is possible to stably ensure the contact between the vertically aligned carbon nanotubes and the second base material.
  • the vertically aligned carbon nanotubes can be positioned between the first substrate and the second substrate, the contact between the vertically aligned carbon nanotubes and the first substrate and the second substrate is stabilized. Can be secured.
  • the present invention [24] includes a step of forming a second adhesive layer formed of a fluorine-based polymer on the second substrate, and heating the second adhesive layer to the vertically aligned carbon nanotubes. Embedded with the vertically aligned carbon nanotubes in the second adhesive layer such that the second substrate is located on the opposite side of the first substrate, and the carbon nanotubes according to [21] or [22] above Includes a method of manufacturing a composite.
  • the second base material and the vertically aligned carbon nanotubes can be stably bonded, The heat resistance, oil resistance and chemical resistance of the second adhesive layer can be improved.
  • the present invention [25] further includes the step of peeling the vertically aligned carbon nanotubes from the growth substrate to form a carbon nanotube array sheet, and the step of densifying the carbon nanotube array sheet. ] To [24].
  • the method for producing a carbon nanotube composite material according to any one of [24] to [24] is included.
  • the vertically aligned carbon nanotubes are peeled from the growth substrate to form a carbon nanotube array sheet and then subjected to a densification treatment, the characteristics of the carbon nanotube array sheet (for example, thermal conductivity) are improved. It is possible to improve the performance of the carbon nanotube composite material.
  • This invention [26] provides the process of providing the fixing member which fixes the said 1st base material and the said 2nd base material so that the space
  • the fixing member since the fixing member maintains the distance between the first base material and the second base material, the vertically aligned carbon nanotubes are embedded in each of the first adhesive layer and the second adhesive layer. Stable state can be maintained.
  • the carbon nanotube composite material of the present invention can prevent CNTs from falling off.
  • the method for producing a carbon nanotube composite material of the present invention is a simple method, the above-mentioned carbon nanotube composite material can be produced efficiently.
  • FIG. 1A is a side view of a thermally conductive sheet as a first embodiment of the carbon nanotube composite of the present invention.
  • FIG. 1B is a schematic configuration diagram illustrating a state in which the thermally conductive sheet illustrated in FIG. 1A is disposed between the electronic component and the heat sink.
  • FIG. 2A is an explanatory diagram for explaining an embodiment of a process of growing vertically aligned carbon nanotubes (VACNTs) on a growth substrate, and shows a process of forming a catalyst layer on the substrate.
  • FIG. 2B shows a process of heating the substrate to agglomerate the catalyst layer into a plurality of granules following FIG. 2A.
  • FIG. 2C shows a process of preparing VACNTs by supplying a raw material gas to a plurality of granular bodies and growing a plurality of carbon nanotubes, following FIG. 2B.
  • FIG. 3A is an explanatory diagram for explaining a process of peeling VACNTs, and shows a process of cutting VACNTs from the growth substrate.
  • FIG. 3B shows a process of peeling VACNTs from the growth substrate to obtain a carbon nanotube array sheet (CNT array sheet) following FIG. 3A.
  • FIG. 3C is a perspective view of the CNT array sheet shown in FIG. 3B.
  • FIG. 4A is an explanatory diagram for explaining a process of densifying the CNT array sheet shown in FIG.
  • FIG. 3C shows a process of housing the CNT array sheet in a heat-resistant container.
  • FIG. 4B shows a process of densifying the CNT array sheet by heating the CNT array sheet, following FIG. 4A.
  • FIG. 4C shows a process of disposing the densified CNT array sheet shown in FIG. 4B on both the front and back surfaces of the fixed sheet.
  • FIG. 5 is a side view of a thermally conductive sheet as a second embodiment of the carbon nanotube composite material of the present invention.
  • FIG. 6A is an explanatory diagram for explaining an embodiment of a manufacturing process of the web-laminated sheet shown in FIG. 5 and shows a process of drawing out a carbon nanotube web (CNT web) from VACNTs.
  • FIG. 6B shows a process of laminating a CNT web following FIG. 6A.
  • FIG. 6C shows a process of developing the laminated CNT web into a web laminated sheet following FIG. 6B.
  • FIG. 7A is a side view of a thermally conductive sheet as a third embodiment of the carbon nanotube composite material of the present invention.
  • Drawing 7B is an explanatory view for explaining one embodiment of a manufacturing process of a heat conductive sheet shown in Drawing 7A.
  • FIG. 8A is a side view of a thermally conductive sheet as a fourth embodiment of the carbon nanotube composite material of the present invention.
  • FIG. 8B is an explanatory diagram for explaining an embodiment of a manufacturing process of the thermally conductive sheet shown in FIG.
  • FIG. 8A shows a process of forming a particle-containing layer on the CNT array sheet.
  • FIG. 8C shows a step of arranging the CNT array sheet on both the front surface and the back surface of the particle-containing layer following FIG. 8B.
  • FIG. 9A is a side view of a thermally conductive sheet as a modification of the fourth embodiment of the carbon nanotube composite of the present invention.
  • FIG. 9B is an explanatory diagram for explaining an embodiment of a manufacturing process of the thermally conductive sheet shown in FIG. 9A.
  • FIG. 10A is an explanatory diagram for explaining a process of mechanically densifying the VACNTs shown in FIG. 2C, and shows a process of arranging a pressing plate so as to sandwich the VACNTs.
  • FIG. 10A is an explanatory diagram for explaining a process of mechanically densifying the VACNTs shown in FIG. 2C, and shows a process of arranging a pressing plate so as to sandwich the VACNTs.
  • FIG. 10B shows a process of compressing VACNTs by a pressing plate following FIG. 10A.
  • FIG. 11 is a side view of the fifth embodiment of the carbon nanotube composite material (CNT composite material) of the second invention.
  • FIG. 12A is an explanatory diagram for explaining the manufacturing method of the fifth embodiment of the CNT composite material of the second invention, and is an explanatory diagram for explaining a process of embedding VACNTs in the first resin composition layer. is there.
  • FIG. 12B is an explanatory diagram for explaining a process of curing the first resin composition layer to form the first adhesive layer following FIG. 12A.
  • FIG. 12C is an explanatory diagram for explaining a process of peeling the growth substrate from VACNTs following FIG. 12B.
  • FIG. 13 is a side view of the sixth embodiment of the CNT composite of the second invention.
  • FIG. 14 is a perspective view of the CNT composite shown in FIG.
  • FIG. 15A is an explanatory diagram for explaining the manufacturing method of the sixth embodiment of the CNT composite according to the second invention, and is an explanation for explaining a step of embedding the CNT array sheet in the second resin composition layer.
  • FIG. 15B is an explanatory diagram for explaining a step of curing the second resin composition layer to form a second adhesive layer following FIG. 15A.
  • FIG. 16 is a side view of a seventh embodiment of the CNT composite of the second invention.
  • FIG. 17A is an explanatory diagram for explaining the manufacturing method of the eighth embodiment of the CNT composite material of the second invention, and an explanation for explaining a step of embedding the CNT array sheet in the first resin composition layer.
  • FIG. 17B is an explanatory diagram for explaining a process of curing the first resin composition layer to form the first adhesive layer following FIG. 17A.
  • FIG. 18A is an explanatory diagram for explaining the manufacturing method of the ninth embodiment of the CNT composite material of the second invention, and is an explanatory diagram for explaining a process of embedding VACNTs in the second resin composition layer. is there.
  • FIG. 18B is an explanatory diagram for explaining a process of curing the second resin composition layer to form a second adhesive layer following FIG. 18A.
  • FIG. 18C is an explanatory diagram for explaining a process of peeling the growth substrate from VACNTs following FIG. 18B.
  • the carbon nanotube composite material of the first invention (hereinafter referred to as CNT composite material) includes a fixed sheet and a carbon nanotube array sheet fixed to the fixed sheet.
  • the carbon nanotube array sheet is embedded or bonded to both the front surface and the back surface of the fixing sheet.
  • a thermally conductive sheet 1 (an example of a CNT composite material) includes a fixed sheet 2 and two carbon nanotube array sheets 3 (hereinafter referred to as CNT array sheet 3). ).
  • the fixing sheet 2 can fix two CNT array sheets 3 and includes a base material 4 and two resin layers 5 in the first embodiment.
  • the base material 4 has a sheet shape (film shape). Specifically, the base material 4 has a predetermined thickness and is in a plane direction (longitudinal direction and lateral direction) orthogonal to the thickness direction. It has a flat front surface 4A (one surface in the thickness direction) and a flat back surface 4B (the other surface in the thickness direction).
  • the base material 4 preferably has flexibility.
  • the thickness of the base material 4 is, for example, preferably 10 ⁇ m or more, more preferably 50 ⁇ m or more, for example, preferably 300 ⁇ m or less, and more preferably 150 ⁇ m or less.
  • Examples of the substrate 4 include a conductive substrate and an insulating substrate.
  • the conductive substrate has electrical conductivity, and examples thereof include a metal sheet, a graphite sheet, a carbon nanotube aggregate, a resin sheet containing conductive particles (for example, metal particles, etc.), preferably , Metal sheets and aggregates of carbon nanotubes.
  • the metal sheet is a sheet formed from metal.
  • a metal gold
  • the base material 4 is an aggregate of carbon nanotubes
  • the insulating substrate has electrical insulation, and examples thereof include a ceramic sheet and a plastic plate.
  • the ceramic sheet is a sheet formed from an inorganic sintered body.
  • the inorganic substance include boron nitride, aluminum nitride, silicon nitride, silica, alumina, magnesium oxide, and zinc oxide.
  • the plastic plate is a plate made of plastic (hard resin).
  • plastic hard resin
  • examples of the plastic include a plastic having a heat resistance of less than 100 ° C. (eg, polyethylene, polypropylene, polystyrene, vinyl chloride resin, etc.), and an engineering plastic having a heat resistance of 100 ° C. or more (eg, polyether ether ketone, liquid crystal polymer, polyamide). , Polycarbonate, polyimide, etc.).
  • Such a substrate 4 is appropriately selected according to the use of the heat conductive sheet 1.
  • a conductive substrate is selected as the substrate 4
  • electrical conductivity can be imparted to the heat conductive sheet 1
  • the heat conductive sheet 1 is configured as an electrothermal conductive sheet.
  • an insulating base material is selected as the base material 4
  • electrical insulation can be imparted to the heat conductive sheet 1
  • the heat conductive sheet 1 is configured as an insulating heat conductive sheet.
  • Resin layer 5 is arranged on both surfaces 4A and 4B of base 4.
  • the resin layer 5 disposed on the front surface 4A of the base material 4 is defined as the first resin layer 5A
  • the resin layer 5 disposed on the back surface 4B of the base material 4 is defined as the second resin layer 5A. Let it be resin layer 5B.
  • the surface on one side in the thickness direction of the first resin layer 5A corresponds to the surface 2A of the fixed sheet 2, and the surface on the other side in the thickness direction of the second resin layer 5B corresponds to the back surface 2B of the fixed sheet 2.
  • the fixed sheet 2 has a front surface 2A (one surface in the thickness direction of the first resin layer 5A) and a back surface 2B (the other surface in the thickness direction of the second resin layer 5B).
  • the resin layer 5 is formed from a resin material.
  • the resin material include natural resins and synthetic resins (for example, thermosetting resins and thermoplastic resins), and preferably synthetic resins.
  • thermosetting resin is a cured body (thermosetting resin after complete curing (C stage)), for example, epoxy resin, polyimide resin, phenol resin, urea resin, melamine resin, unsaturated polyester resin, thermosetting.
  • elastomers for example, urethane rubber, butyl rubber, fluorine rubber, silicone rubber, acrylic rubber, etc.
  • thermoplastic resin examples include polyester (for example, polyethylene terephthalate), polyolefin (for example, polyethylene, polypropylene, etc.), polyamide, polystyrene, polyvinyl chloride, polyvinyl alcohol (PVA), polyvinylidene chloride, polyacrylonitrile, polyurethane, Fluoropolymer (eg, polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), polyvinyl fluoride, polyvinylidene fluoride, etc.), thermoplastic elastomer (eg, olefin elastomer (eg, ethylene-propylene rubber, ethylene) -Propylene-diene rubber, etc.), styrene elastomers, vinyl chloride elastomers, etc.).
  • polyester for example, polyethylene terephthalate
  • polyolefin for example, polyethylene, polypropylene, etc.
  • polyamide polys
  • thermoplastic resin more preferably a fluoropolymer, and particularly preferably PTFE and PFA are used.
  • resin materials can be used alone or in combination of two or more.
  • the thickness T of the resin layer 5 is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, for example, preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the thickness T of the resin layer 5 is preferably 10 or more, more preferably 20 or more, for example, preferably 50 or less, when the thickness of the substrate 4 is 100. , 40 or less is more preferable.
  • the resin layer 5 can contain a well-known additive as needed.
  • the additive include metal particles (eg, copper particles, titanium particles, aluminum particles), inorganic oxides (eg, silica particles, alumina particles), inorganic nitrides (eg, aluminum nitride, boron nitride, etc.) And carbon materials (for example, carbon nanotube, graphite, fullerene, etc.).
  • metal particles eg, copper particles, titanium particles, aluminum particles
  • inorganic oxides eg, silica particles, alumina particles
  • inorganic nitrides eg, aluminum nitride, boron nitride, etc.
  • carbon materials for example, carbon nanotube, graphite, fullerene, etc.
  • the CNT array sheet 3 is peeled from the growth substrate 15 (described later; see FIG. 3B), and is formed into a sheet shape from a plurality of carbon nanotubes 6 (hereinafter referred to as CNT 6). It is an aggregate of nanotubes.
  • the plurality of CNTs 6 are oriented in the thickness direction of the CNT array sheet 3, and are not continuous in the thickness direction but continuous in the plane direction (vertical direction and horizontal direction). Are arranged in a sheet shape.
  • a plurality of carbon nanotubes 6 (CNT6) oriented in a predetermined direction are continuously formed into a sheet shape in a direction perpendicular to the orientation direction of the carbon nanotubes 6. It is formed as follows.
  • the CNT array sheet 3 maintains its shape so that the plurality of CNTs 6 are in contact with each other in the surface direction in a state where they are peeled off from the growth substrate 15 (described later). Moreover, the CNT array sheet 3 has flexibility. In addition, van der Waals force is acting between mutually adjacent CNT6 among several CNT6.
  • CNT6 may be any of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes, and preferably multi-walled carbon nanotubes.
  • the plurality of CNTs 6 may include only one of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes, and any two or more of single-walled carbon nanotubes, double-walled carbon nanotubes, and multi-walled carbon nanotubes May be included.
  • the average outer diameter of CNT6 is, for example, preferably 1 nm or more, more preferably 5 nm or more, for example, preferably 100 nm or less, more preferably 50 nm or less, and 20 nm or less. Is particularly preferred.
  • the average length L (size in the average orientation direction) of the CNTs 6 is larger than the thickness T of the resin layer 5, specifically, for example, preferably 10 ⁇ m or more, preferably 50 ⁇ m or more. More preferably, for example, it is preferably 1000 ⁇ m or less, more preferably 500 ⁇ m or less, and particularly preferably 200 ⁇ m or less.
  • the average outer diameter and average length of CNT are measured by well-known methods, such as observation with an electron microscope, for example.
  • the average length L of the CNTs 6 preferably exceeds, for example, 1 time, more preferably 1.5 times or more, and 2.0 times or more with respect to the thickness T of the resin layer 5. It is particularly preferable, for example, it is preferably 5.0 times or less, more preferably 4.0 times or less, and particularly preferably 3.0 times or less.
  • the average bulk density of the plurality of CNTs 6 is preferably, for example, 10 mg / cm 3 or more, more preferably 50 mg / cm 3 or more, and particularly preferably 100 mg / cm 3 or more. Preferably, for example, it is preferably 500 mg / cm 3 or less, more preferably 300 mg / cm 3 or less, and particularly preferably 200 mg / cm 3 or less.
  • the average bulk density of CNT6 is, for example, the mass per unit area (weight per unit: mg / cm 2 ) and the average length of carbon nanotubes (SEM (manufactured by JEOL)) or non-contact film thickness meter (Keyence Corporation). Measured by).
  • the G / D ratio of the CNT array sheet 3 is, for example, preferably 1 or more, more preferably 2 or more, particularly preferably 5 or more, and particularly preferably 10 or more. It is preferably 20 or less, and more preferably 15 or less.
  • the G / D ratio is the ratio of the spectral intensity of a peak called G band observed near 1590 cm ⁇ 1 to the spectral intensity of a peak called D band observed near 1350 cm ⁇ 1 in the Raman spectrum of the carbon nanotube. It is.
  • the spectrum of the D band is derived from the defects of the carbon nanotube, and the spectrum of the G band is derived from the in-plane vibration of the carbon six-membered ring.
  • the electrical resistance (conductive resistance) in the thickness direction of the CNT array sheet 3 is, for example, preferably 1 ⁇ or less, more preferably 0.1 ⁇ or less at 25 ° C.
  • the electrical resistance is measured by a known electrical resistance measuring device.
  • the thermal conductivity of the CNT array sheet 3 is, for example, preferably 1 W / (m ⁇ K) or more in the thickness direction, more preferably 2 W / (m ⁇ K) or more, and 10 W / (m ⁇ K). K) or more, particularly preferably 30 W / (m ⁇ K) or more, for example, preferably 60 W / (m ⁇ K) or less, and 40 W / (m ⁇ K) or less. More preferably.
  • the thermal conductivity is measured by a known thermal conductivity measuring device.
  • the CNT array sheet 3 is embedded in both the front surface 2A and the back surface 2B of the fixed sheet 2 and supported by the fixed sheet 2 as shown in FIG. 1A.
  • two CNT array sheets 3 are embedded in each of the first resin layer 5A and the second resin layer 5B, and are arranged so as to sandwich the base material 4 in the thickness direction.
  • the CNT array sheet 3 embedded in the first resin layer 5A is the first CNT array sheet 3A
  • the CNT array sheet 3 embedded in the second resin layer 5B is the second CNT array. Let it be a sheet 3B.
  • the edge part by the side of the base material 4 in the CNT array sheet 3 is embedded in the corresponding resin layer 5, contacts the base material 4, and the edge part on the opposite side to the base material 4 in the CNT array sheet 3 corresponds. Protrudes from the resin layer 5.
  • the other end portion of the first CNT array sheet 3A is embedded in the first resin layer 5A and is in contact with the surface 4A of the substrate 4, and the one end portion of the first CNT array sheet 3A is the first resin layer. It protrudes from the surface of 5A (surface 2A of the fixing sheet 2) to the one side in the thickness direction to form a free end.
  • the one side edge part in the 2nd CNT array sheet 3B is embedded in the 2nd resin layer 5B, and contacts the back surface 4B of the base material 4, and the other side edge part in the 2nd CNT array sheet 3B is the 2nd resin layer. It protrudes from the surface of 5B (the back surface 2B of the fixed sheet 2) to the other side in the thickness direction to form a free end.
  • each CNT array sheet 3 the CNT 6 has an embedded portion 6 A embedded in the corresponding resin layer 5 and a protruding portion 6 B protruding from the corresponding resin layer 5. Note that the thickness direction of the CNT array sheet 3 and the thickness direction of the base material 4 coincide with each other, and the CNT 6 of each CNT array sheet 3 extends along the thickness direction of the base material 4.
  • the embedded portion 6A penetrates the corresponding resin layer 5.
  • the length L1 of the embedded portion 6A is, for example, the same as the range of the thickness T of the resin layer 5 described above. Further, the ratio of the length L1 of the embedded portion 6A is preferably 20% or more, more preferably 30% or more, for example, 70% or less, with respect to the length L100% of the CNT6. It is preferable that it is 50% or less.
  • the length L2 of the protruding portion 6B is, for example, preferably 1 ⁇ m or more, more preferably 10 ⁇ m or more, for example, preferably 100 ⁇ m or less, and more preferably 70 ⁇ m or less. Further, the ratio of the length L2 of the protruding portion 6B is preferably 30% or more, more preferably 50% or more, for example, 80% or less, with respect to the length L100% of the CNT6. It is preferable that it is 70% or less.
  • the ratio (L2 / L1) of the length L2 of the protruding portion 6B to the length L1 of the embedded portion 6A is, for example, preferably 0.4 or more, more preferably 1 or more, It is preferably 4 or less, and more preferably 2.5 or less.
  • the resin layer 5 can reliably support the CNT array sheet 3
  • the ratio of the length L2 of the protruding portion 6B is equal to or higher than the lower limit (the ratio of the length L1 of the embedded portion 6A is equal to or lower than the upper limit)
  • the followability of the CNT array sheet 3 to the surface of the object is improved. Can do.
  • Such a heat conductive sheet 1 is preferably flexible.
  • the electrical resistance (conductive resistance) in the thickness direction of the heat conductive sheet 1 is preferably 10 ⁇ or less, for example, at 25 ° C., preferably 1 ⁇ or less. Is more preferably 0.1 ⁇ or less, and when the substrate 4 is an insulating substrate, at 25 ° C., for example, preferably 10 3 ⁇ or more, and preferably 10 4 ⁇ or more. Is more preferable.
  • the thermal conductivity of the heat conductive sheet 1 is, for example, preferably 1 W / (m ⁇ K) or more in the thickness direction, more preferably 2 W / (m ⁇ K) or more, and 10 W / (m More preferably KW or more, particularly preferably 25 W / (m ⁇ K) or more, particularly preferably 50 W / (m ⁇ K) or more, for example 300 W / (m ⁇ K). Or less, more preferably 100 W / (m ⁇ K) or less.
  • a fixed sheet 2 and a CNT array sheet 3 are prepared.
  • the resin layers 5 formed of the thermoplastic resin are disposed on both the front surface 4A and the back surface 4B of the base material 4 (fixing sheet preparation step).
  • the method for disposing the resin layer 5 on both surfaces of the substrate 4 is not particularly limited.
  • the method for forming the resin layer 5 by applying the thermoplastic resin on both surfaces of the substrate 4 or the above heat The method etc. which prepare the resin sheet formed from a plastic resin, and arrange
  • the fixing sheet 2 including the base material 4 and the resin layers 5 disposed on both the front surface 4A and the back surface 4B of the base material 4, more specifically, the base material 4 and the surface 4A of the base material 4 are provided.
  • vertically aligned carbon nanotubes 19 are grown on the growth substrate 15 by chemical vapor deposition (CVD).
  • VACNTs19 is grown (CNT growth step).
  • a growth substrate 15 is prepared.
  • the growth substrate 15 is not specifically limited, For example, the well-known board
  • Examples of the growth substrate 15 include a silicon substrate and a stainless steel substrate 16 on which a silicon dioxide film 17 is laminated, and preferably a stainless steel substrate 16 on which a silicon dioxide film 17 is laminated.
  • 2A to 3C show the case where the growth substrate 15 is the stainless steel substrate 16 on which the silicon dioxide film 17 is laminated.
  • a catalyst layer 18 is formed on the growth substrate 15, preferably on the silicon dioxide film 17.
  • a metal catalyst is formed on the growth substrate 15 (preferably the silicon dioxide film 17) by a known film formation method.
  • metal catalyst examples include iron, cobalt, nickel and the like, and preferably iron. Such metal catalysts can be used alone or in combination of two or more.
  • film forming method examples include vacuum evaporation and sputtering, and preferably vacuum evaporation.
  • the catalyst layer 18 is disposed on the growth substrate 15.
  • the growth substrate 15 is the stainless steel substrate 16 on which the silicon dioxide film 17 is laminated
  • the silicon dioxide film 17 and the catalyst layer 18 are formed of silicon dioxide as described in, for example, Japanese Patent Application Laid-Open No. 2014-94856.
  • the mixed solution in which the precursor solution and the metal catalyst precursor solution are mixed is applied to the stainless steel substrate 16, and then the mixed solution is phase-separated and then dried to form the mixed solution at the same time.
  • the growth substrate 15 on which the catalyst layer 18 is disposed is heated to, for example, 700 ° C. or more and 900 ° C. or less as shown in FIG. 2B. Thereby, the catalyst layer 18 aggregates and becomes the some granular body 18A.
  • the source gas contains a hydrocarbon gas having 1 to 4 carbon atoms (lower hydrocarbon gas).
  • hydrocarbon gas having 1 to 4 carbon atoms include methane gas, ethane gas, propane gas, butane gas, ethylene gas, acetylene gas and the like, and preferably acetylene gas.
  • the raw material gas can contain hydrogen gas, inert gas (for example, helium, argon, etc.), water vapor, etc., if necessary.
  • inert gas for example, helium, argon, etc.
  • the supply time of the raw material gas is, for example, preferably 1 minute or more, more preferably 5 minutes or more, for example, preferably 60 minutes or less, and more preferably 30 minutes or less.
  • a plurality of CNTs 6 grow from each of the plurality of granular bodies 18A as a starting point.
  • FIG. 2C for convenience, it is described that one CNT6 grows from one granular body 18A.
  • the present invention is not limited to this, and even if a plurality of CNT6 grow from one granular body 18A. Good.
  • the plurality of CNTs 6 extend in the thickness direction (vertical direction) of the growth substrate 15 so as to be substantially parallel to each other on the growth substrate 15. That is, the plurality of CNTs 6 are oriented (orientated vertically) so as to be orthogonal to the growth substrate 15.
  • VACNTs 19 grow on the growth substrate 15.
  • the VACNTs 19 includes a plurality of rows 19A in the horizontal direction in which a plurality of CNTs 6 are linearly arranged in the vertical direction.
  • the plurality of CNTs 6 are densely arranged in the surface direction (vertical direction and horizontal direction).
  • the VACNTs 19 are peeled from the growth substrate 15 (peeling step).
  • the cutting blade 20 is slid along the upper surface of the growth substrate 15, and the base ends (the growth substrate 15 side ends) of the plurality of CNTs 6 are collectively cut. To do. As a result, the VACNTs 19 are separated from the growth substrate 15.
  • Examples of the cutting blade 20 include known metal blades such as a cutter blade and a razor, and preferably a cutter blade.
  • the separated VACNTs 19 are pulled up from the growth substrate 15 as shown in FIG. 3B.
  • the VACNTs 19 are peeled from the growth substrate 15 to form the CNT array sheet 3.
  • two CNT array sheets 3, specifically, a first CNT array sheet 3A and a second CNT array sheet 3B are prepared.
  • Such a CNT array sheet 3 can be used as it is for the heat conductive sheet 1, but since the average bulk density is relatively low, it is preferably densified from the viewpoint of improving the thermal conductivity. (Densification process).
  • Examples of the densification process include a method of heat-treating the CNT array sheet 3 (see FIGS. 4A and 4B) and a method of supplying a volatile liquid to the CNT array sheet 3.
  • the CNT array sheet 3 is accommodated in a heat-resistant container 45 and placed in a heating furnace.
  • the heat-resistant container 45 is a heat-resistant container having a heat-resistant temperature exceeding 2600 ° C., and examples thereof include known heat-resistant containers such as a carbon container formed from carbon and a ceramic container formed from ceramics. Among such heat-resistant containers, a carbon container is preferable.
  • the heating furnace examples include a resistance heating furnace, an induction heating furnace, a direct current electric furnace, and preferably a resistance heating furnace.
  • the heating furnace may be a batch type or a continuous type.
  • an inert gas is introduced into the heating furnace to replace the inside of the heating furnace with an inert gas atmosphere.
  • an inert gas nitrogen, argon, etc. are mentioned, for example, Preferably argon is mentioned.
  • the temperature in the heating furnace is raised to the heating temperature at a predetermined rate of temperature rise, and then left for a predetermined time while maintaining the temperature.
  • the rate of temperature increase is, for example, preferably 1 ° C./min or more, more preferably 5 ° C./min or more, for example, preferably 40 ° C./min or less, and 20 ° C./min or less. More preferably.
  • the heating temperature is, for example, preferably 2600 ° C. or higher, more preferably 2700 ° C. or higher, and particularly preferably 2800 ° C. or higher.
  • the heating temperature is equal to or higher than the lower limit, a plurality of CNTs 6 can be reliably densely packed in the CNT array sheet 3.
  • the heating temperature may be lower than the sublimation temperature of CNT6, and is preferably 3000 ° C. or lower. If heating temperature is below the said upper limit, it can suppress that CNT6 sublimes.
  • the predetermined time is, for example, preferably 10 minutes or more, more preferably 1 hour or more, for example, preferably 5 hours or less, and more preferably 3 hours or less.
  • the CNT array sheet 3 is preferably heat-treated in an unloaded state (a state where no load is applied to the CNT array sheet 3, that is, under atmospheric pressure).
  • an unloaded state a state where no load is applied to the CNT array sheet 3, that is, under atmospheric pressure.
  • the CNT array sheet 3 is placed in the heat-resistant container 45 so as to be spaced from the lid and side walls of the heat-resistant container 45. To house.
  • the CNT array sheet 3 is heated.
  • the crystallinity of graphene constituting the plurality of CNTs 6 in the CNT array sheet 3 is improved, and the orientation (linearity) of the CNTs 6 is improved.
  • the CNTs 6 adjacent to each other are densely packed into a bundle shape while maintaining the orientation (linearity) by van der Waals force acting between them.
  • the entire CNT array sheet 3 is uniformly densely packed, and the CNT array sheet 3 is densified. Thereafter, the CNT array sheet 3 is cooled (for example, naturally cooled) as necessary.
  • the thickness of the CNT array sheet 3 after the heat treatment is substantially the same as the thickness of the CNT array sheet 3 before the heat treatment because the plurality of CNTs 6 are concentrated while maintaining the orientation (linearity). More specifically, the thickness of the CNT array sheet 3 after heat treatment is preferably 95% or more and 105% or less, for example, 100% with respect to the thickness of the CNT array sheet 3 before heat treatment. It is more preferable.
  • the volume of the CNT array sheet 3 after the heat treatment is, for example, preferably 10% or more, more preferably 30% or more with respect to the volume of the CNT array sheet 3 before the heat treatment, 70% or less, more preferably 50% or less.
  • the G / D ratio of the CNT array sheet 3 after the heat treatment is preferably 2 or more, for example.
  • the CNT array sheet 3 is sprayed with a volatile liquid or the CNT array sheet 3 is immersed in the volatile liquid.
  • Examples of the volatile liquid include water and organic solvents.
  • Examples of the organic solvent include lower (C1-3) alcohols (for example, methanol, ethanol, propanol, etc.), ketones (for example, acetone), ethers (for example, diethyl ether, tetrahydrofuran, etc.), alkyl esters. (Eg, ethyl acetate), halogenated aliphatic hydrocarbons (eg, chloroform, dichloromethane, etc.), polar aprotics (eg, N-methylpyrrolidone, dimethylformamide, etc.), and the like.
  • volatile liquids water is preferable.
  • volatile liquids can be used alone or in combination of two or more.
  • the volatile liquid When a volatile liquid is supplied to the CNT array sheet 3, the volatile liquid is vaporized, whereby a plurality of CNTs 6 are densely packed together, and the density of the CNT array sheet 3 is improved.
  • such a densification process is performed at least once and can be repeated a plurality of times.
  • the same densification process may be repeated a plurality of times, or a plurality of types of densification processes may be combined.
  • only the above heat treatment can be repeated a plurality of times, and the above heat treatment and the above liquid supply treatment can be combined.
  • the average bulk density of the plurality of CNTs 6 is preferably, for example, 50 mg / cm 3 or more, and the electric resistance (conducting resistance) in the thickness direction is, for example, 25 ° C. 1 ⁇ or less is preferable, and the thermal conductivity is preferably, for example, 10 W / (m ⁇ K) or more in the thickness direction.
  • the fixed sheet 2 provided with the base material 4 and the two resin layers 5 and the two CNT array sheets 3 are prepared.
  • the CNT array sheets 3 are arranged one by one on the first resin layer 5A (front side resin layer 5) and the second resin layer 5B (back side resin layer 5). (Arrangement process).
  • the first CNT array sheet 3A is arranged on one surface in the thickness direction of the first resin layer 5A (the surface 2A of the fixed sheet 2), and the other surface in the thickness direction of the second resin layer 5B (the surface of the fixed sheet 2).
  • the second CNT array sheet 3B is disposed on the back surface 2B). Thereby, the first CNT array sheet 3A and the second CNT array sheet 3B are arranged so as to sandwich the fixed sheet 2 in the thickness direction.
  • the fixed sheet 2 on which the first CNT array sheet 3A and the second CNT array sheet 3B are arranged is heated (heating process).
  • the heating temperature is not less than the temperature at which the resin layer 5 (thermoplastic resin) melts (softens) and is less than the temperature at which the resin layer 5 (thermoplastic resin) burns out, and is, for example, 300 ° C. or more and 400 ° C. or less. preferable.
  • the heating time is preferably 1 minute or longer, for example, preferably 30 minutes or shorter, and more preferably 10 minutes or shorter.
  • the resin layer 5 is melted, and as shown in FIG. 1A, the CNT array sheet 3 is embedded in the corresponding resin layer 5, and the end of the CNT array sheet 3 on the substrate 4 side corresponds to the corresponding resin layer. 5, and contacts the substrate 4.
  • the first resin layer 5A is melted, the first CNT array sheet 3A is embedded in the first resin layer 5A, and the other side end of the first CNT array sheet 3A is the surface 4A of the base 4 To touch.
  • the second resin layer 5B is melted, the second CNT array sheet 3B is embedded in the second resin layer 5B, and one end of the second CNT array sheet 3B is in contact with the back surface 4B of the substrate 4.
  • the molten resin layer 5 is in close contact with the base material 4 and the CNT array sheet 3 and enters between the plurality of CNTs 6.
  • the first CNT array sheet 3A and the second CNT array sheet 3B are pressurized from the outer side in the thickness direction toward the inner side so as to go to the base material 4 as necessary.
  • the pressure is, for example, preferably 0.1 MPa or more, more preferably 0.5 MPa or more, for example, 1.0 MPa or less.
  • the molten resin layer 5 is cured while being in close contact with the base material 4 and the CNT array sheet 3.
  • the CNT array sheet 3 is fixed to the corresponding resin layer 5 and supported by the fixed sheet 2 in a state where the end of the CNT array sheet 3 is in contact with the substrate 4.
  • the heat conductive sheet 1 is manufactured.
  • thermosetting resin a thermosetting resin
  • the above-mentioned heat An uncured resin composition corresponding to the curable resin is prepared.
  • the uncured resin composition is in a liquid A-stage state.
  • the resin composition is applied to both the front surface 4A and the back surface 4B of the base material 4, and a resin composition layer is formed on both the front surface 4A and the back surface 4B of the base material 4. Thereafter, the A-stage state of the resin composition layer is maintained, or the resin composition layer is set to a semi-cured B-stage state.
  • the CNT array sheet 3 is embedded in both the front and back resin composition layers, and the end of the CNT array sheet 3 on the base 4 side is brought into contact with the base 4. Thereafter, the resin composition layer is cured (completely cured) by heating to a predetermined curing temperature to obtain a resin layer 5 in a C-stage state. Also by this, the heat conductive sheet 1 can be manufactured.
  • such a thermal conductive sheet 1 includes, for example, an electronic component 11 (target object) and a heat dissipation member 10 (target object) as a TIM. It is arranged and used so as to be sandwiched in the thickness direction between them.
  • Examples of the electronic component 11 include a semiconductor element (such as an IC (integrated circuit) chip), a light emitting diode (LED), a high output laser oscillation element, a high output lamp, and a power semiconductor element.
  • a semiconductor element such as an IC (integrated circuit) chip
  • LED light emitting diode
  • a high output laser oscillation element a high output lamp
  • a power semiconductor element such as an IC (integrated circuit) chip
  • the electrothermal conductive sheet whose base material 4 is a conductive base material is suitably selected as the thermal conductive sheet 1.
  • the insulating heat conductive sheet in which the base material 4 is an insulating base material is suitably selected as the heat conductive sheet 1, for example.
  • Examples of the heat radiating member 10 include a heat sink and a heat spreader.
  • fine irregularities are formed on the surface 11B of the electronic component 11 and the surface 10A of the heat radiating member 10.
  • Their surface roughness Rz (10-point average roughness according to JIS B0601-2013) is preferably 1 ⁇ m or more and 10 ⁇ m or less, for example.
  • the plurality of CNTs 6 of the first CNT array sheet 3A are in stable contact with the surface 10A of the heat radiating member 10 following the fine irregularities of the surface 10A of the heat radiating member 10. Further, the plurality of CNTs 6 of the second CNT array sheet 3B are in stable contact with the surface 11B of the electronic component 11 following the fine irregularities of the surface 11B of the electronic component 11.
  • the heat from the electronic component 11 is transmitted to the heat radiating member 10 through the second CNT array sheet 3B, the base material 4, and the first CNT array sheet 3A sequentially.
  • the thermal conductive sheet 1 includes a fixed sheet 2 and a CNT array sheet 3 via a resin.
  • the CNT array sheet 3 includes a plurality of CNTs 6 that are aligned in the thickness direction and arranged in a continuous sheet shape in the plane direction.
  • the thermal conductive sheet 1 when the thermal conductive sheet 1 is brought into contact with the object (the heat radiating member 10 and the electronic component 11), the plurality of CNTs 6 of the CNT array sheet 3 are finely uneven on the surface of the object. Can be followed.
  • the CNT array sheet 3 is embedded in both the front surface 2A and the back surface 2B of the fixed sheet 2, so that the CNT 6 of the CNT array sheet 3 falls off the fixed sheet 2. Can be suppressed.
  • the thermal conductivity of the CNT array sheet 3 can be improved, and consequently, the thermal conductivity of the thermal conductive sheet 1 can be improved. Can be planned.
  • the CNT array sheet 3 is embedded in the fixed sheet 2 after being peeled off from the growth substrate 15 as shown in FIG. 4C. Therefore, the CNT array sheet 3 can be embedded in the fixed sheet 2 after being peeled off from the growth substrate 15 and densified.
  • the edge part by the side of the base material 4 in the CNT array sheet 3 is embedded in the corresponding resin layer 5, and is contacting the base material 4, as shown to FIG. 1A. Therefore, it is possible to reliably improve the thermal conductivity of the thermal conductive sheet 1 while reliably suppressing the CNT 6 included in the CNT array sheet 3 from falling off the fixed sheet 2.
  • the substrate 4 is a conductive substrate having electrical conductivity
  • the CNT array sheet 3 having electrical conductivity is in contact with the substrate 4 having electrical conductivity. Conductivity can be imparted.
  • the base material 4 is a ceramic sheet formed of an inorganic sintered body
  • the CNT array sheet 3 is in contact with the base material 4 having electrical insulation, so that the heat conductive sheet 1 is provided with electrical insulation. can do.
  • the resin layer 5 is formed of a thermoplastic resin
  • the CNT array sheet 3 peeled from the growth substrate 15 is disposed on the resin layer 5 disposed on both surfaces of the base material 4. Thereafter, by heating, the end of the CNT array sheet 3 on the base 4 side is embedded in the corresponding resin layer 5 and brought into contact with the base 4.
  • the resin layer 5 is formed from a thermosetting resin
  • the CNT array sheet 3 peeled from the growth substrate 15 is embedded in the resin composition layer disposed on both surfaces of the base material 4, and the base in the CNT array sheet 3 is After the end on the material 4 side is brought into contact with the base material 4, the resin composition layer is cured to form a resin layer 5.
  • the heat conductive sheet 1 including the CNT array sheet 3 embedded in the corresponding resin layer 5 can be efficiently manufactured with a simple method.
  • the substrate 4 is an aggregate of carbon nanotubes.
  • the carbon nanotube aggregate is an aggregate of a plurality of CNTs, and examples thereof include a press-molded sheet, the above-described CNT array sheet 3, a carbon nanotube web laminated sheet (hereinafter referred to as a web laminated sheet), and the like. Examples thereof include a CNT array sheet 3 and a web laminated sheet.
  • the base material 4 is a web laminated sheet 23.
  • the press-molded sheet is a sheet in which a plurality of CNTs are formed into a sheet shape by known press molding, and the plurality of CNTs are randomly arranged.
  • the web laminated sheet 23 includes a plurality of carbon nanotube webs 24 (hereinafter referred to as CNT webs 24) laminated in the thickness direction.
  • the CNT web 24 has a plurality of carbon nanotube single yarns 25 (hereinafter referred to as CNT single yarns 25) arranged in parallel in a direction intersecting with the direction in which the CNT single yarns 25 extend. It is formed to become.
  • CNT single yarns 25 carbon nanotube single yarns 25
  • the CNT single yarn 25 is formed by continuously connecting a bundle of a plurality of CNTs 6 in a straight line.
  • the CNT single yarn 25 is a non-twisted yarn that is not twisted, and the outer diameter of the CNT single yarn 25 is preferably, for example, 5 nm or more and 100 nm or less.
  • a growth substrate 15 on which VACNTs 19 are arranged is prepared in the same manner as in the first embodiment.
  • the roller 26 is disposed with a space from the growth substrate 15.
  • the roller 26 has a cylindrical shape, and is rotatable about its axis as a rotation center.
  • a resin film is preferably provided on the peripheral surface of the roller 26.
  • the CNT web 24 is pulled out from the VACNTs 19 as shown in FIG. 6A.
  • the CNTs 6 located at the end of each row 19A in the VACNTs 19 are collectively held by a drawing tool (not shown) and pulled.
  • the pulled CNT 6 is pulled out from the corresponding granular material 18A (see FIG. 3A).
  • the CNT 6 adjacent to the CNT 6 to be pulled out is attached to the CNT 6 by the frictional force and van der Waals force with the CNT 6 to be pulled out and pulled out from the corresponding granular material 18A.
  • the plurality of CNTs 6 are successively drawn out from the VACNTs 19 to form the CNT single yarn 25 in which the plurality of CNTs 6 are continuously connected linearly.
  • such a CNT single yarn 25 intersects (intersects) with the extending direction of the CNT single yarn 25 because the CNTs 6 in each row 19A are pulled out simultaneously and in parallel.
  • a plurality are arranged in parallel in the direction.
  • the plurality of CNT single yarns 25 arranged in parallel have a substantially sheet shape and are formed as a CNT web 24. That is, the CNT web 24 is drawn so that a plurality of CNT single yarns 25 are arranged in parallel.
  • the downstream end of the CNT web 24 in the drawing direction is fixed to the roller 26, and the roller 26 is rotated. Thereby, the CNT web 24 is wound around the circumferential surface of the roller 26 a plurality of times.
  • the CNT web 24 wound around the roller 26 is cut in the axial direction of the roller 26 by a cutting blade (for example, a razor, a cutter blade, etc.) and separated from the roller 26.
  • a cutting blade for example, a razor, a cutter blade, etc.
  • a web laminated sheet 23 having a sheet shape is manufactured.
  • the number of laminated web laminate sheets 23 is, for example, preferably 5 layers or more, more preferably 10 layers or more, for example, preferably 1000 layers or less, and more preferably 500 layers or less.
  • the thickness of the web laminated sheet 23 is, for example, preferably 0.01 ⁇ m or more, more preferably 5 ⁇ m or more, for example, preferably 500 ⁇ m or less, and more preferably 200 ⁇ m or less.
  • the volatile liquid is preferably supplied to the CNT web 24 and / or the web laminated sheet 23.
  • the volatile liquid is preferably an organic solvent, more preferably a lower alcohol, and particularly preferably ethanol. Such volatile liquids can be used alone or in combination of two or more.
  • the volatile liquid may contain metal particles.
  • the volatile liquid is applied to the CNT web 24 wound around the circumferential surface of the roller 26 while rotating the roller 26.
  • the sprayer 27 sprays sequentially.
  • the CNT web 24 can be passed through a volatile liquid between the growth substrate 15 and the roller 26.
  • the web laminate sheet 23 may be sprayed with a volatile liquid, or the web laminate sheet 23 may be immersed in the volatile liquid.
  • each CNT single yarn 25 improves because a volatile liquid vaporizes. Further, in the web laminated sheet 23, the laminated CNT webs 24 are densely packed together in the thickness direction.
  • the fixing sheet 2 includes a conductive layer 32 having electrical conductivity, as shown in FIG. 7A. More specifically, the fixed sheet 2 includes only the conductive layer 32, and the thermally conductive sheet 1 includes the conductive layer 32 (fixed sheet 2) and the two CNT array sheets 3.
  • Examples of the conductive layer 32 include the metal sheet of the substrate 4 described above, and preferably include an iron sheet formed from iron and a titanium sheet formed from titanium.
  • the conductive layer 32 preferably has flexibility.
  • the range of the thickness of the conductive layer 32 is, for example, the same as the range of the thickness of the substrate 4 described above.
  • the two CNT array sheets 3 are arranged one on each of the front surface 32A and the back surface 32B of the conductive layer 32 so as to sandwich the conductive layer 32 in the thickness direction.
  • the end of the CNT array sheet 3 on the conductive layer 32 side is bonded to the interface of the conductive layer 32.
  • the first CNT array sheet 3A is disposed on the surface 32A of the conductive layer 32, and the other end of the first CNT array sheet 3A is joined to the surface 32A of the conductive layer 32.
  • the second CNT array sheet 3B is disposed on the back surface 32B of the conductive layer 32, and one end of the second CNT array sheet 3B is joined to the back surface 32B of the conductive layer 32.
  • the surface 32A of the conductive layer 32 corresponds to the surface 2A of the fixing sheet 2
  • the back surface 32B of the conductive layer 32 is the back surface 2B of the fixing sheet 2.
  • a conductive layer 32 is prepared (conductive layer preparation step).
  • the same metal as that for forming the conductive layer 32 is deposited on one surface of the CNT array sheet 3 prepared in the same manner as in the first embodiment by a known method.
  • the CNT array sheet 3 is disposed on both the front surface 32A and the back surface 32B of the conductive layer 32 so that the metal deposition surface of the CNT array sheet 3 is in contact with the conductive layer 32 (arrangement step).
  • the conductive layer 32 on which the CNT array sheet 3 is arranged is heated (heating process).
  • the heating temperature is, for example, preferably 300 ° C. or higher, more preferably 500 ° C. or higher, for example, preferably 2500 ° C. or lower, and more preferably 2000 ° C. or lower.
  • the heating time is preferably 1 minute or more, for example, preferably 60 minutes or less, and more preferably 30 minutes or less.
  • Such a heating step is preferably performed in a vacuum or in an inert gas atmosphere.
  • the CNT array sheet 3 is pressurized from the outer side to the inner side in the thickness direction so as to go to the conductive layer 32 as necessary.
  • the pressure range is the same as the pressure range described above. As a result, the CNT 6 of the CNT array sheet 3 is securely adhered to the interface of the conductive layer 32, and the CNT 6 and the conductive layer 32 are reliably bonded.
  • the end of the CNT array sheet 3 (CNT6) is joined to the interface of the conductive layer 32 and supported by the conductive layer 32.
  • the range of the electric resistance (conductive resistance) in the thickness direction of the heat conductive sheet 1 is the same as the range of the electric resistance of the heat conductive sheet 1 when the base material 4 is a conductive base material. Moreover, the range of the heat conductivity of the heat conductive sheet 1 is the same as the range of the heat conductivity of the heat conductive sheet 1 described above.
  • the end of the CNT array sheet 3 (CNT6) is bonded to the interface of the conductive layer 32, the CNT6 included in the CNT array sheet 3 is dropped from the conductive layer 32.
  • the thermal conductivity of the thermal conductive sheet 1 can be reliably improved, and electrical conductivity can be imparted to the thermal conductive sheet 1.
  • the end of the CNT array sheet 3 on the conductive layer 32 side is bonded to the interface of the conductive layer 32 by heating.
  • the heat conductive sheet 1 with which the edge part by the side of the conductive layer 32 of the CNT array sheet 3 is joined to the interface of the conductive layer 32 can be manufactured.
  • the first CNT array sheet 3A front-side CNT array sheet 3
  • the second CNT array sheet 3B back-side CNT array sheet 3
  • the fixing sheet 2 is made of a metal or a resin material.
  • the metal for example, a metal that forms the metal sheet of the substrate 4 described above is preferable, and from the viewpoint of compatibility with iron, titanium, and CNT, titanium is more preferable.
  • a resin material the resin material which forms said resin layer 5 is mentioned, for example, Preferably, a thermoplastic resin is mentioned.
  • the fixing sheet 2 preferably has flexibility.
  • the range of the thickness of the fixed sheet 2 is, for example, the same as the range of the thickness of the substrate 4 described above.
  • the first CNT array sheet 3A is supported by the fixed sheet 2 with the other end of the first CNT array sheet 3A embedded in the surface 2A of the fixed sheet 2.
  • the second CNT array sheet 3B is supported by the fixed sheet 2 with one end portion of the second CNT array sheet 3B embedded in the back surface 2B of the fixed sheet 2.
  • the other end of the first CNT array sheet 3A and the one end of the second CNT array sheet 3B are in contact with each other in the fixed sheet 2.
  • the metal particles are dispersed in the resin solution.
  • the metal particles are particles formed from the above metal, and the average primary particle diameter is, for example, preferably 0.1 ⁇ m or more, more preferably 1 ⁇ m or more, for example, 30 ⁇ m or less. Preferably, it is 10 ⁇ m or less.
  • the content ratio of the metal particles is, for example, preferably 5% by mass or more, more preferably 10% by mass or more, for example, preferably 50% by mass or less, based on the total amount of the paste. More preferably, it is 30 mass% or less.
  • Resin solution is a solution in which the above resin material is dissolved in a solvent (for example, water, organic solvent, etc.).
  • the resin material is preferably a thermoplastic resin, more preferably PVA.
  • the particle-containing layer 40 contains metal particles.
  • the metal particles contained in the particle-containing layer 40 are shown as metal particles 42.
  • the thickness of the particle-containing layer 40 is, for example, preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, for example, preferably 50 ⁇ m or less, and more preferably 40 ⁇ m or less.
  • the first CNT array sheet 3A (CNT array sheet 3) is disposed on the surface 40A (one side surface in the thickness direction) of the particle-containing layer 40.
  • the particle-containing layer 40 is sandwiched between the first CNT array sheet 3A and the second CNT array sheet 3B.
  • the CNT array sheets 3 (the first CNT array sheet 3A and the second CNT array sheet 3B) are disposed on both the front surface 40A and the back surface 40B of the particle-containing layer 40.
  • the particle-containing layer 40 on which the CNT array sheet 3 is arranged is heated (heating process).
  • the heating temperature is not lower than the melting point of the metal particles and lower than the sublimation temperature of the CNT 6 and is, for example, preferably 1000 ° C. or higher, more preferably 1500 ° C. or higher, and preferably 2500 ° C. or lower. More preferably, it is 2000 ° C. or lower.
  • the heating time is, for example, preferably 1 minute or more, more preferably 10 minutes or more, for example, preferably 60 minutes or less, and more preferably 30 minutes or less.
  • the resin material contained in the particle-containing layer 40 is burned out, and the metal particles 42 are melted and enter between the plurality of CNTs 6 of the CNT array sheet 3.
  • the fixed sheet 2 made of metal is formed, and the first CNT array sheet 3A (front CNT array sheet 3) and the second CNT array sheet 3B (back CNT array sheet 3) are embedded in the fixed sheet 2. Then, they come into contact with each other in the fixed sheet 2.
  • Such a heating step is preferably performed in a vacuum or in an inert gas atmosphere.
  • the first CNT array sheet 3A and the second CNT array sheet 3B are pressurized from the outside in the thickness direction toward the inside so as to approach each other.
  • the pressure range is the same as the pressure range described above. Accordingly, the first CNT array sheet 3A and the second CNT array sheet 3B can be reliably brought into contact with each other in the fixed sheet 2.
  • the fixing sheet 2 is formed from a resin material, particularly a thermoplastic resin
  • the CNT array sheet 3 prepared in the same manner as in the first embodiment is used. And it arrange
  • the heating temperature is preferably higher than the softening point of the thermoplastic resin and lower than the temperature at which the thermoplastic resin is burned out, and is preferably 300 ° C. or higher and 400 ° C. or lower, for example.
  • the heating time is preferably 1 minute or longer, for example, preferably 30 minutes or shorter, and more preferably 10 minutes or shorter.
  • the fixing sheet 2 is melted and the thermoplastic resin enters between the plurality of CNTs 6 of the CNT array sheet 3.
  • first CNT array sheet 3A front CNT array sheet 3
  • second CNT array sheet 3B back CNT array sheet 3
  • the range of the electric resistance (conductive resistance) in the thickness direction of the heat conductive sheet 1 is the same as the range of the electric resistance of the heat conductive sheet 1 when the base material 4 is a conductive base material. Moreover, the range of the heat conductivity of the heat conductive sheet 1 is the same as the range of the heat conductivity of the heat conductive sheet 1 described above.
  • the first CNT array sheet 3A and the second CNT array sheet 3B are in contact with each other in the fixed sheet 2, so that the CNT 6 of the CNT array sheet 3 has
  • the CNT array sheets 3 peeled from the growth substrate 15 are arranged on both surfaces of the particle-containing layer 40 and then heated, whereby the first CNT array sheet 3A and the second CNT array
  • the array sheet 3B is embedded in the fixed sheet 2 and brought into contact with each other in the fixed sheet 2.
  • the fixed sheet 2 is formed of a thermoplastic resin
  • the CNT array sheets 3 peeled from the growth substrate 15 are arranged on both surfaces of the fixed sheet 2 and then heated, thereby heating the first CNT array sheet 3A and the first CNT array sheet 3A.
  • the 2CNT array sheet 3B is embedded in the fixed sheet 2 and brought into contact with each other in the fixed sheet 2.
  • the thermally conductive sheet 1 in which the first CNT array sheet 3A and the second CNT array sheet 3B are in contact with each other in the fixed sheet 2 can be manufactured.
  • the particle-containing layer 40 is formed by applying a paste.
  • the present invention is not limited to this, and the particle-containing layer 40 may be a resin sheet in which metal particles are dispersed.
  • the densification treatment of the CNT array sheet 3 includes heat treatment and liquid supply treatment.
  • the densification treatment of the CNT array sheet 3 is not limited to this, and is performed by mechanical compression.
  • the CNT array sheet 3 can also be densified.
  • the VACNTs 19 on the growth substrate 15 are compressed by two pressing plates 46 to prepare a densified CNT array sheet 3.
  • the two pressing plates 46 are arranged so as to sandwich the VACNTs 19, they are slid so as to approach each other to compress the VACNTs 19. Then, the plurality of CNTs 6 of the VACNTs 19 are separated from the corresponding granular material 18A and compressed so as to contact each other.
  • the VACNTs 19 can be separated from the growth substrate 15 and the CNT array sheet 3 having a high density can be prepared.
  • the substrate 4 has a sheet shape (film shape), but is not limited thereto, and may have a flat plate shape.
  • the flat substrate 4 include a metal plate, a ceramic plate, a graphite plate, a carbon nanotube aggregate, and a resin sheet containing conductive particles.
  • the carbon nanotube composite material of the second invention includes a base material, a vertically aligned carbon nanotube disposed on the base material, and an adhesive layer for bonding the base material and the vertically aligned carbon nanotube.
  • a carbon nanotube composite material 50 (hereinafter referred to as a CNT composite material 50) as a fifth embodiment of the carbon nanotube composite material of the second invention will be described.
  • the CNT composite material 50 includes a base material 51, a CNT array sheet 3, and an adhesive layer 52.
  • the substrate 51 has a sheet shape (film shape).
  • the base material 51 has a predetermined thickness and extends in a surface direction (longitudinal direction and lateral direction) orthogonal to the thickness direction, and has a flat surface (one surface in the thickness direction) and a flat back surface (the other surface in the thickness direction). )have.
  • the range of the thickness of the base material 51 is the same as the range of the thickness of the base material 4 described above.
  • the base material 51 examples include a conductive base material and an insulating base material exemplified as the base material 4 described above.
  • the base materials 51 preferably, the above metal sheet and the above plastic plate are mentioned, and more preferably, the metal sheet formed from aluminum and the plastic plate formed from engineering plastic are mentioned.
  • the metal sheet formed from aluminum is mentioned.
  • the CNT array sheet 3 is disposed on the substrate 51, specifically, on the surface (one surface in the thickness direction) of the substrate 51.
  • the CNT array sheet 3 is VACNTs 19 peeled from the growth substrate 15 as shown in FIGS. 3A and 3B.
  • the CNT array sheet 3 is formed in a sheet shape from a plurality of CNTs 6. As shown in FIG. 11, the plurality of CNTs 6 in the CNT array sheet 3 are oriented (orientated vertically) so as to be orthogonal to the base material 51.
  • the CNT array sheet 3 has one end 30A and the other end 30B opposite to the one end 30A in the thickness direction of the CNT array sheet 3 (hereinafter referred to as the thickness direction).
  • the adhesive layer 52 bonds the base material 51 and the CNT array sheet 3 together. Specifically, the adhesive layer 52 embeds the other end 30 ⁇ / b> B of the CNT array sheet 3 to bond the base material 51 and the CNT array sheet 3. That is, the adhesive layer 52 is disposed on the surface of the substrate 51 in a state where the other end portion 30B of the CNT array sheet 3 is embedded. The other end 30 ⁇ / b> B of the CNT array sheet 3 is preferably in contact with the base material 51.
  • the thickness of the adhesive layer 52 is, for example, preferably 5 ⁇ m or more, more preferably 20 ⁇ m or more, for example, preferably 50 ⁇ m or less, and more preferably 30 ⁇ m or less. Further, the thickness of the adhesive layer 52 is preferably 10 or more, more preferably 25 or more, for example, 50 or less, when the thickness of the CNT array sheet 3 is 100. More preferably, it is 30 or less.
  • the adhesive layer 52 is made of, for example, a resin material exemplified as the material of the resin layer 5 described above.
  • a resin material exemplified as the material of the resin layer 5 described above.
  • the resin material preferably, the above-described thermosetting resin and the above-described thermoplastic resin are used.
  • thermosetting resins forming the adhesive layer 52 preferably, epoxy resin and fluorine-based rubber are used. If the adhesive layer 52 is formed from a thermosetting resin, the CNT array sheet 3 can be restrained from being disturbed in orientation as compared with the case where the CNT array sheet 3 is bonded to the base material 51 with a thermoplastic resin. 3 and the substrate 51 can be stably secured.
  • a base 51 is prepared as shown in FIG. 12A. And the surface (upper surface) of the base material 51 is surface-treated by UV irradiation, surface polishing, etc. as needed.
  • thermosetting resin composition is a resin composition that becomes the above-mentioned thermosetting resin by being completely cured.
  • the A-stage resin composition layer 56 on the substrate 51 for example, a varnish made of an A-stage (liquid) thermosetting resin composition is applied to the upper surface of the substrate 51 by a known method. Then, the A-stage resin composition layer 56 is formed.
  • a varnish composed of an A-stage thermosetting resin composition contains, for example, a polymerization component that forms the thermosetting resin by polymerization and an organic solvent that dissolves the polymerization component.
  • organic solvent examples include organic solvents exemplified as the volatile liquid described above.
  • the organic solvent can be used alone or in combination of two or more.
  • polar aprotics are preferable, and N-methylpyrrolidone is more preferable.
  • thermosetting resin composition layer 56 on the upper surface of the substrate 51, for example, first, a prepreg sheet made of a B-stage (semi-cured state) thermosetting resin composition is prepared.
  • the prepreg sheet for example, a commercially available product can be used.
  • the prepreg sheet is attached to the upper surface of the substrate 51 to form a B-stage resin composition layer 56.
  • the resin composition layer 56 is formed on the upper surface of the substrate 51.
  • the thickness of the resin composition layer 56 is appropriately changed according to the length of the CNT 6.
  • VACNTs 19 are grown on the growth substrate 15 in the same manner as the CNT growth step described above.
  • the growth substrate 15 on which the VACNTs 19 are grown is arranged so that the VACNTs 19 is on the lower side and the growth substrate 15 is on the upper side. Then, the VACNTs 19 are opposed to the resin composition layer 56 with an interval on the upper side.
  • the growth substrate 15 on which the VACNTs 19 are grown is lowered, and the VACNTs 19 is embedded in the resin composition layer 56. That is, the VACNTs 19 are embedded in the resin composition layer 56 without peeling off the growth substrate 15. Thereby, as compared with the case where the VACNTs 19 (CNT array sheet 3) peeled from the growth substrate 15 is embedded in the resin composition layer 56, disorder of the orientation of the VACNTs 19 can be suppressed.
  • the VACNTs 19 are embedded in the resin composition layer 56, the VACNTs 19 and the base material 51 are preferably brought into contact with each other.
  • the temperature at which the VACNTs 19 is embedded in the resin composition layer 56 is preferably, for example, 50 ° C. or higher, for example, preferably 100 ° C. or lower, and more preferably 70 ° C. or lower.
  • the resin composition layer 56 is heated and cured.
  • the heating temperature of the resin composition layer 56 is appropriately changed depending on the type of the thermosetting resin selected, but is preferably 120 ° C. or higher, more preferably 150 ° C. or higher, for example. 400 ° C. or lower, preferably 200 ° C. or lower.
  • the heating time of the resin composition layer 56 is, for example, preferably 20 minutes or more, and more preferably 1 hour or more.
  • the VACNTs 19 is preferably pressed downward through the growth substrate 15 so that the VACNTs 19 are directed toward the base material 51.
  • the pressure on VACNTs 19 is, for example, preferably 1 kPa or more, more preferably 4 kPa or more, and particularly preferably 10 kPa or more.
  • the resin composition layer 56 when the resin composition layer 56 is cured, the resin composition layer 56 is positioned on the upper side with respect to the substrate 51, and the VACNTs 19 are resin.
  • the composition layer 56 is embedded from above. Therefore, the resin composition layer 56 is in close contact with the base material 51 by its own weight. As a result, it is possible to suppress the resin composition layer 56 from separating from the base material 51, and it is possible to suppress poor adhesion between the VACNTs 19 and the base material 51.
  • the resin composition layer 56 becomes the adhesive layer 52 that completely cures and bonds the base material 51 and the VACNTs 19.
  • the growth substrate 15 is peeled from the VACNTs 19.
  • the cutting blade 20 is slid along the growth substrate 15, and the upper ends (the growth substrate 15 side ends) of the plurality of CNTs 6 are collectively cut. . Thereafter, the growth substrate 15 is peeled from the VACNTs 19. The VACNTs 19 are peeled from the growth substrate 15 to form the CNT array sheet 3.
  • the orientation of the VACNTs 19 is compared with the case where the growth substrate 15 is peeled off from the VACNTs 19 before the resin composition layer 56 is cured. Disturbance can be suppressed.
  • the CNT composite material 50 including the adhesive layer 52 formed from the thermosetting resin is manufactured.
  • thermoplastic resins forming the adhesive layer 52 preferably, a fluorine-based polymer (for example, polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), polyvinyl fluoride, polyvinylidene fluoride, etc.) is used.
  • a fluorine-based polymer for example, polytetrafluoroethylene (PTFE), perfluoroalkoxyalkane (PFA), polyvinyl fluoride, polyvinylidene fluoride, etc.
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxyalkane
  • polyvinyl fluoride polyvinylidene fluoride
  • polyvinylidene fluoride polyvinylidene fluoride
  • the CNT composite material 50 including the adhesive layer 52 formed from a thermoplastic resin (particularly, a fluorine-based polymer) first, a base material 51 is prepared in the same manner as described above, and the thermoplastic resin is formed on the base material 51. An adhesive layer 52 made of (especially a fluoropolymer) is formed.
  • the method for forming the adhesive layer 52 on the substrate 51 is not particularly limited.
  • a method of preparing a resin sheet formed from the above and arranging the resin sheet on the substrate 51 may be used.
  • the growth substrate 15 on which the VACNTs 19 are grown is arranged so that the VACNTs 19 is on the lower side and the growth substrate 15 is on the upper side. Then, the VACNTs 19 are opposed to the adhesive layer 52 with an interval upward.
  • the adhesive layer 52 is heated to melt the adhesive layer 52.
  • the range of the heating temperature of the adhesive layer 52 is the same as the range of the heating temperature of the resin layer 5 described above.
  • the growth substrate 15 is lowered and the VACNTs 19 are embedded in the adhesive layer 52.
  • the VACNTs 19 are pressed downward in the above-described pressure range so that the VACNTs 19 are directed toward the base material 51.
  • the VACNTs 19 preferably penetrates the adhesive layer 52 and comes into contact with the base material 51.
  • the molten adhesive layer 52 is cured while being in close contact with the base material 51 and the VACNTs 19. Thereby, the adhesive layer 52 adheres the base material 51 and the VACNTs 19.
  • the growth substrate 15 is peeled from the VACNTs 19 to form the VACNTs 19 as the CNT array sheet 3.
  • the CNT composite material 50 including the adhesive layer 52 formed of a thermoplastic resin (particularly, a fluorine-based polymer) is manufactured.
  • the adhesive layer 52 is formed from any resin material of thermosetting resin or thermoplastic resin
  • the electrical resistance (conducting resistance) in the thickness direction of the CNT composite material 50 ) Is the same as the range of the electrical resistance (conductive resistance) in the thickness direction of the thermal conductive sheet 1 described above.
  • the thermal conductivity in the thickness direction of the CNT composite 50 is the same as the range of the thermal conductivity in the thickness direction of the thermal conductive sheet 1 described above.
  • Such a CNT composite 50 can be suitably used as, for example, a vibration isolator, a heat insulating material, a heat conductive sheet, or the like.
  • the adhesive layer 52 bonds the base material 51 and the CNT array sheet 3 (VACNTs 19), so that the CNT 6 included in the CNT array sheet 3 is based on It can suppress falling off from the material 51.
  • the adhesive layer 52 is formed from a thermosetting resin
  • the orientation of the CNT array sheet 3 can be prevented from being disturbed compared to the case where the CNT array sheet 3 is bonded to the base material 51 with a thermoplastic resin. Contact between the array sheet 3 and the substrate 51 can be stably secured.
  • Japanese Patent Application Laid-Open No. 2011-222746 discloses a first thermoplastic resin layer that includes a TIM, a heating element, and a heat dissipation body, and the TIM bonds a plurality of carbon nanotubes and the carbon nanotubes and the heating element. And a second thermoplastic resin layer that bonds the carbon nanotube and the heat radiating body are disclosed.
  • thermoplastic resin layer is formed on the surface of the heating element, and then the heating element so that the first thermoplastic resin layer faces the carbon nanotube. Place.
  • a second thermoplastic resin layer is formed on the surface of the radiator, and the radiator is disposed so that the second thermoplastic resin layer faces the carbon nanotubes.
  • heat treatment is performed with a load applied between the heat generating body and the heat radiating body to dissolve the two thermoplastic resin layers, and then cooling is performed to bond and fix the carbon nanotubes to the heat generating body and the heat radiating body. Thereby, an electronic device is manufactured.
  • the carbon nanotube, the heating element, and the heat radiating body are bonded by cooling the two thermoplastic resin layers after heat treatment. Therefore, if the thermoplastic resin layer is not sufficiently dissolved, contact between the carbon nanotubes, the heating element and the heat radiating body may not be secured stably.
  • the carbon nanotubes may be partially concentrated, and the orientation of the carbon nanotubes may be disturbed.
  • the characteristics (for example, thermal conductivity) of the carbon nanotubes cannot be sufficiently exhibited, and there is a problem that the thermal conductivity performance of the TIM is deteriorated.
  • the adhesive layer 52 is formed of a thermosetting resin, as shown in FIGS. 12A to 12C, the adhesive layer 52 is made of a thermosetting resin composition on the substrate 51, and is formed of an A stage or a B stage. After the resin composition layer 56 is formed, the CNT array sheet 3 can be bonded to the substrate 51 by embedding the CNT array sheet 3 in the resin composition layer and heating and curing the resin composition layer.
  • the CNT array sheet 3 is embedded in the A-stage or B-stage resin composition layer 56, it is not necessary to perform heat treatment when the CNT array sheet 3 is embedded in the resin composition layer 56. Therefore, compared with the case where the CNT array sheet 3 is embedded in a thermoplastic resin layer dissolved by heat treatment, the disorder of the orientation of the CNT array sheet 3 can be suppressed, and the contact between the CNT array sheet 3 and the substrate 51 is stabilized. Can be secured.
  • the adhesive layer 52 is formed of a fluorine-based polymer
  • the base material 51 and the CNT array 3 sheet can be stably bonded, and the heat resistance, oil resistance, and chemical resistance of the adhesive layer 52 are improved. Can be achieved.
  • the growth substrate 15 is peeled from the VACNTs 19 in the CNT composite material 50, but the present invention is not limited to this, and the growth substrate 15 may not be peeled from the VACNTs 19. That is, the structure shown in FIG. 12B can be used as the CNT composite material 50.
  • the CNT composite material 50 includes VACNTs 19, a growth substrate 15, a first base material 51, and a first adhesive layer 52.
  • a carbon nanotube composite 70 (hereinafter referred to as a CNT composite 70) as a sixth embodiment of the second invention is a CNT array.
  • the base material 51 is referred to as a first base material 51
  • the adhesive layer 52 is referred to as a first adhesive layer 52.
  • the first substrate 51 has a plurality of openings 51A.
  • the opening 51A is an opening through which the rivet 55 is inserted.
  • the number of the plurality of openings 51A is the same as the number of the plurality of rivets 55.
  • the opening 51 ⁇ / b> A penetrates the first base material 51 in the thickness direction of the first base material 51.
  • the plurality of openings 51A are arranged at the peripheral edge of the first base material 51 and are positioned so as not to overlap the CNT array sheet 3 when projected in the thickness direction.
  • the second substrate 53 is arranged on the opposite side of the first substrate 51 with respect to the CNT array sheet 3. That is, the CNT array sheet 3 is disposed between the first base material 51 and the second base material 53, and is on the second base material 53, specifically, on the other surface of the second base material 53 in the thickness direction. Is arranged.
  • the second base material 53 is arranged with an interval in the thickness direction with respect to the first base material 51.
  • the range of the distance between the first base material 51 and the second base material 53 is the same as the above-described average length range of the CNTs 6.
  • the second substrate 53 has the same configuration as the first substrate 51, and in the sixth embodiment, has a sheet shape (film shape).
  • Examples of the second base material 53 include the conductive base material and the insulating base material as described above, similarly to the first base material 51.
  • a base material different from the first base material 51 can be selected, but preferably, the same base material as the first base material 51 is selected.
  • the first substrate 51 is a metal sheet
  • a metal sheet is preferably selected as the second substrate 53.
  • the second base material 53 has a plurality of openings 53A.
  • the opening 53A is an opening through which the rivet 55 is inserted.
  • the number of the plurality of openings 53A is the same as the number of the plurality of rivets 55.
  • the opening 53A penetrates the second base material 53 in the thickness direction.
  • the diameter of the opening 53A is the same as the diameter of the opening 51A.
  • the plurality of openings 53A are arranged at the peripheral edge of the second base material 53, and are arranged so as to overlap with the plurality of openings 51A when projected in the thickness direction.
  • the second adhesive layer 54 bonds the second substrate 53 and the CNT array sheet 3 together. Specifically, the second adhesive layer 54 embeds one end 30 ⁇ / b> A of the CNT array sheet 3 to bond the second base material 53 and the CNT array sheet 3.
  • the second adhesive layer 54 is disposed on the back surface (the other surface in the thickness direction) of the second base material 53 in a state where the one end portion 30A of the CNT array sheet 3 is embedded.
  • the second adhesive layer 54 is formed, for example, from the above resin material in the same manner as the first adhesive layer 52.
  • resin materials forming the second adhesive layer 54 a thermosetting resin and a thermoplastic resin are preferable.
  • thermosetting resins there are epoxy resins and fluororubbers.
  • thermoplastic resins a fluorine polymer is preferable.
  • a resin material different from that of the first adhesive layer 52 can be selected, but the same resin material as that of the first adhesive layer 52 is preferably selected.
  • the first adhesive layer 52 is formed from a thermosetting resin
  • a thermosetting resin is selected as the resin material of the second adhesive layer 54
  • a fluoropolymer is selected as the resin material for the second adhesive layer 54.
  • the thickness range of the second adhesive layer 54 is the same as the thickness range of the first adhesive layer 52.
  • One end 30 ⁇ / b> A of the CNT array sheet 3 is embedded in the second adhesive layer 54, and the other end 30 ⁇ / b> B of the CNT array sheet 3 is embedded in the first adhesive layer 52.
  • One end 30 ⁇ / b> A of the CNT array sheet 3 is preferably in contact with the second substrate 53, and the other end 30 ⁇ / b> B of the CNT array sheet 3 is preferably in contact with the first substrate 51.
  • each CNT 6 includes a first embedded portion 60A embedded in the first adhesive layer 52, a second embedded portion 60B embedded in the second adhesive layer 54, a first embedded portion 60A, and a second embedded portion. It has an exposed portion 60C that is a portion between the embedded portion 60B.
  • the first embedded portion 60 ⁇ / b> A preferably penetrates the first adhesive layer 52.
  • the range of the length of the first embedded portion 60A is the same as the range of the thickness of the first adhesive layer 52, for example.
  • the ratio of the length of the first embedded portion 60A is preferably 10% or more, more preferably 25% or more, for example, 40% or less, with respect to 100% of the length of the CNT6. It is preferable that it is, and it is more preferable that it is 30% or less.
  • the second embedded portion 60B preferably penetrates the second adhesive layer 54.
  • the range of the length of the second embedded portion 60B is, for example, the same as the range of the thickness of the second adhesive layer 54.
  • the ratio of the length of the second embedded portion 60B is preferably, for example, 10% or more, more preferably 25% or more, for example, 50% or less, with respect to the length of the CNT 6 of 100%. It is preferable that it is, and it is more preferable that it is 30% or less.
  • the plurality of rivets 55 fix the first base material 51 and the second base material 53 to each other so as to maintain the distance between the first base material 51 and the second base material 53.
  • the rivet 55 includes a head portion 55A, a trunk portion 55B, and a caulking portion 55C.
  • the head 55A is provided at the other end of the rivet 55 in the thickness direction.
  • the head portion 55 ⁇ / b> A is disposed on the opposite side (the other side in the thickness direction) of the CNT array sheet 3 with respect to the first base material 51.
  • the head portion 55A has a circular shape in plan view.
  • the outer diameter of the head 55A is larger than the diameter of the opening 51A.
  • the body portion 55B is a portion between the head portion 55A and the caulking portion 55C in the rivet 55.
  • the trunk portion 55B has a cylindrical shape extending in the thickness direction.
  • the body portion 55 ⁇ / b> B is inserted through the opening 51 ⁇ / b> A of the first base material 51 and through the opening 53 ⁇ / b> A of the second base material 53.
  • the outer diameter of the body 55B is substantially the same (slightly smaller) as the diameter of the opening 51A.
  • the caulking portion 55C is provided at one end of the rivet 55 in the thickness direction.
  • the caulking portion 55C is disposed on the opposite side (one side in the thickness direction) of the CNT array sheet 3 with respect to the second base material 53.
  • the caulking portion 55C has a circular shape in plan view.
  • the outer diameter of the caulking portion 55C is larger than the diameter of the opening 53A.
  • the range of the electrical resistance (conductive resistance) in the thickness direction of the CNT composite material 70 is the same as the range of the electrical resistance in the thickness direction of the CNT composite material 50 described above, for example.
  • the range of the thermal conductivity in the thickness direction of the CNT composite material 70 is, for example, the same as the range of the thermal conductivity in the thickness direction of the CNT composite material 50 described above.
  • Such a CNT composite material 70 can be used for the same application as the CNT composite material 50 described above, but is preferably used as a vibration isolating material. That is, the vibration isolating material includes the CNT composite material 70, and preferably includes the CNT composite material 70.
  • the CNT array sheet 3 is bonded to the first base material 51 by the first adhesive layer 52 and bonded to the second base material 53 by the second adhesive layer 54. Therefore, when vibration is applied to the CNT composite material 70 from the outside in the thickness direction, the vibration is transmitted to the CNT array sheet 3 via the first base material 51 and / or the second base material 53.
  • the plurality of CNTs 6 included in the CNT array sheet 3 expand and contract in the alignment direction by vibration energy.
  • the expansion / contraction energy (kinetic energy) of the CNTs 6 is converted into thermal energy by friction with the air. As a result, external vibration can be efficiently reduced.
  • the first base material 51 and the CNT array sheet 3 are bonded by the first adhesive layer 52 in the same manner as in the fifth embodiment.
  • a second base material 53 is prepared. Then, if necessary, the upper surface of the second base material 53 is surface-treated by, for example, UV irradiation or surface polishing.
  • the second adhesive layer 54 is formed from a thermosetting resin, it is made of a thermosetting resin composition on the second base material 53, specifically, the upper surface of the second base material 53, and is made of A stage or B A second resin composition layer 57 of the stage is formed.
  • a resin composition layer 56 (hereinafter referred to as a first resin composition layer 56) is provided on the upper surface of the first base material 51.
  • the method similar to the method of forming) is mentioned.
  • the thickness range of the second resin composition layer 57 is the same as the thickness range of the first resin composition layer 56.
  • the first base 51 to which the CNT array sheet 3 is bonded is turned upside down so that the CNT array sheet 3 is on the lower side and the first base 51 is on the upper side. Deploy. Then, the CNT array sheet 3 is opposed to the second resin composition layer 57 with an interval on the upper side.
  • the first substrate 51 to which the CNT array sheet 3 is bonded is lowered, and the second substrate is placed on the opposite side of the first substrate 51 with respect to the CNT array sheet 3.
  • the CNT array sheet 3 is embedded in the second resin composition layer 57 so that 53 is positioned.
  • the temperature range when the CNT array sheet 3 is embedded in the second resin composition layer 57 is the same as the temperature range when the VACNTs 19 is embedded in the first resin composition layer 56.
  • a spacer 58 as an example of a fixing member is preferably provided between the first base material 51 and the second base material 53. That is, the sixth embodiment further includes a step of providing the spacer 58.
  • the spacer 58 fixes the first base material 51 and the second base material 53 so as to maintain an interval between the first base material 51 and the second base material 53. It is sandwiched between the peripheral edge of the first base material 51 and the peripheral edge of the second base material 53.
  • the spacer 58 is provided at a position that does not overlap the opening 51A and the opening 53A when projected in the vertical direction.
  • the number of spacers 58 is not particularly limited, but is preferably two or more. Thereby, the space between the 1st base material 51 and the 2nd base material 53 is securable accurately.
  • the second resin composition layer 57 is heated and cured.
  • the range of the heating temperature of the second resin composition layer 57 is the same as the range of the heating temperature of the first resin composition layer 56.
  • the range of the heating time of the second resin composition layer 57 is the same as the range of the heating time of the first resin composition layer 56.
  • the CNT array sheet 3 is pressed downward with the above-mentioned pressure so that the CNT array sheet 3 faces the second base material 53.
  • the second resin composition layer 57 when the second resin composition layer 57 is cured, the second resin composition layer 57 is positioned above the second base material 53, and the CNT array sheet 3 is the second one.
  • the resin composition layer 57 is embedded from above. Therefore, the second resin composition layer 57 is in close contact with the second base material 53 by its own weight. As a result, it is possible to suppress the second resin composition layer 57 from separating from the second base material 53, and it is possible to suppress poor adhesion between the CNT array sheet 3 and the second base material 53.
  • the 2nd resin composition layer 57 turns into the 2nd contact bonding layer 54 which adhere
  • the second adhesive layer 54 is formed from a thermoplastic resin (especially a fluorine-based polymer)
  • the second adhesive layer 54 is formed on the second base material 53 in the same manner as the first adhesive layer 52 is formed on the first base material 51.
  • the second adhesive layer 54 formed from a thermoplastic resin (especially a fluoropolymer) is formed.
  • the second adhesive layer 54 is heated to melt the second adhesive layer 54.
  • the range of the heating temperature of the second adhesive layer 54 is the same as the heating temperature of the first adhesive layer 52 described above.
  • the CNT array sheet 3 is embedded in the second adhesive layer 54 so that the second base material 53 is positioned on the opposite side of the first base material 51 with respect to the CNT array sheet 3. Thereafter, by cooling, the second adhesive layer 54 in a molten state is cured while being in close contact with the second base material 53 and the CNT array sheet 3. Thus, the second adhesive layer 54 bonds the second base material 53 and the CNT array sheet 3 together.
  • the sixth embodiment further includes a step of providing the rivet 55.
  • the rivet 55 before fixing the first base material 51 and the second base material 53 consists only of the head portion 55A and the trunk portion 55B. And the trunk
  • the CNT composite material 50 is manufactured.
  • the CNT composite material 70 includes a second base 53 and a second base 53 arranged on the opposite side of the first base 51 with respect to the CNT array sheet 3. And a second adhesive layer 54 for adhering the CNT array sheet 3 to each other.
  • the second adhesive layer 54 is formed from a thermosetting resin, as shown in FIGS. 15A and 15B, the second adhesive layer 54 is made of a thermosetting resin composition on the second base material 53, and the A stage or the B stage. After the second resin composition layer 57 is formed, the CNT array sheet 3 is embedded in the second resin composition layer 57 so as to come into contact with the second base material 53, and the second resin composition layer 57 is heated and cured. By doing so, the CNT array sheet 3 can be bonded to the second substrate 53.
  • the 2nd contact bonding layer 54 is formed from a fluorine-type polymer, while being able to adhere
  • the rivet 55 fixes the first base material 51 and the second base material 53. Therefore, it is possible to prevent the CNT composite material 70 from being deformed when an external force is applied to the CNT composite material 70. Further, the rivet 55 can prevent the first base material 51 and the second base material 53 from moving away from each other toward the outside in the thickness direction. As a result, the state in which the CNT array sheet 3 is embedded in each of the first adhesive layer 52 and the second adhesive layer 54 can be stably maintained.
  • the CNT composite material 70 is provided with a spacer 58.
  • the spacer 58 can suppress the movement of the first base material 51 and the second base material 53 so as to approach each other toward the inside in the thickness direction. Therefore, the space between the first base material 51 and the second base material 53 can be ensured with high accuracy.
  • the rivet 55 and the spacer 58 can maintain the distance between the first base material 51 and the second base material 53.
  • the state in which the CNT array sheet 3 is embedded in each of the first adhesive layer 52 and the second adhesive layer 54 can be stably maintained.
  • the CNT composite material 70 can be suitably used as a vibration-proof material.
  • the CNT array sheet 3 is bonded to the first base material 51 by the first adhesive layer 52 and is also bonded to the second base material 53 by the second adhesive layer 54.
  • the vibration when vibration is applied to the CNT composite material 70 from the outside in the thickness direction, the vibration is transmitted to the CNT array sheet 3 via the first base material 51 and / or the second base material 53.
  • the plurality of CNTs 6 included in the CNT array sheet 3 expand and contract in the alignment direction (thickness direction) due to vibration energy.
  • the expansion / contraction energy (kinetic energy) of the CNTs 6 can be converted into thermal energy by friction with air. As a result, external vibration can be efficiently reduced.
  • each of the first base material 51 and the second base material 53 has a sheet shape, but each of the first base material 51 and the second base material 53.
  • the shape of is not particularly limited.
  • the second base material 53 is the heat dissipation member 10 described above.
  • the CNT composite material 80 includes the CNT array sheet 3, the first base material 51, the first adhesive layer 52, the heat dissipation member 10, and the second adhesive layer 54.
  • the second adhesive layer 54 bonds the heat radiating member 10 and the CNT array sheet 3.
  • the CNT composite material 80 includes the first base material 51 and the first adhesive layer 52, but is not limited thereto, and the CNT composite material 80 includes the first base material 51 and the first adhesive layer 52. It does not have to be.
  • the VACNTs 19 grown on the growth substrate 15 are formed from the resin composition layer 56 (or thermoplastic resin without being peeled off from the growth substrate 15).
  • the present invention is not limited to this.
  • the CNT array sheet 3 peeled from the growth substrate 15 is embedded in the resin composition layer 56 (or the adhesive layer 52 formed from a thermoplastic resin). .
  • the VACNTs 19 is peeled off from the growth substrate 15 as shown in FIGS.
  • the array sheet 3 is used.
  • the CNT array sheet 3 is subjected to the above densification treatment, preferably heat treatment. That is, the eighth embodiment further includes a step of peeling the VACNTs 19 from the growth substrate 15 to form the CNT array sheet 3 and a step of densifying the CNT array sheet 3.
  • the densified CNT array sheet 3 is formed from the resin composition layer 56 (or thermoplastic resin) on the first substrate 51 in the same manner as described above. Embedded in the adhesive layer 52).
  • the resin composition layer 56 is heat-cured in the same manner as described above to obtain a first adhesive layer 52 that bonds the first base material 51 and the CNT array sheet 3.
  • the CNT composite material 90 can be manufactured.
  • the eighth embodiment since the CNT array sheet 3 is peeled from the growth substrate 15 to form the CNT array sheet 3 and then subjected to a densification treatment, characteristics of the CNT array sheet 3 (for example, thermal conductivity) Etc.), and consequently, the performance of the CNT composite 90 can be improved. Also, the eighth embodiment can provide the same operational effects as the fifth embodiment.
  • the CNT array sheet 3 is disposed only on one surface of the first base material 51 in the thickness direction, but is not limited thereto.
  • the CNT array sheets 3 are arranged on both surfaces of the first base material 51 in the thickness direction.
  • a first base material 51 is prepared in which the CNT array sheet 3 is bonded by a first adhesive layer 52 in the same manner as described above.
  • a second resin composition layer 57 is formed on the surface of the first substrate 51 opposite to the first adhesive layer 52 in the same manner as described above.
  • the growth substrate 15 on which the VACNTs 19 is grown is prepared, and the VACNTs 19 is embedded in the second resin composition layer 57 so that the VACNTs 19 comes into contact with the first base material 51.
  • the second resin composition layer 57 is heated and cured in the same manner as described above to form the second adhesive layer 54.
  • the growth substrate 15 is peeled from the VACNTs 19 in the same manner as described above. Thereby, the VACNTs 19 are used as the CNT array sheet 3.
  • the CNT composite material 100 is manufactured as shown in FIG. 18C.
  • the CNT composite 100 includes a first base 51, two CNT array sheets 3 disposed on both surfaces (one side and the other side) of the first base 51 in the thickness direction, and the CNT array sheet 3 in the thickness direction.
  • a first adhesive layer 52 that bonds the first substrate 51 and the CNT array sheet 3 so as to come into contact with the other surface of the first substrate 51, and the CNT array sheet 3 is one of the first substrates 51 in the thickness direction.
  • a second adhesive layer 54 that bonds the first base material 51 and the CNT array sheet 3 is provided so as to contact the surface.
  • the CNT composite material 100 is an example of the heat conductive sheet in the first invention, and the first base material 51, the first adhesive layer 52, and the second adhesive layer 54 are the same as in the first invention.
  • An example of the fixed sheet is configured.
  • the two CNT array sheets 3 are embedded on both the front and back surfaces of the fixed sheet.
  • the first substrate 51 is an example of the substrate in the first invention, and the first adhesive layer 52 and the second adhesive layer 54 are disposed on both the front surface and the back surface of the substrate in the first invention. It is an example of a resin layer. And the edge part by the side of the 1st base material 51 in the CNT array sheet 3 is embedded in the corresponding resin layer, and is contacting the 1st base material 51.
  • FIG. 1 is an example of the substrate in the first invention, and the first adhesive layer 52 and the second adhesive layer 54 are disposed on both the front surface and the back surface of the substrate in the first invention. It is an example of a resin layer. And the edge part by the side of the 1st base material 51 in the CNT array sheet 3 is embedded in the corresponding resin layer, and is contacting the 1st base material 51.
  • the growth substrate 15 is peeled off from the VACNTs 19, but this is not limitative. Not. After embedding the VACNTs 19 in the resin composition layer 56, the growth substrate 15 may be peeled from the VACNTs 19 before the resin composition layer 56 is heated and cured.
  • the resin composition layer 56 when the resin composition layer 56 is cured, the resin composition layer 56 is positioned on the upper side with respect to the first base material 51, but the present invention is not limited to this.
  • the resin composition layer 56 may be positioned below the first base material 51 when cured.
  • a plurality of rivets 55 are provided as shown in FIG. 13, but the present invention is not limited to this.
  • the CNT composite material 50 may not include a plurality of rivets 55.
  • a spacer 58 is provided between the first base material 51 and the second base material 53, but the present invention is not limited to this.
  • the spacer 58 may not be provided between the first base material 51 and the second base material 53.
  • the first resin composition layer 56 in which the VACNTs 19 are embedded is heated and cured to form the first adhesive layer 52, and then the VACNTs 19 (CNT array sheet 3) is applied to the second resin composition layer 57.
  • the second resin composition layer 57 is embedded and heated to be cured to form the second adhesive layer 54, but is not limited thereto.
  • the first adhesive layer 52 and the second adhesive layer 54 can also be used.
  • the second resin composition layer 57 when the second resin composition layer 57 is cured, the second resin composition layer 57 is positioned on the upper side with respect to the second base material 53, but the present invention is not limited to this.
  • the second resin composition layer 57 may be positioned below the second base material 53 when cured.
  • the CNT array sheet 3 is preferably in contact with the first base material 51 and the second base material 53.
  • the CNT array sheet 3 may not be in contact with the first substrate 51 and the second substrate 53.
  • the first adhesive layer 52 and the second adhesive layer 54 preferably contain the above-described additive. Contact between the CNT array sheet 3 and the additive in the first adhesive layer 52 and the second adhesive layer 54 can ensure electrical insulation and thermal conductivity of the CNT composite material.
  • Example 1 After a silicon dioxide film was laminated on the surface of a stainless steel growth substrate (stainless steel substrate), iron was deposited as a catalyst layer on the silicon dioxide film.
  • the growth substrate was heated to a predetermined temperature, and a source gas (acetylene gas) was supplied to the catalyst layer.
  • a source gas acetylene gas
  • a plurality of CNTs extend so as to be substantially parallel to each other, and are aligned (vertically aligned) so as to be orthogonal to the growth substrate.
  • the CNT was a multi-walled carbon nanotube, the average outer diameter of the CNT was about 12 nm, the average length of the CNT was about 80 ⁇ m, and the bulk density of the VACNTs was about 50 mg / cm 3 .
  • the cutter blade (cutting blade) was moved along the growth substrate, and the VACNTs were separated from the growth substrate to prepare a CNT array sheet.
  • the CNT array sheet was accommodated in a carbon container which is a heat-resistant container, and the carbon container was placed in a resistance heating furnace.
  • the temperature was raised to 2800 ° C. at 10 ° C./min, and held at 2800 ° C. for 2 hours.
  • the CNT array sheet was densified and then cooled to room temperature by natural cooling.
  • the bulk density of the densified CNT array sheet is about 100 mg / cm 3 , and the electric resistance (conductive resistance) in the thickness direction of the CNT array sheet is 0.1 ⁇ at 25 ° C.
  • the thermal conductivity of the sheet was about 30 W / (m ⁇ K) in the thickness direction.
  • a copper sheet (base material) having a thickness of 100 ⁇ m was prepared, and two resin sheets having a thickness of about 30 ⁇ m and formed of PTFE were prepared.
  • the resin sheet was arrange
  • the above CNT array sheet was placed on both the front and back resin sheets. Subsequently, pressurization was performed from the outside in the thickness direction with a force of 0.8 MPa so that the two CNT array sheets faced the copper sheet, and heating was performed at 380 ° C. for 5 minutes.
  • Example 2 A paste was prepared by dispersing titanium particles (metal particles) in a PVA solution (resin solution, PVA concentration: 10 mass%) in which PVA was dissolved in water (solvent).
  • the average primary particle diameter of the titanium particles was 2 to 3 ⁇ m, and the content ratio of the titanium particles was 20% by mass with respect to the total amount of the paste.
  • the paste was applied to one of the CNT array sheets to form a particle-containing layer having a thickness of about 30 ⁇ m.
  • the other CNT array sheet was placed on the particle-containing layer so that the particle-containing layer was sandwiched between the two CNT array sheets.
  • the particle-containing layer on which the CNT array sheet is arranged is pressed at about 1700 ° C. while pressing with a force of 0.8 MPa from the outside in the thickness direction so that the two CNT array sheets approach each other in an inert gas atmosphere. Heated for 5 minutes.
  • Example 3 A resin sheet (fixed sheet) having a thickness of 30 ⁇ m and formed of PFA was prepared.
  • the resin sheet on which the CNT array sheet was arranged was heated at about 380 ° C. for 5 minutes while being pressed with a force of 0.8 MPa from the outside in the thickness direction so that the two CNT array sheets approach each other.
  • VACNTs having a substantially rectangular shape in plan view were formed on both the front and back surfaces of the substrate.
  • the average outer diameter of CNT, the average length of CNT, and the bulk density were the same as in Example 1.
  • the growth substrate on which VACNTs are arranged on both sides was used as a heat conductive sheet.
  • Example 4 In the same manner as in Example 1, VACNTs were grown on the growth substrate.
  • an aluminum foil having a thickness of 10 ⁇ m was prepared as a first substrate, and the surface of the first substrate (aluminum foil) was surface-treated by UV irradiation.
  • the first resin composition layer was formed from a B-stage epoxy resin composition.
  • the growth substrate on which the VACNTs were grown was disposed so that the VACNTs were on the lower side and the growth substrate was on the upper side. And VACNTs was arrange
  • VACNTs were embedded in the first resin composition layer so that the VACNTs were in contact with the first base material at 55 ° C. without peeling off the growth substrate.
  • heating was performed at 160 ° C. (heating temperature of the first resin composition layer) for 1 hour while pressing with a force of 4 kPa so that the VACNTs were directed toward the first substrate.
  • the first resin composition layer was completely cured (becomes C stage) to become the first adhesive layer.
  • the first adhesive layer was made of an epoxy resin after complete curing (C stage), and adhered VACNTs and the first base material. Thereafter, the growth substrate was peeled from the VACNTs. Thereby, VACNTs were made into the CNT array sheet.
  • an aluminum foil similar to the above was prepared as a second base material, and a separately prepared epoxy resin prepreg sheet was attached to the surface of the second base material to form a second resin composition layer.
  • the second resin composition layer was formed from a B-stage epoxy resin composition.
  • the first base material to which the CNT array sheet is bonded is turned upside down so that the CNT array sheet is on the lower side and the first base material is on the upper side, and the CNT array sheet is the second resin composition layer It arrange
  • the CNT array sheet was embedded in the second resin composition layer so that the CNT array sheet was in contact with the second substrate.
  • the CNT array sheet was heated at 160 ° C. for 1 hour while being pressurized with a force of 4 kPa so that the CNT array sheet was directed to the second substrate.
  • the second resin composition layer was completely cured (becomes a C stage) to become a second adhesive layer.
  • the second adhesive layer was made of an epoxy resin after complete curing (C stage), and adhered the CNT array sheet and the second substrate.
  • Example 5 Applying a varnish composed of an epoxy resin composition to the first base material to form the first resin composition layer, changing the curing temperature of the first resin composition layer to 110 ° C., applying to the second base material Except that a varnish made of an epoxy resin composition was applied to form a second resin composition layer and that the curing temperature of the second resin composition layer was changed to 110 ° C., the same as in Example 4. Thus, a CNT composite material was obtained.
  • Each of the first resin composition layer and the second resin composition layer was formed from an A-stage epoxy resin composition.
  • the first resin composition layer was formed by applying a varnish (N-methylpyrrolidone solution) made of a fluorine-based rubber composition to the first substrate, and the curing temperature of the first resin composition layer was changed to 200 ° C.
  • the varnish (N-methylpyrrolidone solution) made of a fluorine-based rubber composition was applied to the second substrate to form the second resin composition layer, and the curing temperature of the second resin composition layer A CNT composite was obtained in the same manner as in Example 4 except that was changed to 200 ° C.
  • Each of the first resin composition layer and the second resin composition layer was formed from an A-stage fluorine-based rubber composition.
  • Example 7 Each of the CNT composite materials of Examples 4 to 6 was further provided with a plurality (four) of rivets.
  • Example 10 In the same manner as in Example 4, a first substrate on which the CNT array sheet was bonded by the first adhesive layer was prepared.
  • the first base material to which the CNT array sheet was adhered was disposed with the up and down directions reversed so that the VACNTs were on the lower side and the first base material was on the upper side.
  • an epoxy resin prepreg sheet was attached to the surface of the first substrate opposite to the first adhesive layer to form a second resin composition layer.
  • the second resin composition layer was formed from a B-stage epoxy resin composition.
  • VACNTs were embedded in the second resin composition layer at 55 ° C. so that the VACNTs on the growth substrate were in contact with the first base material.
  • heating was performed at 160 ° C. for 1 hour while pressing with a force of 4 kPa so that the VACNTs were directed toward the first substrate.
  • the second resin composition layer was completely cured (becomes the C stage) and became the second adhesive layer (second resin layer).
  • the second adhesive layer (second resin layer) was made of an epoxy resin after complete curing (C stage), and bonded VACNTs and the first base material.
  • the CNT composite includes a first base material (base material), a first adhesive layer (first resin layer) disposed on both the front surface and the back surface of the first base material (base material), and A first sheet of the CNT array sheet, comprising: a fixed sheet including a second adhesive layer (second resin layer); and a CNT array sheet that is peeled from the growth substrate and embedded on both the front and back surfaces of the fixed sheet. The side end was embedded in the corresponding resin layer and was in contact with the first substrate side.
  • Example 11 Applying a varnish made of an epoxy resin composition to the surface of the first substrate to form a first resin composition layer, changing the curing temperature of the first resin composition layer to 110 ° C., first group Example, except that the back surface of the material was coated with a varnish composed of an epoxy resin composition to form a second resin composition layer, and that the curing temperature of the second resin composition layer was changed to 110 ° C.
  • a CNT composite material thermalally conductive sheet
  • Example 12 A varnish (N-methylpyrrolidone solution) made of a fluorine-based rubber composition was applied to the surface of the first substrate to form a first resin composition layer, and the curing temperature of the first resin composition layer was 200 ° C.
  • the varnish (N-methylpyrrolidone solution) made of a fluorine-based rubber composition was applied to the back surface of the first base material to form a second resin composition layer, and the second resin composition A CNT composite material (thermally conductive sheet) was obtained in the same manner as in Example 10 except that the curing temperature of the layer was changed to 200 ° C.
  • Each of the first resin composition layer and the second resin composition layer was formed from an A-stage fluorine-based rubber composition.
  • Example 13 A CNT composite (as in Example 1), except that a resin sheet (adhesive layer) formed from PTFE is disposed only on the surface of the copper sheet (base material) and one CNT array is embedded in the resin sheet. A heat conductive sheet) was obtained.
  • Example 14 A CNT composite (as in Example 3) except that a resin sheet (adhesive layer) formed from PFA was disposed only on the surface of the copper sheet (base material) and one CNT array was embedded in the resin sheet. A heat conductive sheet) was obtained.
  • the CNT composite material can be applied to various industrial products, and can be used as, for example, a heat conductive material, a vibration isolating material, a heat insulating material, and the like.
  • the manufacturing method of a CNT composite material can be used suitably for manufacture of the CNT composite material used for various industrial products.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Nanotechnology (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Organic Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Ceramic Engineering (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Laminated Bodies (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

カーボンナノチューブ複合材は、表面および裏面を有する固定シートと、固定シートの表面および裏面の両面に埋め込みまたは接合されるカーボンナノチューブアレイシートと、を備えている。

Description

カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法
 本発明は、カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法に関する。
 電子部品とヒートシンクとの間に熱伝導性材料(Thermal Interface Material:以下、TIMとする。)を配置して、電子部品とヒートシンクとの間の隙間を低減して、電子部品から発生する熱を効率よくヒートシンクに伝導することが知られている。このようなTIMとして、高分子材料からなる高分子シートや、シリコーングリースなどが知られている。
 しかし、高分子シートは、電子部品およびヒートシンクの表面の微細な凹凸(表面粗さ)に十分に追従することができず、その微細な凹凸により、電子部品とヒートシンクとの間に空隙が生じる場合があり、熱伝導率の向上を図るには限度がある。
 また、シリコーングリースは、電子部品およびヒートシンクの表面の微細な凹凸に追従することができるが、温度変化が繰り返されることにより、ポンプアウト(電子部品とヒートシンクとの間から流出)する場合があり、長期にわたってTIMの熱伝導性能を確保することは困難である。
 そこで、電子部品およびヒートシンクの表面の微細な凹凸に追従させることができながら、長期にわたって熱伝導性能を確保できるTIMが望まれており、TIMにカーボンナノチューブ(以下、CNTとする。)を利用することが検討されている。
 例えば、基板と、基板の両面にアレイ状に配置されるCNTとを備える熱界面パッドが提案されている(例えば、特許文献1参照)。
 そのような熱界面パッドは、CNTを、化学気相蒸着によって、基板の両面に成長させて製造される。そして、そのような熱界面パッドでは、CNTが基板の両面に配置されているので、そのCNTを電子部品およびヒートシンクの表面の微細な凹凸に追従させることができる。
特表2015-526904号公報
 特許文献1に記載の熱界面パッドは、化学気相蒸着により、CNTを基板の両面に成長させて製造されているので、基板とCNTとの接着強度を十分に確保することができない。そのため、熱界面パッドをTIMとして使用すると、CNTが基板から脱落してしまう場合がある。この場合、熱界面パッドの熱伝導性能を確保することは困難であり、また、脱落したCNTが電子部品などの短絡を引き起こす場合がある。
 そこで、第1の本発明の目的は、対象物の表面の微細な凹凸に追従させることができながら、カーボンナノチューブが脱落することを抑制できるカーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法を提供することにある。
<第1の発明>
 本発明[1]は、表面および裏面を有する固定シートと、前記固定シートの表面および裏面の両面に埋め込みまたは接合されるカーボンナノチューブアレイシートと、を備えている、カーボンナノチューブ複合材を含んでいる。
 このような構成によれば、カーボンナノチューブ複合材がカーボンナノチューブアレイシートを備えているので、カーボンナノチューブ複合材を対象物に接触させたときに、カーボンナノチューブアレイシートの複数のCNTを対象物表面の微細な凹凸に追従させることができる。
 また、カーボンナノチューブアレイシートが、固定シートの表面および裏面の両面に埋め込みまたは接合されているので、カーボンナノチューブアレイシートが有するCNTが、固定シートから脱落することを抑制できる。
 本発明[2]は、前記カーボンナノチューブアレイシートの平均嵩密度は、50mg/cm以上である、上記[1]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、カーボンナノチューブアレイシートの平均嵩密度が上記下限以上であるので、カーボンナノチューブアレイシートの熱伝導率の向上を図ることができ、ひいては、カーボンナノチューブ複合材の熱伝導率の向上を図ることができる。
 しかるに、カーボンナノチューブアレイを化学気相蒸着により基板の両面に成長させる場合、カーボンナノチューブアレイの平均嵩密度を上記下限以上とすることは困難である。
 一方、上記の構成によれば、成長基板から剥離されたカーボンナノチューブアレイシートが、固定シートに埋め込みまたは接合されているので、カーボンナノチューブアレイシートを、成長基板から剥離した後、高密度化処理することができる。そのため、カーボンナノチューブアレイシートの平均嵩密度を上記下限以上とすることができる。
 本発明[3]は、前記固定シートは、基材と、前記基材の表面および裏面の両面に配置される樹脂層と、を備え、前記カーボンナノチューブアレイシートにおける前記基材側の端部は、対応する前記樹脂層に埋め込まれて、前記基材と接触している、上記[1]または[2]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、カーボンナノチューブアレイシートにおける基材側の端部が、対応する樹脂層に埋め込まれて、基材と接触しているので、カーボンナノチューブアレイシートが有するCNTが、固定シートから脱落することを確実に抑制できながら、カーボンナノチューブ複合材の熱伝導率の向上を確実に図ることができる。
 本発明[4]は、前記基材は、電気伝導性を有する、上記[3]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、電気伝導性を有するカーボンナノチューブアレイシートが、電気伝導性を有する基材と接触しているので、カーボンナノチューブ複合材に電気伝導性を付与することができる。
 本発明[5]は、前記基材は、無機物の焼結体から形成される、上記[3]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、カーボンナノチューブアレイシートが、無機物の焼結体から形成される基材と接触しているので、カーボンナノチューブ複合材に電気絶縁性を付与することができる。
 本発明[6]は、前記固定シートは、電気伝導性を有する導電層を備え、前記カーボンナノチューブアレイシートの前記導電層側の端部は、前記導電層の界面に接合されている、上記[1]または[2]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、カーボンナノチューブアレイシートの導電層側の端部が、電気伝導性を有する導電層に接合されているので、カーボンナノチューブアレイシートが有するCNTが、固定シートから脱落することを確実に抑制できながら、カーボンナノチューブ複合材の熱伝導率の向上を確実に図ることができ、かつ、カーボンナノチューブ複合材に電気伝導性を付与することができる。
 本発明[7]は、前記表面側のカーボンナノチューブアレイシートおよび前記裏面側のカーボンナノチューブアレイシートは、前記固定シートに埋め込まれ、前記固定シート中において互いに接触している、上記[1]または[2]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、表面側のカーボンナノチューブアレイシートおよび裏面側のカーボンナノチューブアレイシートが、固定シートに埋め込まれ、固定シート中において互いに接触しているので、カーボンナノチューブアレイシートが有するカーボンナノチューブが、固定シートから脱落することを確実に抑制できながら、カーボンナノチューブ複合材の熱伝導率の向上を確実に図ることができる。
 本発明[8]は、基材と、前記基材の表面および裏面の両面に配置される樹脂層とを備える固定シートを準備する工程と、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートを、前記表面側および前記裏面側の両方の樹脂層上に配置する工程と、前記カーボンナノチューブアレイシートが配置された前記固定シートを加熱して、前記カーボンナノチューブアレイシートにおける前記基材側の端部を、対応する前記樹脂層に埋め込み、前記基材と接触させる工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートを、基材の両面に配置される樹脂層上に配置した後、加熱することで、カーボンナノチューブアレイシートにおける基材側の端部を、対応する樹脂層に埋め込み、基材と接触させる。
 そのため、簡易な方法でありながら、樹脂層に埋め込まれるカーボンナノチューブアレイシートを備えるカーボンナノチューブ複合材を効率良く製造することができる。
 本発明[9]は、樹脂組成物を、基材の表面および裏面の両面に塗布して、前記基材の表面および裏面の両面に樹脂組成物層を形成する工程と、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートを、前記表面側および前記裏面側の両方の樹脂組成物層に埋め込み、前記カーボンナノチューブアレイシートにおける前記基材側の端部を、前記基材に接触させる工程と、前記樹脂組成物層を加熱し、硬化させて樹脂層とする工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートを、基材の両面に配置される樹脂組成物層に埋め込み、カーボンナノチューブアレイシートにおける基材側の端部を、基材に接触させた後、樹脂組成物層を硬化させて樹脂層とする。
 そのため、簡易な方法でありながら、樹脂層に埋め込まれるカーボンナノチューブアレイシートを備えるカーボンナノチューブ複合材を効率良く製造することができる。
 本発明[10]は、電気伝導性を有する導電層を備える固定シートを準備する工程と、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートを、前記固定シートの表面および裏面の両面に配置する工程と、前記カーボンナノチューブアレイシートが配置された前記固定シートを加熱して、前記カーボンナノチューブアレイシートの前記導電層側の端部を、前記導電層の界面に接合させる工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートを、固定シートの両面に配置した後、加熱することで、カーボンナノチューブアレイシートにおける導電層側の端部を、導電層の界面に接合させる。
 そのため、簡易な方法でありながら、導電層の界面に接合されるカーボンナノチューブアレイシートを備えるカーボンナノチューブ複合材を効率良く製造することができる。
 本発明[11]は、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートを、金属粒子を含有する粒子含有層の表面および裏面の両面に配置する工程と、前記粒子含有層を加熱して、前記金属粒子を溶融させて固定シートに形成し、前記表面側のカーボンナノチューブアレイシートと、前記裏面側のカーボンナノチューブアレイシートとを、前記固定シートに埋め込み、前記固定シート中において互いに接触させる工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートを、粒子含有層の両面に配置した後、加熱することで、表面側のカーボンナノチューブアレイシートと、裏面側のカーボンナノチューブアレイシートとを、固定シートに埋め込み、固定シート中において互いに接触させる。
 そのため、簡易な方法でありながら、表面側のカーボンナノチューブアレイシートおよび裏面側のカーボンナノチューブアレイシートが、固定シート中において互いに接触するカーボンナノチューブ複合材を効率良く製造することができる。
 本発明[12]は、樹脂材料から形成される固定シートを準備する工程と、成長基板上に垂直配向カーボンナノチューブを成長させる工程と、前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートを、前記固定シートの表面および裏面の両面に配置する工程と、前記カーボンナノチューブアレイシートが配置された前記固定シートを加熱して、前記表面側のカーボンナノチューブアレイシートと、前記裏面側のカーボンナノチューブアレイシートとを、前記固定シートに埋め込み、前記固定シート中において互いに接触させる工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、成長基板から剥離したカーボンナノチューブアレイシートを、樹脂材料から形成される固定シートの両面に配置した後、加熱することで、表面側のカーボンナノチューブアレイシートと、裏面側のカーボンナノチューブアレイシートとを、固定シートに埋め込み、固定シート中において互いに接触させる。
 そのため、簡易な方法でありながら、表面側のカーボンナノチューブアレイシートおよび裏面側のカーボンナノチューブアレイシートが、固定シート中において互いに接触するカーボンナノチューブ複合材を効率良く製造することができる。
 <第2の発明>
 本発明[13]は、基材と、前記基材上に配置される垂直配向カーボンナノチューブと、基材と前記垂直配向カーボンナノチューブとを接着する接着層と、を備える、カーボンナノチューブ複合材を含んでいる。
 このような構成によれば、接着層が基材と垂直配向カーボンナノチューブとを接着するので、垂直配向カーボンナノチューブが有するCNTが、基材から脱落することを抑制できる。
 本発明[14]は、前記接着層は、熱硬化性樹脂から形成される、上記[13]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、接着層が熱硬化性樹脂から形成されているので、基材上に、熱硬化性樹脂組成物からなり、AステージまたはBステージの樹脂組成物層を形成した後、垂直配向カーボンナノチューブを樹脂組成物層に埋め込み、樹脂組成物層を加熱し硬化させることにより、垂直配向カーボンナノチューブを基材に接着することができる。
 つまり、垂直配向カーボンナノチューブは、AステージまたはBステージの樹脂組成物層に埋め込まれるので、垂直配向カーボンナノチューブを樹脂組成物層に埋め込むときに熱処理する必要がない。そのため、垂直配向カーボンナノチューブを、熱処理により溶解した熱可塑性樹脂層に埋め込む場合と比較して、垂直配向カーボンナノチューブの配向の乱れを抑制できながら、垂直配向カーボンナノチューブと基材との接触を安定して確保することができる。
 本発明[15]は、前記接着層は、フッ素系ポリマーから形成される、上記[13]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、接着層がフッ素系ポリマーから形成されるので、基材と垂直配向カーボンナノチューブとを安定して接着することができながら、接着層の耐熱性、耐油性および耐薬品性の向上を図ることができる。
 本発明[16]は、前記垂直配向カーボンナノチューブに対して、前記基材の反対側に配置される第2基材と、前記第2基材と前記垂直配向カーボンナノチューブとを接着する第2接着層と、をさらに備える、上記[13]~[15]のいずれか一項に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、垂直配向カーボンナノチューブが、接着層(以下、第1接着層とする。)により基材(以下、第1基材とする。)に接着されるとともに、第2接着層により第2基材に接着されるので、垂直配向カーボンナノチューブが第1基材と第2基材との間に配置される構造体を構成することができる。
 本発明[17]は、前記第2接着層は、熱硬化性樹脂から形成されている、上記[16]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、第2接着層が熱硬化性樹脂から形成されているので、第2基材上に、熱硬化性樹脂組成物からなり、AステージまたはBステージの第2樹脂組成物層を形成した後、第2基材と接触するように、垂直配向カーボンナノチューブを第2樹脂組成物層に埋め込み、第2樹脂組成物層を加熱し硬化させることにより、垂直配向カーボンナノチューブを第2基材に接着することができる。
 そのため、垂直配向カーボンナノチューブの配向の乱れを抑制できながら、垂直配向カーボンナノチューブと第2基材との接触を安定して確保することができる。その結果、垂直配向カーボンナノチューブを第1基材と第2基材との間に位置させることができながら、垂直配向カーボンナノチューブと、第1基材および第2基材との接触を安定して確保することができる。
 本発明[18]は、前記第2接着層は、フッ素系ポリマーから形成される、上記[16]に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、第2接着層がフッ素系ポリマーから形成されるので、第2基材と垂直配向カーボンナノチューブとを安定して接着することができながら、第2接着層の耐熱性、耐油性および耐薬品性の向上を図ることができる。
 本発明[19]は、前記基材と前記第2基材との間の間隔を維持するように、前記第1基材と前記第2基材とを固定する固定部材をさらに備える、上記[16]~[18]のいずれか一項に記載のカーボンナノチューブ複合材を含んでいる。
 このような構成によれば、固定部材が第1基材と第2基材とを固定するので、カーボンナノチューブ複合材に外部から力が加わったときに、カーボンナノチューブ複合材が変形することを抑制できる。また、固定部材が第1基材と第2基材との間の間隔を維持するので、垂直配向カーボンナノチューブが、第1接着層および第2接着層のそれぞれに埋設された状態を安定して維持できる。
 本発明[20]は、上記[13]~[19]のいずれか一項に記載のカーボンナノチューブ複合材を備える、防振材を含んでいる。
 このような構成によれば、垂直配向カーボンナノチューブが、第1接着層により、第1基材に接着されているので、カーボンナノチューブ複合材に外部から振動が加わると、その振動が、第1基材を介して、垂直配向カーボンナノチューブに伝達される。
 すると、垂直配向カーボンナノチューブが備える複数のカーボンナノチューブは、振動エネルギーにより配向方向に伸縮する。このとき、複数のカーボンナノチューブの間には、空気が存在するので、カーボンナノチューブの伸縮エネルギー(運動エネルギー)が空気との摩擦により、熱エネルギーに変換される。これによって、外部からの振動が低減される。
 そのため、カーボンナノチューブ複合材を備える防振材は、効率よく振動を低減することができる。
 本発明[21]は、第1基材上に、熱硬化性樹脂組成物からなり、AステージまたはBステージの第1樹脂組成物層を形成する工程と、垂直配向カーボンナノチューブを前記第1樹脂組成物層に埋め込む工程と、前記第1樹脂組成物層を加熱し硬化させて、前記第1基材と前記垂直配向カーボンナノチューブとを接着する第1接着層とする工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、垂直配向カーボンナノチューブを、AステージまたはBステージの第1樹脂組成物層に埋め込んだ後、第1樹脂組成物層を加熱して硬化させるので、垂直配向カーボンナノチューブの配向の乱れを抑制できながら、垂直配向カーボンナノチューブと第1基材との接触を安定して確保することができる。
 本発明[22]は、第1基材上に、フッ素系ポリマーから形成される第1接着層を形成する工程と、前記第1接着層を加熱して、垂直配向カーボンナノチューブを前記第1接着層に埋め込む工程と、を含む、カーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、垂直配向カーボンナノチューブを、フッ素系ポリマーから形成される第1接着層に埋め込むので、第1基材と垂直配向カーボンナノチューブとを安定して接着することができながら、第1接着層の耐熱性、耐油性および耐薬品性の向上を図ることができる。
 本発明[23]は、第2基材上に、熱硬化性樹脂組成物からなり、AステージまたはBステージの第2樹脂組成物層を形成する工程と、前記垂直配向カーボンナノチューブに対して前記第1基材の反対側に前記第2基材が位置するように、前記垂直配向カーボンナノチューブを前記第2樹脂組成物層に埋め込む工程と、前記第2樹脂組成物層を加熱し硬化させて、前記第2基材と前記垂直配向カーボンナノチューブとを接着する第2接着層とする工程と、をさらに含む、上記[21]または[22]に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、垂直配向カーボンナノチューブに対して第1基材の反対側に第2基材が位置するように、垂直配向カーボンナノチューブを第2樹脂組成物層に埋め込んだ後、第2樹脂組成物層を加熱し硬化させて第2接着層とするので、垂直配向カーボンナノチューブが第1基材と第2基材との間に配置される構造体を構成することができる。
 また、垂直配向カーボンナノチューブを、AステージまたはBステージの第2樹脂組成物層に埋め込んだ後、第2樹脂組成物層を加熱して硬化させるので、垂直配向カーボンナノチューブの配向の乱れを抑制できながら、垂直配向カーボンナノチューブと第2基材との接触を安定して確保することができる。
 その結果、垂直配向カーボンナノチューブを第1基材と第2基材との間に位置させることができながら、垂直配向カーボンナノチューブと、第1基材および第2基材との接触を安定して確保することができる。
 本発明[24]は、第2基材上に、フッ素系ポリマーから形成される第2接着層を形成する工程と、前記第2接着層を加熱して、前記垂直配向カーボンナノチューブに対して前記第1基材の反対側に前記第2基材が位置するように、前記垂直配向カーボンナノチューブを前記第2接着層に埋め込む工程と、含む、上記[21]または[22]に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、垂直配向カーボンナノチューブを、フッ素系ポリマーから形成される第2接着層に埋め込むので、第2基材と垂直配向カーボンナノチューブとを安定して接着することができながら、第2接着層の耐熱性、耐油性および耐薬品性の向上を図ることができる。
 本発明[25]は、前記垂直配向カーボンナノチューブを、成長基板から剥離してカーボンナノチューブアレイシートとする工程と、前記カーボンナノチューブアレイシートを高密度化処理する工程と、をさらに含む、上記[21]~[24]のいずれか一項に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、垂直配向カーボンナノチューブを、成長基板から剥離してカーボンナノチューブアレイシートとした後、高密度化処理するので、カーボンナノチューブアレイシートの特性(例えば、熱伝導性など)の向上を図ることができ、ひいては、カーボンナノチューブ複合材の性能の向上を図ることができる。
 本発明[26]は、前記第1基材と前記第2基材との間の間隔を維持するように、前記第1基材と前記第2基材とを固定する固定部材を設ける工程をさらに含む、上記[23]または[24]に記載のカーボンナノチューブ複合材の製造方法を含んでいる。
 このような方法によれば、固定部材が第1基材と第2基材との間の間隔を維持するので、垂直配向カーボンナノチューブが、第1接着層および第2接着層のそれぞれに埋設された状態を安定して維持できる。
 本発明のカーボンナノチューブ複合材は、CNTが脱落することを抑制できる。
 本発明のカーボンナノチューブ複合材の製造方法は、簡易な方法でありながら、上記のカーボンナノチューブ複合材を効率良く製造することができる。
図1Aは、本発明のカーボンナノチューブ複合材の第1実施形態としての熱伝導性シートの側面図である。図1Bは、図1Aに示す熱伝導性シートが電子部品とヒートシンクとの間に配置された状態の概略構成図である。 図2Aは、成長基板に垂直配向カーボンナノチューブ(VACNTs)を成長させる工程の一実施形態を説明するための説明図であって、基板上に触媒層を形成する工程を示す。図2Bは、図2Aに続いて、基板を加熱して、触媒層を複数の粒状体に凝集させる工程を示す。図2Cは、図2Bに続いて、複数の粒状体に原料ガスを供給して、複数のカーボンナノチューブを成長させて、VACNTsを調製する工程を示す。 図3Aは、VACNTsを剥離する工程を説明するための説明図であって、VACNTsを成長基板から切断する工程を示す。図3Bは、図3Aに続いて、VACNTsを成長基板から剥離して、カーボンナノチューブアレイシート(CNTアレイシート)とする工程を示す。図3Cは、図3Bに示すCNTアレイシートの斜視図である。 図4Aは、図3Cに示すCNTアレイシートを高密度化する工程を説明するための説明図であって、CNTアレイシートを耐熱容器内に収容する工程を示す。図4Bは、図4Aに続いて、CNTアレイシートを加熱処理して、CNTアレイシートを高密度化する工程を示す。図4Cは、図4Bに示す高密度化されたCNTアレイシートを、固定シートの表面および裏面の両面に配置する工程を示す。 図5は、本発明のカーボンナノチューブ複合材の第2実施形態としての熱伝導性シートの側面図である。 図6Aは、図5に示すウェブ積層シートの製造工程の一実施形態を説明するための説明図であって、VACNTsからカーボンナノチューブウェブ(CNTウェブ)を引き出す工程を示す。図6Bは、図6Aに続いて、CNTウェブを積層する工程を示す。図6Cは、図6Bに続いて、積層されたCNTウェブを展開して、ウェブ積層シートとする工程を示す。 図7Aは、本発明のカーボンナノチューブ複合材の第3実施形態としての熱伝導性シートの側面図である。図7Bは、図7Aに示す熱伝導性シートの製造工程の一実施形態を説明するための説明図である。 図8Aは、本発明のカーボンナノチューブ複合材の第4実施形態としての熱伝導性シートの側面図である。図8Bは、図8Aに示す熱伝導性シートの製造工程の一実施形態を説明するための説明図であって、CNTアレイシートに粒子含有層を形成する工程を示す。図8Cは、図8Bに続いて、CNTアレイシートを、粒子含有層の表面および裏面の両面に配置する工程を示す。 図9Aは、本発明のカーボンナノチューブ複合材の第4実施形態の変形例としての熱伝導性シートの側面図である。図9Bは、図9Aに示す熱伝導性シートの製造工程の一実施形態を説明するための説明図である。 図10Aは、図2Cに示すVACNTsを機械的に高密度化する工程を説明するための説明図であって、VACNTsを挟むように押圧板を配置する工程を示す。図10Bは、図10Aに続いて、押圧板によりVACNTsを圧縮する工程を示す。 図11は、第2の発明のカーボンナノチューブ複合材(CNT複合材)の第5実施形態の側面図である。 図12Aは、第2の発明のCNT複合材の第5実施形態の製造方法を説明するための説明図であって、VACNTsを第1樹脂組成物層に埋め込む工程を説明するための説明図である。図12Bは、図12Aに続いて、第1樹脂組成物層を硬化させて第1接着層とする工程を説明するための説明図である。図12Cは、図12Bに続いて、成長基板をVACNTsから剥離する工程を説明するための説明図である。 図13は、第2の発明のCNT複合材の第6実施形態の側面図である。 図14は、図13に示すCNT複合材の斜視図である。 図15Aは、第2の発明のCNT複合材の第6実施形態の製造方法を説明するための説明図であって、CNTアレイシートを第2樹脂組成物層に埋め込む工程を説明するための説明図である。図15Bは、図15Aに続いて、第2樹脂組成物層を硬化させて第2接着層とする工程を説明するための説明図である。 図16は、第2の発明のCNT複合材の第7実施形態の側面図である。 図17Aは、第2の発明のCNT複合材の第8実施形態の製造方法を説明するための説明図であって、CNTアレイシートを第1樹脂組成物層に埋め込む工程を説明するための説明図である。図17Bは、図17Aに続いて、第1樹脂組成物層を硬化させて第1接着層とする工程を説明するための説明図である。 図18Aは、第2の発明のCNT複合材の第9実施形態の製造方法を説明するための説明図であって、VACNTsを第2樹脂組成物層に埋め込む工程を説明するための説明図である。図18Bは、図18Aに続いて、第2樹脂組成物層を硬化させて第2接着層とする工程を説明するための説明図である。図18Cは、図18Bに続いて、VACNTsから成長基板を剥離する工程を説明するための説明図である。
 <第1の発明>
 第1の発明のカーボンナノチューブ複合材(以下、CNT複合材とする。)は、固定シートと、固定シートに固定されるカーボンナノチューブアレイシートと、を備えている。カーボンナノチューブアレイシートは、固定シートの表面および裏面の両面に埋め込みまたは接合される。
 以下に、第1の発明のCNT接合シートの第1実施形態としての熱伝導性シート1について説明する。
(第1実施形態)
(1)カーボンナノチューブ複合材の構成
 熱伝導性シート1(CNT複合材の一例)は、図1Aに示すように、固定シート2と、2つのカーボンナノチューブアレイシート3(以下、CNTアレイシート3とする。)とを備えている。
 固定シート2は、2つのCNTアレイシート3を固定可能であり、第1実施形態において、基材4と、2つの樹脂層5とを備えている。
 基材4は、シート形状(フィルム形状)を有しており、具体的には、基材4は、所定の厚みを有し、その厚み方向と直交する面方向(縦方向および横方向)に延びており、平坦な表面4A(厚み方向一方面)および平坦な裏面4B(厚み方向他方面)を有している。
 また、基材4は、好ましくは、可撓性を有している。基材4の厚みは、例えば、10μm以上であることが好ましく、50μm以上であることがより好ましく、例えば、300μm以下であることが好ましく、150μm以下であることがより好ましい。
 基材4としては、例えば、導電性基材、絶縁性基材が挙げられる。
 導電性基材は、電気伝導性を有しており、例えば、金属シート、グラファイトシート、カーボンナノチューブ集合体、導電性粒子(例えば、金属粒子など)を含有する樹脂シートなどが挙げられ、好ましくは、金属シートおよびカーボンナノチューブ集合体が挙げられる。
 金属シートは、金属から形成されるシートである。金属としては、例えば、金、銀、銅、鉄、アルミニウム、チタン、タングステン、それらの合金などが挙げられ、好ましくは、銅およびアルミニウムが挙げられる。
 なお、基材4がカーボンナノチューブ集合体である場合については、後の第2実施形態において詳述する。
 絶縁性基材は、電気絶縁性を有しており、例えば、セラミックスシート、プラスチックプレートなどが挙げられる。
 セラミックスシートは、無機物の焼結体から形成されるシートである。無機物としては、例えば、窒化ホウ素、窒化アルミニウム、窒化ケイ素、シリカ、アルミナ、酸化マグネシウム、酸化亜鉛などが挙げられる。
 プラスチックプレートは、プラスチック(硬質樹脂)から形成されるプレートである。プラスチックとしては、例えば、耐熱性が100℃未満のプラスチック(例えば、ポリエチレン、ポリプロピレン、ポリスチレン、塩化ビニル樹脂など)、耐熱性が100℃以上のエンジニアリングプラスチック(例えば、ポリエーテルエーテルケトン、液晶ポリマー、ポリアミド、ポリカーボネート、ポリイミドなど)などが挙げられる。
 このような基材4は、熱伝導性シート1の用途に応じて適宜選択される。基材4として導電性基材が選択される場合、熱伝導性シート1に電気伝導性を付与することができ、熱伝導性シート1は、電気熱伝導性シートとして構成される。基材4として絶縁性基材が選択される場合、熱伝導性シート1に電気絶縁性を付与することができ、熱伝導性シート1は、絶縁性熱伝導性シートとして構成される。
 樹脂層5は、基材4の表面4Aおよび裏面4Bの両面に配置されている。なお、2つの樹脂層5を互いに区別する場合、基材4の表面4Aに配置される樹脂層5を第1樹脂層5Aとし、基材4の裏面4Bに配置される樹脂層5を第2樹脂層5Bとする。
 そして、第1樹脂層5Aの厚み方向の一方側の表面が、固定シート2の表面2Aに対応し、第2樹脂層5Bの厚み方向の他方側の表面が、固定シート2の裏面2Bに対応する。つまり、固定シート2は、表面2A(第1樹脂層5Aの厚み方向の一方面)および裏面2B(第2樹脂層5Bの厚み方向の他方面)を有している。
 樹脂層5は、樹脂材料から形成されている。樹脂材料としては、天然樹脂、合成樹脂(例えば、熱硬化性樹脂、熱可塑性樹脂など)などが挙げられ、好ましくは、合成樹脂が挙げられる。
 熱硬化性樹脂は、硬化体(完全硬化後(Cステージ)の熱硬化性樹脂)であって、例えば、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂、不飽和ポリエステル樹脂、熱硬化性エラストマー(例えば、ウレタンゴム、ブチルゴム、フッ素系ゴム、シリコーンゴム、アクリルゴムなど)などが挙げられる。
 熱可塑性樹脂としては、例えば、ポリエステル(例えば、ポリエチレンテレフタレートなど)、ポリオレフィン(例えば、ポリエチレン、ポリプロピレンなど)、ポリアミド、ポリスチレン、ポリ塩化ビニル、ポリビニルアルコール(PVA)、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリウレタン、フッ素系ポリマー(例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、ポリフッ化ビニル、ポリフッ化ビニリデンなど)、熱可塑性エラストマー(例えば、オレフィン系エラストマー(例えば、エチレン-プロピレンゴム、エチレン-プロピレン-ジエンゴムなど)、スチレン系エラストマー、塩化ビニル系エラストマーなど)などが挙げられる。
 このような樹脂材料のなかでは、好ましくは、熱可塑性樹脂、さらに好ましくは、フッ素系ポリマー、とりわけ好ましくは、PTFEおよびPFAが挙げられる。このような樹脂材料は、単独使用または2種類以上併用することができる。
 樹脂層5の厚みTは、例えば、10μm以上であることが好ましく、20μm以上であることがより好ましく、例えば、50μm以下であることが好ましく、40μm以下であることがより好ましい。
 また、樹脂層5の厚みTは、基材4の厚みを100としたときに、例えば、10以上であることが好ましく、20以上であることがより好ましく、例えば、50以下であることが好ましく、40以下であることがより好ましい。
 なお、樹脂層5は、必要に応じて、公知の添加材を含有することができる。添加材としては、例えば、金属粒子(例えば、銅粒子、チタン粒子、アルミニウム粒子など)、無機酸化物(例えば、シリカ粒子、アルミナ粒子など)、無機窒化物(例えば、窒化アルミニウム、窒化ホウ素など)、炭素材料(例えば、カーボンナノチューブ、グラファイト、フラーレンなど)などが挙げられる。このような添加材は、単独使用または2種類以上併用することができる。
 CNTアレイシート3は、図3Cに示すように、成長基板15(後述;図3B参照)から剥離されており、複数のカーボンナノチューブ6(以下、CNT6とする。)からシート形状に形成されるカーボンナノチューブ集合体である。
 より詳しくは、CNTアレイシート3において、複数のCNT6は、CNTアレイシート3の厚み方向に配向されており、厚み方向に互いに連続することなく、面方向(縦方向および横方向)に互いに連続してシート形状となるように配列されている。
 つまり、カーボンナノチューブアレイシート3(CNTアレイシート3)は、所定方向に配向される複数のカーボンナノチューブ6(CNT6)が、カーボンナノチューブ6の配向方向と直交する方向に互いに連続してシート形状となるように形成されている。
 これによって、CNTアレイシート3は、成長基板15(後述)から剥離された状態で、複数のCNT6が面方向に互いに接触するように、形状を保持している。また、CNTアレイシート3は、可撓性を有している。なお、複数のCNT6のうち、互いに隣接するCNT6間には、ファンデルワールス力が作用している。
 CNT6は、単層カーボンナノチューブ、二層カーボンナノチューブおよび多層カーボンナノチューブのいずれであってもよく、好ましくは、多層カーボンナノチューブである。複数のCNT6は、単層カーボンナノチューブ、二層カーボンナノチューブおよび多層カーボンナノチューブのいずれか1種のみを含んでいてもよく、単層カーボンナノチューブ、二層カーボンナノチューブおよび多層カーボンナノチューブのいずれか2種以上を含んでいてもよい。
 CNT6の平均外径は、例えば、1nm以上であることが好ましく、5nm以上であることがより好ましく、例えば、100nm以下であることが好ましく、50nm以下であることがより好ましく、20nm以下であることがとりわけ好ましい。
 CNT6の平均長さL(平均配向方向の寸法)は、図1Aに示すように、樹脂層5の厚みTよりも大きく、具体的には、例えば、10μm以上であることが好ましく、50μm以上であることがより好ましく、例えば、1000μm以下であることが好ましく、500μm以下であることがより好ましく、200μm以下であることがとりわけ好ましい。なお、CNTの平均外径および平均長さは、例えば、電子顕微鏡観察などの公知の方法により測定される。
 また、CNT6の平均長さLは、樹脂層5の厚みTに対して、例えば、1倍を超過することが好ましく、1.5倍以上であることがより好ましく、2.0倍以上であることがとりわけ好ましく、例えば、5.0倍以下であることが好ましく、4.0倍以下であることがより好ましく、3.0倍以下であることがとりわけ好ましい。
 CNTアレイシート3において、複数のCNT6の平均嵩密度は、例えば、10mg/cm以上であることが好ましく、50mg/cm以上であることがより好ましく、100mg/cm以上であることがとりわけ好ましく、例えば、500mg/cm以下であることが好ましく、300mg/cm以下であることがより好ましく、200mg/cm以下であることがとりわけ好ましい。なお、CNT6の平均嵩密度は、例えば、単位面積当たり質量(目付量:単位 mg/cm)と、カーボンナノチューブの平均長さ(SEM(日本電子社製)または非接触膜厚計(キーエンス社製)により測定)とから算出される。
 CNTアレイシート3のG/D比は、例えば、1以上であることが好ましく、2以上であることがより好ましく、5以上であることがとりわけ好ましく、10以上であることが特に好ましく、例えば、20以下であることが好ましく、15以下であることがより好ましい。
 G/D比とは、カーボンナノチューブのラマンスペクトルにおいて、1350cm-1付近に観測されるDバンドと呼ばれるピークのスペクトル強度に対する、1590cm-1付近に観測されるGバンドと呼ばれるピークのスペクトル強度の比である。
 なお、Dバンドのスペクトルは、カーボンナノチューブの欠陥に由来し、Gバンドのスペクトルは、炭素の六員環の面内振動に由来する。
 CNTアレイシート3の厚み方向の電気抵抗(導電抵抗)は、25℃において、例えば、1Ω以下であることが好ましく、0.1Ω以下であることがより好ましい。なお、電気抵抗は、公知の電気抵抗測定装置により測定される。
 CNTアレイシート3の熱伝導率は、厚み方向において、例えば、1W/(m・K)以上であることが好ましく、2W/(m・K)以上であることがより好ましく、10W/(m・K)以上であることがとりわけ好ましく、30W/(m・K)以上であることが特に好ましく、例えば、60W/(m・K)以下であることが好ましく、40W/(m・K)以下であることがより好ましい。なお、熱伝導率は、公知の熱伝導率測定装置により測定される。
 そして、CNTアレイシート3は、図1Aに示すように、固定シート2の表面2Aおよび裏面2Bの両面に埋め込まれて、固定シート2に支持されている。
 より詳しくは、2つのCNTアレイシート3は、第1樹脂層5Aおよび第2樹脂層5Bのそれぞれに1つずつ埋め込まれており、基材4を厚み方向に挟むように配置されている。
 なお、2つのCNTアレイシート3を互いに区別する場合、第1樹脂層5Aに埋め込まれるCNTアレイシート3を第1CNTアレイシート3Aとし、第2樹脂層5Bに埋め込まれるCNTアレイシート3を第2CNTアレイシート3Bとする。
 また、CNTアレイシート3における基材4側の端部は、対応する樹脂層5に埋め込まれて、基材4と接触し、CNTアレイシート3における基材4と反対側の端部が、対応する樹脂層5から突出している。
 つまり、第1CNTアレイシート3Aにおける他方側端部が、第1樹脂層5Aに埋め込まれて、基材4の表面4Aと接触し、第1CNTアレイシート3Aにおける一方側端部が、第1樹脂層5Aの表面(固定シート2の表面2A)から厚み方向一方側に突出して自由端となっている。また、第2CNTアレイシート3Bにおける一方側端部が、第2樹脂層5Bに埋め込まれて、基材4の裏面4Bと接触し、第2CNTアレイシート3Bにおける他方側端部が、第2樹脂層5Bの表面(固定シート2の裏面2B)から厚み方向他方側に突出して自由端となっている。
 そのため、各CNTアレイシート3において、CNT6は、対応する樹脂層5に埋設される埋設部分6Aと、対応する樹脂層5から突出する突出部分6Bとを有している。なお、CNTアレイシート3の厚み方向と、基材4の厚み方向とは互いに一致しており、各CNTアレイシート3のCNT6は、基材4の厚み方向に沿って延びている。
 埋設部分6Aは、対応する樹脂層5を貫通している。埋設部分6Aの長さL1は、例えば、上記の樹脂層5の厚みTの範囲と同一である。また、埋設部分6Aの長さL1の割合は、CNT6の長さL100%に対して、例えば、20%以上であることが好ましく、30%以上であることがより好ましく、例えば、70%以下であることが好ましく、50%以下であることがより好ましい。
 突出部分6Bの長さL2は、例えば、1μm以上であることが好ましく、10μm以上であることがより好ましく、例えば、100μm以下であることが好ましく、70μm以下であることがより好ましい。また、突出部分6Bの長さL2の割合は、CNT6の長さL100%に対して、例えば、30%以上であることが好ましく、50%以上であることがより好ましく、例えば、80%以下であることが好ましく、70%以下であることがより好ましい。
 また、埋設部分6Aの長さL1に対する、突出部分6Bの長さL2の割合(L2/L1)は、例えば、0.4以上であることが好ましく、1以上であることがより好ましく、例えば、4以下であることが好ましく、2.5以下であることがより好ましい。
 埋設部分6Aの長さL1の割合が上記下限以上(突出部分6Bの長さL2の割合割合が上記上限以下)であると、樹脂層5がCNTアレイシート3を確実に支持することができ、突出部分6Bの長さL2の割合が上記下限以上(埋設部分6Aの長さL1の割合割合が上記上限以下)であると、対象物の表面に対するCNTアレイシート3の追従性の向上を図ることができる。
 このような熱伝導性シート1は、好ましくは、可撓性を有している。
 また、熱伝導性シート1の厚み方向の電気抵抗(導電抵抗)は、基材4が導電性基材である場合、25℃において、例えば、10Ω以下であることが好ましく、1Ω以下であることがより好ましく、0.1Ω以下であることがとりわけ好ましく、基材4が絶縁性基材である場合、25℃において、例えば、10Ω以上であることが好ましく、10Ω以上であることがより好ましい。
 熱伝導性シート1の熱伝導率は、厚み方向において、例えば、1W/(m・K)以上であることが好ましく、2W/(m・K)以上であることがより好ましく、10W/(m・K)以上であることがさらに好ましく、25W/(m・K)以上であることがとりわけ好ましく、50W/(m・K)以上であることが特に好ましく、例えば、300W/(m・K)以下であることが好ましく、100W/(m・K)以下であることがより好ましい。
 (2)CNT複合材の製造方法
 次に、熱伝導性シート1(CNT複合材の一例)の製造方法について説明する。なお、樹脂層5が熱可塑性樹脂から形成される場合について詳述する。
 熱伝導性シート1を製造するには、図4Cに示すように、まず、固定シート2およびCNTアレイシート3を準備する。
 固定シート2を準備するには、基材4の表面4Aおよび裏面4Bの両面に、上記の熱可塑性樹脂から形成される樹脂層5を配置する(固定シート準備工程)。
 樹脂層5を基材4の両面に配置する方法としては、特に制限されず、例えば、上記の熱可塑性樹脂を基材4の両面に塗布して樹脂層5を形成する方法や、上記の熱可塑性樹脂から形成される樹脂シートを準備して、基材4の両面に配置する方法などが挙げられる。このような方法のなかでは、好ましくは、熱可塑性樹脂から形成される樹脂シートを準備して、基材4の両面に配置する方法が挙げられる。
 これによって、基材4と、基材4の表面4Aおよび裏面4Bの両面に配置される樹脂層5とを備える固定シート2、より具体的には、基材4と、基材4の表面4Aに配置される第1樹脂層5Aと、基材4の裏面4Bに配置される第2樹脂層5Bとを備える固定シート2が準備される。
 CNTアレイシート3を準備するには、図2A~図2Cに示すように、例えば、化学気相成長法(CVD法)により、成長基板15上に垂直配向カーボンナノチューブ19(Vertically Aligned carbon nanotubes;以下、VACNTs19とする。)を成長させる(CNT成長工程)。
 詳しくは、図2Aに示すように、まず、成長基板15を準備する。成長基板15は、特に限定されず、例えば、CVD法に用いられる公知の基板が挙げられ、市販品を用いることができる。
 成長基板15としては、例えば、シリコン基板や、二酸化ケイ素膜17が積層されるステンレス基板16などが挙げられ、好ましくは、二酸化ケイ素膜17が積層されるステンレス基板16が挙げられる。なお、図2A~図3Cでは、成長基板15が、二酸化ケイ素膜17が積層されるステンレス基板16である場合を示す。
 そして、図2Aに示すように、成長基板15上、好ましくは、二酸化ケイ素膜17上に触媒層18を形成する。成長基板15上に触媒層18を形成するには、金属触媒を、公知の成膜方法により、成長基板15(好ましくは、二酸化ケイ素膜17)上に成膜する。
 金属触媒としては、例えば、鉄、コバルト、ニッケルなどが挙げられ、好ましくは、鉄が挙げられる。このような金属触媒は、単独使用または2種類以上併用することができる。成膜方法としては、例えば、真空蒸着およびスパッタリングが挙げられ、好ましくは、真空蒸着が挙げられる。
 これによって、成長基板15上に触媒層18が配置される。なお、成長基板15が、二酸化ケイ素膜17が積層されるステンレス基板16である場合、二酸化ケイ素膜17および触媒層18は、例えば、特開2014-94856号公報に記載されるように、二酸化ケイ素前駆体溶液と金属触媒前駆体溶液とが混合される混合溶液を、ステンレス基板16に塗布した後、その混合液を相分離させ、次いで、乾燥することにより、同時に形成することもできる。
 次いで、触媒層18が配置される成長基板15を、図2Bに示すように、例えば、700℃以上900℃以下に加熱する。これにより、触媒層18が、凝集して、複数の粒状体18Aとなる。
 そして、加熱された成長基板15に、図2Cに示すように、原料ガスを供給する。原料ガスは、炭素数1~4の炭化水素ガス(低級炭化水素ガス)を含んでいる。炭素数1~4の炭化水素ガスとしては、例えば、メタンガス、エタンガス、プロパンガス、ブタンガス、エチレンガス、アセチレンガスなどが挙げられ、好ましくは、アセチレンガスが挙げられる。
 また、原料ガスは、必要により、水素ガスや、不活性ガス(例えば、ヘリウム、アルゴンなど)、水蒸気などを含むこともできる。
 原料ガスの供給時間としては、例えば、1分以上であることが好ましく、5分以上であることがより好ましく、例えば、60分以下であることが好ましく、30分以下であることがより好ましい。
 これによって、複数の粒状体18Aのそれぞれを起点として、複数のCNT6が成長する。なお、図2Cでは、便宜上、1つの粒状体18Aから、1つのCNT6が成長するように記載されているが、これに限定されず、1つの粒状体18Aから、複数のCNT6が成長してもよい。
 このような複数のCNT6は、成長基板15上において、互いに略平行となるように、成長基板15の厚み方向(上下方向)に延びている。つまり、複数のCNT6は、成長基板15に対して直交するように配向(垂直に配向)されている。
 これによって、VACNTs19が成長基板15上に成長する。
 VACNTs19は、図6Aに示すように、複数のCNT6が縦方向に直線的に並ぶ列19Aを、横方向に複数備えている。VACNTs19において、複数のCNT6は、面方向(縦方向および横方向)に密集している。
 次いで、図3Aおよび図3Bに示すように、成長基板15からVACNTs19を剥離する(剥離工程)。
 VACNTs19を成長基板15から剥離するには、例えば、切断刃20を成長基板15の上面に沿ってスライド移動させて、複数のCNT6の基端部(成長基板15側端部)を一括して切断する。これによって、VACNTs19が成長基板15から分離される。
 切断刃20としては、例えば、カッター刃、剃刀などの公知の金属刃が挙げられ、好ましくは、カッター刃が挙げられる。
 次いで、分離されたVACNTs19を、図3Bに示すように、成長基板15から引き上げる。これにより、VACNTs19が、成長基板15から剥離されて、CNTアレイシート3とされる。また、上記の工程を繰り返すことにより、2つのCNTアレイシート3、具体的には、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが準備される。
 このようなCNTアレイシート3は、そのまま熱伝導性シート1に利用することができるが、平均嵩密度が相対的に低いため、熱伝導率の向上の観点から好ましくは、高密度化処理される(高密度化工程)。
 高密度化処理として、例えば、CNTアレイシート3を加熱処理する方法(図4Aおよび図4B参照)や、CNTアレイシート3に揮発性の液体を供給する方法が挙げられる。
 CNTアレイシート3を加熱処理するには、例えば、図4Aに示すように、CNTアレイシート3を耐熱容器45に収容して、加熱炉内に配置する。
 耐熱容器45は、耐熱温度が2600℃を超過する耐熱容器であって、例えば、炭素から形成される炭素容器、セラミックスから形成されるセラミックス容器などの公知の耐熱容器が挙げられる。このような耐熱容器のなかでは、好ましくは、炭素容器が挙げられる。
 加熱炉としては、例えば、抵抗加熱炉、誘導加熱炉、直通電型電気炉などが挙げられ、好ましくは、抵抗加熱炉が挙げられる。また、加熱炉は、バッチ式であってもよく、連続式であってもよい。
 次いで、加熱炉内に不活性ガスを流入して、加熱炉内を不活性ガス雰囲気に置換する。不活性ガスとしては、例えば、窒素、アルゴンなどが挙げられ、好ましくは、アルゴンが挙げられる。
 次いで、加熱炉内の温度を、所定の昇温速度で加熱温度まで上昇させた後、温度を維持したまま、所定時間放置する。
 昇温速度としては、例えば、1℃/分以上であることが好ましく、5℃/分以上であることがより好ましく、例えば、40℃/分以下であることが好ましく、20℃/分以下であることがより好ましい。
 加熱温度としては、例えば、2600℃以上であることが好ましく、2700℃以上であることがより好ましく、2800℃以上であることがとりわけ好ましい。加熱温度が上記下限以上であれば、CNTアレイシート3において、複数のCNT6を確実に高密度に密集させることができる。
 また、加熱温度としては、CNT6の昇華温度未満であればよく、3000℃以下であることが好ましい。加熱温度が上記上限以下であれば、CNT6が昇華することを抑制できる。
 所定時間としては、例えば、10分以上であることが好ましく、1時間以上であることがより好ましく、例えば、5時間以下であることが好ましく、3時間以下であることがより好ましい。
 また、CNTアレイシート3は、好ましくは、無負荷の状態(CNTアレイシート3に荷重がかけられていない状態、つまり、大気圧下)で加熱処理される。CNTアレイシート3を無負荷の状態で加熱処理するには、図4Aに示すように、CNTアレイシート3を、耐熱容器45の蓋部および側壁に対して間隔を空けるように、耐熱容器45内に収容する。
 以上によって、CNTアレイシート3が加熱処理される。CNTアレイシート3が加熱処理されると、CNTアレイシート3において、複数のCNT6を構成するグラフェンの結晶性が向上し、CNT6の配向性(直線性)が向上する。すると、CNTアレイシート3において、互いに隣接するCNT6は、それらの間に作用するファンデルワールス力などにより、配向性(直線性)を維持したまま、束状となるように密集する。
 これによって、CNTアレイシート3の全体が均一に密集され、CNTアレイシート3が高密度化する。その後、CNTアレイシート3を必要により冷却(例えば、自然冷却)する。
 加熱処理後のCNTアレイシート3の厚みは、複数のCNT6が配向性(直線性)を維持したまま密集するため、加熱処理前のCNTアレイシート3の厚みと略同じである。より具体的には、加熱処理後のCNTアレイシート3の厚みは、加熱処理前のCNTアレイシート3の厚みに対して、例えば、95%以上105%以下であることが好ましく、100%であることがより好ましい。
 また、加熱処理後のCNTアレイシート3の体積は、加熱処理前のCNTアレイシート3の体積に対して、例えば、10%以上であることが好ましく、30%以上であることがより好ましく、例えば、70%以下であることが好ましく、50%以下であることがより好ましい。
 また、加熱処理後のCNTアレイシート3のG/D比は、例えば、2以上であることが好ましい。
 CNTアレイシート3に揮発性の液体を供給するには、例えば、CNTアレイシート3に揮発性の液体をスプレーするか、CNTアレイシート3を揮発性の液体に浸漬させる。
 揮発性の液体としては、例えば、水、有機溶媒などが挙げられる。有機溶媒としては、例えば、低級(C1~3)アルコール類(例えば、メタノール、エタノール、プロパノールなど)、ケトン類(例えば、アセトンなど)、エーテル類(例えば、ジエチルエーテル、テトラヒドロフランなど)、アルキルエステル類(例えば、酢酸エチルなど)、ハロゲン化脂肪族炭化水素類(例えば、クロロホルム、ジクロロメタンなど)、極性非プロトン類(例えば、N-メチルピロリドン、ジメチルホルムアミドなど)などが挙げられる。
 このような揮発性の液体のなかでは、好ましくは、水が挙げられる。このような揮発性の液体は、単独使用または2種類以上併用することができる。
 CNTアレイシート3に揮発性の液体が供給されると、揮発性の液体が気化することにより、複数のCNT6が互いに密集し、CNTアレイシート3の密度が向上する。
 なお、このような高密度化処理は、少なくとも1回実施され、複数回繰り返すこともできる。同一の高密度化処理を複数回繰り返してもよく、複数種類の高密度化処理を組み合わせて実施してもよい。例えば、上記の加熱処理のみを複数回繰り返すこともでき、上記の加熱処理と上記の液体供給処理と組み合わせて実施することもできる。
 高密度化処理後のCNTアレイシート3において、複数のCNT6の平均嵩密度は、例えば、50mg/cm以上であることが好ましく、厚み方向の電気抵抗(導電抵抗)は、25℃において、例えば、1Ω以下であることが好ましく、熱伝導率は、厚み方向において、例えば、10W/(m・K)以上であることが好ましい。
 以上によって、基材4および2つの樹脂層5を備える固定シート2と、2つのCNTアレイシート3とが準備される。
 次いで、図4Cに示すように、第1樹脂層5A(表側の樹脂層5)、および、第2樹脂層5B(裏側の樹脂層5)の上に、CNTアレイシート3を1つずつ配置する(配置工程)。
 より具体的には、第1樹脂層5Aの厚み方向一方面(固定シート2の表面2A)に、第1CNTアレイシート3Aを配置し、第2樹脂層5Bの厚み方向他方面(固定シート2の裏面2B)に、第2CNTアレイシート3Bを配置する。これにより、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが、固定シート2を厚み方向に挟むように配置される。
 そして、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが配置された固定シート2を加熱する(加熱工程)。
 加熱温度は、樹脂層5(熱可塑性樹脂)が溶融(軟化)する温度以上、樹脂層5(熱可塑性樹脂)が焼失する温度未満であって、例えば、300℃以上400℃以下であることが好ましい。加熱時間は、例えば、1分以上であることが好ましく、例えば、30分以下であることが好ましく、10分以下であることがより好ましい。
 これによって、樹脂層5が溶融し、図1Aに示すように、CNTアレイシート3が対応する樹脂層5に埋め込まれて、CNTアレイシート3における基材4側の端部が、対応する樹脂層5を貫通し、基材4と接触する。
 より具体的には、第1樹脂層5Aが溶融して、第1CNTアレイシート3Aが、第1樹脂層5Aに埋め込まれて、第1CNTアレイシート3Aの他方側端部が基材4の表面4Aに接触する。また、第2樹脂層5Bが溶融して、第2CNTアレイシート3Bが、第2樹脂層5Bに埋め込まれて第2CNTアレイシート3Bの一方側端部が基材4の裏面4Bに接触する。
 また、溶融状態の樹脂層5が、基材4およびCNTアレイシート3と密着するとともに、複数のCNT6の間に入り込む。
 また、加熱工程では、必要により、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bを、基材4に向かうように、厚み方向の外側から内側に向かって加圧する。
 圧力としては、例えば、0.1MPa以上であることが好ましく、0.5MPa以上であることがより好ましく、例えば、1.0MPa以下であることが好ましい。
 これにより、第1CNTアレイシート3Aの他方側端部、および、第2CNTアレイシート3Bの一方側端部のそれぞれが、確実に基材4と接触する。
 その後、冷却することにより、溶融状態の樹脂層5が、基材4およびCNTアレイシート3に密着した状態で硬化する。これによって、CNTアレイシート3は、CNTアレイシート3の端部が基材4に接触した状態で、対応する樹脂層5に固定され、固定シート2に支持される。
 以上によって、熱伝導性シート1が製造される。
 なお、上記の熱伝導性シートの製造方法では、樹脂層5が熱可塑性樹脂から形成される場合について詳述したが、樹脂層5が熱硬化性樹脂から形成される場合、まず、上記した熱硬化性樹脂に対応する未硬化の樹脂組成物を準備する。未硬化の樹脂組成物は、液状のAステージ状態である。
 そして、その樹脂組成物を、基材4の表面4Aおよび裏面4Bの両面に塗布して、基材4の表面4Aおよび裏面4Bの両面に、樹脂組成物層を形成する。その後、樹脂組成物層のAステージ状態を維持するか、樹脂組成物層を半硬化のBステージ状態とする。
 次いで、CNTアレイシート3を、表側および裏側の両方の樹脂組成物層に埋め込み、CNTアレイシート3における基材4側の端部を基材4に接触させる。その後、所定の硬化温度に加熱して、樹脂組成物層を硬化(完全硬化)させて、Cステージ状態の樹脂層5とする。これによっても、熱伝導性シート1を製造できる。
 (3)熱伝導性シートの使用態様
 このような熱伝導性シート1は、TIMとして、図1Bに示すように、例えば、電子部品11(対象物)と、放熱部材10(対象物)との間に、厚み方向に挟まれるように配置されて使用される。
 電子部品11としては、例えば、半導体素子(IC(集積回路)チップなど)、発光ダイオード(LED)、高出力レーザ発振素子、高出力ランプ、パワー半導体素子などが挙げられる。
 なお、電子部品11が例えば半導体素子などである場合、熱伝導性シート1として、基材4が導電性基材である電気熱伝導性シートが好適に選択される。また、電子部品11が例えばLEDなどである場合、熱伝導性シート1として、基材4が絶縁性基材である絶縁性熱伝導性シートが好適に選択される。
 放熱部材10としては、例えば、ヒートシンク、ヒートスプレッダーなどが挙げられる。
 また、電子部品11の表面11B、および、放熱部材10の表面10Aには、微細な凹凸(表面粗さ)が形成されている。それらの表面粗さRz(JIS B0601-2013に準拠する十点平均粗さ)は、例えば、1μm以上10μm以下であることが好ましい。
 そして、熱伝導性シート1において、第1CNTアレイシート3Aの複数のCNT6は、放熱部材10の表面10Aの微細な凹凸に追従して、放熱部材10の表面10Aと安定して接触している。また、第2CNTアレイシート3Bの複数のCNT6は、電子部品11の表面11Bの微細な凹凸に追従して、電子部品11の表面11Bと安定して接触している。
 そのため、電子部品11が発熱すると、電子部品11からの熱が、第2CNTアレイシート3B、基材4および第1CNTアレイシート3Aを順次介して、放熱部材10に伝達される。
 (4)作用効果
 熱伝導性シート1は、図1Aに示すように、固定シート2に樹脂を介してCNTアレイシート3を備えている。CNTアレイシート3は、厚み方向に配向され、面方向に互いに連続してシート形状となるように配列される複数のCNT6を備えている。
 そのため、図1Bに示すように、熱伝導性シート1を対象物(放熱部材10および電子部品11)に接触させたときに、CNTアレイシート3の複数のCNT6を対象物の表面の微細な凹凸に追従させることができる。
 また、CNTアレイシート3が、図1Aに示すように、固定シート2の表面2Aおよび裏面2Bの両面に埋め込まれているので、CNTアレイシート3が有するCNT6が、固定シート2から脱落することを抑制できる。
 また、CNTアレイシート3の平均嵩密度が50mg/cm以上であると、CNTアレイシート3の熱伝導率の向上を図ることができ、ひいては、熱伝導性シート1の熱伝導率の向上を図ることができる。
 また、CNTアレイシート3は、図4Cに示すように、成長基板15から剥離された後に、固定シート2に埋め込まれている。そのため、CNTアレイシート3を、成長基板15から剥離して高密度化処理した後、固定シート2に埋め込むことができる。
 また、CNTアレイシート3における基材4側の端部は、図1Aに示すように、対応する樹脂層5に埋め込まれて、基材4と接触している。そのため、CNTアレイシート3が有するCNT6が、固定シート2から脱落することを確実に抑制できながら、熱伝導性シート1の熱伝導率の向上を確実に図ることができる。
 また、基材4が電気伝導性を有する導電性基材である場合、電気伝導性を有するCNTアレイシート3が、電気伝導性を有する基材4と接触するので、熱伝導性シート1に電気伝導性を付与することができる。
 また、基材4が無機物の焼結体から形成されるセラミックスシートある場合、CNTアレイシート3が、電気絶縁性を有する基材4と接触するので、熱伝導性シート1に電気絶縁性を付与することができる。
 また、図1Aに示すように、樹脂層5が熱可塑性樹脂から形成される場合、成長基板15から剥離したCNTアレイシート3を、基材4の両面に配置される樹脂層5上に配置した後、加熱することで、CNTアレイシート3における基材4側の端部を、対応する樹脂層5に埋め込み、基材4と接触させる。
 また、樹脂層5が熱硬化性樹脂から形成される場合、成長基板15から剥離したCNTアレイシート3を、基材4の両面に配置される樹脂組成物層に埋め込み、CNTアレイシート3における基材4側の端部を、基材4に接触させた後、樹脂組成物層を硬化させて樹脂層5とする。
 そのため、簡易な方法でありながら、対応する樹脂層5に埋め込まれるCNTアレイシート3を備える熱伝導性シート1を効率良く製造することができる。
 (第2実施形態)
 次に、図5~図6Cを参照して、本発明の第2実施形態について説明する。なお、第2実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 第2実施形態では、図5に示すように、基材4がカーボンナノチューブ集合体である。カーボンナノチューブ集合体は、複数のCNTの集合体であって、例えば、プレス成形シート、上記したCNTアレイシート3、カーボンナノチューブウェブ積層シート(以下、ウェブ積層シートとする。)などが挙げられ、好ましくは、CNTアレイシート3およびウェブ積層シートが挙げられる。なお、図5では、基材4がウェブ積層シート23である場合を示す。
 プレス成形シートは、公知のプレス成形により、複数のCNTがシート形状に形成されたものであって、複数のCNTがランダムに配置されている。
 ウェブ積層シート23は、厚み方向に積層される複数のカーボンナノチューブウェブ24(以下、CNTウェブ24とする。)を備えている。
 CNTウェブ24は、図6Aに示すように、複数のカーボンナノチューブ単糸25(以下、CNT単糸25とする。)が、CNT単糸25の延びる方向と交差する方向に並列されて、シート状となるように形成されている。
 CNT単糸25は、複数のCNT6からなる束(バンドル)が直線状に連続的に繋がって形成されている。CNT単糸25は、撚り合わされていない無撚糸であり、CNT単糸25の外径は、例えば、5nm以上100nm以下であることが好ましい。
 このようなウェブ積層シート23を調製するには、まず、図6Aに示すように、上記の第1実施形態と同様にして、VACNTs19が配置される成長基板15を準備する。
 また、図6Bに示すように、ローラ26を成長基板15に対して間隔を空けて配置する。ローラ26は、円柱形状を有しており、その軸線を回転中心として、回転可能である。また、ローラ26の周面には、好ましくは、樹脂フィルムが設けられている。
 次いで、CNTウェブ24を、図6Aに示すように、VACNTs19から引き出す。
 CNTウェブ24をVACNTs19から引き出すには、VACNTs19のうち、各列19Aの端部に位置するCNT6を、図示しない引出具により一括して保持し、引っ張る。
 すると、引っ張られたCNT6は、対応する粒状体18Aから引き抜かれる(図3A参照)。このとき、引き抜かれるCNT6に隣接するCNT6は、引き抜かれるCNT6との摩擦力およびファンデルワ―ルス力などにより、そのCNT6に付着され、対応する粒状体18Aから引き抜かれる。
 これにより、複数のCNT6が、順次連続してVACNTs19から引き出され、複数のCNT6が直線状に連続的に繋がるCNT単糸25を形成する。
 このようなCNT単糸25は、図6Aの拡大図に示すように、各列19AのCNT6が、同時かつ平行に一括して引き出されるため、CNT単糸25の延びる方向と交差する(交わる)方向に複数並列配置されている。
 そして、並列配置される複数のCNT単糸25は、略シート形状を有しており、CNTウェブ24として形成される。つまり、CNTウェブ24は、複数のCNT単糸25が並列配置されるように引き出されてなる。
 次いで、図6Bに示すように、CNTウェブ24の引出方向下流端部を、ローラ26に固定して、ローラ26を回転させる。これにより、CNTウェブ24を、ローラ26の周面に複数周巻き付ける。
 そして、ローラ26に巻き付けられたCNTウェブ24を、切断刃(例えば、剃刀、カッター刃など)により、ローラ26の軸線方向に切断し、ローラ26から離脱させる。
 これによって、図6Cに示すように、シート形状を有するウェブ積層シート23が製造される。ウェブ積層シート23の積層数は、例えば、5層以上であることが好ましく、10層以上であることがより好ましく、例えば、1000層以下であることが好ましく、500層以下であることがより好ましい。また、ウェブ積層シート23の厚みは、例えば、0.01μm以上であることが好ましく、5μm以上であることがより好ましく、例えば、500μm以下であることが好ましく、200μm以下であることがより好ましい。
 また、CNTウェブ24および/またはウェブ積層シート23には、好ましくは、上記の揮発性の液体が供給される。
 揮発性の液体として、好ましくは、有機溶媒が挙げられ、さらに好ましくは、低級アルコール類、とりわけ好ましくは、エタノールが挙げられる。このような揮発性の液体は、単独使用または2種類以上併用することができる。また、揮発性の液体には、金属粒子が含まれていてもよい。
 CNTウェブ24に揮発性の液体を供給するには、例えば、図6Bに示すように、ローラ26を回転させながら、ローラ26の周面に巻き取られるCNTウェブ24に、揮発性の液体を、噴霧器27により順次スプレーする。また、成長基板15とローラ26との間において、CNTウェブ24を揮発性の液体に通過させることもできる。
 また、ウェブ積層シート23に揮発性の液体を供給するには、ウェブ積層シート23に揮発性の液体をスプレーしてもよく、ウェブ積層シート23を揮発性の液体に浸漬してもよい。
 そして、揮発性の液体が気化することにより、各CNT単糸25の密度が向上する。また、ウェブ積層シート23では、積層されるCNTウェブ24が厚み方向に互いに密集する。
 このような第2実施形態によっても、上記の第1実施形態と同様の作用効果を奏することができる。
 (第3実施形態)
 次に、図7Aおよび図7Bを参照して、本発明の第3実施形態について説明する。なお、第3実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 第3実施形態では、固定シート2は、図7Aに示すように、電気伝導性を有する導電層32を備えている。より具体的には、固定シート2は、導電層32のみからなり、熱伝導性シート1は、導電層32(固定シート2)と、2つのCNTアレイシート3とを備えている。
 導電層32としては、例えば、上記の基材4の金属シートなどが挙げられ、好ましくは、鉄から形成される鉄シート、および、チタンから形成されるチタンシートが挙げられる。また、導電層32は、好ましくは、可撓性を有している。導電層32の厚みの範囲としては、例えば、上記の基材4の厚みの範囲と同一である。
 2つのCNTアレイシート3は、導電層32を厚み方向に挟むように、導電層32の表面32Aおよび裏面32Bのそれぞれに1つずつ配置されている。そして、CNTアレイシート3の導電層32側の端部は、導電層32の界面に接合されている。
 より詳しくは、第1CNTアレイシート3Aが導電層32の表面32Aに配置され、第1CNTアレイシート3Aにおける他方側端部が、導電層32の表面32Aに接合されている。また、第2CNTアレイシート3Bが導電層32の裏面32Bに配置され、第2CNTアレイシート3Bにおける一方側端部が、導電層32の裏面32Bに接合されている。
 なお、第3実施形態では、固定シート2が導電層32のみからなるため、導電層32の表面32Aが固定シート2の表面2Aに対応し、導電層32の裏面32Bが固定シート2の裏面2Bに対応する。
 このような熱伝導性シート1を製造するには、まず、図7Bに示すように、導電層32を準備する(導電層準備工程)。
 次いで、上記の第1実施形態と同様にして準備されたCNTアレイシート3のいずれか一方の面に、導電層32を形成する金属と同一の金属を、公知の方法により蒸着する。
 そして、CNTアレイシート3を、CNTアレイシート3の金属の蒸着面が導電層32と接触するように、導電層32の表面32Aおよび裏面32Bの両面に配置する(配置工程)。
 次いで、CNTアレイシート3が配置された導電層32を加熱する(加熱工程)。
 加熱温度は、例えば、300℃以上であることが好ましく、500℃以上であることがより好ましく、例えば、2500℃以下であることが好ましく、2000℃以下であることがより好ましい。加熱時間は、例えば、1分以上であることが好ましく、例えば、60分以下であることが好ましく、30分以下であることがより好ましい。
 これによって、CNTアレイシート3のCNT6と導電層32とが拡散接合する。
 このような加熱工程は、好ましくは、真空中または不活性ガス雰囲気中において実施される。
 また、加熱工程では、必要により、CNTアレイシート3を、導電層32に向かうように、厚み方向の外側から内側に向かって加圧する。圧力の範囲は、上記した圧力の範囲と同一である。これにより、CNTアレイシート3のCNT6が導電層32の界面と確実に密着して、CNT6と導電層32とが確実に接合する。
 以上によって、CNTアレイシート3は、CNTアレイシート3(CNT6)の端部が導電層32の界面に接合され、導電層32に支持される。
 このような熱伝導性シート1の厚み方向の電気抵抗(導電抵抗)の範囲は、上記した基材4が導電性基材である場合の熱伝導性シート1の電気抵抗の範囲と同一である。また、熱伝導性シート1の熱伝導率の範囲は、上記した熱伝導性シート1の熱伝導率の範囲と同一である。
 このような第3実施形態によれば、CNTアレイシート3(CNT6)の端部が導電層32の界面に接合されているので、CNTアレイシート3が有するCNT6が、導電層32から脱落することを確実に抑制できながら、熱伝導性シート1の熱伝導率の向上を確実に図ることができ、かつ、熱伝導性シート1に電気伝導性を付与することができる。
 また、成長基板15から剥離したCNTアレイシート3を、固定シート2の両面に配置した後、加熱することで、CNTアレイシート3における導電層32側の端部を、導電層32の界面に接合させる。そのため、簡易な方法でありながら、CNTアレイシート3の導電層32側の端部が、導電層32の界面に接合されている熱伝導性シート1を製造することができる。
 このような第3実施形態によっても、上記の第1実施形態と同様の作用効果を奏することができる。
 (第4実施形態)
 次に、図8A~図9Bを参照して、本発明の第4実施形態について説明する。なお、第4実施形態では、上記した第1実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 第4実施形態では、図8Aおよび図9Aに示すように、第1CNTアレイシート3A(表側のCNTアレイシート3)および第2CNTアレイシート3B(裏側のCNTアレイシート3)が、固定シート2中において互いに接触している。
 固定シート2は、金属または樹脂材料から形成されている。
 金属としては、例えば、上記の基材4の金属シートを形成する金属が挙げられ、好ましくは、鉄およびチタン、CNTとの相溶性の観点から、さらに好ましくは、チタンが挙げられる。樹脂材料としては、例えば、上記の樹脂層5を形成する樹脂材料が挙げられ、好ましくは、熱可塑性樹脂が挙げられる。
 また、固定シート2は、好ましくは、可撓性を有している。固定シート2の厚みの範囲としては、例えば、上記の基材4の厚みの範囲と同一である。
 第1CNTアレイシート3Aは、第1CNTアレイシート3Aにおける他方側端部が、固定シート2の表面2Aに埋め込まれて、固定シート2に支持されている。第2CNTアレイシート3Bは、第2CNTアレイシート3Bにおける一方側端部が、固定シート2の裏面2Bに埋め込まれて、固定シート2に支持されている。そして、第1CNTアレイシート3Aの他方側端部と、第2CNTアレイシート3Bの一方側端部とは、固定シート2中において互いに接触している。
 このような熱伝導性シート1を製造するには、例えば、固定シート2が金属から形成される場合、まず、金属粒子を含有するペーストを準備する(ペースト準備工程)。
 ペーストを準備するには、金属粒子を樹脂溶液に分散させる。
 金属粒子は、上記の金属から形成される粒子であって、その平均一次粒子径は、例えば、0.1μm以上であることが好ましく、1μm以上であることがより好ましく、例えば、30μm以下であることが好ましく、10μm以下であることがより好ましい。また、金属粒子の含有割合は、ペースト全量に対して、例えば、5質量%以上であることが好ましく、10質量%以上であることがより好ましく、例えば、50質量%以下であることが好ましく、30質量%以下であることがより好ましい。
 樹脂溶液は、上記の樹脂材料が溶媒(例えば、水、有機溶媒など)に溶解された溶液である。樹脂材料としては、好ましくは、熱可塑性樹脂、さらに好ましくは、PVAが挙げられる。
 次いで、図8Bに示すように、上記の第1実施形態と同様にして準備された第2CNTアレイシート3B(CNTアレイシート3)の厚み方向の一方面に、ペーストを塗布して、粒子含有層40を形成する。そのため、粒子含有層40は、金属粒子を含有している。なお、図8Bでは、粒子含有層40が含有する金属粒子を金属粒子42として示す。
 粒子含有層40の厚みは、例えば、10μm以上であることが好ましく、20μm以上であることがより好ましく、例えば、50μm以下であることが好ましく、40μm以下であることがより好ましい。
 そして、図8Cに示すように、第1CNTアレイシート3A(CNTアレイシート3)を、粒子含有層40の表面40A(厚み方向一方側面)に配置する。
 これにより、粒子含有層40が、第1CNTアレイシート3Aと第2CNTアレイシート3Bとの間に挟まれる。換言すれば、CNTアレイシート3(第1CNTアレイシート3Aおよび第2CNTアレイシート3B)が、粒子含有層40の表面40Aおよび裏面40Bの両面に配置される。
 そして、CNTアレイシート3が配置された粒子含有層40を加熱する(加熱工程)。
 加熱温度は、金属粒子の融点以上、CNT6の昇華温度未満であって、例えば、1000℃以上であることが好ましく、1500℃以上であることがより好ましく、例えば、2500℃以下であることが好ましく、2000℃以下であることがより好ましい。加熱時間は、例えば、1分以上であることが好ましく、10分以上であることがより好ましく、例えば、60分以下であることが好ましく、30分以下であることがより好ましい。
 すると、粒子含有層40が含有する樹脂材料が焼失するとともに、金属粒子42が溶融して、CNTアレイシート3の複数のCNT6の間に入り込む。
 これによって、金属からなる固定シート2が形成され、第1CNTアレイシート3A(表側のCNTアレイシート3)と、第2CNTアレイシート3B(裏側のCNTアレイシート3)とが、固定シート2に埋め込まれて、固定シート2中において互いに接触する。
 このような加熱工程は、好ましくは、真空中または不活性ガス雰囲気中において実施される。
 また、加熱工程では、必要により、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが互いに近づくように、厚み方向外側から内側に向かって加圧する。圧力の範囲は、上記した圧力の範囲と同一である。これにより、第1CNTアレイシート3Aと、第2CNTアレイシート3Bとを、固定シート2中において確実に互いに接触させることができる。
 また、固定シート2が、樹脂材料とりわけ熱可塑性樹脂から形成される場合、熱伝導性シート1を製造するには、例えば、上記の第1実施形態と同様にして準備されたCNTアレイシート3を、固定シート2の表面2Aおよび裏面2Bの両面に配置する(配置工程)。そして、CNTアレイシート3が配置された固定シート2を加熱する(加熱工程)。
 加熱温度は、熱可塑性樹脂の軟化点以上、かつ、熱可塑性樹脂が焼失する温度未満であって、例えば、300℃以上400℃以下であることが好ましい。加熱時間は、例えば、1分以上であることが好ましく、例えば、30分以下であることが好ましく、10分以下であることがより好ましい。
 これによって、固定シート2が溶融して、熱可塑性樹脂が、CNTアレイシート3の複数のCNT6の間に入り込む。
 これによって、第1CNTアレイシート3A(表側のCNTアレイシート3)と、第2CNTアレイシート3B(裏側のCNTアレイシート3)とが、固定シート2に埋め込まれて、固定シート2中において互いに接触する。
 このような熱伝導性シート1の厚み方向の電気抵抗(導電抵抗)の範囲は、上記した基材4が導電性基材である場合の熱伝導性シート1の電気抵抗の範囲と同一である。また、熱伝導性シート1の熱伝導率の範囲は、上記した熱伝導性シート1の熱伝導率の範囲と同一である。
 第4実施形態によれば、図8Aおよび図9Aに示すように、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが、固定シート2中において互いに接触しているので、CNTアレイシート3が有するCNT6が、固定シート2から脱落することを確実に抑制できながら、熱伝導性シート1の熱伝導率の向上を確実に図ることができる。
 また、固定シート2が金属から形成される場合、成長基板15から剥離したCNTアレイシート3を、粒子含有層40の両面に配置した後、加熱することで、第1CNTアレイシート3Aと、第2CNTアレイシート3Bとを、固定シート2に埋め込み、固定シート2中において互いに接触させる。
 また、固定シート2が熱可塑性樹脂から形成される場合、成長基板15から剥離したCNTアレイシート3を、固定シート2の両面に配置した後、加熱することで、第1CNTアレイシート3Aと、第2CNTアレイシート3Bとを、固定シート2に埋め込み、固定シート2中において互いに接触させる。
 そのため、簡易な方法でありながら、第1CNTアレイシート3Aおよび第2CNTアレイシート3Bが、固定シート2中において互いに接触している熱伝導性シート1を製造することができる。
 このような第4実施形態によっても、上記の第1実施形態と同様の作用効果を奏することができる。なお、上記では、粒子含有層40はペーストの塗布により形成されるが、これに限定されず、粒子含有層40は、金属粒子が分散される樹脂シートであってもよい。
 (変形例)
 上記の実施形態では、CNTアレイシート3の高密度化処理として、加熱処理および液体供給処理が挙げられるが、CNTアレイシート3の高密度化処理は、これに限定されず、機械的な圧縮により、CNTアレイシート3を高密度化することもできる。
 例えば、図10Aおよび図10Bに示すように、成長基板15上のVACNTs19を2枚の押圧板46により圧縮して、高密度化されたCNTアレイシート3を調製する。
 より詳しくは、2枚の押圧板46を、VACNTs19を挟むように配置した後、互いに近づくようにスライドさせて、VACNTs19を圧縮する。すると、VACNTs19の複数のCNT6は、対応する粒状体18Aから離脱され、互いに接触するように圧縮される。
 これによっても、VACNTs19を成長基板15から分離でき、高密度化されたCNTアレイシート3を準備できる。
 上記の実施形態では、基材4は、シート形状(フィルム形状)を有しているが、これに限定されず、平板形状を有していてもよい。平板形状の基材4として、例えば、金属プレート、セラミックスプレート、グラファイトプレート、カーボンナノチューブ集合体、導電性粒子を含有する樹脂シートなどが挙げられる。
 これら第1実施形態~第4実施形態および変形例は、適宜組み合わせることができる。
<第2の発明>
 次に、図11~図18Cを参照して、第2の発明について説明する。なお、第2の発明では、上記した第1の発明と同様の部材には同様の符号を付し、その説明を省略する。
 第2の発明のカーボンナノチューブ複合材は、基材と、基材上に配置される垂直配向カーボンナノチューブと、基材と垂直配向カーボンナノチューブとを接着する接着層と、を備えている。
 以下に、第2の発明のカーボンナノチューブ複合材の第5実施形態としてのカーボンナノチューブ複合材50(以下、CNT複合材50とする。)について説明する。
 (第5実施形態)
 (1)カーボンナノチューブ複合材の構成
 図11に示すように、CNT複合材50は、基材51と、CNTアレイシート3と、接着層52とを備えている。
 基材51は、シート形状(フィルム形状)を有している。基材51は、所定の厚みを有し、その厚み方向と直交する面方向(縦方向および横方向)に延びており、平坦な表面(厚み方向一方面)および平坦な裏面(厚み方向他方面)を有している。基材51の厚みの範囲は、上記した基材4の厚みの範囲と同様である。
 基材51としては、例えば、上記した基材4として例示される導電性基材および絶縁性基材などが挙げられる。基材51のなかでは、好ましくは、上記の金属シートおよび上記のプラスチックプレートが挙げられ、さらに好ましくは、アルミニウムから形成される金属シート、および、エンジニアリングプラスチックから形成されるプラスチックプレートが挙げられ、とりわけ好ましくは、アルミニウムから形成される金属シートが挙げられる。
 CNTアレイシート3は、基材51上、詳しくは、基材51の表面(厚み方向一方面)上に配置されている。CNTアレイシート3は、図3Aおよび図3Bに示すように、成長基板15から剥離されたVACNTs19である。CNTアレイシート3は、複数のCNT6からシート形状に形成されている。図11に示すように、CNTアレイシート3における複数のCNT6は、基材51に対して直交するように配向(垂直に配向)されている。CNTアレイシート3は、CNTアレイシート3の厚み方向(以下、厚み方向とする。)において、一端部30Aと、一端部30Aと反対側の他端部30Bとを有している。
 接着層52は、基材51とCNTアレイシート3とを接着している。詳しくは、接着層52は、CNTアレイシート3の他端部30Bを埋め込んで、基材51とCNTアレイシート3とを接着している。つまり、接着層52は、CNTアレイシート3の他端部30Bを埋め込んだ状態で、基材51の表面上に配置されている。CNTアレイシート3の他端部30Bは、好ましくは、基材51と接触している。
 接着層52の厚みは、例えば、5μm以上であることが好ましく、20μm以上であることがより好ましく、例えば、50μm以下であることが好ましく、30μm以下であることがより好ましい。また、接着層52の厚みは、CNTアレイシート3の厚みを100としたときに、例えば、10以上であることが好ましく、25以上であることがより好ましく、例えば、50以下であることが好ましく、30以下であることがより好ましい。
 接着層52は、例えば、上記した樹脂層5の材料として例示される樹脂材料などから形成されている。樹脂材料として、好ましくは、上記した熱硬化性樹脂および上記した熱可塑性樹脂が挙げられる。
 (2)熱硬化性樹脂から形成される接着層を備えるCNT複合材の製造方法
 次に、熱硬化性樹脂から形成される接着層52を備えるCNT複合材50を製造方法について、図12A~図12Cを参照して説明する。
 接着層52を形成する熱硬化性樹脂のなかでは、好ましくは、エポキシ樹脂およびフッ素系ゴムが挙げられる。
 接着層52を熱硬化性樹脂から形成すれば、CNTアレイシート3を基材51に熱可塑性樹脂により接着する場合と比較して、CNTアレイシート3の配向の乱れを抑制できながら、CNTアレイシート3と基材51との接触を安定して確保することができる。
 熱硬化性樹脂から形成される接着層52を備えるCNT複合材50を製造するには、図12Aに示すように、まず、基材51を準備する。そして、必要により、基材51の表面(上面)を、例えば、UV照射や表面研磨などにより表面処理する。
 次いで、基材51上に、熱硬化性樹脂組成物からなり、AステージまたはBステージの樹脂組成物層56を形成する。熱硬化性樹脂組成物は、完全硬化することにより、上記の熱硬化性樹脂となる樹脂組成物である。
 基材51上にAステージの樹脂組成物層56を形成する方法としては、例えば、Aステージ(液状)の熱硬化性樹脂組成物からなるワニスを基材51の上面に公知の方法で塗布して、Aステージの樹脂組成物層56を形成する。
 Aステージの熱硬化性樹脂組成物からなるワニスは、例えば、重合により上記の熱硬化性樹脂を形成する重合成分と、重合成分を溶解する有機溶媒とを含有している。
 有機溶媒としては、例えば、上記した揮発性の液体として例示される有機溶媒が挙げられる。有機溶媒は、単独または2種以上併用することができる。有機溶媒のなかでは、好ましくは、極性非プロトン類、さらに好ましくは、N-メチルピロリドンが挙げられる。
 また、基材51の上面にBステージの樹脂組成物層56を形成する方法としては、例えば、まず、Bステージ(半硬化状態)の熱硬化性樹脂組成物からなるプリプレグシートを準備する。
 プリプレグシートとしては、例えば、市販品を用いることができる。
 次いで、そのプリプレグシートを基材51の上面に貼り付けて、Bステージの樹脂組成物層56を形成する。
 これらにより、基材51の上面に樹脂組成物層56が形成される。樹脂組成物層56の厚みは、CNT6の長さに応じて適宜変更される。
 次いで、図2A~図2Cに示すように、上記のCNT成長工程と同様にして、成長基板15上にVACNTs19を成長させる。
 次いで、図12Aに示すように、VACNTs19が成長する成長基板15を、VACNTs19が下側かつ成長基板15が上側となるように配置する。そして、VACNTs19を樹脂組成物層56に対して上側に間隔を空けて向かい合わせる。
 次いで、図12Bに示すように、VACNTs19が成長する成長基板15を下降させて、VACNTs19を樹脂組成物層56に埋め込む。つまり、成長基板15を剥離せずに、VACNTs19を樹脂組成物層56に埋め込む。これにより、成長基板15から剥離されたVACNTs19(CNTアレイシート3)を樹脂組成物層56に埋め込む場合と比較して、VACNTs19の配向の乱れを抑制できる。
 また、VACNTs19を樹脂組成物層56に埋め込むときに、好ましくは、VACNTs19と基材51とを接触させる。
 VACNTs19を樹脂組成物層56に埋め込むときの温度は、例えば、50℃以上であることが好ましく、例えば、100℃以下であることが好ましく、70℃以下であることがより好ましい。
 次いで、樹脂組成物層56を加熱し硬化させる。
 樹脂組成物層56の加熱温度は、選択される熱硬化性樹脂の種類に応じて適宜変更されるが、例えば、120℃以上であることが好ましく、150℃以上であることがより好ましく、例えば、400℃以下であることが好ましく、200℃以下であることがより好ましい。
 樹脂組成物層56の加熱時間は、例えば、20分間以上であることが好ましく、1時間以上であることがより好ましい。
 また、樹脂組成物層56を硬化させる工程では、好ましくは、VACNTs19が基材51に向かうように、VACNTs19を成長基板15を介して下側に向かって押圧する。
 VACNTs19に対する圧力としては、例えば、1kPa以上であることが好ましく、4kPa以上であることがより好ましく、10kPa以上であることがとりわけ好ましい。
 第5実施形態では、図12Aおよび図12Bに示すように、樹脂組成物層56が硬化されるときに、樹脂組成物層56が基材51に対して上側に位置しており、VACNTs19が樹脂組成物層56に対して上側から埋め込まれている。そのため、樹脂組成物層56は、自重により基材51と密着している。その結果、樹脂組成物層56が基材51から離れることを抑制でき、VACNTs19と基材51との接着不良を抑制することができる。
 以上によって、樹脂組成物層56が、完全硬化して基材51とVACNTs19とを接着する接着層52となる。
 次いで、図12Bに示すように、成長基板15をVACNTs19から剥離する。
 成長基板15をVACNTs19から剥離するには、例えば、上記の切断刃20を成長基板15に沿ってスライド移動させて、複数のCNT6の上端部(成長基板15側端部)を一括して切断する。その後、成長基板15をVACNTs19から剥離する。VACNTs19は、成長基板15から剥離されて、CNTアレイシート3とされる。
 このように、樹脂組成物層56の硬化後に、成長基板15をVACNTs19から剥離すれば、樹脂組成物層56の硬化前に成長基板15をVACNTs19から剥離する場合と比較して、VACNTs19の配向の乱れを抑制できる。
 以上によって、熱硬化性樹脂から形成される接着層52を備えるCNT複合材50が製造される。
 (3)熱可塑性樹脂から形成される接着層を備えるCNT複合材の製造方法
 次に、熱可塑性樹脂から形成される接着層52を備えるCNT複合材50を製造方法について説明する。
 接着層52を形成する熱可塑性樹脂のなかでは、好ましくは、フッ素系ポリマー(例えば、ポリテトラフルオロエチレン(PTFE)、パーフルオロアルコキシアルカン(PFA)、ポリフッ化ビニル、ポリフッ化ビニリデンなど)が挙げられる。
 接着層52を熱可塑性樹脂(とりわけフッ素系ポリマー)から形成すれば、基材51とCNTアレイシート3とを安定して接着することができながら、接着層52の耐熱性、耐油性および耐薬品性の向上を図ることができる。
 熱可塑性樹脂(とりわけフッ素系ポリマー)から形成される接着層52を備えるCNT複合材50を製造するには、まず、上記と同様にして基材51を準備し、基材51上に熱可塑性樹脂(とりわけフッ素系ポリマー)から形成される接着層52を形成する。
 接着層52を基材51上に形成する方法としては、特に制限されず、例えば、上記の熱可塑性樹脂を基材51上に塗布して接着層52を形成する方法や、上記の熱可塑性樹脂から形成される樹脂シートを準備して、基材51上に配置する方法などが挙げられる。
 次いで、VACNTs19が成長する成長基板15を、VACNTs19が下側かつ成長基板15が上側となるように配置する。そして、VACNTs19を接着層52に対して上側に間隔を空けて向かい合わせる。
 次いで、接着層52を加熱して、接着層52を溶融させる。接着層52の加熱温度の範囲としては、上記の樹脂層5の加熱温度の範囲と同じである。
 そして、成長基板15を下降させて、VACNTs19を接着層52に埋め込む。このとき、好ましくは、VACNTs19が基材51に向かうように、VACNTs19を、上記した圧力の範囲で下側に向かって押圧する。また、VACNTs19は、好ましくは、接着層52を貫通して、基材51と接触する。
 その後、冷却することにより、溶融状態の接着層52が、基材51およびVACNTs19に密着した状態で硬化する。これによって、接着層52は、基材51とVACNTs19とを接着する。
 次いで、上記と同様にして、成長基板15をVACNTs19から剥離して、VACNTs19をCNTアレイシート3とする。
 以上によって、熱可塑性樹脂(とりわけフッ素系ポリマー)から形成される接着層52を備えるCNT複合材50が製造される。
 (4)CNT複合材の性能および用途
 接着層52が熱硬化性樹脂および熱可塑性樹脂のいずれの樹脂材料から形成される場合であっても、CNT複合材50の厚み方向の電気抵抗(導電抵抗)は、上記した熱伝導性シート1の厚み方向の電気抵抗(導電抵抗)の範囲と同じである。また、CNT複合材50の厚み方向の熱伝導率は、上記した熱伝導性シート1の厚み方向の熱伝導率の範囲と同じである。
 このようなCNT複合材50は、例えば、防振材、断熱材、熱伝導性シートなどとして好適に利用することができる。
 (5)作用効果
 第5実施形態では、図11に示すように、接着層52が、基材51とCNTアレイシート3(VACNTs19)とを接着するので、CNTアレイシート3が有するCNT6が、基材51から脱落することを抑制できる。
 また、接着層52が熱硬化性樹脂から形成する場合、CNTアレイシート3を基材51に熱可塑性樹脂により接着する場合と比較して、CNTアレイシート3の配向の乱れを抑制できながら、CNTアレイシート3と基材51との接触を安定して確保することができる。
 例えば、特開2011-222746号公報には、TIMと、発熱体と、放熱体とを備え、TIMが、複数のカーボンナノチューブと、カーボンナノチューブと発熱体とを接着する第1の熱可塑性樹脂層と、カーボンナノチューブと放熱体とを接着する第2の熱可塑性樹脂層とを備える電子機器が開示されている。
 そして、そのような電子機器を製造するには、まず、発熱体の表面上に第1の熱可塑性樹脂層を形成した後、第1の熱可塑性樹脂層がカーボンナノチューブと対向するように発熱体を配置する。次いで、放熱体の表面上に第2の熱可塑性樹脂層を形成し、第2の熱可塑性樹脂層がカーボンナノチューブと対向するように放熱体を配置する。そして、発熱体と放熱体との間に荷重をかけた状態で熱処理して、2つの熱可塑性樹脂層を溶解させた後、冷却してカーボンナノチューブを発熱体および放熱体に接着固定する。これによって、電子機器が製造される。
 しかし、特開2011-222746号公報に記載の電子機器では、カーボンナノチューブと発熱体および放熱体とが、2つの熱可塑性樹脂層を熱処理して溶解させた後、冷却することにより接着されているので、熱可塑性樹脂層の溶解が不十分であると、カーボンナノチューブと発熱体および放熱体との接触を安定して確保できない場合がある。
 一方、熱可塑性樹脂層を十分に溶解させるべく、熱処理の温度を上昇させると、カーボンナノチューブが部分的に密集するなどして、カーボンナノチューブの配向の乱れを生じる場合がある。
 これらの場合、カーボンナノチューブの特性(例えば、熱伝導性など)を十分に発現することができず、TIMの熱伝導性能が低下するという不具合がある。
 これに対して、接着層52が熱硬化性樹脂から形成される場合、図12A~図12Cに示すように、基材51上に、熱硬化性樹脂組成物からなり、AステージまたはBステージの樹脂組成物層56を形成した後、CNTアレイシート3を樹脂組成物層に埋め込み、樹脂組成物層を加熱し硬化させることにより、CNTアレイシート3を基材51に接着することができる。
 つまり、CNTアレイシート3は、AステージまたはBステージの樹脂組成物層56に埋め込まれるので、CNTアレイシート3を樹脂組成物層56に埋め込むときに熱処理する必要がない。そのため、CNTアレイシート3を、熱処理により溶解した熱可塑性樹脂層に埋め込む場合と比較して、CNTアレイシート3の配向の乱れを抑制できながら、CNTアレイシート3と基材51との接触を安定して確保することができる。
 また、接着層52がフッ素系ポリマーから形成される場合、基材51とCNTアレイ3シートとを安定して接着することができながら、接着層52の耐熱性、耐油性および耐薬品性の向上を図ることができる。
 なお、CNT複合材50は、図12Cに示すように、成長基板15がVACNTs19から剥離されているが、これに限定されず、成長基板15は、VACNTs19から剥離されなくてもよい。つまり、図12Bに示す構成を、CNT複合材50とすることもできる。この場合、CNT複合材50は、VACNTs19と、成長基板15と、第1基材51と、第1接着層52とを備えている。
 (第6実施形態)
 次に、図13~図15Bを参照して、第2の発明の第6実施形態について説明する。なお、第6実施形態では、上記した第5実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 (1)カーボンナノチューブ複合材の構成
 図13および図14に示すように、第2の発明の第6実施形態としてのカーボンナノチューブ複合材70(以下、CNT複合材70とする。)は、CNTアレイシート3と、基材51と、接着層52と、第2基材53と、第2接着層54と、固定部材(第1固定部材)の一例としての複数のリベット55とを備えている。なお、以下において、基材51を第1基材51とし、接着層52を第1接着層52とする。
 図13に示すように、第1基材51は、複数の開口51Aを有している。開口51Aは、リベット55を挿通するための開口である。複数の開口51Aの個数は、複数のリベット55の個数と同じである。開口51Aは、第1基材51の厚み方向に第1基材51を貫通している。複数の開口51Aは、第1基材51の周縁部に配置されており、厚み方向に投影したときに、CNTアレイシート3と重ならないように位置している。
 第2基材53は、CNTアレイシート3に対して、第1基材51の反対側に配置されている。つまり、CNTアレイシート3は、第1基材51と第2基材53との間に配置されており、第2基材53上、詳しくは、厚み方向における第2基材53の他方面上に配置されている。
 また、第2基材53は、第1基材51に対して厚み方向に間隔を空けて配置されている。第1基材51と第2基材53との間の間隔の範囲は、上記したCNT6の平均長さの範囲と同一である。
 第2基材53は、第1基材51と同様の構成を有しており、第6実施形態では、シート形状(フィルム形状)を有している。
 第2基材53としては、例えば、第1基材51と同様に上記の導電性基材および絶縁性基材などが挙げられる。第2基材53は、第1基材51と異なる基材を選択することもできるが、好ましくは、第1基材51と同一の基材が選択される。例えば、第1基材51が金属シートである場合、好ましくは、第2基材53として金属シートが選択される。
 第2基材53は、複数の開口53Aを有している。開口53Aは、リベット55を挿通するための開口である。複数の開口53Aの個数は、複数のリベット55の個数と同じである。開口53Aは、厚み方向に第2基材53を貫通している。開口53Aの径は、開口51Aの径と同じである。複数の開口53Aは、第2基材53の周縁部に配置されており、厚み方向に投影したときに、複数の開口51Aと重なるように配置されている。
 第2接着層54は、第2基材53とCNTアレイシート3とを接着している。詳しくは、第2接着層54は、CNTアレイシート3の一端部30Aを埋め込んで、第2基材53とCNTアレイシート3とを接着している。第2接着層54は、CNTアレイシート3の一端部30Aを埋め込んだ状態で、第2基材53の裏面(厚み方向他方面)上に配置されている。
 第2接着層54は、例えば、第1接着層52と同様に上記の樹脂材料から形成される。第2接着層54を形成する樹脂材料のなかでは、好ましくは、熱硬化性樹脂および熱可塑性樹脂が挙げられる。熱硬化性樹脂のなかでは、エポキシ樹脂およびフッ素系ゴムが挙げられる。熱可塑性樹脂のなかでは、好ましくは、フッ素系ポリマーが挙げられる。
 第2接着層54の樹脂材料は、第1接着層52と異なる樹脂材料を選択することもできるが、好ましくは、第1接着層52と同一の樹脂材料が選択される。例えば、第1接着層52が熱硬化性樹脂から形成される場合、第2接着層54の樹脂材料として熱硬化性樹脂が選択され、第1接着層52がフッ素系ポリマーから形成される場合、第2接着層54の樹脂材料としてフッ素系ポリマーが選択される。第2接着層54の厚みの範囲は、第1接着層52の厚みの範囲と同一である。
 CNTアレイシート3の一端部30Aは、第2接着層54に埋め込まれ、CNTアレイシート3の他端部30Bは、第1接着層52に埋め込まれている。CNTアレイシート3の一端部30Aは、好ましくは、第2基材53と接触し、CNTアレイシート3の他端部30Bは、好ましくは、第1基材51と接触している。
 CNTアレイシート3において、各CNT6は、第1接着層52に埋設される第1埋設部分60Aと、第2接着層54に埋設される第2埋設部分60Bと、第1埋設部分60Aと第2埋設部分60Bとの間の部分である露出部分60Cとを有している。
 第1埋設部分60Aは、好ましくは、第1接着層52を貫通している。第1埋設部分60Aの長さの範囲は、例えば、第1接着層52の厚みの範囲と同一である。また、第1埋設部分60Aの長さの割合は、CNT6の長さ100%に対して、例えば、10%以上であることが好ましく、25%以上であることがより好ましく、例えば、40%以下であることが好ましく、30%以下であることがより好ましい。
 第2埋設部分60Bは、好ましくは、第2接着層54を貫通している。第2埋設部分60Bの長さの範囲は、例えば、第2接着層54の厚みの範囲と同一である。また、第2埋設部分60Bの長さの割合は、CNT6の長さ100%に対して、例えば、10%以上であることが好ましく、25%以上であることがより好ましく、例えば、50%以下であることが好ましく、30%以下であることがより好ましい。
 複数のリベット55は、第1基材51と第2基材53との間の間隔を維持するように、第1基材51と第2基材53とを互いに固定している。リベット55は、頭部55Aと、胴部55Bと、かしめ部55Cとを備えている。
 頭部55Aは、厚み方向におけるリベット55の他端部に設けられている。頭部55Aは、第1基材51に対してCNTアレイシート3の反対側(厚み方向他方側)に配置されている。頭部55Aは、平面視円形状を有している。頭部55Aの外径は、開口51Aの径よりも大きい。
 胴部55Bは、リベット55における頭部55Aとかしめ部55Cとの間の部分である。胴部55Bは、厚み方向に延びる円柱形状を有している。胴部55Bは、第1基材51の開口51Aに挿通されるとともに、第2基材53の開口53Aに挿通されている。胴部55Bの外径は、開口51Aの径と略同じ(僅かに小径)である。
 かしめ部55Cは、厚み方向におけるリベット55の一端部に設けられている。かしめ部55Cは、第2基材53に対してCNTアレイシート3の反対側(厚み方向一方側)に配置されている。かしめ部55Cは、平面視円形状を有している。かしめ部55Cの外径は、開口53Aの径よりも大きい。
 このようなCNT複合材70の厚み方向の電気抵抗(導電抵抗)の範囲は、例えば、上記したCNT複合材50の厚み方向の電気抵抗の範囲と同じである。CNT複合材70の厚み方向の熱伝導率の範囲は、例えば、上記したCNT複合材50の厚み方向の熱伝導率の範囲と同じである。
 このようなCNT複合材70は、上記したCNT複合材50と同様の用途に利用できるが、好ましくは、防振材として利用される。つまり、防振材は、CNT複合材70を含んでおり、好ましくは、CNT複合材70からなる。
 CNT複合材70を含む防振材では、CNTアレイシート3が、第1接着層52により第1基材51に接着されているとともに、第2接着層54により第2基材53に接着されているので、CNT複合材70に対して厚み方向の外側から振動が加わると、その振動が、第1基材51および/または第2基材53を介して、CNTアレイシート3に伝達される。
 すると、CNTアレイシート3が備える複数のCNT6は、振動エネルギーにより配向方向に伸縮する。このとき、複数のCNT6の間には、空気が存在するので、CNT6の伸縮エネルギー(運動エネルギー)が空気との摩擦により、熱エネルギーに変換される。これによって、外部からの振動を、効率よく低減することができる。
 (2)CNT複合材70の製造方法
 次に、図15Aおよび図15Bを参照して、CNT複合材70の製造方法について説明する。
 まず、図12A~図12Cに示すように、第5実施形態と同様にして、第1基材51とCNTアレイシート3とを第1接着層52により接着する。
 また、図15Aに示すように、第2基材53を準備する。そして、必要により、第2基材53の上面を、例えば、UV照射や表面研磨などにより表面処理する。
 次いで、第2接着層54が熱硬化性樹脂から形成される場合、第2基材53上、詳しくは、第2基材53の上面に、熱硬化性樹脂組成物からなり、AステージまたはBステージの第2樹脂組成物層57を形成する。
 第2基材53の上面に第2樹脂組成物層57を形成する方法としては、例えば、第1基材51の上面に樹脂組成物層56(以下、第1樹脂組成物層56とする。)を形成する方法と同様の方法が挙げられる。第2樹脂組成物層57の厚みの範囲は、第1樹脂組成物層56の厚みの範囲と同じである。
 次いで、図15Aに示すように、CNTアレイシート3が接着される第1基材51を、CNTアレイシート3が下側かつ第1基材51が上側となるように上下の向きを逆にして配置する。そして、CNTアレイシート3を第2樹脂組成物層57に対して上側に間隔を空けて向かい合わせる。
 次いで、図15Aおよび図15Bに示すように、CNTアレイシート3が接着される第1基材51を下降させて、CNTアレイシート3に対して第1基材51の反対側に第2基材53が位置するように、CNTアレイシート3を第2樹脂組成物層57に埋め込む。
 CNTアレイシート3を第2樹脂組成物層57に埋め込むときの温度範囲は、VACNTs19を第1樹脂組成物層56に埋め込むときの温度範囲と同じである。
 このとき、第1基材51と第2基材53との間には、好ましくは、固定部材(第2固定部材)の一例としてのスペーサ58が設けられる。つまり、第6実施形態は、スペーサ58を設ける工程をさらに含んでいる。
 詳しくは、スペーサ58は、第1基材51と第2基材53との間の間隔を維持するように、第1基材51と第2基材53とを固定するものであって、第1基材51の周縁部と第2基材53の周縁部との間に挟み込まれる。スペーサ58は、上下方向に投影したときに、開口51Aおよび開口53Aと重ならない位置に設けられる。スペーサ58の個数は、特に制限されないが、好ましくは、2つ以上である。これにより、第1基材51と第2基材53との間のスペースを精度よく確保することができる。
 次いで、第2樹脂組成物層57を加熱し硬化させる。
 第2樹脂組成物層57の加熱温度の範囲は、第1樹脂組成物層56の加熱温度の範囲と同じである。第2樹脂組成物層57の加熱時間の範囲は、第1樹脂組成物層56の加熱時間の範囲と同じである。
 また、第2樹脂組成物層57を硬化させる工程では、好ましくは、CNTアレイシート3が第2基材53に向かうように、CNTアレイシート3を上記の圧力で下側に向かって押圧する。
 第6実施形態では、第2樹脂組成物層57が硬化されるときに、第2樹脂組成物層57が第2基材53に対して上側に位置しており、CNTアレイシート3が第2樹脂組成物層57に対して上側から埋め込まれている。そのため、第2樹脂組成物層57は、自重により第2基材53と密着している。その結果、第2樹脂組成物層57が第2基材53から離れることを抑制でき、CNTアレイシート3と第2基材53との接着不良を抑制することができる。
 以上によって、第2樹脂組成物層57が、完全硬化して第2基材53とCNTアレイシート3とを接着する第2接着層54となる。
 また、第2接着層54が熱可塑性樹脂(とりわけフッ素系ポリマー)から形成される場合、第1接着層52を第1基材51上に形成する方法と同様にして、第2基材53上に熱可塑性樹脂(とりわけフッ素系ポリマー)から形成される第2接着層54を形成する。
 次いで、第2接着層54を加熱して、第2接着層54を溶融させる。第2接着層54の加熱温度の範囲としては、上記の第1接着層52の加熱温度と同様である。
 そして、上記と同様に、CNTアレイシート3に対して第1基材51の反対側に第2基材53が位置するように、CNTアレイシート3を第2接着層54に埋め込む。その後、冷却することにより、溶融状態の第2接着層54が、第2基材53およびCNTアレイシート3に密着した状態で硬化する。これによって、第2接着層54は、第2基材53とCNTアレイシート3とを接着する。
 その後、図15Bに示すように、第1基材51と第2基材53とを、複数のリベット55により固定する。つまり、第6実施形態は、リベット55を設ける工程をさらに含んでいる。
 第1基材51と第2基材53とを固定する前のリベット55は、頭部55Aおよび胴部55Bのみからなる。そして、リベット55の胴部55Bを、開口51Aおよび開口53Aに対して上側から挿通する。このとき、胴部55Bの遊端部(頭部55Aと反対側の端部)は、第2基材53よりも下側に突出する。その後、図13に示すように、胴部55Bの遊端部をかしめて、かしめ部55Cを形成する。
 以上によって、CNT複合材50が製造される。
 (3)作用効果
 図13に示すように、CNT複合材70は、CNTアレイシート3に対して、第1基材51の反対側に配置される第2基材53と、第2基材53とCNTアレイシート3とを接着する第2接着層54と、をさらに備えている。
 そのため、CNTアレイシート3が第1基材51と第2基材53との間に配置される構造体を構成することができる。
 また、第2接着層54が熱硬化性樹脂から形成される場合、図15Aおよび図15Bに示すように、第2基材53上に、熱硬化性樹脂組成物からなり、AステージまたはBステージの第2樹脂組成物層57を形成した後、第2基材53と接触するように、CNTアレイシート3を第2樹脂組成物層57に埋め込み、第2樹脂組成物層57を加熱し硬化させることにより、CNTアレイシート3を第2基材53に接着することができる。
 そのため、CNTアレイシート3の配向の乱れを抑制できながら、CNTアレイシート3と第2基材53との接触を安定して確保することができる。その結果、CNTアレイシート3を第1基材51と第2基材53との間に位置させることができながら、CNTアレイシート3と、第1基材51および第2基材53との接触を安定して確保することができる。
 また、第2接着層54がフッ素系ポリマーから形成される場合、第2基材53とCNTアレイシート3とを安定して接着することができながら、第2接着層54の耐熱性、耐油性および耐薬品性の向上を図ることができる。
 図13に示すように、リベット55は第1基材51と第2基材53とを固定する。そのため、CNT複合材70に外部から力が加わったときに、CNT複合材70が変形することを抑制できる。また、リベット55は、第1基材51と第2基材53とが厚み方向の外側に向かって互いに離れるように移動することを抑制できる。その結果、CNTアレイシート3が、第1接着層52および第2接着層54のそれぞれに埋設された状態を安定して維持できる。
 図15Bに示すように、CNT複合材70にはスペーサ58が設けられる。スペーサ58は、第1基材51と第2基材53とが厚み方向の内側に向かって互いに近づくように移動することを抑制できる。そのため、第1基材51と第2基材53との間のスペースを精度よく確保することができる。
 その結果、リベット55およびスペーサ58は、第1基材51と第2基材53との間の間隔を維持することができる。これにより、CNTアレイシート3が、第1接着層52および第2接着層54のそれぞれに埋設された状態を安定して維持できる。
 図13に示すように、CNT複合材70は、防振材に好適に利用できる。CNT複合材70では、CNTアレイシート3が、第1接着層52により第1基材51に接着されているとともに、第2接着層54により第2基材53に接着されている。
 そのため、CNT複合材70に対して厚み方向の外側から振動が加わると、その振動が、第1基材51および/または第2基材53を介して、CNTアレイシート3に伝達される。
 すると、CNTアレイシート3が備える複数のCNT6は、振動エネルギーにより配向方向(厚み方向)に伸縮する。このとき、複数のCNT6の間には空気が存在するので、CNT6の伸縮エネルギー(運動エネルギー)を、空気との摩擦により、熱エネルギーに変換できる。その結果、外部からの振動を効率よく低減することができる。
 このような第6実施形態によっても、第5実施形態と同様の作用効果を奏することができる。
 (第7実施形態)
 次に、図16を参照して、第2の発明の第7実施形態について説明する。なお、第7実施形態では、上記した第5実施形態および第6実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 第6実施形態では、図13に示すように、第1基材51および第2基材53のそれぞれが、シート形状を有しているが、第1基材51および第2基材53のそれぞれの形状は、特に制限されない。
 第7実施形態では、図16に示すように、第2基材53が、上記した放熱部材10である。具体的には、CNT複合材80は、CNTアレイシート3と、第1基材51と、第1接着層52と、放熱部材10と、第2接着層54とを備えている。そして、第2接着層54が、放熱部材10とCNTアレイシート3とを接着している。
 なお、CNT複合材80は、第1基材51および第1接着層52を備えているが、これに限定されず、CNT複合材80は、第1基材51および第1接着層52を備えていなくてもよい。
 (第8実施形態)
 次に、図17Aおよび図17Bを参照して、第2の発明の第8実施形態について説明する。なお、第8実施形態では、上記した第5実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 第5実施形態では、図12A~図12Cに示すように、成長基板15上に成長されるVACNTs19が、成長基板15から剥離されることなく、樹脂組成物層56(または熱可塑性樹脂から形成される接着層52)に埋め込まれるが、これに限定されない。
 第8実施形態では、図17Aおよび図17Bに示すように、成長基板15から剥離されたCNTアレイシート3が、樹脂組成物層56(または熱可塑性樹脂から形成される接着層52)に埋め込まれる。
 第8実施形態では、図2A~図2Cに示すように、VACNTs19を成長基板15上に成長させた後、図3Aおよび図3Bに示すように、VACNTs19を、成長基板15から剥離して、CNTアレイシート3とする。
 その後、CNTアレイシート3を、図4Aおよび図4Bに示すように、上記の高密度化処理、好ましくは、加熱処理する。つまり、第8実施形態は、VACNTs19を、成長基板15から剥離してCNTアレイシート3とする工程と、CNTアレイシート3を高密度化処理する工程と、をさらに含んでいる。
 その後、図17Aおよび図17Bに示すように、高密度化処理されたCNTアレイシート3を、上記と同様にして、第1基材51上の樹脂組成物層56(または熱可塑性樹脂から形成される接着層52)に埋め込む。次いで、樹脂組成物層56を上記と同様に加熱硬化して、第1基材51とCNTアレイシート3とを接着する第1接着層52とする。これによって、CNT複合材90を製造することができる。
 第8実施形態によれば、CNTアレイシート3が、成長基板15から剥離されてCNTアレイシート3とされた後、高密度化処理されるので、CNTアレイシート3の特性(例えば、熱伝導性など)の向上を図ることができ、ひいては、CNT複合材90の性能の向上を図ることができる。また、第8実施形態によっても、第5実施形態と同様の作用効果を奏することができる。
 (第9実施形態)
 次に、図18Aおよび図18Bを参照して、第2の発明の第9実施形態について説明する。なお、第9実施形態では、上記した第5実施形態と同様の部材には同様の符号を付し、その説明を省略する。
 第5実施形態では、図11に示すように、CNTアレイシート3が、厚み方向における第1基材51の一方の面にのみ配置されるが、これに限定されない。
 第9実施形態では、第1の発明と同様に、CNTアレイシート3が、厚み方向における第1基材51の両面に配置される。
 第9実施形態では、図13Cに示すように、上記と同様にして、CNTアレイシート3が第1接着層52により接着された第1基材51を準備する。
 次いで、図18Aに示すように、第1基材51における第1接着層52と反対側の面に、上記と同様にして、第2樹脂組成物層57を形成する。
 次いで、VACNTs19が成長する成長基板15を準備し、VACNTs19が第1基材51と接触するように、VACNTs19を第2樹脂組成物層57に埋め込む。
 次いで、図18Bに示すように、第2樹脂組成物層57を、上記と同様に加熱して硬化させて、第2接着層54とする。
 次いで、上記と同様にして、成長基板15をVACNTs19から剥離する。これにより、VACNTs19がCNTアレイシート3とされる。
 以上によって、図18Cに示すように、CNT複合材100が製造される。
 CNT複合材100は、第1基材51と、厚み方向における第1基材51の両面(一方面および他方面)に配置される2つのCNTアレイシート3と、CNTアレイシート3が厚み方向における第1基材51の他方面と接触するように、第1基材51とCNTアレイシート3とを接着する第1接着層52と、CNTアレイシート3が厚み方向における第1基材51の一方面と接触するように、第1基材51とCNTアレイシート3とを接着する第2接着層54と、を備えている。
 なお、CNT複合材100は、第1の発明における熱伝導性シートの一例であって、第1基材51と、第1接着層52と、第2接着層54とは、第1の発明における固定シートの一例を構成する。また、2つのCNTアレイシート3は、固定シートの表面および裏面の両面に埋め込まれている。
 また、第1基材51は、第1の発明における基材の一例であり、第1接着層52および第2接着層54は、第1の発明における基材の表面および裏面の両面に配置される樹脂層の一例である。そして、CNTアレイシート3における第1基材51側の端部は、対応する樹脂層に埋め込まれて、第1基材51と接触している。
 このような第9実施形態によっても、第5実施形態と同様の作用効果を奏することができる。
 (変形例)
 第5実施形態では、図12Bに示すように、VACNTs19が樹脂組成物層56に埋め込まれ、樹脂組成物層56が加熱硬化された後に、成長基板15がVACNTs19から剥離されるが、これに限定されない。VACNTs19を樹脂組成物層56に埋め込んだ後、樹脂組成物層56を加熱硬化する前に、成長基板15をVACNTs19から剥離してもよい。
 第5実施形態では、樹脂組成物層56が硬化されるときに、樹脂組成物層56が第1基材51に対して上側に位置しているが、これに限定されない。樹脂組成物層56は、硬化されるときに、第1基材51に対して下側に位置してもよい。
 第6実施形態では、図13に示すように、複数のリベット55を備えているが、これに限定されない。CNT複合材50は、複数のリベット55を備えなくてもよい。
 第6実施形態では、図15Bに示すように、第1基材51と第2基材53との間にはスペーサ58が設けられるが、これに限定されない。スペーサ58は、第1基材51と第2基材53との間に設けられなくてもよい。
 第6実施形態では、VACNTs19が埋め込まれた第1樹脂組成物層56を加熱して硬化し、第1接着層52とした後、VACNTs19(CNTアレイシート3)を第2樹脂組成物層57に埋め込み、第2樹脂組成物層57を加熱して硬化し、第2接着層54としているがこれに限定されない。
 例えば、CNTアレイシート3を、第1樹脂組成物層56および第2樹脂組成物層57に埋め込んだ後、第1樹脂組成物層56および第2樹脂組成物層57を一括して加熱し、第1接着層52および第2接着層54とすることもできる。
 第6実施形態では、第2樹脂組成物層57が硬化されるときに、第2樹脂組成物層57が第2基材53に対して上側に位置しているが、これに限定されない。第2樹脂組成物層57は、硬化されるときに、第2基材53に対して下側に位置してもよい。
 第5実施形態および第6実施形態では、図11および図13に示すように、CNTアレイシート3が、好ましくは、第1基材51および第2基材53と接触しているが、これに限定されず、CNTアレイシート3は、第1基材51および第2基材53と接触していなくてもよい。この場合、第1接着層52および第2接着層54は、好ましくは、上記した添加材を含有する。第1接着層52および第2接着層54内でCNTアレイシート3と添加材とが接触することにより、CNT複合材の電気絶縁性および熱伝導性を確保することができる。
 これら第5実施形態~第9実施形態および変形例は、適宜組み合わせることができる。
 以下に実施例を示し、本発明をさらに具体的に説明するが、本発明は、それらに限定されない。以下の記載において用いられる配合割合(含有割合)、物性値、パラメータなどの具体的数値は、上記の「発明を実施するための形態」において記載されている、それらに対応する配合割合(含有割合)、物性値、パラメータなど該当記載の上限値(「以下」、「未満」として定義されている数値)または下限値(「以上」、「超過」として定義されている数値)に代替することができる。
  (実施例1)
 ステンレス製の成長基板(ステンレス基板)の表面に二酸化ケイ素膜を積層した後、二酸化ケイ素膜上に、触媒層として鉄を蒸着した。
 次いで、成長基板を所定の温度に加熱して、触媒層に原料ガス(アセチレンガス)を供給した。これにより、成長基板上において、平面視略矩形形状のVACNTsを形成した。
 VACNTsにおいて、複数のCNTは、互いに略平行となるように延び、成長基板に対して直交するように配向(垂直配向)されていた。CNTは、多層カーボンナノチューブであり、CNTの平均外径は、約12nm、CNTの平均長さは、約80μm、VACNTsの嵩密度は、約50mg/cmであった。
 次いで、カッター刃(切断刃)を成長基板に沿って移動させて、VACNTsを成長基板から切り離して、CNTアレイシートを準備した。
 次いで、CNTアレイシートを、耐熱容器である炭素容器に収容して、その炭素容器を抵抗加熱炉内に配置した。
 次いで、抵抗加熱炉内を、アルゴン雰囲気に置換した後、10℃/分で2800℃まで昇温し、2800℃で2時間保持した。これにより、CNTアレイシートが高密度化され、その後、自然冷却により室温まで冷却した。
 高密度化されたCNTアレイシートの嵩密度は、約100mg/cmであり、そのCNTアレイシートの厚み方向の電気抵抗(導電抵抗)は、25℃において、0.1Ωであり、そのCNTアレイシートの熱伝導率は、厚み方向において、約30W/(m・K)であった。
 そして、上記と同様にして、高密度化されたCNTアレイシートを2つ準備した。
 次いで、厚みが100μmである銅シート(基材)を準備するとともに、厚みが約30μmであり、PTFEから形成される樹脂シートを2枚準備した。
 そして、樹脂シートを銅シートの表面および裏面の両面に配置して、固定シートを準備した。
 次いで、上記のCNTアレイシートを、表側および裏側の両方の樹脂シート上に配置した。続いて、2つのCNTアレイシートが銅シートに向かうように、厚み方向の外側から0.8MPaの力で加圧するとともに、380℃で5分間加熱した。
 その後、冷却して、熱伝導性シートを得た。
  (実施例2)
 PVAが水(溶媒)に溶解されたPVA溶液(樹脂溶液、PVA濃度:10質量%)に、チタン粒子(金属粒子)を分散させて、ペーストを準備した。
 なお、チタン粒子の平均一次粒子径は、2~3μmであり、チタン粒子の含有割合は、ペースト全量に対して、20質量%であった。
 次いで、実施例1と同様にして準備された2つのCNTアレイシートのうち、一方のCNTアレイシートに、ペーストを塗布して、厚み約30μmの粒子含有層を形成した。そして、他方のCNTアレイシートを、粒子含有層が2つのCNTアレイシートの間に挟まれるように、粒子含有層上に配置した。
 その後、CNTアレイシートが配置された粒子含有層を、不活性ガス雰囲気中において、2つのCNTアレイシートが互いに近づくように厚み方向の外側から0.8MPaの力で加圧しながら、約1700℃で5分間加熱した。
 その後、冷却して、熱伝導性シートを得た。
  (実施例3)
 厚み30μmであり、PFAから形成される樹脂シート(固定シート)を準備した。
 次いで、実施例1と同様にして準備されたCNTアレイシートを樹脂シートの表面および裏面の両面に配置した。
 その後、CNTアレイシートが配置された樹脂シートを、2つのCNTアレイシートが互いに近づくように厚み方向の外側から0.8MPaの力で加圧しながら、約380℃で5分間加熱した。
 その後、冷却して、熱伝導性シートを得た。
  (比較例1)
 ステンレス製の成長基板の表面および裏面の両面に、二酸化ケイ素膜を積層した後、二酸化ケイ素膜上に、触媒層として鉄を蒸着した。
 次いで、成長基板を所定の温度に加熱して、触媒層に原料ガス(アセチレンガス)を供給した。これにより、基板の表面および裏面の両面に、平面視略矩形形状のVACNTsを形成した。各VACNTsにおいて、CNTの平均外径、CNTの平均長さ、および、嵩密度は、実施例1と同様であった。
 そして、両面にVACNTsが配置される成長基板を、熱伝導性シートとした。
 <評価>
(1)熱伝導率
 各実施例および比較例で得られた熱伝導性シートについて、熱抵抗を熱抵抗測定装置(商品名:T3Ster DynTIM Tester、メンターグラフィックス社製)により測定した。そして、熱伝導性シートの厚みを変更して、熱抵抗を複数点(例えば、3点)測定し、熱伝導性シートの厚みおよび測定された熱抵抗をプロットした。そのプロット結果から、熱伝導性シートの熱伝導率を算出した。その結果を表1に示す。
 (2)電気抵抗
 各実施例および比較例で得られた熱伝導性シートについて、厚み方向の電気抵抗を電気抵抗測定装置(商品名:レジスティビティ・チェンバ、エーディーシー社製)により測定した。その結果を、表1に示す。
 (3)接着強度試験
 各実施例で得られた熱伝導性シートについて、粘着テープを、CNTアレイシートに対して、固定シートと反対側から貼着した後、粘着テープを剥離した。
 また、比較例で得られた熱伝導性シートについて、粘着テープを、VACNTsに対して、成長基板と反対側から貼着した後、粘着テープを剥離した。
 そして、接着強度を、以下の基準により評価した。その結果を表1に示す。
 ○:CNTアレイシート(VACNTs)の固定シート(成長基板)からの顕著な剥離がみられなかった。
 ×:CNTアレイシート(VACNTs)の固定シート(成長基板)からの顕著な剥離がみられた。
Figure JPOXMLDOC01-appb-T000001
 (実施例4)
 実施例1と同様にして、成長基板上にVACNTsを成長させた。
 次いで、厚みが10μmであるアルミニウム箔を、第1基材として準備し、第1基材(アルミニウム箔)の表面をUV照射により表面処理した。
 次いで、第1基材の表面(上面)に、エポキシ樹脂系プリプレグシート(厚み30μm)を貼り付けて、第1樹脂組成物層を形成した。第1樹脂組成物層は、Bステージのエポキシ樹脂組成物から形成されていた。
 次いで、VACNTsが成長した成長基板を、VACNTsが下側かつ成長基板が上側となるように配置した。そして、VACNTsを第1樹脂組成物層に対して上側に間隔を空けて向かい合うように配置した。
 次いで、成長基板を剥離せずに、55℃において、VACNTsが第1基材と接触するように、VACNTsを第1樹脂組成物層に埋め込んだ。
 次いで、VACNTsが第1基材に向かうように、4kPaの力で加圧しながら、160℃(第1樹脂組成物層の加熱温度)で1時間加熱した。
 これにより、VACNTsが第1基材に接触した状態で、第1樹脂組成物層が、完全硬化して(Cステージとなり)、第1接着層となった。第1接着層は、完全硬化後(Cステージ)のエポキシ樹脂からなり、VACNTsと第1基材とを接着していた。その後、VACNTsから成長基板を剥離した。これにより、VACNTsは、CNTアレイシートとされた。
 次いで、上記と同様のアルミニウム箔を第2基材として準備し、その第2基材の表面に、別途準備したエポキシ樹脂系プリプレグシートを貼り付けて、第2樹脂組成物層を形成した。第2樹脂組成物層は、Bステージのエポキシ樹脂組成物から形成されていた。
 次いで、CNTアレイシートが接着された第1基材を、CNTアレイシートが下側かつ第1基材が上側となるように上下の向きを逆にして、CNTアレイシートが第2樹脂組成物層に対して上側に間隔を空けて向かい合うように配置した。
 次いで、CNTアレイシートが第2基材に接触するように、CNTアレイシートを第2樹脂組成物層に埋め込んだ。
 次いで、CNTアレイシートが第2基材に向かうように、4kPaの力で加圧しながら、160℃で1時間加熱した。
 これにより、CNTアレイシートが第2基材に接触した状態で、第2樹脂組成物層が、完全硬化して(Cステージとなり)、第2接着層となった。第2接着層は、完全硬化後(Cステージ)のエポキシ樹脂からなり、CNTアレイシートと第2基材とを接着していた。
 以上によって、CNT複合材を得た。
 (実施例5)
 第1基材にエポキシ樹脂組成物からなるワニスを塗布して、第1樹脂組成物層を形成したこと、第1樹脂組成物層の硬化温度を110℃に変更したこと、第2基材にエポキシ樹脂組成物からなるワニスを塗布して、第2樹脂組成物層を形成したこと、および、第2樹脂組成物層の硬化温度を110℃に変更したこと以外は、実施例4と同様にして、CNT複合材を得た。第1樹脂組成物層および第2樹脂組成物層のそれぞれは、Aステージのエポキシ樹脂組成物から形成されていた。
 (実施例6)
 第1基材にフッ素系ゴム組成物からなるワニス(N-メチルピロリドン溶液)を塗布して、第1樹脂組成物層を形成したこと、第1樹脂組成物層の硬化温度を200℃に変更したこと、第2基材にフッ素系ゴム組成物からなるワニス(N-メチルピロリドン溶液)を塗布して、第2樹脂組成物層を形成したこと、および、第2樹脂組成物層の硬化温度を200℃に変更したこと以外は、実施例4と同様にして、CNT複合材を得た。第1樹脂組成物層および第2樹脂組成物層のそれぞれは、Aステージのフッ素系ゴム組成物から形成されていた。
 (実施例7~9)
 実施例4~6のCNT複合材のそれぞれに、複数(4つ)のリベットをさらに設けた。
 (実施例10)
 実施例4と同様にして、CNTアレイシートが第1接着層により接着された第1基材を準備した。
 次いで、CNTアレイシートが接着された第1基材を、VACNTsが下側かつ第1基材が上側となるように上下の向きを逆にして配置した。
 次いで、第1基材における第1接着層と反対側の面に、エポキシ樹脂系プリプレグシートを貼り付けて、第2樹脂組成物層を形成した。第2樹脂組成物層は、Bステージのエポキシ樹脂組成物から形成されていた。
 次いで、別途、VACNTsを成長基板上に成長させた後、55℃において、成長基板上のVACNTsが第1基材と接触するように、VACNTsを第2樹脂組成物層に埋め込んだ。
 次いで、VACNTsが第1基材に向かうように、4kPaの力で加圧しながら、160℃で1時間加熱した。
 これにより、VACNTsが第1基材に接触した状態で、第2樹脂組成物層が、完全硬化して(Cステージとなり)、第2接着層(第2樹脂層)となった。第2接着層(第2樹脂層)は、完全硬化後(Cステージ)のエポキシ樹脂からなり、VACNTsと第1基材とを接着していた。
 以上によって、CNT複合材(熱伝導性シート)を得た。CNT複合材(熱伝導性シート)は、第1基材(基材)と、第1基材(基材)の表面および裏面の両面に配置される第1接着層(第1樹脂層)および第2接着層(第2樹脂層)とを備える固定シートと、成長基板から剥離され、固定シートの表面および裏面の両面に埋め込まれるCNTアレイシートと、を備え、CNTアレイシートにおける第1基材側の端部は、対応する樹脂層に埋め込まれて、第1基材側と接触していた。
 (実施例11)
 第1基材の表面にエポキシ樹脂組成物からなるワニスを塗布して、第1樹脂組成物層を形成したこと、第1樹脂組成物層の硬化温度を110℃に変更したこと、第1基材の裏面にエポキシ樹脂組成物からなるワニスを塗布して、第2樹脂組成物層を形成したこと、および、第2樹脂組成物層の硬化温度を110℃に変更したこと以外は、実施例10と同様にして、CNT複合材(熱伝導性シート)を得た。第1樹脂組成物層および第2樹脂組成物層のそれぞれは、Aステージのエポキシ樹脂組成物から形成されていた。
 (実施例12)
 第1基材の表面にフッ素系ゴム組成物からなるワニス(N-メチルピロリドン溶液)を塗布して、第1樹脂組成物層を形成したこと、第1樹脂組成物層の硬化温度を200℃に変更したこと、第1基材の裏面にフッ素系ゴム組成物からなるワニス(N-メチルピロリドン溶液)を塗布して、第2樹脂組成物層を形成したこと、および、第2樹脂組成物層の硬化温度を200℃に変更したこと以外は、実施例10と同様にして、CNT複合材(熱伝導性シート)を得た。第1樹脂組成物層および第2樹脂組成物層のそれぞれは、Aステージのフッ素系ゴム組成物から形成されていた。
 (実施例13)
 PTFEから形成される樹脂シート(接着層)を銅シート(基材)の表面にのみ配置し、1つのCNTアレイを樹脂シートに埋め込んだこと以外は、実施例1と同様にしてCNT複合材(熱伝導性シート)を得た。
 (実施例14)
 PFAから形成される樹脂シート(接着層)を銅シート(基材)の表面にのみ配置し、1つのCNTアレイを樹脂シートに埋め込んだこと以外は、実施例3と同様にしてCNT複合材(熱伝導性シート)を得た。
 なお、上記発明は、本発明の例示の実施形態として提供したが、これは単なる例示に過ぎず、限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記請求の範囲に含まれる。
 CNT複合材は、各種の産業製品に適用でき、例えば、熱伝導性材料、防振材、断熱材などとして用いることができる。CNT複合材の製造方法は、各種の産業製品に用いられるCNT複合材の製造に好適に用いることができる。
 1   熱伝導性シート
 2   固定シート
 2A  固定シートの表面
 2B  固定シートの裏面
 3   CNTアレイシート
 4   基材
 4A  基材の表面
 4B  基材の裏面
 5   樹脂層
 5A  第1樹脂層
 5B  第2樹脂層
 6   CNT
 15  成長基板
 19  VACNTs
 23  ウェブ積層シート
 32  導電層
 40  粒子含有層
 42  金属粒子

Claims (15)

  1.  表面および裏面を有する固定シートと、
     前記固定シートの表面および裏面の両面に埋め込みまたは接合されるカーボンナノチューブアレイシートと、を備えていることを特徴とする、カーボンナノチューブ複合材。
  2.  前記カーボンナノチューブアレイシートの平均嵩密度は、50mg/cm以上であることを特徴とする、請求項1に記載のカーボンナノチューブ複合材。
  3.  前記固定シートは、
      基材と、
      前記基材の表面および裏面の両面に配置される樹脂層と、を備え、
     前記カーボンナノチューブアレイシートにおける前記基材側の端部は、対応する前記樹脂層に埋め込まれて、前記基材と接触していることを特徴とする、請求項1に記載のカーボンナノチューブ複合材。
  4.  前記基材は、電気伝導性を有することを特徴とする、請求項3に記載のカーボンナノチューブ複合材。
  5.  前記基材は、無機物の焼結体から形成されることを特徴とする、請求項3に記載のカーボンナノチューブ複合材。
  6.  前記固定シートは、電気伝導性を有する導電層を備え、
     前記カーボンナノチューブアレイシートの前記導電層側の端部は、前記導電層の界面に接合されていることを特徴とする、請求項1に記載のカーボンナノチューブ複合材。
  7.  前記表面側のカーボンナノチューブアレイシートおよび前記裏面側のカーボンナノチューブアレイシートは、前記固定シートに埋め込まれ、前記固定シート中において互いに接触していることを特徴とする、請求項1に記載のカーボンナノチューブ複合材。
  8.  基材と、前記基材の表面および裏面の両面に配置される樹脂層とを備える固定シートを準備する工程と、
     成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートを、前記表面側および前記裏面側の両方の樹脂層上に配置する工程と、
     前記カーボンナノチューブアレイシートが配置された前記固定シートを加熱して、前記カーボンナノチューブアレイシートにおける前記基材側の端部を、対応する前記樹脂層に埋め込み、前記基材と接触させる工程と、を含むことを特徴とする、カーボンナノチューブ複合材の製造方法。
  9.  樹脂組成物を、基材の表面および裏面の両面に塗布して、前記基材の表面および裏面の両面に樹脂組成物層を形成する工程と、
     成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートを、前記表面側および前記裏面側の両方の樹脂組成物層に埋め込み、前記カーボンナノチューブアレイシートにおける前記基材側の端部を、前記基材に接触させる工程と、
     前記樹脂組成物層を加熱し、硬化させて樹脂層とする工程と、を含むことを特徴とする、カーボンナノチューブ複合材の製造方法。
  10.  電気伝導性を有する導電層を備える固定シートを準備する工程と、
     成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートを、前記固定シートの表面および裏面の両面に配置する工程と、
     前記カーボンナノチューブアレイシートが配置された前記固定シートを加熱して、前記カーボンナノチューブアレイシートの前記導電層側の端部を、前記導電層の界面に接合させる工程と、を含むことを特徴とする、カーボンナノチューブ複合材の製造方法。
  11.  成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートを、金属粒子を含有する粒子含有層の表面および裏面の両面に配置する工程と、
     前記粒子含有層を加熱して、前記金属粒子を溶融させて固定シートに形成し、前記表面側のカーボンナノチューブアレイシートと、前記裏面側のカーボンナノチューブアレイシートとを、前記固定シートに埋め込み、前記固定シート中において互いに接触させる工程と、を含むことを特徴とする、カーボンナノチューブ複合材の製造方法。
  12.  樹脂材料から形成される固定シートを準備する工程と、
     成長基板上に垂直配向カーボンナノチューブを成長させる工程と、
     前記成長基板から前記垂直配向カーボンナノチューブを剥離し、カーボンナノチューブアレイシートとする工程と、
     前記カーボンナノチューブアレイシートを、前記固定シートの表面および裏面の両面に配置する工程と、
     前記カーボンナノチューブアレイシートが配置された前記固定シートを加熱して、前記表面側のカーボンナノチューブアレイシートと、前記裏面側のカーボンナノチューブアレイシートとを、前記固定シートに埋め込み、前記固定シート中において互いに接触させる工程と、を含むことを特徴とする、カーボンナノチューブ複合材の製造方法。
  13.  基材と、
     前記基材上に配置される垂直配向カーボンナノチューブと、
     前記基材と前記垂直配向カーボンナノチューブとを接着する接着層と、を備えることを特徴とする、カーボンナノチューブ複合材。
  14.  前記接着層は、熱硬化性樹脂から形成されることを特徴とする、請求項13に記載のカーボンナノチューブ複合材。
  15.  前記接着層は、フッ素系ポリマーから形成されることを特徴とする、請求項13に記載のカーボンナノチューブ複合材。
PCT/JP2016/089031 2015-12-28 2016-12-28 カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法 WO2017115832A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020187018235A KR102570247B1 (ko) 2015-12-28 2016-12-28 카본나노튜브 복합재 및 카본나노튜브 복합재의 제조방법
JP2017559230A JP6802808B2 (ja) 2015-12-28 2016-12-28 カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法
CN201680074146.8A CN108473312B (zh) 2015-12-28 2016-12-28 碳纳米管复合材料以及碳纳米管复合材料的制造方法
EP16881806.0A EP3398907A4 (en) 2015-12-28 2016-12-28 CARBON NANOTUBE COMPOSITE MATERIAL AND PROCESS FOR PRODUCING THE COMPOSITE MATERIAL OF CARBON NANOTUBES
US16/066,153 US10836633B2 (en) 2015-12-28 2016-12-28 Carbon nanotube composite material and method for producing carbon nanotube composite material
US17/064,277 US11414321B2 (en) 2015-12-28 2020-10-06 Carbon nanotube composite material and method for producing carbon nanotube composite material

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-256720 2015-12-28
JP2015256720 2015-12-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/066,153 A-371-Of-International US10836633B2 (en) 2015-12-28 2016-12-28 Carbon nanotube composite material and method for producing carbon nanotube composite material
US17/064,277 Division US11414321B2 (en) 2015-12-28 2020-10-06 Carbon nanotube composite material and method for producing carbon nanotube composite material

Publications (1)

Publication Number Publication Date
WO2017115832A1 true WO2017115832A1 (ja) 2017-07-06

Family

ID=59225316

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/089031 WO2017115832A1 (ja) 2015-12-28 2016-12-28 カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法

Country Status (7)

Country Link
US (2) US10836633B2 (ja)
EP (1) EP3398907A4 (ja)
JP (1) JP6802808B2 (ja)
KR (1) KR102570247B1 (ja)
CN (2) CN114133918A (ja)
TW (1) TWI721077B (ja)
WO (1) WO2017115832A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116999A (ja) * 2017-01-17 2018-07-26 富士通株式会社 熱伝導構造体、その製造方法及び電子装置
WO2019031492A1 (ja) * 2017-08-10 2019-02-14 日立造船株式会社 フィラー・樹脂複合体、および、フィラー・樹脂複合体の製造方法
WO2019031493A1 (ja) * 2017-08-10 2019-02-14 日立造船株式会社 フィラー・樹脂複合体の製造方法
JP2019036675A (ja) * 2017-08-21 2019-03-07 富士通株式会社 放熱シート及びその製造方法、電子装置
JP2019048745A (ja) * 2017-09-11 2019-03-28 日立造船株式会社 カーボンナノチューブ成形体の製造方法およびカーボンナノチューブ成形体製造装置
TWI712146B (zh) * 2018-06-29 2020-12-01 大陸商長江存儲科技有限責任公司 半導體結構及其形成方法
WO2021015006A1 (ja) * 2019-07-23 2021-01-28 日立造船株式会社 電気デバイスユニット
JP2021034581A (ja) * 2019-08-26 2021-03-01 日立造船株式会社 カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法
KR20230000688A (ko) * 2021-06-25 2023-01-03 실리콘밸리(주) 탄소나노튜브의 입자 진동을 이용한 방열 챔버

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10791651B2 (en) * 2016-05-31 2020-09-29 Carbice Corporation Carbon nanotube-based thermal interface materials and methods of making and using thereof
JP2018067483A (ja) * 2016-10-20 2018-04-26 ヤマハ株式会社 異方導電性シート、電気検査ヘッド、電気検査装置及び異方導電性シートの製造方法
TWI755492B (zh) 2017-03-06 2022-02-21 美商卡爾拜斯有限公司 基於碳納米管的熱界面材料及其製造和使用方法
US11961669B2 (en) * 2017-05-02 2024-04-16 The Trustees Of The Stevens Institute Of Technology Stretchable supercapacitors with vertically-aligned embedded carbon nanotubes
US11541648B2 (en) 2017-05-02 2023-01-03 The Trustees Of The Stevens Institute Of Technology VACNT-based flexible electronics for sensing and capacitance applications
CN109749107B (zh) * 2019-02-26 2021-07-30 中国人民解放军国防科技大学 一种定向取向的碳纳米管/树脂膜及其制备方法
JP7348515B2 (ja) * 2019-12-05 2023-09-21 富士通株式会社 放熱シート及び放熱シートの製造方法
KR102440998B1 (ko) * 2020-04-16 2022-09-13 주식회사 글린트머티리얼즈 양면 패턴부를 포함하는 템포러리 본딩용 미끄럼 방지 패드
CN214176013U (zh) 2020-12-23 2021-09-10 迪科特测试科技(苏州)有限公司 半导体结构
KR102273440B1 (ko) * 2020-12-24 2021-07-06 한라대학교 산학협력단 스팀제초기
US11653475B2 (en) * 2021-02-01 2023-05-16 Microsoft Technology Licensing, Llc Thermally conductive microtubes for evenly distributing heat flux on a cooling system
US20220384307A1 (en) * 2021-06-01 2022-12-01 Nxp Usa, Inc. Thermal interface structures, electrical systems with thermal interface structures, and methods of manufacture thereof
US20230211901A1 (en) * 2022-01-03 2023-07-06 Northrop Grumman Systems Corporation Latticed structure for vibration control in dynamic environments
CN116705726B (zh) * 2023-08-08 2023-10-27 合肥阿基米德电子科技有限公司 一种免焊模块封装结构及其双面散热模块封装结构

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222746A (ja) 2010-04-09 2011-11-04 Fujitsu Ltd 電子機器の製造方法
JP2012224507A (ja) * 2011-04-20 2012-11-15 Fujitsu Ltd カーボンナノチューブの形成方法及び熱拡散装置
JP2014033104A (ja) * 2012-08-03 2014-02-20 Shinko Electric Ind Co Ltd 放熱部品及びその製造方法
JP2014060252A (ja) * 2012-09-18 2014-04-03 Fujitsu Ltd 放熱材料の製造方法
JP2014094856A (ja) 2012-11-09 2014-05-22 Hitachi Zosen Corp カーボンナノチューブ生成用基板の製造方法および連続製造装置
JP2014227331A (ja) * 2013-05-27 2014-12-08 日立造船株式会社 カーボンナノチューブシートおよびその製造方法
WO2014203547A1 (ja) * 2013-06-21 2014-12-24 独立行政法人産業技術総合研究所 接合シート及びその製造方法、並びに放熱機構及びその製造方法
JP2015098418A (ja) * 2013-11-20 2015-05-28 日立造船株式会社 カーボンナノチューブシートの製造方法
JP2015526904A (ja) 2013-07-10 2015-09-10 ▲ホア▼▲ウェイ▼技術有限公司 熱界面パッド及びその製造方法並びに放熱システム

Family Cites Families (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4375526B2 (ja) 2003-05-14 2009-12-02 三菱瓦斯化学株式会社 先端開口配向性カーボンナノチューブ膜の製造方法
US20050116336A1 (en) * 2003-09-16 2005-06-02 Koila, Inc. Nano-composite materials for thermal management applications
WO2005029555A2 (en) * 2003-09-16 2005-03-31 Koila, Inc. Nanostructure augmentation of surfaces for enhanced thermal transfer
CN100383213C (zh) * 2004-04-02 2008-04-23 清华大学 一种热界面材料及其制造方法
US20080292840A1 (en) * 2004-05-19 2008-11-27 The Regents Of The University Of California Electrically and thermally conductive carbon nanotube or nanofiber array dry adhesive
JP4617479B2 (ja) * 2004-09-17 2011-01-26 独立行政法人産業技術総合研究所 透明導電性カーボンナノチューブフィルムを用いたタッチパネル
JP2006147801A (ja) * 2004-11-18 2006-06-08 Seiko Precision Inc 放熱シート、インターフェース、電子部品及び放熱シートの製造方法
CN100454526C (zh) 2005-06-30 2009-01-21 鸿富锦精密工业(深圳)有限公司 热界面材料制造方法
CN1897205B (zh) * 2005-07-15 2010-07-28 清华大学 碳纳米管阵列发射元件及其制作方法
US8093715B2 (en) * 2005-08-05 2012-01-10 Purdue Research Foundation Enhancement of thermal interface conductivities with carbon nanotube arrays
US8617650B2 (en) * 2006-09-28 2013-12-31 The Hong Kong University Of Science And Technology Synthesis of aligned carbon nanotubes on double-sided metallic substrate by chemical vapor depositon
US8220530B2 (en) * 2006-10-17 2012-07-17 Purdue Research Foundation Electrothermal interface material enhancer
JP2008169267A (ja) * 2007-01-10 2008-07-24 Sumitomo Electric Ind Ltd 放熱材とその製造方法
JP5364978B2 (ja) 2007-03-28 2013-12-11 富士通セミコンダクター株式会社 表面改質カーボンナノチューブ系材料、その製造方法、電子部材および電子装置
US7960262B2 (en) 2007-05-18 2011-06-14 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device by applying laser beam to single-crystal semiconductor layer and non-single-crystal semiconductor layer through cap film
CN100569509C (zh) 2007-06-15 2009-12-16 清华大学 一种碳纳米管阵列/层状材料复合物及其制备方法
JP2009004576A (ja) 2007-06-21 2009-01-08 Shimane Pref Gov 冷却装置
US8919428B2 (en) * 2007-10-17 2014-12-30 Purdue Research Foundation Methods for attaching carbon nanotubes to a carbon substrate
JP5146371B2 (ja) 2008-07-11 2013-02-20 株式会社豊田中央研究所 カーボンナノ複合体、それを含む分散液及び樹脂組成物、並びにカーボンナノ複合体の製造方法
CN101662894B (zh) * 2008-08-27 2011-09-21 富葵精密组件(深圳)有限公司 封装基板以及封装结构
JP5463674B2 (ja) 2009-01-28 2014-04-09 株式会社豊田中央研究所 カーボンナノ複合体、それを含む分散液および樹脂組成物、ならびにカーボンナノ複合体の製造方法
CN101899288B (zh) 2009-05-27 2012-11-21 清华大学 热界面材料及其制备方法
US8106510B2 (en) * 2009-08-04 2012-01-31 Raytheon Company Nano-tube thermal interface structure
GB0914816D0 (en) 2009-08-25 2009-09-30 Isis Innovation Method of fabrication of aligned nanotube-containing composites
JP5293561B2 (ja) 2009-10-29 2013-09-18 富士通株式会社 熱伝導性シート及び電子機器
JP5540419B2 (ja) * 2010-02-15 2014-07-02 国立大学法人北海道大学 カーボンナノチューブシート及びその製造方法
JP5673668B2 (ja) 2010-03-12 2015-02-18 富士通株式会社 放熱構造体、電子機器およびそれらの製造方法
US9096784B2 (en) 2010-07-23 2015-08-04 International Business Machines Corporation Method and system for allignment of graphite nanofibers for enhanced thermal interface material performance
US9095821B1 (en) * 2010-10-26 2015-08-04 Nagare Membranes, Llc Non-reactive process for fixing nanotubes in a membrane in through-passage orientation
JP5780546B2 (ja) * 2011-10-12 2015-09-16 国立研究開発法人産業技術総合研究所 カーボンナノチューブ複合材料および導電材料
WO2013128841A1 (ja) * 2012-02-28 2013-09-06 住友ベークライト株式会社 プリプレグおよびプリプレグの製造方法
JP5928181B2 (ja) * 2012-06-18 2016-06-01 富士通株式会社 電子機器の製造方法及び電子機器
JP2014002273A (ja) 2012-06-19 2014-01-09 Nec Corp 情報表示装置、その制御方法及びプログラム
US9656246B2 (en) 2012-07-11 2017-05-23 Carbice Corporation Vertically aligned arrays of carbon nanotubes formed on multilayer substrates
JP2014234339A (ja) 2013-06-05 2014-12-15 日立造船株式会社 カーボンナノチューブシートおよびカーボンナノチューブシートの製造方法
JP2015001180A (ja) 2013-06-14 2015-01-05 株式会社東芝 軸流タービン
CN104973583B (zh) 2014-04-14 2017-04-05 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法
CN104973584B (zh) 2014-04-14 2018-03-02 清华大学 碳纳米管阵列的转移方法及碳纳米管结构的制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011222746A (ja) 2010-04-09 2011-11-04 Fujitsu Ltd 電子機器の製造方法
JP2012224507A (ja) * 2011-04-20 2012-11-15 Fujitsu Ltd カーボンナノチューブの形成方法及び熱拡散装置
JP2014033104A (ja) * 2012-08-03 2014-02-20 Shinko Electric Ind Co Ltd 放熱部品及びその製造方法
JP2014060252A (ja) * 2012-09-18 2014-04-03 Fujitsu Ltd 放熱材料の製造方法
JP2014094856A (ja) 2012-11-09 2014-05-22 Hitachi Zosen Corp カーボンナノチューブ生成用基板の製造方法および連続製造装置
JP2014227331A (ja) * 2013-05-27 2014-12-08 日立造船株式会社 カーボンナノチューブシートおよびその製造方法
WO2014203547A1 (ja) * 2013-06-21 2014-12-24 独立行政法人産業技術総合研究所 接合シート及びその製造方法、並びに放熱機構及びその製造方法
JP2015526904A (ja) 2013-07-10 2015-09-10 ▲ホア▼▲ウェイ▼技術有限公司 熱界面パッド及びその製造方法並びに放熱システム
JP2015098418A (ja) * 2013-11-20 2015-05-28 日立造船株式会社 カーボンナノチューブシートの製造方法

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018116999A (ja) * 2017-01-17 2018-07-26 富士通株式会社 熱伝導構造体、その製造方法及び電子装置
US11512195B2 (en) 2017-08-10 2022-11-29 Hitachi Zosen Corporation Method for producing filler-resin composite
WO2019031492A1 (ja) * 2017-08-10 2019-02-14 日立造船株式会社 フィラー・樹脂複合体、および、フィラー・樹脂複合体の製造方法
WO2019031493A1 (ja) * 2017-08-10 2019-02-14 日立造船株式会社 フィラー・樹脂複合体の製造方法
JP2019034984A (ja) * 2017-08-10 2019-03-07 日立造船株式会社 フィラー・樹脂複合体の製造方法
JP2019034414A (ja) * 2017-08-10 2019-03-07 日立造船株式会社 フィラー・樹脂複合体、および、フィラー・樹脂複合体の製造方法
JP2019036675A (ja) * 2017-08-21 2019-03-07 富士通株式会社 放熱シート及びその製造方法、電子装置
JP2019048745A (ja) * 2017-09-11 2019-03-28 日立造船株式会社 カーボンナノチューブ成形体の製造方法およびカーボンナノチューブ成形体製造装置
TWI712146B (zh) * 2018-06-29 2020-12-01 大陸商長江存儲科技有限責任公司 半導體結構及其形成方法
WO2021015006A1 (ja) * 2019-07-23 2021-01-28 日立造船株式会社 電気デバイスユニット
JP2021019144A (ja) * 2019-07-23 2021-02-15 日立造船株式会社 電気デバイスユニット
JP2021034581A (ja) * 2019-08-26 2021-03-01 日立造船株式会社 カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法
KR20230000688A (ko) * 2021-06-25 2023-01-03 실리콘밸리(주) 탄소나노튜브의 입자 진동을 이용한 방열 챔버
KR102491542B1 (ko) 2021-06-25 2023-01-26 실리콘밸리(주) 탄소나노튜브의 입자 진동을 이용한 방열 챔버

Also Published As

Publication number Publication date
CN108473312A (zh) 2018-08-31
US20190002284A1 (en) 2019-01-03
KR20180099695A (ko) 2018-09-05
US11414321B2 (en) 2022-08-16
US20210032100A1 (en) 2021-02-04
US10836633B2 (en) 2020-11-17
KR102570247B1 (ko) 2023-08-23
JP6802808B2 (ja) 2020-12-23
EP3398907A1 (en) 2018-11-07
JPWO2017115832A1 (ja) 2018-11-29
TWI721077B (zh) 2021-03-11
TW201736255A (zh) 2017-10-16
CN108473312B (zh) 2022-02-15
CN114133918A (zh) 2022-03-04
EP3398907A4 (en) 2019-08-14

Similar Documents

Publication Publication Date Title
WO2017115832A1 (ja) カーボンナノチューブ複合材およびカーボンナノチューブ複合材の製造方法
JP6840725B2 (ja) カーボンナノチューブ構造体の起毛方法、カーボンナノチューブ構造体の製造方法およびカーボンナノチューブ構造体
US10609810B2 (en) Method for producing heat-dissipating sheet having high thermal conductivity
CN108430919B (zh) 碳纳米管接合片以及碳纳米管接合片的制造方法
JP6406760B2 (ja) グラファイトシート、その製造方法、配線用積層板、グラファイト配線材料、および配線板の製造方法
JP4686274B2 (ja) 放熱部品及びその製造方法
EP2739929A1 (en) Dynamic thermal interface material
WO2016136826A1 (ja) カーボンナノチューブ高密度集合体およびカーボンナノチューブ高密度集合体の製造方法
KR101839920B1 (ko) 방열 인쇄 회로 기판 및 그 제조방법
JP6917725B2 (ja) カーボンナノチューブ複合材の製造方法、カーボンナノチューブ複合材および異方性カーボンナノチューブ複合材
WO2021039383A1 (ja) カーボンナノチューブ構造体およびカーボンナノチューブ構造体の製造方法
TW200933937A (en) Semiconductor devices having enhanced light emission and associated methods
JP2018199840A (ja) 金属−炭素粒子複合材の製造方法
JP2019007033A (ja) 金属−炭素粒子複合材の製造方法
Tong et al. Monolithic Carbonaceous Materials and Carbon Matrix Composites

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16881806

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017559230

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20187018235

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2016881806

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2016881806

Country of ref document: EP

Effective date: 20180730